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Abstract We show that any determination of the strong
coupling αs from a process which depends on parton distribu-
tions, such as hadronic processes or deep-inelastic scattering,
generally does not lead to a correct result unless the parton
distributions (PDFs) are determined simultaneously along
with αs . We establish the result by first showing an explicit
example, and then arguing that the example is representative
of a generic situation which we explain using models for the
shape of equal χ2 contours in the joint space of αs and the
PDF parameters.

1 The determination of αs in hadronic processes

The value of the strong coupling αs has been routinely deter-
mined from a variety of processes which involve hadrons
in the initial state, both in electroproduction and hadropro-
duction. The current PDG average [1] includes two different
classes of such determinations. One is from “DIS and PDF
fits”: in these determinations the value of αs is determined
together with a set of parton distributions (PDFs) from a more
or less wide set of data and processes, ranging from deep-
inelastic scattering (DIS) to hadron collider processes (such
as Drell–Yan, top, and jet production).

The other is from single hadronic processes: specifically
top pair production [2–4], and jet electroproduction [5]. Sev-
eral more determinations of αs from one process have been
presented, such as for instance jet production [6–13], multi-
jets [7,14–21] and W and Z production [22]. In these deter-
minations, PDFs are taken from a pre-existing set, rather than
being determined along with αs . The value of αs is then found
by determining the likelihood of the new data as a function of
αs – crudely speaking, by computing the χ2 to the new data
of the theoretical prediction which corresponds to a variety of
values of αs , and determining the minimum of the parabola
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(though in practice when various parametric uncertainties
have to be properly kept into account the procedure is rather
more elaborate, see e.g. Ref. [3]). The theoretical prediction
is in turn obtained for each value of αs by combining the
matrix element computed with the given αs value with the
PDF set that corresponds to that αs value. This is of course
necessary because PDFs strongly depend on αs , so a consis-
tent calculation requires the use of PDFs corresponding to
that value. All major PDF sets are available for a variety of
αs values, and thus this poses no difficulty in practice.

Here we will show that this apparently straightforward and
standard procedure may lead to an incorrect determination
of αs , and we will argue that this is in fact a generic situation.
The difference between this and the true best fit αs can be very
substantial, and specifically much larger than the statistical
accuracy of the αs determination: as we shall see, this in fact
reflects a conceptual flaw in the procedure.

The reason for this can be understood by viewing the χ2

as a simultaneous function of αs and the PDF parameters.
Any given existing PDF set then traces a line in such space
(the “best-fit line”, henceforth): for each value of αs there
is a set of best-fit PDF parameters, which corresponds to a
point in PDF space. The standard procedure seeks for the
minimum of the χ2 in this subspace. This disregards the fact
that the true minimum generally corresponds to a different
point in (PDF, αs) space, which also accommodates the new
data [23].

One could naively argue that the standard procedure is
correct, because what one is really doing is determining the
best αs value for the new process subject to the constraint
that PDFs describe well the (typically very large) set of data
used to determine them. And surely – the naive argument
goes – the minimum of αs anywhere other than on the best-
fit line must correspond to a worse description of the world
data? It actually turns out that this is incorrect: there exist
points in (PDF, αs) space for which the value of the χ2 for
the new process is lower than any value along the best-fit
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line, yet, somewhat counter-intuitively, the value of the χ2

for the world data is also lower.
Moreover, the value of αs corresponding to these configu-

rations may, and in general will, differ substantially from the
one obtained using the standard procedure, and in particular it
will be closer to the value obtained by simultaneously fitting
αs and PDFs to a global dataset. Therefore, the standard pro-
cedure leads to a distorted answer, and it inflates artificially
the dispersion of αs values obtained from different processes.

We establish this result by first providing an explicit exam-
ple in which this happens. Namely, we consider the dataset
used for the NNPDF3.1 [24] PDF determination. We then
study the χ2 for the subset of data corresponding to the Z
transverse-momentum (pt ) distribution, and determine the
best-fit value of αs from this Z pT distribution along the
best-fit line corresponding to the global fit dataset. We then
exhibit a specific set of PDFs corresponding to a rather dif-
ferent value of αs , and such that the χ2 is better both for the
Z pT distribution, and for the rest of the dataset. This means
that there exists at least one point in (PDF, αs) space such the
value of the χ2 for the Z pT is better than any value along the
best-fit line, and that there is no reason not to consider this as
a better fit than the result at the best-fit αs along the best-fit
line, because the agreement with the world data is also better
than that at the minimum on the best-fit line.

We will understand the reason for this result by providing
models for the shape of the χ2 contours both for the world
data and the new experiment in the joint (PDF, αs) space.
Specifically, we explain that this situation may arise both in
the case in which the new data may provide an independent
determination of αs and the PDFs of its own, and in the case
in which the new data do not determine αs and the PDFs
independently. This then covers the typical realistic scenarios
in which the new data only constrain (or determine) a subset
of PDFs: e.g. in the case of the Z pT distribution considered
above, the gluon. In this latter, common case we will see that
the value of αs obtained through the standard procedure leads
to an artificially large dispersion of αs values: better-fit points
in (PDF, αs) generally lead to αs values which are closer to
the global best fit.

