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zon Marketplace. One use for these ratings is to order search results. Platform

owners are able to choose the extent to which ratings can be used to determine the

probability a given seller is observed by a sets of buyers. Since demand is higher

for high quality products, there is an incentive to increase the probability that

highly-rated sellers are observed by biasing search results towards them. However,

biasing search results in this way results in competition being more concentrated,

reducing prices. The extent to which it is pro�table to use ratings as a means of
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1 Introduction

Many online platforms allow users to rate products on their platform. These ratings

have many potential uses, including revealing to buyers their own valuation for products

on o�er. Another way in which product ratings are used is to determine the likelihood

that sellers are observed by buyers. Given that buyers do not tend to observe every

seller on a platform (see, for example, Ringer and Skiera, 2016 and Kim, Albuquerque

and Bronnenberg, 2010), the choice of which sellers buyers observe will a�ect platform

pro�ts. Many online platforms use ratings as one of the inputs that determine how

search results are ordered (Dinerstein et al, 2018).1 We analyse the incentive of a pro�t-

maximising, monopolistic platform owner to use ratings as a means of determining the

prominence of a seller on a platform.

To give an example of the problem under consideration, suppose there is a market

with three products, X, Y and Z. Prior to the ratings of these products being realised,

the platform owner chooses the relative likelihood that products are observed given

their quality by choosing a observation function that maps quality into observation

probabilities. If X is more highly-rated than Y and Y is more highly-rated than Z, then

the platform's choice of observation function will determine how much more prominent

X is than Y and Z.2

To keep track of the price-setting behaviour of an arbitrarily large number of sellers

in which buyers observe sellers with some observation probability and the matrix of

1For an empirical assessment of the e�ect of ratings on consumer demand, see Chevalier and Mayzlin
(2006), Vana and Lambrecht (2020), Fradkin, Grewal and Holtz (2017) Luca (2016) and Ögut and
Tas (2009)

2 Prominence here refers to the probability that buyers observe a given seller. This approach

contrasts with Armstrong, Vickers and Zhou (2009) and Armstrong and Zhou (2011), where prominent

sellers are observed �rst and either accepted or rejected in a search framework.
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such observation probabilities generates a network which in turn determines prices.

Our analysis therefore utilises results from the games on networks literature Ballester,

Calvò-Armengol and Zenou, 2006, and Bramoullé, Kranton and D'Amours, 2014) in a

setting where a platform can in�uence (but not directly set) the links between sellers.3

Hence, this study �ts into the growing interventions in networks literature.4

Using our framework, we �nd that there is a high-level trade-o� inherent with choos-

ing to positively weight the observation probabilities according to a product's rating.

On the one hand, there is an incentive to bias the search process towards highly-rated

sellers because doing so increases the probability that buyers observe high quality sell-

ers. Buyers also demand more of the products sold by highly-rated sellers for a given

set of prices, which implies that matching buyers to these sellers increases expected

pro�ts, if prices were independent of the search process chosen by the platform owner.

However, making it more likely that highly-rated sellers are observed causes compe-

tition to become more concentrated across the network, in the sense that highly-rated

sellers are more likely to compete with each other than in the case where matches are

random. Fierce competition between a subset of the sellers in the network more than

o�sets the fact that sellers with a low rating are less likely to compete with one another.

Highly-rated sellers have a lower price than is the case where matching is random, and

all sellers on platform, including those with low ratings, respond by reducing their prices

as well.

3See Bimpikis, Ehsani and Ilkiliç, 2018 and Elliott and Galeotti, 2019 for applications of this
literature to an IO context.

4 Contributions to the wider intervention in economic networks literature include: Galeotti and

Goyal (2009), Candogan, Bimpikis, and Ozdaglar (2012), Banerjee, Chandrasekhar, Du�o, and Du�o

(2013), Bloch and Querou (2013), Leduc, Jackson, and Johari (2017), Li (2019), Belhaj, Deroïan and

Sa� (2020), Galeotti, Golub and Goyal (2020) and Akbarpour, Malladi, and Saberi (2020).
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Our setting also makes it possible to characterise the type of markets in which bi-

asing search results more towards high quality products is bene�cial. In markets where

product substitutability is relatively low or where product quality is relatively impor-

tant, the concentration of competition e�ect described above becomes less important,

driving up the optimal prominence of high quality

Similarly, as the variance of the component of the buyers' valuation that is idiosyn-

cratic increases, the less the platform owner has the incentive to bias search results.

Making high quality sellers prominent increases the probability that buyers miss out

on high quality matches with a surplus largely composed of the buyer's idiosyncratic

preference towards the product. Our analysis therefore suggests that the nature of the

market or markets that the platform hosts is crucial for determining the extent to which

ratings are used to rank products.

Our result that there are potential ex-ante gains for the platform owner generated

by consumers observing high quality products shares features with the results found in

work analysing the incentive of monopolists to reveal information relating to consumer

valuations, like Lewis and Sappington (1994) and Myatt and Johnson (2006).

By focusing on a monopolistic platform, we identify a trade-o� that becomes in-

creasingly important as individual platforms become dominant. As such platforms gain

signi�cant market share, their ability to shape intra-platform competition becomes more

important, something in which regulators are increasingly taking an interest.5Our focus

on intra-platform competition then di�ers from the more common approach of exam-

ining inter-platform competition, leading to a more thorough consideration of the fact

5See, for example, the European Commission's recent preliminary �nding that Amazon breached
EU antitrust rules by distorting competition on its own platform by using privately held data to the
bene�t of its own retail o�ering and its investigation in to Amazon's �buy box� (European Commission,
2020)
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that modern platforms are hosts to a market which they can in�uence. While there

have been some recent analyses to intra-platform competition from a management per-

spective (Zhu and Liu (2018 and Nambisan and Baron, 2019), there has been less focus

on this aspect of platforms in economics. An exception to this is Choi, Dai and Kim

(2018), who analyse the case in which oligopolists compete on prices when prices partly

determine the probability of being observed, but do not explicitly examine the question

of platform design.6

Charlson (2020) also examines internal competition on platforms, but examines

the case where the platform owner has full control over which buyers observe which

sellers, and seller ratings do not play an explicit role. Here, we examine the case

where ratings are the only means of the platform being able to determine relative

observability, identifying a trade-o� between pro�table matches and competition that

real-life platforms face.

Recent work by Armstrong and Zhou (2020) and Elliott, Galleotti and Koh (2020)

has examined how platform owners can increase pro�ts by segmenting the market via

limiting the information sellers have about consumer valuations.7 Our framework anal-

yses an alternative method of segmentation achieved via changing the probability that

buyers observe sellers.

Due to the concentration of competition e�ect described above, the platform prefers

to show consumers high quality sellers less than a consumer surplus maximising central

planner. Competition authorities should pay close attention what determines promi-

nence in search on online platforms. In cases where they are concerns of monopolistic

6For canonical approaches to inter-platform competition, see Tirole and Rochet (2003) Armstrong
(2006) and Tan and Zhou (2019).

