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Summary

For decades, the primary focus of cancer research has been the cancer tissue itself. Advances
in next generation sequencing technologies have enabled identification and characterisation
of driver mutations, provided insights into the tumour burdens and underlying mutational

processes, sub-clonal diversification and tumour heterogeneity.

However, all cancers arise from cells that were once normal. Over time, they acquired certain
mutations which increased their fitness, giving them a selective advantage over their
neighbours and allowing uncontrolled growth, clonal expansion and malignant transformation.
Our understanding of somatic evolution occurring in normal tissues with age and in the early

stages of tumourigenesis remains relatively poorly understood.

In this thesis, | aimed to investigate somatic evolution in normal ageing human tissues. Firstly,
| helped to establish a robust low DNA input whole genome sequencing workflow for laser-
capture micro-dissected cellular material. | then utilised this approach to explore genomic and

evolutionary landscapes of the normal human endometrium.

In the first results chapter, | investigate the clonal composition of normal endometrial glands.
The majority of glands are clonal cell populations that share a common recent ancestor and

the monoclonality is independent of whether they have a driver mutation.

In the second results chapter, | investigate the mutational landscape of normal endometrial
glands. We show that somatic mutations (base substitutions, indels and genome
rearrangements) accumulate with age in a more-or-less linear manner. A small number of
ubiquitous mutational processes accounts for the majority of all mutations. A remarkably high
proportion of normal endometrial glands carry at least one driver mutation (of the type that
one is used to finding in cancers). Accumulation of drivers is negatively affected by parity.
Through phylogenetic tree reconstruction of somatic mutations in endometrial glands, we

show that driver mutations often occur early in life and continue to accumulate with age.

This work identifies a distinct mutational landscape in normal endometrium that is in keeping

with the presence of early positive selection in this highly regenerative tissue.
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1.1

1.2

Chapter 1  General introduction

Introduction

All cells in the human body are thought to acquire somatic mutations. Most of these
mutations are harmless and are termed ‘passengers’. However, some of the mutations confer
increased cellular fitness and selective advantage leading to uncontrolled cellular growth,

clonal expansion and eventually neoplastic transformation (‘driver mutations’).

Cancer is a disease of the genome fuelled by somatic mutations

For decades, the primary focus of cancer research has been the cancer tissue itself. Advances
in next generation sequencing (NGS) technologies have enabled identification and
characterisation of driver mutations, provided insights into the tumour burdens and
underlying mutational processes, sub-clonal diversification and tumour heterogeneity.
Cancers can now be described in terms of their mutation burden, mutational processes and

patterns of selection. These are considered below.
1.1.1 Mutation burden

Large scale next generation sequencing initiatives (Alexandrov, 2018, Cancer Genome Atlas
Research et al., 2013, Alexandrov, 2013) have allowed better characterisation of the tumour
mutation burden. These analyses have shown a huge variation in the rates of somatic
mutations across different types of cancer with the majority of tumours showing 1000-20,000
somatic point mutations and much smaller numbers of insertions, deletions, and

rearrangements.



1.1.2 Mutational processes

Cancer genomes carry thousands of somatic mutations, but only a very small proportion of
these are “drivers” that are implicated in oncogenesis. The remainder are “passengers”, the
bystanders of the mutational processes that have been operative in those tissues throughout
life and the development of cancer (Helleday et al., 2014). These mutations occur
spontaneously as a result of various processes, termed ‘signatures’ (Alexandrov, 2013). They
can be of endogenous source, such as reactive oxygen species, defective DNA repair
mechanisms and infidelity in the DNA replication machinery, or of exogenous source, such as

ultra-violet light exposure and tobacco smoking (Alexandrov, 2013, Alexandrov et al, 2015).
1.2.1.1 Early work on mutational patterns

Different mutational processes leave specific patterns of mutations on the cancer genomes,
which are termed “mutational signatures”. Some of the first efforts to characterise
mutational patterns were made back in the 90’s (Hollstein et al., 1991, Hollstein et al., 1999).
In a series of studies, multiple samples of the same cancer type were combined to examine
patterns of coding mutations in TP53. These analyses yielded two key observations. First,
ultra-violet light exposure related skin cancers were characterised by frequent C>T
transversions occurring primarily at dipyrimidines, which was in keeping with the pattern of
mutation observed in vitro. Second, a strong C>A pattern was seen in tobacco smoking related
lung cancers, which matched the observation made in vitro of DNA exposure to
benzo(a)pyrene, a known tobacco carcinogen (Nik-Zainal et al., 2015). While these studies
provided first insights into mutational patterns, the analyses were primarily focused around
processes with strong mutagenic activity that would generate most of mutations detected in
individual cancers. However, more than one mutational process may have been operative in

III

a given cancer, but the “signal” from these may not be readily deciphered in the mixture of

mutations.
1.2.1.2 Next Generation Sequencing studies

Subsequently, advances in next generation sequencing (NGS) have resulted in large amounts

of whole exome and genome sequencing data. This implied that thousands of somatic

10



mutations were identified in individual cancers, which in turn provided sufficient power to

apply mathematical algorithms to extract individual mutational signatures.

Large-scale cancer genome sequencing initiatives not only generated comprehensive lists of
somatic mutations, but also provided an opportunity to decipher mutational signatures from
thousands of cancers (Alexandrov et al., 2013, Cancer Genome Atlas Research et al., 2013,
Alexandrov et al., 2018). Some of these signatures are present in most cancer types, for
example a signature associated with the APOBEC family of cytidine deaminases, while others
are unique to specific tumours. It is now also known that while certain mutational processes
operate continuously, leading to accumulation of somatic mutations at a constant rate over
decades, in a ‘clock-like’ fashion, others generate these more intermittently (Petljak et al.,
2019). These mutational processes determine the mutation burdens that result in the first
“driver” mutations leading to neoplastic change and may contribute to other normal and
diseased biological states including ageing. Furthermore, these mutational processes may
change in non-cancer disease states in which the metabolic state of the cell is chronically

altered and thus may provide us with a record in DNA of these metabolic changes.

As more whole genome sequencing data have become available, a more comprehensive
characterisation of the signatures has been possible of not only single base substitutions, but
also of dinucleotide substitutions, small insertions and deletions (indels) and structural

variants (Alexandrov et al., 2018).

In addition, in an attempt to better our understanding of the underlying mechanisms of the
mutational processes, Kucab and colleagues tested 79 known or suspected environmental
agents and their effect on single base substitutions (Kucab et al., 2019). The study found that
approximately 50% of the tested mutagens were associated with specific mutational
processes, several of which matched those previously observed in tumours, including UV-light

and tobacco-related carcinogens.

Finally, work by Alexandrov and colleagues made a first attempt at estimating the ‘clock-like’
mutation rates in normal cells by interrogating thousands of cancer genomes (Alexandrov et
al., 2015). The study identified two mutational signatures that were seen in most cancer types
and accumulated mutations at a constant rate over time, thus confirming the existence of

mutational molecular clocks.

11



1.1.3 Patterns of selection and driver mutations

The above mentioned large sequencing initiatives have also allowed identification and
characterisation of cancer-associated mutations. As a result, there are now more than 600
genes that are thought to be implicated in oncogenesis (COSMIC). Statistical models (dN/dS)
were subsequently applied to identify genes that are under selection across cancer types
(Martincorena et al., 2017). These analyses have also highlighted driver burden differences
between cancers with some types, such as chromophobe renal cell carcinomas and ovarian
carcinomas, characterised by only a handful of driver genes, and others, such as urothelial

and endometrial carcinomas showing a much broader range of genes under selection.

1.2.1.3 Multi-step clonal tumour evolution and heterogeneity

The multistep process of tumourigenesis was first proposed in 1958 (Foulds, 1958). Molecular
events that drive cancer development and progression were further characterised over the
following 30 years (Farber and Cameron, 1980; Weinberg, 1989). Some of the key analyses
included work by Fearon and Vogelstein in colon in which they showed the complexity of the
genetic path in colorectal cancer development (Fearon and Vogelstein, 1990). They examined
different histopathological states in the colone, from normal epithelium to invasive colorectal
adenocarcinoma. The work showed that the great majority of early adenomatous polyps
carried inactivating mutations of the tumour-suppressor gene APC. Approximately half of the
intermediate-sized lesions carried activating mutations of ras oncogenes and about half of
the advanced colorectal carcinomas had mutations in the tumour-suppressor gene TP53

(Kinzler and Vogelstein, 1996).

12



1.3

Current knowledge of somatic evolution in normal tissues

1.3.1.1 Driver mutations and clonal expansion

Some of the first studies reporting somatic mutations in normal tissues were carried out in
blood. Gene fusion events that are typically seen in leukaemias and lymphomas, were
detected in nearly 30% of clinically normal individuals studied (Biernaux et al., 1995, Bose et
al., 1998). Furthermore, work on cord blood showed that TEL-AML1 and AMLI-ETO gene
fusions associated with leukaemia can occur early in life with such events identified in around

1% of healthy neonates (Mori et al., 2002).

In 2014, seminal publications based on whole exome sequencing of large cohorts of patients
showed that driver mutations, including DNMT3A, TET2 and JAK2 that are implicated in
myeloid neoplasms, are frequently found in the blood of older but otherwise healthy
individuals (Jaiswal et al., 2014, Genovese et al., 2014). The observation was termed clonal
haematopoiesis. Work by Jaiswal and colleagues later showed that the presence of those
clonal expansions conferred a small but significant risk of leukaemia (0.5%-1% per year) and
that these clones represent early steps of tumourigenesis (Jaiswal et al., 2014). It was later
shown that clonal haematopoiesis with cancer-associated mutations can occur at all ages (3%

in 20-29-year olds; 20% in 60-69-year olds).

Subsequently, driver mutations identified in blood were also shown to be associated with
non-malignant diseases: in addition to an increased risk of haematological neoplasms, the

rates of coronary heart disease and ischaemic stroke were also increased (Jaiswal et al., 2017).

Detection of somatic mutations in normal solid tissues has been more challenging due to
biological limitations, including slower proliferation, clonally restrictive tissue architecture,
more difficult tissue access, and technical issues. A series of studies assessing clonal
expansions in normal tissues, such as colon, prostate and liver, were carried out using
mutations in mitochondrial DNA (Fellous et al., 2009a, Fellous et al., 2009b, Blackwood et al.,
2011, Greaves, 2003, Greaves et al., 2006). However, while these analyses provided some
insights into clonal composition of those tissues, the role of mitochondrial mutations in clonal

expansion and tumourigenesis is poorly understood.
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The first ground breaking analysis of somatic mutations in normal solid tissues was carried
out by Martincorena and colleagues, in which extensive clonal patches bearing mutations in
cancer genes, including TP53, NOTCH1, NOTCH2, NOTCH3 and FAT1, were identified in normal
sun-exposed skin of middle-aged to elderly individuals (Martincorena et al., 2015). Later,
accumulation of somatic mutations, including those in cancer genes, and associated tissue
remodelling have been shown in normal oesophagus (Martincorena et al., 2018, Yokoyama

et al., 2019).

Finally, accumulation of cancer-associated mutations with age is not limited to somatic cells.
Targeted studies on testicular tissue from healthy men have shown that mutations conferring
predisposition to cancer could also confer a selective advantage to spermatogonia stem cells
leading to clonal expansion similar to the process of oncogenesis (Maher et al., 2016). Over
time, this clonal expansion leads to the relative enrichment of mutant sperm and in some
cases, to large clones with driver mutations, such as FGFR3 and HRAS, expanding within the
testes, and can be associated with spermatocytic seminoma in older men (Goriely et al.,

2009).

1.3.1.2 Mutational processes and burden

DNA mutations are inevitable, but it is the alterations that occur in the genomes of adult stem
cells (ASC) that have the greatest impact on the tissue mutational burden and are thought to
be most significant in terms of cancer risk (Tomasetti and Vogelstein, 2015). Tissues with high
ASC turnovers show higher cancer incidence in comparison to those with lower ASC turnover
rates. It is therefore important to assess somatic mutation accumulation in ASCs of different
tissues. Previous work on clonal organoid cultures derived from liver, small intestine and
colon has shown that despite significant variation in the cancer incidence in these tissues,
somatic mutations accumulate at a similar rate of around 40 single base substitutions per
year (Blokzijl et al., 2016). Although age-associated signatures (Signature 1 and 5) were
observed in all three tissues, their contribution in the liver was markedly different from that

observed in the small intestine and colon with the majority of substitutions attributed to
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signature 5, a signature of an unknown underlying mechanism. Interestingly, there was little

intra-tissue inter-individual variation in the mutational spectra across ages.

As mentioned earlier, age-associated accumulation of somatic mutations is not unique to the
soma, but has also been reported in the germline. Studies on trios have shown that de novo
mutations accumulate with age in the paternal germline, and that there is a degree of
variability across individuals. Surprisingly, the underlying mutational processes (mostly
attributed to signature 5 and to a lesser extend to signature 1) are similar between paternal
and maternal germlines as well as across individuals from a range of ages (Rahbari et al., 2016,

Jonsson et al., 2017) .

1.1.4 Methods for studying somatic mutations in normal tissues

Normal tissues are complex systems comprising different populations of cells with distinct
morphological and functional properties and specific spatial arrangements. However, this
cellular heterogeneity implies that normal tissues are composed of many clones that are
usually too small to provide sufficient amount of DNA that is necessary for standard
sequencing protocols. In recent years, a number of approaches have been developed with

the aim to study normal tissues (Table 1.1). Some of these are considered below.

1.3.1.3 Single cell genomics

Ideally, one would like to explore tissue heterogeneity targeting one cell at a time, and single
cell technologies have the potential to provide new insights into the genomic landscapes of
tumour and normal tissues. Recently, Casasent and colleagues applied this approach to laser-
capture micro-dissected cells to assess genomic changes, particularly copy number variants,
and to delineate clonal evolution in early-stage breast cancer (Casasent et al., 2018).
However, the majority of such work has been performed on single cells in suspension and not
laser-captured material. Overall, these technologies are still under development and are

frequently associated with a whole myriad of issues, including incomplete genome coverage,
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whole genome amplification-induced errors and suboptimal variant calling sensitivity (Gawad

et al., 2016, Navin, 2015) (Table 1.1).

1.3.1.4 Single stem cell derived organoids

An alternative way to study genomic landscapes of individual cells is through the use of in-
vitro clonal organoid experimental models derived from single adult stem cells (Roerink et al.,
2018, Blokzijl et al., 2016, Fatehullah et al., 2016). These provide sufficient amounts of DNA
for standard ‘bulk’ sequencing methods while circumventing whole genome amplification and
associated issues. However, while this approach has substantial utility, these are often
challenging to derive, are highly laborious to generate in large numbers, may show bias
towards certain subtypes of cell in a tissue, lack spatial information, may favour cells with
driver mutations and will introduce additional mutations during cell culture that often include

additional mutational signatures.

1.3.1.5 Error-corrected next generation sequencing (ecNGS)

Another way to study genomic changes in normal tissues at a cellular level is through removal
of sequencing errors and identification of variants that are present at very low frequencies
(Hoang et al., 2016, Kennedy et al., 2014, Schmitt et al., 2012). One of these approaches is
Duplex sequencing, in which both strands of DNA are tagged and mutations are only
considered bona fide if they are present in both strands of DNA and are complimentary
(Schmitt et al., 2012). Subsequently, this approach was applied to detect somatic mutations,
including those in TP53, at frequency <0.01% in peritoneal fluid samples from women without

cancer (Krimmel et al., 2016).

Another example of ecNGS method is the bottleneck sequencing system (BotSeqS), which
aims to reduce the error rate of NGS by utilising the consensus of reads from individual

template molecules to discriminate bona fide variants from PCR artefacts. This has been

16



achieved by circularisation of the DNA template, the addition of unique molecular identifiers

(UMIs) to asymmetric (Y-shaped) adapters and utilising the mapping coordinates of reads as

endogenous barcodes. The theoretical error rate for these approaches is reported to be <1

artefact per 10° nucleotides sequenced, which is calculated by assuming two independent

mutational events (one on each strand of the original template molecule) occurring at the

average substitution rate for high-fidelity DNA polymerases.

Method Advantages Disadvantages
Single cell Allows to examine genomic Usually requires prior WGA
sequencing changes in individual cells
WGA can be associated with poor
genome coverage, allele/locus drop out
and artifacts
Organoids Provides sufficient DNA for | Not available for all tissue and cell types
standard library preparation and
sequencing protocols
Does not require prior WGA Additional mutations introduced during
cell culturing
Provides information on individual | Takes time to grow and is laborious
adult stem cells
Clonal samples, therefore more | Loss of spatial information
confident variant calling
Error- Allows to detect mutations at a | Incomplete genome coverage
corrected single molecule level Can only be used for calling single base
methods on e .
bulk substitutions and indels !out not copy
] number and structural variants
sequencing

Final variants represent an ‘average’
from a mixture of molecules from a
relatively large population of cells and
burden can be affected (increased) by
cells with higher mutation burdens

amplification.

Table 1.1 | Methods for studying somatic mutations in normal tissues. WGA, whole genome
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1.4

Thesis aims

In this thesis, | aimed to investigate somatic evolution in normal ageing human tissues. Firstly, | helped
to establish a robust low DNA input whole genome sequencing workflow for laser-capture micro-
dissected cellular material. | then utilised this approach to explore genomic and evolutionary

landscapes of the normal human endometrium.

In the first results chapter, | describe the clonal composition of laser-capture micro-dissected normal
endometrial glands with multiple samples derived from 28 pre- and post-menopausal women. | also
correlate the effect of menstrual phase, menopause status and presence or absence of driver

mutations on clonality.

In the second results chapter, | investigate the mutational landscape of normal endometrial
epithelium, including mutation burdens, signatures and prevalence of driver mutations and how these
are modulated by age and parity. In addition, through phylogenetic tree reconstruction of somatic
mutations in endometrial glands, we estimate the age at which the identified driver mutations
occurred. Finally, | compare mutation burdens and patterns of selection of the normal endometrial

epithelium and endometrial cancer.
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2.1

Chapter 2 Materials and methods

Samples

2.1.1 Endometrium

Anonymized snap-frozen endometrial tissue samples were obtained from five different

cohorts.

Cohort 1: Samples from individuals PD37605, PD37601, PD37607, PD37613, PD37594,
PD37595, PD41871, PD41860, PD41857, PD41865, PD41868, PD41859, PD41861 and
PD41869 (age 29 to 46) were provided by Professor Jan Brosens; these were collected from
women undergoing hysteroscopy examination at the Tommy’s National Early Miscarriage
Centre, University Hospitals Coventry and Warwickshire NHS Trust. Informed consent was
obtained and biopsies collected and stored at the Arden Tissue Bank, University Hospitals
Coventry and Warwickshire NHS Trust in line with the protocols approved by the NRES
Committee South Central Southampton B (REC reference 12/SC/0526, 19/04/2013).

Cohort 2: Samples from individuals PD40535, PD39444, PD39953, PD39952, PD39954,
PD40107, PD42746 and PD42475 (age 24 to 74) were collected by Mr Kourosh Saeb-Parsy
from non-uterine transplant organ donors with an informed consent obtained from the
donor’s family (REC reference: 15/EE/0152 NRES Committee East of England — Cambridge
South).

Cohort 3: Individuals PD36804 and PD36805 (age 47 and 49), underwent total abdominal
hysterectomy for benign non-endometrial pathologies and uterine biopsies were collected,
snap frozen and stored at the Human Research Tissue Bank, Cambridge University Hospitals
NHS Foundation Trust by Dr Mercedes Jimenez-Linan. The samples were collected in line with
the protocols approved by the NRES Committee East of England (REC reference 11/EE/0011,
11/03/2011).
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Cohorts 4 and 5: Samples from individuals PD37506, PD38812, PD37507 and PD40659 (age
19 to 81) were collected at autopsy following death from non-gynaecological causes. The use
of this material was approved by the London, Surrey Research Ethics Committee (REC
reference 17/L0/1801, 26/10/2017) and East of Scotland Research Ethics Service (REC
reference: 17/ES/0102, 27/07/2017).

2.1.2 Pan-body survey

2.1.2.1 Donor 1

In collaboration with Professor Rebecca Fitzgerald and her research team led by Miss Ayesha
Noorani, | collected 252 samples from a variety of macroscopically normal tissues during a
rapid (‘warm’) autopsy. The samples were collected in line with the protocols approved by
the NRES Committee East of England (NHS National Research Ethics Service reference
13/EE/0043). The post-mortem sample collection was performed on a 78-year-old male, non-
smoker who died of a metastatic oesophageal carcinoma; he had no other co-morbidities.
The collection was completed within six hours of the patient’s death to ensure tissue integrity
for morphology preservation and whole genome sequencing (WGS). Every sampled tissue was
photographed and biopsy sites carefully documented. As there was an extensive lower
oesophageal tumour that invaded into the pancreas, | was not able to obtain any normal
tissue samples from the stomach and pancreas. Once collected, all biopsies were snap frozen
in liquid nitrogen and subsequently stored at -80°C. Summary of all sampled tissues is

provided in Appendix 1.

2.1.2.2 Donors 2 and 3

Multiple biopsies from twenty-six different tissues were collected from a 54-year-old female
and a 47 year old male; both individuals died of non-cancer causes (acute coronary syndrome
and traumatic injuries respectively). All samples were obtained within less than five hours of
death. The use of these tissues was approved by the London, Surrey Research Ethics
Committee (REC reference 17/L0/1801, 26/10/2017). Summary of all obtained tissues is

provided in Appendix 2.
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2.1.2.3 Additional limited samples from other donors

To obtain the most comprehensive catalogue of somatic mutations across as many female
and male tissues as possible and to further validate some of our observations, we acquired
additional samples, mostly from one or two organs from additional donors. These included,
breast, stomach, endometrium, cervix, fallopian tubes, pancreas, testis, colon and others.
These samples were obtained at autopsy following death from non-cancer causes. The use of
this material was approved by the London, Surrey Research Ethics Committee (REC reference
17/L0/1801, 26/10/2017) and East of Scotland Research Ethics Service (REC reference
17/ES/0102, 27/07/2017).
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2.2

Laser-capture microscopy

In this work, we aimed to study somatic mutations in relatively small populations of cells from
specific morphological or functional units, such as endometrial glands or colonic crypts. These
units typically contain 200-2000 cells, which would equate to approximately 1.2-12 ng of DNA.
When | first started my PhD (April 2016), a minimum of 200 ng of input DNA (equivalent to
around 33,300 cells) was required for a successful library preparation by the standard

sequencing methods.

Fortunately, Peter Ellis, who at the time was a Principle Staff Scientist in the Research and
Development Department, was testing different approaches to decrease the amount of input
DNA for efficient library construction. | have therefore spent the first 10 months of my PhD
working together with Peter to build a workflow that would enable robust processing of low
input LCM derived cellular material. The experimental side of this process involved three
major components: (a) effective tissue preparation (fixation and morphology), (b) cell lysis

and (c) DNA isolation and library construction.

2.2.1 Tissue preparation

Tissue fixation is an essential step in histology as it preserves morphology for accurate
microscopic assessment. However, routine histology fixatives, specifically formalin, are
known to have a detrimental impact on both the quality and quantity of extracted DNA
(Howat and Wilson, 2014). It was therefore essential to optimize this step and to find an
alternative fixative. Three non-cross-linking fixatives were tested: acetone (100%), ethanol
(70%) and methanol (100%). Out of these three, ethanol fixation provided the most optimal

morphology preservation, followed by methanol and acetone.

In general, two types of tissue preparation are used for histology assessment: frozen and
paraffin sections. Protocol for the first method usually involves cutting sections from a frozen
block, followed by a brief (2-5 minutes) immersion in a fixative (70% ethanol in our protocol),
followed by staining with haematoxylin and eosin (H&E) or haematoxylin only (H) (Figure 2.1).
The second approach can take up to two days and includes several hours of fixation (to allow
fixative to penetrate through the entire tissue block) and embedding in paraffin, followed by

sectioning, xylene-based deparaffinisation and staining (Figure 2.1).
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...........  EETTTTTTr D

TYPE OF TISSUE
o TR _

No tissue fixation

at this nugo
Suitable for most fissues Suitable for selected tissues
Alcoholbased tissue
fixation == Embed in O.C.T
0
Embed in paraffin Cut sections
p (10-30um)

Cut sections
{10-30um)

Fix wdlons |n a!honcl
LASER-CAPTURE MICROSCOPY

Isolate cells
(100-1,000 cells)

Stain sections in H&E or
H only Stain sochons in H&E or

H only

:

Cell lysis and digestion

DNA extraction and
purification

Library preparation

Whole genome
sequencing

Figure 2.1 | Summary of the LCM workflow. Tissue morphology can be assessed using
frozen and paraffin sections. This figure outlines individual steps in both approaches.
Sections can be stained using haematoxylin and eosin (H&E) or haematoxylin only (H). To
aid sectioning of frozen tissue blocks, biopsies are embedded in rapidly solidifying optimal
cutting temperature compound (O.C.T.). Specific morphological structures or tissue-
specific functional units, such as colonic crypts or endometrial glands (typically containing
200-2,000 cells), are laser-capture micro-dissected into individual wells. The cellular
material is subjected to our modified protocols for cell-lysis, DNA extraction and library
preparation for whole genome sequencing.



Given the fact that we were working with relatively small amounts of input DNA, we wanted
to minimise tissue handling and potential DNA degradation. Therefore, we first focused on
optimisation of our workflow for frozen sections (Appendix 3). However, while this method is
suitable for some tissues, such as colon and endometrium, for many other tissue types, for
instance, brain and testis, it results in poor preservation of morphology and inability to
accurately type cells and structures (Figure 2.2). We therefore also optimized tissue fixation
and preparation protocols for experiments performed on paraffin embedded material

(Appendix 4).

Routine clinical histology sections are around 4-5 micron thick. However, to increase the
amount of input DNA, while also allowing accurate morphology assessment, the section

thickness for most tissue types was chosen to be 10 microns.

FROZEN SECTION PARAFFIN SECTION

Figure 2.2 | Comparison of testicular histology using frozen and paraffin sections (H&E, 5x
magnification, 10 micron thickness). The figure shows an example of the two different
tissue preparation methods and their effect on preservation of morphology.
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2.2.2 Cell lysis

To maximise DNA recovery from micro-dissected cellular material, three different types of
lysis buffers were tested: alkaline lysis, protease lysis (an in-house version, Appendix 5 or a
commercially available Arcturus™ PicoPure™ DNA extraction kit) and chaotropic lysis (RLT).
Fixatives and lysis buffers were tested jointly. Below are the results of some of these tests.
From these and further experiments on other tissue types, a combination of ethanol (70%)

and protease lysis buffer was selected (Figure 2.3).

6

5

2 I |

| I I
0 I I

~

DNA library yield (pmol)

500 um square, EtOH, 500 um square, MeOH, 500 um square, EtOH, 500 um square, EtOH,
H&E, Prot H&E, Prot H&E, RLT H&E, Prot
Frozen (OCT) Paraffin

Figure 2.3 | Quantification of libraries for assessment of fixation and lysis conditions. This
figure shows DNA library yeilds obtained when testing different types of fixatives (70%
ethanol (EtOH) and methanol (MeOH)) and lysis buffers (proteased based buffer (Prot) and
chaotropic lysis buffer (RLT). H&E, haematoxylin and eosin; OCT, optimal cutting
temperature compound. Adapted from Peter Ellis. Different fixation and lysis conditions
were tested on frozen and paraffin tissue sections.

2.2.3 DNAisolation and library construction

Traditionally, DNA purification and quantification are separate steps. In our protocol, to
maximize DNA recovery from the low input samples, we introduced a modified solid phase
reversible immobilization (SPRI) bead purification step within the library construction

workflow and omitted DNA quantification altogether.
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Early tests indicated that genomic DNA recovery at the DNA purification step could be as low
as 50%, which led us to believe that a large proportion of high molecular weight genomic DNA
was refractory to elution from the SPRI beads. The entire post-elution sample (including
beads) was therefore integrated into the library construction workflow to minimize these
losses. It is likely that a combination of buffer detergent, heat and the action of the
fragmentation enzymes in the next step promotes the release of all available DNA into

solution.

Standard NGS workflows for whole genome sequencing typically use around 200 ng input
DNA material, often fragmented by acoustic shearing. Fragmented DNA is repaired, dA-tailed,
ligated to adapter sequences and indexed by PCR amplification for 6 cycles. Additional PCR
cycles are introduced to ameliorate lower DNA inputs; however, this approach is useful only
when the predefined minimum number of unique DNA templates are present in the final DNA
library. For instance, sufficient material can be generated from <1 ng human genomic DNA to
perform whole exome sequencing. However, our ability to produce sequencing data with a
meaningful library complexity drops dramatically below 10 ng input DNA material. In contrast,
we discovered that DNA fragmentation reagents that utilize enzymatic rather than acoustic
fragmentation, yielded a >10-fold improvement in DNA library yield. This increase in efficiency
led to a dramatic reduction in PCR duplicate rates that enables the generation of whole exome
sequencing data from DNA inputs as low as 0.75 ng (Figure 2.4). Comparison to the standard
DNA pipelines showed that our approach performed consistently better when reducing the
input DNA (Figures 2.4 and 2.5). Duplicate fractions negatively correlated with the number of

input cells as well as post-library DNA concentration (Figures 2.6 and 2.7).
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DNA library yields with different low input workflows
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Figure 2.4 | Comparison of standard and our DNA library preparation methods. This figure
shows comparison between different low input DNA workflows. Although the decrease in
the input DNA inevitably leads to the decrease in the DNA library yields, our new protocol
(NEB Ultra Il FS) was consistently superior to the standard DNA library preparation
protocols (‘Old’ pipeline utilises sonication in the DNA fragmentation step of library
preparation; NEB Ultra Il utilises the original version of the enzymatic DNA fragmentation
NEB kit). Adapted from Peter Ellis.
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Effect of DNA input on duplicate rates
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Figure 2.5 | Comparison of standard (‘OLD Pipeline’ and ‘NEB ULTRA II’) and our new
approach (‘NEB ULTRA Il FS’) for sequencing library preparation. Duplicate fractions
increase with the decrease in the amount of input DNA. Although the general trend is the
same with all three approaches, our new library preparation approach was superior to the
previously available protocols. Adapted from Peter Ellis.
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Figure 2.6 | Correlation between cell numbers and duplicate fractions. Duplicate fraction
increases with the decrease in the amount of input DNA (in this case the number of laser-
capture microdissected cells).
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Figure 2.7 | Correlation between post-library DNA concentration and duplicate fractions.

Duplicate fractions negatively correlated with post-library preparation DNA concentration.

All samples in my PhD were processed using the low-input enzymatic fragmentation-based
library preparation method(Lee-Six et al., 2019). Briefly, each 20 ul LCM lysate was mixed with
50 ul Ampure XP beads (Beckman Coulter) and 50 pl TE buffer (Ambion; 10 mM Tris-HCl, 1
mM EDTA) at room temperature. Following a 5-minute binding reaction and magnetic bead
separation, genomic DNA was washed twice with 75% ethanol. Beads were resuspended in
26 ul TE buffer and the bead/genomic DNA slurry was processed immediately for DNA library
construction. Each sample (26 pl) was mixed with 7 pl of 5X Ultra Il FS buffer, 2 pl of Ultra Il
FS enzyme (New England BiolLabs) and incubated on a thermal cycler for 12 minutes at 37°C
then 30 minutes at 65°C. Following DNA fragmentation and A-tailing, each sample was
incubated for 20 minutes at 20°C with a mixture of 30 ul ligation mix and 1 ul ligation
enhancer (New England Biolabs), 0.9 ul nuclease-free water (Ambion) and 0.1 pl duplexed
adapters (100 uM;  5-ACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3’,  5’-phos-
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG-3’). Adapter-ligated libraries were purified
using Ampure XP beads by addition of 65 pul Ampure XP solution (Beckman Coulter) and 65 pl
TE buffer (Ambion). Following elution and bead separation, DNA libraries (21.5 ul) were
amplified by PCR by addition of 25 ul KAPA HiFi HotStart ReadyMix (KAPA Biosystems), 1 pl
PE1.0 primer (100 uM; 5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTC
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TTCCGATC*T-3") and 2.5 pl iPCR-Tag (40 uM; 5’-CAAGCAGAAGACGGCATACGAGATXGAGATCG

GTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC-3’) where ‘X’ represents one of 96 unique 8-
base indexes. The samples were then mixed and thermal cycled as follows: 98 °C for 5
minutes, then 12 cycles of 98 °C for 30 s, 65°C for 30's, 72 °C for 1 minute and finally 72 °C for
5 minutes. Amplified libraries were purified using a 0.7:1 volumetric ratio of Ampure Beads
(Beckman Coulter) to PCR product and eluted into 25 pl of nuclease-free water (Ambion).
DNA libraries were adjusted to 2.4 nM and sequenced on the HiSeq X platform (illumina)
according to the manufacturer’s instructions with the exception that we used iPCRtagseq (5'-

AAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTC-3’) to read the library index.
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2.3

Variant calling

2.3.1 Single nucleotide variants (SNVs)

Sequencing data were first aligned to the reference human genome (NCBI build 37) using
Burrow-Wheeler Aligner (BWA-MEM) (Li and Durbin, 2009). Duplicates were marked and
removed and mapping quality thresholds were set at 30. Single base somatic substitutions
were called using Cancer Variants through Expectation Maximization (CaVEMan) algorithm
(major copy number 5, minor copy number 2) (Nik-Zainal et al., 2012). These settings were
used as they provided the most optimal balance between removing genuine variants and

allowing artefacts through.

