
 
 
 
 
 
 
 
 
 

Faculty of Economics 

CAMBRIDGE WORKING PAPERS IN ECONOMICS 
  CAMBRIDGE-INET WORKING PAPERS 

Robust Estimation of Integrated Volatility 
 
Z. Merrick  
Li 
University of 
Cambridge

Oliver  
Linton 
University of 
Cambridge 

   

 

Abstract 
We introduce a new method to estimate the integrated volatility (IV) based on noisy high-
frequency data. Our method employs the ReMeDI approach introduced by Li and Linton 
(2021a) to estimate the moments of the microstructure noise and thereby eliminate their 
influence, and the pre-averaging method to target the volatility parameter. The method is 
robust: it can be applied when the efficient price exhibits stochastic volatility and jumps, the 
observation times are random and endogenous, and the noise process is nonstationary, 
autocorrelated and dependent on the efficient price. We derive the limit distribution for the 
proposed estimators under infill asymptotics in a general setting. Our simulation and 
empirical studies demonstrate the robustness, accuracy and computational efficiency of our 
estimators compared to several alternatives recently proposed in the literature. 
 

Reference Details 
2115  Cambridge Working Papers in Economics 
2021/08 Cambridge-INET Working Paper Series 
 
Published 23 February 2021 
 
Websites www.econ.cam.ac.uk/cwpe 
  www.inet.econ.cam.ac.uk/working-papers  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/388542375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.econ.cam.ac.uk/cwpe
http://www.econ.cam.ac.uk/cwpe
https://www.inet.econ.cam.ac.uk/working-papers
https://www.inet.econ.cam.ac.uk/working-papers


Robust Estimation of Integrated Volatility∗

Z. Merrick Li† Oliver Linton‡

February 23, 2021

Abstract

We introduce a new method to estimate the integrated volatility (IV) based on noisy
high-frequency data. Our method employs the ReMeDI approach introduced by Li and
Linton (2021a) to estimate the moments of the microstructure noise and thereby eliminate
their influence, and the pre-averaging method to target the volatility parameter. The
method is robust: it can be applied when the efficient price exhibits stochastic volatility
and jumps, the observation times are random and endogenous, and the noise process is
nonstationary, autocorrelated and dependent on the efficient price. We derive the limit
distribution for the proposed estimators under infill asymptotics in a general setting. Our
simulation and empirical studies demonstrate the robustness, accuracy and computational
efficiency of our estimators compared to several alternatives recently proposed in the
literature.

1 Introduction

The past two decades or so have seen the emergence of high-frequency trading (HFT) that
operates at astonishing time scales. HFT yields a vast quantity of transaction data, which is
in principle good for the accurate measurement of economic parameters such as the integrated
volatility (IV) of financial returns. On the other hand this data can be quite noisy and one needs
a coherent strategy for dealing with this noise. This paper introduces a robust estimation
method that accounts for many salient features of high-frequency data. In particular, it can be
directly applied to prices that are available at the highest possible frequency and takes account
of microstructure noise (measurement error) of a general form.

The estimation of IV becomes straightforward if the stock price is sampled from a
semimartingale—the sum of the squared log-returns, usually called the realized volatility (RV),
provides a consistent estimator of IV. This result dates back to Jacod (2018)1and Jacod and

∗The project is partially sponsored by the Keynes Fund (JHUL).
†Corresponding author. Faculty of Economics, University of Cambridge, Austin Robinson Building, Sidgwick

Avenue, Cambridge, CB3 9DD, United Kingdom. Email: z.merrick.li@gmail.com.
‡Department of Economics, University of Cambridge, Austin Robinson Building, Sidgwick Avenue, Cambridge,

CB3 9DD, United Kingdom. Email: obl20@cam.ac.uk.
1The classic paper was written in 1994. It gets published in the Journal of Financial Econometrics recently.
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Protter (1998), and it is introduced to econometrics by Andersen et al. (2003). In reality,
however, high-frequency prices are often perceived of as being “noisy” in a sense that the
observed price process deviates from the semimartingale “efficient price”2. The deviation, or
“noise” reflects some market imperfectness, such as transaction costs, the presence of minimal
ticks, informational effects, inventory risk, etc. The presence of microstructure noise motivates
the following model

Y = X + ε, (1)

where X is the semimartingale efficient price and ε represents the aforementioned market
microstructure effects. Since both X and ε are latent, the inference and estimation of either
component become challenging.

Several “de-noise” methods have been proposed in order to make statistical inference
on the parameters of X. Without being exhaustive, here we mention the methods of Two-
Scale (TSRV) and Multi-Scale Realized Volatility (MSRV) (Zhang et al., 2005; Zhang, 2006), the
maximum likelihood estimators (Aı̈t-Sahalia et al., 2005; Xiu, 2010; Shephard and Xiu, 2017;
Da and Xiu, 2020), the pre-averaging method (Podolskij and Vetter, 2009; Jacod et al., 2009,
2010; Li, 2013; Jacod et al., 2019), and the realized kernel (Hansen and Lunde, 2006; Barndorff-
Nielsen et al., 2008; Varneskov, 2017). Intuitively, the statistical assumptions imposed on ε

will affect the estimation and inference of the parameters of X, since both are latent and only
their sum is observable. Most papers quoted above have very restrictive assumptions on the
microstructure noise, often assuming it is an i.i.d. process.

However, such simple assumptions are often contradicted by empirical evidence, theo-
retical motivations and many practical concerns about the characteristics of high-frequency
data. Empirical studies (Chan and Lakonishok, 1995; Hasbrouck, 1993; Madhavan et al.,
1997; Wood et al., 1985) reveal that microstructure noise may have prominent intraday
patterns, typically a U-shape or reverse J-shape in the scale of the noise. There is also a
large theoretical literature seeking to characterize the economic mechanisms that govern the
dynamic properties of microstructure noise, including the modelling of the order flow reversal
due to a market maker’s risk aversion (Grossman and Miller, 1988; Campbell et al., 1993) or
inventory controls (Ho and Stoll, 1981; Hendershott and Menkveld, 2014), and the presence of
inattentive (or infrequent) traders (Bogousslavsky, 2016; Hendershott et al., 2018). However,
high-frequency data, in particular tick-by-tick data, has several prominent features that
confront researchers. First, the transaction times are random, thus the prices are irregularly
spaced. Second, transactions are often clustered on one side of the market as a consequence
of order splitting or execution of limit orders (Parlour, 1998). Thus, microstructure noise is
highly autocorrelated. Third, the size of high-frequency data is huge. For example, the quote
data sizes from the Trade and Quote (TAQ) database are close to levels of several Terabytes per
month after 2007. These considerations suggest that a flexible modelling and robust estimation

2It is well known that the stock price follows a semimartingale if no arbitrage is allowed, see Delbaen and
Schachermayer (1994).
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of microstructure noise are of great concern.
This paper introduces a robust estimation of the integrated volatility (IV). Our theoretical

setup is based on two seminal works by Jacod et al. (2017, 2019), where the observation
times are random and possibly endogenous, the microstructure noise is serially dependent,
nonstationary and could be dependent with the efficient price. We develop a new IV estimator
using the ReMeDI estimators (Li and Linton, 2021a) of moments of noise3 to correct the bias
of a pre-averaging type estimator. The estimator inherits the great finite sample properties
of the ReMeDI estimators. Our extensive simulation studies show that it performs very well
in samples where the data generating process follows different specifications; in particular,
it provides accurate estimates when the noise-to-signal ratio (the ratio of the variance of
noise and the integrated volatility) varies in a large range. Moreover, the estimator is
computationally very efficient. This is an advantage when dealing with the massive high-
frequency datasets currently available.

Many recent papers study the estimation of IV with general modelling of microstructure
noise. Kalnina and Linton (2008) consider microstructure noise with a time-varying scale;
Aı̈t-Sahalia et al. (2011) show that the TSRV (and MSRV) remain valid when the noise is
autocorrelated; Hautsch and Podolskij (2013) study q-dependent noise; Li et al. (2020) use
a variant of the realized variance to estimate second moments of serially dependent noise
and develop a consistent estimator of the IV. The econometric models in the aforementioned
papers are quite restrictive compared to two recent studies by Jacod et al. (2019) and Da and
Xiu (2020), where noise is allowed to exhibit general serial dependence, and has random
scales and could be dependent on the efficient prices, the observation times are random and
could be endogenous. The proposed estimators under the general setup are quite useful—they
can be directly applied to tick data while earlier methods usually need subsampling thereby
discarding a substantial amount of data to satisfy the restrictive assumptions.