2 An explicit example: the Z transverse momentum
distribution

We provide an explicit example of the situation we described
in the introduction. We consider the χ2 values for both a
global “world” dataset, and the dataset for a particular process
P , as a function of αs . Given a fixed value of αs , the value of
χ2 also depends on the PDF set which is being used. As αs

is varied, there is a PDF set which corresponds to the global
best fit: this PDF set defines a line in (PDF, αs) space which
we call the best-fit line. We call χ2

g (αs) the value of the χ2

for the global dataset, as a function of αs , along this best-fit
line.

We now consider the χ2 for process P: We denote by
χr
P

2(αs) the value of the χ2 for process P as a function of
αs , along this same best-fit line in (PDF, αs) space. We call
this the restricted χ2 for process P . This means that this
restricted χr

P
2(αs) is found using the value αs of the strong

coupling, but the PDF set which corresponds to the global
best fit. So χ2

g (αs) and χr
P

2(αs) are determined using the
same αs and the same PDF set: that which corresponds to the
global best fit. Note that, for any value of αs , this restricted
χr
P

2(αs) is not in general the lowest χ2 value for process
P that can be found with the given value αs of the strong
coupling – the PDFs are optimized for the global dataset, not
for process P . This is unlike the global χ2

g (αs), in which (by
definition) for each αs choice, the PDF set is always chosen
as the corresponding global best-fit PDF set.

Now, the standard procedure determines αs from process
P as the minimum of χr

P
2(αs): namely, as the value of αs

which minimizes χr
P , the restricted χ2 for process P , eval-

uated along the best-fit line. We call this value of αs , deter-
mined using the standard procedure, αr

0
P : the restricted best-

fit value of αs , and the corresponding PDF set the restricted
best-fit PDF set for process P .

We now show that this restricted αr
0
P cannot be viewed

as the value of αs determined by process P . We do this by
exhibiting a point in (PDF, αs) space which does not lie along
the best-fit line, i.e. such that the PDFs do not correspond
to the global best fit, such that αs �= αr

0
P , and such that

both the χ2 for the individual dataset, and for the global
dataset, are respectively better than the restricted χr

P
2(αr

0
P )

and χ2
g (αr

0
P ). This is thus a better fit to both process P and

the global dataset than the restricted best fit, so there is no
sense in which the restricted best-fit αr

0
P – which would be

the “standard” answer – can be considered the αs value deter-
mined by process P .

Our construction is based on a previously published deter-
mination of αs by the NNPDF collaboration [25], in which
the strong coupling is determined together with a set of par-
ton distributions based on a global dataset which is very close
to that used for the NNPDF3.1 [24]. This αs determination,
which we now briefly summarize for completeness, builds
upon the previous NNPDF methodology for PDF determi-
nation, in which PDFs are determined as a Monte Carlo
set of PDF replicas, each of which is fitted to a replica of
the underlying data. Note that, in this αs determination, the
PDFs and αs are fitted simultaneously. This is unlike the case
of previous determinations [26] in which PDFs were deter-
mined for a variety of αs values, and then the best fit was
sought by looking at the likelihood profile of the best fit as
a function of αs . Whereas the two methodologies lead (if
correctly implemented) to the same best-fit αs value, simul-
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taneous minimization ensures a more accurate determination
of the uncertainty involved, as explained in Ref. [25], essen-
tially because it determines the likelihood contours in (PDF,
αs) space, rather than just the likelihood line corresponding
to the best-fit PDF for each αs value.

The way this is accomplished in Ref. [25] within the
NNPDF methodology is by fitting each data replica several
times for a number of different values of αs , thereby pro-
viding a correlated ensemble of PDF replicas, in which to
each data replica corresponds a PDF replica for each value
of αs . Namely, for the kth data replica D(k), a PDF replica is
found by determining the set of PDF parameters θ(k) which
minimize the χ2:

θ(k)(αs) = argminθ

[
χ2(θ, D(k), αs)

]
, (1)

where by argminθ we mean that the minimization is per-
formed with respect to θ for fixed D(k) and αs . It is then
possible to compute the χ2 for the kth data replica as αs is
varied:

χ2(k)(αs) = χ2
(
αs, θ

(k)(αs), D
(k)

)
. (2)

We thus find an ensemble of parabolas χ2(k)(αs), one for
each data replica. The best-fit αs for the kth data replica
corresponds to the minimum along the kth parabola:

α(k)
s = argmin

[
χ2(k)(αs)

]
. (3)

In the NNPDF approach, the best-fit PDF value is the aver-
age of the PDF replica sample; similarly the best-fit αs is
determined averaging the α

(k)
s values. We refer to Ref. [25]

for further details, specifically on the dataset. Here we will
use the NNLO PDF replicas determined in that reference as
our baseline.