7These approaches our part of a wider literature on Bayesian persuasion Kamenica and Gentzkow
(2011), which has been applied to IO contexts in e.g. Bergemann, Brooks, and Morris (2015) and
Chen and Zhang (2020)
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behaviour, requiring transparency regarding the inputs of the algorithm used to deter-

mine the results of internal search may be required.

2 The model

Suppose that there are a �nite number of consumer segments, each composed of po-

tentially a large but �nite number of buyers. Each buyer within a consumer segment

shares some trait, such as geographical location, age demographic, occupation etc. Call

the set of these consumer segments B and suppose that |B| = n. Let S be a �nite

set of sellers and where |S| = m. Sellers each sell a single type of completely divisible

good, and each seller's good is an imperfect substitute for each of the goods.

Sellers and consumer segments interact on a platform. A consumer segment, i,

observes a seller j with probability wij, which is generated by an observation function

discussed below. The observation process generates a weighted network G = (B∪S,E),

where E is the set of weighted edges from S to B, where each consumer segment can

be thought of as a node in the graph G. G has an adjacency matrix, R, which is a

zero-diagonal matrix with components wij.

Let p denote a m× 1 vector whose jth entry is pj ∈ R+, the price of j's good. We

will assume that the ex-post demand function, xij(p) : Rm → R+, captures the demand

of a group of buyers i for a product j condition on i observing j:

xij(p) = b(γij − pj) +
∑
k 6=j

µikc(pk − γik).

where b, c ∈ R+ and µik = 1 if i observes k and 0 otherwise. We will suppose throughout

that each γij is stochastic. More speci�cally, assume that:

6



γij = θγj + εij,

where both γj and εij are random iid variables with continuous and symmetric distri-

bution supported on bounded intervals [γL, γH ] and [εL, εH ], with means γ̄ and 0 and

variances σ2
γ > 0 and σ2

ε ≥ 0 respectively. The �rst of these terms can be thought of

capturing the quality of product j, whereas the second captures the idiosyncratic value

consumer i derives from j.

The parameter θ ∈ R+ then captures the extent to which consumer segments value

quality relative to their idiosyncratic assessment of the good. We will assume that all

of the elements of the buyer's demand function, which are non-stochastic, including θ,

are common knowledge. We also assume that xij > 0, which is guaranteed when b is

su�ciently large, the conditions for which we discuss in more detail below.

Once the value of each γij is realised, consumer segment i's ex-ante expected demand

function for a good j can be represented by E[xij(p, γij)] : Rm+1 → R:

E[xij(p, γij, γik)] = wij(b(γij − pj) +
∑
k 6=j

c(pk − γik)).

De�ne as j's expected demand function, E[xj(p)] : Rm → R+ as E[xj(p)] =
∑n

i=1 E[xij(p)].

Then, assuming the marginal cost of each seller is zero, the pro�t function for seller j

is E[πj(p)] = pjE[xj(p)].

Sellers are assumed to observe the entire graph G: they observe the matrix of

observation probabilities. On the basis of this observation, sellers choose their prices.

A seller, j, is assumed not to be able to price discriminate across buyers, and hence

each sets a single price pj ∈ R+. Sellers compete with one another on price, and set

prices simultaneously. Therefore each seller's maximisation problem can be expressed
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as:

max
pj

πj(pj, p_j ; G).

Having characterised the game played by the sellers given the graph G, it is necessary

to set out how G is determined. De�ne the rating of a product j as follows:

γ̂j :=

∑
i γij
θn

.

We assume that the rating of a product is determined by previous buyers of that

product truthfully revealing their intercept parameters. By the law of large numbers,

as n→∞, γ̂j →p γj. We will assume throughout that n is su�ciently large such that

γ̂j is arbitrarily close to γj.

The platform and the observation function

Having set out the demand function of the buyers, it is necessary to outline the obser-

vation process. Let γ̂−j be a (m− 1)× 1 vector that contains every seller rating except

for j. We will assume that the probability that a buyer i observes a seller j, wij, is

determined as follows:

wij(γ̂) = φ(γ̂j, γ̂−j) ∀i, j (1)

where φ(γ̂j, γ̂−j) : Rm → [0, 1] is a observation function that maps the rating of each

seller to an observation probability for the seller j. Given the equilibrium price setting

behaviour and a set of conditions which we outline below the platform owner is assumed

to choose a observation function φ(.) ∈ Φ, where Φ is the set of all feasible observation
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functions, φ(., .) to solve the following problem:8

maxφ(.)∈Φ{Eφ[π
∗
P (p)]} = maxφ(.)∈Φ{χ

m∑
j=1

Eφ[π
∗
j (p)]},

where Eφ[π
∗
P (p)] is the expected platform pro�t when the observation function is φ(.)

and 0 ≤ χ ≤ 1. We will assume throughout that the platform chooses φ(γ̂j, γ̂−j)

prior to the realisation of the ratings vector. Hence, the timing of the model can be

summarised as follows: the platform owner chooses φ(.); the ratings vector γ̂ is realised,

generating a graph G; sellers set p∗; and �nally the observation graph is realised and

consumer segments purchase products according to their ex-post demand function.

3 Determining observation probabilities

Equation (1) de�nes an observation function that determines the probability that each

consumer segment observes each seller. Let Φ represent the set of all feasible obser-

vation functions. Throughout, we will assume that any φ(.) ∈ Φ obeys the following

conditions:

(C1) Competitor symmetry. For any i, j, k,with j 6= i, k, γ̂i and γ̂k enter φ(γ̂j, γ̂−j)

identically for all j.

(C2) Distributional symmetry. Suppose γ̂b = γ̄ + z and γ̂s = γ̄ − z. For any

φ(γ̂j, γ̂−j) ∈ Φ, it must be the case that if |φ(γ̂b, γ̂−j) − φ(γ̄, γ̂−j)| =

|φ(γ̂s, γ̂−j)− φ(γ̄, γ̂−j)|.
8Throughout, we use Eφ[] to refer to the expectation of some function when the observation function

is φ(.). Any expectations without this notation refer to the expectation of some variable or function
after the realisation of the ratings vector but prior to the realisation of the observation graph.
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(C3) Continuity and di�erentibility. φ(γ̂j, γ̂−j) is continuous and di�erentiable

on its entire domain.

Of these three conditions, (C2) is the most restrictive. Intuitively, this condition reduces

the platform owner's ability to exclude products with low ratings from being observed at

all. While such a condition likely does meaningfully bind the platform owner's decision,

it is a simpli�cation that allows us to understand the key trade-o�s between competition

and matching concerns.

When (C1)-(C3) hold, noting that each γj is distributed symmetrically, any φ(.) ∈ Φ

generates a set of random variables w̃ij as follows:

w̃ij =d υ + εj,

where υ ∈ [0, 1] and each εj is identically and independently distributed according to

some bounded, symmetric and continuous distribution with mean 0. The scalar υ can

be thought of as the �baseline� probability with which each segment observes each seller,

which is adjusted up or downwards depending on a segment's quality.