We adopt the same general framework as in Jacod et al. (2019) and Da and Xiu (2020).
Our estimator is essentially a pre-averaging type estimator; thus, we share a lot of similarities
with Jacod et al. (2019). Nevertheless, there are some key differences. First, we employ
a different technology to estimate the moments of noise, which is essential to make bias
correction to obtain consistent estimators of IV. Jacod et al. (2019) use the Local Averaging
(LA) estimators (Jacod et al., 2017) while we employ the ReMeDI method (Li and Linton,
2021a). Both the LA and ReMeDI methods can estimate arbitrary moments of noise but the
ReMeDI approach is more robust to model specifications, sampling frequencies, etc. The
accuracy of noise estimation translates into an accurate estimation of IV, as we demonstrated
in the extensive simulation studies. Second, we have a different estimator of the asymptotic
variance. In addition to the use of different noise moments estimator, we also try to avoid a
direct estimation of higher-order moments of noise to reduce estimation errors. Third, we have
an explicit rule to select the optimal bandwidth of the pre-averaging estimators. Moreover, our
estimator is quite efficient in practice—it typically takes less than 5% of the computational time

3The way ReMeDI works is explained with greater specificity below.
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used by the Jacod et al. (2019) estimator. In terms of finite sample performance, our estimator
is comparable to the Quasi-Maximum-Likelihood-Estimator (QMLE) (Da and Xiu, 2020). Both
estimators give very accurate estimates of IVs under each specification, especially when noise
is relatively small. The most significant advantage of our estimator is that it is computationally
very efficient. It usually takes less than 0.5% computational time used by QMLE. Moreover,
our asymptotic variance estimator has a faster convergence rate. We should also mention that
the QMLE has other advantages over our approach: it is

√
n-consistent when noise is absent.

Moreover, it always yields a positive estimate of IV.
The rest of the paper proceeds as follows. Section 2 discusses the model settings. Section 3

introduces the new IV estimator. Sections 4 and 5 present the simulation and empirical studies.
Section 6 concludes the paper. Some additional simulation and empirical studies, as well as
the mathematical proofs are in the Appendix.

2 Model Setting

We follow the general setup in Jacod et al. (2019) that allows for general Itô semimartingale
efficient price, nonstationary and serially dependent microstructure noise and random obser-
vation scheme.

Let Z be a generic Itô semimartingale that is defined on a filtered probability space
(Ω,F , {Ft}t≥0, P) with the Grigelionis representation:

Zt := Z0 +
∫ t

0
bZ

s ds +
∫ t

0
σZ

s dWZ
s +

(
δZ1{|δZ |≤1}

)
? (µ− ν)t +

(
δZ1{|δZ |>1}

)
? µt, (2)

where WZ, µ are Wiener process and a Poisson random measure on R+ × E with (E, E)
a measurable Polish space on

(
Ω,F , (Ft)t≥0 , P

)
and the predictable compensator of µ is

ν(ds, dz) = ds ⊗ λ(dz) for some given σ-finite measure on (E, E), see Jacod and Shiryaev
(2003) for detailed introduction of the last two integrals. The processes bZ, σZ are optional.
The function δZ on Ω×R+ × E is predictable. For any Itô semimartingale Z, we could impose
an assumption dependent on some r ∈ [0, 2]:

Assumption (H-r). There is a sequence of stopping times {τn} , a sequence of reals {wn}, and for each
n a deterministic nonnegative function ΓZ

n on E satisfying∣∣∣bZ(ω)
∣∣∣ ≤ wn,

∣∣∣σZ
t (ω)

∣∣∣ < wn,
∣∣∣δZ(ω, t, z)

∣∣∣r ∧ 1 ≤ ΓZ
n (z)

for all (ω, t, z) satisfying t ≤ τn(ω).

2.1 The efficient price

The efficient price is an Itô semimartingale and its Grigelionis representation is as follows:

Xt := X0 +
∫ t

0
bsdds +

∫ t

0
σsdWs +

(
δ1{|δ|≤1}

)
? (µ− ν)t +

(
δ1{|δ|>1}

)
? µt. (3)
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We further assume the following regularity conditions.

Assumption (H-X-r). The coefficients of the efficient price X satisfy Assumption (H-r) with r ∈ [0, 1);
the processes b, σ are Itô semimartingale whose coefficients satisfy Assumption (H-r) with r = 2.

This is a general class of processes that allows for stochastic volatility and jumps, and it
includes most models used in finance to characterize prices. The parameter of interest in this
paper is the Integrated Volatility (IV) of the efficient price:

Ct :=
∫ t

0
σ2

s ds.

2.2 Random observation schemes

Now we describe the general observation scheme. For each positive integer n, let {T(n, i) :
i ∈N∗} be the set of observation times, which is a sequence of strictly increasing finite
stopping times with T(n, 0) = 0, T(n, i) → ∞ as i → ∞, where N∗ is the set of nonnegative
integers. We denote the (random) number of observations upon time t and the spacing of
successive observations by

Nn
t := ∑i≥1 1{T(n,i)≤t}, ∆(n, i) := T(n, i)− T(n, i− 1). (4)

In the sequel, for any process V, we denote Vn
i := VT(n,i), ∆n

i V := Vn
i −Vn

i−1, F n
i := FT(n,i).

Let ∆n be the time lag between observations in a regular sampling scheme that satisfies
∆n → 0 as n → ∞. Let α be another nonnegative Itô semimartingale. It serves as the
“observation density” process that relates the real observation scheme to the (possibly latent)
regular observation scheme. Specifically, αT(n,i−1)∆(n, i) ≈ ∆n conditional on the information
set upon time T(n, i− 1). Specifically, we assume

Assumption (O-ρ, ρ′). α is an Itô semimartingale satisfying Assumption (H-r) with r = 2, and αt >

0, αt− > 0 for all t > 0. We further assume

(i) ∆nNn
t → At :=

∫ t
0 αsds ∀t > 0.

(ii) For all s, t > 0, the sequence ∆
1
2+ρ′

n

(
Nn

t − Nn
(t−s∆ρ′

n )+

)
is bounded in probability for some 0 <

ρ′ < 1/2.

(iii) For any κ ≥ 2, there are a sequence (τ(κ)m)m≥1 of stopping times increasing to infinity and real
numbers (w(κ)m) such that we have for all i, n, m, ρ > 1/4:

T(n, i− 1) ≤ τ(κ)m ⇒


∣∣∣E(αT(n,i−1)∆(n, i)

∣∣∣FT(n,i)

)
− ∆n

∣∣∣ ≤ w(κ)m∆1+ρ
n ,

E
(
|αT(n,i−1)∆(n, i)|κ

∣∣∣FT(n,i−1)

)
≤ w(κ)m∆nκ.

(5)

The observation times framework is very general, and includes, e.g., regular sampling
scheme, time-changed regular sampling scheme, modulated Poisson sampling scheme, and predictably-
modulated random walk sampling scheme, see the discussion in Jacod et al. (2017).
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2.3 Microstructure noise

We now introduce the setting of the microstructure noise. The microstructure noise has a
random scale and could exhibit some degree of serial dependence of an unknown form.

Definition 2.1. Let {χi}i∈Z be a sequence of stationary random variables defined on a probability space
(Ω(1),G, P(1)). The probability space has discrete filtrations Gp := σ{χk : p ≥ k}, : Gq := σ{χk :
q ≤ k} satisfying G−∞ = G∞ = G. For any k ∈ N+, we define the following mixing coefficients for
k ∈N+:

ρk := sup
{
|E(VhVk+h)| : E(Vk) = E(Vk+h) = 0, ‖Vh‖2 ≤ 1, ‖Vk+h‖2 ≤ 1, Vh ∈ Gh, Vk+h ∈ Gk+h

}
. (6)

The sequence {χi}i∈Z is ρ mixing if ρk → 0 as k→ ∞.