We can now consider any particular process P entering
these global PDF determination, and ask ourselves what is the
αs value corresponding to process P . The “standard” answer
would be to simply consider the ensemble of best-fit PDFs
determined in the global fit, and compute again χ2(k)(αs) but
now only including process P in the computation of the χ2.
We then get another set of parabolas

χr 2(k)
P (αs) = χ2

(
αs, θ

(k)(αs), D
(k)
P

)
, (4)

where only the data DP for process P have been used.
Note that these are restricted χ2 parabolas, because the PDF
parameters θ(k)(αs), are those found in Eq. (1), by minimiz-
ing the global χ2. The minima

αr
s
(k)

P = argmin
[
χr
P

2(k)
(αs)

]
(5)

now give an ensemble of restricted best-fit αs values for pro-
cess P . Their average is then the restricted best fit for this
process.

In Fig. 1 we show the parabolas corresponding both to
the global fit (left) and to the Z pT distribution (right). The
corresponding ensemble of values of αs is shown in Fig. 2.
From these we find that the global best-fit value of αs(MZ )

is

αs(Mz) = α
g
0 = 0.1185 ± 0.0005, (6)

while the restricted best fit is, for the Z pT distribution,

αs(MZ ) = αr
0
Z pt = 0.1240 ± 0.0015. (7)

In both cases, the central value and uncertainty are respec-
tively the mean and standard deviation computed over the
replica sample, in the first cases for the global best fit Eq. (3)
and in the latter case for the restricted best fit Eq. (5) for each
replica.

We now show that the naive conclusion that the value
Eq. (7) of αs is the value of the strong coupling determined
by the Z pT distribution rests on shaky ground. To show
it, we perform a new PDF determination in which the Z
pT are now given a large weight in the χ2, and which is
otherwise identical to the default determination. This PDF
determination is performed for a single value of αs(Mz) =
0.120, a value intermediate between the restricted best-fit
αr

0
Z pt Eq. (7) and the global best-fit α

g
0 Eq. (6). Specifically

the contribution of the Z pT data to the total χ2 has been
multiplied by a factor w = 32. This factor is chosen so
that the contribution of the Z pT data is roughly equal to
that of all the other data. The gluon and total quark singlet
PDFs obtained in this way are compared in Fig. 3 to the
default PDFs for the same value of αs(MZ ) = 0.120; χ2

values for the global dataset are collected in Table 1, while in
Table 2 χ2 values for the Z pT data and the global dataset are
compared. The gluon is shown because it is the PDF which is
most affected by the Z pT data, and the singlet is also shown
because it mixes with the gluon upon perturbative evolution.

The logic behind this procedure is that by giving more
weight to this data we obtain a set of PDFs which provide
a better fit to them: so we expect the value of χ2 for the Z
pT data to be better than that which would be obtained by
taking the default best-fit PDF set for the same αs value. In
fact it turns out that the value of the χ2 thus obtained for the
Z pT data is also better than the value χr

P
P (0.124) which

corresponds to the best fit along the global best-fit line (see
Table 2). This means that the value αs(MZ ) = 0.120 is a
better fit to the Z pT than the value Eq. (7) corresponding to
the best fit along the best-fit line.

As discussed in the introduction one might object to the
conclusion that αs(MZ ) = 0.120 might be a better αs from Z
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Fig. 1 The χ2 profiles for each of the data replicas used for the NNLO determination of αs(mZ ) of Ref. [25]. Both the profiles for the total dataset
(left), and for the Z pT distribution (right) are shown

Fig. 2 The probability distributions for the best-fit values α
(k)
s Eq. (3) and αr

s
(k)

P Eq. (5) respectively for the global dataset (left) and the Z pT
distribution (right). Each marker indicates the value corresponding to each individual parabola of Fig. 1

Fig. 3 Comparison between the gluon (left) and quark singlet (right) PDFs in the default global PDF determination (orange, lower band at low x)
and in a PDF determination in which the Z pT data receive a large weight (green, higher band at low x), shown as a ratio to the former

pT : on the grounds that the PDF which we obtained thus are
not compatible with the rest of the global dataset given that
they do not correspond to the global best fit. However (see
again Table 2) the value of χ2 for the global dataset obtained
using these PDFs is also better than the value of χ2

g(0.124):
hence with αs(MZ ) = 0.120 and these PDFs one gets a bet-
ter fit to the Z pT data than with αs(MZ ) = 0.124, while
also better fitting the world data. As it is clear from Fig. 3,

the PDFs that best reproduce the Z pT data, though compat-
ible within uncertainties with the global fit, differ from them
by an amount which is sufficient to considerably improve the
description of the Z pT data. Indeed, they lead to an improve-
ment of their χ2 value by almost 10% in comparison to that
of the global fit with the same αs(MZ ) = 0.120 value, at the
cost of only a small deterioration of the χ2 of the global fit,
by about 2%.
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Table 1 The values of χ2/Ndat for the experiments included in the
best global fit with αs = 0.120, compared to results obtained when
αs = 0.124, or when the Z pT data are given a large weight and