Loosely, the extent to which ratings are used to determine observation probabilities

can be used to categorise di�erent functions within the set Φ as generating �ratings-

based� matching environments, where the probability that high-quality sellers are ob-

served with a higher probability, or �random match� environments, where the matching

probabilities are even or near even. These two environments generate di�erent struc-

tures for a given realisation of the rankings vector γ̂, as Figure 1 shows.
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Figure 1: Ratings-based and random match environments where the product quality
parameters are as follows: γ̂A > γ̂B > γ̂C . The thicker a line, the higher the probability
of observation.

4 The price setting equilibrium

The competition graph

To characterise the equilibrium price vector of the sellers competing in G, it should be

noted that buyers are not strategic agents in the game, and therefore it is possible to

de�ne a network which is strategically equivalent to an original network G, but only

includes seller nodes. Such a network can be used to characterise the equilibrium of the

pricing game. De�ne:
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αj := βjγij −
m∑
k 6=j

ĉjk,

where ĉjk := c
∑n

k=1

∑n
i=1[wijwik]γik and βj := b

∑n
i=1wij.

Transforming the above pro�t function to put it in terms of a seller-only network

yields the following payo� function for seller j:

πj(p) = pj(αj − βjpj +
∑
k 6=j

ĉjkpk),

Rescaling (6) by 1/βi and multiplying by 1
2
generates π̃j(p) = pjα̃j− 1

2
p2
j +

∑
k 6=j c̃jkpjpk,

where α̃j =
1
2
αj
βj

and c̃jk =
1
2
ĉjk
βj

. The maximisation problem maxpi π̃i(pi) has the same

�rst-order condition as maxpi πi(pi). De�ne RS as a symmetric zero diagonal matrix of

a network GS with entries c̃jk. This transformation yields a competition network, GS,

which is a projection of G.9

The links in GS represent the relative importance of the connection between two

sellers. Hence, this representation allows us to track the competition faced by each

seller tractably, even if the number of sellers is arbitrarily large.

The structure of the competition network is of course shaped by the observation

function. When the observation function is relatively insensitive to ratings, the com-

petition graph generated is such that the links between each seller are of near-equal

value.

When the observation function is relatively sensitive to rating, GS is such that the

links between highly-rated sellers are larger than the links between lowly-rated sellers.

Furthermore, the directed link from a highly-rated seller to a lowly-rated seller is smaller

9Charlson (2020) also relies on the transformation between a bipartite buyer-seller graph and a
competition network. However, here the competition network is determined by an observation, rather
than directly by the platform owner.
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than the equivalent link in the other direction. Highly-rated sellers face relatively less

competition from lowly-rated sellers than the reverse, because lowly-rated sellers are

less likely to have captive or near-captive buyers.

Figure 2 shows the competition graphs generated in these two cases.

Figure 2: The e�ect on the competition graph when the observation function is insensi-
tive (left) and sensitive (right) to ratings, where the product quality parameters are as
follows: γ̂X = γ̂Y > γ̂Z . The thicker a line, the higher the competitive overlap between
the two sellers.

Equilibrium

Let γl := θγL+ εL and γh := θγH + εH . To ensure that there exists a unique equilibrium

in this setting, we assume the following throughout:

(A1) : b > c
(m− 1)γh

γl
.

(A1) guarantees both that the substitutability parameter c is not too large relative to

the own-price elasticity parameter b and that xij > 0 for any realisation of the quality

13



parameter vector γ and the random bipartite graph G.

Let α̃ represent a m × 1 vector with element j equal to α̃j and, abusing notation

slightly, let C = C(RS,1),where C(RS,1) = [I − RS]−1 is the Bonacich centrality of

GS with a decay factor of 1. The following result holds:10

Proposition 1. If (A1) holds, then the above pricing game has a unique Nash equilib-

rium in pure strategies, which is the equilibrium price vector:

Eφ[p∗] = θ(E[γ]− 1

2
Eφ[Cγ]).

As E[Cγ] = covφ(C,γ) +Eφ[C]E[γ], and covφ(C,γ) ≥ 0 when γ̂j > γ̂k then wij ≥ wik

(which, as we will see, is optimal for the platform), seller j's expected price is decreasing

in their weighted expected Bonacich centrality for all j.

Network structure and concentrated competition

The equilibrium behaviour of sellers implied by Proposition 1 implies that the structure

of the network a�ects pro�ts. The observation probabilities can be thought of as a

measure of �prominence� in the sense that they capture the likelihood that the seller is

observed by a given buyer. Increasing a seller j's prominence in the network potentially

increases pro�ts as a result of increasing the probability of sales, but at the same time

it imposes a cost on the rest of the network by increasing competition, reducing prices

of every seller, including for the more prominent seller.

10All proofs can be found in the appendix.
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As the number of sellers and the centrality of those sellers in the in the network GS

increases, wij > wik has an increasingly large e�ect on prices. The centrality vector in

GS can be expressed:

C(RS, 1)1 =
∞∑
k=0

Rk
S1.

It follows that ∂2Ck
∂2wij

> 0. Recall that seller prices are falling in the centrality of the

sellers in this setting. Hence, setting wij > wik imposes a cost upon the platform owner

because the centrality measure has a feedback e�ect such that increasing an observation

probability wij (weakly) reduces j's price, which reduces k's price which then reduces

j's price and so on. This feedback e�ect, which is a feature of the Bonacich centrality

measure, is increasing as the centralities of the sellers in GS become larger.

Furthermore, the fact that the second derivative of the centrality vector is positive

implies that two or more sellers also has a disproportionately large e�ect on competition.

As the prominence of seller X and a seller Y increase, then the size of paths of length

l ≥ 2 that run from X to Y and then Y to X (or vice versa) increases more than

linearly. The increase in the size of these paths then increases the centrality of every

other seller in the network, decreasing prices.

The above analysis indicates that two or more sellers being in relatively intense

competition with one another is disproportionately costly for the platform owner. We

refer to the case where there is relatively intense competition between a subset of the

sellers on the network as one in which competition is concentrated. There being a larger

probability that high quality sellers compete with one another drives the prices of those

sellers down, which propagates across the entire network.

In terms of the observation function, as
∂φj(.)

∂γ̂j
increases, the concentration of compe-
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tition also increases, as the probability that two highly-rated sellers compete with one

another increases. This has implications for the seller in terms of pro�t, which in turn

shapes the optimal observation function φ(.) from the platform owner's perspective.

5 Weighting ratings

We will consider the case where the platform owner is chooses optimal observation

function from a set of such functions that all adhere to (C1)-(C3). Notice that under

the speci�ed observation probability formation process, wij = wlj for all i, l pairs, and

it is therefore not possible for the platform to di�erentiate between di�erent buyers.

To understand some of the trade-o�s inherent in the platform owner's maximisation

problem, it is useful to suppose at �rst that the platform owner can only choose υ, such

that εj = 0 for all j with probability 1. The platform owner's problem can then be

re-stated as follows:

maxυEυ[πP (p)],

where Eυ[.] is the expectation function when the baseline probability is υ and εj = 0

for all j with probability 1. An increase in υ has two e�ects on pro�ts. Increasing υ

increases the probability that a given buyer is observed increases expected sales, which

increases pro�ts. However, there is a cost to increasing υ: it results in there being a

higher probability that buyers observe more sellers, which creates more competition

across the network. More competition reduces demand for any one good and reduces

prices, decreasing pro�ts as well.