To exclude germline variants, matched normal samples were collected for each donor and
used when running variant calling algorithms. For the endometrial study, we collected either
cervix, myometrium, Fallopian tube or endometrial stroma; the type of tissue depended on
sample source and availability. For the pan-body study, cerebellum was used as a matched

normal in all three donors.
A set of previously described post-processing filters was subsequently applied:

e toremove common single nucleotide polymorphisms, variants were filtered against a

panel of 75 unmatched normal samples (Nik-Zainal et al., 2012);

e toremove mapping artefacts associated with BWA-MEM, median alignment score of
reads supporting a mutation should be greater than or equal to 140 (Alignment Score
‘ASMD’>=140) and fewer than half of the reads should be clipped (Clipping Score
‘CLPM’=0)(Lee-Six et al., 2019);

e toremove artefacts that are specific to the library preparation for laser capture (LCM)
samples, two additional filters were used. A fragment-based filter, which is designed
to remove overlapping reads resulting from relatively shorter insert sizes allowed in
this protocol that can lead to double counting of variants, and a cruciform filter, which
removes erroneous variants that can be introduced due to the incorrect processing of
cruciform DNA. For each variant, the standard deviation (SD) and median absolute

deviation (MAD) of the variant position within the read was calculated separately for
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positive and negative strand reads. If a variant was supported by a low number of
reads for one strand, the filtering was based on the statistics calculated from the reads
derived from the other strand and it was required that either: (a) < 90% of supporting
reads report the variant within the first 15% of the read as determined from the
alignment start, or (b) that the MAD >0 and SD>4. Where both strands were supported
by sufficient reads, it was required for both strands separately to either: (a) £90% of
supporting reads report the variant within the first 15% of the read as determined
from the alignment start, (b) that the MAD>2 and SD>2, or (c) that at least one strand

has fulfilled the criteria MAD>1 and SD>10.

2.3.2 Indels

Insertions and deletions were called using cgpPindel (Raine et al., 2015, Ye et al., 2009). To
remove germline variants the algorithm was run with the same matched normal samples that
were used for calling substitutions. Post-processing filters were applied as previously
described (Nik-Zainal et al., 2012). In addition, a ‘Qual’ filter (the sum of the mapping qualities
of the supporting reads) of at least 300 and an average sequencing depth cut-off of > 15 reads

were used.

2.3.3 Copy number and structural variants

Allele-specific copy number profiles were reconstructed for the endometrial gland samples
by ASCAT (Van Loo et al., 2010, Raine et al., 2016) using matched samples as described above,
with a ploidy of 2 and contamination with other cell types of 10%. Only samples with a
minimum coverage of 15X and above were used. All putative copy number changes were

visually inspected for copy number profiles on Jbrowse (Buels et al., 2016).

Structural variants (SVs) in endometrial glands were called using matched samples (as
described above) with the Breakpoints Via Assembly (BRASS) algorithm and further annotated

by GRASS (https://github.com/cancerit/BRASS). Potential SVs are detected for the sample of

interest and read-pairs clusters supporting the SV are used for breakpoint sequence de novo
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assembly. Absence of supporting evidence in the matched control indicates that the SV was
acquired in the sample of interest. The isolation of minute amounts of DNA for sequencing in
combination with the LCM enzymatic fragmentation-based library preparation procedure
introduces additional artefacts and additonal post-processing filtering was performed in two

phases.

2.3.3.1 Further annotation of SVs with statistics that detect LCM specific

artefacts

All SVs detected by BRASS were further annotated by AnnotateBRASS. Each SV is defined by

two breakpoints and their genomic coordinates.
(A) The following statistics were determined for each breakpoint separately:
e The total number of reads supporting the SV.

e The total number of unique reads supporting the SV, based on alignment position

and read orientation.
e The standard deviation of the alignment positions of reads supporting the SV.

e The number of chromosomes, based on read-pairs not supporting the SV, to which

one read mapped while the mate-read aligned to the SV breakpoint.
e The number of reads supporting the SV that had an alternative alignment (XA-tag).

e The number of reads supporting the SV that had an alternative alignment score

(XS-tag) similar to the current alignment score.

e The percentage of read-pairs not supporting the SV with a discordant inferred

insert size (default: > 1000bp).

(B) A wider search for read-pairs supporting the SV is initiated and the following statistics

were calculated for each breakpoint separately:

e The total number of reads supporting the SV.
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e The total number of unique reads supporting the SV, based on alignment position and

read orientation.

e The standard deviation of the alignment positions of reads supporting the SV.

e The number of reads supporting the SV that had an alternative alignment.

e The number of reads supporting the SV that had an alternative alignment score similar

to the current alignment score.

(C) Reads spanning the SV breakpoints are often clipped. Clipped sequences of sufficient
length can be aligned to other positions on the genome (i.e., supplementary
alignment) and it is expected that these align to the proximity of the other SV
breakpoint. Based on the clipping positions and supplementary alignments the

following was determined for each SV:

e Whether the clipped sequences of read-pairs spanning a SV breakpoint align in the

proximity of the other SV breakpoint.

e Whether the clipping within read-pairs supporting the SV occurred at roughly the
same genomic position (default: all clipping positions occurred within 10 bp of

each other).

(D) BRASS uses a single matched control and a panel of normals (PoN, bulk WGS) to
determine whether a SV is somatic. SVs observed in the sample of interest but not in
the matched control or PoN are considered somatic. However, due to the difference
in library preparation and the variance of spatial genomic coverage observed it is not
always possible to accurately assess the validity of the SV. Two different approaches

were implemented to determine whether the SV is somatic:

1. A wider search in the matched control sample was performed to search for read-
pairs that could support the SV. The SV was still considered to be detected in cases
where the discovered read-pairs were insufficient for breakpoint sequence de

novo assembly.
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2. Additional controls can be defined in case multiple samples have been isolated
for the same individual. Samples from the same individual with little genetic
relationship, as determined from the SNVs and indels, can be used as controls to

determine whether te detected SV is germline or a recurrent artifact.

2.3.3.2 Post-hoc filtering of SVs based on a combination of the above

statistics.

SVs were further filtered based on the described statistics. The optimal set of statistics and
their most practical thresholds depends on the achieved coverage and stringency of filtering

desired. At default the following criteria were used for detecting somatic SVs:
e For each breakpoint there must be > 4 unique reads supporting the SV (A.2).
e The alignment position standard deviation must be > 0 (A.3).

e At each breakpoint there are read-pairs not supporting the SV that map to < 5 other

chromosomes (A.4).

e The total number of chromosomes mapped to by read-pairs not supporting the SV for

both breakpoints should be < 7 (A.4).

e The percentage of reads supporting the SV with alternative alignments or alternative
alignments with similar alignment scores should be < 50% for both SV breakpoints

separately (A.5-A.6).

e The percentage of discordant read-pairs not supporting the SV should be < 7.5% of

total read-pairs for both SV breakpoints separately (A.7).

e For the wider search of SV-supporting read-pairs the same thresholds apply as under

criteria 1-6 (B.1-B.5).

e There are no read-pairs in the matched control that support the SV (C.1).
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e The SVis not detected in any of the other control samples, or there were < 2 samples

carrying the same SV and the proportion of control samples carrying the SV was < 1/3

of the defined control set (C.2).

e |t was not allowed for read-pairs supporting the SV to have widely divergent clipping

positions in terms of genomic location for both SV breakpoints separately (D.2).
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2.3.4 Validation experiments and sensitivity

To test our approach, we performed a set of validation experiments in different tissue types.
First, the reproducibility of the workflow was assessed by generating pairs of biological ‘near-
replicate’ samples and processing them independently using the new library construction
methodology. In these experiments, two separate samples were generated from the same
tissue structure, such as an appendiceal crypt, and subjected to independent DNA extraction,
cell lysis, library preparation and WGS (Figure 2.8a-d). Subsequent analysis of the sequencing
data showed similar variant allele frequency (VAF) distributions (Figure 2.8b), a high degree
of overlap for single nucleotide variants (SNVs) (Figure 2.8c), and similar single base

substitution mutational spectra (Figure 2.8d).

We then compared WGS data generated by our new workflow to LCM lysates processed via
traditional acoustic shearing methods. Similarly, pairs of biological ‘near-replicate’ samples
were derived from the same histological structure; this time, one sample was processed with
our new workflow and the other with acoustic shearing. Again, comparison of the WGS data
between the two, differently processed, samples showed similar VAF distributions, SNVs and

mutational spectra (Figure 2.8e-h).
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Figure 2.8 | Validation experiments sequencing ‘near-replicate’ samples. a-d, ‘Near-
replicate’ samples were generated by splitting an appendiceal crypt into two halves, which
were then processed and sequenced independently. b, VAF of all substitutions in both
halves show similar clonal distribution with a median VAF around 0.5. ¢, Venn diagram
demonstrating SNV identity between both samples. d, Mutational spectra of all
substitutions are also similar. e-h, ‘Near-replicate’ samples were generated by splitting a
colonic crypt into two halves, which were subsequently processed with our fragmentase-
based method (COL_5_A3) and sonication-based method (COL_4_A3). Similar clonal VAF
distributions (f) SNV calls (g) and mutational spectra (h) are observed from the two samples.
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To calculate sensitivity of our somatic variant calling, for selected endometrial tissue
donors, pairs of biological ‘near-replicates’ were obtained. For these experiments, we
collected two samples from the same endometrial gland using a z-stacking approach,

in which a structure is ‘traced’ on consecutive levels (Figure 2.9).

Sample A Sample B

Figure 2.9| An example of a z-stacking approach to ‘tracing’ and micro-dissecting a
specific structure. Sincer the majority of endometrial glands are clonal cell populations,
i.e. share the most common recent ancestor, cells derived from the same glands should
share most of the somatic mutations. Z-stacking and splitting individual glands into two
separate samples allows to generate biological ‘near-replicates’ that can be used to
generate biological ‘near-replicates’ to calculate sensitivity.

Each sample was then processed separately with independent DNA extraction, library
preparation and whole genome sequencing. As these were obtained from the same
glands, they should represent derivatives of the same single stem cell and therefore
the same sensitivity would be expected in both samples of each pair. The maximum
likelihood estimate for sensitivity (s) was then calculated as follows:

2n,

T ng+2ny

where n1 is the number of variants called only in one of the two LCM samples and n>
is the number of variants called in both LCM samples in each pair.
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2.4 Initial application of the low DNA input LCM workflow

The first part of my PhD was dedicated to exploring somatic mutations across multiple tissues
from the same individuals. This study is still ongoing with sequencing data pending from two
additional donors (donor 2 and 3). However, the endometrial study stemmed from those

initial experiments, and a brief summary is therefore provided below.

2.4.1 Samples

By November 2017, | micro-dissected over 2,900 individual samples from 13 individuals,
although the majority of the samples were from one individual (Donor 1) (Figure 2.10). Based
on the post-library preparation DNA concentration (a cut off of minimum 3-5 ng/ul was
applied), a total of 421 samples were subjected to whole genome sequencing. Only samples

with >15-fold coverage were processed through the variant calling pipeline (n=225, Appendix
6).
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Figure 2.10 | Summary of samples sequenced as part of the initial pan-body survey. A total of 421
samples were micro-dissected from 13 individuals.
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2.4.2 Clonality

The clonal architectures of human tissues have been investigated previously by other
approaches, in particular there has been a series of studies that utilised mitochondrial DNA
(mtDNA) mutations (Fellous et al., 2009a, Blackwood et al., 2011). These have provided
evidence for the clonal expansion in colon, small intestine, kidney, pancreas and others. The
analyses presented here illustrate the potential of DNA sequence-based approaches to
further elucidate tissue architecture and cell lineages providing systematic comparisons of
the different clonal architectures of normal human tissues and their microanatomical

structures.

Micro-dissected units of cells from different tissues showed markedly different VAF
distributions (Figures 2.10 and Table 2.1). 34% (77/224) of all the sampled units, including
individual colorectal, appendiceal, small intestinal, prostatic, endometrial crypts or glands
showed distributions with peaks between 0.3-0.5 (Figures 2.11). Thus, these cell populations
are predominantly constituted of the descendants of a single progenitor stem cell (the most

recent common ancestor cell, MRCA) which existed at some point in the past.

Similar VAF distributions of 0.4-0.5 were observed in subsets of microdissected patches from
seminiferous tubules, bile ductules, thyroid follicles and segments of bronchial epithelium
indicating that these were also predominantly derived from single MRCA cells (Figure 2.10
and Table 2.1). However, other samples from these tissues showed lower VAF peaks
indicating the presence of clones derived from multiple MRCA cells. All microdissected
patches from oesophagus, bladder, adrenal and adipose tissue showed low median VAFs.
Micro-dissections from cardiac muscle and an arterial vessel yielded very few somatic
mutations, consistent with these tissues being non-renewing in the adult and/or being
composed of so many clones that none achieve the level of clonal dominance required for

calling of somatic mutations.
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Figure 2.11 | Clonality of some of the sampled microscopic units. To study clonal
composition across various normal tissues, laser-capture microdissection and whole
genome sequencing were applied in two ways. In some tissues, previously described or
putative clonal units such as crypts in the colon and small intestine were targeted. In other
cases, including the ectocervix and adrenal gland cortex, variably sized strips or patches of
cells were microdissected. Clonal composition of the sampled microscopic units can be
studied using variant allele fractions (VAF) of all single base substitutions(Keller et al., 2008,
Blokzijl et al., 2016). Each density line represents an individual sample; individual samples
are grouped and coloured by tissue type. Samples derived from a clonal population, i.e.
sharing the most common recent ancestor, will have VAF peaks around 0.5 as the majority
of somatic mutations are heterozygous (e.g. colonic crypts). However, even with LCM
approach, there might a contamination with other cells types, such as stromal or
inflammatory cells, which would result in a left-sided shift in the density plots. If a sample
was oligoclonal, i.e. derived from a few ancestral clones, this would result in an additional
VAF peak (e.g. seminiferous tubules in testis). Polyclonal samples are those derived from
many different ancestral clones (including different cell types); their VAF distribution will
be generally < 0.25.
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Tissue/structure Fraction of clonal samples (%)

Appendix, crypt 100 (20/20)
Colon, crypt 100 (20/20)
Small intestine, jejunum, crypt 89 (8/9)
Small intestine, ileum, crypt 100 (7/7)
Prostate, acini 83 (10/12)
Testis, seminiferous tubules 0(7/14)
Liver, bile ductules 6 (5/19)
Thyroid, follicle 9 (6/31)
Adrenal gland, cortex <1 (1/15)
Lung, respiratory epithelium <1 (1/13)
Oesophagus, squamous epithelium <1 (1/15)
Bladder, urothelium 0 (0/7)
Kidney, glomerulus 0 (0/4)
Kidney, proximal tubule 0 (0/4)
Kidney, distal tubule 0 (0/6)
Liver, parenchyma 0 (0/3)
Main bronchus, seromucous glands 0 (0/6)
Ureter 0 (0/4)
Visceral fat 0 (0/5)
Skin, sebaceous glands 0 (0/3)
Heart 0 (0/6)
Artery 0 (0/1)

Table 2.1 | Clonality of some of the sampled microscopic units. Different microscopic units were
dissected out in different tissues, including individual crypts in the small and large intestines or acini
in the prostate. Samples were considered clonal if the median variant allele fraction (VAF) was >=0.3
as previously described (Blokzijl et al, 2016).
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2.4.3 Burden

Although estimation of mutation burden from the data in the initial pan-body experiments is
complicated by differences in clonality and sequencing coverage between samples, two key
observations were made. First, the results showed inter-tissue heterogeneity in the mutation
burden within the same individual (Figure 2.12a); tissues of the same chronological age
demonstrated different mutation burdens. The findings are likely to be reflective of the
differences in physiology, function and exposures as well as stem cell dynamics and turnover
rates. Second, although at this stage we only had sequencing data from a very limited number
of individuals, there was an age-associated accumulation of somatic mutations in prostate

and endometrium (Figure 2.12b and c).
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Figure 2.12 | Somatic mutation burden (SNVs). (a) This figure shows mutaiton burden (SNVs) across
different tissues derived from one indvidual (Donor 1). BD, bile ductules, SMG, sero-mucous glands, BE,
bronchial epithelium. Initial experiments in prostate (b) and endometrium (c) showed age-associated
accumulation of somatic mutations.
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2.4.4 Drivers

Filtered CaVEMan and Pindel variants were intersected against a previously published list of
369 genes that are under selection in human cancers (Martincorena et al., 2017). All non-
synonymous mutations were annotated to indicate mode of action using the Cancer Gene

Census (719 genes) and a catalogue of 764 genes (https://www.cancergenomeinterpreter.org).

Variants were triaged against a curated list of 5601 validated cancer driver variants

(https://www.cancergenomeinterpreter.org/mutations ). Any variant in the sample data which

co-presented in this reference list was declared a likely driver. The initial results showed that
endometrium had the highest prevalence of driver mutations compare to other tissues

(Figure 2.13).
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Figure 2.13 | Driver mutation burden across tissues. Although the number of samples
studied in the pilot experiments varied between tissues, our first impression was that the
endometrium had the highest number of driver variants. This was an unexpected finding
which led to the more comprehensive study on the normal endometrium.
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2.4.5 Summary of the initial experiments

Preliminary results from the very first pan-body experiments have provided first insights into
inter-tissue heterogeneity in terms of somatic mutation burden and clonal expansion. One of
the most striking observations was that the majority of the sampled endometrial glands were
clonal cell populations and had the highest frequency of driver variants. The latter was
particularly surprising given that the these events occur at a much lower frequency in other
normal tissues with gland-like structures, such as colon and prostate, yet the documented
cancer incidence is greater than reported in the endometrium (CRUK, 2019) that are
associated with a higher cancer incidence rates. We therefore decided to carry out a more in-
depth analysis of the genomic landscape of normal endometrium to find out how age as well
as other known endometrial cancer risk factors affect the rate of (driver) mutation

acquisition. The results of this work are discussed in Chapters 3 and 4.
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2.5

Construction of phylogenies

As we obtained multiple samples from the same individuals, we needed to differentiate
between shared and unique variants to avoid double counting. Phylogenetic trees were

therefore reconstructed for individual patients.

2.5.1 Single nucleotide variants (SNVs)

Phylogenies for endometrial glands were reconstructed for twenty five donors. Due to the
low number of available samples, donor PD38812 was not included in this analysis. We first
generated trees using substitutions called by CaVEMan; matched normal samples were used
to exclude germline variants and post-processing filters were applied as above. Final variants
were recalled in all samples from each donor using an in-house re-genotyping algorithm
(cgpVAF). Variants with a VAF>0.3 were noted to be present (‘1’), VAF<0.1 absent (‘0’) and
between 0.1 and 0.3 as ambiguous (‘?’). This approach excludes private sub-clonal variants
from the tree building. The tree was reconstructed using a maximum parsimony approach
(Hoang et al., 2018) and branch support was calculated using 1000 bootstrap replicates.
Nodes with a confidence lower than 50 were collapsed into polytomies and branch lengths of

the collapsed tree were determined by the number of assigned substitutions.

2.5.2 Small insertions and deletions (indels)

The constructed phylogenies were validated using indels called by Pindel and filtered as
above. The same approach was applied for the final indel matrices. Although the lower
number of indels resulted in more polytomous tree, the overall tree topologies were

reconcilable with those generated using substitutions (Figure 2.14).

Cancer driver mutations, copy number and structural variants were annotated manually in

the trees.
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Figure 2.14| Comparison of phylogenetic tree structure using SNVs and indels of
endometrial glands obtained from the same donor (PD36805).
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2.6

Assessment of clonality

2.6.1 dpClust

To formally assess clonal composition of individual endometrial glands, we applied a
previously described method dpclust v2.2.7 (Nik-Zainal et al., 2012) (analysis was performed
by Stefan Dentro). This sub-clonal reconstruction caller with default parameters to the SNVs
in each endometrial gland to assess the clonality of each gland. SNVs that fell within a
detected copy number alteration were excluded from this analysis. The purity of each gland
was set to 1, the resulting mutation clusters therefore represent proportions of the overall
sequenced cells. Analysis yields, for every sample, the number of mutation clusters and

assigned mutations, and the proportion of overall cells that each cluster represents.

2.6.2 PyClone

PyClone is a clustering method that is based on a hierarchical Bayes statistical model (Roth et
al., 2014). It was developed for deep (1,000x) targeted sequencing data from one or more
samples from the same tumour. The method assigns mutations to putative clonal clusters
while also estimating their cellular prevalence and correcting for allelicimbalances, which can
result from segmental copy number aberrations as well as contamination with normal cells.
We attempted to use this method as an alternative way to infer clonal composition of

endometrial glands.

2.6.3 Lichee

Another computational method that utilises single nucleotide variants to infer sub-clonal
composition of samples while allowing simultaneous reconstruction of multi-sample cell
lineage trees (in our study, per donor lineage) is LICHeE (Lineage Inference for Cancer
Heterogeneity and Evolution) (Popic et al., 2015). This approach relies on VAFs of deep-
sequenced somatic SNVs. The algorithm was run with default settings: distance between
clusters was 0.15, minimum VAF for a mutation to be present was 0.15, maximum VAF for a

cluster was 0.65, and a VAF measurement error of 0.10.
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2.7

Extraction of mutational signatures

Mutational signature extraction was performed using mutations assigned to every branch of
the reconstructed phylogenetic trees and each branch was treated as an individual sample.
Such approach allows characterisation and differentiation of specific mutational processes
that were operative at various times in individual glands. Substitutions were first categorised
into 96 classes following the method used by the Mutational Signature working group of the
Pan Cancer Analysis of Whole Genomes (PCAWG) (Alexandrov, 2018). SBS signature analysis
was performed in 3 steps: extraction, deconvolution and re-attribution. SBS signatures were
extracted using 3 approaches: (i) using the HDP package

(https://github.com/nicolaroberts/hdp) that utilises hierarchical Bayesian Dirichlet process

either de novo or (ii) with reference signatures (‘priors’) identified by the Mutational
Signatures working group of the Pan Cancer Analysis of Whole Genomes (PCAWG)
(Alexandrov, 2018), and (iii) non-negative matrix factorization (NMF) (Alexandrov, 2018).
Such extensive mutational signature analysis was performed for two reasons: (1) to validate
signatures as NMF was originally developed for cancer tissues which usually provide many
more mutations than normal/non-cancer tissue samples; (2) to ensure we do not miss any
new mutational signatures that are unique to normal tissues. We chose to perform de novo
signature extraction as mutational signatures had not been previously described in the
normal endometrium. Furthermore, the so-called ‘known’ signatures or priors were derived
using cancer sequencing data. Simply fitting mutations to a cancer derived catalogue of

signatures could potentially ‘over-fit’ certain signatures.

2.7.1 HDP

(i) HDP de novo signature extraction revealed 3 components (Components 1, 2 and 0, Figure
2.14); similarity of the components to the 65 reference signatures was assessed; Component
2 had a high Cosine Similarity (>0.95) to SBS 18. (ii) HDP signature extraction with all 65
PCAWG priors yielded the following components: ‘priors’/reference SBS signatures (P1 =
SBS1, P5=SBS5, P18 =SBS18, P23 = SBS23, P40 = SBS40); ‘new’ component that did not match

any of the provided 65 reference signatures/priors (N1) and ‘Component 0’ (Comp 0); all of
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the components from this extraction were taken to further analysis and deconvolution (Figure
2.16). Because P1, P5, P18, P23 and P40 showed high Cosine Similarity (>0.95) to the
respective signatures (SBS1, SBS5, SBS18, SBS23 and SBS40), no further deconvolution of
these components was required. As component N1 did not show high Cosine Similarity to any
of the reference signatures, deconvolution was performed using a ‘deconvolution’ catalogue
comprising all of the extracted signatures (SBS1, SBS5, SBS18, SBS23, SBS40). Final exposures
were derived and signatures re-attributed to the individual samples (branches). As SBS5 and
SBS40 are relatively featureless and present particular challenges in estimating their separate
contributions (as previously outlined (Alexandrov, 2018)), these have therefore been
combined (but are shown separately in Appendix 7). SBS23 was previously found in a small
number of liver cancers with high mutation burdens. Given its low mutation burden and small
contribution in our cohort it is unclear whether this is really. Therefore, this signature and the

associated mutations were placed in the “unattributed” category (Figure 2.16).
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Figure 2.15 | Extraction of Single Base Substitution (SBS) mutational signatures. Final
catalogue of single base substitutions were used to re-construct phylogenetic trees for 27
donors. SBS signatures were extracted on a per branch basis first using Hierarchical Dirichlet
Process (HDP) de novo. HDP de novo signature extraction revealed 3 components; similarity
of the extracted components to the 65 reference signatures was assessed; only Component
2 had a high Cosine Similarity (>0.95) to a reference signature (SBS 18). Signature extraction
methods are continuously being developed and modified. We therefore applied different
approaches. If a tissue is relatively homogenous in terms of type mutational processes, this
can lead to a weaker signal and some of the components (signatures) not separating. HDP
conditioning with priors (or the known signatures) can be used to aid the extraction.
However, such approach can also result in a small number of variants falsly attributed to
signatures that are not really there (‘over-splitting’).
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Figure 2.16 | Extraction of Single Base Substitution (SBS) mutational signatures. As P1, P5,
P18, P23 and P40 showed high Cosine Similarity (>0.95) to the respective signatures (SBS1,
SBS5, SBS18, SBS23 and SBS40), no further deconvolution of these components was
required. Because component N1 did not show high Cosine Similarity to any of the reference
signatures, deconvolution was performed using a ‘deconvolution’ catalogue comprising all
of the extracted signatures (SBS1, SBS5, SBS18, SBS23, SBS40). Final exposures were derived
and signatures re-attributed to the individual samples (branches). As SBS5 and SBS40 are
relatively featureless and present particular challenges in estimating their separate
contributions, these have therefore been combined (but are shown separately in
Supplementary Fig 5). SBS23 was previously found in a small number of liver cancers with
high mutation burdens. Given its low mutation burden and small contribution in our cohort
it is unclear whether this is really. Therefore, this signature and the associated mutations
were placed in the “unattributed” category
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2.7.2 NMF

(iii) NMF signature extraction was performed using SigprofilerExtractor Version 0.0.5.51

(https://pypi.org/project/sigproextractor/#history),  SigprofilerMatrixGenerator  Version

1.0.2 (https://pypi.org/project/SigProfilerMatrixGenerator/#history) and SigprofilerPlotting

Version 1.0.3 (https://pypi.org/project/sigProfilerPlotting/) on solutions between 1 and 20

signatures with 3 signatures chosen as the optimal solution running 1000 iterations. The
extraction yielded 3 signatures, which were further deconvoluted as following: Signature A
into SBS1 (8.16%), SBS5 (79.88%) and SBS23 (11.96%); Signature B into SBS1 (16.18%), SBS5
(22.6%) and SBS18 (61.22%); Signature C into SBS1(42.1%) and SBS5(57.9%) (Figure 2.17).
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Figure 2.17 | Extraction of Single Base Substitution (SBS) mutational signatures. NMF
extraction yielded 3 signatures, which were also taken to further analysis and
deconvolution (c). Using Sigprofiler Version 1.8 (ref), Signature A was deconvoluted into

SBS1 (8.16%), SBS5 (79.88%) and SBS23 (11.96%); Signature B into SBS1 (16.18%), SBS5
(22.6%) and SBS18 (61.22%); Signature C into SBS1 (42.1%) and SBS5 (57.9%).
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Indels were classified using PCAWG method (Alexandrov, 2018) and composite mutational
spectra were generated for each donor (Appendix 8). However, given the relatively low

numbers of indels, no formal signature extraction was performed.
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2.8

Driver mutations

Analysis of driver variants in the normal endometrial glands was performed in two parts. First,
filtered CaVEMan and Pindel variants were intersected against a previously published list of
369 genes that are under selection in human cancers (Martincorena et al., 2017). All non-
synonymous mutations were annotated to indicate mode of action using the Cancer Gene
Census (719 genes) and a catalogue of 764 genes

(https://www.cancergenomeinterpreter.org). Truncating variants (nonsense, frameshift and

essential splice), which resided in recessive/tumour-suppressor genes (TSG) were declared
likely drivers. Missense mutations in recessive/TSG and dominant/oncogenes were triaged
against a database of validated hotspot mutations

(http://www.cbioportal.org/mutation _mapper). All mutations that were shown to be known

mutational hotspots or ‘likely oncogenic’ were declared drivers. In addition, identified
activating mutations in mutational hotspots in RRAS2, involving the RAS/MAPK pathway were

declared as likely drivers.

2.8.1 dN/dS

Second, to identify genes that are under positive selection in normal endometrium we used
the dN/dS (Martincorena et al., 2017) method that is based on the observed:expected ratios
of non-synonymous:synonymous mutations. The analysis was carried out for the whole
genome (g<0.01 and g<0.001) and for 369 known cancer genes (Martincorena et al., 2017)
(RHT, restricted hypothesis testing, g<0.05). Twelve genes were found to be under positive
selection in normal endometrial glands. The output of this analysis was also used to assess
whether missense mutations in genes that are under positive selection in normal and/or
malignant endometrium (PIK3CA, ERBB2, ERBB3, FBXW7 and CHD4) but are not known
mutational hotspots, are likely to be drivers. We calculated the fraction of the mutations
tested that are likely to be drivers (f) using the following equation: f = (w-1)/w, where w is the
observed missense count (52) divided by the expected count (0.14). If f was > 0.95, then all

missense mutations in that gene were declared likely drivers.
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Filtered CaVEMan/Pindel variants

369 genes
(Martincorena et al, Cell, 2017)

301 variants

,,,,,,,,,,,,,,,,,,,

i Excluded .
| 30 variants Annotated with Cancer Gene Census (719 genes)

| (18 genes) ¢ Mode of Action list (764 genes) (https://www.cancergenomeinterpreter.org)

1 No
i annotation

270 variants

Dominant genes/Oncogenes Recessive/TSG

¥ ¥ 3 y ] ¥ 4
Other Non-hotspot Hotspot Hotspot Truncating | Non-hotspot Other
mutations missense missense missense mutations missense mutations
Count if mutations mutations mutations (ess splice, mutations Count if
Hotspots nonsense Hotspots
l and l
Check for Evidence of frameshift) Check for Evidence of

selection (dnds_cv) selection (dnds_cv)

To compare patterns of selection in normal endometrial epithelium and cancer, we
performed dN/dS analysis on previously published data from the The Cancer Genome Atlas,

TCGA (Martincorena, 2018).

2.8.2 Timing of cancer driver mutations

To estimate the time interval in which specific driver mutations occurred, we applied two
approaches: (a) ‘patient-based’, in which we calculated a patient-specific mutation rate by
taking the ratio of the patient’s mean mutation burden per endometrial gland and the
patient’s age; (b) ‘cohort-based’, in which mutation rate for each patient was derived from
the linear mixed-effect model for total mutation rate that included data from the entire
cohort (Supplementary Results 5). The mutation number at the start and end of a branch in
the phylogenetic tree was then converted to a lower and upper age by dividing these numbers
by the estimated mutation rate. Both approaches rely on the assumption of a constant

mutation rate for endometrial glands throughout a patient’s life.
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2.9

Mixed-effect model and estimation of mutation burdens

2.9.1 Estimation of the total somatic mutation rate

Assuming a constant mutation rate, a linear model can be fitted to estimate the number of
mutations that occurred due to normal mutational processes, which should correlate with
patient age. To estimate the mutation rate, we could use a simple linear model or a mixed
effects linear model. Given the fact that we have multiple samples from the same individuals,
we chose to apply a linear mixed effects model, which takes into consideration both: (a)
variation explained by the independent variables of interest (fixed effects), such as age, parity
and others; and (b) variation not explained by the independent variables of interest (random

effects), which would give a structure to the error term € (ref).

We used a random slope with fixed intercept as most women will start menarche at a similar
age (~13 years), but to account for the potential differences in the rates at which mutations
were acquired each year in different individuals due to variation in parity, contraception and

other factors.

We tested features with a known effect on mutation burden or endometrial cancer risks:

o Age

Read depth & VAF (‘Vafdepth’)

e Driver mutations

e BMI
e Parity
e Cohort

For these analyses, we excluded the following cases: (a) samples from donors with missing
meta-data, such as BMI and parity; (b) samples with an adjusted coverage (VAF depth) of <7.5
(adjusted coverage defined as VAF x sequencing depth). To account for the non-independent
sampling per patient, we used mixed effects models. In these analyses, we tested features

either with a known effect on mutation burden or endometrial cancer risk; age, read depth &
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VAF, BMI, Parity. In addition, we tested whether there was any significant difference between
different patient cohorts. Finally, we tested whether menstrual phase has an effect on the
clonality and mutation burdens. All statistical analyses were performed in R and are

summarised in Appendix 9.

2.9.2 Estimation of the driver mutation burden

To our best knowledge, there has been no previous work on estimating driver mutation rates

in normal tissues.