αs = 0.120. The number of datapoints is also given in each case. The
full description of the datasets, including data selection, cuts, and ref-
erences is given in Ref. [24] where the same data coding is used

Dataset Ndat Default αs = 0.120 Reweighted αs = 0.120 Default αs = 0.124

NMC 325 1.315 1.337 1.341

SLAC 67 0.6787 0.6994 0.7198

BCDMS 581 1.232 1.282 1.270

CHORUS 832 1.176 1.200 1.249

NuTeV dimuon 76 0.9229 0.9125 0.9900

HERA I+II inclusive 1145 1.263 1.271 1.288

HERA σNC
c 37 1.533 1.538 1.748

HERA Fb
2 29 1.299 1.282 1.247

DY E866 σ d
DY/σ

p
DY 15 1.019 1.020 1.048

DY E886 σ p 89 0.4322 0.4221 0.4477

DY E605 σ p 85 1.001 1.080 1.020

CDF Z rap 29 1.442 1.558 1.419

D0 Z rap 28 0.5990 0.6381 0.5996

D0 W → eν asy 8 2.794 2.860 2.979

D0 W → μν asy 9 1.594 1.610 1.629

ATLAS W, Z 30 0.8957 0.8912 0.9623

ATLAS high-mass DY 7 TeV 5 1.819 1.845 1.904

ATLAS low-mass DY 2011 6 1.123 1.060 1.605

ATLAS W, Z 7 TeV 2011 34 2.149 1.889 2.289

ATLAS jets 2010 7 TeV 31 1.478 1.513 1.479

ATLAS σ tot
t t 3 0.8520 0.7088 3.503

ATLAS t t̄ rap 10 1.555 1.339 2.214

CMS W asy 840 pb 11 0.7858 0.7804 0.8083

CMS W asy 4.7 fb 11 1.762 1.749 1.763

CMS Drell-Yan 2D 2011 110 1.264 1.332 1.294

CMS W rap 8 TeV 22 1.010 1.068 1.177

CMS jets 7 TeV 2011 133 0.9766 1.026 1.034

CMS σ tot
t t 3 0.9832 0.5803 5.489

CMS t t̄ rap 10 1.035 1.036 1.069

LHCb Z 940 pb 9 1.595 1.773 1.568

LHCb Z → ee 2 fb 17 1.156 1.184 1.274

LHCb W, Z → μ 7 TeV 29 1.793 2.034 1.894

LHCb W, Z → μ 8 TeV 30 1.440 1.617 1.722

Global dataset 3979 1.212 1.235 1.262

The conclusion that the restricted best-fit value αr
0
Z pt

Eq. (7) is the value of the strong coupling determined by the
Z pT distribution is thus difficult to defend: with αs(MZ ) =
0.120 we can fit better both the Z pT and the global dataset,
provided the PDFs are suitably readjusted. It is perhaps worth
stressing that the effect that we are demonstrating is large
in comparison to uncertainties. Indeed, the global best fit
Eq. (6) differs by almost four standard deviations from the
restricted best fit Eq. (7) in units of the large uncertainty
on the latter. Assuming the same uncertainty, the better-fit

value αs(MZ ) = 0.120 would instead be compatible with
the global best fit within uncertainties.

This result is at first surprising, as one might expect that
the best fit to the world data must be along the best-fit line.
However, as we shall show shortly, it can be understood both
at a qualitative, and also more quantitative level.

Note that the dataset for the global fit that we are consid-
ering actually does include the Z pT data of Table 2. Hence,
the example presented here differs somewhat from a stan-
dard “real-life” situation such as in Refs. [3–5]: there, PDFs
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Table 2 Same as Table 1, but now comparing the values of χ2/Ndat
for the Z pT distributions and the global dataset. The values for the
global dataset are the same as in Table 1, while the values for the total

z pT are obtained by combining the three datasets listed in this table.
We also include values for a global fit from which the Z pT data have
been excluded

Dataset Ndat Default αs = 0.120 Default αs = 0.120, no Z pT Reweighted αs = 0.120 Default αs = 0.124