Assumption (N-v). Let {χi}i∈Z be a stationary and strongly mixing random sequence with mixing
coefficients {ρk}k∈N∗ on some probability space (Ω(1),G, P(1)). At stage n, the noise at time T(n, i) is
given by

εn
i = γT(n,i) · χi , (7)

where γ is a nonnegative Itô semimartingale satisfying Assumption (H-r) with r = 2. We further
assume {χi}i∈Z is centred at 0 with variance 1 and finite moments of all orders, independent of F∞ :=∨

t>0 Ft. The mixing coefficients satisfy ρk ≤ Kk−v for some K > 0, v > 3.

Remark 2.1. The noise represented in (7) has a multiplicative form. The process γ captures the
stochastic scale of noise. It is a continuous time process and dependent on the calendar time. This
process also captures some endogeneity since γ can be a functions of the efficient price, e.g., γ could be
dependent on the volatility of the efficient price so that both the noise and the efficient price may exhibit
some diurnal features that are well documented in the literature. On the other hand, the χ process is
essentially a discrete time process that characterizes the serial dependence of noise. In our context, the
discreteness reflects the ticks of high-frequency prices. Therefore, the serial dependence of noise is in tick
times.

3 When ReMeDI meets Pre-averaging

Now we introduce the new IV estimator. This method is based on the pre-averaging method
with a ReMeDI correction of the impact of microstructure noise.

3.1 The Pre-averaging method

The kernel g on R is continuous piecewise C1 with a piecewise Lipschitz derivative g′, and
s /∈ (0, 1)⇒ g(s) = 0, we also assume

∫ 1
0 g2(s)ds > 0.4 Let {hn}n∈N∗ be a sequence of integers.

4 The simulation and empirical studies, we will use the triangular kernel: g(x) = x ∧ (1− x).
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We introduce the following notations for the pre-averaging method.

gn
i := g(i/hn), gn

i := gn
i+1 − gn

i , φn
j :=

1
hn

∑
i∈Z

gn
i gn

i−j, φ
n
j := hn ∑

i∈Z

gn
i gn

i−j;

φ(s) :=
∫

R
g(u)g(u− s)du, φ(s) :=

∫
g′(u)g′(u− s)du;

Φ00 :=
∫ 1

0
φ2(s)ds, Φ01 :=

∫ 1

0
φ(s)φ(s)ds, Φ11 :=

∫ 1

0
φ

2
(s)ds.

For any processes V, let Vn
i := ∑hn−1

j=1 gn
j ∆n

i+jV = −∑hn−1
j=0 gn

j Vn
i+j.

3.2 The ReMeDI method

We use the ReMeDI approach (Li and Linton, 2021a) to estimate the moments of noise, which
will be subsequently subtracted off to get a consistent estimator of the integrated volatility.
For any process V and its discretized observations {Vn

i }i, integers i, k, `, we introduce a multi-
difference operator ∆n,k

i,` such that ∆n,k
i,` V := (Vn

i+` −Vn
i+`+k)(V

n
i −Vn

i−k).
Given three sequences of integers {dn}n, {kn}n, {`n}n with dn ≥ `n + kn, we introduce

r(V; `)n
i,dn

:=
1
dn

i+dn+kn

∑
d=i+kn+1

∆n,kn
d,` V; R(V)n

i,dn
:= ∑|`|≤`n

r(V; |`|)n
i,dn

. (8)

In the sequel, we will show that r(V; `)n
i,dn

and R(V)n
i,dn

provide local estimators of the
autocovariances and long-run variances of microstructure noise when V = Y, which will be
used to correct the bias in the pre-averaging estimators.

3.3 The Pre-averaging–ReMeDI (PaReMeDI) estimator of IV

We propose a pre-averaging method coupled with the ReMeDI bias correction as follows:

Ĉn
t :=

1
hnφn

0

Nn
t −hn

∑
i=0

(Yn
i )

21{|Yn
i |≤un} −

1
h2

nφn
0

Nn
t −hn

∑
i=kn

∑
|`|≤`n

φ
n
`∆n,kn

i,` Y. (9)

Note that the tuning parameter un is introduced to truncate the jumps of the efficient price
process (Mancini, 2001).

3.4 Large Sample Properties of PaReMeDI

We next present the main result of the paper regarding the large sample properties of our
estimator and a feasible CLT, which requires a consistent estimator of the asymptotic variance.
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We introduce the following processes and coefficients:
Vn,1

t := ∑
Nn

t −hn
i=0

(
Yn

i

)4
1{|Yn

i |<un};

Vn,2
t := 1

hn
∑

Nn
t −hn

i=0 (Yn
i )

21{|Yn
i |<un}R(Y)n

i,hn
;

Vn,3
t := 1

h2
n

∑
Nn

t −kn−`n
i=0 (R(Y)n

i,hn
)2.


Kg,1 := Φ00

3 ;

Kg,2 :=
(
Φ01φ(0)−Φ00φ(0)

)
;

Kg,3 := Φ11φ2(0)− 2Φ01φ(0)φ(0) + Φ00φ
2
(0).

We use the following estimator for the asymptotic variance:

Σn
t :=

4
hnφ4(0)

(
Kg,1Vn,1

t + 2Kg,2Vn,2
t + Kg,3Vn,3

t

)
.

To implement the new estimation method we need several tuning parameters: hn controls the
pre-averaging bandwidth; kn is the tuning parameter of the ReMeDI approach to estimate
the moments of microstructure noise; `n is the truncation parameter to estimate the long
run variance of noise; and un truncates jumps of the efficient price. We require the tuning
parameters to satisfy the following asymptotic conditions for the theory to hold:5hn = b θ√

∆n
c; kn � ∆−

2
11

n ; `n � ∆−
1
7

n ;

un � ∆v/2
n , where 1

4(2−r) < v < 2[v]−3
8([v]−1) , r < 2[v]−4

2[v]−3 .
(10)

Theorem 3.1. Under the Assumptions (H-X-r), (O-ρ, ρ′), (N-v) and the asymptotic conditions (10),
we have for any t > 0 that the sequence (Ĉn

t − Ct)/∆1/4
n converges F∞-stably in law to a limiting

variable
Ut :=

∫ t

0
βsdBs (11)

defined on an extension of the original space, where B is a standard Brownian motion that is independent
of F and

β2
s =

4
φ2(0)

(
Φ00

θσ4
s

αs
+ 2Φ01

σ2
s γ2

s
θ

R + Φ11
γ4

s αs

θ3 R2
)

, R := ∑
`∈Z

E(χiχi+`). (12)

Moreover, the sequence Ĉn
t −Ct√

Σn
t

converges F∞-stably in law to an N (0, 1) variable that is independent

of F .

3.5 On the Implementation of PaReMeDI

To implement PaReMeDI in practice, we need to select several tuning parameters, recall (10).
The key parameter that affects the performance of PaReMeDI is the pre-averaging bandwidth
hn—it not only effects the finite-sample performance but also the limiting distribution of
PaReMeDI via θ. In fact, we can find the optimal θ as the value that minimizes the asymptotic

5The parameter r ∈ [0, 2] controls the bound on the degree of activity of jumps, see Assumption (H-r) for details.
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variance Σt :=
∫ t

0 β2
sds of our estimator. The optimal θ is given explicitly by

θ∗ :=

Φ01R
∫ t

0 σ2
s γ2

s ds +
√

Φ2
01R2(

∫ t
0 σ2

s γ2
s ds)2 + 3Φ00Φ11R2

∫ t
0 σ4

s /αsds
∫ t

0 γ4
s αsds

Φ00
∫ t

0 σ4
s /αsds


1
2

. (13)

Note that in our general settings of the efficient price, the microstructure noise and the
observation scheme, θ∗ will be random. Thus, the implementation using θ∗ requires an
estimate of θ∗. For a given θ0, we let

Θn,1
t := θ2

0Vn,3
t ; Θn,2

t :=
Vn,2

t − φ(0)Vn,3
t

φ(0)
; Θn,3

t :=
Vn,1

t − 6φ(0)Vn,2
t + 3φ

2
(0)Vn,3

t
3θ2

0φ2(0)
.