Similar to the above, in order to describe estimates of the total mutation rates, we applied a
mixed-effects model. However, given the fact that the data (driver variants) are not normally
distributed and sparse, we used a generalized linear mixed effects model with Poisson
distribution. As above, we also use a random slope with fixed intercept as most women will
start menarche at a similar age (~13 years), but to account for the potential differences in the
rates at which mutations were acquired in different individuals due to variation in parity,

contraception and other factors.
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Chapter 3 Clonal composition of normal
endometrial epithelium

It is unknown whether endometrial epithelial glands are clones of cells deriving from a recent
single common ancestor or whether they are constituted from multiple clones of cells from
multiple ancestors. In this chapter | have aimed to use the whole genome sequences to

characterise the clonality of normal endometrial glands.

3.1 Introduction to the chapter

Human endometrium is the mucosal lining of the corpus (the body) of the uterus. Itis a unique
highly dynamic tissue that undergoes over 400 cycles of breakdown, rapid repair, growth and
remodelling in response to the oscillating levels of oestrogen and progesterone over a
woman’s lifetime (Jabbour et al., 2006, Gargett et al., 2007). Histologically, it is composed of
two major components: the epithelial compartment in the form of tubular glands that
produce glycogen-rich secretion and open up on to the luminal surface, and the mesenchymal
compartment comprising cellular endometrial stroma and specialised hormone-sensitive
blood vessels (spiral arterioles) (Mills et al., 2012, p.1071). Functionally, it is divided into two
layers: the functionalis, the superficial layer that is sensitive to hormones and is shed during
menses, and the basalis, the deep layer which is retained during menstruation or following
gestation. The latter represents the germinal compartment of the endometrium containing
adult progenitor stem cells from which the functionalis regenerates during menstrual cycles

or after gestation (Chan et al., 2004, Gargett et al., 2008).

3.1.1 Endometrial adenogenesis

Human uterus differentiates from the Mullerian ducts and doubles in size from the twenty-

eighth week of foetal development to birth. During this time, the initial endometrial
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adenogenesis, the development of glands, occurs. At this stage, the tissue is composed
primarily of simple columnar epithelium lining the endometrial surface and from which small
invaginations, primordial endometrial glands, are formed (Mills et al., 2012, p.1071). At birth,
although the endometrial tissue architecture resembles that of an adult, it is still significantly
less developed with only occasional endometrial glands present (Valdes-Dapen, 1973). A
considerable amount of growth and adenogenesis occurs postnatally and in early childhood;
at puberty, the tissue architecture reaches maturity with coiled, tubular glands radiating
through to the myometrium (the underlying smooth muscle layer of the uterus) (Valdes-
Dapen, 1973). Importantly, this pattern of gland development is distinct from the one
observed in the adult endometrium through menstrual cycles when the glands develop

adluminally from the basal layer (Okulicz et al., 1997, Huang et al., 2012).

A number of key genes are thought to be involved in the process of endometrial gland
development. Amongst these are members of the WNT gene family (WNT4, WNT5a and
WNT7a), which regulate essential cell behaviours including movement, adhesion,
differentiation and proliferation, that are pivotal to endometrial adenogenesis (Cunha, 1976,
Sharpe and Ferguson, 1988). Knock out of beta-catenin (CTNNB1), a critical intracellular
mediator of Wnt signalling (Jeong et al., 2010), or its downstream target gene, transcription
factor Lef1 (Shelton et al., 2012), has been shown to disrupt gland formation in neonatal
uterus. Forkhead box A2 (FOXA2) is a key transcription factor for adenogenesis (Jeong et al.,
2010) with studies in mice showing that its ablation leads to significant reduction in the
number of endometrial glands. Another important gene is CDH1, with its loss also leading to
a reduction in the number of endometrial glands (Reardon et al., 2012). Notably, both FOXA1

and CDH1 genes are also thought to be involved in the Wnt signalling pathway.

3.1.2 Endometrium in reproductive years

During the female reproductive years, from menarche (the first occurrence of menstruation,
usually at around 13 years) through to menopause (the cessation of menstruation, usually at
around 51 years), the endometrium undergoes cyclical changes in response to oscillating

levels of female hormones.
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Endometrial function and the menstrual cycle are regulated primarily by steroid hormones
secreted by the ovary. Following ovulation, the corpus luteum, a structure in the ovary that
develops after an ovum has been discharged, secretes high levels of progesterone to maintain
endometrial receptivity to the blastocyst, should fertilisation occur (‘Secretory phase’). If
pregnancy is not achieved, the corpus luteum regresses leading to a rapid decline in
progesterone and oestrogen levels. The progesterone withdrawal causes tissue breakdown,
local inflammatory response and shedding of the endometrium (Jouager et al., 2007).
Following loss of almost the entire endometrial surface, re-epithelization is completed within
48 hours after the start of menses (Salamonsen et al., 1999, Ludwig et al., 1991) and the tissue
undergoes further rapid proliferation and growth reaching a thickness of around 5-10 mm, a
process that is driven by rising levels of unopposed oestrogen secreted by the ovary
(‘Proliferative phase’). The cycle then re-starts with the next round of ovulation (Day 14-15)

(Figure 3.1).

Day 1 Day 14 Day 28

Ovulation

Estrogen

Progesterone

Functionalis

. Basalis

Myometrium

Menses Proliferative phase  Secretory phase

Figure 3.1 | Schematic of the human menstrual cycle. The human menstrual cycle is
regulated by the ovary which secretes oestrogen and progesterone; the cycle is divided into
three phases: menses, proliferative phase and secretory phase. Adapted from Gargett et
al., 2008.
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3.1.3 Endometrial adult stem cells

Adult stem cells are rare undifferentiated cells that are retained throughout the body after
the completion of embryonic development (Li and Clevers, 2010, Weissman, 2000). They are
characterised by the ability to self-renew as well as to produce more differentiated daughter
cells (Gargett, 2007, Bongso and Richards, 2004) and play a critical role in maintenance of
organs and tissues, and regeneration after damage. The existence of endometrial stem cells
was first shown by Chan and colleagues (2004); using purified single cell suspensions obtained
from hysterectomy tissues, they showed that 0.22+0.07% of endometrial epithelial cells and
1.25+0.18% of stromal cells formed colonies within 15 days. Both the epithelial and stromal
cells generated two types of colonies: large and small colonies. Large putative stem cell
colonies were rare (0.08% of single cell suspensions for epithelial cells and 0.02% for stromal
cells); they displayed much greater self-renewal capability in comparison to the small colonies
that showed a limited proliferation potential. The authors suggested that the large colonies
were derivatives of the putative progenitor stem cells while the small colonies were thought

to have been derived from transient amplifying (TA) cells.

Subsequently, Schwab and Gargett performed further functional clonogenicity experiments
this time including samples not only from two phases of the menstrual cycle (proliferative and
secretory) but also from inactive (post-menopausal) endometrium (Schwab and Gargett,
2007). The results showed that there is no variation in the frequency of clonogenic epithelial
and stromal cells in two phases of the menstrual cycle or in the post-menopausal
endometrium. Importantly, as inactive endometrium comprises the basalis layer only, the
findings suggested that the endometrial progenitor stem cells reside in the basalis layer and
persist beyond the menopause. This suggestion that the endometrial epithelial adult stem
cells (eeASCs) reside in the basalis is further supported by the ability to induce proliferation
in post-menopausal women who are treated with hormone replacement therapy as well as
tissue regeneration and regrowth in patients who undergo extensive endometrial ablation for

heavy bleeding (Tresserra et al., 1999).

Since the majority of endometrial cancers are of epithelial origin, the remainder of this section
will be focused on the eeASCs. Despite the fact that their existence was first shown over a

decade ago, eeASCs have remained poorly characterised in comparison to their counterparts
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in other tissues, such as colon and stomach. One of the main reasons for this is the lack of a
specific marker that would reliably distinguish those cells from their mature progeny. Some
of the general stem cell markers, for instance bcl-2, c-kit (CD117) and CD34 have been
identified in the normal endometrium (Cho et al., 2004). However, the number of cells that
expressed these markers were significantly higher than the number of clonogenic cells that
had been previously shown in the functional studies (Chan et al., 2004, Schwab and Gargett,

2007).

Chan and Gargett carried out further experiments to locate label retaining cells (LRCs) to
identify somatic progenitor stem cells and characterise their location in the stem cell niche in
the absence of specific markers (Chan and Gargett, 2006). They studied mouse endometrium
in which the tissue was pulse labelled with Bromodeoxyuridine (BrdU) and examined after an
8-week chase to identify endometrial LRCs. The results showed that 3% of the epithelial nuclei
were BrdU+ and were located in the luminal epithelium. The cells did not express Oestrogen
Receptor alpha (ERa) through dual labelling immunofluorescence, confirming that luminal
epithelial progenitor stem cells are responsible for the growth of glands during development
and in cycling mice. With the use of a mouse model with menstrual breakdown and repair,

ERa negative glandular epithelial LRCs contributed to the repair of the luminal epithelium

following menstruation. Endometrial repair occurred in the absence of oestrogen. Brdu*
epithelia were rapidly lost in the chase period, leading to the notion that the epithelial
regeneration may depend on self-duplication of a mature epithelial cell type, or that the LRC
technique is not sensitive enough to label rare endometrial epithelial cells with an ASC

phenotype.
3.1.4 Clonal composition of endometrial glands

Cancers are caused by the accumulation of somatic mutations in normal cells. These
mutations allow cells to proliferate uncontrollably, escaping homeostatic controls and
providing survival advantage over their neighbours with subsequent clonal expansion. To
better understand ageing and early neoplastic transformation, it is essential to expand our

knowledge on somatic evolution, selective pressures and remodelling in normal tissues.
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Colon is one of the most studied highly proliferative tissues, in which individual crypts, its
functional gland-like units, are known to eventually become clonal cell populations that share
most common recent ancestors (MCRAs). The monoclonal conversion of individual crypts is
thought to occur through neutral drift (Snippert et al., 2010); in mice, it has been shown that
the initially multi-coloured colonic crypts became monochrome over a period of around 1-6
months in a pattern that is consistent with neutral dynamics. In humans, the monoclonality
of colonic crypts was shown using naturally occurring somatic mitochondrial DNA (mtDNA)
mutations through enzyme-histochemical staining for loss of cytochrome C oxidase (CCO)
protein (Baker et al., 2014). More recently, Nicholson and colleagues used staining for loss of
mild Periodic Acid-Schiff (mPAS), which detects loss of O-acetylation of sialomucins and is a
marker of clonality, and showed that in humans, the process of monoclonal conversion of
colonic crypts takes several years (13 years for 90% conversion, median 6.3 years) (Nicholson

et al., 2018).

However, the above mentioned lack of definitive markers for eeASCs has meant that little is
known about the stem cell dynamics and clonal composition of normal endometrial glands.
To my best knowledge, work by Tanaka and colleagues from more than 15 years ago is the
only study inferring clonal composition of human endometrial glands (Tanaka et al., 2003).
Using a collagenase-based digestion approach, they isolated individual human and mouse
glands and assessed their clonality using a polymerase chain reaction-based assay for non-
random X-chromosome inactivation with an X-linked androgen receptor gene. They found
that most of the studied glands were monoclonal populations and that in some of the clonal
patches expanded over several adjacent glands. Although this study provided first insights
into stem cell dynamics in the tissue, the clonal patches and their distributions were defined
by the events that would have occurred in early embryogenesis, whereas the aim of our study
was to infer adult stem cell dynamics and associated clonal expansion that occurs throughout

life.

3.1.5 Study design and sample selection

Normal endometrium was one of the first tissues that we included in our pan-body survey of
somatic mutations (Methods). In July 2017, the results of the initial experiments showed two

striking observations: the majority of the sampled endometrial glands were clonal cell
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populations and mutations in cancer genes, such as PIK3CA, KRAS and FBXW?7, were frequent.
Yet, there was no morphological evidence of neoplastic transformation in any of those
samples. Shortly before we made this observation, a whole exome and targeted sequencing
study on endometriosis was published (Anglesio et al., 2017). In this analysis, Anglesio and
colleagues investigated genomic changes in deep infiltrating endometriosis (DIE), a disorder
in which histologically normal endometrium is found deep in abnormal (ectopic) locations,
such as the urinary bladder or the bowel. Although ectopic, the endometrium in these lesions
is ‘functional’ and undergoes cyclical changes similar to those in the eutopic (uterine) tissue;
the associated repetitive breakdown and regeneration causes local bleeding, inflammatory
reaction and pain. The study showed that driver mutations can be found in these lesions
without morphological evidence of cancer. This finding was particularly interesting as unlike
ovarian endometriosis, DIE is not known to undergo malignant transformation (Wei et al.,
2011). Given their results and our observations in normal endometrial glands from the initial

experiments, we decided to carry out a larger study.

As human endometrium is a highly dynamic tissue that adopts various physiological states, to
obtain a representative view of its somatic mutagenesis and consequences throughout life,
we collected samples from as wide an age range of women as possible. These included
biopsies taken from women under investigation for reproductive problems (14),
hysterectomies for benign non-endometrial pathologies (2), residual tissues from transplant
organ donors (8) and autopsies after death from non-gynaecological causes (4) (Meta-data is
summarised in Table 3.2). We also aimed to assess how these are modulated by some of the
known endometrial cancer risk factors such as BMI and parity. Finally, to confirm normal
histology, all endometrial biopsies were examined by two histopathologists (Dr Mercedes

Jimenez-Linan and myself).
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Patient
ID

PD37506

PD40535
PD41871
PD37605
PD37601
PD41860
PD37607
PD41857
PD39444
PD41865
PD41868
PD39953
PD41859
PD37613
PD41861
PD41869
PD37594
PD39952
PD39954
PD37595
PD36804

PD36805

PD38812

PD37507

PD42746
PD40107
PD42475
PD40659

Reason for
sampling

Post-mortem
(traumatic injury)
Transplant donor

Infertility clinic
Infertility clinic
Infertility clinic
Infertility clinic
Infertility clinic
Infertility clinic
Transplant donor
Infertility clinic
Infertility clinic
Transplant donor
Infertility clinic
Infertility clinic
Infertility clinic
Infertility clinic
Infertility clinic
Transplant donor
Transplant donor
Infertility clinic

TAH for
leiomyomata
TAH for benign
ovarian tumour
Post-mortem
(traumatic injury)
Post-mortem
(peritonitis)
Transplant donor

Transplant donor
Transplant donor
Post-mortem

Age

19

24
27
29
31
31
34
34
35
36
36
37
38
39
39
40
42
44
44
46
47

49
54
60

67
69
74
81

BMI

u

24
30
27
28
23
24
22
24
31
23
18
21
22
21
37
20
36
24
19.5
30

27

u

u

34
24
27
22

Parity

W U1 =, O =~ O OO ONO O -~ ~ OO NOoO w C

Cc C o

N NN

4

No.of high
coverage
samples

10

7
17

9
10

14

2
10
8
5

Table 3.2 | Summary of clinico-pathological data for all donors.

U, unknown; TAH, total abdominal hysterectomy.
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Menopause status

Pre-menopausal

Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal
Pre-menopausal

Pre-menopausal
Post-menopausal
Post-menopausal

Post-menopausal
Post-menopausal
Post-menopausal
Post-menopausal

Menstrual phase

Undetermined

Proliferative
Secretory
Secretory
Secretory
Secretory
Secretory
Secretory

Proliferative
Secretory
Secretory
Secretory
Secretory
Secretory
Secretory
Secretory
Secretory

Proliferative
Secretory
Secretory
Secretory

Secretory
Proliferative
Inactive

Inactive
Inactive
Inactive
Inactive



3.2 Results

3.2.1 Sample Collection

| laser-capture microdissected >800 individual endometrial glands. DNA from each gland was
subjected to our LCM library-making protocol modified to accommodate small amounts of
input DNA (methods). Wherever possible, biopsies from other tissues, including Fallopian

tube, cervix and myometrium, were also collected.

3.2.1.1 Paired normal selection

To exclude germline mutations, somatic mutations in each gland were determined by
comparison with whole genome sequences from pieces of uterus, cervix or Fallopian tube
from the same individuals. The type of sample that was used as a normal was determined by
the nature of the procedure during which the endometrial sample was taken: samples from
the infertility clinic were taken from live donors during hysteroscopy, which is usually limited
to the endometrium layer of the uterus and therefore we had to use endometrial stroma as
a paired normal sample; in the case of the hysterectomy resections, post-mortem and
transplant donor samples, other tissues were available such as cervix and myometrium. On
a selection of samples, we re-ran mutation calling algorithms (CaVEMan and Pindel) using
matched normal samples from two different tissues; no significant difference was observed

between the two runs (Table 3.3 and Figure 3.2).

1832 1748

Figure 3.2 | An example of the overlap of variants called in the same sample using two
different paired normal samples (cervix and myometrium). In this case (sample
PD36805b_EM9_G4_B3) variants were called using cervix and myometrium bulk samples.
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Subs called Subs called

Sample ID against cervix against myometrium
PD36804b_EM4 G3_E5 896 875
PD36804b_EM5_G2_B6 1176 1183
PD36804b_EM5_G3_C6 1059 1052

PD36804b_EMD_7_A1 1743 2016
PD36804b_EMD_7_A5 1420 1418
PD36804b_EMD_7_A6 1408 1399
PD36804b_EMD_7_C2 1522 1529
PD36804b_EMD_7_C3 1621 1615
PD36804b_EMD_7_C6 1396 1398
PD36804b_EMD_7_E3 1618 1608
PD36804b_EMD_7_E4 1390 1387
PD36804b_EMD_7_G4 1403 1397
PD36804b_EMD_7_G5 1362 1367
PD36805b_EM10_G2_A3 1092 1104
PD36805b_EM10_G3_C3 1644 1647
PD36805b_EM1_G1_L1_2_ A1 1525 1518
PD36805b_EM7_G2_C8 1575 1577
PD36805b_EM8_G2_F8 1680 1676
PD36805b_EM9_G1_A9 1662 1659
PD36805b_EM9_G4_B3 1832 1748

Table 3.3 | Comparison of substitution mutation burdens in selected samples using
different types of tissue as the matched normal.
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3.2.2 Sample QC

Based on post-library preparation DNA concentration (a cut-off of >5 ng/ul was applied), a
total of 292 glands were selected for whole genome sequencing (30x). The mean sequencing
coverage was 28-fold (Figure 3.3). Only samples with >15-fold coverage were processed

through the variant calling pipeline (n=257, Appendix 10).

70
60
50
40

30

Sequencing depth

20

=
5]

Samples

i

Figure 3.3| Sequencing coverage across all endometrial gland samples. A total of 292
normal endometrial glands were subjected to whole genome sequencing. Only samples
with a >15-fold coverage (indicated by the dotted line) were used for subsequent analyses.

|

3.2.3 Variant calling

Using 18 pairs of biological ‘near-replicates’ (details in methods) we calculated the mean

sensitivity of our somatic mutation variant calling at >0.86% (range 0.70-0.95%).

A total of 338,376 single nucleotide variants (SNVs) was found with a median of 1521 (range
209-2833) per sample.
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3.2.4 Clonality of endometrial glands

There are a number of ways in which we could infer clonal composition of endometrial glands.
Some of these are discussed below, all analyses used filtered caveman input as outlines in

methods.

3.2.4.1 Distribution of variant allele fractions (VAFs) of all mutations

In the simplest approach, clonality can be explored through variant allele fractions (VAFs). As
most somatic mutations are heterozygous, those mutations present in all cells of a population
derived from a single ancestor will have VAFs of 0.5 whereas mutations in cell populations
derived from multiple ancestors will have lower VAFs or be undetectable by standard
mutation calling approaches. Therefore, to assess whether endometrial glands are clonal cell
populations, the VAFs of all called somatic mutations can be used; 91% (234/257) of
microdissected endometrial glands showed distributions of base substitution VAFs with peaks
between 0.3 and 0.5 (Figure 3.4) indicating that each gland consists predominantly of a cell
population descended from a single epithelial progenitor stem cell. Mutations that are
present at a lower VAF may represent contamination by other cell types; these potentially
include endometrial stromal cells, inflammatory cells, epithelial cells from neighbouring

glands or subclonal diversification within the same gland.

Assessment of small insertions and deletions (indels) showed similar VAF distributions

confirming the results from base substitutions (Figure 3.5).
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Surface epithelium PD36804 (n=13) PD36805 (n=7) PD37506 (n=10)

‘PD37507 (n=1 4)‘

‘PD37605 (n=9)‘ ‘PD37613 (n=11)‘ ‘PDS7607 (n=|9)‘ ‘PDS7595 (n=9)‘

PD37594 (n=17) PD37601 (n=10) PD38812 (n=2) PD39444 (n=10)

Myometrium <O S5 &5

‘F039952 (n=11 ) ‘PD39953 (n=8)‘ ‘P039954 (n=|0)‘ ‘PD40107 (n=10)‘

: PD40535 (n=7) PD40659 (n=5) PD42475 (n=8) PD42746 (n=2)

PD41857 (n=14) PD41859 (n=1)

PD41860 (n=4) PD41861 (n=8)

PD41868 (n=6)

PD41865 (n=2)

PD41869 (n=13) PD41871 (n=17)

An endometrial gland '
laser-capture microdissected 000 025 050 075 100000 025 050 075 100000 025 050 075 100000 025 050 075 1.0

Variant Allele Fraction (VAF)

Figure 3.4| Clonality of normal endometrial glands. Individual normal endometrial glands
were laser-capture microdissected and whole genome sequenced. The majority (91%) of
the sampled glands were clonal cell populations, sharing the most recent common
ancestor, with a median variant allele fraction (VAF) between 0.3 and 0.5 for all identified
substitutions across individuals. Each density line represents an individual endometrial
gland sample; individual samples are grouped and coloured by patient.
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Variant Allele Fraction (VAF)

Figure 3.5| Clonality of endometrial glands based on VAFs distributions for indels. The
majority of sampled normal endometrial glands were clonal with a median variant allele
fraction (VAF) for all identified indels of 0.3 or above.
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3.2.4.2 Two-dimensional clustering algorithms: dpclust

To formally assess clonal composition of each sampled endometrial gland, we applied a
previously described sub-clonal reconstruction caller (dpclust v2.2.7) (Nik-Zainal et al., 2012)
with default parameters to the single nucleotide variants (SNVs) in each endometrial gland to
assess the clonality of each gland (this work was carried out by Stefan Dentro). The analysis
yields, for every sample, the number of mutation clusters and assigned mutations, and the

proportion of overall cells that each cluster represents.

A gland was determined to be the result of a single progenitor cell if a single mutation cluster
was obtained or when the proportions of cells in which multiple mutation clusters were
detected. Akin to the so-called “pigeon-hole” principle (Yates et al., 2015), in such a scenario
the sum of the estimated proportions of cells of a pair of cellular populations exceeds 1 (100%
of cells), which means at least some cells must contain the mutations in both clusters.
Alternatively, if the sum of the estimated proportions does not exceed 1 the populations

could be the result of a single or of separate ancestors.

The results of the dpclust analysis concurred with our observations based on the distribution
of VAFs; 89.9% (231/257) of all endometrial glands had a major clone (defined as those with
> 75% of sequenced cells) with clusters containing on average 79.5% of all substitutions (sd =
24.9%) (Figures 3.6 and 3.7, Appendix 11). 83% (214/257) of glands showed evidence of a
further, subclonal cell population which, based on the “pigeon-hole” principle (Yates et al.,
2015), is a descendant of the main clonal population. The majority of glands also showed
minor contamination by cells that do not share somatic mutations with the observed clonal
expansions, potentially including endometrial stromal cells, inflammatory cells and epithelial

cells from other glands.
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Figure 3.6 | Assessment of clonal composition of individual endometrial glands using mutation clustering method
dpclust. Each column contains summary of the clonality analysis for individual donors, showing the fraction of
samples in which 1, 2 or 3 or more mutation clusters were found (a), the fraction of mutations assigned per cluster
for each sample (b) and at the total number of single nucleotide variants (SNVs) per sample (c).
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Figure 3.7 | Examples of clusters identified in individual endometrial glands with dpclust.
The clonality analysis yields a posterior density estimate of what proportion of sequenced
cells likely represents a mutation cluster. Each plot shows the posterior density in black and
its corresponding 95% confidence interval coloured. Called clusters are marked with a
vertical black line. 89.9% of all sampled glands had a major clone which is defined as a
cluster containing >=75% of all base substitutions. The identified subclonal populations can
represent either late subclonal diversification occurring in an individual endometrial gland,
incomplete monoclonal conversion of a gland and contribution of more tham one adult
stem cell or contamination with another clone from an adjacent gland or even stroma. The
complete clonal decomposition analysis for all glands and donors is provided in Appendix

18.
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3.2.4.3 Two-dimensional clustering algorithms: LICHeE

Another computational method that utilises single nucleotide variants to infer sub-clonal
composition of samples while allowing simultaneous reconstruction of multi-sample cell
lineage trees (in our study, per donor lineage) is LICHeE (Lineage Inference for Cancer
Heterogeneity and Evolution) (Popic et al., 2015). This approach relies on VAFs of deep-
sequenced somatic SNVs. The algorithm was run with default settings: distance between
clusters was 0.15, minimum VAF for a mutation to be present was 0.15, maximum VAF for a

cluster was 0.65, and a VAF measurement error of 0.10.

The results showed that 67/257 (26%) glands had one major clone, 189/257 (74%) glands had
two clusters and 1/257(<1%) had 3 clusters (Figure 3.8).

B 1| [

PD40535b_EMD_20_A11 PD40535b_EMD_20_C11 PD40535b_EMD_20_G10 | | PD40535d_EMD_20_A10 | | PD40535b_EMD_20_E10 | | PD40535b_EMD_20_A12 | | PD40535b_EMD_20_C10

0.23 0.27

Figure 3.8 | An example of clusters identified with LICHeE. This tool relies on variant allele
fractions (VAFs) of deep sequenced SNV’s and default pre-defined distances between clusters. It is
a rather simplistic but a quick approach to defining number of clusters in an individual sample.
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3.2.4.4 Methods comparison

Comparison with clonal clusters identified using dpclust and LICHeE showed a correlation of
0.40 (Figure 3.9). This method generally proved ineffective due primarily to 2 factors. First,
using VAF instead of cancer-cell fraction yielded VAF clusters which broke the pigeonhole
principle due to varying contamination by other cell types, LICHeE is unable to handle such
trees. Second, the distance between clusters would ideally be dynamically chosen rather than

a single fixed value across all donors and samples.
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Figure 3.9 | Comparison of clonal mutations identified by dpclust and LICHeE algorithms.
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3.2.4.5 Two-dimensional clustering algorithms: PyClone

We also attempted to use the PyClone algorithm, which has been previously applied on whole
exome sequencing data (Roth et al., 2014) (this analysis was performed with help from
Raheleh Rahbari). However, the algorithm was built for whole exome sequencing data with
fewer variants, we were unable to run it on our whole genome sequencing data from all
glands. Instead, we selected 1000 random substitutions per individual with genotype
priors. The result of the PyClone analysis with beta-binomial emission densities with total
copy-number priors showed that the majority of mutations were clonal across all
individuals. Figure 3.10 illustrates an example of a PyClone density plot for donor PD39952
with 99% of the 1000 selected mutations clustered together at a variant allele fraction

(VAF) of 0.5.
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Figure 3.10 | Density plot of identified clusters and substitutions assigned in donor
PD39952. For each donor, 1000 random substitutions were selected from different
samples. PyClone analysis showed that the majority of the mutations were clonal with VAF
=0.5.
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3.2.4.6 Clonality and presence of driver mutations

Subsequent analyses demonstrated that many endometrial glands carry “driver” mutations
in known cancer genes. Such mutations are known to be advantageous to stem cells — these
allow uncontrolled proliferation and provide selective advantage over their neighbours
(Stratton et al., 2009). We therefore examined the effect of the presence or absence of a
driver mutation on clonality of endometrial glands. The analysis showed that endometrial
glands exhibit clonality irrespective of the presence of known driver mutations (Figure 3.11a)
with, for example, somatic mutations in all 10 glands from a 19-year-old individual (PD37506)
having a median VAF >0.3 but no driver mutations identified (Figure 3.11b). Thus, colonisation
of endometrial glands by descendants of single endometrial epithelial stem cells is not
contingent on a growth selective advantage provided by driver mutations and may occur by
a process analogous to genetic drift, as proposed for other tissues (Lopez-Garcia et al., 2010,

Snippert et al., 2010).

Given the highly dynamic nature of the endometrium with cycles of tissue loss, rapid
regeneration (proliferative phase) and further growth and expansion (secretory phase) during
reproductive years and the lack of these in post-menopausal women, we examined the
correlation between the menstrual phase, menopause and clonality of glands. The results
showed that the observed monoclonality was also independent of the menstrual phase and

menopause status (Appendix 12).
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Figure 3.11 | Clonality of endometrial glands and driver mutations. The presence of a
driver mutation did not have a significant effect on the observed monoclonality of the
glands (Mann-Whitney two-sided test, p = 0.1) (a). All glands from the 19-year-old donor
(PD37506) were clonal with a median VAF >=0.3, but there were no detectable driver
mutations (b).
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3.3 Summary of results for this chapter

Endometrium is a relatively less studied tissue in comparison to other glandular type tissues,
such as colon and stomach. Although endometrial epithelial adult stem cells (eeASCs) were
first described over a decade ago, they remain relatively poorly characterised in comparison
to their counterparts in other tissues, such as the small and large intestine. In particular, the
number of stem cells in individual endometrial glands, their dynamics and clonal expansion
remain poorly understood, which at least in part, is due to the lack of robust biomarkers
(Tempest et al., 2018) and animal models given that only a limited number of species undergo
menstrual cycle with tissue loss and regeneration. Here, we show that irrespective of the
‘starting’ number of eeASCs, the majority of normal endometrial glands are clonal cell
populations that share common recent ancestors. The monoclonal conversion occurs early
(all glands from a 19-year old individual were clonal) and is independent of the presence of

driver mutations and menstrual phase.
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Chapter 4 The mutational landscape of
normal endometrial epithelium

4.1 Introduction to the chapter

4.1.1 Somatic mutations in normal endometrium
4.1.1.1 Mutation rates

In recent years, there has been growing interest in somatic mutations in normal ageing
tissues. A number of studies, including several from our group, have characterised these
changes for different epithelial tissues, such as the small and large intestine(Lee-Six et al.,
2019, Blokzijl et al., 2016), liver (Blokzijl et al., 2016, Zhu et al., 2019) and oesophagus
(Martincorena, 2018, Martincorena et al., 2018, Yokoyama et al., 2019); similar work has also
been carried out on non-epithelial tissues, for instance, skeletal muscle (Franco et al., 2018)
and blood (Osorio et al., 2018, Lee-Six et al., 2018b). Recent pan-cancer analyses have
examined somatic mutation rates across various tumours, including those originating in the
endometrium; the results have given us first estimates of the ‘clock-like’ mutation rates in
normal cells based on the fact that cancers arise from cells that were once normal (Alexandrov
et al., 2015). However, such views are likely to be distorted as the estimates were derived
from cancer tissues rather than from normal tissues directly. To the best of my knowledge,
our study was the first to estimate mutation burden and rates in the normal human

endometrium.

4.1.1.2 Genomic changes in normal endometrium

The first insights into the genomic changes in non-neoplastic endometrium were provided in
a study by Nair and colleagues, in which they applied ultra-deep, targeted sequencing to

screen for cancer driver mutations in uterine lavage fluid from women undergoing
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hysteroscopy for molecular screening and diagnosis of endometrial cancer (Nair et al., 2016).
They showed that a deep targeted sequencing approach can be used to detect early
microscopic lesions. In addition, they also found cancer associated mutations in ~49% of all
examined women without histological evidence of endometrial pathology. Importantly, the
presence or absence of a neoplasm in this study was based on histological assessment made
only on a small tissue biopsy that was taken during the hysteroscopy and, undoubtedly, some
of the negative cases could represent missed lesions rather than truly non-neoplastic
endometrium. In addition, uterine lavage fluid contains a mixture of endometrial and non-
endometrial cells, including those shed from the epithelial lining of the Fallopian tubes, cervix
and ovary. It is therefore plausible that some of the detected driver mutations were actually
representative of genomic changes that occurred in these tissues rather than the
endometrium. Nevertheless, this study was the first to suggest that cancer driver mutations

may potentially be found in non-neoplastic endometrium.

As described earlier in Chapter 3, shortly before our initial experiments on normal
endometrium, a study by Anglesio and colleagues showed that cancer associated mutations
can be identified in endometriosis (Anglesio et al., 2017). Known cancer driver mutations in
genes such as PIK3CA, KRAS and ARID1A were found in 5/24 patients some of whom were in
their 20s. Subsequently, the same group investigated genomic changes in another type of the
disorder, iatrogenic endometriosis, which is thought to be associated with previous surgical
procedures (Lac et al., 2018). Similarly, driver mutations could be detected in these samples,

yet these lesions virtually never undergo malignant transformation (Wei et al., 2011).

