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Abstract
Purpose of Review Clinical response to brain stimulation treatments for depression is highly variable. A major challenge for the
field is predicting an individual patient’s likelihood of response. This review synthesises recent developments in neural predictors
of response to targeted brain stimulation in depression. It then proposes a framework to evaluate the clinical potential of putative
‘biomarkers’.
Recent Findings Largely, developments in identifying putative predictors emerge from two approaches: data-driven, including
machine learning algorithms applied to resting state or structural neuroimaging data, and theory-driven, including task-based
neuroimaging. Theory-driven approaches can also yield mechanistic insight into the cognitive processes altered by the
intervention.
Summary A pragmatic framework for discovery and testing of biomarkers of brain stimulation response in depression is
proposed, involving (1) identification of a cognitive-neural phenotype; (2) confirming its validity as putative biomarker, includ-
ing out-of-sample replicability and within-subject reliability; (3) establishing the association between this phenotype and treat-
ment response and/or its modifiability with particular brain stimulation interventions via an early-phase randomised controlled
trial RCT; and (4) multi-site RCTs of one or more treatment types measuring the generalisability of the biomarker and confirming
the superiority of biomarker-selected patients over randomly allocated groups.
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Introduction

The past forty years have revolutionised our understanding of
the neural circuitry of depression. Concurrently, develop-
ments in neuromodulation have produced techniques to target
specific brain circuits non-invasively or with minimal inva-
siveness. A new field has emerged from these two develop-
ments, aiming to treat depression using targeted brain stimu-
lation. A plethora of neuromodulation techniques have now
been tested as putative depression interventions, with variable
success. The most common non-invasive approaches are var-
ious forms of repetitive transcranial magnetic stimulation

(rTMS, including theta burst stimulation (TBS)), transcranial
direct current stimulation (tDCS), electroconvulsive therapy
(ECT), and magnetic seizure therapy (MST) (see [1••] for a
recent overview of each type and their comparative clinical
efficacy); the most common invasive approach is deep brain
stimulation (DBS) (see [2] for a recent review).

In some cases, brain stimulation is a highly effective inter-
vention for depression, even in patients resistant to other treat-
ment approaches [3–6]. But in others, little or no improvement
is seen. This is apparent in the large variability in outcomes (or
in some cases null results) reported in randomised controlled
trials (RCTs) of various brain stimulation interventions [7, 8••,
9••], as well as notable variability in response to brain stimu-
lation for other purposes, including across motor [10, 11] and
cognitive [12] systems. This variability is not unique to brain
stimulation interventions: It is the norm across all depression
treatments. As yet, there are no established techniques to pre-
dict treatment response in depression, whether following brain
stimulation, antidepressant medication, psychological thera-
py, or any other intervention. This paper aims to review neural
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and biological predictors of response to brain stimulation in
depression, before proposing a framework for future studies to
identify and test potential neural predictors of brain stimula-
tion response.

There is a large and growing field of biomarker development
to predict response to depression treatments. The term
Predictive ‘biomarker’ is used here to refer to a broad array of
measures obtained at baseline (including blood, brain imaging,
or cognitive markers) that might predict response to a particular
intervention. A subset of these measure neural function using
neuroimaging to predict treatment response for pharmacologi-
cal and psychological treatments (e.g. [13–17, 18•]). Neural
predictors might be particularly useful for brain stimulation
interventions, which directly perturb the activity within neural
circuits, versus indirect perturbation caused by psychological or
pharmacological interventions. Ideally, establishing neural pre-
dictors of brain stimulation response might simultaneously pro-
vide a clearer window on the neural mechanisms of brain stim-
ulation interventions.