To see the trade-o� the platform owner faces more formally, we will split the marginal

e�ect of υ into two parts. At the equilibrium value of υ, the marginal increase in pro�ts

associated with an increase in the probability that each buyer observes each seller can,
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by the envelope theorem (Milgrom and Segal, 2002) be expressed as follows:

MBυ = nχEυ[
∑
j

bp∗j(θγj − p∗j ].

The expected marginal cost in terms of increased competition can similarly be de�ned:

MCυ = χEυ[
∑
j

∑
k 6=j

2υncp∗j(p
∗
k − θγk) +

∑
l

∑
k

ĉkl
∂p∗k
∂υ

p∗l ].

When the solution is interior, the platform owner's pro�t is maximised when the

marginal bene�t and marginal cost sum to zero. Letting ῡ denote a solution to the

optimisation problem above, Proposition 2 sets out the solution to that problem:

Proposition 2. There exists a unique solution to maxυEυ[πP (p)], 0 < ῡ ≤ 1. Further-

more, ῡ is decreasing in c, and hence there exists a c̄ ∈ R+ such that if c > c̄, then

ῡ < 1.

Seller, j's equilibrium price is decreasing in their Bonacich centrality, which is convex in

υ. Hence, the marginal cost associated with increasing υ is convex, while the equivalent

marginal bene�t is linear. Hence, either the two meet at some ῡ < 1 or there is a corner

solution such that ῡ = 1; either way, there exists is a unique solution to the seller's

problem.

Increasing υ increases the level of competition in the network. If c is su�ciently

high, then products are so substitutable that the platform owner is willing to forgo some

of the pro�t associated with buyers observing sellers for certain in order to increase

prices. The platform owner faces a trade-o� between expected sales on the one hand

and competition and lower prices on the other.

Now, consider the case where the platform owner maximises their pro�t by choosing
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an element of the set Φ. As discussed above, doing so involves generating a distribution

of observation weights centered around a mean, υ. It is useful to compare the mean, υ,

of a solution to the platform owner's optimisation problem in the case where they can

choose any element of the set Φ and ῡ :

Theorem 1. Suppose c > c̄ and hence ῡ < 1, and that every element in Φ satis�es

(C1)-(C3). Then, for any optimal observation function, φ∗(.), it must be the case that:

(i) if γ̂j > γ̂k then wij ≥ wik for all i, j, k with the inequality strict for some γ̂j and γ̂k

and (ii) υ∗ < ῡ.

The platform owner has an incentive to ensure that there is a greater probability that

highly-rated products are observed for a given level of υ and γ̂−j . Buyers demand more

high quality products for a given price level. Hence, if they are also more likely to

observe those products, then the platform owner's pro�t is increasing in the variance

of the quality parameter, holding prices constant.

At the same time, setting wij ≥ wik has implications for the structure of competition

on the network. As discussed above, making a seller more prominent concentrates

competition. Highly-rated sellers are more likely to compete with one another, as a

result of the fact that they are more likely to be observed. Concentrated competition

decreases expected prices and therefore expected pro�t.

Hence, the platform owner faces a trade-o� between the increased revenue (holding

prices constant) resulting from buyers observing high quality sellers and the fact that

increasing the probability highly-rated sellers are observed increases competition. As-

suming the optimal network structure when observation probabilities are equal is not

just the complete graph (i.e. assuming ῡ < 1),then this trade-o� is resolved such that
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at least some more highly-rated sellers are more likely to be observed than relatively

low quality sellers.

In order to alleviate some of the decrease in price associated with making some

sellers more prominent than others, the platform owner has an incentive to decrease

the probability that every seller is observed by reducing υ. Hence, υ∗ < ῡ. The platform

reduces the baseline probability that a given product is observed in order to reduce the

price e�ects of biasing search towards high quality products.

Prices and comparative statics

The above analysis raises the question: what is the e�ect of biasing search results

towards high quality sellers on prices? Let φ̄ represent the optimal observation function

where εj = 0 for all j with probability 1, and hence υ = ῡ. The following proposition

holds:

Proposition 3. Suppose every element in Φ satis�es (C1)-(C3). If ῡ < 1, then there

exists a c̃ ∈ R+ such that if c < c̃, then for an optimal vector of observation functions

φ∗, then Eφ∗ [p] < Eφ̄[p].

For a given baseline observation probability, υ, making some sellers more prominent

than others results in a reduction in prices, as discussed above.

In response to this distortion in competition, the platform owner reduces υ such that

it is below ῡ, which in turn increases expected prices. However, when substitutability

between products is not too large, this e�ect is guaranteed not to fully compensate for

the e�ect generated by the competition becoming more concentrated. Hence, prices

fall in expectation; the platform owner is willing to lower expected prices in order to

increase the probability of high-surplus matches.
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It also useful to consider the e�ect of a change in c and θ on the weight the platform

owner places on ratings. For ease of the exposition, we will amend (C2) as follows:

(C2
′
)

∂φ(γ̂j ,γ̂−j)

∂γ̂j
= κ for all γ̂j and γ̂−j .

(C2
′
) limits the platform owner to choosing linear observation functions. The previous

analysis implies that κ > 0 and as κ increases, the greater the weight the observation

function places on ratings. Limiting the e�ect ratings have on the observation function

to a single parameter allows us to make more intuitive claims about the e�ect of changes

to other parameters in the model.

To this end, it is useful to write the largest κ associated with any element of the

set of optimal observation functions, Φ∗, as κ∗ = κ∗(c, θ, σε). The following comparative

statics hold:

Proposition 4. Suppose every element in Φ satis�es (C1),(C2
′
) and (C3). If ῡ < 1,

then: (i) ∂κ∗(c,θ,σε)
∂c

< 0 and (ii) ∂κ∗(c,θ,σε)
∂θ

> 0.

As the sellers' goods become more substitutable, the cost of a given level of competitive

overlap between the sellers increases. Hence, as c increases, prices are lower for a given

level of κ. An increase in c increases the e�ect of the concentration in competition

implied by
∂φj(.)

∂γ̂j
> 0. Highly-rated sellers compete with one another with higher

probability when κ > 0, and the relative strength of this competition e�ect is increasing

in product substitutability.

As θ increases, the marginal bene�t of increasing κ also increases. This follows

because (a) ∂MBκ
∂θ

= χ
∑

j(γ̂j − γ̄)(γj) > 0 and (b)
∂p∗j
∂θ

> 0. Hence, ∂κ∗(c,θ,σε)
∂θ

> 0.

Intuitively, as the extent to which buyers value quality increases, the value of matching

buyers with high quality products also increases, which implies that the optimal value

of κ rises.
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We can also use our framework to analyse the e�ect of an increase in σε, the variance

in idiosyncratic preferences. Theorem 2 sets this out:

Theorem 2. Suppose (C1), (C2
′
) and (C3) hold. If ῡ < 1 and σ

′
ε > σε, then υ

∗(σ
′
ε) >

υ∗(σε) and κ∗(σ
′
ε) ≥ κ∗(σε).