Then a consistent estimator of the optimal θ∗ is given by

θ̂
∗

:=

Φ01Θn,2
t +

√
Φ2

01(Θ
n,2
t )2 + 3Φ00Φ11Θn,1

t Θn,3
t

Φ00Θn,3
t

1/2

.

To implement the optimal choice of hn (or θ) established in (13), one needs to estimate many
parameters. This slows down the estimation procedure and brings in more variability, and
may fail to provide a proper guidance to select hn in a finite sample.

However, some insights can be obtained if we consider a setting where the noise is
stationary, volatility is constant, and the observation scheme is regular. That is, γs ≡ Kγ, σs ≡
Kσ, αs ≡ 1, for all s. In this special case, the optimal choice of θ becomes θ′∗ := KΦKγ

√
R/Kσ,

where KΦ :=
√(

Φ01 +
√

Φ2
01 + 3Φ00Φ11

)
/Φ00 is a constant determined by the choice of g.

Note that Kγ

√
R/Kσ is the noise-to-signal ratio. Thus, the selection rule set by θ′∗ is very

intuitive: one should choose larger (or small) θ if noise is relatively large (or small).
Now let r(V; `)n

t := 1
Nn

t
∑

Nn
t −`−kn

i=kn
∆n,kn

i,` Y; R(Y)n
t := ∑`:|`|≤`n

r(V; `)n
t . Intuitively, we have

the convergence R(Y)n
t

P→ K2
γR. Hence we have the following proxy of θ′∗:

θ̂′
∗
=

KΦ
√

R(Y)n
t√

Ĉn
t

, (14)

which provides a guidance to select θ whence hn in practice.

4 Simulation Studies

In this section, we adopt the simulation approach to explore the finite sample performance of
the PaReMeDI estimator of IV. The overall goal is to compare PaReMeDI with the IV estimators
proposed by Da and Xiu (2020) and Jacod et al. (2019), where the theoretical settings are similar
to ours.

9



4.1 Model settings

The efficient price is allowed to have stochastic volatility with jumps in both the price level
and the volatility process:

dXt = κ1(µ1 − Xt)dt + σtdW1,t + ξ1,tdNt, dσ2
t = κ2(µ2 − σ2

t )dt + ησtdW2,t + ξ2,tdNt;

Corr(W1, W2) = υ, ξ1,t ∼ N (0, µ2/10) , Nt ∼ Poi(λ); ξ2,t ∼ Exp(δ),
(15)

where we set

κ1 = 0.5; µ1 = 3.6; κ2 = 5/252; µ2 = 0.04/252; η = 0.05/252; υ = −0.5; λ = 1; δ = η.

The setting of jumps is motivated by some empirical facts that jumps in price levels and
volatility tend to occur together (Todorov and Tauchen, 2011). In this section, we set ξ1,t ≡ 0,6

the Appendix A contains further simulation studies where the efficient price exhibits jumps.
The stationary component of the microstructure noise follows an AR(1) process with

Gaussian innovations

χi+1 = $χi + ei, ei
i.i.d.∼ N

(
0, 1− $2) , |$| < 1. (16)

{T(n, i)}i follow an inhomogeneous Poisson process with rate nαt where the processes α and
γ satisfy

αt = (1 + cos(2πt))/2; γt = Kγγ′t, dγ′t = −ργ(γ
′
t − µt)dt + σγdWt. (17)

The setting is to mimic the empirical facts that trades tend to cluster in the beginning and
end of a trading day, and microstructure noise has an approximately U shape. We set n =

23, 400, ργ = 10, µt = 1 + 0.1 cos(2πt), σγ = 0.1. Note that $, Kγ control the serial dependence
of noise and the signal-to-noise ratio, which are essential in the model specifications. We will
let the two variables vary to examine the robustness of the estimators.

4.2 PaReMeDI, PaLA and QMLE

In this section, we compare the performances of three estimators developed in the same setting:
the pre-averaging estimator with ReMeDI bias correction (PaReMeDI), the pre-averaging
estimator with Local Averaging (LA) bias correction (PaLA) (Jacod et al., 2019), and the quasi-
maximum-likelihood estimator (QMLE) (Da and Xiu, 2020).

Table 1 reports the performances of the three estimators under various specifications for
the noise dynamics and noise-to-signal ratios. Since the QMLE method proposed in Da and
Xiu (2020) does not separate the jumps component from the quadratic variation, we eliminate
jumps from the efficient price, so the focus is the IV for all three estimators.

6We would like to compare our volatility estimator with QMLE (Da and Xiu, 2020), which does not explicitly
truncate jumps. Therefore, we neglect jumps from the efficient price to present a fair comparison.
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Figure 1: QQ Plot of (Ĉn

t − Ct)/
√

Σn
t versus Standard Normal. The model is specified by (15), (16) and (17).

We follow the numerical settings of the parameters as in Section 4.1. The scale of noise is fixed at Kγ = 10−4, the
AR(1) coefficient of noise $ = 0.3 in the left panel and $ = 0.8 for the right panel. The tuning parameters are set as
follows: kn = 8, `n = 10, θ = 0.3.

Da and Xiu (2020) claim that the QMLE works well for a wide range of noise-to-signal
ratios. This is confirmed by our simulation results—the estimator has small bias and standard
deviation in all specifications when the variance of noise varies from 10−6 to 10−10. Our
PaReMeDI estimates are in line with the QMLE. The striking difference is the computational
efficiency—the PaReMeDI typically uses less than 0.5% of the computational time used by
QMLE!

The PaLA estimator has a smaller standard deviation than both the PaReMeDI and QMLE.
The finite sample bias of the LA method when estimating the moments of noise is partially
responsible for this reduction in standard deviation. Jacod et al. (2017) show that the LA
method elicits a finite sample bias that is a fraction of the IV. Thus, when the estimated
second moments of noise is subtracted off from the pre-averaging statistics (recall (9)), the
IV estimates become smaller by a fraction that is equal to the finite sample bias of the LA
estimates. However, the bias of LA is transmitted to a bias of the PaLA, and the bias is
substantial that it dominates the RMSE of PaLA in most scenarios. A large bias and small
standard deviation intend to conclude that the PaLA estimates are statistically very different
from other estimates or thresholds. It may, therefore lead to unreliable statistical inferences.

4.3 Examine the feasible CLT

Figure 1 presents the QQ-plot for the standardized statistics (Ĉn
t − Ct)/

√
Σn

t . It provides the
numerical evidence supporting the limit distribution in Theorem 3.1.
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PaReMeDI PaLA QMLE specifications
Bias 0.2460 0.7060 0.2139
std 2.3116 1.2823 2.2097 $ = 0.3
RMSE 2.3247 1.4638 2.2200 Kγ = 10.0
cpu time% 0.2924 7.8355 91.8721
Bias 0.2549 2.7429 0.1782
std 2.6632 1.9350 2.4456 $ = 0.3
RMSE 2.6754 3.3567 2.4521 Kγ = 5.0
cpu time% 0.3750 10.1660 89.4590
Bias 0.1227 6.4554 0.1195
std 2.2076 1.8907 2.2160 $ = 0.3
RMSE 2.2111 6.7266 2.2192 Kγ = 0.5
cpu time% 0.3821 10.4779 89.1400
Bias 0.1019 6.4325 0.1192
std 2.1920 1.9331 2.1916 $ = 0.3
RMSE 2.1943 6.7167 2.1948 Kγ = 0.1
cpu time% 0.3888 10.6673 88.9439
Bias 2.5590 2.4513 1.3149
std 2.9920 2.5645 2.7767 $ = 0.8
RMSE 3.9371 3.5476 3.0722 Kγ = 10.0
cpu time% 0.3164 8.3389 91.3447
Bias 1.3020 1.1851 0.8126
std 2.6618 0.8520 2.5899 $ = 0.8
RMSE 2.9631 1.4596 2.7143 Kγ = 5.0
cpu time% 0.3742 9.9675 89.6583
Bias 0.1348 6.4036 0.1370
std 2.1615 1.8087 2.1653 $ = 0.8
RMSE 2.1657 6.6541 2.1696 Kγ = 0.5
cpu time% 0.3936 10.7188 88.8877
Bias 0.1102 6.5184 0.1283
std 2.1003 1.8207 2.1024 $ = 0.8
RMSE 2.1032 6.7679 2.1063 Kγ = 0.1
cpu time% 0.3935 10.7285 88.8780