ATLAS Z pT 8 TeV (pllT , Mll) 44 0.9776 0.9775 0.9380 0.9559

ATLAS Z pT 8 TeV (pllT , yll ) 48 0.9999 1.071 0.7455 0.8568

CMS Z pT 8 TeV (pllT , Mll) 28 1.308 1.299 1.403 1.357

All Z pT 120 1.056 1.085 0.9635 1.011

Global dataset 3979 1.212 1.211 1.235 1.262

Fig. 4 Same as Fig. 3, but now comparing the global fit (same as shown in Fig. 3) to a global fit from which the Z pT data have been removed,
shown as a ratio to the former

obtained from a fit to a global dataset are used for an αs

determination from some new process which was not among
those which were used to determine the PDFs. In practice,
in our case, this makes essentially no difference because the
inclusion of the Z pT data has almost no effect on the global
fit, due to relatively small number of data (about a hundred
vs. about 4000, see Table 2), and because the Z pt data are
quite consistent with other data which determine the same
PDFs (essentially the large x gluon) [27]. This is demon-
strated explicitly in Fig. 4, where PDFs in the global fit with
or without Z pT data are compared, and seen to be essen-
tially identical. Also, χ2 values for a global fit in which the
Z pT data are not included are shown in Table 2, and are
seen to be extremely close to those for the default global fit
which includes this data: even the χ2 for the Z pT data them-
selves are almost unchanged when fitting this data. We have
checked that all χ2 values for the other datasets of Table 1
change at or below the permille level upon exclusion of the
Z pT data.

As we will discuss in Sect. 2 below, whether or not the
data for process P are included in the global fit or not also
makes no difference of principle, though this is besides the
point now, given the negligible impact of the Z pT data on
the global fit. The reason why we choose to use for process P
dataset which is part of the global dataset, is that it enables us
to use the very large set of 8400 correlated replicas produced

for Ref. [25] in order to construct the profiles shown in Fig. 1,
thereby ensuring high statistical accuracy.

We conclude that we have presented an explicit example
that shows how, using an existing PDF set to determine αs

from a particular process P by looking for the minimum of
the χ2 for the process along the best-fit line of the global fit,
can lead to a substantially distorted result. The reason is that
there exist values of αs for which (for a suitable PDF con-
figuration) the χ2 for process P is lower than the minimum
along the best-fit line, but, surprisingly, the χ2 of the global
dataset is also lower than the value it has at the minimum
along the best-fit line.

This apparently puzzling result can be qualitatively under-
stood by noting that the value of αs which optimizes the χ2 of
the chosen process is actually closer to the global minimum
for αs than the value which corresponds to the minimum
along the best-fit line. Due to having given large weight to
some process, the χ2 for the global dataset deteriorates some-
what, because it is now optimized for that process, rather
than for the global dataset. But that deterioration is more
than compensated by the fact that the αs value is now closer
to the global minimum. This is a consequence of the fact that
the PDF space is higher-dimensional (perhaps even infinite-
dimensional) so a small distortion of the PDFs is sufficient
to accommodate the highly weighted process, and conse-
quently the global χ2 only increases by a small amount due
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Fig. 5 Likelihood (χ2) contours in (PDF, αs ) space for toy models in
which a given process P is sufficient to determine PDFs; the parameter b
(y axis) schematically represents the PDF parameters. The minimum of
the global χ2

g is the orange circle while the minimum of χ2
P for process

P is the green triangle. The line is the locus of the best-fit PDF (“best-fit
line”): the stationary value Eq. (9) of b for the global χ2 for fixed αs . The

red square is the restricted best-fit αr
0
P : the value of αs corresponding

to lowest restricted χr
P

2, i.e. the point with lowest χ2
P along the best-fit

line. The ellipses are fixed χ2
P and χ2

g contours. The shaded area denotes

the region in which both χ2
g < χ2

g (αr
0
P ) and χ2

P < χ2
P (αr

0
P ). The two

plots correspond to two possible scenarios (see text)

to the reweighting. In the next section we cast this qualitative
argument in a more quantitative form.

3 The likelihood in (PDF, αs) space

We now discuss some models for the dependence of the like-
lihood profiles on αs and the PDFs which explain the results
which we found in the previous section, and show under
which conditions the situation we encountered can be repro-
duced. Namely, we explicitly exhibit likelihood patterns for
both a global dataset and a specific process P , such that there
exist points in (PDF, αs) space which have a higher likeli-
hood (lower χ2) than the restricted best fit – the point along
the global best-fit line in (PDF, αs) space which maximizes
the likelihood for process P . As in the previous section, we
refer to (minus) the log-likelihood for the global dataset as
χ2
g , and that for process P as χ2

P .
We assume that the global dataset determines simultane-

ously the PDFs and αs , so that χ2
g has a single minimum

value in (PDF, αs) space, with fixed-χ2
g ellipses about it. We

then consider a particular subset of data, corresponding to a
process P: the case of the Z pT data discussed in the previ-
ous section is an explicit example, but one may consider both
wider datasets (e.g., all LHC data), or smaller datasets (e.g.,
one particular measurement of some cross-section performed
by one experiment).