The majority of recent efforts to predict the outcome of brain
stimulation focus on two neural measures in particular: neuro-
anatomical location and baseline activity state of the site
targeted. In this review, key recent efforts to use anatomical
and functional neural measures as putative predictive bio-
markers of treatment response will be outlined, focussing pri-
marily on stimulation approaches that attempt to target particu-
lar neural regions (i.e. rTMS/TBS, DBS, and tDCS; see [1••]
for a recent meta-analysis of all non-surgical brain stimulation
in depression, including ECT and MST). Based on recent de-
velopments, a pragmatic framework for discovery of specific
predictors of brain stimulation response in depression will be
proposed, focussing on how studies should test the validity,
reliability, and specificity of novel putative biomarkers.

Taking Neuroanatomical Variation Into
Account

A key contributor to variability in response to brain stimula-
tion is individual differences in neuroanatomy. For instance,
the most common target for non-invasive brain stimulation
interventions is the left dorsolateral prefrontal cortex
(DLPFC). To localise the DLPFC, most TMS trials localise
the finger region of the primary motor cortex and move five to
six centimetres anterior. This approach has been successful in
a number of trials [3, 19, 20]. Nevertheless, it leads to vast
between-subject differences in the precise neuroanatomical
region targeted [21]. The DLPFC is not a homogenous region
[22, 23], so even minor differences in site localisation could
substantially change the behavioural and clinical effects of
perturbation. How successfully brain stimulation targets a giv-
en neural site may be one contributor to a patient’s likelihood
to respond to brain stimulation.

One solution (already employed to some degree by many
studies) is imaging-based localisation. In brain stimulation
studies in other cognitive domains, ever-more precise neuro-
anatomical targeting leads to increasingly larger behavioural
effects of brain stimulation. In an elegant demonstration of
this effect in healthy controls using parietal TMS, Sack and
colleagues tested four different approaches to localisation: the
10–20 electrode scalp system, magnetic resonance imaging
(MRI)-based neuronavigation, functional MRI (fMRI)-based
localisation using standardised coordinates from the literature,
and fMRI neuronavigation based on an individual’s fMRI
data [24]. They demonstrated that localisation approach dra-
matically altered the effect size of behavioural changes
evoked by TMS. Subsequent power analyses showed that
while 47 participants would have been required to detect the
size of the behavioural effect obtained from 10 to 20 localised
TMS, only 13 would be required for standardised coordinate-
based neuronavigation; only 9 required when using individual
MRI-guided neuronavigation; and 5 participants were suffi-
cient to reveal a significant behavioural effect when using
individual fMRI-guided TMS neuronavigation. This strongly
suggests that improved site localisation in TMS for depression
could improve the likelihood of a patient responding.

There is preliminary evidence supporting the utility of bet-
ter localisation in depressed patients: a patient’s likelihood of
responding to rTMS is increased when the site stimulated is
more lateral and anterior [25]. Precise, subject-specific
localisation (as in the Sack study) could further improve a
patient’s likelihood of response. However, the targeted site
is only one parameter of many in a given brain stimulation
montage. There may also be a particular intensity, coil or
electrode angle, delivery number, or interval between sessions
that maximise a patient’s probability of responding to brain
stimulation. The sheer number of modifiable parameters and
their possible combinations means that we may not yet know
the exact optimal parameters for targeting specific neural re-
gions or circuits, although computational modelling studies of
brain stimulation montages go some way toward addressing
this [26, 27, 28••].

Baseline Neural Measures as a Window Into
Response Variability

In addition to between-subject differences in neuroanatomical
target location, other baseline neural features could alter the
likelihood of clinical response—and, potentially, serve as pu-
tative neural ‘biomarkers’ of response. A small number of
studies have suggested that certain neuroanatomical features
might correspond to a patient’s likelihood of response to par-
ticular types of brain stimulation. For instance, smaller amyg-
dala volume pre-treatment was associated with better
responding to rTMS [29••]. This was speculated to underpin
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a mechanism of action of rTMS: amygdala volume increased
in rTMS responders only [29••] (although note the laterality of
this effect differs). Other structural measures like white matter
connectivity may also be useful as neural predictors of treat-
ment response. In a small pilot study of probabilistic
tractography in patients implanted with DBS electrodes, high
connectivity between the DBS contact to the medial PFC was
associated with response [30]. However, this result is very
preliminary and requires testing in large samples.