As j's price and i's demand is increasing in εij, j's expected pro�t is convex in εij,

a result consistent with Myatt and Johnson (2006). Thus, when the additional pro�t

generated from a positive realisation of εij is greater than the loss in pro�t associated

with a negative realisation of εij.

The result of this feature of the platform owner's pro�t function means that as

σε increases, so too does the platform owner's incentive to increase υ. Increasing the

baseline probability that consumer segments observe sellers results in an increase in

expected pro�t as it reduces the probability that a consumer segment does not observe

a high-surplus idiosyncratic match, which in turn is more pro�table than a equivalently

low-surplus match. This is akin to the platform owner expanding the expected size of

the consumer segments' information sets in the Myatt and Johnson framework.

Increasing the baseline probability υ is costly in terms of its e�ect on prices, and

hence the platform owner is incentivised to reduce the extent to which observation

is biased towards high quality sellers. Hence, as σε increases, sellers are on average

observed with higher probability and the di�erence between how likely it is high and

low quality products are observed gets smaller.

6 Consumer welfare

Thus far we have analysed the extent to which biasing the search process towards high

quality sellers increases pro�ts. We now consider consumer welfare by assessing the
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e�ect of changes to the matching environment on consumer surplus. We de�ne i's

expected consumer surplus as follows:

Eφ[CSi(x
∗
i ,p

∗)] =
m∑
j=1

1

2
Eφ[x∗ij(γij +

m∑
k=1

c

b
wik(p

∗
k − γik)]− p∗j)].

De�ne
∑

iCSi(x
∗
i ;p

∗) = CS(x∗;p∗), where x∗ is an n×mmatrix whose ijth component

is x∗ij. Suppose that the central planner solves the following maximisation problem:

maxφ{Eφ[CS(x∗,p∗)]}.

Let ΦCP denote the set of solution to this maximisation problem. The following propo-

sition holds:

Proposition 5. Suppose every element in Φ satis�es (C1)-(C3). Any φ(.) ∈ ΦCP is

such that υ = 1 and hence Eφ[wij] = 1 for all i, j pairs.

Increasing an observation probability wij increases consumer surplus because it both

increases the probability of surplus-increasing sales and reduces prices across the net-

work. The platform owner therefore harms consumer surplus if they reduce υ below 1,

which they may have an incentive to do in order to increase prices.

Now, consider the case where the central planner and/or platform cannot choose

the baseline probability υ, supposing this is �xed by nature at υ̂. Under that condition,

any element of the set Φ must result in each w̃ij =d υ̂ + εj, for some symmetrically

distributed random variable εj with mean 0. We term the condition (C4), under which

we can compare the platform owner and central planner's preferences for observation

functions.

Theorem 3. Suppose every element in Φ satis�es (C1)-(C4) for some υ, υ̂. Take any
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φ(.) ∈ Φ∗. If there exists a φ
′
(.) ∈ Φ∗ under which: (a) γ̂j > γ̂k implies that wij ≥ wik

for all i, j, k and (b) the distribution of εj is a mean preserving spread of the distribution

of εj generated by φ(.), then: Eφ′ [CS(x∗,p∗)] > Eφ[CS(x∗,p∗)].

If there exists a feasible observation function where high quality sellers are more likely to

be observed than low quality sellers and that produces a mean-preserving spread of some

other observation function, the central planner will always prefer the �rst observation

function. This is because, for that observation function, prices are in expectation lower,

and demand higher, due to the concentration in competition e�ect.

For the platform owner, as has been discussed, increasing the extent to which

searches are biased towards high quality sellers is costly to pro�ts due to this same

price e�ect.The platform owner at least weakly prefers distributions of observation

probabilities which are mean preserving contractions of those distributions preferred by

the central planner. Such a preference comes at the cost of consumer welfare.

7 Discussion

Our analysis explains why online platform use ratings di�erently to determine which

sellers are more likely to be observed by buyers. In general, the platform owner faces a

trade-o� between increased competition and lower expected prices on the one hand and

an increase in pro�ts due to matching on the other. The extent to which the platform

owner has an incentive to bias their search process towards highly-rated sellers depends

on the nature of the goods being sold on the platform.

To expand on this point, we compare the importance of product quality and the

variance of the idiosyncratic preferences of di�erent goods commonly sold on online

platforms in Figure 3.
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Figure 3: A comparison of di�erent types of markets according to their values of im-
portance of quality and the variance in idiosyncratic preferences

When platforms o�er (or predominately o�er) products with low values of θ, the con-

centrated competition e�ect identi�ed in Section 6, whereby using ratings to determine

observation probabilities increases the e�ective level of competition across the market,

dominates. When the ex-post di�erence between the valuations of the sellers is low, the

expected reduction in prices associated with biasing observation towards high-quality

sellers outweighs any potential bene�ts associated with a ratings-based environment,

which implies that it is relatively less pro�table than a random match environment.

For products that have high idiosyncratic variance but relatively low expected dif-

ferences in quality, a random match (or near random match) environment is relatively

more pro�table than the ratings-based environment. This is because there is an increas-

ing probability of high-surplus matches driven by the convexity of the pro�t function.

On the other hand, the relative pro�t associated with high-quality sellers being ob-

served with a high probability increases as θ increases, as a result of the same convexity
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in pro�t function. Hence, in such environments, the ratings-based environment would

be more pro�table.

To represent the above discussion graphically, suppose that (C2
′
) holds. If κ > κ̄ for

some arbitrary κ̄ ∈ R+, then we de�ne the observation process as being �ratings based�.

If κ∗ ≤ κ̄, let the search process be known as �random match�. Figure 4 then depicts

where ratings-based and random matching observation processes would be optimal in

θ − σε space:

Figure 4: A comparison of the random match and ratings-based environments: in
markets above the solid line, a ratings-based observation process is optimal, below it,
random matching.

Figure 4 makes clear that platforms that (largely) host markets where product quality

is less important to consumers should use an information environment that weights

ratings less than platforms where product quality is more important to consumers. It

is possible to approximate the positions of real-life platforms within the space shown in
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Figure 4, which is shown in Figure 5.

Figure 5: A comparison of the random match and ratings-based environments. For any
market above the solid line, pro�ts are higher in ratings-based environments.

Our analysis also makes it possible to assess some contemporary issues and debates

within the regulation of platforms. For example, the European Commission has recently

begun investigating the extent to which Amazon biases its search results towards its

own products. Not only does this have clear implications for which sellers are successful

on the platform, but it also has e�ect on competition more broadly.

In terms of the model here, if the platform sets probability that a preferred seller(s),

j, is observed by all buyers to some higher than average value wij = υ
′
, then the platform

has an incentive to lower the baseline probability that other sellers are observed and

reduces the extent to which high quality sellers are observed. This not only arises

because this decreases the competition faced by the preferred seller, but because there

being an especially prominent seller increases the concentration of competition across
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the network, which can be o�set by reducing the bias placed on ratings by internal

search algorithms.