The aim of our study was: to use whole genome sequencing to provide a comprehensive
characterisation of the mutational landscape of the normal endometrial epithelium; to
explore how this landscape is influenced by age, BMI and parity, to estimate the age of driver

mutations and to investigate the relationship of clonal evolution to glandular architecture.
4.1.2 Current understanding of endometrial cancer

Endometrial cancer is the most common gynaecological tumour in the developed world with
9,314 new cases and 2,360 deaths a year in the UK (CRUK, 2019). While it is not the ‘deadliest’
malignancy, its incidence has increased by 57% in the UK between 1993-1995 and 2014-2016
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(CRUK, 2019). Moreover, the incidence is predicted to rise further, which is at least partially
related to the worldwide obesity epidemic (Morice et al., 2016, Onstad et al., 2016), thus
making it an important health care issue and burden in the future. Approximately 75% of
patients with the disease are diagnosed in the early stages (International Federation of
Gynaecology and Obstetrics (FIGO) stages | and Il) with a 5-year overall survival of 74-91%
(Siegel et al., 2013, Creasman et al., 2006). For patients with advanced disease (stage Ill and

IV), 5-year overall survival is 57-66% and 20-26% respectively (Creasman et al., 2006).

The majority of endometrial cancers are sporadic, but a small proportion of cancers (2-5%)
are familial (Le Gallo and Bell, 2014). These include tumours associated with Lynch Syndrome
(hereditary nonpolyposis colorectal cancer) with underlying germline mutations in mismatch
repair genes (MLH1, MSH2, MSH6 and PMS2) as well certain germline deletions in EPCAM,
and cancers in patients with Cowden Syndrome who carry germline mutations in PTEN (Le

Gallo and Bell, 2014).

4.1.2.1 Classification of endometrial cancer

Historically, endometrial cancers have been classified into two broad groups based primarily
on their clinical, metabolic and endocrine features (Bokhman, 1983). Type | tumours are
thought to be linked to unopposed oestrogen exposure and obesity, are hormone-receptor
positive and are usually well to moderately differentiated neoplasms that carry a relatively
favourable prognosis (Cancer Genome Atlas Research et al., 2013, Murali et al., 2014). Type
Il cancers are less common, tend to present in older, post-menopausal, non-obese women,
arise in the absence of endocrine and metabolic disturbances, are poorly differentiated and

have a less favourable outcome.

Since this original classification by Bokhman in 1983, endometrial cancers have been further
characterised and subtyped using histological and more recently, molecular features. These

are considered below.
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4.1.2.2 Histological classification of endometrial cancer

According to the World Health Organisation (WHO) classification, neoplasms of the uterine
corpus comprise several distinct histological types: epithelial carcinomas (endometrioid,
serous, clear cell, mucinous, squamous cell, transitional cell, small cell and undifferentiated),
mixed epithelial and mesenchymal tumours (e.g. carcinosarcomas), or mesenchymal tumours
(e.g. endometrial stromal sarcomas) and others (Silverberg et al., 2003). However, epithelial
carcinomas account for the majority of all endometrial neoplasms, including endometrioid
(87-90%) and serous (5-10%) (Liang et al., 2012), and therefore the rest of the discussion will

be focused on these tumours.

Endometrioid carcinoma

Endometrioid carcinomas (ECs) are associated with excess exposure to unopposed oestrogen
with risk factors including, obesity, early age at menarche (the first occurrence of
menstruation), late age at menopause and nulliparity (never having completed a pregnancy
beyond 20 weeks). The tumours are typically preceded by hyperplasia (simple or atypical),
and endometrial intra-epithelial neoplasia (O'Hara and Bell, 2012). The majority of these
neoplasms are diagnosed at an early stage and are associated with a favourable prognosis

(Lewin et al., 2010).

On a molecular level, ECs are characterized by frequent mutations in PIK3CA, PTEN and
PIK3R1, which result in inappropriate activation of the PI3K pathway (Risinger et al., 1997,
Rudd et al., 2011). Other signal transduction pathways that are frequently disrupted in these
tumours include the RAS-RAF-MEK-ERK pathway with mutations in KRAS seen in 18% of cases.
Somatic mutations in the FGFR2 receptor tyrosine kinase occur in 12% of cases with mutations
in FGFR2 and KRAS being mutually exclusive (Byron et al., 2012). ECs also frequently show
disruption of the canonical WNT signalling pathway with mutations in CTNNB1 gene (19-45%)
(Byron et al., 2012, Machin et al., 2002). It has been suggested that the mutual exclusivity of
CTNNB1 and KRAS mutations and functional cross talk between the RAS-RAF-MEK-ERK and
WNT/TCF signalling pathways may occur in this cell type or that functional redundancy exists
in the biological consequences of altered RAS-RAF-MEK-ERK and WNT/TCF signalling (Byron
etal., 2012). Finally, 34- 40% of all ECs show microsatellite instability (MSI) (Byron et al., 2012,
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Cancer Genome Atlas Research et al., 2013), which is attributed to defective mismatch repair,
primarily due to hypermethylation of the MLH1 promoters; somatic mutations in MSH6 and
loss of MSH2 expression have also been observed (Esteller et al., 1999, Simpkins et al., 1999,

Goodfellow et al., 2003).

Serous endometrial carcinoma

Serous endometrial carcinomas are high grade neoplasms that are relatively rare accounting
for only 5-10% of ECs, but are clinically aggressive and contribute substantially to the
mortality from endometrial cancer accounting for 39% of deaths from endometrial cancer
(Hamilton et al., 2006). Older age and smoking are thought to be the main risk factors. Serous
carcinomas arise from surface endometrial intraepithelial carcinoma (Sherman, 2000) on the
background of atrophic endometrium in older post-menopausal women. The tumours are
characterised by a high frequency of mutations in TP53, which are believed to be the initiating

events in the development of these cancers (Fadare and Zheng, 2012).

4.1.2.3 Molecular classification of endometrial cancer

Advances in next generation sequencing technologies have allowed better characterisation
of many types of cancers. In 2013, The Cancer Genome Atlas Research Network (TCGA)
published a comprehensive genomic and transcriptomic analysis of endometrial cancers
(endometrioid, serous and mixed endometrioid/serous carcinomas) (Cancer Genome Atlas
Research et al., 2013). Based on mutation spectra, copy-number alterations (CNAs) and
microsatellite instability status, endometrial cancers were classified into four groups (Figure

4.1):

POLE (ultra-mutated) cancers that are characterised by extremely high mutation burdens,
hotspot mutations in the exonuclease domain of POLE, frequent C>A substitutions, few CNAs
and recurrent mutations in PTEN, PIK3R1, PIK3CA, FBXWA and KRAS. These were also found

to be associated with favourable outcome;

Microsatellite-instable (MSI) (hypermutated) cancers that are characterised by
microsatellite instability due to MLH1 promoter methylation, relatively high mutation

burdens, few CNAs and frequent mutations in PTEN, KRAS and RPL22;
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Copy-number low (endometrioid) cancers which comprise microsatellite stable low grade
endometrioid cancers with low mutation burden and frequent mutations in PTEN and

CTNNB1,;

Copy-number high (serous-like) cancers that are characterised by extensive CNAs, low
mutation burdens and recurrent mutations in TP53 as well as FBXW7 and PPP2R1A, but

infrequent alterations in PTEN and KRAS.
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Figure 4.1 | Molecular classification of endometrial cancer. Adapted from G Getz et al. Nature 497, 67-73
(2013).
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4.1.2.4 Endometrial cancer risk factors

The estimated lifetime risk of being diagnosed with endometrial canceris 1 in 36 (3%) (CRUK,
2019). The main risk factor for endometrioid carcinomas is exposure to endogenous and
exogenous oestrogens in association with obesity, early age of menarche, late-onset
menopause, nulliparity, hormone therapy (e.g. tamoxifen) and diabetes. For serous
carcinomas tumours, older age (>55 years) and smoking are thought to be the main risk
factors although work by McCullough and colleagues have also shown that the incidence
increases with elevation in body mass index (BMI) (McCullough et al., 2008). Since the
majority of endometrial cancers are endometrioid, some of the key risk factors for the disease

are considered in more detail below.

Obesity

Obesity is the second biggest preventable cause of cancer in the UK (CRUK, 2019); it is a well-
recognised risk factor for thirteen different types of malignancies, including those arising in
the breast, colon, liver, ovary and stomach. In women, obesity has a stronger association with
the development of endometrial cancer than with any other cancer type (Reeves et al., 2007)
with 34% in the UK and 57% in the US of all such cases attributable to being overweight and
obese (Renehan et al., 2008, Calle and Kaaks, 2004). This association is well-documented and
shows a dose-response relationship with the cancer incidence increasing with an elevation in
the BMI; for every five units of BMI, there is an increase in the risk of developing the disease
(relative risk, RR=1.50; Closy 1.42-1.59) (World Cancer Research). Furthermore, being obese
has an effect on the endometrial cancer prognosis: the RR of disease-specific mortality is 2.53
for mildly obese (BMI 30-34.9) and 6.25 for severely obese (BMI >40) patients (Calle et al.,
2003), compared to women with a normal BMI. The underlying mechanistic pathways that

link obesity and endometrial cancer are briefly discussed below.

Visceral fat is composed of mature fat cells (adipocytes), less differentiated fat cells
(preadipocytes), endothelial, stromal and nerve cells along with mesenchymal stem cells
(MSCs) (Mills et al., 2012, p.1071); it serves as an endocrine organ that is responsible for the

synthesis and secretion of several hormones amongst multiple other functions (Coelho et al.,
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2013). During reproductive years, ovaries are the primary source of oestrogens; whereas in
post-menopausal women other tissues, in particular visceral fat, become key sites of
production and secretion of these hormones (Davis et al., 2015). Adipocytes, preadipocytes
and MSCs secrete aromatase, an enzyme that is necessary for the conversion of androgens to
oestrogens (Blakemore and Naftolin, 2016, O'Connor et al., 2009). In addition, an increase in
adiposity (the state of being fat), leads to a decrease in sex hormone-binding globulin (SHBG)
levels which in turn results in an increase in the pool of available, bioactive oestrogen (Simo
et al., 2015). When oestrogen is bound to oestrogen alpha and/or beta-receptor, it directly
modulates the transcription of a variety of pro-proliferative genes including IGFIR and IGF1

(Westin et al., 2009).

Visceral fat is also a rich source of adipokines, which regulate metabolism and modulate
chronic inflammatory states associated with adiposity. Obesity-associated proinflammatory
adipokines, including leptin, interleukin-6 and tumour necrosis factor alpha, not only suppress
normal insulin signalling and contribute to insulin resistance (Onstad et al., 2016, Renehan et
al., 2015, Mu et al., 2012, Kwon and Pessin, 2013), but also promote endometrial proliferation

(Onstad et al., 2016).

Finally, Type 2 diabetes which is closely linked with obesity, is characterized by elevated levels
of insulin and insulin-like growth factor 1 (/GF1) and hyperglycaemia, both of which have been
shown to play a role in the pathogenesis of endometrial cancer (Nead et al., 2015, Poloz and
Stambolic, 2015). In premenopausal women, oestrogen-induced cyclical changes in IGF1
expression and signaling modulate endometrial proliferation during normal menstrual cycle
(McCampbell et al.,, 2006). The positive association of endometrial cancer with
hyperinsulinaemia and type 2 diabetes is well documented (Nead et al., 2015, Calle and Kaaks,
2004, Lees and Leath, 2015). Increased expression of insulin and /IGF1 receptors is observed
in endometrial hyperplasia, which heightens the responsiveness of these cells to insulin and
IGF1 (McCampbell et al., 2006) and promotes hyperactivity of MAPK and PI3K/AKT/mTOR
signaling frequently observed in endometrial cancer. Proliferative signaling is further
amplified by the loss of the PTEN tumor suppressor gene, which acts in opposition to the
PI3K/AKT/mTOR pathway and is an early event in the pathogenesis of endometrial cancer.

Finally, hyperglycaemia, which occurs as a consequence of insulin insensitivity, serves to
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further fuel the growth of metabolically active tissue (Masur et al.,, 2011), including

endometrial hyperplasia and cancer.

Parity

A meta-analysis by Wu and colleagues (Wu et al., 2015) has revealed that there is a significant
inverse association between parity and risk of endometrial cancer with a RR for parous versus
nulliparous women of 0.69 (Clgs% 0.65-0.74). In addition, parity number of 1, 2 or 3 versus
nulliparous showed a significant negative association with the relative risk, RR=0.73 (Closy
0.64-0.84), RR = 0.62 (Clgsys 0.53-0.74); and RR = 0.68 (Clos% 0.65-0.70) respectively).
Oestrogens are known to stimulate endometrial proliferation and increase mitotic activity,
which can lead to tumour development (Henderson and Feigelson, 2000, Akhmedkhanov et
al., 2001) while progestins reduce cell proliferation and promote differentiation and can
therefore decrease risk of endometrial cancer (Akhmedkhanov et al., 2001). Wu and
colleagues suggested that the observed negative correlation between parity and risk of
endometrial cancers is due to slightly higher levels of progesterone relative to oestrogen
during pregnancy (Wu et al., 2015). They also proposed that the dose-response relationship
observed between parity and endometrial cancer risk may be attributable to repeated long-
term anti-oestrogenic endometrial effects of progesterone occurring during pregnancies
(Preston-Martin et al., 1990), or alternatively, due to ‘mechanical shedding of

malignant/premalignant endometrial cells’ at parturition (Wu et al., 2015, Lambe et al., 1999).

4.1.2.5 Microbiome

In recent years, there has been an increasing amount of interest in the uterine microbiota
with several studies reporting its association with various disease states including infertility
and cancer (Walther-Antonio et al., 2016, Chen et al., 2017, Baker, 2018). Bacterial organisms
that were previously found to be enriched in endometrial cancer cases are summarised in
Table 4.1. However, there are limitations associated with such investigations, of which
contamination is probably one of the most significant (Baker, 2018). The majority of uterine

sampling in the published work and in some of the cases in our study, would have been
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performed transcervically, which makes it difficult to avoid cross-contamination by
microbiota from the lower genital tract. In cases where samples were collected in different
circumstances, such as the transplant and autopsy donors in our study, contamination with
organisms from the lower abdominal and pelvic cavities may also occur. The use of uterine
manipulators, cervical dilators and surgical tools as well as histology tissue processing

equipment may further contribute to cross-contamination.

92



Phylum Genus

Bacteroidetes Porphyromonas

Firmicutes ph2

Firmicutes 1-68

Firmicutes Dialister
Firmicutes Ruminococcus
Proteobacteria Arthrospira

Table 4.1 | List of bacterial organisms previously shown to be associated with
endometrial cancer. Data extracted from Walther-Antonio et al, Genome Medicine, 2016.
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4.2 Results

The results presented in this chapter are based on the final variants that were called in normal
endometrial glands from 28 women aged 19 to 81 years. Only samples with >15-fold coverage
were processed through the variant calling pipeline (n=257, Appendix 10). Our mutation
burden and signature analyses are based on the same variants that were used for
reconstruction of phylogenetic trees, which mitigates double counting and differentiates

between shared and unique variants, which is crucial for timing driver events.

4.2.1 Mutation burden

The somatic mutation burden in normal endometrial glands from the 28 individuals ranged
from 209 to 2833 base substitutions (median 1,521) and 1 to 358 indels (median 180) (Figure
3.2a, b). In large part this variation was attributable to the ages of the individuals with a linear
accumulation of ~29 base substitutions per gland per year during adult life (linear mixed-
effect model, Closy 23-34, p = 3.02 x 107!?) (Appendix 9). However, the possibilities of lower
mutation rates pre-menarche and post-menopause cannot be excluded. Positive driver
mutation status conferred an additional ~110 substitutions (Clesy% 43-177, p = 1.34 x 103). The
basis for this correlation is unclear. It is conceivable that an elevated total mutation load
increases the chances of including, by chance, a driver. It is also plausible, however, that
drivers engender biological changes, for example elevated cell division rates, that result in
higher overall mutation loads. There was no obvious correlation between parity and total

somatic mutation burden.

In addition, to formally test the effect of “sample cohort” on our observations, we applied a
mixed-effect model; the analysis showed that “cohort” (i.e. whether the sample was from a
transplant donor/autopsy or from the infertility clinic) had no significant effect on the

clonality and mutation burdens of normal endometrial glands (Appendix 9).
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Figure 4.2 | Mutation burden in normal endometrial glands. (a) Substitutions accumulate
in the endometrium in a relatively linear fashion. A positive correlation between age and
accumulation of indels (b), copy number alterations (CNA) and structural variants (SV) (c)
and mutations attributed to single base substitution (SBS) mutational signatures SBS1 (d),
SBS5/40 (e) and SBS18 (f) was also observed. The fraction of glands with driver mutations
(g), mean number of driver mutations in glands with drivers (h) and mean number of unique
(different) driver mutations per gland (i) all show positive correlation with age.
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4.2.1.1 Coding/non-coding mutation burden

To explore whether coding and non-coding mutations accumulate at different rates all
substitutions were split into the two groups. Our analysis shows that there is an age-
associated accumulation of somatic mutations for both types of mutations (linear regression,
p = 1.22 x 10 for coding mutations and p = 4.73 x 1019 for non-coding mutations (Figure
4.3a,b). The median ratio of coding to non-coding mutations was 0.011 (range 0.007 - 0.015)

(Figure 4.3c); there was no association with age (r = -0.024; linear regression p = 0.904).
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Figure 4.3 | Age-associated accumulation of coding and non-coding mutations in normal
endometrial epithelium. For each sample, substitutions were divided into coding and non-
coding. (a), (b) Both types of mutations accumulated with age. (c) The median ratio of
coding/non-coding mutations was 0.011 (range 0.007-0.015); there was no correlation with
age.
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4.2.2 Endometrium and other normal tissues

Tissues across the body differ in their physiology, turnover, exposure to mutagens and
architecture with specific stem cell arrangements and dynamics. All of these are likely to be
reflected in their mutational landscapes, including mutation burdens. We therefore

compared mutation burden of endometrial epithelium to that of other normal tissues.

4.2.2.1 In-house LCM experiments: endocervix

In addition to endometrial glands, nearby normal endocervical glands were micro-dissected
from one individual (PD37506). In this analysis, for each cell type, only the samples with a
median VAF of >0.4 were used. There was a ~2-fold lower somatic mutation burden in
endocervical than endometrial glands (Figure 4.4). The finding may reflect the absence, in
endocervical glands, of the cyclical process of loss and regeneration that occurs in

endometrial glands.
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Figure 4.4 | Comparison between normal endometrial and endocervical glands. (a) An
overview histology image of an ~2cm? tissue biopsy sample from a 19-year-old donor
(PD37506). The image shows normal endometrial and adjacent endocervical glands, which
were subsequently micro-dissected. (b) Endometrial and endocervical glands with a similar
median variant allele frequency (VAF) of substitutions were compared. (c) There was a ~2-
fold difference in the mutation burden between the two types of glands.
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4.2.2.2 Previously published data (non-LCM experiments)

Using previously published results, we compared mutation rates between normal
endometrial epithelial and other types of cells. The results showed that endometrial cells
exhibit lower mutation rates than normal skin epidermal (Martincorena et al., 2015),
colorectal (Lee-Six et al., 2019, Blokzijl et al., 2016), small intestinal (Lee-Six et al., 2019,
Blokzijl et al., 2016) and liver cells (Blokzijl et al., 2016), similar burdens to oesophageal cells
(Martincorena, 2018) and higher rates than skeletal muscle cells (Franco et al., 2018) (Figure
4.5). Of the mutational signatures found in endometrial cells, SBS1 and SBS5 are found in all
other cell types (Alexandrov et al., 2015). However, the SBS1 mutation rate is higher in
colorectal and small intestinal epithelial cells whereas the SBS5 mutation rate is higherin liver

cells (Blokzijl et al., 2016). SBS18 has also been found ubiquitously in colonic crypts(Lee-Six et

al., 2019).

Colon Liver Small intestine Endometrium Oesophagus Skeletal muscle
Tissue

40

Substitutions per year
n
o

-
o

0

Figure 4.5 | Comparison of mutation rates between endometrial epithelium and other
cell types. The barplot shows a comparison of estimated mutilation rates (substitutions)
for normal endometrial epithelial and other cell types from previously published studies
(liver, colon and small intestine (Blokzijl et al., 2016), oesophagus (Martincorena et al.,
2018) and skeletal muscle (Franco et al., 2018).
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4.2.3 Normal endometrium and cancer

Acquisition of driver mutations enables uncontrolled proliferation, cancer clone expansion

andincreased accumulation of somatic mutations. We therefore compared mutation burdens

between normal endometrial glands and endometrial cancer. We performed the following

analyses:

2,

Raw mutation burden comparison between normal endometrial glands and
tumour using endometrial cancer samples from the Pan-Cancer Analysis of
Whole Genomes (PCAWG) set. We compared the mutation loads of normal cells
observed here with those recently released by the Pan Cancer Analysis of Whole
Genomes Project?. Endometrial cancers exhibited higher mutation loads than
normal endometrial cells, for base substitutions (~5-fold, medians of 1346 and
7330 substitutions observed in normal endometrium and endometrial cancer
respectively (Mann-Whitney test, P=7.63 x 10°) (Fig. 4.6a) and indels (Figure 4.6b)
and these differences also pertain to normal endometrial cells with driver
mutations. In most endometrial cancers these differences are attributable to
higher mutation burdens of the ubiquitous base substitution and indel mutational
signatures. In addition, however, the very high mutation loads of the subsets of
endometrial cancers with DNA mismatch repair deficiency and polymerase
epsilon/delta mutations were not seen in normal endometrial cells. Differences
between endometrial cancers and normal cells were even more marked for
structural variants and copy number changes (median number zero in normal
endometrial cells and ~23 in endometrial cancers) and this again pertained to

normal endometrial cells with drivers.

Tumour (Pan Cancer Analysis of Whole Genomes (PCAWG)) and normal
mutation burden comparison using subsampled sequencing data: These analyses
were performed with the help of Tim Coorens and Stefan Dentro. We selected five
tumour (PCAWG) and five normal endometrial gland samples with a similar clonal
composition (clonal composition was inferred with dpclust (Nik-Zainal et al., 2012)
and only samples that had a clonal fraction of mutations of >0.8 were included in

this analysis). Binary Alignment Map (BAM) files were subsampled at regular
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fractions (0.1) of the original coverage to assess the sensitivity of mutation calling
across comparable levels of coverage in both cancer and normal samples; when a
mutation called in the original BAM file was present in a subsampled BAM file in
four or more reads, it was taken to be present in the subsampled BAM file. The
results showed that >90% of substitutions detected at the original coverage were
recovered at a median coverage of 22.1x for tumour (range 21.4-43.4x) and 20.1x
for normal endometrial glands (range 18.6-24.2x) (Figure 4.7a). Comparison of the
mutation burden between normal and tumour samples at the sequencing
coverage of 25-30x, showed an ~4-fold difference (Mann-Whitney test, p =
0.00794, Figure 4.7b), therefore it is highly unlikely that such a marked difference

is due to the depth of coverage alone.
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Figure 4.6 | Comparison between normal endometrial epithelium and endometrial
cancer. (a,b) Normal endometrial glands show lower total mutation burden in comparison
to endometrial cancer (Pan Cancer Analysis of Whole Genomes Project?). (d,e) Genes that
are under significant positive selection (dN/dS > 1) in normal endometrial epithelium and
endometrial cancer. RHT, restricted hypothesis testing of known cancer genes. ERBB2 and

ERBB3 are under selection in normal endometrial

epithelium, but are not in endometrial

cancer. (f) Identified driver mutations and their distribution in normal endometrial glands and
the two major types of endometrial cancer (endometroid and serous carcinomas).
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Figure 4.7 | Comparison of mutation burden in subsampled tumour and normal
endometrial samples. Five tumour and five normal samples with a clonal fraction of
mutations of >0.8 were selected, bam files subsampled at a regular interval of the original
coverage. (a) 290% of the mutations called at the original coverage were recovered at a
median coverage of 22.1x for tumour (range 21.4-43.4x) and 20.1x for normal endometrial
gland samples (range 18.6-24.2x). (b) Comparison of the mutation burden between normal
and tumour samples at the sequencing coverage of 25-30x, showed an ~4-fold difference.
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3. Tumour (PCAWG) and normal comparison using clonal mutations only: In

4.

addition to the original analysis of the total substitution burden in the normal and
tumour (PCAWG) cases (Figure 4.8a), we made this comparison using ‘clonal’
mutations only (clonal composition of each sample was inferred with dpclust (Nik-
Zainal et al., 2012) by Stefan Dentro) (Figure 4.8b). Given that the majority of the
endometrial cancer samples are from women aged 60 to 80 years, we also
performed an age-restricted comparison using cases from the two decades (Figure
4.8c); the results show a significant difference in the clonal substitution burden

between normal and cancer samples (Wilcoxon rank sum test, p = 4.02 x 10°%4).

Tumour (TCGA) and normal mutation burden comparison: Given the above-
mentioned differences in pathogenesis, molecular changes and clinical outcomes
between the two types of endometrial cancer, we also compared mutation burden
of normal endometrial glands and the two classes cancer. Ideally, we would have
liked to have performed both comparisons using whole genome sequencing (WGS)
data from the same PCAWG data set. Unfortunately, no histology information was
available for this cohort and so the cancer cases could not be subtyped in the total
mutation burden comparison. Instead, we compared coding mutations in normal
endometrial glands and endometrial cancer samples from TCGA. There was a 6-
fold and 5-fold difference in the mutation burden comparing to endometrioid and

serous carcinoma respectively (Figure 4.9).
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Figure 4.8 | Mutation burden comparison in normal endometrium and endometrial
cancer. (a) Scatter plot showing all substitutions identified in normal endometrial glands
and endometrial cancer cases (Pan Cancer Analysis of Whole Genomes (Alexandrov, 2018));
(b) comparison of clonal mutations (clonal substitutions are those that were assigned to
the major clone using dpclust method (Nik-Zainal et al., 2012)); (c) boxplot showing clonal
substitution burden in tumour and normal endometrium restricted to donors aged 60 to
80 years (Wilcoxon rank test, p = 4 x 10-14). In (a) and (b), median mutational burden is
calculated for each donor; in (c), all samples are included for each of normal tissue donor
and ‘hypermutator’ cancer cases (defined as those above the 75 percentile (>5,631
substitutions)) were excluded in this analysis.
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Figure 4.9 | Coding mutation burden comparison in normal endometrium and
endometrial cancer (TCGA cohort). (a) Scatter plot showing mutation burden for tumour
and normal samples. For cancer cases, each data point represents an individual donor; for
normal endometrial samples, each data point represents a median burden for an individual
donor. (b) Somatic mutation burden in normal endometrium is 6-fold and 5-fold lower than
that of endometrioid and serous carcinoma respectively.
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4.2.4 Mutational signatures

To explore the underlying processes of somatic mutagenesis operative in normal endometrial
epithelial cells mutational signatures were analysed. Five previously described single base
substitution (SBS) mutational signatures were identified in endometrial glands (Figure 4.10
and Appendices 8 and 9): SBS1, predominantly characterised by NCG>NTG mutations and
likely due to spontaneous deamination of 5-methylcytosine; SBS5 and SBS40, two relatively
featureless, ‘flat’ signatures of uncertain cause; SBS18, predominantly characterised by C>A
substitutions and possibly due to reactive oxygen species (Rouhani et al., 2016); and SBS23, a
signature predominantly composed of C>T mutations and of unknown aetiology. Because
SBS5 and SBS40 are relatively featureless they present particular challenges in estimating
their separate contributions (as previously outlined (Alexandrov, 2018)) and have therefore
been combined (but shown separately in Appendices 8 and 9). SBS23 was previously found in
a small number of liver cancers at high mutation burdens. Given its low mutation burden and
small contribution here it is unclear whether this is really the same signature and we have
therefore included it in the “unattributable” category. The mean signature exposures were
0.23 for SBS1, 0.58 for SBS5/40 and 0.12 for SBS18. A positive linear correlation with age for
the mutation burdens attributable to SBS1, combined SBS5/40 and SBS18 signatures was

observed (Figure 4.2).

Interestingly, glands from one donor with a history of recurrent missed miscarriage (RMM)
showed much higher mean SBS18 exposure (0.35) compared to the rest of the cohort. As
SBS18 has been shown to be associated with base excision repair (BER) deficiency we
searched for truncating (somatic and germline) mutations in all samples from the 31-year-old
donor (PD37601). In this analysis we used a panel of twenty five genes associated with BER

(Table 4.2), but no such variants were identified.
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Figure 4.10 | Composite mutational spectra for selected fourteen donors. Composite
mutational spectra for twenty seven donors were first generated using single base
substitutions identified in all glands from each individual.
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APEX2 PARP1

DUT PNKP

MBD4 RECQL4

MUTYH TDG

NEIL2 UNG

NTHL1 XRCC1

Table 4.2 | Panel of twenty five genes that were used to screen for base excision repair
deficiency.
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We currently do not know whether different signatures operate at different times of life.
Therefore, to ascertain the periods during which different mutational processes operate,
phylogenetic trees of endometrial glands were constructed for each individual using somatic
mutations (Figures 4.11, 4.12 and 4.13). These revealed that the mutational processes

underlying the three signatures are active throughout life.

With respect to small indels, composite mutational spectra for each donor were generated.
These were similar across ages and showed that single T insertions at runs of T bases were
the most common mutation type observed. However, due to the relative sparsity of indels in

normal endometrial glands, formal signature extraction was not performed (Appendix 8).

110



d 34 year old donor (PD37607) b 60 year old donor (PD37507)

F1

@(‘ HRAS (G13V) FBXW7 (Y545C)
L. ARHGAP35 (L870°*) PPP2R1 (R183W)
BRAF (D594G)

G1 Ry liassy B
FBXW7 (R465H) [
— e

s

PIK3CA (D454G)

§
RN

PIK3CA(H1047R)
G1(E1163K)

f
ZFHX3 (RT1
PIK3CA (E542K) ]
FGFR? (P253R)
+106

PIK3CA (E453K)
i o 4

g

| HRAS (G13V) |
| ARHGAP3S

ZFHX3(R715%) | ZFHX3 (RT1
Ferea pass) | PICAE
] FGFR2 (P25 g
HX3 (Q336815*106) { ! ZFHX3 (RT15)
ZFHX3 (Q1578") - f PIKICA (EB42K)

ERBB2(HB78Y)
ARHGAP35
(N747s'9) I

R

FHX3 (R715%)
IK3CA (E542K)
XA2 (A352fs*11

FBXWI(YS45C) _PPPIR (RIB3W,
ERBBANIITES) NFY(ATIG) l:—_ B |
1 Evaazpery__micpssaniss e : .
e e ey [ AT
= I
K3CA(D4546) PIK3CA
& 1 e LB |
PIK3CA(G118D Foxas L cnLOH
ZFHX3
- G
PIK3CA(E545G) __ FBXW7(R505L! III
ARHGAP35(Y277fs*2
e —————

e ] ZFHX3 (K3241f5%43
——. ——
e
e ]

[ Az ]
L E2 |
. PIK3CA (E453K)™
:ﬁ_ HRAS(G13V) ARHGAP35(L870* _
LA ] & ]
QICSRINSS T4SAnsN) : CE ]
LA ]

[ T T T T T T 1 [ T T T T T 1
0 200 400 600 800 1000 1200 1400 0 500 1000 1500 2000 2500 3000

Number of mutations Number of mutations

0O sBst [ sBS5/40 B sBs18 l Unattributable

Figure 4.11 | Histology images and reconstructed phylogenetic trees for two individuals in whom every
normal endometrial gland contained at least one driver mutation: 34 year old (a,b) and 60 year old (c,d).
(a,b) Haematoxylin and eosin (H&E) images of endometrial glands were taken after laser-capture
microdissection (20x magnification). (c,d) Phylogenetic trees were reconstructed using single base
substitutions; the length of each branch is proportional to the number of variants; a stacked barplot of
attributed single base substitution (SBS) mutational signatures that contributed to each branch is then
superimposed onto every branch; signature extraction was not performed on branches with less than 100
substitutions. The ordering of signatures within each branch is for visualization purposes only as it is not
possible to time different signatures within individual branches. Glands sharing over 100 variants were
considered part of the same clade (indicated by the colour of the sample ID label). Glands that did not belong
to any clades are in white. SBS signatures are colour-coded; substitutions that were not attributed to the
reference signatures and those attributed to SBS23 are shown as ‘Unattributable’.
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Figure 4.12 | Phylogenetic trees of endometrial glands for donors aged 19-40 years. Phylogenetic trees for
the other twelve donors were reconstructed also using single base substitutions with branch length
proportional to the number of variants; the stacked bar plots represent attributed SBS mutational signatures
that contributed to each branch. Signature extraction was not performed on branches with less than 100
substitutions. The ordering of signatures within each branch is for visualization purposes only as it is not
possible to time different signatures within individual branches.
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Figure 4.13 | Phylogenetic trees of endometrial glands for donors aged 42 to 81 years. Phylogenetic trees
for twelve donors aged 42 to 81 years were also reconstructed as described above. Every single gland from
donors PD39952 (44 year old) and PD40659 (81 year old) had at least one driver mutation.
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4.2.5 Copy Number and Structural Variants

Serous endometrial carcinomas are characterised by relatively low mutation rates, but
extensive CNAs (Cancer Genome Atlas Research et al., 2013). In our cohort, somatic CNAs and
structural variants (genome rearrangements) were found in only 27 out of 182 (15%) normal
endometrial glands (Figure 4.2, 4.14 and Appendix 13). These included copy number neutral
loss of heterozygosity (cnn-LOH) in six glands, whole chromosome copy number increases in
one and structural variants in eighteen (12 large deletions, six tandem duplications and nine
translocations). The rates are similar to those observed in normal colon with CNAs and/or

structural variants seen in ~18% of normal colonic crypts(Lee-Six et al., 2019).
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Figure 4.14 | An example of copy-number neutral loss of heterozygosity (cnn-LOH) in a
normal endometrial gland. (a) biallelic truncating mutation is seen in ZFHX3 (p.R715*) with
every read carrying the variant. (b) an associated cnn-LOH is observed on chromosome 16.
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The majority of glands showed no change; of those with CNAs/SVs, showed a single change.
However, one of two glands carrying a TP53 mutation (see below) exhibited nine structural
variants, indicating that genomic instability caused by defective DNA maintenance occurs in
normal cells. Although the observation is only seen in one donor, there are two reasons why

we believe this notion:

1. R175H mutation in TP53 has a dominant negative effect: We have identified three
missense mutations in TP53: R175H (81-year-old donor, VAF = 0.52), R158H (69 year
old donor, VAF = 0.5) and G187D (39 year old donor, VAF = 0.29). One of these
mutations, R175H, is known to have a dominant negative effect through inactivation
of the function of wild-type p53 and is implicated in tumour development (Willis et
al., 2004, Aubrey et al., 2018, Boettcher et al., 2019). It is this very mutation that is
present in the sample containing 9 structural variants were identified; no structural
variants were seen in the two other samples with the other two TP53 mutations.