The majority of recent proposals for neural biomarkers of
brain stimulation response have been functional measures of
baseline neural state in a region or regions. For instance, pa-
tients administered rTMS to DLPFC subegions with greater
resting-state functional anticorrelation with the subgenual an-
terior cingulate cortex (sgACC) are more likely to respond
than those administered TMS to DLPFC subregions with
sparse sgACC functional connectivity [31, 32]. This discov-
ery has led to a new proposal for coil placement optimisation:
identifying and targeting subject-specific prefrontal sites with
the greatest sgACC anticorrelation [31]. This approach
(targeting the DLPFC coordinate that is maximally
anticorrelated with the sgACC) was recently tested in an
open-label rTMS trial which achieved extremely high remis-
sion rates in treatment-resistant depressed patients (note that it
also had a number of unusual methodological specifications,
including number of pulses, intensity, and session spacing)
[33]. The efficacy of this approach might derive from modu-
lating the interaction of two spatially and temporally dissocia-
ble functional networks at rest, both considered central to the
pathophysiology of depression: the central executive network
(including the DLPFC), implicated in attentional, working
memory, and decision-making processes, and default mode
network (tightly coupled with the sgACC), involved in self-
referential processes such as rumination [34].

Even after absolutely precise anatomical or functional
localisation, different patients with depression may require
altogether different interventions, due to the inherent hetero-
geneity of the disorder. At the symptom level, two patients
meeting diagnostic criteria for depression might not share a
single criterion in common [35]. At the neural level, even the
most robust group-level neural differences between patients
with depression and non-depressed controls still vary at the
level of the individual. For instance, most targets of non-
invasive brain stimulation studies are found in the left
DLPFC, where across a number of studies, depressed patients
show group-level hypoactivation duringworkingmemory tasks
compared to non-depressed participants [36, 37•]. Yet within an
individual study, not all patients show hypoactivation; depend-
ing on the task employed, some studies even report group-level
hyperactivation in depressed patients compared to non-
depressed controls [38] (potentially due to differences in task
difficulty [39]). Even innovative anatomical and functional ap-
proaches to optimise TMS stimulation site and stimulation

parameters should only be effective for those patients who
show aberrant activation at that site (or a closely coupled re-
gion) in the first place. Overcoming this problem of heteroge-
neity involves identification and testing of baseline disease-
relevant metrics that could eventually be used for treatment
selection—identifying which intervention is most appropriate
for an individual patient.

Optimising Treatment Selection in Brain
Stimulation

Outside the brain stimulation field, numerous predictors of
response to antidepressant drugs, psychological therapies, or
ECT (for example) have been proposed (e.g. [15, 40–42]).
Central to all these proposals is the theory that a given treat-
ment may not be suitable for every individual and that some
measure at baseline could distinguish those likely to respond
from those unlikely to benefit. For instance, non-responders to
rTMS of the dorsomedial prefrontal cortex (DMPFC) show
markedly higher baseline pessimism, anhedonia, and loss of
interest scores on standard clinical assessments [43•], whereas
response to DBS is positively associated with anhedonia [44].
This suggests that specific stimulation types (e.g. rTMS versus
DBS) may be particularly suited for certain sub-groups of
patients with a given diagnosis, presumably related to neural
mechanisms targeted by that intervention. Recently, a number
of studies have proposed using neural measures obtained at
rest to select patients for particular brain stimulation interven-
tions. For instance, baseline sgACC glutamate activity (mea-
sured with positron emission tomography) was higher in
sgACC DBS responders compared to non-responders [45].
Similarly, for rTMS protocols targeting the DMPFC, higher
resting state connectivity between the DMPFC and sgACC in
an individual patient was associated with better treatment out-
comes [46]. Greater baseline functional connectivity between
the orbitofrontal cortex and sgACC was found to distinguish
responders from non-responders to DLPFC rTMS [47]. In
contrast, an individual patient’s DMPFC connectivity with
the thalamus or putamen was inversely associated with clini-
cal improvement [46]. The role of DMPFC-sgACC interplay
in in integrating cognitive and affective information may in-
dicate that patients require a degree of preserved executive
control over emotional stimuli to support clinical response to
rTMS [48]. Furthermore, in a study examining predictors of
response to antidepressant medication, the functional connec-
tivity between neighbouring regions the dorsal ACC and
sgACC was inversely associated with treatment response
[49]. This provides preliminary evidence for a treatment-
specific role of medial prefrontal-to-sgACC connectivity,
which would be helpful for future treatment selection or
personalised medicine approaches.
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Data-Driven Approaches