8 Conclusion

Using seller ratings to order search shapes the structure of competition on a platform

hosting a marketplace. Empirical evidence makes clear that there the extent to which

seller ratings are used to order search results di�ers considerably between platforms,

and the aim of our analysis has been to understand what drives these di�erences.

There is a trade-o� that the platform owner faces when using seller ratings to order

search results. Increasing the extent to which sellers that are highly-rated are observed

by buyers is potentially pro�t increasing because buyers are more likely to be matched

with a high quality product, increasing willingness to pay.

At the same time, biasing search towards highly-rated sellers has the e�ect of concen-

trating competition among those sellers, which results in lower expected prices across

the network. The platform owner resolves this trade-o� in the case where they can

freely choose the extent to which they bias their search results by limiting the use of

ratings in the search process. As products become more substitutable, or consumers

become less sensitive to product quality, the platform owner has an incentive to reduce

the extent to which the search process is biased towards highly-rated products.

Our analysis generates a number of predictions that would be worthwhile exploring

empirically, including:

1. Platforms selling products where perceived or actual quality is more important

will use ratings as a larger component of their search process;
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2. Platforms selling products with high idiosyncratic variance will use ratings as a

smaller component of their search process;

3. Revealing product rankings reduces prices within given platform or market;

4. Platforms selling relatively homogeneous products will use ratings as a smaller

component of their search process.

Our results also indicate that competition authorities should pay close attention to

what determines prominence within the search processes of online platforms. As plat-

forms like Amazon become increasing dominant, the incentive and ability to in�uence

competition by changing which buyers see which sellers increases. Greater transparency

regarding the inputs of the algorithms that determine prominence would be needed for

authorities to understand real-world platform incentives and reduce the potential for

anti-competitive behaviour.

Appendix

Proof of Proposition 1

It can be readily shown that the �rst-order condition (and therefore the resulting op-

timisation problem) for the payo� vector π̃ is equivalent to the �rst-order condition of

the payo� vector associated with the original payo� vector π. The �rst-order condition

of the payo� vector is as follows:

α̃ = [I −RS]p.

The matrix I−RS is positive de�nite (by (A1)), non-singular and the above �rst-order

28



condition has a solution, which is denoted p∗. Rearranging this �rst-order condition

leads to the following: [I −RS]−1α̃ = p∗.

As I −RS is positive de�nite, the stated �rst-order condition above yields a unique

interior solution. Furthermore, no corner solutions can exist, due to the fact that (A1)

guarantees that xij > 0 for all i, j pairs. This implies that if p∗j = 0 in some price vector

p,p is not optimal price vector. This is because there exists a ε > 0 such that p
′
j = ε

generates a strictly positive expected demand E[x
′
j(p
′
)] > 0.

Recall that αj =
∑n

i=1[bwijγij]−
∑m

k=1 ĉjk. Noting that E[εij] = 0 that each γj and

εij are independent, it follows that:

E[Cα̃] = E[
1

2

∞∑
k=0

Rk
S(θγ) −

∞∑
k=1

Rk
Sθγ].

Implying that:

E[Cα̃] = E[
1

2
θγ − 1

2

∞∑
k=0

Rk
Sθγ +

∞∑
k=0

Rk
Sθγ].

Proof of Proposition 2

Note that the ijth entry in the centrality matrix C(RS,1) is equal to
∑

l r
[l]
ij (RS), where

r
[l]
ij (RS) measures the weighted paths of length l that start at node i and end at node

j. When wij = υ for all i, j pairs, then Cj(RS,1) can be written as follows:

E[Cj(RS, 1)] =
∞∑
k=0

(
c

b
v(m− 1))k

Each expected centrality is convex in υ, as
∂2E[Cj(RS ,1)

∂2υ
> 0. As the expected equilibrium

price vector is decreasing in the expected centrality of each seller j, this implies that the
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expected price vector is strictly concave in υ. This implies that the platform owner's

optimisation problem is also concave in υ as the following expression holds:

d2π∗k
d2υ

=
∂2π∗k
∂2υ

+
∑
i

[(
∂2π∗k
∂2(p∗i )

∂p∗i
∂υ

)(
∂p∗i
∂υ

) +
∂π∗k
∂p∗i

∂2p∗i
∂2υ

].

Noting that
∂p∗i
∂υ

< 0 and
∂π∗k
∂p∗i

< 0 for all pi, all three of the terms on the right-hand side of

this expression are negative, which implies that
d2π∗k
dυ2 < 0 for all k. Hence, if the solution

of the �rst-order conditions of the platform owner's pro�t maximisation problem is

interior, it represents a unique, global optimum, where 0 < υ∗ < 1. Furthermore, if

d2π∗P
d2υ

> 0 when υ = 1, then υ = 1 is an optimal solution as υ ∈ [0, 1].

It is clear from the above that the absolute value of the derivative
∂pj
∂υ

is increasing in

c. Furthermore, the expression E[
∑

k 2υncp∗j(p
∗
k − θγk)] features in MCυ. (A1) dictates

that bE[γj] > c
∑

k E[γk], but at υ = 1, there exists a c such that 2c
∑

k E[γk] > bE[γj] >

c
∑

k E[γk], holds. This is su�cient to guarantee that MBυ −MCυ < 0, when υ = 1,

and hence there exists a c̄ such that if c > c̄, υ∗ < 1.

Proof of Theorem 1

For (i), we consider the e�ect of a marginal increase in the probability that j is observed,

by a consumer i, wij = wj, once ratings have been realised. Note that each seller j's

pro�t function is twice di�erentiable and continuous, and
∂2πj
∂2pj

< 0. As per Milgrom and

Segal (2002), these are jointly su�cient conditions for the envelope theorem to apply,

and thus dπP (p∗)
dwj

= ∂πP (p∗)
∂γj

.

d
∑

i πi(p)

dwj
= nbp∗j(γj − p∗j) +

∑
i 6=j

wincp
∗
j(p
∗
i − θγi) +

∑
i

∑
k 6=i

(ĉik
∂p∗k
∂wj

)p∗i .
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By (A1) and the expression for p∗, it follows that
∂
∑
i πi(p)

∂wj∂γj
> 0 for γj ∈ [γL, γH ].

Now consider a observation function, φ̃(.) where
∂φ̃j(γ̂

′
j ,γ̂−j)

∂γ̂j
< 0 for at least some

γ̂
′
j ∈ [γL, γH ] and some vector γ̂−j . The optimal function having this property is a

necessary and su�cient condition for it to be the case that there exists a pair of ratings

γ̂j, γ̂k such that: wij < wikwhen γ̂j > γ̂k, violating the �rst statement in (i).

Recall that
∂
∑
i πi(p)

∂wj∂γj
> 0. It follows that if

∂φ̃j(γ̂
′
j ,γ̂−j)

∂γ̂j
< 0, then there always exists a

φ̂j(., .) ∈ Φ where φ̂j(γ̂j, γ̂−j) < φ̃j(γ̂j, γ̂−j) for all γ̂j ≤ γ̂
′
j, φ̂j(γ̂j, γ̂−j) ≥ φ̃j(γ̂j, γ̂−j) for

all γ̂j > γ̂
′
j and E[πP (p∗)|φ̃] < E[πP (p∗)|φ̂]. Hence the �rst statement in (i) is proved.