Table 1: Volatility estimation by the Pre-averaging-ReMeDI (PaReMeDI) method, the Pre-averaging-Local-
Averaging (PaLA) method, and the Quasi-Maximum-Likelihood-Estimator (QMLE). All numeric results are
multiplied by 104. The models of the efficient price, microstructure noise and the observation scheme are specified
in Section 4.1. The AR(1) coefficient $ ∈ {0.3, 0.8} and the noise scale Kγ ∈ {10−3, 5× 10−4, 5× 10−5, 10−5}. The
number of simulation is 1000. The tuning parameters of the PaReMeDI are set as follows: kn = 10, `n = bNn

t
1
7 c,

and for PaLA kn = 6, k′n = bNn
t

1
8 c. θ are selected according to (14) for both methods. For the QMLE (with AIC

selection criterion), the optimal q is selected within {5, 6, 7, 8, 9, 10}.
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5 Empirical Studies

This section presents a simple empirical study. We use intraday transaction prices for the S&P
500 index ETF (ticker: SPY) obtained from the Trade and Quote (TAQ) database for January
2015. There are 20 trading days. The index is quite liquid, with 20.1 transactions per second on
average. The average returns is −3.6× 10−9 with a standard deviation 1.06× 10−4.

The top panel of Figure 2 reports the estimates of the three estimators based on transaction
prices for each trading day. The PaReMeDI and QMLE generate virtually identical estimates
of the IV. All estimates are within the 95% confidence intervals of PaReMeDI, whence they
are statistically indistinguishable. The PaLA estimator has similar “ volatility trend” but gives
smaller estimates. This is in line with our earlier analysis that PaLA only estimates a fraction of
the IV due to the presence of a finite sample bias of the LA estimator. One exception occurs on
the 5th trading day, where the three estimates give almost the same IV estimate. The bottom
panel of Figure 2 provides an explanation, where the estimates7 of the noise-to-signal ratio
R
∫ t

0 γ2
s αsds/Ct are plotted. The noise scale is very large compared to the IV on the 5th trading

day.8 Thus the finite sample bias (induced by IV) of LA becomes less significant; consequently,
the LA estimates of the second moments of noise become more accurate and the PaLA also
benefits from the smaller finite sample bias. In the Appendix B, we repeat the estimation on
two individual stocks and we find similar results.

As in the simulation studies, the PaReMeDI approach is much faster than PaLA and QMLE.
To see the computational time in “real terms”, we report that it takes 9.1, 215.3 and 762.8
seconds for PaReMeDI, PaLA and QMLE to perform the 20 estimations of IV.9

Therefore, we conclude that PaReMeDI and QMLE have similar and reliable estimates of
integrated volatility. The performance of PaLA, however, depends on the characteristics of the
underlying noise and efficient price processes, in particular the noise-to-signal ratio. Moreover,
the computational efficiency of PaReMeDI is very significant. This is a great advantage to deal
with high-frequency datasets with enormous sample sizes.

6 Conclusion

We introduce a new integrated volatility estimator using noisy high-frequency data. The
estimator is applicable in a broad setting of microstructure noise and observation schemes.
Compared to alternative estimators recently proposed, our estimator provides accurate and
robust estimates, and is computationally efficient. The paper also initiates several future
research projects. Since the pre-averaging method coupled with ReMeDI correction can be
directly applied to tick data, it opens the possibility to test for jumps in tick data in the spirit

7The estimator is given by
(

ReMeDI(Y; 0)n
t + 2 ∑`n

`=1 ReMeDI(Y; `)n
t

)
/Ĉn

t , where ReMeDI(Y; `)n
t :=

1
Nn

t
∑

Nn
t −kn−`

i=kn
∆n,kn

i,` Y.
8This is caused by several extreme outliers occurred on that day.
9All our numerical results are obtained by running Matlab (version 9.7) on a MacBook Pro (6-core, Intel Core i7

@ 2.60GHz, 16 Gigabytes of RAM).

13



2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2
·10−4

Trading Days

Vo
la

ti
lit

y
Es

ti
m

at
es

IV estimates of SPY for January 2015

PaReMeDI
PaLA
QMLE
95% CIs

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4
·10−3

Trading Days

N
oi

se
-t

o-
si

gn
al

R
at

io

Noise-to-signal ratios of SPY for January 2015

Figure 2: Volatility estimates and Noise-to-signal ratios of S&P 500 index ETF (ticker: SPY) for January, 2015. The

tuning parameters are set as follows: For PaReMeDI, kn = 10, `n = bNn
t

1
7 c, and for PaLA kn = 6, k′n = bNn

t
1
8 c; θ are

selected according to (14) for both methods. For the QMLE (with AIC selection criterion), the optimal q is selected
within {5, 6, 7, 8, 9, 10}.
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of Aı̈t-Sahalia et al. (2012); it is an interesting approach since jumps should be identified in
samples of the highest possible frequencies (Christensen et al., 2014). Asymptotic efficiency is
not discussed in details. Adaptive estimator (Jacod and Mykland, 2015) can be developed to
improve efficiency. We leave these open questions for future research.

Appendix A Additional Simulation Studies

We adopt the same simulation settings in Section 4 except that we allow for jumps in the price
level. Table 2 reports the estimates by PaLA and PaReMeDI with the same truncation level
for jumps. Similar to the simulation results in Section 4, PaLA has quite significant bias hence
large RMSE in all scenarios. While PaReMeDI has small RMSE, it is uses much less computing
time.

Bias std RMSE cpu time% specifications
PaReMeDI 1.0831 0.8607 1.3834 3.2909 $ = 0.3
PaLA 1.8607 0.3579 1.8948 96.7091 Kγ = 10.0
PaReMeDI 0.3715 1.7255 1.7651 3.2192 $ = 0.3
PaLA 4.2463 3.1601 5.2931 96.7808 Kγ = 5.0
PaReMeDI 0.1483 2.1415 2.1466 2.8180 $ = 0.3
PaLA 13.9810 6.4837 15.4113 97.1820 Kγ = 0.5
PaReMeDI 0.1275 2.0717 2.0757 2.7982 $ = 0.3
PaLA 13.7745 6.3441 15.1652 97.2018 Kγ = 0.1
PaReMeDI 1.4312 0.3243 1.4675 3.2531 $ = 0.8
PaLA 1.6613 0.2140 1.6750 96.7469 Kγ = 10.0
PaReMeDI 0.7892 1.2894 1.5117 3.1587 $ = 0.8
PaLA 2.0356 1.1158 2.3214 96.8413 Kγ = 5.0
PaReMeDI 0.1583 1.9737 1.9801 2.9857 $ = 0.8
PaLA 13.7957 6.0469 15.0628 97.0143 Kγ = 0.5
PaReMeDI 0.1366 2.2146 2.2188 2.8479 $ = 0.8
PaLA 14.0045 6.9747 15.6452 97.1521 Kγ = 0.1

Table 2: Volatility estimation by the Pre-averaging-ReMeDI (PaReMeDI) method and the Pre-averaging-Local-
Averaging (PaLA). All numeric results are multiplied by 104. The models of the efficient price, microstructure
noise and the observation scheme are specified in Section 4.1. The AR(1) coefficient $ ∈ {0.3, 0.8} and the noise
scale Kγ ∈ {10−3, 5 × 10−4, 5 × 10−5, 10−5}. The number of simulation is 1000. The tuning parameters of the
PaReMeDI are set as follows: kn = 10, `n = bNn

t
1
7 c, and for PaLA kn = 6, k′n = bNn

t
1
8 c. θ are selected according

to (14) for both methods and the jump truncation level for both methods are set un = 5µ2.

Appendix B Additional Empirical Studies

We estimate the integrated volatility of two individual stocks General Electric (ticker: GE) and
Intel Corporation (ticker: INTC) for January, 2015. The estimates are reported in Figure 3. We
observe similar patterns as in Section 5, where we use the transaction prices for the S&P 500
index ETF. PaReMeDI and QMLE yield almost identical estimates while PaLA departs from
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both estimates by a large margin. However, the differences are smaller when the noise-to-
signal ratios are large. This is consistent with our previous analysis in Section 5 that PaLA
becomes more accurate when noise scale is large.