2. Many endometrial cancer cases have heterozygous TP53 mutations and structural
variants: 25 out of the 44 endometrial cancer cases (PCAWG) had at least one TP53
mutation of which 21 had no evidence of loss of heterozygosity, LOH (LOH was
assumed if VAF was above 0.6 or if there was more than one mutation in TP53).
Structural variants were detected in all of the studied endometrial cancer cases,
however the burden was higher in samples with TP53 mutations (median = 251, range
8-450) than those without (median = 77, range 8-316) (Wilcoxon rank sum test, p =
0.019) (Figure 4.15).
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Figure 4.15 | Structural variant burden of endometrial cancer samples with and
without TP53 mutations.

4.2.6 Cancer driver mutations in normal endometrial glands

To identify genes under positive selection a statistical method based on the
observed:expected ratios of non-synonymous:synonymous mutations was used
(Martincorena et al., 2017). Twelve genes showed evidence of positive selection in the 257
normal endometrial glands; PIK3CA, PIK3R1, ARHGAP35, FBXW?7, ZFHX3, FOXA2, ERBB2,
CHD4, KRAS, SPOP, PPP2R1A and ERBB3 (Figure 4.6c-e, Appendix 14). All were present in a
set of 369 genes previously shown to be under positive selection in human cancer
(Martincorena et al., 2017). In addition, four different truncating mutations (and no other
mutations) were observed in the progesterone receptor gene (PGR). Although these did not

attain standard significance levels the biological role that progesterone plays in normal
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endometrium as an antagonist of oestrogen driven proliferation raises the possibility that

these inactivating mutations confer growth advantage.

To comprehensively identify drivers in the 257 endometrial glands, mutations with the
characteristics of drivers in each of the 369 genes were sought (Methods). 209 driver
mutations were found in normal endometrial glands from 25/28 women (Appendix 15). The
youngest carrier was a 24-year-old (PD40535) with a KRAS G12D mutation in 1/7 glands
sampled. 57% (147/257) of endometrial glands carried at least one driver mutation, 16%
(42/257) carried at least two and 2% (5/257) carried at least four drivers. Remarkably, in four
women, aged 34 (19 glands), 44 (11 glands), 60 (14 glands) and 81 (5 glands), all glands
analysed carried driver mutations suggesting that the whole endometrium had been
colonised by genomically microneoplastic clones (Figure 4.11 and 4.12). The fraction of
endometrial glands carrying a driver (Figure 4.2g), the mean number of drivers per gland
(Figure 4.2h) and the number of different drivers in each individual (corrected for number of
glands sampled) (Figure 4.2i) all positively correlated with age of the individual. However,
there were sufficient outliers from this age correlation to suggest that other factors influence

colonisation of the endometrium by driver carrying clones.

Driver mutations in both recessive (tumour suppressor genes) and dominant cancer genes
were found, similar to recent publications (Suda et al., 2018, Lac et al., 2019, Anglesio et al.,
2017). PIK3CA was the most frequently mutated cancer gene, with at least one missense
mutation in 54% (15/28) of women and five different mutations found in two women (Figure
4.11 and Figure 4.13). Most truncating driver mutations in recessive cancer genes (including
in ZFHX3, ARGHAP35 and FOXA2 which showed formal evidence of selection in normal
endometrial glands, see above) were heterozygous without evidence of a mutation
inactivating the second, wild type allele. Therefore, haploinsufficiency of these genes appears
sufficient to confer growth advantage in normal cells. Nevertheless, further inactivating
mutations, including copy number neutral LOH of the wild type allele and truncating
mutations, in the same genes in other glands indicate that additional advantage is conferred
by complete abolition of their activity (notably for ZFHX3 in the 60 year old, Figure 4.12 and
4.15). Driver mutations were found in genes encoding growth factor receptors (ERBB2, ERBB3
and FGFR2), components of signal transduction pathways (HRAS, KRAS, BRAF, PIK3CA, PIK3R1,
ARHGAP35, RRAS2, NF1, PP2R1A and PTEN), pathways mediating steroid hormone responses
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(ZFHX3, FOXA2, ARHGAP35), proteins involved in chromatin function (KMT2D and ARID5B)
and protein-mediated degradation pathways (FBXW?7) that target oncoproteins such as mTOR

and c-MYC. Many different combinations of mutated cancer genes were found in individual

glands.
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Figure 4.16 | Oncoplot of all driver mutations and their distribution across individual
endometrial gland samples and donors. Each cell represents an individual endometrial
gland sample and is colour-coded to represent the total number of detected driver
mutations (0-3). PIK3CA was the most frequently mutated gene with at least one mutation
detected in 54% (15/28) of women. In some glands, these co-occurred with mutations in
ZFHX3, ARHGAP35, FGFR2, FOXA2 and other genes that are also selected for in
endometrial cancer.
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4.2.6.1 Rate of driver mutations and mixed-effect model

The fraction of endometrial glands carrying a driver (Figure 4.2g), the mean number of drivers
per gland (Figure 4.2h) and the number of different drivers in each individual (corrected for
number of glands sampled) Figure 4.2i) all positively correlated with age of the individual.
However, there were sufficient outliers from this age correlation to suggest that other factors
influence colonisation of the endometrium by driver carrying clones. Indeed, use of a
generalised linear mixed effect model showed that age has a positive association with
accumulation of driver mutations (0.035 driver mutation per year, Clgsy 0.01-0.06, p = 3.31 x
10*) while parity has a negative association (-0.253 per life birth, Clgsy% -0.46 to -0.05, p = 1.33

x 1072) (Appendix 16); no correlation was observed with menstrual phase (Appendix 17).

4.2.6.2 Timing of driver mutations

Constructing phylogenetic trees based on whole genome sequences of individual endometrial
glands enabled characterisation of the mode of expansion of normal cell clones with drivers
and timing of their initiation. Phylogenetically closely related glands were often in close
physical proximity within the endometrium (Figure 4.11). In phylogenetic clusters for which
the mutation catalogues were almost identical, this may simply reflect multiple sampling of a
single tortuous gland weaving in and out of the plane of section, rather than distinct glands
with their own stem cell populations (e.g. glands C5 and E5, Figure 4.11a, c). For other
phylogenetic clusters, the different branches within the clade have diverged substantially,
sometimes acquiring different driver mutations, and therefore are likely derived from
different stem cell populations. In such instances phylogenetically related glands can range
over distances of hundreds of microns suggesting that their clonal evolution has entailed
capture and colonisation of extensive zones of endometrial lining (e.g. glands C1, A2, B1, H2,
A3, B3, Figure 4.11b, d). Conversely, many glands in close physical proximity are
phylogenetically distant (e.g. glands E1 and G2, Figure 4.11a, c), indicating that their cell

populations have remained isolated from each other.

Driver mutations were positioned on the phylogenetic trees of somatic mutations

constructed for each individual and their times of occurrence were estimated by assuming
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constant somatic mutation rates during life (Figure 4.18, 4.18and 4.20). This assumption is
unlikely to be completely correct. However, the results indicate that mutations in normal
endometrial cells (and particularly those attributable to SBS1 and SBS5/40) are acquired in
more-or-less linear fashions throughout life and that potential modifying factors, including
acquisition of a driver, make only modest differences to mutation rates. Furthermore, our
approach is, overall, likely to overestimate the ages before which driver mutations have
occurred because it does not account for the time taken by a single endometrial stem cell to
colonise an individual gland, which in colorectal crypts is estimated at several years (Nicholson
et al., 2018). The results indicate, therefore, that at least some driver mutations occur early
in life. These included a KRAS G12D mutation in three glands from a 35 year old and a PIK3CA
mutation in two glands from a 34 year old, which are both likely to have arisen during the first
decade (Figures 4.11, 4.12, 4.13 and 4.18). A pair of drivers in ZFHX3 and PIK3CA, co-occurring
in six glands from a 60 year old, were also acquired during the first decade indicating that
driver associated clonal evolution also begins early in life (Figures 4.11 and 4.19). Indeed, it is
possible that many more clones with drivers were initiated during the first decade, but their
phylogenetic trees are not informative in this regard (Figures 4.19 and 4.20). Three normal
cell clones (from 3 individuals) with a driver mutation were demonstrably initiated after age
20 (Figure 4.19). There was evidence, however, for continuing acquisition and clonal
expansion of driver mutations into the third and fourth decades and further accumulation

beyond this period is not excluded (Figures 4.18, 4.19 and 4.20).
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Figure 4.18 | Timing of driver mutations in normal endometrial glands. To time driver mutations, phylogenetic
trees were reconstructed for 25 out of the 28 donors using single nucleotide variants (SNVs). To estimate the time
interval in which specific mutations occurred, we calculated a patient-specific mutation rate by taking the ratio
of the patient’s mean mutation burden per endometrial gland and the patient’s age. The mutation number at
the start and end of a branch in the phylogenetic tree was then converted to a lower and upper age by dividing
these numbers by the estimated mutation rate. This approach relies on the assumption of a constant mutation
rate for endometrial glands throughout a patient’s life. The same approach was used for timing indels. We timed
driver mutations that occurred in the ‘trunks’ and branches. Here, we display driver variants that occurred in the
‘trunks’ of the individual trees only. We show that many driver variants occur decades before the reported peak
incidence of endometrial cancer (variants with an interval of <1 year between the upper age and the age at
sampling were excluded from this plot for illustration purposes). Based on our calculations, four driver variants
(KRAS G12D, PIK3CA G118D, PIK3CA E542K and ZFHX3 R715*) from three different women occurred before the
age of 10.
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Figure 4.19 | Timing of all driver mutations. To time driver mutations, we used the reconstructed SNV based
phylogenetic trees for 25 out of the 28 donors. Here, to estimate the time interval in which specific mutations
occurred, we calculated a patient-specific mutation rate by taking the ratio of the patient’s mean mutation
burden per endometrial gland and the patient’s age. The mutation number at the start and end of a branch
in the phylogenetic tree was then converted to a lower and upper age by dividing these numbers by the
estimated mutation rate. This approach relies on the assumption of a constant mutation rate for endometrial
glands throughout a patient’s life. The same approach was used for timing indels. We timed driver mutations
that occurred in the ‘trunks’ and branches.
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Figure 4.20 | Timing of driver mutations using patient-based and cohort-based estimates of mutation
rates. To estimate the time interval in which specific mutations occurred, we applied two approaches: (a)
‘patient-based’, in which we calculated a patient-specific mutation rate by taking the ratio of the patient’s
mean mutation burden per endometrial gland and the patient’s age; (b) ‘cohort-based’, in which mutation
rate for each patient was derived from the linear mixed-effect model for total mutation rate that included
data from the entire cohort. The mutation number at the start and end of a branch in the phylogenetic tree
was then converted to a lower and upper age by dividing these numbers by the estimated mutation rate.
Both approaches rely on the assumption of a constant mutation rate for endometrial glands throughout a
patient’s life.
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4.2.6.3 Microbiome

The microbiome content of the endometrium has become a hot topic in recent years. We
examined whether there were any correlations of the microbiome and patient age, BMI and
somatic mutations. To detect bacterial DNA sequences in the available whole-genome
sequencing data from normal endometrial glands, read-pairs which had one or both reads
unmapped were identified and bases with Phred quality score < 10 were removed. The
remaining sequence was split into non-overlapping 30 bp fragments. Terminal fragments
were processed without further splitting (30-59 bp). The obtained fragments were aligned to
the viral GOTTCHA database (Freitas et al., 2015) at the taxonomic levels of phylum, class,
order, family, genus, species and strain using BWA (Li and Durbin, 2010). For each endometrial
gland sample, we also calculated unmapped and mapped read ratios which were included in

the mixed-effect model.

First, we looked for the presence of bacterial organisms that have been previously associated
with endometrial cancer (Walther-Antonio et al., 2016) (Table 4.1) at a species level.
Porphyromonas asaccharolytica was identified in two glands from two patients
(PD37507b_EMD2_G7_A2 and PD39952b_EMD_15_G1) at a relative abundance of 0.0357
and 0.0229 respectively. Although the species has been previously associated with
endometrial cancer, given the fact that the two calls are only identified in one sample from
each donor and at a relative abundance <0.05, we are hesitant to make firm conclusions
based on these limited observations. No other endometrial cancer associated bacterial

organisms were identified in the WGS data from the normal endometrial glands.

Second, we examined the relative abundance of all identified bacterial genomes at the
phylum and order levels (Figure 4.21) for each donor. Interestingly, the top three phyla
detected in the normal endometrial glands were Proteobacteria, Actinobacteria and
Firmicutes, all of which are known to be the most prevalent phylain normal/”healthy” uterine

microbiota (Baker, 2018).

Next, to test whether there is any correlation between the relative abundance of the
identified bacteria and the total somatic mutation burden in normal endometrium, we
applied a linear mixed-effect model. At the phylum level, relative abundance of Firmicutes

has a negative effect on the acquisition of somatic mutations in normal endometrium (-172
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substitutions, p = 2 x 1072). At the order level, there is a negative correlation between the
relative abundance of Lactobacillales and the rate of total mutation burden (-309
substitutions, p = 2.1 x 102). This is an interesting observation and it is not yet clear what the
underlying mechanism might be between the somatic mutation acquisition and the relative
abundance of Lactobacillales. It may well be that this association is related to other factors
such BMI, age and parity. Further work to explore the endometrial microbiome and its
association with somatic mutation burden fully on a larger study with a microbiome-specific
hypothesis and methodology, in particularly in relation to the sample collection, and strict

control for multiple testing in the statistical analyses, is necessary to draw robust conclusions.
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Figure 4.21| Heatmap of bacterial organisms identified in normal endometrial glands. The figure
shows summary of the identified bacterial genomes and their relative abundance in normal
endometrial glands in each donor on a phylum (a) and order (b) levels.
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4.2.7 Summary of results in this chapter

Using a combination of laser-capture microdissection and whole genome sequencing of
individual endometrial glands, we show that the ‘driver’ mutations in normal cell clones are
not only abundant in this tissue, but occur in the early decades of life, accumulate with age
and in some women appear to colonise the entire endometrium without morphological
evidence of neoplastic transformation. We show that parity has a ‘protective’ effect on the
rate at which driver events occur in this tissue. Importantly, although we report a high
prevalence of driver mutations in this tissue, genomic changes in key cancer genes, such as
PTEN and TP53, that are usually seen in both types of endometrial cancer, are relatively
infrequent in the normal endometrium with only five such mutations identified in the entire
cohort. Interestingly, other types of genomic alterations (CNAs and structural variants) were
also uncommon. Furthermore, unlike cancer, normal endometrial glands are characterised by
relatively homogenous mutational processes with the majority of the samples showing
primarily SBS1, SBS5 and SBS18 signatures. Together, these observations support the notion
that cancer is a complex multi-step process and that single events, such as single base

substitutions in cancer genes, alone do not necessarily lead to neoplastic transformation.

A series of studies are being conducted in our group, and elsewhere, in multiple different
normal tissues, and we are already seeing that the observed mutation patterns across sites
are not the same. Here, we showed that the landscape of somatic mutations is different
between endometrium and other normal tissues, such as colon. The epithelial component in
both colon and endometrium comprises glandular structures, each containing a pool of stem
cells within the basal compartments. Although the incidence of cancer and the rate at which
somatic mutations occur is higher in the colon, surprisingly driver mutations have been found
in only ~1% of crypts. PIK3CA, the second most commonly mutated gene in endometrial
cancer, and is also the most frequently mutated cancer gene in normal endometrium and yet,
no detectable morphological changes were seen. These findings also highlight that other

factors, such as cell context and microenvironment, play role in the development of cancer.
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5.1

Chapter 5 General discussion

Summary of findings

This, and other, studies of normal endometrial epithelium, together with recent studies of
other normal cell types (Blokzijl et al., 2016, Martincorena, 2018, Martincorena et al., 2015,
Lee-Six et al., 2018a, Lee-Six et al., 2018b, Genovese et al., 2014, Jaiswal et al., 2014, Suda et
al., 2018, Lee-Six et al., 2019), is revealing the landscape of somatic mutations in normal
human cells. Somatic mutations are predominantly generated by a limited repertoire of
ubiquitous mutational processes generating base substitutions, small indels, genome
rearrangements and whole chromosome copy number changes which exhibit more-or-less
constant mutation rates during the course of a lifetime. Additional mutational signatures
which are present only in some cells, only in some cell types and/or are intermittent also
operate in some normal cells, although apparently not the endometrial epithelium,
supplementing the mutation load contributed by ubiquitous signatures. The latter include
exposures such as ultraviolet light in skin (Martincorena et al., 2015), APOBEC mutagenesis in
occasional colon crypts and other signatures of unknown cause in normal colon

epithelium(Lee-Six et al., 2019).

A small subset of mutations generated by these mutational processes have the properties of
driver mutations. Numerous cell clones with one or more drivers colonise much of the normal
endometrial epithelium (Suda et al., 2018, Lac et al., 2019), in contrast to the colon where
just 1% of normal crypts in middle-aged individuals carry a driver(Lee-Six et al., 2019, Suda et
al., 2018). This marked difference in driver mutation landscape seems unlikely to be due to
any relatively modest difference in total somatic mutation rate between endometrial and
colonic epithelial stem cells (Blokzijl et al., 2016, Lee-Six et al., 2019, Roerink et al., 2018).
However, it may be attributable to intrinsic differences in physiology between endometrium
and colon. In the endometrium, the cyclical process of tissue breakdown, shedding and

remodelling iteratively opens up denuded terrains for pioneering clones of endometrial
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epithelial cells with drivers to preferentially colonise compared to wild type cells. By contrast,
in the colon the selective advantage of a clone with a driver is usually confined to the small
siloed population of a single crypt, with only occasional opportunities for further expansion.
Thus, the endometrium, in some respects, resembles more the squamous epithelia of skin
and oesophagus in which cell clones derived from basal cells (with or without driver
mutations) directly compete against each other for occupancy of the squamous sheet and in
which substantial proportions of such sheets become colonised over a lifetime by normal cell
clones carrying driver mutations (Martincorena et al., 2015, Martincorena et al., 2018).
Although this rampant colonisation by driver clones in endometrium progresses with age, it
is already well advanced in some young women, and parity apparently has an inhibitory effect
on it, indicating that multiple factors influence its progression. The effect of parity is of
particular interest since increased parity also reduces endometrial cancer risk and it is
plausible that this is mediated by a suppressive effect of parity on driver clone expansion (Wu
et al., 2015). More extensive studies of the mutational landscape in normal endometrium are
required to better assess how pregnancy, the premenarchical and postmenopausal states,
hormonal contraceptive use and hormone replacement therapies influence it and also the

potential impact it has on pregnancy and fertility.

The burdens of all mutation classes are lower in normal endometrial cells, including those
with drivers, than in endometrial cancers. However, these differences are most marked for
structural variants/copy number changes and for the extreme base substitution/indel
hypermutator phenotypes due to DNA mismatch repair deficiency and polymerase
delta/epsilon mutations which were not found in normal endometrium. The results therefore
indicate that in endometrial epithelium, and in other tissues thus far studied including colon,
oesophagus and skin, normal mutation rates are sufficient to generate large numbers of
clones with driver mutations behaving as normal cells, but that acquisition of an elevated
mutation rate and burden is associated with further evolution to invasive cancer (Lee-Six et
al., 2019, Martincorena et al.,, 2015, Martincorena, 2018). Given that the endometrial
epithelium is extensively colonised by clones of normal cells with driver mutations in middle-

aged and older women and that the lifetime risk of endometrial cancer is only 3% (CRUK), this
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conversion from normal cell clone with drivers to symptomatic malignancy appears to be

extremely rare.

The frequent colonisation of normal endometrial epithelium by normal cell clones with driver
mutations provides a particular opportunity to time the onset of drivers during the lifetime
of an individual by construction of phylogenetic trees of cell lineages based on whole genome
sequences. The results show that the first drivers in these clones often arise relatively early
in life, indicate that some occur within the first decade and do not exclude many more doing
so. The modal period of diagnosis of endometrial cancer is 75-80 years. Therefore, if normal
cell clones with drivers are progenitors of endometrial cancers, which is plausible given the
similar repertoires of cancer genes in which the driver mutations are found, then it is
conceivable that some neoplastic clones ultimately manifesting as cancer were initiated
during childhood and that evolution to malignancy has taken place over much of the
individual’s lifetime. This perspective on the long duration of neoplastic evolution of invasive
endometrial cancer has resonance with previous observations on leukaemia (Greaves, 2005,
Greaves, 2003) and, more recently, other solid malignancies (Mitchell et al., 2018, Anderson
etal., 2018, Maura et al., 2018, Gerstung et al., 2018) and may therefore be a common feature

of human cancer development.
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5.2

Limitations

5.2.1 Method limitations

The low DNA input LCM workflow has been particularly impactful for when we are able to
identify and capture clonal units, such as colonic crypts or endometrial glands in mitotically
active tissue. Conversely, in mitotically relatively in-active tissues (brain, heart and skeletal
muscle) or highly polyclonal tissues (liver and lung), this approach is less informative and
requires greater read depth. These tissues would benefit from error-corrected WGS
techniques which are currently under development and have the potential to differentiate
between sequencing artefacts and genuine variants residing within small clones within a

polyclonal sample.

5.2.2 Study limitations

Within the endometrial study, the main issue is the fact that we were restricted by the
availability of eligible samples, which impacted our case ascertainment, specifically the age
spectrum. In addition, the availability of the associated metadata, such as BMI and parity, was
suboptimal reducing the power of our analyses when accounting for these variables. In our
comparison of the mutation rate in the endometrium to other tissues, some of the possible
limitations include differences in experimental approaches (organoid cultures and LCM-
derived material) and additional mutations that could’ve been acquired during the cell

culture, sequencing depth and clonality and purity of the samples.
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5.3

Work in context

5.3.1 Relevant work published during my PhD

During the course of our work, a study by Anglesio and colleagues showed that cancer
associated mutations can be identified in morphologically normal, but in abnormally located
(ectopic) endometrium. Specifically, they studied deep infiltrating endometriosis, a condition
that almost never undergoes malignant transformation (Anglesio et al., 2017). Known cancer
driver mutations in genes such as PIK3CA, KRAS and ARID1A were found in 5/24 patients,
including those in their late 20s. Later, the same group studied another type of endometriosis,
iatrogenic endometriosis, which is thought to be associated with previous surgical procedures
(Lac et al., 2018). The results showed driver mutations in 11/40 such cases and yet these

lesions virtually never undergo malignant transformation.

Finally, Suda and colleagues applied targeted and whole exome sequencing approach to study
ovarian endometriosis and concurrent normal endometrium from the same patients; they
showed that cancer driver mutations are not only abundant in the endometriotic lesions, but
can also be detected in the eutopic (uterine) normal endometrium without morphological

evidence of malignancy (Suda et al., 2018).

5.3.2 Early detection

In recent years, significant efforts have been made to improve early cancer diagnosis through
the development of techniques to screen blood and other bodily fluids for early cancer driver
events. In this work, | show that the ‘driver’ mutations in normal endometrial epithelium are
not only abundant, but occur in the early decades of life, accumulate with age and in some
women appear to colonise the entire endometrium without morphological evidence of
malignant transformation. These observations along with the recent work in other normal
tissues, such as skin and oesophagus, have implications on our understanding of ageing and
what constitutes ‘normal’ and force us to reconsider the rather simplistic binary distinction
between ‘drivers’ and ‘passengers’. The findings also highlight that caution should be taken

in the development and utilization of mutation-based early detection tools in endometrial
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and other cancer types and that a multi-dimensional (‘multi-omics’) approach, which would
also incorporate methylation and transcriptomics data, should be considered to avoid false

positive results and unnecessary diagnostic tests, overtreatment and distress.
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54

Future work

5.4.1 Endometrium expansion

Based on our initial observation in relation to somatic mutation accumulation, | plan to study
more endometrial glands from healthy women expanding across the age range, particularly

at the extremes and around perimenopause.
The expanded dataset will allow us to:

1. Model more accurately mutational burden as a function of age and to determine
whether the accumulation of mutations is truly linear or whether there are oestrogen-

related rate changes, for instance at puberty and menopause.

2. Use better characterise driver landscape of peri- and post-menopausal women to

better understand what constitutes ‘normal’ ageing and endometrial tumourigenesis.

3. Model with greater power the effect of known epidemiological cancer risk factors,

such as BMI, parity and hormonal therapy.
5.4.2 Panbody completion

The preliminary pan-body analyses on a single male donor (78 year old), which included 224
samples across twenty five tissues have already provided first insights into the clonal
architecture, mutational signatures and mutation burden. We have expanded this work to
two further donors: one male (47 year old) and one female (54 year old). The additional data
will not only validate some of our initial observations in terms of burden and signatures, but
it will also make the pan-body survey more comprehensive by including tissues from both

genders.
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5.5

Conclusions

These preliminary normal tissue analyses have already provided an initial survey of clonal
architecture, mutational signatures and mutation burden. More extensive studies of each
tissue are required to investigate whether additional mutational signatures occur
sporadically, to characterise the accumulation of mutations from each signature with age, to
provide more comprehensive estimates of mutation burden and to extend to post-mitotic cell
types, such as myocytes and neurones, which are not easily studied our low DNA input LCM
approach here. The survey also indicates that small clones of cells carrying driver mutations
are present and, given the relatively modest number of samples analysed, relatively common
in many normal tissues. This phenomenon similarly requires more in-depth characterisation
of the differences between tissues in the proportions of normal cells carrying drivers, the
accumulation of driver clones in each tissue with age, and the extent to which driver
mutations alter the parameters of clonal expansion. The results of such studies will
collectively establish a basis for subsequent exploration of how mutational processes in vivo
are influenced by inherited genetic background, by lifestyle, occupational and environmental

exposures, and by inflammatory, metabolic and degenerative human diseases.
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ASC adult stem cells

Ccco cytochrome C oxydase

eeASCs endometrial epithelial adult stem cells
HDP Hierarchical Dirichlet Process
LCM Laser-capture microscopy
LRCs Label retaining cells

NGS next generation sequencing
SNV single nucleotide variant

SV structural variant

TA Transient amplifying

TAH total abdominal hysterectomy
VAF variant allele fraction
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Prostate_left_lobe
Prostate_left_lobe
Prostate_left_lobe
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Right_distal_bronchus
Right_distal_bronchus
Right_distal_bronchus
Right_distal_bronchus
Right_distal_bronchus
Right_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Zona_fasciculata
Zona_fasciculata
Zona_fasciculata
Zona_fasciculata
Zona_fasciculata
Zona_glomerulosa
Zona_glomerulosa
Zona_glomerulosa
Zona_glomerulosa
Zona_glomerulosa
Zona_reticularis
Zona_reticularis
Zona_reticularis
Zona_reticularis
Zona_reticularis
Visceral_fat
Visceral_fat
Visceral_fat
Visceral_fat
Visceral_fat
Skin_lower_abdomen
Skin_lower_abdomen
Skin_lower_abdomen
Right_kidney_superior
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Acinus

Acinus

Acinus

Acinus

Acinus

Acinus

Acinus

Acinus

Acinus

Acinus

Acinus

Acinus
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Zona_fasciculata
Zona_fasciculata
Zona_fasciculata
Zona_fasciculata
Zona_fasciculata
Zona_glomerulosa
Zona_glomerulosa
Zona_glomerulosa
Zona_glomerulosa
Zona_glomerulosa
Zona_reticularis
Zona_reticularis
Zona_reticularis
Zona_reticularis
Zona_reticularis
Visceral_fat
Visceral_fat
Visceral_fat
Visceral_fat
Visceral_fat
Skin_sebaceous_gland
Skin_sebaceous_gland
Skin_sebaceous_gland
Distal_tubule

PD28690fd_PA_1_A1l
PD28690fd_PA_1_A10
PD28690fd_PA_1_A2
PD28690fd_PA_1_A3
PD28690fd_PA_1_A6
PD28690fd_PA_1_A8
PD28690fd_PA_1_C2
PD28690fd_PA_1_C3
PD28690fd_PA_1_C5
PD28690fd_PA_1_C6
PD28690fd_PA_1_E10
PD28690fd_PA_1_E12
PD28690ef _BR4_L1_A2
PD28690ef BR4_L1_C2
PD28690ef BR4_L1_E1
PD28690ef BR4_L1_E2
PD28690ef BR4_L1_G1
PD28690ef_BR4_L2_A3
PD28690ef _BR4_L2_C3
PD28690eh_BR5_L2_A7
PD28690eh_BR5_L2_A8
PD28690eh_BR5_L2_BS
PD28690eh_BR5_L2_D9
PD28690eh_BR5_L2_G9
PD28690eh_BR5_L2_H7
PD28690ef BR4_L1_SMGIA
PD28690ef_BR4_L2_SMG1D
PD28690ef_BR4_L1_SMG1D
PD28690ef_BR4_L1_SMG2B
PD28690ef_BR4_L2_SMG1B
PD28690ef_BR4_L2_SMG2A
PD28690ef _BR4_L1_SMG2A
PD28690ef_BR4_L2_SMG2B
PD28690ef_BR4_L1_SMG1C
PD28690gu_AG1_ZF_L1
PD28690gu_AG1_ZF_L2
PD28690gu_AG1_ZF_L3
PD28690gu_AG1_ZF_L4
PD28690gu_AG1_ZF_L5
PD28690gu_AG1_7G_L1
PD28690gu_AG1_ZG_L2
PD28690gu_AG1_7G_L3
PD28690gu_AG1_7G_L4
PD28690gu_AG1_ZG_L5
PD28690gu_AG1_ZR_L1
PD28690gu_AG1_ZR_L2
PD28690gu_AG1_ZR_L3
PD28690gu_AG1_ZR_L4
PD28690gu_AG1_ZR_L5
PD28690gu_AG1_AT L1
PD28690gu_AG1_AT L2
PD28690gu_AG1_AT L3
PD28690gu_AG1_AT L4
PD28690gu_AG1_AT L5
PD28690bf_SKN2_C2
PD28690bf _SKN2_E1
PD28690bf _SKN2_H1
PD28690hk_KD_3_E3



Kidney Right_kidney_superior Glomerulus PD28690hk_KD_3_A3

Kidney Right_kidney_superior Glomerulus PD28690hk_KD_5_G2

Kidney Right_kidney_superior Glomerulus PD28690hk_KD_1_D1

Kidney Right_kidney_superior Proximal_tubule PD28690hk_KD_6_A2

Kidney Right_kidney_superior Glomerulus PD28690hk_KD_6_A4

Kidney Right_kidney_superior Proximal_tubule PD28690hk_KD_5_H2

Kidney Right_kidney_superior Proximal_tubule PD28690hk_KD_4 D4

Kidney Right_kidney_superior Distal_tubule PD28690hk_KD_4 A4

Kidney Right_kidney_superior Distal_tubule PD28690hk_KD 5 E2

Kidney Right_kidney_superior Distal_tubule PD28690hk_KD_4 C4

Kidney Right_kidney_superior Distal_tubule PD28690hk_KD_1_A1l

Kidney Right_kidney_superior Proximal_tubule PD28690hk_KD_1_E1

Kidney Right_kidney_superior Distal_tubule PD28690hk_KD_6_G3
Thyroid Thyroid_left_inferior_lobe Follicle PD28690fI_F1_2_A12

Thyroid Thyroid_left_inferior_lobe Follicle PD28690fI_F2_2_B12

Thyroid Thyroid_left_inferior_lobe Follicle PD28690fI_F3_2_C12

Thyroid Thyroid_left_inferior_lobe Follicle PD28690fl_F4_2 D12

Thyroid Thyroid_left_inferior_lobe Follicle PD28690fl_F5_2_E12

Thyroid Thyroid_left_inferior_lobe Follicle PD28690fl_F6_2_F12

Thyroid Thyroid_left_superior_lobe Follicle PD28690fm_F1_1_A1l

Thyroid Thyroid_left_superior_lobe Follicle PD28690fm_F1_1_A11
Thyroid Thyroid_left_superior_lobe Follicle PD28690fm_F1_1_B1

Thyroid Thyroid_left_superior_lobe Follicle PD28690fm_F2_1 B11
Thyroid Thyroid_left_superior_lobe Follicle PD28690fm_F2_2_B2