We further distinguish two broad classes of cases. The
first, which is more common, is that process P does not fully
determine the PDFs. This is the case of the Z pT data of
the previous section, which constrain the gluon distribution
in the medium-large x range but otherwise have a limited
impact (see in particular Sect. 4.2 of Ref. [24]). In this case,
likelihood contours for process P in (PDF, αs) space have flat
directions, along which PDFs and αs change but the value of

χ2
P does not. The second is that in which process P alone is

sufficient to provide a determination of the PDFs, so that χ2
P

also has a minimum in (PDF,αs ) space, with fixed-χ2
P ellipses

about it. An explicit example of this would be if process P
was the full set of deep-inelastic scattering data, which do
determine fully the PDFs, albeit with larger uncertainties than
a global dataset [28]. This case is relatively less common, but
we discuss it first because the former case can be viewed as
a spacial case of the latter.

3.1 Datasets which determine simultaneously αs and PDFs

In order to simplify the discussion, we consider a toy
model in which the whole of PDF space is represented by
a single parameter b so that (PDF, αs) space is just the
two-dimensional (b, αs) plane. In a realistic situation, this
can be viewed as a two-dimensional cross-section of the
full space. In the vicinity of the minimum, where the χ2

behaves quadratically, likelihood contours are just ellipses
(see Fig. 5):

χ2
i (b, αs) =

[
σ i

1[(αs − αi
0) cos θi + (b − bi0) sin θi )]

]2

+
[
σ i

2[−(αs − αi
0) sin θi + (b − bi0) cos θi )]

]2
,

(8)

where i = g, P according to whether one is considering
the global dataset, or the dataset for process P . In our toy
model we neglect the higher-order cubic and quartic terms
that would arise far from the minimum. The point (bg0 , α

g
0 )

(denoted by an orange circle in Fig. 5) corresponds to the
maximum likelihood for the global dataset, and the point
(bP0 , αP

0 ) for process P .
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The best-fit line defined in Sect. 2 is the locus of points
such that

∂χ2
g

∂b
(b, αs) = 0, (9)

shown in Fig. 5 as a (blue solid) line. The condition Eq. (9)
means that at each point along this line the tangent to the
fixed-χ2

g contour is vertical. Hence, the line is not a principal
axis of the ellipse, unless the principal axes are along the b
and αs directions. The restricted best-fit point is shown as
a red square. This point, (br , αr

0
P ), minimizes the restricted

χr
P

2 along the best-fit line, so it is tangent to a fixed χ2
P

contour. This is the value of αs from process P that would be
determined using the “standard” procedure. The value of χ2

for process P at this point is the value discussed in Sect. 2:
χr
P

2(αr
0
P ) ≡ χ2

P (br , αr
0
P ).

The fixed χ2
g and χ2

P contours through the restricted best-
fit point are also shown in figure. It is clear that, whenever
they intersect, the whole area bounded by them (shown as
shaded in the figure) has both χ2

g < χ2
g (br , αr

0
P ) and χ2

P <

χ2
P (br , αr

0
P ). Any point in this region provides a better fit

to both the global dataset and to process P . Whereas it is
debatable which αs value in this region (if any) should be
considered as the best-fit value of αs , it seems very difficult to
argue that the restricted best-fit αr

0
P is the αs value preferred

by process P , given that it gives a worse fit to the both process
P , and the global dataset than any point in the highlighted
region.

The two toy examples shown in Fig. 5 demonstrate differ-
ent cases in which this may happen. Clearly, for some choices
of parameters the value of the restricted best-fit αr

0
P might

considerably differ from either of the values αP
0 or α

g
0 that

respectively minimize χ2
P or χ2

g . In fact, one can exhibit sit-
uations, such as shown in the right plot of Fig. 5, in which
αP

0 ≈ α
g
0 , yet the restricted best-fit αr

0
P is quite different. So

not only does the restricted best fit provide a worse fit, but it
cannot even be viewed as some kind of average or interpo-
lation between the global value α

g
0 and the process P value

αP
0 . This demonstrates that taking αr

0
P as the value of αs

determined by process P leads to an incorrect result.

3.2 Datasets which do not fully determine the PDFs

We now turn to the case in which process P does not fully
determine the PDFs, so that there are flat directions for χ2

P
in (PDF, αs) space. This means that, whereas the likelihood
profile for the global dataset still has the form of Eq. (8), for
process P there exists a hypersurface in (PDF, αs) space (i.e.
in our toy model a curve in the (b, αs) plane) along which
χ2
P is at a minimum. This can be viewed as a limiting case

of Eq. (8), when the fixed χ2
P ellipses become infinitely thin,

i.e., when either of σ P
i goes to zero. Of course, just like far

Fig. 6 Same as Fig. 5, but now for a toy model in which process P
does not fully determine the PDFs. The minimum of the global χ2

g is

the orange circle while the minimum of the χ2
P for process P is the

dashed green line. The solid blue line is the best-fit line as in Fig. 5. The
red square is the “standard” value αr

0
P : the value of αs corresponding

to lowest restricted χr
P

2, i.e. the point with lowest χ2
P along the best-fit

line. The ellipse is a fixed χ2
g contour

enough from the minimum the fixed-χ2 profile will no longer
be ellipsoids, the flat direction will only be locally straight.
This situation is depicted in Fig. 6, where the minimum curve
for χ2