Appendix C Technical Proofs

We will follow the scheme of the proofs in Jacod et al. (2019), and we add a prefix “JLZ” to
cite their results. In the sequel, we will first show in Lemma C.3 that the ReMeDI estimators
correct the asymptotic bias that appears in the pre-averaged statistics. Next, aided by several
lemmas, we will show that after proper scaling, the proposed asymptotic variance estimator
Σ̂n

t provides a consistent estimator of the asymptotic variance of Ĉn
t . In the sequel, K will be

a generic constant independent of n, which may change from line to line or even within one
line. We write it Kpar if it depends on some parameter par.

Assumption (S-HON). Assume Assumptions (H-X-r), (O-ρ, ρ′) (with τ1 = ∞) and (N-v) hold.
Assumption (H-r) hold for b, σ, α, γ with r = 2; the function δ and the processes b, σ, α, 1/α, γ, X are
bounded and

Nn
t ≤ Kt∆−1

n ,
∣∣∣E (∆(n, i)− ∆nα−1

T(n,i−1)

∣∣∣FT(n,i−1)

)∣∣∣ ≤ K∆1+ρ
n , E

(
∆(n, i)κ

∣∣∣FT(n,i−1)

)
≤ K∆κ

n. (18)

We decompose X into the continuous and discontinuous parts: X = Xc + Xd with

Xc
t := X0 +

∫ t

0
bsds +

∫ t

0
σsdWs, Xd

c :=
∫
[0,t]×E

δ(s, z)µ(s, z). (19)

In the sequel, p > 1 will be an integer. We introduce the following notations

Hn
i := F∞ ⊗ Gi−hn , Kn

i := F n
i ⊗ Gi−hn , H(p)n

j := Kn
j(p+2)hn

,

j := (j1, . . . , jd), j` ∈N, 1 ≤ ` ≤ d, r(j)n := E

(
d

∏
`=1

χn
`

)
,

H′(p)n
j := Kn

(j(p+2)+p)hn
, ĉn

i := ∑
j∈Z

(gn
j )

2∆n
i+jC, X̂c,n

i :=
(

Xc,n
i

)2
− ĉn

i ,

ε̂n
i := (εn

i )
2 − (γn

i )
2r(0, 0)n, X̂cε

n
i := Xc,n

i ε̂n
i ,

Zn
i := (Yc,n

i )2 − ĉn
i − (γn

i )
2r(0, 0)n = X̂c,n

i + ε̂n
i + 2X̂cε

n
i , ζ(p)n

i :=
i+phn−1

∑
j=i

Zn
j ,

η(p)n
j :=

1
hnφn

0
ζ(p)n

(j−1)(p+2)hn
, η(p)n

j := E
(

η(p)n
j

∣∣∣H(p)n
j−1

)
,

η′(p)n
j :=

1
hnφn

0
ζ(2)n

(j−1)(p+2)hn+phn
, η′(p)n

j := E
(

η′(p)n
j

∣∣∣H′(p)n
j−1

)
.
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Next, we define several processes:

F(p)n
t :=

Jn(p,t)

∑
j=1

η(p)n
j , M(p)n

t :=
Jn(p,t)

∑
j=1

(
η(p)n

j − η(p)n
j

)
,

F′(p)n
t :=

Jn(p,t)

∑
j=1

η′(p)n
j , M′(p)n

t :=
Jn(p,t)

∑
j=1

(
η′(p)n

j − η′(p)n
j

)
,

Ĉ(p)n
t :=

1
hnφn

0

`n(p,t)

∑
i=Nn

t −hn+2
Zn

i , Ĉn,1
t :=

1
hnφn

0

Nn
t −hn

∑
i=0

ĉn
i − Ct,

Ĉn,2
t :=

1
hnφn

0

Nn
t −hn

∑
i=0

(
(Yn

i )
21{|Yn

i |≤un} − (Yc,n
i )2

)
,

Ĉn,3
t :=

r(0, 0)n

hnφn
0

Nn
t −hn

∑
i=0

(γn
i )

2 − 1
h2

nφn
0

∑
|`|≤`n

Nn
t −hn

∑
i=kn

φ
n
`∆n,kn

i,` Y.

For all p > 1, we have

Ĉn
t − Ct = M(p)n

t + M′(p)n
t + F(p)n

t + F′(p)n
t − Ĉ(p)n

t +
3

∑
j=1

Ĉn,j
t . (20)

Lemma C.1. Under Assumption (N-v), we have√
hnχn

i
L−→ N

(
0, φ(0)R

)
. (21)

Moreover, we have

hnr(0, 0)n → φ(0)R; h3/2
n r(0, 0, 0)n → 0; h2

nr(0, 0, 0, 0)n → 3φ
2
(0)R2. (22)

Proof. First, we need to check the following condition according to Rio (1997)

∑
k∈N∗

k
2

r−2 ρk < ∞, (23)

where {ρk} are the ρ-mixing coefficients introduced in Definition 2.1, and r is a positive real
such that E

(
|χi|r

)
< ∞. Assumption (N-v) implies r can be arbitrarily large, thus (23) holds

since v > 3. The rest of the proof of (21) follows from the proof of Lemma A.1 in Li et al.
(2020). (22) follows from the condition E

(
|χi|r

)
< ∞, r > 4 and the limit distribution (21);

that is, convergence in distribution implies convergence in moments when some higher order
moments of χ are bounded, see, e.g., Theorem 4.5.2 in Chung (2001).

Lemma C.2. Given a fixed integer i, a real z > 1 and two sequences of integers {dn}n, {`n}n and two
integers j, ` satisfying |j− i| ≤ dn, |`| ≤ `n, we have for any q ≥ 2,

E
(∣∣∣∆n,kn

i,` Y− (γn
j )

2∆n,kn
i,` χ

∣∣∣q) ≤ K
(
(dn + `n + kn)∆n + ((dn + `n + kn)∆n)

1
z

)
. (24)
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Proof. We rewrite ∆n,kn
i,` Y = (ηn,1

i + η̃n,1
i )(ηn,2

i + η̃n,2
i ), where

ηn,1
i := Xn

i+` − Xn
i+kn+` + (γn

i+` − γn
j )χi+` − (γn

i+kn+` − γn
j )χi+kn+`;

ηn,2
i := Xn

i − Xn
i−kn

+ (γn
i − γn

j )χi − (γn
i−kn
− γn

j )χi−kn ;

η̃n,1
i := γn

j (χi+` − χi+kn+`), η̃n,2
i := γn

j (χi − χi−kn).

For any w ≥ 2, s ∈ {1, 2}, we have E
(∣∣ηn,s

i

∣∣w) ≤ K∆n(dn + `n + kn) by (JLZ-A.6), the
independence of F∞ and G and the fact that χ has bounded moments of all orders. Next,
we have E

(∣∣η̃n,s
i

∣∣w) ≤ K by the boundedness of γ and that χ has bounded moments of

all orders. Since ∆n,kn
i,` Y − (γn

j )
2∆n,kn

i,` χ = ηn,1
i ηn,2

i + ηn,1
i η̃n,2

i + η̃n,1
i ηn,2

i , the result follows by
Hölder’s inequality.

Lemma C.3. Assume v > 3, under the asymptotic conditions (10), for all t we have ∆−
1
4

n Ĉn,3
t

P→ 0.

Proof. Let r(0, 0)`n := 1
hn

∑|`|≤`n
φ

n
` r(`). Note that r(0, 0)n = 1

hn
∑`∈Z φ

n
` r(`), thus we have

|r(0, 0)n − r(0, 0)`n | ≤
K

hn`
v−1
n
⇒ hn |r(0, 0)n − r(0, 0)`n | = o(∆1/4

n ), (25)

since `n � ∆−1/7
n and v > 3. Moreover,∣∣∣∣∣ r(0, 0)n

hnφn
0

kn−1

∑
i=0

(γn
i )

2

∣∣∣∣∣ ≤ Kkn/(hn)
2 = o(∆1/4

n ), (26)

(25) and (26) imply that it suffices to prove

r(0, 0)`n

hnφn
0

Nn
t −hn

∑
i=kn

(γn
i )

2 − 1
h2

nφn
0

∑
|`|≤`n

Nn
t −hn

∑
i=kn

φ
n
`∆n,kn

i,` Y = op(∆1/4
n ).