Thyroid Thyroid_left_superior_lobe Follicle PD28690fm_F3_1_C11
Thyroid Thyroid_left_superior_lobe Follicle PD28690fm_F4_1_D11
Thyroid Thyroid_left_superior_lobe Follicle PD28690fm_F5_1 E11
Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_EW_CT_A2
Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_EW_CT_D3
Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_F1_1_Al

Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_F1_3_E1

Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_F1_4_G1

Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_F1_6_G2

Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_F2_3_F1

Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_F2_6_H2

Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_F3_1_C1

Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_F3_5_F2

Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_F4_1_E1

Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_F5_1_A3

Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_L1_CL2_C3
Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_L1_CL4_G3
Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_L2_CL2_C7
Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_L5_CL2_G5
Thyroid Thyroid_right_superior_lobe Follicle PD28690fq_L5_CL3_A7

Heart Heart_left_ventricle Cardiac_myocytes PD28690gd_HEART_2_C10
Heart Heart_left_ventricle Cardiac_myocytes PD28690gd_HEART_2_C9
Heart Heart_left_ventricle Cardiac_myocytes PD28690gd_HEART_2_E10
Heart Heart_left_ventricle Cardiac_myocytes PD28690gd_HEART_2_E9
Heart Heart_left_ventricle Cardiac_myocytes PD28690gd_HEART_2_G10
Heart Heart_left_ventricle Cardiac_myocytes PD28690gd_HEART_2_G9
Bladder Bladder_left_wall Urothelium PD28690ch_BL2_CU1 L3 4 C
Bladder Bladder_left_wall Urothelium PD28690ch_BL2_CU2 L3 4 E
Bladder Bladder_left_wall Urothelium PD28690ch_BL2_CU3 L3 4 F
Bladder Bladder_right_wall Urothelium PD28690cm_BL1_CU1 L1_2_/
Bladder Bladder_right_wall Urothelium PD28690cm_BL1_CU2 L1_2_§
Bladder Bladder_right_wall Urothelium PD28690cm_BL1_CU3 L3_4 ¢
Bladder Bladder_right_wall Urothelium PD28690cm_BL1_CU4 L3 4 |
Artery Right_kidney_superior Renal arteriole PD28690hk_RA_1_F5
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Appendix 2

Sex
Age
Donor ID
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue

Female

54

11-S11

Adrenal gland
Bladder (urinary)
Brain, Cerebellum
Breast

Cecum

Colon

Duodenum
Fallopian tube
Gallbladder

Gl Tract

lleum

Jejunum

Kidney

Kidney, cortex
Kidney, medulla
Liver

Lung

Ovary

Pancreas
Rectum

Skin

Stomach (fundus)
Thyroid

Uterus, cervix
Uterus, endometrium

Sex
Age
Donor ID
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
Tissue
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Male

47

11-S7

Adrenal gland
Bladder (urinary)
Brain, Cerebellum
Cecum

Colon, ascending
Colon, descending
Colon, sigmoid
Colon,transversal
Duodenum
Esophagus
Gallbladder
lleum

Jejunum

Kidney

Kidney, medulla
Liver

Lung

Pancreas
Prostate

Rectum

Salivary gland
Skin

Stomach (fundus)
Testis

Thyroid



Appendix 3

Fixation of Frozen Tissue Sections for LCM

Ethanol

Add 100 ul of 70% ethanol to a single slide with unfixed frozen sections for 2-3 minutes
Wash 2-3x with PBS (10 sec)

Place slides into a petri dish/coplin jar with PBS until ready for staining

Phosphate-buffered paraformaldehyde 4%

Add 100 ul 4% phosphate-buffered paraformaldehyde (PFA) to a single slide with unfixed

frozen sections for 5 minutes
Wash 3x with PBS
Place slides into a petri dish/coplin jar with PBS before staining

Phosphate-buffered paraformaldehyde 1%

Add 100 ul 1% phosphate-buffered paraformaldehyde (PFA) to a single slide with unfixed

frozen sections for 5 minutes

Wash 3x with PBS

Place slides into a petri dish/ coplin jar with PBS before staining

Methanol

Add 100 ul of ice-cold methanol to a single slide with unfixed frozen sections for 2-3 minutes
Wash 3x with PBS

Place slides into a petri dish/coplin jar with PBS before staining

Acetone

Add 100 ul of ice-cold acetone to a single slide with unfixed frozen sections for 2 minutes
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Wash 3x with PBS

Place slides into a petri dish/coplin jar with PBS before staining

Staining frozen sections with haematoxylin

Staining should be done in a fume hood (CGP Containment level 1 lab)
Ensure stains and alcohols have been recently changed

Place fixed unstained tissue slides into haematoxylin for 10 seconds
Rinse 2x with tap water

Place the slides into 70% ethanol 2x for approximately 5 seconds
Place the slides into 100% ethanol 2x for approximately 5 seconds

Place the slides into xylene 1x for 5 seconds

Staining frozen sections with haematoxylin and eosin

Staining should be done in a fume hood (CGP Containment level 1 lab)

Ensure stains and alcohols have been recently changed

Place fixed unstained tissue slides into haematoxylin for 10 seconds

Rinse with tap water 2x

Place slides into eosin for 5 seconds

Rinse with tap water 1x

Place the slides into 70% ethanol for 5-10 seconds

Place the slides into 100% ethanol 2x for 5-10 seconds

Place the slides into xylene (or Neo-clear xylene substitute) for 5 seconds
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Appendix 4

H&E staining for LCM paraffin sections

Staining should be done in a fume hood (CGP Containment level 1 lab)
Remove paraffin/dewax by sequential immersion in the following:
Xylene —2 min
Xylene —2 min
Ethanol 100% — 1 min
Ethanol 100% — 1 min
Ethanol 70% - 1 min
Deion —1 min
Stain with Haematoxylin (Gills) and eosin
Haematoxylin — 10-20 sec
Tap water — 20 sec wash
Tap water — 20 sec wash
Eosin —5-10 sec
Tap water — 10-20 sec wash
Ethanol 70% - 10-20 sec
Ethanol 70% - 10-20 sec
Ethanol 100% -10-20 sec
Ethanol 100% -10-20 sec

Xylene — 10-20 sec
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Appendix 5

PAXGENE PROTOCOL

General Information on PAXgene

PAXgene Tissue FIX rapidly penetrates and fixes tissue, with a fixation rate of approximately
1 mm/30 minutes. The reagent preserves morphology and biomolecules without the
destructive cross-linking and degradation associated with formalin fixation.

The process includes two steps:

1. Tissue fixation — Immersion of tissue in PAXgene Tissue FIX
Tissue stabilisation and storage - PAXgene Tissue STABILIZER. Tissue samples can be
stored in PAXgene Tissue STABILIZER for 7 days at room temperature, up to 4 weeks
at 2-8°C and indefinitely at -20°C or -80°C.

Equipment needed

PAXgene Tissue Fix Container
PAXgene Tissue STABILIZER

Tissue Cassettes (for smaller biopsies)

Use one of the following protocols:

Protocol A: for storing multiple small biopsies in a Single PAXgene Tissue FIX Container.

Protocol B: for storing a single biopsy (20 x 20 x 20 mm) in a PAXgene Tissue FIX Container.
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Protocol A - For multiple small samples

1 - Resect and cut tissue into max. 4 x 15 x 15 mm sections.
2 - Place each section into a tissue cassette.
3 - Place up to 4 tissue cassettes into a single PAXgene Tissue FIX Container.

4 — Fixation at room temperature for 2 — 24 hours, depending on tissue type and size,
assuming a fixation rate of approximately 1mm in 30 minutes. Recommended standard
fixation time of 24 hours.

5 — After fixation step is complete pour off the PAXgene Tissue FIX solution from the Tissue
FIX Container and fill the container with PAXgene Tissue STABILIZER.

7 — Transfer to -20°C or -80°C for long-term storage.

Protocol B - For a single, larger tissue sample

1 —Tissue sample can have max. dimensions 20 x 20 x 20 mm.
2 - Place tissue directly into a PAXgene Tissue FIX Container.

3 — Fixation at room temperature for 6 — 48 hours, depending on tissue type and size,
assuming a fixation rate of approximately 1mm in 30 minutes. Recommended standard
fixation time of 48 hours.

4 — After fixation step is complete pour off the PAXgene Tissue FIX solution from the Tissue
FIX Container and fill the container with PAXgene Tissue STABILIZER.

5 —Transfer to -20°C or -80°C for long-term storage.
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Appendix 6

Biopsy_site
Appendix_tip
Appendix_tip
Appendix_tip
Appendix_tip
Appendix_tip
Appendix_tip
Appendix_mid
Appendix_mid
Appendix_mid
Appendix_mid
Appendix_mid
Appendix_mid
Appendix_mid
Appendix_mid
Appendix_mid
Appendix_mid
Appendix_mid
Appendix_mid
Appendix_mid
Appendix_mid
Colon_transverse
Colon_transverse
Colon_transverse
Colon_transverse
Colon_transverse
Colon_transverse
Colon_transverse
Colon_transverse
Colon_transverse
Colon_transverse
Jejunum

Jejunum

Jejunum

Jejunum

Jejunum

Jejunum

Jejunum

Jejunum

Jejunum

lleum

lleum

lleum

lleum

lleum

lleum

lleum
Liver_left_lobe
Liver_left_lobe
Liver_left_lobe
Liver_left_lobe
Liver_right_lobe
Liver_right_lobe

Structure
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Crypt
Bile_duct
Bile_duct
Bile_duct
Bile_duct
Bile_duct
Bile_duct

SamplelD
PD28690bv_APP1_C3
PD28690bv_APP1_F2
PD28690bv_APP1_G3
PD28690bv_APP_4_A7
PD28690bv_APP_4_A8
PD28690bv_APP_4 _C7
PD28690bw_APP_3_ A1
PD28690bw_APP_3 B2
PD28690bw_APP_3 C4
PD28690bw_APP_3 D1
PD28690bw_APP_3 D2
PD28690bw_APP_3 D4
PD28690bw_APP_3 D5
PD28690bw_APP_3 F2
PD28690bw_APP_3 F3
PD28690bw_APP_3 F4
PD28690bw_APP_3_G3
PD28690bw_APP_3_G4
PD28690bw_APP_3 H3
PD28690bw_APP_3 H4
PD28690cc_COL_1_B11
PD28690cc_COL_1_B12
PD28690cc_COL_1_C11
PD28690cc_COL_1_C12
PD28690cc_COL_2_B8
PD28690cc_COL_2_F9
PD28690cc_COL_2_G8
PD28690cc_COL_2_G9
PD28690cc_COL_2_H8
PD28690cc_COL_5_A3
PD28690bp_SB1_A9
PD28690bp_SB1_B8
PD28690bp_SB1_B9
PD28690bp_SB1_D8
PD28690bp_SB1_E9
PD28690bp_SB1_G8
PD28690bp_SB1_G9
PD28690bp_SB1_H8
PD28690bp_SB1_H9
PD28690bt_SB2_A11
PD28690bt_SB2_F10
PD28690bt_SB2_F11
PD28690bt_SB2_G10
PD28690bt_SB2_H10
PD28690bt_SB3_B5
PD28690bt_SB3_F5
PD28690cr_ BD_3_AS8
PD28690cr_BD_3_A9
PD28690cr_BD_3_C7
PD28690cr_BD_3_C8
PD28690cx_BD_2_C1
PD28690da_BD_5_ A1
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Seq_depth
54.0
55.6
40.5
35.5
33.9
25.2
26.7
25.2
31.8
27.6
28.1
321
271
35.2
23.8
26.8
23.7
30.3
24.8
27.2
20.9
15.4
18.9
15.3
29.9
24.2
33.1
25.9
27.5
51.9
19.3
38.4
26.6
27.2
26.9
17.8
29.0
15.5
50.6
214
23.8
24.0
17.5
17.2
19.2
22.3
21.8
15.3
16.9
25.2
24.9
30.3



Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Liver_right_lobe
Urothelium

Urothelium

Urothelium

Urothelium

Left_testis

Left_testis

Left_testis

Left_testis

Left_testis

Left_testis

Left_testis

Left_testis

Left_testis

Left_testis

Left_testis

Left_testis

Left_testis

Left_testis
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Oesophagus_upper_third
Prostate_right_lobe
Prostate_left_lobe

Bile_duct

Bile_duct

Bile_duct

Bile_duct

Bile_duct

Bile_duct

Bile_duct

Bile_duct

Bile_duct

Bile_duct

Bile_duct

Bile_duct

Bile_duct
Liver_parenchyma
Liver_parenchyma
Liver_parenchyma
Urothelium

Urothelium

Urothelium

Urothelium
Seminiferous_tubule
Seminiferous_tubule
Seminiferous_tubule
Seminiferous_tubule
Seminiferous_tubule
Seminiferous_tubule
Seminiferous_tubule
Seminiferous_tubule
Seminiferous_tubule
Seminiferous_tubule
Seminiferous_tubule
Seminiferous_tubule
Seminiferous_tubule
Seminiferous_tubule
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Squamous_epithelium
Acinus

Acinus

PD28690da_BD_5_C1
PD28690da_BD_5 E1
PD28690db_BD_6_A2
PD28690db_BD_7 A3
PD28690db_BD 7 C3
PD28690di BD_1_B2
PD28690dj BD_8 C4
PD28690dr BD_4 A10
PD28690dr BD_4 C10
PD28690dr BD_4 E10
PD28690dw_BD_10_A6
PD28690dw_BD_9 A5
PD28690dw_BD_9 G5
PD28690di HEP1_Z2
PD28690di HEP2_Z1
PD28690di HEP2_Z72
PD28690ip_U_1_C5
PD28690ip_U_1_A5
PD28690ip_U_1_B5
PD28690ip_U_1_D5
PD28690id_T3_L1_B1
PD28690id_T3_L1 B3
PD28690id_T3_L1_C2
PD28690id_T3_L1_D2
PD28690id_T3_L1 F2
PD28690id_T3_L1_G2
PD28690id_T3_L2_C3
PD28690id_T3_L2_C4
PD28690id_T3_L2 F3
PD28690id_T3_L4 B6
PD28690id_T3_L4 C6
PD28690id_T3_L4 E6
PD28690id_T3_L4 F5
PD28690id_T3_L4 H5
PD28690bl_OES1_CU1
PD28690bl_OES1_CU2
PD28690bl_OES2_CU1
PD28690bl_OES2_CU2
PD28690bl_OES3_CU1
PD28690bl_OES3_CU2
PD28690bl_OES3_CU3
PD28690bl_OES3_CU4
PD28690bl_OES3_CU5
PD28690bl_OES3_CU6
PD28690bl_OES3_CU7
PD28690bl_OES3_CUS
PD28690bl_OES4 CU1
PD28690bl_OES4 CU2
PD28690bl_OES4 CU3
PD28690bl_OES4 CU5
PD28690bl_OES4 CU6
PD28690bl_OES5_CU3
PD28690bl_OES5_CU4
PD28690bl_OES5_CU5
PD28690bl_OES5_CU7
PD28690bl_OES5_CUS
PD28690fd_PA 1 A1
PD28690fd_PA_1_A10
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30.2
31.1
26.2
26.1
30.3
16.1
217
31.9
30.1
32.7
30.0
33.5
30.6
23.9
26.2
30.1
35.0
31.6
30.3
29.9
26.4
28.1
26.8
26.9
28.7
28.7
30.6
29.0
31.7
24.4
26.5
15.9
28.6
252
22.9
22.7
43.1
45.6
33.9
242
28.0
32.7
20.5
31.7
32.9
35.4
40.4
30.1
35.9
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Prostate_right_lobe
Prostate_left_lobe
Prostate_left_lobe
Prostate_left_lobe
Prostate_right_lobe
Prostate_left_lobe
Prostate_left_lobe
Prostate_left_lobe
Prostate_left_lobe
Prostate_left_lobe
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Right_distal_bronchus
Right_distal_bronchus
Right_distal_bronchus
Right_distal_bronchus
Right_distal_bronchus
Right_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Left_distal_bronchus
Zona_fasciculata
Zona_fasciculata
Zona_fasciculata
Zona_fasciculata
Zona_fasciculata
Zona_glomerulosa
Zona_glomerulosa
Zona_glomerulosa
Zona_glomerulosa
Zona_glomerulosa
Zona_reticularis
Zona_reticularis
Zona_reticularis
Zona_reticularis
Zona_reticularis
Visceral_fat
Visceral_fat
Visceral_fat
Visceral_fat
Visceral_fat
Skin_lower_abdomen
Skin_lower_abdomen
Skin_lower_abdomen
Right_kidney_superior
Right_kidney_superior
Right_kidney_superior

Acinus

Acinus

Acinus

Acinus

Acinus

Acinus

Acinus

Acinus

Acinus

Acinus
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Bronchial_epithelium
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Sero_mucous_gland
Zona_fasciculata
Zona_fasciculata
Zona_fasciculata
Zona_fasciculata
Zona_fasciculata
Zona_glomerulosa
Zona_glomerulosa
Zona_glomerulosa
Zona_glomerulosa
Zona_glomerulosa
Zona_reticularis
Zona_reticularis
Zona_reticularis
Zona_reticularis
Zona_reticularis
Visceral_fat
Visceral_fat
Visceral_fat
Visceral_fat
Visceral_fat

Skin_sebaceous_gland
Skin_sebaceous_gland
Skin_sebaceous_gland

Distal_tubule
Glomerulus
Glomerulus

PD28690fd_PA_1_A2
PD28690fd PA 1 _A3
PD28690fd_PA_1_A6
PD28690fd PA 1 _A8
PD28690fd_PA 1_C2
PD28690fd PA 1 _C3
PD28690fd PA 1 _C5
PD28690fd PA 1 _C6
PD28690fd_PA_1_E10
PD28690fd_PA 1 _E12
PD28690ef BR4 L1_A2
PD28690ef BR4 L1_C2
PD28690ef BR4 L1 E1
PD28690ef BR4 L1 _E2
PD28690ef BR4 L1_G1
PD28690ef BR4 L2 A3
PD28690ef BR4 L2 C3
PD28690eh_BR5 L2 A7
PD28690eh BR5 L2 A8
PD28690eh BR5 L2 B8
PD28690eh_BR5_L2_D9
PD28690eh_BR5_L2_G9
PD28690eh_BR5_L2_H7
PD28690ef BR4 L1 _SMG1A
PD28690ef BR4 L2 SMG1D
PD28690ef BR4 L1_SMG1D
PD28690ef BR4 L1_SMG2B
PD28690ef BR4 L2 SMG1B
PD28690ef BR4 L2 SMG2A
PD28690ef BR4 L1 _SMG2A
PD28690ef BR4 L2 SMG2B
PD28690ef BR4 L1_SMG1C
PD28690gu_AG1_ZF L1
PD28690gu_AG1_ZF L2
PD28690gu_AG1_ZF L3
PD28690gu_AG1_ZF L4
PD28690gu_AG1_ZF L5
PD28690gu_AG1_ZG_L1
PD28690gu_AG1_ZG_L2
PD28690gu_AG1_ZG L3
PD28690gu_AG1_ZG_L4
PD28690gu_AG1_ZG L5
PD28690gu_AG1_ZR L1
PD28690gu_AG1_ZR_L2
PD28690gu_AG1 ZR L3
PD28690gu_AG1_ZR_L4
PD28690gu_AG1_ZR L5
PD28690gu_AG1_AT L1
PD28690gu_AG1_AT L2
PD28690gu_AG1 AT L3
PD28690gu_AG1_AT L4
PD28690gu_AG1 AT L5
PD28690bf SKN2_C2
PD28690bf SKN2_E1
PD28690bf SKN2_H1
PD28690hk_KD_3 E3
PD28690hk_KD_3 A3
PD28690hk_KD_5 G2
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Right_kidney_superior
Right_kidney_superior
Right_kidney_superior
Right_kidney_superior
Right_kidney_superior
Right_kidney_superior
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Right_kidney_superior
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Thyroid_left_inferior_lobe
Thyroid_left_inferior_lobe
Thyroid_left_inferior_lobe
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Thyroid_left_superior_lobe
Thyroid_left_superior_lobe
Thyroid_left_superior_lobe
Thyroid_left_superior_lobe
Thyroid_left_superior_lobe
Thyroid_left_superior_lobe
Thyroid_left_superior_lobe
Thyroid_left_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Thyroid_right_superior_lobe
Heart_left_ventricle
Heart_left_ventricle
Heart_left_ventricle
Heart_left_ventricle
Heart_left_ventricle
Heart_left_ventricle
Bladder_left_wall
Bladder_left_wall
Bladder_left_wall
Bladder_right_wall
Bladder_right_wall
Bladder_right_wall
Bladder_right_wall
Right_kidney_superior

Glomerulus
Proximal_tubule
Glomerulus
Proximal_tubule
Proximal_tubule
Distal_tubule
Distal_tubule
Distal_tubule
Distal_tubule
Proximal_tubule
Distal_tubule
Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle

Follicle
Cardiac_myocytes
Cardiac_myocytes
Cardiac_myocytes
Cardiac_myocytes
Cardiac_myocytes
Cardiac_myocytes
Urothelium
Urothelium
Urothelium
Urothelium
Urothelium
Urothelium
Urothelium

Renal arteriole

PD28690hk_KD_1_D1
PD28690hk_KD 6 A2
PD28690hk_KD 6 A4
PD28690hk_KD_5 H2
PD28690hk_KD_4 D4
PD28690hk_KD 4 A4
PD28690hk_KD 5 E2
PD28690hk_KD_4 C4
PD28690hk_KD_1_A1
PD28690hk_KD_1_E1
PD28690hk_KD_6_G3
PD28690fl F1_2 A12
PD28690f| F2 2 B12
PD28690fl_F3 2 C12
PD28690fl F4_2 D12
PD28690fl_F5 2 E12
PD28690f|_F6_2 F12
PD28690fm_F1_1_A1
PD28690fm_F1_1_A11
PD28690fm_F1_1_B1
PD28690fm_F2_1_B11
PD28690fm_F2_2_B2
PD28690fm_F3 1 _C11
PD28690fm_F4 1_D11
PD28690fm_F5 1 _E11
PD28690fq EW_CT_A2
PD28690fq EW_CT_D3
PD28690fq_F1_1_A1
PD28690fq F1_3_E1
PD28690fq_F1_4 G1
PD28690fq F1_6_G2
PD28690fq F2 3 F1
PD28690fq F2 6 _H2
PD28690fq F3 1 _C1
PD28690fq F3 5 F2
PD28690fq_F4 1 E1
PD28690fq F5 1 _A3
PD28690fq L1_CL2 C3
PD28690fq L1 _CL4 G3
PD28690fq L2 CL2 C7
PD28690fq L5 CL2 G5
PD28690fq L5 _CL3_A7

PD28690gd_HEART 2 C10
PD28690gd_HEART 2 _C9
PD28690gd_HEART 2 _E10
PD28690gd_HEART 2 _E9
PD28690gd_HEART 2_G10
PD28690gd_HEART 2_G9
PD28690ch_BL2 CU1_L3 4 D11
PD28690ch_BL2 CU2 L3 4 E11
PD28690ch_BL2 CU3_L3 4 F11
PD28690cm_BL1_CU1 L1 2 A10
PD28690cm_BL1_CU2 L1 2 B10
PD28690cm_BL1_CU3 L3 4 G10
PD28690cm_BL1_CU4 L3 4 H10

PD28690hk_RA_1 F5
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Appendix 7

HDP with 65 PCAWG priors
PD37506

NMF/Sigprofiler
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Comparison of SBS signatures using two different approaches: HDP with 65 PCAWG priors
and NMF with Sigprofiler attribution. Final signatures from HDP with 65 priors and NMF
extraction and attribution for selected individuals.
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Appendix 8
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donor. Indels were classified and composite mutational spectra for each individual were
generated; due to the relative sparsity of indels detected, no formal signature extraction

was performed.
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Appendix 9

R Notebook

Luiza Moore
26062019

Modelling total mutation burden in normal
endometrium

Markdown file to document methods used in the analysis of the total mutation burden in normal endometrium.

Load Libraries

library(tidyverse)
library(magrittr)
library(lme4)
library(lmerTest)
library(rlang)
library(knitr)
library(kableExtra)
library(sjPlot)
library(sjmisc)

Load in data

Load in sample level data for 28 donors with associated meta-data on age, body mass index (BMI) and parity.

endom_burden <- read.csv("~/Desktop/Endometrium_for model_ 26062019.csv")

# Samples per patient

endom_burden %>% group by(PatientID) %>% count(PatientID) %>% rename( Sample count™ = n)
$>% arrange(desc( Sample count”)) %>% kable() %>% kable_styling(bootstrap options = c("s
triped", "condensed"), full width = F, position = "left")

PatientID Sample count

PD37607 19
PD37594 17
PD41871 17
PD37507 14
PD41857 14
PD36804 13
PD41869 13
PD37613 11
PD39952 11
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PatientID Sample count

PD37506
PD37601
PD39444
PD39954
PD40107
PD37595
PD37605
PD39953
PD41861
PD42475
PD36805
PD40535
PD41868
PD40659
PD41860
PD38812
PD41865
PD42746

PD41859

# Look at raw data

10

10

10

10

10

endom_burden %>% ggplot(aes(Age, Subs_tree, colour = PatientID)) +
geom_jitter(width = 0.2) +

theme (plot.title

element_text(size

8)) +

ggtitle("Age-associated accumulation of somatic mutations in normal endometrium (substitu

tions only)") +
theme (plot.title
(hjust = 0.5))

element_text(size

14)) + theme_bw() +theme(plot.title
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Fit linear mixed effects models and estimate
mutation rate per year

To account for the non-independent sampling per patient we use a linear mixed-effects model as the observed
frequencies of all substitutions approximates a normal distribution. We also use a random slope with fixed intercept
as most women will start menarche at a similar age (~13 years), but to account for the potential differences in the
rates at which mutations were acquired in different individuals due to variation in parity, contraception and other
factors.

We test features with a known affect on mutation burden or endometrial cancer risks:

* Age

» Read depth & VAF (‘Vafdepth’)
o Driver mutations

« BMI

o Parity

« Cohort

We use backwards elimination to define the final model

Make the full model and drop each fixed effect in turn
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# Combine read depth and median sample depth as Vafdepth
endom_burden %<>% mutate(Vafdepth = Seq X*SampleMedianVAF)

# Make BMI and Parity numeric
endom_burden %<>% mutate(BMI.QC = as.numeric(BMI))

endom_burden %<>% mutate(Parity.QC = as.numeric(Parity))

# Exclude cases without Parity data
endom_burden.gc <- endom burden %>% filter(!is.na(Parity.QC))

# Build the full model

full_ lmer model = lmer(Subs_tree ~ Age + Vafdepth + Driver_status + BMI.QC + Parity.QC +
Cohort + (Age - l|PatientID), data=endom burden, REML=F)

print(full_ lmer model)

## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula:
## Subs_tree ~ Age + Vafdepth + Driver_status + BMI.QC + Parity.QC +

## Cohort + (Age - 1 | PatientID)

## Data: endom burden

## AIC BIC logLik deviance df.resid
## 3566.797 3605.836 -1772.398 3544.797 246
## Random effects:

## Groups Name Std.Dev.

## PatientID Age 3.651

## Residual 219.661

## Number of obs: 257, groups: PatientID, 28
## Fixed Effects:

## (Intercept) Age vVafdepth
## -280.880 29.666 27.855
## Driver status BMI.QC Parity.QC
## 110.348 7.572 -16.138
## CohortPost-mortem CohortTAH CohortTransplant donor
## 30.250 -56.199 -97.972

# Drop each fixed effect
lme4d:::dropl.merMod(full_ lmer_model, test = "Chisqg")

## Single term deletions

##

## Model:

## Subs_tree ~ Age + Vafdepth + Driver_status + BMI.QC + Parity.QC +
## Cohort + (Age - 1 | PatientID)

## Df AIC LRT Pr(Chi)

## <none> 3566.8

## Age 1 3611.0 46.170 1.084e-11 **x*

## Vafdepth 1 3590.9 26.116 3.215e-07 ***

## Driver_status 1 3575.2 10.362 0.001286 *x*

## BMI.QC 1 3565.2 0.436 0.509086

## Parity.QC 1 3565.1 0.299 0.584717

## Cohort 3 3562.8 1.979 0.576675

## ——=

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
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Remove feature with largest P > 0.05 to make reduced model 1

# Remove Parity from full model
reducedl_glmer_model <- update(full lmer model, ~ . -Parity.QC )
anova(full Imer model,reducedl_glmer model)

## Data: endom_burden

## Models:

## reducedl_glmer model: Subs_tree ~ Age + Vafdepth + Driver_status + BMI.QC + Cohort +
## reducedl_glmer model: (Age - 1 | PatientID)

## full_lmer_model: Subs_tree ~ Age + Vafdepth + Driver_status + BMI.QC + Parity.QC +
## full_ lmer_model: Cohort + (Age - 1 | PatientID)

## Df AIC BIC logLik deviance Chisqg Chi Df

## reducedl glmer model 10 3565.1 3600.6 -1772.5 3545.1

## full lmer model 11 3566.8 3605.8 -1772.4 3544.8 0.2987 1

## Pr(>Chisq)

## reducedl_glmer_ model

## full_ lmer_ model 0.5847

print(reducedl_glmer model)

## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']

## Formula: Subs_tree ~ Age + Vafdepth + Driver_status + BMI.QC + Cohort +
## (Age - 1 | PatientID)

## Data: endom burden

## AIC BIC logLik deviance df.resid

## 3565.095 3600.586 -1772.548 3545.095 247

## Random effects:

## Groups Name Std.Dev.

## PatientID Age 3.654

## Residual 219.783

## Number of obs: 257, groups: PatientID, 28
## Fixed Effects:

## (Intercept) Age vafdepth

## -327.209 29.847 28.011

## Driver status BMI.QC CohortPost-mortem

## 111.647 9.2717 -64.864

## CohortTAH CohortTransplant donor

## -77.080 -115.590
lme4d:::dropl.merMod(reducedl_glmer model, test = "Chisq")
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## Single term deletions

##

## Model:

## Subs_tree ~ Age + Vafdepth + Driver_ status + BMI.QC + Cohort +
## (Age - 1 | PatientID)

## Df AIC LRT Pr(Chi)

## <none> 3565.1

## Age 1 3610.2 47.111 6.707e-12 ***

## Vafdepth 1 3589.5 26.442 2.716e-07 **x*

## Driver_status 1 3573.7 10.629 0.001113 **

## BMI.QC 1 3563.8 0.705 0.401140

## Cohort 3 3561.5 2.387 0.496036

## -

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1

Remove next feature with largest P > 0.05 to make reduced
model 2

# Remove Cohort from reduced model 1
reduced2_glmer model <- update(reducedl_glmer model, ~ . -Cohort)
anova(reducedl_glmer model,reduced2_glmer model)

## Data: endom_burden

## Models:

## reduced2_glmer model: Subs_tree ~ Age + Vafdepth + Driver_status + BMI.QC + (Age -
## reduced2_glmer_model: 1 | PatientID)

## reducedl_glmer_model: Subs_tree ~ Age + Vafdepth + Driver_status + BMI.QC + Cohort +
## reducedl glmer model: (Age - 1 | PatientID)

## Df AIC BIC logLik deviance Chisq Chi Df

## reduced2_glmer _model 7 3561.5 3586.3 -1773.7 3547.5

## reducedl_glmer model 10 3565.1 3600.6 -1772.5 3545.1 2.3871 3

## Pr(>Chisq)

## reduced2_glmer_model

## reducedl_glmer_model 0.496

print(reduced2_glmer model)

## Linear mixed model fit by maximum likelihood ['lmerModLmerTest']
## Formula: Subs_tree ~ Age + Vafdepth + Driver_status + BMI.QC + (Age -
## 1 | PatientID)

## Data: endom burden

## AIC BIC logLik deviance df.resid
## 3561.482 3586.326 -1773.741 3547.482 250
## Random effects:

## Groups Name Std.Dev.

## PatientID Age 3.771

## Residual 220.280

## Number of obs: 257, groups: PatientID, 28

## Fixed Effects:

## (Intercept) Age Vafdepth Driver status BMI.QC
## -323.464 28.952 28.681 110.772 6.553
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lme4d:::dropl.merMod(reduced2_glmer model, test = "Chisq")

## Single term deletions

##

## Model:

## Subs_tree ~ Age + Vafdepth + Driver status + BMI.QC + (Age -
## 1 | PatientID)

## Df AIC LRT  Pr(Chi)

## <none> 3561.5

## Age 1 3605.6 46.093 1.128e-11 **x*

## Vafdepth 1 3587.3 27.855 1.308e-07 ***

## Driver status 1 3569.9 10.413 0.001251 *x*

## BMI.QC 1 3560.1 0.593 0.441211

## —-—-

## Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1

Remove next feature with largest P > 0.05 to make reduced
model 3

# Remove BMI information from reduced model 2
reduced3_glmer model <- update(reduced2_glmer_model, ~ . -BMI.QC)
anova(reduced2_glmer_model,reduced3_glmer_ model)

## Data: endom_burden

## Models:

## reduced3_glmer model: Subs_tree ~ Age + Vafdepth + Driver status + (Age - 1 | PatientID)
## reduced2_glmer model: Subs_tree ~ Age + Vafdepth + Driver_status + BMI.QC + (Age -