A particularly useful prospect in personalised medicine is
data-driven approaches to enable discovery of discriminating
neural features that predict treatment response. In perhaps the
most famous demonstration of this approach, Drysdale and
colleagues demonstrated high accuracy in predicting
DMPFC rTMS response using a machine learning algorithm
applied to resting-state fMRI connectivity data, which identi-
fied ‘clusters’ with differential responsiveness to the interven-
tion [50••]. However, an important test for this technique is its
ability to generate the same clusters in other samples. The
original method used (canonical correlation analysis) was later
shown to be unable to generalise to a different dataset [51,
52•]; canonical correlation analysis is prone to over-fitting
on high-dimensional data like brain scans (identifying associ-
ations that exist by chance) [53•] (note that regularisation has
now been used to remedy this issue in the original data [54]).

The second challenge of this and similar approaches is that
‘biomarkers’ identified using resting-state fMRI are difficult
to interpret in terms of treatment (or disorder) mechanism,
because the specific neural functions supported by at-rest ac-
tivation and co-activation are poorly understood. Arguably, it
is also difficult to distinguish them from non-neural differ-
ences in neurovascular coupling that affect resting state signal
(e.g. psychotropic medication) [55]. This limits the interpret-
ability of resting state co-activations, although does not nec-
essarily reduce the potential prognostic value of these mea-
sures for brain stimulation response. Nevertheless, multivari-
ate classifiers (and other data-driven approaches) tend to be
agnostic about the mechanistic underpinnings of treatment
response [18•]. Thus, data-driven approaches may be very
useful at identifying what might predict response to brain
stimulation, but may be less useful in understanding why that
particular measure relates to treatment response.

Theory-Driven Approaches

An alternative approach is ‘theory-driven’ biomarker devel-
opment [56]. Earlier insights from pharmacological fMRI in-
dicate that employing specific cognitive measures is key to
understanding the neural mechanisms of drug effects [57].
Studies reporting an amelioration of negative emotional bias
in depression after acute administration of antidepressant
medication (e.g. [58–60]) led to major theoretical develop-
ments in the field. The cognitive neuropsychological account
of depression treatment posits that depression arises from
compromises in multiple interacting cognitive systems.
Antidepressants target low-level emotion and reward-
processing systems, reducing bias toward negative informa-
tion processing frequently observed in depressed patients [40,
58, 61, 62]. This negative bias is enhanced by deficits in non-
emotional ‘cold’ cognitive circuitry, including attention and

decision-making; together, these interacting neurocognitive
factors make a patient susceptible to the top-down negative
expectations about the world characteristic of depression and
targeted by cognitive behavioural therapy [40, 58, 61, 62].