To get this, we note
1

φn
0

∑
|`|≤`n

∑
Nn

t −hn
i=kn

1
h2

n
E
(∣∣∣(γn

i )
2∆n,kn

i,` χ− ∆n,kn
i,` Y

∣∣∣) ≤ K`n((kn + `n)∆n)
1
2z ,

1
φn

0
∑
|`|≤`n

E
(∣∣∣∑Nn

t −hn
i=kn

1
h2

n

(
(γn

i )
2(r(`)− ∆n,kn

i,` χ)
)∣∣∣) ≤ K∆

1
2
n `n.

The first estimate follows from Lemma C.2 and the Cauchy-Schwarz inequality, and the
second one follows from the boundedness of γ, the Cauchy-Schwarz inequality and the limit
distribution established in Theorem C.1 of Li and Linton (2021b) (hereafter Theorem LL-C.1)
such that

E

((
∑Nn

t −hn

i=kn

(
(r(`)− ∆n,kn

i,` χ)
)

/h2
n

)2
)
≤ K∆n.

Note that our choice of kn is to satisfy the asymptotic conditions in that theorem. For z close to
1, we see that both bounds are of order o(∆1/4

n ). This finishes the proof.
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Now we prove

Vn,1
t

P→ 3θ2φ2(0)
∫ t

0

σ4
s

αs
ds + 6φ(0)φ(0)R

∫ t

0
σ2

s γ2
s ds +

3φ
2
(0)R2

θ2

∫ t

0
γ4

s dAs; (27)

Vn,2
t

P→ φ(0)R
∫ t

0
σ2

s γ2
s ds +

φ(0)R2

θ2

∫ t

0
γ4

s dAs; (28)

Vn,3
t

P→ R2

θ2

∫ t

0
γ4

s dAs. (29)

Proof of (27). Now let Gn,i
s := ∑hn−1

j=1 gn
j 1{(T(n,i+j−1),T(n,i+j)]}(s), and denote

Ĝn,i
j,j′ :=

∫ ∞

0
Gn,i+j

u Gn,i+j′
u du, Gn,i

j,j′ :=
∫ ∞

0
Gn,i+j

u Gn,i+j′
u du

∫ u

0
Gn,i+j

s Gn,i+j′
s ds.

We have
(

Yc,n
i

)4
= ∑10

k=1 δn,k
i , where

δn,1
i =

(
Xc,n

i

)4
− 6 (σn

i )
4 Gn,i

0,0; δn,2
i = 4Xc,n

i

(
(εn

i )
3 − (γn

i )
3 r(0, 0, 0)n

)
;

δn,3
i = 4Xc,n

i (γn
i )

3 r(0, 0, 0)n; δn,4
i = 6

(
Xc,n

i

)2 (
(εn

i )
2 − (γn

i )
2 r(0, 0)n

)
;

δn,5
i = 4

(
Xc,n

i

)3
εn

i ; δn,6
i = 6

((
Xc,n

i

)2
− Ĝn,i

0,0(σ
n
i )

2
)
(γn

i )
2 r(0, 0)n;

δn,7
i = (εn

i )
4 − (γn

i )
4r(0, 0, 0, 0)n; δn,8

i = 6 (σn
i )

4 Gn,i
0,0;

δn,9
i = 6Ĝn,i

0,0 (σ
n
i )

2 (γn
i )

2 r(0, 0)n; δn,10
i = (γn

i )
4r(0, 0, 0, 0)n.

By (JLZ-A.22), we have E
(∣∣∣E(δn,1

i

∣∣Kn
i

)∣∣∣) ≤ K∆
5
4
n ; apply (JLZ-A.25) and (JLZ-A.17), we have

E
(∣∣∣E(δn,2

i

∣∣Kn
i

)∣∣∣) ≤ K∆
3
2
n , E

(∣∣∣E(δn,4
i

∣∣Kn
i

)∣∣∣) ≤ K∆
5
4
n ; by the boundedness of γ, the facts that

|r(0, 0, 0)n| ≤ K∆
3
4
n , |r(0, 0)n| ≤ K∆

1
2
n (apply (22)), the independence of G,F∞ and (JLZ-A.6), we

have E
(∣∣∣E(δn,3

i

∣∣Kn
i

)∣∣∣) ≤ K∆
5
4
n ; (JLZ-A.26) implies E

(∣∣∣E(δn,5
i

∣∣Kn
i

)∣∣∣) ≤ K∆
2v+3

4
n ; (JLZ-A.19)

and (JLZ-A.21), the independence of G,F∞ and Lemma C.1 imply E
(∣∣∣E(δn,6

i

∣∣Kn
i

)∣∣∣) ≤ K∆
3
2
n ;

(JLZ-A.25) implies E
(∣∣∣E(δn,7

i

∣∣Kn
i

)∣∣∣) ≤ K∆
5
4
n . Thus, we have

Nn
t −hn

∑
i=0

E
(

δn,k
i |K

n
i

)
P→ 0, for k = 1, . . . , 7. (30)

Next, we have the following:

E
(
(σn

i )
4 Gn,i

0,0 |F n
i

)
=

θ2(σn
i )

4∆nφ2(0)
2(αn

i )
2 + Op(∆

1+ρ
n ), (31)

E
(

Ĝn,i
0,0 (σ

n
i )

2 (γn
i )

2 |F n
i

)
=

θ(σn
i γn

i )
2∆

1
2
n φ(0)

αn
i

+ Op(∆
1
2+ρ
n ), (32)
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r(0, 0)n =
φ(0)R

√
∆n

θ
+ o(∆1/2

n ) r(0, 0, 0, 0)n =
3φ

2
(0)R2∆n

θ2 + o(∆n), (33)

where we obtain (32) and (31) by (JLZ-A.38) and (JLZ-A.39). (33) follows from Lemma C.1. By
Lemma (JLZ-A.11), we have

Nn
t −hn

∑
i=0

E
(

δn,8
i |K

n
i

)
P→ 3θ2φ2(0)

∫ t

0

σ4
s

αs
ds;

Nn
t −hn

∑
i=0

E
(

δn,9
i |K

n
i

)
P→ 6φ(0)φ(0)R

∫ t

0
σ2

s γ2
s ds;

Nn
t −hn

∑
i=0

E
(

δn,10
i |Kn

i

)
P→ 3φ

2
(0)R2

θ2

∫ t

0
γ4

s αsds.

(34)

Let Θn
i := (Yc,n

i )4 − E
(
(Yc,n

i )4
∣∣Kn

i

)
which is Kn

i+2hn
measurable, with E

(∣∣E (Θn
i

∣∣Kn
i
)∣∣) = 0

and E
(
(Θn

i )
2) ≤ E

(
(Yc,n

i )8
)
≤ K∆2

n (by (JLZ-A.28)). Apply Lemma A.6 in Jacod et al. (2017),
we have

E
(∣∣∣∑Nn

t −hn

i=0 Θn
i

∣∣∣) ≤ K
√

∆n. (35)

Next, (JLZ-A.33) implies

E
(∣∣∣∑Nn

t −hn

i=0 Θ̃n
i

∣∣∣) ≤ K∆
η
2
n (36)

for some η > 0, where Θ̃n
i := (Yn

i )
41{|Yn

i |≤un} − (Yc,n
i )4. In view of (30), (34), (35) and (36), we

have (27).

Proof of (28). We denote (recall R(Y)n
i,hn

and r(χ; |`|)n
i,hn

are defined in (8))

Ξn,1
t :=

1
hn

Nn
t −hn

∑
i=kn

(
Yc,n

i

)2
R(Y)n

i,hn
; Ξn,2

t :=
1
hn

Nn
t −hn

∑
i=kn

(
Yc,n

i

)2
(γn

i )
2 ∑|`|≤`n

r(χ; |`|)n
i,hn

;

Ξn,3
t :=

1
hn

Nn
t −hn

∑
i=kn

(
Yc,n

i

)2
(γn

i )
2 ∑|`|≤`n

r(`); Ξn,4
t :=

1
hn

Nn
t −hn

∑
i=kn

(
Yc,n

i

)2
(γn

i )
2 R.