## reduced2_glmer_model: 1 | PatientID)

## Df AIC BIC logLik deviance Chisq Chi Df
## reduced3_glmer model 6 3560.1 3581.4 -1774.0 3548.1

## reduced2_glmer_model 7 3561.5 3586.3 -1773.7 3547.5 0.5931 1
## Pr(>Chisq)

## reduced3_glmer_model

## reduced2_glmer_model 0.4412

Define the final model

# Define final model keeping all features that are significant with P < 0.05
final glmer_model <- reduced3_glmer_model

# Print the final model summary
print(summary(final_glmer_model))
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## Linear mixed model fit by maximum likelihood . t-tests use

## Satterthwaite's method [lmerModLmerTest]

## Formula:

## Subs_tree ~ Age + Vafdepth + Driver status + (Age - 1 | PatientID)
## Data: endom burden

##

## AIC BIC logLik deviance df.resid

## 3560.1 3581.4 -1774.0 3548.1 251

##

## Scaled residuals:

## Min 10 Median 30 Max

## -5.0371 -0.4099 0.0067 0.4361 3.9936

##

## Random effects:

## Groups Name Variance Std.Dev.

## PatientID Age 14.78 3.845

## Residual 48474.42 220.169

## Number of obs: 257, groups: PatientID, 28

##

## Fixed effects:

## Estimate Std. Error df t value Pr(>|t])

## (Intercept) -267.398 120.757 57.039 -2.214 0.03082 *
## Age 28.620 2.732 28.290 10.477 3.02e-11 ***
## Vafdepth 29.028 5.266 255.958 5.513 8.61le-08 ***
## Driver_status 109.881 33.881 249.039 3.243 0.00134 *=*
## ——=

## Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1
##

## Correlation of Fixed Effects:

## (Intr) Age vEdpth

## Age -0.829

## Vafdepth -0.543 0.081

## Driver_stts 0.131 -0.220 -0.161

# Estimate confidence intervals using "likelihood profile" method

# confint.merMod(final glmer model, method = "profile")
confint.merMod(final_glmer_model, method = "Wald")

## 2.5 % 97.5 &

## .sig01 NA NA

## .sigma NA NA

## (Intercept) -504.07833 -30.71845

## RAge 23.26647 33.97419

## Vafdepth 18.70793 39.34852

## Driver_status 43.47519 176.28725

# Calculate mutation rates for each donor from this model
# # randomEffects.df <- as.data.frame(ranef(final_glmer_model))
# write_csv(randomEffects.df, "model_rates.csv")
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Appendix 10

Patient ID | Reason for sampling | Age | BMI | Parity | Number of high Menopause Menstrual
coverage samples status phase
PD37506 Post-mortem 19 U U 10 Pre-menopausal | Undetermined
(traumatic injury)
PD40535 Transplant donor 24 24 3 7 Pre-menopausal Proliferative
PD41871 Infertility clinic 27 30 0 17 Pre-menopausal Secretory
PD37605 Infertility clinic 29 27 2 9 Pre-menopausal Secretory
PD37601 Infertility clinic 31 28 0 10 Pre-menopausal Secretory
PD41860 Infertility clinic 31 23 0 4 Pre-menopausal Secretory
PD37607 Infertility clinic 34 24 1 19 Pre-menopausal Secretory
PD41857 Infertility clinic 34 22 1 14 Pre-menopausal Secretory
PD39444 Transplant donor 35 24 1 10 Pre-menopausal Proliferative
PD41865 Infertility clinic 36 31 0 2 Pre-menopausal Secretory
PD41868 Infertility clinic 36 23 0 6 Pre-menopausal Secretory
PD39953 Transplant donor 37 18 2 8 Pre-menopausal Secretory
PD41859 Infertility clinic 38 21 0 1 Pre-menopausal Secretory
PD37613 Infertility clinic 39 22 0 11 Pre-menopausal Secretory
PD41861 Infertility clinic 39 21 0 8 Pre-menopausal Secretory
PD41869 Infertility clinic 40 37 0 13 Pre-menopausal Secretory
PD37594 Infertility clinic 42 20 1 17 Pre-menopausal Secretory
PD39952 Transplant donor 44 36 0 11 Pre-menopausal | Proliferative
PD39954 Transplant donor 44 24 1 10 Pre-menopausal Secretory
PD37595 Infertility clinic 46 | 19.5 5 9 Pre-menopausal Secretory
PD36804 Hysterectomy for 47 30 3 13 Pre-menopausal Secretory
leiomyomata
PD36805 Hysterectomy for 49 27 0 7 Pre-menopausal Secretory
benign ovarian tumour
PD38812 Post-mortem 54 u u 2 Post- Proliferative
(traumatic injury) menopausal
PD37507 Post-mortem 60 U u 14 Post- Inactive
(peritonitis) menopausal
PD42746 Transplant donor 67 34 2 2 Post- Inactive
menopausal
PD40107 Transplant donor 69 24 2 10 Post- Inactive
menopausal
PD42475 Transplant donor 74 27 2 8 Post- Inactive
menopausal
PD40659 Post-mortem 81 22 4 5 Post- Inactive
menopausal

U = unknown
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Appendix 11
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Appendix 12

R Notebook

Luiza Moore
26062019

Modelling the effect of menstrual phase on total
mutation burden and clonality

Markdown file to document methods used in the analysis of the menstrual phase and its effect on the total mutation
burden and clonality

Load Libraries

library(tidyverse)
library(magrittr)
library(lme4)
library(lmerTest)
library(rlang)
library(knitr)
library(kableExtra)
library(pbkrtest)

Load in data

Load in sample level data for all 28 donors, but exclude post-menopausal women and women with undetermined
menstrual phase.

endom_burden <- read.csv("Endometrium for model 26062019.csv", stringsAsFactors = F, na.s
trings = c("", "NA", "Unknown", "Uncertain"))
dim(endom_burden)

## [1]1 257 25

# Make BMI and Parity numeric
endom_burden %<>% mutate(BMI.QC = as.numeric(BMI))
endom_burden %<>% mutate(Parity.QC = as.numeric(Parity))

# Exclude post-menopausal women

endom_burden.gc <- endom burden %>% filter(Menopause_status_num == 0)
dim(endom_burden.qc)

## [1] 218 27

# Exclude cases with undetermined menstrual phase
endom_burden.gc <- endom burden.qgc $>% filter(Menstrual phase num >0)
dim(endom_burden.qgc)
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## [1] 208 27

# Samples per patient

endom_burden.qc %>% group by(PatientID) %>% count(PatientID) %>% rename( Sample count™ =
n) %>% arrange(desc( Sample count”)) %>% kable() %>% kable styling(bootstrap options = c
("striped", "condensed"), full width = F, position = "left")

PatientlD Sample count

PD37607 19
PD37594 17
PD41871 17
PD41857 14
PD36804 13
PD41869 13
PD37613 11
PD39952 11
PD37601 10
PD39444 10
PD39954 10
PD37595 9
PD37605 9
PD39953 8
PD41861 8
PD36805 7
PD40535 7
PD41868 6
PD41860 4
PD38812 2
PD41865 2
PD41859 1

# Plot data
endom_burden.qgc %>% ggplot(aes(Age, Subs_tree, colour = PatientID)) +
geom_jitter(width = 0.2) +
theme(plot.title = element_text(size = 3)) +
ggtitle("Accumulation of substitutions in endometrium (pre-menopausal women only)") +
theme(plot.title = element_text(size = 3)) + theme bw() +theme(plot.title = element_text
(hjust = 0.5)) +
theme (legend.position="none")
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Accumulation of substitutions in endometrium (pre-menopausal women only)
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Does menstrual phase have an effect on the total mutation burden?
To test the effect of menstrual phase on the total mutation burden we apply the final mixed-effect model with
features that have been shown to be significant in the full cohort of patients.

These significant features are:

* Age
« Read depth & VAF (‘Vafdepth’)
» Driver mutations

# Combine read depth and median sample depth as 'Vafdepth'
endom_burden.gc %$<>% mutate(Vafdepth = Seq X*SampleMedianVAF)

# Total mutation burden
full lmer modell = lmer(Subs_tree ~ Age + Vafdepth + Driver_status + Menstrual_phase_num
+ (Age - 1l|PatientID), data=endom burden.qc, REML=F)
summary (full_ lmer_modell)
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## Linear mixed model fit by maximum likelihood . t-tests use

## Satterthwaite's method [lmerModLmerTest]

## Formula:

## Subs_tree ~ Age + Vafdepth + Driver status + (Age - 1 | PatientID)

## Data: endom burden.qc

##

## AIC BIC logLik deviance df.resid

## 2853.6 2873.6 -1420.8 2841.6 202

##

## Scaled residuals:

## Min 10 Median 30 Max

## -3.5372 -0.4404 0.0263 0.4820 4.0069

##

## Random effects:

## Groups Name Variance Std.Dev.

## PatientID Age 14.5 3.807

## Residual 42357.8 205.810

## Number of obs: 208, groups: PatientID, 22

##

## Fixed effects:

## Estimate Std. Error df t value Pr(>|t])

## (Intercept) -474.721 184.103 30.774 -2.579 0.0149 =+
## Age 36.876 4.798 23.455 7.685 7.43e-08 ***
## Vafdepth 21.747 5.419 207.876 4.013 8.36e-05 ***
## Driver_status 132.336 32.969 201.308 4.014 8.42e-05 **x*
## ——=

## Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1
##

## Correlation of Fixed Effects:

## (Intr) Age vidpth

## Age -0.925

## Vafdepth -0.338 0.018

## Driver_stts 0.083 -0.113 -0.190

anova(full_ lmer modell,reduced lmer modell)

## Data: endom_burden.qc

## Models:

## reduced_lmer modell: Subs_tree ~ Age + Vafdepth + Driver status + (Age - 1 | PatientID)
## full_ lmer modell: Subs_tree ~ Age + Vafdepth + Driver_status + Menstrual_phase num +

## full lmer modell: (Age - 1 | PatientID)

## Df AIC BIC 1logLik deviance Chisq Chi Df
## reduced_lmer modell 6 2853.6 2873.6 -1420.8 2841.6

## full lmer modell 7 2854.9 2878.2 -1420.4 2840.9 0.7026 1
## Pr(>Chisq)

## reduced_ lmer modell

## full_ lmer_ modell 0.4019

Does menstrual phase have an effect on clonality?

To test the effect of menstrual phase on clonality, we used a linear mixed-effect model with SampleMedianVAF as a
proxy for clonality
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## Linear mixed model fit by maximum likelihood . t-tests use

## Satterthwaite's method [lmerModLmerTest]

## Formula:

## Subs_tree ~ Age + Vafdepth + Driver status + (Age - 1 | PatientID)

## Data: endom burden.qc

##

## AIC BIC logLik deviance df.resid

## 2853.6 2873.6 -1420.8 2841.6 202

##

## Scaled residuals:

## Min 10 Median 30 Max

## -3.5372 -0.4404 0.0263 0.4820 4.0069

##

## Random effects:

## Groups Name Variance Std.Dev.

## PatientID Age 14.5 3.807

## Residual 42357.8 205.810

## Number of obs: 208, groups: PatientID, 22

##

## Fixed effects:

## Estimate Std. Error df t value Pr(>|t])

## (Intercept) -474.721 184.103 30.774 -2.579 0.0149 =+
## Age 36.876 4.798 23.455 7.685 7.43e-08 ***
## Vafdepth 21.747 5.419 207.876 4.013 8.36e-05 ***
## Driver_status 132.336 32.969 201.308 4.014 8.42e-05 **x*
## ——=

## Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1
##

## Correlation of Fixed Effects:

## (Intr) Age vidpth

## Age -0.925

## Vafdepth -0.338 0.018

## Driver_stts 0.083 -0.113 -0.190

anova(full lmer modell,reduced lmer modell)

## Data: endom_burden.qc

## Models:

## reduced_lmer modell: Subs_tree ~ Age + Vafdepth + Driver status + (Age - 1 | PatientID)
## full lmer modell: Subs_tree ~ Age + Vafdepth + Driver_status + Menstrual_ phase num +

## full_lmer_modell: (Age - 1 | PatientID)

## Df AIC BIC 1logLik deviance Chisq Chi Df
## reduced_lmer modell 6 2853.6 2873.6 -1420.8 2841.6

## full lmer modell 7 2854.9 2878.2 -1420.4 2840.9 0.7026 1
## Pr(>Chisq)

## reduced_lmer modell

## full_lmer_ modell 0.4019

Does menstrual phase have an effect on clonality?

To test the effect of menstrual phase on clonality, we used a linear mixed-effect model with SampleMedianVAF as a
proxy for clonality
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full lmer model2 = lmer(SampleMedianVAF ~ Age + Vafdepth + Driver status + Menstrual_ phas

e num + (Age - 1l|PatientID), data=endom burden.gc, REML=F)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.0184371 (tol =

## 0.002, component 1)

summary (full lmer_model2)

## Linear mixed model fit by maximum likelihood . t-tests use

## Satterthwaite's method [lmerModLmerTest]

## Formula:

## SampleMedianVAF ~ Age + Vafdepth + Driver status + Menstrual phase num +

## (Age - 1 | PatientID)

## Data: endom burden.gc

##

## AIC BIC logLik deviance df.resid

## -584.8 -561.5 299.4 -598.8 201

##

## Scaled residuals:

## Min 10 Median 30 Max

## -2.97712 -0.48971 0.05725 0.56190 2.74962

##

## Random effects:

## Groups Name Variance Std.Dev.

## PatientID Age 2.486e-07 0.0004986

## Residual 3.055e-03 0.0552702

## Number of obs: 208, groups: PatientID, 22

##

## Fixed effects:

## Estimate Std. Error df t value Pr(>|t])
## (Intercept) 2.236e-01 4.256e-02 3.449e+01 5.253 7.75e-06 ***
## Age 5.753e-04 8.292e-04 1.954e+01 0.694 0.496
## Vafdepth 1.390e-02 1.365e-03 1.827e+02 10.185 < 2e-16 ***
## Driver_ status -4.209e-03 8.558e-03 2.072e+02 -0.492 0.623

## Menstrual_phase _num 2.068e-04 1.540e-02 2.217e+01 0.013 0.989
## ——-

## Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1
##

## Correlation of Fixed Effects:

## (Intr) Age Vidpth Drvr_s

## Age -0.659

## Vafdepth -0.348 0.058

## Driver_stts 0.037 -0.162 -0.198

## Mnstrl phs -0.586 -0.083 -0.071 0.077

## convergence code: 0

## Model failed to converge with max|grad| = 0.0184371 (tol = 0.002, component 1)

reduced_lmer model2 = lmer(SampleMedianVAF ~ Age + Vafdepth + Driver status + (Age - 1|Pa
tientID), data=endom_burden.gc, REML=F)
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## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.0180755 (tol =
## 0.002, component 1)

summary (reduced_lmer_model2)

## Linear mixed model fit by maximum likelihood . t-tests use

## Satterthwaite's method [lmerModLmerTest]

## Formula: SampleMedianVAF ~ Age + Vafdepth + Driver_status + (Age - 1 |
## PatientID)

## Data: endom burden.gc

##

## AIC BIC logLik deviance df.resid

## -586.8 -566.8 299.4 -598.8 202

##

## Scaled residuals:

## Min 10 Median 30 Max

## -2.97672 -0.49076 0.05746 0.56106 2.74980

##

## Random effects:

## Groups Name Variance Std.Dev.

## PatientID Age 2.486e-07 0.0004986

## Residual 3.055e-03 0.0552703

## Number of obs: 208, groups: PatientID, 22

##

## Fixed effects:

## Estimate Std. Error df t value Pr(>|t]|)
## (Intercept) 2.239e-01 3.448e-02 3.567e+01 6.495 1.59e-07 ***
## Age 5.762e-04 8.264e-04 1.987e+01 0.697 0.494
## Vafdepth 1.390e-02 1.361le-03 1.836e+02 10.212 < 2e-16 ***
## Driver_ status -4.218e-03 8.532e-03 2.063e+02 -0.494 0.622
## ——=

## Signif. codes: 0 '***' 0,001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1
#i#

## Correlation of Fixed Effects:

## (Intr) Age vidpth

## Age -0.876

## Vafdepth -0.483 0.053

## Driver_stts 0.102 -0.157 -0.194
## convergence code: 0
## Model failed to converge with max|grad| = 0.0180755 (tol = 0.002, component 1)

anova(full_lmer model2,reduced_lmer_ model2)

## Data: endom_burden.qgc

## Models:

## reduced_lmer model2: SampleMedianVAF ~ Age + Vafdepth + Driver status + (Age - 1 |

## reduced_lmer_model2: PatientID)

## full lmer model2: SampleMedianVAF ~ Age + Vafdepth + Driver_status + Menstrual phase_num

## full lmer model2: (Age - 1 | PatientID)

## Df AIC BIC logLik deviance Chisqg Chi Df
## reduced_lmer model2 6 -586.84 -566.82 299.42 -598.84

## full lmer model2 7 -584.84 -561.48 299.42 -598.84 2e-04 1
## Pr(>Chisq)

## reduced_lmer_model2

## full_lmer_model2 0.9893
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Appendix 13

Structural variants

SamplelD Chrl startl endl Chr2  start2 end2 strandl  strand2  svclass
PD40535b_EMD_20_A11 12 120886465 120886466 12 123019772 123019773  + + deletion
tandem-
PD37601b_EMD_11_E9 18 22857100 22857101 18 22859098 22859099 - - duplication
PD37601b_EMD_11_G10 5 113338567 113338568 5 113488147 113488148  + + deletion
PD37607b_EMD_6_E2 16 78780536 78780537 16 78824915 78824916 + + deletion
PD39444b_EMD_14_E9 19 47148553 47148555 19 47241742 47241744 + + deletion
PD39444b_EMD_14_E9 19 47148554 47148556 20 2795831 2795833 - - translocation
PD39444b_EMD_14_E9 19 47241742 47241743 20 2795831 2795832 + + translocation
tandem-
PD39953b_EMD_17_C9 1 207866091 207866094 1 208150175 208150178 - - duplication
PD41861b_EMD_F11 22 29443121 29443122 X 12249093 12249094 - - translocation
tandem-
PD37594b_EMD_8_A9 3 153811859 153811860 3 153818239 153818240 - - duplication
PD37594b_EMD_8_F12 6 90123273 90123274 6 90124479 90124480 + + deletion
PD39952b_EMD_15_C2 10 76122556 76122557 10 76164984 76164985 + + deletion
PD39952b_EMD_15_E3 10 76122556 76122557 10 76164984 76164985 + + deletion
PD39954b_EMD_16_E3 X 110302620 110302621 X 110304074 110304075 + + deletion
PD39954b_EMD_16_C2 X 66635162 66635163 X 66738873 66738874 + - inversion
PD39954b_EMD_16_E2 X 66635165 66635166 X 66738873 66738874 + - inversion
PD39954b_EMD_16_E3 X 66635165 66635166 X 66738873 66738874 + - inversion
PD39954b_EMD_16_G3 X 66635164 66635165 X 66738873 66738874 + - inversion
tandem-
PD37595b_EMD_9_C1 12 60041293 60041294 12 60046767 60046768 - - duplication
PD38812b_EMD_13_C5 14 69063692 69063693 14 69129713 69129714 + + deletion
PD38812b_EMD_13_C5 7 154208554 154208555 7 154221315 154221316  + + deletion
tandem-
PD37507b_EMD_2_B5 14 87635387 87635388 14 87649060 87649061 - - duplication
tandem-
PD37507b_EMD2_G7_A2 4 110760126 110760127 4 110761792 110761793 - - duplication
PD40107b_EMD_18_A1l 20 22312601 22312602 20 23066262 23066263 + + deletion
PD40107b_EMD_18_A3 9 11230240 11230242 9 11233177 11233179 + + deletion
tandem-
PD40107b_EMD_18_A3 9 11231379 11231380 9 11234244 11234245 - - duplication
tandem-
PD42475b_EMD_A9 5 41940779 41940780 5 41943347 41943348 - - duplication
PD40659¢c_EMD_19_A1 1 15342186 15342187 12 49278653 49278654 + - translocation
PD40659¢c_EMD_19_C1 1 109642333 109642334 3 37034595 37034596 + + translocation
PD40659¢c_EMD_19_C1 1 109642338 109642339 3 37034579 37034580 - - translocation
PD40659¢c_EMD_19_C1 3 41330863 41330865 3 56348950 56348952 + + deletion
PD40659¢c_EMD_19_C1 4 24731077 24731078 5 133211928 133211929 - + translocation
PD40659¢c_EMD_19_C1 4 24731078 24731079 5 133211919 133211920 + - translocation
PD40659¢c_EMD_19_C1 4 54948131 54948132 4 61183815 61183816 + - inversion
PD40659¢c_EMD_19_C1 4 54948132 54948133 4 61183813 61183814 - + inversion
PD40659¢c_EMD_19_C1 4 135500411 135500412 5 63470404 63470405 - - translocation
PD40659¢c_EMD_19_C1 7 73366851 73366852 7 73665165 73665166 + + deletion
PD40659¢c_EMD_19_F3 6 111447964 111447965 7 77557167 77557168 - - translocation
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Appendix 14

Whole exome, q<0.01

gene_name
PIK3CA
ARHGAP35
PIK3R1
FBXW7
FOXA2
KRAS
PPP2R1A
ZFHX3
CHD4

gglobal_cv
0
0
3.64E-07
3.90E-06
0.0002395
0.0013681
0.005791
0.0064149
0.0091925

Normal endometrium
Whole exome, q<0.001

gene_name
PIK3CA
ARHGAP35
PIK3R1
FBXW7
FOXA2

gglobal_cv
0
0
3.64E-07
3.90E-06
0.00023946

RHT, g<0.05
gene_name qglobal_RHT gene_name
PIK3CA 0 PTEN
ARHGAP35 0 TP53
PIK3R1 6.69E-09 PIK3CA
FBXW7 7.17E-08 CTNNB1
FOXA2 4.40E-06 KRAS
KRAS 2.51E-05 CTCF
PPP2R1A 0.00010637 ARID1A
ZFHX3 0.00011782 PIK3R1
CHD4 0.00016884 FBXW7
ERBB2 0.00584202 ARHGAP35
SPOP 0.00657231 ARID5B
ERBB3 0.01518232 ZFHX3

SPOP
FOXA2
PPP2R1A
FGFR2
RNF43
CHD4
NFE2L2
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Whole exome, q<0.01

gglobal_cv

e elelNelolNeNe o)

4.46E-06
6.29E-06
8.81E-06
9.43E-06
1.07E-05
0.00011264
0.00012485
0.0001309
0.00202553
0.00326925
0.00388559

Endometrial cancer (TCGA)
Whole exome, q<0.001

gene_name
PTEN

TP53
PIK3CA
CTNNB1
KRAS

CTCF
ARID1A
PIK3R1
FBXW7
ARHGAP35
ARID5B
ZFHX3
SPOP
FOXA2
PPP2R1A
FGFR2

gglobal_cv

0
0
0
0
0
0
0
0

4.46E-06
6.29E-06
8.81E-06
9.43E-06
1.07E-05

0.00011264
0.00012485
0.0001309

RHT, q<0.05
gene_name gglobal_RHT
PTEN 0
TP53 0
PIK3CA 0
CTNNB1 0
KRAS 0
CTCF 0
ARID1A 0
PIK3R1 0
FBXW?7 8.19E-08
ARHGAP35 1.16E-07
ARID5B 1.62E-07
ZFHX3 1.73E-07
SPOP 1.97E-07
FOXA2 2.07E-06
PPP2R1A 2.29E-06
FGFR2 2.40E-06
RNF43 3.72E-05
CHD4 6.00E-05
NFE2L2 7.14E-05
FAT1 0.0004304
ARID1B 0.0007817
SOX17 0.0012432
JAK1 0.0016882
KMT2B 0.0019627
HISTIH2BD 0.0027622
CCND1 0.003446
ATM 0.0040176
ING1 0.0092608
CASP8 0.0109251
RB1 0.0114702
NRAS 0.0243062
ZFP36L2 0.0357105
CDKN1B 0.0432904
SGK1 0.0433312
CUx1 0.0482893
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Appendix 16

R Notebook

LM
26062019

Modelling driver mutation burden in normal
endometrium

Markdown file to document methods used in the analysis of the driver mutation burden in normal endometrium.

Load Libraries

library(tidyverse)
library(magrittr)
library(lme4)
library(lmerTest)
library(rlang)
library(knitr)
library(kableExtra)
library(pbkrtest)

Load in data files

Load in sample level data for the 28 donors with associated meta-data, including Body Mass Index (BMI), Parity and
Cohort (sample source).

endom_burden <- read.csv("Endometrium for model 26062019.csv", stringsAsFactors = F, na.str

ings = c("", "NA", "Unknown", "Uncertain"))
# Samples per patient

endom_burden %>% group by(PatientID) %>% count(PatientID) %>% rename( Sample count™ = n)
$>% arrange(desc( Sample count”)) %>% kable() %>% kable styling(bootstrap options = c("s
triped", "condensed"), full width = F, position = "left")

PatientID Sample count

PD37607 19
PD37594 17
PD41871 17
PD37507 14
PD41857 14
PD36804 13
PD41869 13
PD37613 11
PD39952 11
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PatientlD Sample count

PD37506 10
PD37601 10
PD39444 10
PD39954 10
PD40107 10
PD37595 9
PD37605 9
PD39953 8
PD41861 8
PD42475 8
PD36805 7
PD40535 7
PD41868 6
PD40659 5
PD41860 4
PD38812 2
PD41865 2
PD42746 2
PD41859 1

# Look at the raw data
endom_burden %>% ggplot(aes(Age, Total drivers, colour = PatientID)) +
geom_jitter() +
theme(plot.title = element text(size = 8)) +
ggtitle("Age-associated accumulation of driver mutations in normal human endometrium") +
theme(plot.title = element_ text(size = 14)) + theme_bw() +theme(plot.title = element_text
(hjust = 0.5))
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Fit a mixed-effect model to estimate driver mutation
rates

To account for the non-independent sampling per patient we use a generalized linear mixed effects model with
Poisson distribution. We also use a random slope with fixed intercept as most women will start menarche at a similar
age (~13 years), but to account for the potential differences in the rates at which mutations were acquired in different
individuals due to variation in parity, contraception and other factors.

We test features that can have an effect on mutation burden or are modulate endometrial cancer risk:

* Age

« Read depth & VAF (‘Vafdepth’)
« BMI

o Parity

« Cohort

We use backwards elimination to define the final model
Define full model and drop each fixed effect in turn

# Combine read depth and median sample depth (Seqg_X) as 'Vafdepth'
endom burden %<>% mutate(Vafdepth = Seq X*SampleMedianVAF)

# Make BMI and Parity numeric
endom burden %<>% mutate(BMI.QC = as.numeric(BMI))
endom burden %<>% mutate(Parity.QC = as.numeric(Parity))

# Exclude cases without Parity data
endom burden.gc <- endom burden %>% filter(!is.na(Parity.QC))

# Define the full model containing all features
full glmer model = glmer(Total drivers ~ Age + Vafdepth + BMI.QC + Parity.QC + Cohort +(A
ge - l|PatientID), data=endom burden.qgc, family = poisson(link = "log"), control = glmerC

ontrol (optimizer="bobyga", optCtrl = list(maxfun = 100000)))

print(summary(full_glmer model))
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##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation)

Family: poisson

Formula: Total_drivers ~ Age + Vafdepth + BMI.QC + Parity.QC + Cohort +

[glmerMod]

( log )

(Age - 1 | PatientID)
Data: endom burden.gc

Control:
glmerControl (optimizer = "bobyga", optCtrl = list(maxfun = le+05))
AIC BIC logLik deviance df.resid
483.6 514.6 -232.8 465.6 222

Scaled residuals:
19 Median 30
-1.2757 -0.7002 -0

Min

Random effects:

Groups

Name
PatientID Age

Number of obs: 231

Fixed effects:

(Intercept)
Age
Vafdepth
BMI.QC
Parity.QC

CohortPost-mortem

CohortTAH

Variance
4.832e-05 0.006951

.1361 0.5323

Max
2.0615

Std.Dev.

, groups: PatientID, 25

Estimate Std. Error

-1.937221
0.031603
0.044643

-0.006626

-0.259493
0.242012
0.153797

CohortTransplant donor 0.304985

Signif. codes: 0

Correlation

Age
Vafdepth
BMI.QC
Parity.QC
ChrtPst-mrt
CohortTAH
ChrtTrnspld

0.728279 -2.660
0.011826 2.672
0.028273 1.579
0.023231 -0.285
0.113226 -2.292
0.917639 0.264
0.424937 0.362
0.280186 1.089

"kx%x' 0,001 '**' 0.01

of Fixed Effects:

(Intr)
-0.493
-0.311
-0.626
-0.271
0.300
0.243
0.305

Age Vidpth

0.087
-0.136 -0.275
-0.211 -0.003
-0.502 0.000
-0.275 0.115
-0.450 0.045

BMI.QC

0.371
-0.013
-0.225
-0.167

'*' 0.05 '.

z value

Pr(>|z|)

0.00781
0.00753
0.11434
0.77547
0.02192
0.79199
0.71741
0.27637

0.1 "'

Prt.QC ChrtP- ChrTAH

-0.264

-0.197 0.281
-0.210 0.412
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# "user" parametric boot function as defined in dropl.merMod help example
PBSumFun <- function(object, objectDrop, ...) {
pbnames <- c("stat", "p.value")
r <- if (missing(objectDrop)) {
setNames (rep(NA, length(pbnames)), pbnames)
} else {
pbtest <- PBmodcomp(object, objectDrop, nsim = nsim, ref = NULL, seed=12345, details
=0)
unlist(pbtest$test[2, pbnames])
}
attr(r, "method") <- c("Parametric bootstrap via pbkrtest package")
r
}
# Drop each fixed effect from model and test significance
# Use 1000 samples to form the reference distribution
nsim <- 1000
dropl(full_glmer model, test = "user", sumFun = PBSumFun)

## Single term deletions

##

## Model:

## Total_drivers ~ Age + Vafdepth + BMI.QC + Parity.QC + Cohort +
## (Age - 1 | PatientID)

## Method:

## Parametric bootstrap via pbkrtest package
##

##

## stat p.value

## <none>

## Age 6.7178 0.05277

## Vafdepth 2.4586 0.14317
## BMI.QC 0.0821 0.83577
## Parity.QC 5.3143 0.08761
## Cohort 1.1445 0.85466

Remove feature with the largest P > 0.05 to make reduced model
1

# Remove Cohort from the full model

reducedl_glmer_model <- update(full_glmer model, ~ . -Cohort, control=glmerControl(optimi
zer="bobyga", optCtrl = list(maxfun = 100000)))
# Drop each fixed effect from the model and test significance

dropl(reducedl_glmer_model, test = "user", sumFun = PBSumFun)
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## Single term deletions

##

## Model:

## Total_ drivers ~ Age + Vafdepth + BMI.QC + Parity.QC + (Age -
## 1 PatientID)

## Method:

## Parametric bootstrap via pbkrtest package
##

##

## stat p.value

## <none>

## Age 10.8137 0.00326

## Vafdepth 2.3500 0.13436

## BMI.QC 0.0160 0.91478

## Parity.QC 4.7712 0.06361

Remove next feature with the largest P > 0.05 to make reduced
model 2

# Remove BMI from the above model

reduced2_glmer_model <- update(reducedl_glmer_model, ~ . -BMI.QC, control=glmerControl(op
timizer="bobyga", optCtrl = list(maxfun = 100000)))
# Drop each fixed effect from the model and test significance

dropl(reduced2 glmer model, test = "user", sumFun = PBSumFun)

## Single term deletions

##

## Model:

## Total drivers ~ Age + Vafdepth + Parity.QC + (Age - 1 | PatientID)
## Method:

## Parametric bootstrap via pbkrtest package
##

##

## stat p.value

## <none>

## Age 10.8621 0.002105

## Vafdepth 2.4033 0.137539

## Parity.QC 5.0721 0.037190

Remove next feature with the largest P > 0.05 to make reduced
model 3

# Remove Vafdepth from the above model

reduced3_glmer_model <- update(reduced2_glmer_model, ~ . -Vafdepth, control=glmerControl
(optimizer="bobyga", optCtrl = list(maxfun = 100000)))
# Drop each fixed effect from model and test significance

dropl(reduced3_glmer_model, test = "user", sumFun = PBSumFun)
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##
##
##
##
##
##
##
##
##
##
##
##

Single term deletions

Model:

Total drivers ~ Age + Parity.QC + (Age - 1 | PatientID)
Method:

Parametric bootstrap via pbkrtest package

stat p.value
<none>
Age 10.3793 0.003125
Parity.QC 5.8943 0.019348

Define the final model

# Define the final model keeping only the significant features

final glmer model <- reduced3_glmer_model

# Print summary for the final model

print(summary(final_glmer_model))

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

(P < 0.05)

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]
Family: poisson ( log )

Formula: Total drivers ~ Age + Parity.QC + (Age - 1 | PatientID)

Data: endom burden.gc

Control:
glmerControl (optimizer = "bobyga", optCtrl = list(maxfun =
AIC BIC logLik deviance df.resid
477.1 490.9 -234.6 469.1 227

Scaled residuals:
Min 19 Median 30 Max
-1.2451 -0.6912 -0.1927 0.6225 2.0057

Random effects:

Groups Name Variance Std.Dev.
PatientID Age 5.987e-05 0.007738

Number of obs: 231, groups: PatientID, 25

Fixed effects:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) -1.643601 0.391387 -4.199 2.68e-05 **xx*
Age 0.035460 0.009878 3.590 0.000331 ***
Parity.QC -0.253115 0.102227 -2.476 0.013285 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

Correlation of Fixed Effects:
(Intr) Age

Age -0.930

Parity.QC 0.204 -0.440
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# Estimate confidence intervals using "likelihood profile" method
confint.merMod(final glmer model, method = "profile")

## Computing profile confidence intervals ...

## 2.5 % 97.5 %
## .sig01 0.002577037 0.01361534
## (Intercept) -2.493282376 -0.87980304
## Age 0.015388799 0.05650318

## Parity.QC -0.463678195 -0.05087779
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Appendix 17
R Notebook

Luiza Moore
26062019

Modelling the effect of menstrual phase on driver
mutation burden

Markdown file to document methods used in the analysis of the driver mutation burden in normal endometrium.