A number of brain stimulation studies have employed cog-
nitive tasks at baseline to assess their value as prognostic
biomarkers. Pooling data from several trials, one study report-
ed better pre-treatment letter fluency predicted response to left
DLPFC tDCS, interpreting pre-treatment letter fluency as a
proxy for preserved activity in the left DLPFC [63]. If this
interpretation were correct, one might also expect greater
DLPFC engagement during an executive function task to be
associated with treatment response. Our later trial confirmed
this prediction: Baseline left DLPFC activation during work-
ing memory was associated with subsequent clinical response
to tDCS and not sham stimulation [9••]. In the context of the
cognitive neuropsychological model of depression, this might
suggest that tDCS, like CBT and potentially TMS [62], treats
depression via alterations in ‘top-down’ cognitive control or
emotion regulation, in contrast to antidepressant drugs, which
are thought to directly alter negative emotional biases [39, 62].
This hypothesis is supported by preclinical evidence against
an effect of tDCS on acute emotion perception [64]—note,
however, that other work suggests that there may be an acute
effect of tDCS on certain emotion-related processes such as
threat vigilance [65].

Collecting a baseline index of the processing integrity of
the stimulated region in a brain stimulation trial might have
clinical utility (if replicated in larger trials). But more imme-
diately, it can yield immediate mechanistic insight into the
cognitive processes altered by the intervention. Such mecha-
nistic insights from theory-driven biomarker approaches could
simultaneously indicate ways to improve treatments for future
trials. If, for example, greater DLPFC activation is required to
obtain clinical response to DLPFC tDCS, increasing engage-
ment of this cognitive system during or preceding tDCS de-
livery could increase a patient’s likelihood of response (e.g. by
staircasing the difficulty of a cognitive task administered con-
currently with tDCS to ensure that it adequately engages that
individual’s DLPFC or by combining DLPFC tDCS and an-
other intervention, such as rTMS) [66].

A Pragmatic Framework for Biomarker
Discovery

How should we evaluate the clinical utility of such a wide
array of putative anatomical and functional neural bio-
markers? Numerous studies using a pre-post-trial design have
reported neural or biological measures that correlate with
treatment response. But currently, there is no established clin-
ical biomarkers of treatment response for any type of brain
stimulation. This is due to several barriers to establishing a
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neural measure as a biomarker, all of which must be addressed
by any pragmatic framework (Fig. 1).

The first and perhaps the most difficult hurdle to overcome
is identification of a reliable neural measure to modify with
brain stimulation. I have argued here that depression itself
does not have a reliable neural phenotype, so optimising brain
stimulation for depression as a whole might be an impossible
task. Instead, initial discovery research is needed to identify
clusters of patients with a particular phenotype (as in the ca-
nonical correlation analysis approach by Drysdale and col-
leagues [50••]). However, these clusters must be stable. In
the case of multivariate, data-driven methods used to identify
a phenotype, the method must be validated using out-of-
sample testing (see [53•] for recommendations for canonical
correlation analysis). Even using simpler methods, such as
univariate fMRI, stability of measurement is essential.
Within-subject reliability of some neural activation measure-
ment varies substantially according to imaging method, anal-
ysis approach, and region measured (see [67–69, 70•, 71,
72•]). Therefore, measurement reliability should be

considered an essential facet of a putative neuromodulation
biomarker [73] (note within-subject reliability is still only in-
frequently assessed in the context of randomised controlled
trials suggesting putative brain stimulation biomarkers
(RCTs) [9••]).

This phenotype-based approach would address another re-
cent critique: that neuromodulation clinical trials fail because
of issues with commonly used outcome measures, rather than
due to a failure of the intervention itself [74••]. According to
an elegant argument for improved primary outcome measures
in brain stimulation trials, typical verbal report scales (e.g.
Hamilton Depression Rating Scale (HAM-D [75]) or
Montgomery-Asberg Depression Rating Scale (MADRS
[76]) may fail to detect important clinical changes on relevant
unmeasured clinical areas such as negative self-talk, opti-
mism, and self-confidence, particularly when assessed only
at one time point [74••]. Crucially, typical scales also do not
easily dissociate separable components of depression (e.g. an-
hedonia; emotional dysregulation), despite their relatively dis-
tinct neural bases [77, 78]; these subcomponents might be

Fig 1 A pragmatic framework for
identifying and testing brain
stimulation biomarkers
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more tightly coupled with treatment response than the full
diagnostic criteria. Among other possible solutions, the au-
thors propose measuring the effects of brain stimulation inter-
ventions on behavioural or symptom measures with a known
neural circuitry. Instead of measuring the effects of an inter-
vention on the entire major depressive disorder, trials could
target specific neural circuits with a given intervention and
measure change on associated behavioural or symptom out-
comes [74••].