P is shown as a (dashed, green) straight line. In this
case, in the generic situation in which this minimum curve
and the best-fit line Eq. (9) intersect, the intersection point
is the restricted best fit (br , αr

0
P ), which would provide the

“standard” αs determination.
However, it is clear that if one now considers the fixed χ2

g
contour through this point (shown as the ellipse in Fig. 6)
in a generic case, i.e. unless the minimum curve (the dashed
green curve of Fig. 6) is tangent to this ellipse, the contour
intercepts a segment of the minimum curve, and any point
along this segment provides a better fit to the global dataset
than the restricted best-fit (br , αr

0
P ). The minimum of the

global χ2
g along this segment is shown as a purple triangle in

Fig. 6. Clearly, this is the point that is selected by minimizing
the weighted

χ2
w = χ2

g + wχ2
P (10)

in the limit of very large w. Indeed, in the limit in which w

is very large so wχ2
P � χ2

g the minimum of χ2
w is along

the line of degenerate minima of χ2
P , but for any finite w the

absolute minimum of χ2
w is at the point at which χ2

g is also
minimal.

Arguably, the value of αs at this large-weight minimum
can be viewed as the best-fit value αP

0 of αs as determined
from process P , subject to the constraint of also fitting the
global dataset. Be that as it may, the best-fit value of αs as
determined from process P is surely not the restricted best-fit
αr

0
P , which leads to a worse fit to the global dataset than any

value of αs along the intercept segment.
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This is then representative of the case that we discussed in
the Sect. 2. On the one hand, the value αr

0
P does not generi-

cally provide the best simultaneous fit of process P and the
global dataset. Also, the value that minimizes the weighted
χ2 for large w – which provides a better fit to the global
dataset while giving a fit of the same quality to process P
– is generally closer to the global best-fit α

g
0 , as it is clear

from Fig. 6. Note that in this simple example, in which PDF
space is one-dimensional, the large-w minimum leads to the
same fit quality for process P as the restricted minimum. In
a realistic situation both flat and non-flat directions will be
present, and the weighting will also change the position of
the minimum along the non-flat direction, thereby leading to
a lower χ2 for process P than the restricted minimum, as we
observed in Sect. 2.

We conclude that the situation we encountered in Sect. 2
is generic. Whenever process P does not fully determine
the PDFs, χ2

P in (PDF, αs) space has a subspace of degen-
erate minima. The value of αs obtained by minimizing the
restricted χr

P
2 then leads to an incorrect result, generally fur-

ther away from the global best-fit αg
0 than the value that would

be obtained by looking for the minimum of the global χ2
g in

this subspace of degenerate minima of χ2
P .

It is important to note that this effect can be quite large,
as it was the case in the explicit example of the previous
section. In general, the size of the deviation of the infinite
weight minimum from the restricted minimum will depend
on the numerical values of the parameters that characterize
χ2
g and χ2

P Eq. (8). Note however that whenever the restricted
best fit differs considerably from the global best fit in units
of the standard deviation of the global best fit, then the χ2

g
parabola will vary rapidly in the vicinity of the restricted
best fit, and thus the infinite weight minimum will generi-
cally have a rather different value. This is the case of the
example of Sect. 2, in which the restricted minimum Eq. (7)
is eleven standard deviations away from the global minimum
Eq. (6). It is interesting to observe that in the recent determi-
nation of αs [24] many of the restricted minima from indi-
vidual datasets indeed differ considerably from the global
minimum.

As a final observation, we note that the argument pre-
sented here, and thus its conclusion, are unaffected regard-
less of whether process P is or is not included in the global
dataset. This has the interesting implication that in a global
simultaneous determination of αs and the PDFs, such as per-
formed in Ref. [25], the minimum of χ2 from each dataset
entering the global determination cannot be interpreted as
the αs value corresponding to that dataset. Hence, there is no
reason to expect that the global best-fit αs is the mean of the
restricted best-fit values determined from each subset of the
data entering the global fit.

4 The value of αs from a single process

The main conclusion of this paper is that it is generally not
possible to reliably determine αs from a given physical pro-
cess which depends on parton distributions while relying on
a pre-existing PDF set. The reason can be simply stated: the
existing PDF sets only sample a line in PDF space as αs is var-
ied, hence, when using them, one is determining a constrained
likelihood of the physical process under investigation along
this line. This biases the results of the determination, in that
the true maximum likelihood αs generally corresponds to a
PDF configuration which is not along this line. The bias is
especially severe since PDF space is high-dimensional. We
have proven our point by showing that there exist PDFs which
provide a better fit both to the given process, and the global
dataset, and correspond to a different αs value. This has been
shown both in an explicit example, and in toy models. Inter-
estingly, when the physical process under investigation does
not fully determine the PDFs, we have shown that this bias
will generically pull the value of αs away from the best fit, in
comparison to values of αs which provide a better fit to both
the given process and the global dataset. Hence, determining
αs from individual processes in this way, artificially inflates
the dispersion of the αs values which are found.