For the claim that for any optimal observation function it must be the case that for

a given γ̂−j ,
∂φ∗j (γ̂j ,γ̂−j)

∂γ̂j
> 0 for at least some γ̂j ∈ [γL, γH ], note �rst that υ∗ < ῡ < 1,

as shown below. As we have ruled out the case where
∂φ∗j (γ̂j ,γ̂−j)

∂γ̂j
< 0, to show this we

can show that
∂φj(γ̂j ,γ̂−j)

∂γ̂j
= 0 for all γ̂j ∈ [γL, γH ] is suboptimal.

If for a given γ̂−j ,
∂φ̃j(γ̂j ,γ̂−j)

∂γ̂j
= 0 for γ̂j ∈ [γL, γH ], then wij = w for all i and j pairs.

As υ∗ < ῡ < 1, it must be the case that for any candidate observation function, φ̃j(.),

φ̃j(γ̂L, γ̂−j) < 1 for any γ̂−j . Then, given
∂
∑
i πi(p)

∂wj∂γj
> 0 for γj ∈ [γL, γH ] when wj < 1,

it follows that there exists a observation function where φ̂j(γ̂L, γ̂−j) < w < φ̂j(γ̂H , γ̂−j)

and E[πP (p∗)|φ̃] < E[πP (p∗)|φ̂].

For (ii), recall that for any φ ∈ Φ, we can write observation probabilities as wij =d

υ + εj for all i and j. Suppose that εj is distributed in accordance to some optimal

vector φ∗ and has a distribution f . If f is non-degenerate, then for any given value of

υ, |∂Eυ,f [p∗i ]

∂υ
| > |∂Eυ,fD [p∗i ]

∂υ
| where fD is the degenerate distribution in which εj = 0 with

probability 1.

Furthermore, as increasing υ increases the probability that every seller is observed

equally, the gross marginal bene�t of increasing υ is independent of the distribution of

εj. Hence,
∂Eυ,f [πP ]

∂υ
<

∂Eυ,fD [πP ]

∂υ
for all values of υ ∈ [υ,ῡ], where υ and ῡ are the lowest

31



and highest values of υ consistent with εj ∼ f and the conditions (C1)-(C3) being met.

It follows that υ ≤ ῡ.

Proof of Proposition 3

As stated in the main text, any vector of observation functions φ that obey (C1)-(C3)

results in each wij =d υ + εj. Let ϑ∗ denote the distribution of the vector of εjs,

ε induced by an optimal observation function φ∗(.) and ϑ0 the distribution induced

by the φ̄: i.e. where εj = 0 for all j. Let υ̃ denote the υ that solves the following

expression:

Eυ,ϑ0 [pj] = Eυ̃,ϑ∗ [pj].

By the envelope theorem, the marginal e�ect of increasing υ at υ = υ
′
on j's pro�t is

as follows:

dEυ′ ,ϑ[π
∗
j (p)]

dυ
=
∂Eυ′ ,ϑ[πj(p)]

∂υ
+
∑
i 6=j

∂Eυ′ ,ϑ[πj(p)]

∂Eυ′ ,ϑ[p
∗
i ]

∂Eυ′ ,ϑ[p
∗
i ]

∂υ

First, note that
∂2E

υ
′
,ϑ

[π(p)]

∂2υ
< 0, as each seller j's pro�t function includes the expression

nυ2
∑

k 6=j c(pk− γik), which is negative by de�nition. As the conditional expectation of

the term
∑

k 6=j c(pk − γik) is the same for both distribution and υ̃ < ῡ it follows that:

|∂Eυ̃,ϑ
∗ [πj(p)]

∂υ
| < |Eῡ,ϑ0 [πj(p)]

∂υ
|

Now consider the second term in the expression for
dE

υ
′
,ϑ
[π∗j (p)]

dυ
above. To assess this

expression, we must consider
∂E

υ
′
,ϑ
[Cj ]

∂υ
. Paths of length 2 in the expression Eυ′ ,ϑ[Cj] are

all functions of υ2, E[υεi] for all i and ( c
b
)2. As E[υεi] = 0, it follows that the derivative
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of the value of all paths of length l ≤ 2 with respect to υ is strictly increasing in υ for

all distributions of ε.

Furthermore, note that c
b
< 1. So while paths of length l > 2 are a function of E[εki ]

with k > 2, any such path is a function of ( c
b
)l. Hence, there exists a c̃ such that if

c < c̃, the following inequality must hold:

|∂Eυ̃,ϑ
∗ [Cj]

∂υ
| < |∂Eῡ,ϑ0 [Cj]

∂υ
| ∀j.

which then implies that: |Eυ̃,ϑ∗ [p
∗
j ]

∂υ
| < |∂Eῡ,ϑ0

[pj ]

∂υ
| ∀j. Hence:

dEυ̃,ϑ∗ [π
∗
P (p)]

dυ
>
dEῡ,ϑ0 [π∗P (p)]

dυ
= 0.

The last equality holds by de�nition as ῡ maximises Eῡ,ϑ0 [π∗P (p)]. It follows that the

platform owner has an incentive to increase υ at (υ̃, ϑ∗) which, as
dEυ,ϑ[p

∗]

dυ
< 0, implies

that:

Eυ̃,ϑ∗ [p
∗
j ] < Eῡ,ϑ0 [p

∗
j ] ∀j.

Proof of Proposition 4

Consider the �rst-order conditions of the platform owner's problem maxκ,υπ
∗
P (υ, κ),

which we express as follows: πκ := ∂πP (υ,κ;θ,c)
∂κ

= 0 and πυ := ∂πP (υ,κ;θ,c)
∂υ

= 0. These two

�rst-order conditions provide a mapping from R4 → R2. Denote the Hessian of the

platform owner's maximisation problem as follows:

H =

 πκκ πκυ

πυκ πυυ

 .
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It is clear that ∂πκ
∂θ

> 0 and ∂πυ
∂θ

> 0. By the implicit function theorem:

− 1

|H|

 πυυ −πυκ

−πκυ πκκ


 ∂πκ

∂θ

∂πυ
∂θ

 =

 ∂κ∗

∂θ

∂υ∗

∂θ

 .
As πP (κ, υ) is concave in (κ, υ), |H| > 0 and ∂κ∗

∂θ
> 0.

A similar argument applies for c, with the di�erence being that ∂πυ
∂c

< 0 and ∂πκ
∂c

< 0.

It follows that ∂κ∗

∂c
< 0.

Proof of Theorem 2

For the purposes of our analysis, we rewrite the optimal price vector as a function of the

relevant parameters of the model, p∗ = p∗(υ, κ, ε). Recall that γij = θγj + εij. As εij

and γj are independent, εij does not a�ect the centrality vector of the graph generated

by υ, κ for all i and j. Hence:

∂p∗(υ, κ, ε)

∂εij
=
∂
∑

k α̃k
∂εij

.