By establishing a stable and reliable neural phenotype or
dimension, subsequent studies could then test two key factors:
the phenotype’s association with treatment response, and its
modifiability with particular brain stimulation interventions.
Most of the studies reviewed here are examples of the first
type of test. For the second, reliable data-driven approaches
could identify dimensions that cut across diagnostic group-
ings, with experimental medicine studies developed to target
this particular dimension. In one initial example of this trans-
lation from discovery science to experimental medicine, a
psychiatric dimension related to disorders of compulsivity
[79, 80], measured using a computationally derived measure
of behaviour with a well-characterised neural basis [81, 82],
was shown to be modifiable using cortico-cortico paired asso-
ciative stimulation [83].

Finally, two types of randomised controlled trial (RCT) are
required to test the specificity, utility, and validity of any pu-
tative biomarker. In the first type, an early-phase RCT is re-
quired to establish its specificity, at a minimum compared to
its ability to predict response to sham stimulation, but ideally,
compared to its ability to predict response to other interven-
tions. In the second, multi-site trials are required to confirm
the generalisability of the biomarker for prediction of clinical
response. The utility of out-of-sample testing has been neatly
demonstrated in the case of measuring sgACC activation to
predict response to cognitive therapy for depression. In one
trial, emotion-related sgACC deactivation was measured in
two independent cohorts, before a cognitive therapy interven-
tion (along with a third control cohort) [15]. Using this design,
the researchers were able to predict response/remission in the
second cohort based on activation thresholds obtained from
the first, achieving over seventy per cent accuracy.

In summary, development and testing of brain stimulation
biomarkers for depression requires: (1) identification of a
cognitive-neural phenotype; (2) establishing its validity as pu-
tative biomarker, including out-of-sample replicability and
within-subject reliability; (3) establishing the association be-
tween this phenotype and treatment response and/or its mod-
ifiability with particular brain stimulation interventions via an
early-phase RCT; and (4) multi-site RCTs of one or more
treatment types measuring the generalisability of the biomark-
er and confirming the superiority of biomarker-selected pa-
tients over randomly allocated groups.

Conclusions

This framework provides an outline of how the
neuromodulation field might develop and test putative
neural biomarkers for treatment response in depression.
However, neural biomarkers are not the only route to
treatment prediction. Other treatments in psychiatry have
used theory-driven approaches, such as performance on a
cognitive task, or data-driven approaches on clinical and
demographic measures to predict a patient’s likelihood of
responding to antidepressant drugs [84] or cognitive be-
havioural therapy [85]. Both of these approaches to
persona l i sed psych ia t ry a lso have poten t ia l in
neuromodulation, particularly if they are used as proxy
measures for a neural phenotype which can then be di-
rectly targeted with brain stimulation. Outside of the
brain, biological measures such as heart rate deceleration
during initial rTMS delivery [86] may also hold promise
as putative biomarkers. As novel forms of brain stimula-
tion such as transcranial ultrasound stimulation begin
translation to human patient studies, initial RCTs should
incorporate potential biomarkers when establishing clini-
cal effects, testing predictors of treatment response along-
side group-level efficacy. Incorporation of potential bio-
markers into RCTs could complement other innovation in
trial design, such as updated measures of efficacy and
outcome intended to better capture clinically meaningful
change [74••]. By integrating the principles of dimension-
al psychiatry with improved trial designs that test reliabil-
ity and generalisability, the field could move toward brain
stimulation interventions designed to target specific
neurocognitive phenotypes in depression.
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