It is important to stress that the problem that we are point-
ing out cannot be viewed as an extra source of PDF uncer-
tainty in a determination which uses a pre-existing PDF set,
but rather, it exposes a conceptual flaw. Indeed, the value of αs

found by not fitting the PDF simultaneously does not corre-
spond to a maximum likelihood point in (PDF, αs) space, and
as such it can differ from the true maximum likelihood point
by an amount which is potentially large (as we have shown
in explicit examples), and impossible to quantify without
knowledge of the PDF dependence of the results.

One may then ask: what is the value of αs determined by
process P? Does it exist at all? Clearly, in the case in which
the dataset for process P is wide enough that it can be used
to simultaneously determine both αs and the PDFs, it is this
value of αs which must be interpreted as the value preferred
by process P . In this case, the main import of our analysis
is to show that minimizing along the line of global best-fit
PDFs may lead to a value of αs which not only provides a
poor fit to both process P and the global dataset, but cannot
even be viewed as some kind of average of the value αP

0 from
process P and the global value α

g
0 ; rather, it will randomly

differ from them in a way which depends on the χ2 profiles
in (PDF, αs) space (see the right plot in Fig. 5).

On the other hand, it is very common that the process P
is insufficient to simultaneously determine αs and the PDFs,
and hence for χ2

P to have a set of degenerate minima in (PDF,
αs) space. In this case it is debatable whether it makes sense
to speak of a value of αs determined by process P. One may
take the purist attitude that such value does not exist, or,
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alternatively consider defining the best fit value of αs as the
result of the weighting procedure discussed in Sect. 3.2, i.e.,
as the best fit to the global dataset within the set of degenerate
minima of the χ2

P . In such case, the uncertainty on this αs

value is determined by conventional one-σ contours of the
global χ2 in the degenerate subspace (i.e., in the example of
Fig. 6, along the dashed green line).

The important observation in this case is that the value
found minimizing along the best-fit line will generally be
further away from the global best fit, while providing a worse
fit to both process P and the global dataset. So in particular
if one wishes to assess the spread of values of αs which
are individually favored by each of the individual processes
which enter in a global simultaneous determination of PDFs
and αs (such as that of Ref. [25]) a realistic estimate is found
by weighting each of the individual datasets in turn, while
the spread of the restricted minima will suggest an artificially
inflated dispersion of values.

The upshot of this whole discussion is that we do not envis-
age a shortcut: a determination of αs from a single process
always requires a simultaneous determination of PDFs. In the
simplest case, of a process (such as deep-inelastic scattering)
which is sufficient to determine the PDFs, one must perform
a simultaneous fit of the PDFs and αs to the dataset for that
process. In the more common case of a process which does
not fully determine the PDFs one may determine a value of αs

for this process (if deemed interesting) through the weighting
method discussed above, but this of course requires perform-
ing anyway a global PDF fit: so it is no easier than simply
including process P in the dataset and repeating the global
simultaneous determination of the PDFs and αs .

In this latter case, of performing a global fit of PDFs and
αs , it might at least in principle be possible to include the new
dataset, without refitting, by Bayesian reweighting [29,30].
Indeed, there is no difficulty of principle in reweighting cor-
related replicas: each replica will then correspond not only to
a different set of PDFs, but also to a different αs value (that
given by Eq. 3). The reweighted replica ensemble then also
gives a posterior distribution of αs values. Whether and how
the procedure would work when the new dataset is given a
large weight is however not immediately clear. Also, whether
this is feasible in practice of course remains to be seen: specif-
ically, it might well be that in concrete cases an unrealistically
large number of replicas in the prior set is necessary in order
to get a reliable answer after reweighting.

Our results have two wider sets of implications. On the one
hand, they provide a strong indication that looking at the χ2

profile for any given process in the subspace of global fits as
one parameter is varied can be very misleading. This is true
not only for αs but for any parameter entering the global fit,
including the parameters which govern the shape of the PDF
themselves. Specifically, the dispersion of best-fit minima
for individual processes as a feature of the PDF is varied –

such as, say, the rate at which the gluon grows at small x –
does not appear to be a good proxy of the actual dispersion of
the results favored by each processes. This may have some
relevance in the benchmarking of parton distributions (see
e.g. Refs. [31,32]).

On the other hand, they suggest caution in the determi-
nation of any standard model parameter from hadronic pro-
cesses. Indeed, while the case of the determination of αs is
particularly relevant because of the very strong correlation of
αs and the PDFs, similar considerations apply to the simul-
taneous determination of any physical parameter in PDF-
dependent processes, such as the determination of the top
quark mass [33], or of electroweak parameters, such as the W
mass [34]. In the latter case, the correlation of PDFs and the
parameter is in principle weaker than in the case of the strong
coupling, but the very high accuracy which is sought suggest
that currently available results, specifically in W mass deter-
mination, should be reconsidered with care.
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