Given the de�nition of
∑

k α̃k, it is clear that this expression is postie and does not

include εij, and hence p∗(υ, κ, ε) is linear and positive in each εij. Consider the ex-post

pro�ts of a seller j:

πj(p
∗, ε) = pj(υ, κ, ε)(αj(υ, ε)− βjpj(υ, κ; ε) +

∑
j 6=k

ĉjkpk(υ, κ; ε).

As pj and αj(υ, ε) are both increasing linear functions of εij, πj(p
∗, ε) is increasing in

ε2ij. By implicitly limiting the size of the e�ect on j's pro�t of each ε2ik k 6= j, (A1) then

guarantees that platform owner's expected pro�t is increasing in σ2
ε = E[ε2ij].

Consider the expected e�ect of changing υ on j's pro�t at σε and σ
′
ε. The only
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element of seller pro�t functions that change as the result of a change in σε is s(υ, κ) :=

Eυ,κ[
∑

j pj(υ, κ, ε)αj(υ, ε)]. This holds because neither βj nor ĉjk are functions of ε and

p∗(υ, κ, ε) is linear in ε.

The previous discussion surrounding j's pro�t function combined with the fact that

αj(υ, κ, ε) is an increasing function of υ, implies that if υ < υ
′
, s(υ

′
, κ) − s(υ, κ) is

linearly increasing in σ2
ε .

Recall that γj and εij are independent and that, as (C2
′
) holds, κ does not a�ect

E[αj(υ, ε)]. Hence, s(υ, κ
′
)− s(υ, κ) is independent of σ2

ε for all κ
′
and κ.

The above then directly implies that when ῡ, υ∗(σε) > υ∗(σ
′
ε). As

∂Eυ,κ[πP (p∗)]
∂κ

is

strictly decreasing in υ for all κ ≥ 0, it follows that the largest κ that solves the �rst

order condition
∂E

υ∗(σ′ε),κ∗(σ′ε)
[πP (p∗)]

∂κ
= 0 must be less than or equal to the largest κ that

solves the �rst order condition
∂Eυ∗(σε),κ∗(σε)[πP (p∗)]

∂κ
= 0. Hence, κ∗(σε) ≥ κ∗(σ

′
ε).

Proof of Proposition 5

As shown in the proof of Proposition 2,for a given observation function φ(.),
∂Eφ[pj ]

∂υ
< 0

for all j. Furthermore,
∂Eφ[xij ]

∂υ
> 0. De�ning the second part of the expression for CSi

in the main text, yij(R) := γ̃ij +
∑m

k=1
c
b
wik(p

∗
k(R)− θγ̃ik)− p∗j(R), it is also clear that

∂Eφ[yij ]

∂υ
> 0.

Given (A1) holds and noting that E[p∗j ] = E[p∗k] = E[p∗], both xij and yij(R) are

decreasing in E[p∗]. It must be the case that E[CSi(x
∗
i ;p

∗)] is maximised when v = 1

for all i, which proves the result.
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Proof of Theorem 3

Consider two distributions of εj, denoted ϑ and ϑ
′
, where ϑ is a mean-preserving spread

of ϑ
′
and both distributions are symmetric with mean 0. Suppose w̃ij ∼ ϑ and w̃

′
ij ∼ ϑ

′

for all i, j, implying it is possible to write w̃ij =d w̃
′
ij + ζij,where ζij is symmetrically

distributed random variable with mean 0. Recall that:

C(RS)1 =
∞∑
k=0

Rk
S1.

It follows then that Eϑ[Cj(RS)] is a weakly increasing function of E[w̃
′
ij] and E[ζkij] for

each k ≥ 1 for some i, j pair. Noting that εij is symmetric by de�nition, it must be the

case that E[ζkij] = 0 when k is odd. Furthermore, E[ζkij] > 0 when k is even. It follows

that Eϑ′ [Cj(RS)] > Eϑ[Cj(RS)] ∀j.

Eφ[p∗] = θ(E[γ]− 1

2
Eφ[Cγ]).

Consider two observation functions, φ(, ), φ
′
(, ) ∈ Φ, where the random observation

probabilities generated by φ(, ), w̃ij ∼ ϑ and the observation probabilities generated by

φ
′
(, ) w̃

′
ij ∼ ϑ

′
. Note that cov(w̃

′
ij, γj) = cov(w̃ij, γj) + cov(ζij,γj). As φ

′
(, ) is such that

γ̂j > γ̂k then wij ≥ wik for all i, j, k then cov(ζij, γj) > 0, and hence, cov(w̃
′
ij, γj) >

cov(w̃ij, γj). Thus, Eφ′ [Cγ] > Eφ[Cγ].

Given the result in Proposition 1, the above implies that Eφ′ [p
∗] < Eφ[p∗].

Now, consider Eφ[x∗ij(p)]. De�ne the function:

xij(R) = (b(γ̃ij − p∗j(R) +
∑
k 6=j

ĉjk(p
∗
k(R)− θγ̃ik)).

Where R is the adjacency matrix of the graph G when the observation function is φ(, ).

We can then write Eφ[x∗ij(p)] = E[w̃ijxij(R)] and Eφ′ [xij(R
′
)] = E[w̃

′
ijxij(R

′
)]. Note
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that E[w̃ij] = E[w̃
′
ij] by de�nition. Due to Eφ′ [pj] = Eφ′ [pk] and the fact that (A1) holds,

xij(R) is decreasing in the expected price vector p. Thus, E[x̃ij(R)] < E[x̃ij(R
′
)].

Furthermore, cov[w̃
′
ijxij(R

′
)] > cov[w̃ijxij(R)] as cov(ζij,γj) > 0. Hence E[w̃ijxij(R)] <

E[w̃
′
ijxij(R

′
)].As xij(R

′
) is independent of xlk(R

′
) for all i, j, l, k, Hence: E[

∑
j w̃ijxij(R)] <

E[
∑

j w̃
′
ijxij(R

′
)].

We can similarly analyse the second term in the expression for CSi:

yij(R) := γ̃ij +
m∑
k=1

c

b
wik(p

∗
k(R)− θγ̃ik)− p∗j(R),

and conclude that E[
∑

j w̃ijyij(R)] < E[
∑

j w̃ijyij(R
′
)]. Again, as cov(ζij,γj) > 0, the

following result also holds:

cov(
∑
j

w̃
′

ijyij(R
′
),
∑
j

w̃
′

ijxij(R
′
)) > cov(

∑
j

w̃ijyij(R),
∑
j

w̃ijxij(R)).

Along with the results surrounding E[
∑

i w̃ijxij(R
′
)] and E[

∑
i w̃ijyij(R)], this implies

that:

E[
∑
j

w̃
′

ijyij(R
′
)(
∑
j

w̃
′

ijxij(R
′
))] > E[

∑
j

w̃
′

ijyij(R
′
)(
∑
j

w̃
′

ijxij(R
′
)],

And so Eφ′ [CSi] > Eφ[CSi]. The above analysis holds for all i, so Eφ′ [CS] > Eφ[CS].
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