First, we prove

Ξn,4
t

P→ φ(0)R
∫ t

0
σ2

s γ2
s ds +

φ(0)R2

θ2

∫ t

0
γ4

s dAs, (37)

which can be derived by the following three convergence in probability:

1
hn

Nn
t −hn

∑
i=kn

(
Xc,n

i

)2
(γn

i )
2 R P→ φ(0)R

∫ t

0
σ2

s γ2
s ds; (38)

1
hn

Nn
t −hn

∑
i=kn

(εn
i )

2 (γn
i )

2 R P→ φ(0)R2

θ2

∫ t

0
γ4

s dAs; (39)
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1
hn

Nn
t −hn

∑
i=kn

Xc,n
i εn

i (γ
n
i )

2 R P→ 0. (40)

By (JLZ-A.19), (JZL-A.21), (JLZ-A.25) and (JLZ-A.38), we have

1
hn

Nn
t −hn

∑
i=kn

E

((
Xc,n

i

)2
(γn

i )
2 R |Kn

i

)
= φ(0)R

Nn
t −hn

∑
i=kn

(γn
i σn

i )
2/αn

i + O(∆ρ
n);

1
hn

Nn
t −hn

∑
i=kn

E
(
(εn

i )
2 (γn

i )
2 R |Kn

i

)
=

∆nφ(0)R2

θ2

Nn
t −hn

∑
i=kn

(γn
i )

4 + op(1).

(JLZ-A.43) implies

1
hn

Nn
t −hn

∑
i=kn

E

((
Xc,n

i

)2
(γn

i )
2 R |Kn

i

)
P→ φ(0)R

∫ t

0
σ2

s γ2
s ds;

1
hn

Nn
t −hn

∑
i=kn

E
(
(εn

i )
2 (γn

i )
2 R |Kn

i

)
P→ φ(0)R2

θ2

∫ t

0
γ4

s dAs.

Let Γn,1
i := (Xc,n

i γn
i )

2R−E
(
(Xc,n

i γn
i )

2R
∣∣Kn

i

)
, Γn,2

i := (εc,n
i γn

i )
2R−E

(
(εc,n

i γn
i )

2R
∣∣Kn

i
)
. Then

it’s immediate that E
(∣∣∣E(Γn,k

i

∣∣Kn
i

)∣∣∣) = 0, E
(
(Γn,k

i )2
)
≤ K∆n and Γn,k

i are Kn
i+2kn

-measurable

for k = 1, 2. Then Lemma A.6 in Jacod et al. (2017) implies 1
hn

∑
Nn

t −hn
i=kn

Γn,k
i

P→ 0, for k = 1, 2.
This proves (38) and (39).

To see the last convergence in (40), we denote an
i = ∆−

1
2

n Xc,n
i εn

i
(
γn

i
)2. Since χ has mean

zero, by the independence of G,F∞ and successive conditioning, we have E
(
an

i
)
= 0. Next,

we have by (JLZ-A.19) and (JLZ-A.25) the following:

E
(
(an

i )
2) = ∆−1

n

(
E
((

(εn
i )

2 − (γn
i )

2r(0, 0)n
)
(Xn

i )
2(γn

i )
4
)
+ E

(
(γn

i )
6(Xn

i )
2r(0, 0)n

))
,

which is bounded by a constant. Now the convergence follows from the law of large numbers.
This finishes the proof of (37).

Now we denote

Ξn,1
t − Ξn,2

t =
1
hn

Nn
t −hn

∑
i=kn

(Yc,n
i )2 ∑

|`|≤`n

i+hn−kn−`

∑
k=i+kn

ζn,i
k,` where ζn,i

k,` :=
1
hn

(
∆n,kn

k,` Y− (γn
i )

2∆n,kn
k,` χ

)
.

Let $n
i,` := ∑i+hn−kn−`

k=i+kn
ζn,i

k,`. By Lemma C.2, we have E
(
($n

i,`)
2
)
≤ K(∆n(kn + hn + `n))1/z.

Let $n
i := ∑|`|≤`n

$n
i,|`|, we have E

(
($n

i )
2) ≤ K`2

n(∆n(hn + `n + kn))
1
z . By Cauchy-Schwarz

inequality and (JLZ-A.28), we have

E
(∣∣∣Ξn,1

t − Ξn,2
t

∣∣∣) ≤ K`n(∆n(kn + hn + `n))
1
2z → 0, (41)

for z close to 1.
Let Rn,χ

i,`n
:= ∑|`|≤`n

r(χ; |`|)n
i,hn

, according to the limit distribution in Theorem LL-C.1, we
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have E
(
(r(χ; |`|)n

i,hn
− r(`))2

)
≤ Kh−1

n . Thus, E
(
(Rn,χ

i,`n
−∑|`|≤`n

r(`))2
)
≤ K`2

n/hn. Apply
Cauchy-Schwarz inequality, we get

E
(
|Ξn,2

t − Ξn,3
t |
)
≤ K`n∆3/4

n . (42)

It’s immediate that

E
(
|Ξn,3

t − Ξn,4
t |
)
≤ K

`v−1
n

(43)

Let r(χ; |`|)n
i,hn

= r(|`|) + en
|`|, then Theorem LL-C.1 implies E

(
(en

` )
2) ≤ K/hn. Thus

E
(
(En

`n
)2) ≤ K`2

n/hn, (44)

where En
`n

:= ∑|`|≤`n
en
|`|. Therefore,

E

((
∑|`|≤`n

r(χ; |`|)n
i,hn

)2
)
≤ K

(
R2 + E

(
(En

`n
)2)) ≤ K ⇒ E

(
(R(Y)n

i,hn
)2) ≤ K. (45)

The last implication follows from Lemma C.2. Then (JLZ-A.33) and Cauchy-Schwarz inequal-

ity yield for some η > 0 that E
(∣∣∣((Yn

i )
21{|Yn

i |≤un} − (Yc,n
i )2

)
Rn

i,hn

∣∣∣) ≤ K∆
1
2+

η
4

n , which further
implies

E
(∣∣∣Ξn,1

t −Vn,2
t

∣∣∣) ≤ K∆η/4
n . (46)

We proved (28) by (37), (41), (42), (43) and (46).

Proof of (29). We have by (45) and Cauchy-Schwarz inequality that

E

(∣∣∣∣(R(Y)n
i,hn

)2 − (γn
i )

4
(

Rn,χ
i,`n

)2
∣∣∣∣) ≤ K

√
E

((
R(Y)n

i,hn
− (γn

i )
2Rn,χ

i,`n

)2
)
≤ K`n(∆n(kn + hn + `n))

1
2z .

(47)

Similarly, we have

E

(∣∣∣∣(Rn,χ
i,`n

)2
−
(
∑|`|≤`n

r(|`|)
)2
∣∣∣∣) ≤ K

√
E
(
(En

i )
2
) (44)
≤ K`nh−

1
2

n ;

E

(∣∣∣∣R2 −
(
∑|`|≤`n

r(|`|)
)2
∣∣∣∣) ≤ K`−(v−1)

n .
(48)

By (47) and (48), we have (29).

Proof of Theorem 3.1. The stable convergence to Ut follows from Theorem 3.1 in Jacod et al.
(2019) and our Lemma C.3, which states that the ReMeDI correction of noise is valid.

To see the convergence to a standard normal variable, it suffices to have Kg,1Vn,1
t +

2Kg,2Vn,2
t + Kg,3Vn,3

t
P→ θφ4(0)

4

∫ t
0 β2

sds, which follows from (27), (28) and (29).
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Figure 3: Volatility estimates (top panel) and Noise-to-signal ratios (bottom panel) of General Electric (ticker: GE)
and Intel Corporation (ticker: INTC) for January, 2015. The tuning parameters are set as follows: For PaReMeDI,
kn = 10, `n = bNn

t
1
7 c, and for PaLA kn = 6, k′n = bNn

t
1
8 c; θ are selected according to (14) for both methods. For the

QMLE (with AIC selection criterion), the optimal q is selected within {5, 6, 7, 8, 9, 10}.

23



References
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