Load Libraries

library(tidyverse)
library(magrittr)
library(lme4)
library(lmerTest)
library(rlang)
library(knitr)
library(kableExtra)
library(pbkrtest)

Load in data

Load in sample level data for all 28 donors, but exclude post-menopausal women and women with undetermined
menstrual phase.

endom_burden <- read.csv("Endometrium for model_ 26062019.csv", stringsAsFactors = F, na.s

trings = c("", "NA", "Unknown", "Uncertain"))
dim(endom burden)

## [11 257 25

# Make BMI and Parity numeric
endom_burden %<>% mutate(BMI.QC = as.numeric(BMI))
endom_burden %<>% mutate(Parity.QC = as.numeric(Parity))

# Exclude post-menopausal women
endom_burden.gc <- endom burden %>% filter (Menopause_status_num == 0)
dim(endom_burden.qc)

## [1] 218 27

# Exclude cases with undetermined menstrual phase
endom_burden.gc <- endom burden.gc %>% filter(Menstrual_phase_num >0)
dim(endom_burden.qc)

## [1] 208 27
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# Remove samples with no Parity information
endom_burden.gc %$<>% filter(!is.na(BMI.QC), !is.na(Parity.QC))
dim(endom burden.qc)

## [1] 206 27

# Samples per patient

endom_burden.qgc $>% group by(PatientID) %>% count(PatientID) %>% rename( Sample count™ =
n) %>% arrange(desc( Sample count”)) %>% kable() %>% kable styling(bootstrap options = c
("striped", "condensed"), full width = F, position = "left")

PatientlD Sample count

PD37607 19
PD37594 17
PD41871 17
PD41857 14
PD36804 13
PD41869 13
PD37613 11
PD39952 11
PD37601 10
PD39444 10
PD39954 10
PD37595 9
PD37605 9
PD39953 8
PD41861 8
PD36805 7
PD40535 7
PD41868 6
PD41860 4
PD41865 2
PD41859 1
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# Look at the raw data
endom_burden.gc %>% ggplot(aes(Age, Total drivers, colour = PatientID)) +
geom_jitter() +
theme(plot.title = element_ text(size = 8)) +
ggtitle("Driver mutations in normal endometrium (pre-menopausal women only)") +
theme(plot.title = element_ text(size = 14)) + theme bw() +theme(plot.title = element_text
(hjust = 0.5))
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Does menstrual phase have an effect on the driver mutation burden?

To test the effect of menstrual phase on the driver mutation burden we add Menstrual phase to the final generalized
linear mixed-effects model with Poisson distribution with features that have been shown to be significant in the full
cohort of patients.

The significant features are:

« Age
» Read depth & VAF (‘Vafdepth’)
o Parity

We use backwards elimination to define the final model

Define full model and drop each fixed effect in turn
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# Combine read depth and median sample depth (Seq X) as 'Vafdepth'
endom_burden.qc %<>% mutate(Vafdepth = Seq X*SampleMedianVAF)

# Make BMI and Parity numeric
endom_burden.gc %<>% mutate(BMI.QC = as.numeric(BMI))
endom_burden.gc $<>% mutate(Parity.QC = as.numeric(Parity))

# Define the full model containing all features

full glmer model = glmer(Total drivers ~ Age + Parity.QC + Menstrual phase num +(Age - 1|
PatientID), data=endom burden.qgc, family = poisson(link = "log"), control = glmerControl
(optimizer="bobyga", optCtrl = list(maxfun = 100000)))

print(summary(full_glmer_model))

## Generalized linear mixed model fit by maximum likelihood (Laplace

## Approximation) [glmerMod]

## Family: poisson ( log )

## Formula: Total_drivers ~ Age + Parity.QC + Menstrual_ phase_num + (Age -
## 1 | PatientID)

## Data: endom burden.qc

## Control:

## glmerControl (optimizer = "bobyga", optCtrl = list(maxfun = le+05))
##

## AIC BIC logLik deviance df.resid
## 403.8 420.4 -196.9 393.8 201
##

## Scaled residuals:

## Min 10 Median 30 Max

## -1.0933 -0.6763 -0.5314 0.6787 2.0963

##

## Random effects:

## Groups Name Variance Std.Dev.

## PatientID Age 7.543e-05 0.008685
## Number of obs: 206, groups: PatientID, 21

##

## Fixed effects:

## Estimate Std. Error z value Pr(>|z]|)
## (Intercept) -0.97608 0.95243 -1.025 0.3054
## Age 0.04002 0.01914 2.091 0.0366 *
## Parity.QC -0.24689 0.10749 -2.297 0.0216 *
## Menstrual_phase num -0.46049 0.32828 -1.403 0.1607
## -

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' "1
##

## Correlation of Fixed Effects:

## (Intr) Age Prt.QC

## Age -0.751

## Parity.QC -0.031 -0.101

## Mnstrl _phs_ -0.649 0.011 0.024

## convergence code: 0

## Model failed to converge with max|grad| = 0.0018568 (tol = 0.001, component 1)
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# "user" parametric boot function as defined in dropl.merMod help example
PBSumFun <- function(object, objectDrop, ...) {
pbnames <- c("stat", "p.value")
r <- if (missing(objectDrop)) {

setNames (rep(NA, length(pbnames)), pbnames)
} else {
pbtest <- PBmodcomp(object, objectDrop, nsim = nsim, ref = NULL, seed=12345, details
=0)
unlist(pbtest$test[2, pbnames])
}
attr(r, "method") <- c("Parametric bootstrap via pbkrtest package")
r
}

# Drop each fixed effect from model and test significance
# Use 1000 samples to form the reference distribution
nsim <- 1000

dropl(full glmer model, test = "user", sumFun = PBSumFun)

## Single term deletions

##

## Model:

## Total drivers ~ Age + Parity.QC + Menstrual phase num + (Age -
## 1 PatientID)

## Method:

## Parametric bootstrap via pbkrtest package
##

##

## stat p.value

## <none>

## Age 4.2999 0.056701

## Parity.QC 5.1460 0.048857

## Menstrual_phase num 1.7141 0.260549

Remove feature with the largest P > 0.05 to make reduced model

# Remove Menstrual phase from the full model

reduced_glmer _model <- update(full glmer model, ~ . -Menstrual phase num, control=glmerCo
ntrol (optimizer="bobyga", optCtrl = list(maxfun = 100000)))
# Drop each fixed effect from the model and test significance

dropl(reduced _glmer model, test = "user", sumFun = PBSumFun)

## Single term deletions

##

## Model:

## Total drivers ~ Age + Parity.QC + (Age - 1 | PatientID)
## Method:

## Parametric bootstrap via pbkrtest package
##

##

## stat p.value

## <none>

## Age 3.8150 0.067708

## Parity.QC 4.3927 0.063017
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Define the final model

# Define the final model keeping only the significant features
final glmer model <- reduced_glmer_model

# Print summary for the final model
print(summary(final_glmer_model))

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

(P < 0.05)

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]
Family: poisson ( log )

Formula: Total drivers ~ Age + Parity.QC + (Age - 1 | PatientID)

Data: endom burden.qc
Control:

glmerControl (optimizer = "bobyga", optCtrl = list(maxfun

AIC BIC logLik deviance df.resid

403.5 416.8 -197.8 395.5

Scaled residuals:
Min 10 Median 30 Max
-1.1113 -0.6955 -0.4384 0.6488 2.1040

Random effects:
Groups Name Variance Std.Dev.
PatientID Age 9.975e-05 0.009987
Number of obs: 206, groups: PatientID,

Fixed effects:

Estimate Std. Error z value
(Intercept) -1.87925 0.77163 -2.435
Age 0.04092 0.02062 1.985
Parity.QC -0.24412 0.11431 -2.136

Signif. codes: 0 '***' (0.001 '**' 0.01

Correlation of Fixed Effects:
(Intr) Age

Age -0.978

Parity.QC 0.024 -0.145

202

21

Pr(>|z|)
0.0149
0.0471
0.0327

'*' 0.05

1e+05))

# Estimate confidence intervals using "likelihood profile" method

##

##
##
##
##
##

confint.merMod(final_glmer_model, method

Computing profile confidence intervals .

2.5 3% 97.5 %
.sig01 0.0049871530 0.01716773
(Intercept) -3.5142119925 -0.37232360
Age -0.0001535045 0.08423708

Parity.QC -0.4821811109 -0.01665213

= "profile")
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The mutational landscape of normalhuman
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All normal somatic cells are thought to acquire mutations, but understanding of the
rates, patterns, causes and consequences of somatic mutations in normal cells is
limited. The uterine endometrium adopts multiple physiological states over a lifetime
and is lined by a gland-forming epithelium'2. Here, using whole-genome sequencing,
we show that normal human endometrial glands are clonal cell populations with total
mutation burdens that increase at about 29 base substitutions per year and that are
many-fold lower than those of endometrial cancers. Normal endometrial glands
frequently carry ‘driver’ mutations in cancer genes, the burden of which increases
with age and decreases with parity. Cell clones with drivers often originate during the
first decades of life and subsequently progressively colonize the epithelial lining of

the endometrium. Our results show that mutational landscapes differ markedly
between normal tissues—perhaps shaped by differences in their structure and
physiology—and indicate that the procession of neoplastic change that leads to
endometrial cancer isinitiated early inlife.

Acquisition of mutations is a ubiquitous feature of cells in living
organisms. Although there has been comprehensive characterization
of the somatic mutation landscape of human cancer®?, knowledge of
the patterns of somatic mutation in normal cells is limited. This has
mainly been due to the challenge of detecting somatic mutations in
normal tissues. Several strategies have recently been developed to
address this, including the sequencing of in vitro-derived cell clones
from normal tissues® ®, the sequencing of small biopsies that contain
limited numbers of microscopic clones’ ', the sequencing of micro-
scopically distinguishable structural elements that are clonal units” ™,
highly error-corrected sequencing'®” and the sequencing of single
cells'®. Together, these approaches have begun to reveal differing
mutation burdens between cell types, the patterns of acquisition of
mutation burdens over time and the underlying mutational processes.
These strategies have also shown that clones of normal cells with driver
mutations in cancer genes are present in normal tissues. In the glan-
dular epithelium of the colon, these mutations are relatively uncom-
mon"—but in the squamous epithelia of the skin® and oesophagus'®,
andintheblood”?, clones that carry drivers can constitute substantial
proportions of the normal cells present after middle age.

The factors that determine differences in the mutation landscape
between normal cell types are incompletely understood. However,

these factors plausibly include the intrinsic structural and physiologi-
cal features of each tissue. The endometrium is a uniquely dynamic
tissue composed of a stromal cell layer invaginated by a contiguous
glandular epithelial sheet that covers the luminal surface. Endometrium
adopts multiple different physiological states during life, including
in premenarche, menstrual cycling, pregnancy and postmenopause.
During reproductive years, the endometrium undergoes cyclical break-
down, shedding, repair and remodelling in response to oscillating levels
of oestrogen and progesterone, which together entail the iterative
restoration of the contiguity of the interrupted glandular epithelial
sheet that is effected by stem cells within basal glands retained after
menstruation'>?,

The characterization of the mutational landscapes of normal tis-
sues isadvancing our understanding of the succession of intermediate
neoplastic stages between normal cells and the cancers that originate
from them. Endometrial cancer is the most common gynaecological
tumour in high-income countries, with a peakincidence at 75-80 years
of age?. There are two major histological classes***. Type |, endome-
trioid carcinoma, is the more common of the two; the main known
risk factor is oestrogen exposure, influenced by ages of menarche and
menopause, and body mass index**?°, Type II, which includes serous
and clear cell carcinomas, occurs in older women, with smoking and
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Fig. 1| Clonality of normal endometrial glands. Individual normal
endometrial glands were laser-capture microdissected and whole-genome
sequenced. Most (91%, 234 out of 257) of the glands were clonal cell

body mass index as risk factors . Commonly mutated cancer genes
include PTEN, TP53, PIK3CA, KRAS, ARID1A, FBXW7 and PIK3R1 %, and
subsets of endometrial cancer carry many base substitution and/or

small insertion and deletion (indel) mutations due to defective DNA
mismatch repair or polymerase proof-reading mutations, or many

copy number changes and genome rearrangement .

Recent studies using targeted sequencing have revealed driver muta -
tions in known cancer genes in a high proportion of endometrial glands
in endometriosis '****' and eutopic normal endometrial epithelium
Here, by whole-genome sequencing of individual glands, we compre -
hensively characterize the mutational landscape of normal endometrial
epithelium, explore the influences of age and parity, and estimate the
timing of driver mutations.

1332

Samples and sequencing

We used laser-capture microdissection to isolate 292 histologically
normal endometrial glands from 28 women aged between 19 and
81years. Samples were obtained from biopsies taken for the inves-
tigation of reproductive problems (14 women), hysterectomies for
benign non-endometrial pathologies (2 women), residual tissues
from transplant organ donors (8 women) and autopsies after death
fromnongynaecological causes (4 women). DNA from each gland was
whole-genome sequenced using a protocol that accommodates small
amounts of input DNA %, The mean sequencing coverage was 28-fold;
only samples with >15-fold coverage were included in subsequent analy -
ses (n=257) (Supplementary Results 1, 2). Somatic mutations in each
gland were determined by comparison with whole-genome sequences

from other tissues from the same individuals.
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populations with a median VAF between 0.3 and 0.5 for base substitutions.
Each density line represents an endometrial gland sample; individual samples

are grouped and coloured by patient( n=28).

Clonality of endometrial glands

To assess whether endometrial glands comprise clonal cell populations,

we examined the variant allele fractions (VAFs) of somatic mutations.
Ninety-one per cent (234 out of 257) of microdissected endometrial
glands showed distributions of VAFs with peaks between 0.3 and 0.5

(Fig. 1, Extended Data Fig. 1a), indicating that each gland consists
predominantly of a cell population that is descended from a single
epithelial progenitor stem cell (a formal clonality analysis is described
inMethods, Extended DataFig. 2, Supplementary Results 3). Subsequent
analyses (described in ‘Driver mutations’) revealed that many
endometrial glands carry driver mutations in known cancer genes.
However, endometrial glands exhibited clonality irrespective of the
presence of driver mutations (Extended Data Fig. 1b, Supplementary
Results 4). Thus, colonization of endometrial glands by descend-
ants of single endometrial epithelial stem cells is not contingent on a
selective growth advantage provided by driver mutations, and may
occur by a process analogous to genetic drift (as previously proposed

for other tissues  >>3%).

Mutation burdens and signatures

Somatic mutation burdens in normal endometrial glands from the

28 women ranged from 209 to 2,833 base substitutions (median of
1,521) and 1to 358 indels (median of 180) (Fig. 2a, b). This variation was
predominantly attributable to age, with about 29 base substitutions
per gland per year being acquired during adult life (linear mixed-effect
model, 95% confidence interval 23-34,  P=3.02x107") (Supplementary
Results 5, 6). The presence of a driver mutation was also associated with
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Fig. 2| Mutation burden correlates with age in normal endometrial glands.

Mutation burdens shown as mean foreach donor ( n=28donors), with Pearson
correlation ( r)withageand P values (P) from linear regression (burden-age).
a-c,Variant burdens. a, Substitution burden. b, Indel burden. c, Copy-number
variant (CNV) and structural variant (SV) burden. d-f,SBS burdens. d,SBS1

anadditional approximately 110 substitutions (95% confidence interval
43-177, P=1.34 x107). There was no obvious correlation between parity
and total somatic mutation burden.

We identified five previously described single-base-substitution
(SBS) mutational signatures (Supplementary Results 7-9): SBS1, which
is predominantly characterized by NCG > NTG mutations and is prob-
ably due to spontaneous deamination of 5-methylcytosine; SBS5 and
SBS40, two relatively featureless ‘flat’ signatures of uncertain cause;
SBS18, predominantly characterized by C > A substitutions and pos-
sibly due to reactive oxygen species  **;and SBS23, a signature predomi
nantly composed of C>T mutations and of unknown aetiology. Because
SBS5 and SBS40 are relatively featureless, it is challenging to estimate
their separate contributions  * and they have therefore been combined
(designated SBS5/40) (but shown separately in Supplementary
Results 8, 9). SBS23 has previously occasionally been found in liver
cancers with high mutation burdens. Given the low mutation burden
and small contribution of SBS23 in the data reported here, it is unclear
whether this is the same signature and so SBS23 was included in the
‘unattributable’ category. The mean signature exposures were 0.23 for
SBS1, 0.58 for SBS5/40 and 0.12 for SBS18. There were positive linear
correlations with age for the mutation burdens attributable to each
of these three signatures (Fig. 2d-f ). To ascertain the periods during
which different mutational processes operate, we constructed phyloge
netic trees of endometrial glands for each individual, which indicated
that the mutational processes that underlie these three signatures
are active throughout life (Figs. 3, 4, Extended Data Fig. 3). In regard
to smallindels, single Tinsertions at runs of T bases were the most com
mon type of mutation that we observed (Supplementary Results 10).

burden. e, SBS5/40 burden. f,SBS18. g-i, Driver mutation burden per gland.
g, Fraction of glands with drivers, per individual. h, Mean number of driver
mutations in glands with drivers. i, Mean number of unique (different) driver
mutations per gland.

Somatic copy-number changes and structural variants were found
in 36 out of 257 (14%) normal endometrial glands, almost all of which
carried just a single change (Extended Data Fig. 4, Supplementary
Results 4). These changes included copy-number neutral loss of het-
erozygosity in 8 glands, whole chromosome copy-number increase in
1gland and structural variants in 18 glands (12 large deletions, 6 tandem
duplications and 9 translocations). One of three glands carrying a TP53
mutation exhibited nine structural variants, indicating that genomic
instability caused by defective DNA maintenance occurs in normal cells.

Driver mutations

To identify genes under positive selection, we used a statistical method

based on the observed:expected ratios of nonsynonymous:synonymous
mutations . Twelve genes showed evidence of positive selection

in the 257 normal endometrial glands: PIK3CA , PIK3R1, ARHGAP35,
FBXW?7 , ZFHX3, FOXA2, ERBB2 , CHD4, KRAS , SPOP, PPP2R1A and ERBB3
(Supplementary Results 11). All were listed among 369 genes that have
previously been shown to be under positive selection in human can
cer®.To identify additional drivers in the 257 endometrial glands, we
sought mutations with the characteristics of drivers in those 369 genes
(Methods). Intotal, we found 209 driver mutations in normal endome-
trial glands from 25 out of 28 women (Supplementary Results 4). The
youngest carrier was a 24-year-old woman (patient PD40535) with a
KRAS °'?° mutation in 1out of 7 glands that we sampled. We found that
147 out of 257 endometrial glands carried at least 1 driver mutation;
42 out of 257 glands carried at least 2 drivers; and 5 out 257 glands car-
ried at least 4 drivers. In4 women (aged 34 (19 glands), 44 (11 glands),
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Fig. 3 | Histology images and reconstructed phylogenetic trees for two

individuals in whom every normal endometrial gland contained at least

a, b, Haematoxylin and eosin images of endometrial

a)and a 60-year-old woman ( b) were taken
¢, d, Phylogenetic

c) and 60-year-old woman

one driver mutation.
glands from a 34-year-old woman (
after laser-capture microdissection (20x magnification).
trees were reconstructed for the 34-year-old woman (
(d) using SBSs; the length of each branch is proportional to the number of
variants. A stacked bar plot of the attributed SBS mutational signatures that
contributed to each branch is then superimposed onto every branch; signature

60 (14 glands) and 81 (5 glands)), all of the glands that we analysed
carried driver mutations, which suggests that the whole endometrium
had been colonized by microneoplastic clones (Fig. 3, Extended Data
Fig. 3). The fraction of endometrial glands carrying a driver (Fig. 2g),
the mean number of drivers per gland (Fig. 2h) and the number of dif -
ferent drivers in each individual (corrected for the number of glands
sampled) (Fig. 2i) all positively correlated with age of the individual.
However, there were sufficient outliers to suggest that other factors
influence the colonization of the endometrium by driver-carrying
clones. Indeed, our generalized linear mixed-effect model showed
thatinaddition to the positive association of age with the accumulation
of driver mutations (0.035 driver mutations per year, 95% confidence
interval 0.01-0.06, P =3.31x10"*), parity had a negative association
(-0.253 driver mutations per life birth, 95% confidence interval -0.46
to-0.05, P=1.33x107?) (Supplementary Results12,13).

We found driver mutations in recessive (tumour-suppressor genes)
and dominant cancer genes, similar to recent publications 133032 PIK3CA
was the most frequently mutated cancer gene (Fig. 3, Extended Data
Figs.3, 5, Supplementary Results 14). Most truncating drivers in reces-
sive cancer genes were heterozygous, indicating that haploinsufficiency

4 | Nature | www.nature.com

extraction was not performed on branches with fewer than100 substitutions.
The ordering of signatures within each branch is for visualization purposes

only, asitis not possible to time the different signatures within individual

branches. Glands that shared over 100 variants were considered part of the
same clade (indicated by the colour of the sample identifier label). Glands that

did not belong to any clades are in white. SBS signatures are colour-coded;
substitutions that were not attributed to the reference signatures, and those
attributed to SBS23, are shown as ‘unattributable’. Scale bars, 500 pm.

confers a growth advantage in normal cells. Nevertheless, further inac -
tivating mutations in the same genes in other glands show that an addi -
tional advantage is conferred by complete abolition of their activity
(notably for ZFHX3 in the 60-year-old woman) (Fig. 3). Driver muta -
tions were found in genes that encode growth factor receptors ( ERBB2,
ERBB3 and FGFR2 ), components of signal transduction pathways
(HRAS, KRAS , BRAF, PIK3CA , PIK3R1, ARHGAP35 , RRAS2, NF1, PPP2R1A
and PTEN ), pathways that mediate responses to steroid hormones
(ZFHX3, FOXA2 and ARHGAP35 ), proteins involved in chromatin func -
tion (KMT2D and ARID5B) and protein-mediated degradation path -
ways ( FBXW?7 ) that target oncoproteins, such asmTOR and MYC. Many
different combinations of mutated cancer genes were found in
individual glands.

Timing of driver mutations

Constructing phylogenetic trees of individual endometrial glands
enabled the characterization of the mode of expansion of normal
cell clones with drivers and the timing of their initiation. Glands with
a phylogenetically close relationship were often in close physical
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Fig. 4| Phylogenetic trees of endometrial glands for donors aged 19 to

40years. Phylogenetic trees forindividuals aged 19 to 40 years were
reconstructed using SBSs with branch length proportional to the number of
variants; the stacked bar plots represent the attributed SBS mutational

signatures that contributed to each branch. Signature extraction was not
performed on branches with fewer than100 substitutions. The ordering of

proximity within the endometrium (Fig. 3). In phylogenetic clusters
for which the mutation catalogues were almost identical, this may
simply reflect multiple sampling of a single tortuous gland that weaves

in and out of the plane of section, rather than distinct glands with their
ownstem cell populations (for example, glands C5and ESin Fig. 3a, ¢).
For other phylogenetic clusters, the different branches within the clade

have diverged substantially, sometimes acquiring different driver
mutations, and therefore are probably derived from different stem

cell populations. In such instances, phylogenetically related glands
can range over distances of hundreds of micrometres, which suggests
that their clonal evolution has entailed the capture and colonization of
extensive zones of the endometrial lining (for example, glands C1, A2,

B1,H2,A3and B3inFig.3b,d). Conversely, some glands in close physi

cal proximity are phylogenetically distant (for example, glands E1 and
G2inFig. 3a, ¢), indicating that their cell populations have remained

isolated from each other.

Driver mutations were positioned on the phylogenetic trees for
each individual, and times of occurrence were estimated by assuming

Number of variant s

Number of variant s

signatures within each branch is for visualization purposes only, as it is not
possible to time different signatures within individual branches. SBS
signatures are colour-coded; substitutions that were not attributed to the
reference signatures, and those attributed to SBS23, are shown as
‘unattributable’. EMD codes refer to individual endometrial glands.

constant somatic mutation rates during life (Fig. 5, Extended Data
Figs. 6, 7, Methods). Although this assumption is unlikely to be com-
pletely correct, the results show that mutations in normal endometrial

cells are acquired in a more-or-less linear fashion throughout life and
potential modifying factors, including acquisition of a driver, make
only modest differences to mutation rates. Furthermore, overall our
approach is likely to overestimate the ages before which driver muta
tions have occurred, because it does not account for the time taken for
asingle endometrial stem cell to colonize an individual gland, which—in

colorectal crypts—has been estimated to take several years

3 Therefore,

our results indicate that at least some driver mutations occur early in

life. These included a

KRAS ¢’ mutation in 3 glands froma 35-year-old

woman,anda PIK3CA mutationin2glandsfroma34-year-oldwoman,
both of which are likely to have arisen during the first decade of life
(Figs. 3, 4, Extended Data Figs. 6, 7). A pair of drivers in ZFHX3 and
PIK3CA , which co-occurin 6 glands froma 60-year-old woman, was also
acquired during the first decade of life, indicating that driver-associated
clonal evolution also begins early in life (Figs. 3, 5). It is possible that
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the driver mutations, we reconstructed phylogenetic trees using SBSs. To
estimate the time interval in which specific mutations occurred, we used two
approaches (Methods). We calculated a patient-specific mutation rate by

taking the ratio of the mean mutation burden per endometrial gland of the
patient and age of the patient. The mutation number at the start and end of a
branch in the phylogenetic tree was then converted to a lower and upper age by
dividing these numbers by the estimated mutation rate. A similar approach was
used for timing indels. We timed the driver mutations that occurred in the
‘trunks’ and branches. We display only those driver variants that occurred in

the ‘trunks’ of the individual trees. We show that many such events occur
decades before the reported peak incidence of endometrial cancer (variants
with aninterval of <l year between the upper age and the age at sampling were
excluded from this plot for illustration purposes). On the basis of our
calculations, four driver variants ( KRAS ¢'2°, PIK3CA """, PIK3CA #** and
ZFHX3 *'*") from three different women occurred before the age of ten.

many more clones with drivers were initiated during the first decade

of life, but their phylogenetic trees are not informative in this regard
(Extended Data Figs. 6, 7). However, there was also evidence for the
continued accumulation and clonal expansion of driver mutations into

the later decades of life (Fig. 5, Extended Data Figs. 6, 7).

Comparison between normal tissue and cancer

Endometrial cancers (from the recent Pan Cancer Analysis of Whole
Genomes (PCAWG) dataset  *) exhibited higher mutation loads than
normal endometrial cells for base substitutions (about 5-fold higher,
medians of 1,346 and 7,330 in normal endometrium and endometrial
cancer, respectively (Mann-Whitney ~ U-test, P=7.63x10"°)) and indels
(Extended DataFig. 8a,b). These differences also pertained to normal
endometrial cells with driver mutations. In most endometrial can -
cers, the differences are attributable to higher mutation burdens of
the ubiquitous base substitution and indel mutational signatures

In addition, however, the very high mutation loads of the subsets of
endometrial cancer with deficiencies in DNA mismatch repair and
proof-reading mutations in polymerase-& or polymerase-& were not
seen in normal endometrial cells. Differences between endometrial
cancers and normal cells were even more marked for structural variants
and copy-number changes (median number zero in normal endometrial
cellsand about 23 in endometrial cancers®), and this difference again
pertained to normal endometrial cells with drivers.

There were also differences in the repertoire of cancer genes in
which driver mutations were found (Extended Data Fig. 8c-e, Sup-
plementary Results 4, 11). Notably, mutations in PTEN , CTCF, CTNNB1
and ARID1A in endometrioid, and in  TP53 in serous carcinoma of the
endometrium accounted for higher proportions of driver mutations

34
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than in normal endometrial cells. It is possible that PTEN, ARID1A, TP53
and CTCF require biallelic mutation to confer a growth advantage and

this may account for their lower prevalence in normal cells. However,
heterozygous mutationsin  PTEN and TP53 were found, albeit only in
around 2% (5 out of 257) of all sampled glands, and this explanation
would not account for the relative deficitof ~ CTNNB1 mutations. Over -
all, the results suggest that driver mutations in some cancer genes are
relatively effective at enabling the colonization of normal tissues, but
confer a limited risk of conversion to invasive cancers. Conversely,

other drivers may require biallelic mutation and/or confer limited
advantage in colonizing normal tissues, but are relatively effective at

the conversion to malignancy.

Discussion
Studies of normal endometrial epithelium and other types of normal
cell #791013151920 are revealing the landscape of somatic mutations in
normal human cells. Somatic mutations are predominantly gener -
ated by a limited repertoire of ubiquitous mutational processes that
generate base substitutions, small indels, genome rearrangements and
whole chromosome copy-number changes, which exhibit more-or-less
constant mutation rates during life. Additional mutational processes
present only in some cells, some cell types and/or that are intermittent
also contribute to the mutation burden—albeit apparently not in the
endometrial epithelium.

The prevalence of clones with driver mutations is substantially dif -
ferent in different types of normal cell. Numerous cell clones with one
or more driver mutations colonize much of the normal endometrial

epithelium (as discussed in this Article, and in previous studies 1332) in
contrast to another glandular epithelium, the colon, in which about 1%

of normal crypts in middle-aged individuals carry a driver 31 Thisis
unlikely to be due to differences in the somatic mutation rate between
endometrial and colonic epithelial cells, which are relatively modest;

in any case, the somatic mutation rate is higher in the colon 61438 How -

ever, it may be attributable to intrinsic differences in structure and
physiology between the endometrium and colon. In the endometrium,

the cyclical process of tissue breakdown, shedding and remodelling
iteratively opens up denuded terrain for pioneering clones of endome -
trial epithelial cells with drivers to preferentially colonize, compared

to wild-type cells. In the colon, however, the selective advantage of a
clone with a driver is usually confined to the small, siloed population of
asingle crypt, with only occasional opportunities for further expansion.
Although the colonization of endometrium by driver clones progresses

with age, it is already well-advanced in some young women—and parity

has an inhibitory effect on it. The effect of parity is of particular inter -
est as increased parity reduces the risk of endometrial cancer and it

is conceivable that this is mediated by its effect on the expansion of
driver clones *. Further studies of normal endometrium are required

to assess how premenarchical and postmenopausal states, hormone
contraceptive use and hormone replacement therapies influence the
mutational landscape and its potential effect on pregnancy and fertility.

The burdens of all mutation classes are lower in normal endome -
trial cells (including those with drivers) than in endometrial cancers.
Therefore, in endometrial epithelial stem cells, and in all other tis -
sues studied thus far (including colon, oesophagus and skin), normal
mutation rates are sufficient to generate large numbers of clones with
driver mutations that behave as normal cells, but acquisition of an
elevated mutation rate and burden is associated with further evolu -
tion to invasive cancer *'°'. Because the endometrial epithelium is
extensively colonized by clones of normal cells with driver mutations
in middle-aged women, and the lifetime risk of endometrial cancer is
only 3% (ref. ?*), this conversion from a normal cell clone with drivers
to symptomatic malignancy appears to be extremely rare.

The first driver mutations in normal endometrial clones with drivers
can arise within the first decade of life, and our results are compatible
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with of many doing so. The modal period of diagnosis of endometrial
cancer is 75-80 years of age. Therefore, if normal cell clones with driv-
ers are progenitors of endometrial cancers (which is plausible given

the similar driver mutations found), our results suggest that many
cancers are initiated during childhood and evolution to malignancy

takes place over the lifetime of an individual. This perspective on the

long duration of neoplastic evolution of invasive endometrial cancer

has resonance with previous observations on leukaemia 4041 and, more
recently, other solid malignancies ~ *~*, and may be a common feature
of the development of human cancers.
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Reliable detection of somatic mutations in solid
tissues by laser-capture microdissection and
low-input DNA sequencing

Peter Ellis">*, Luiza Moore ®"*, Mathijs A. Sanders"**, Timothy M. Butler®™*,

Simon F. Brunner’, Henry Lee-Six', Robert Osborne"3, Ben Farr’, Tim H. H. Coorens GJ’,
Andrew R. J. Lawson ®', Alex Cagan', Mike R. Stratton', Inigo Martincorena' and
Peter J. Campbell ©'*

Somatic mutations accumulate in healthy tissues as we age, giving rise to cancer and potentially contributing to ageing.
To study ti rtati in non plastic ti we developed a series of protocols to sequence the genomes of
small populations of cells isolated from histological sections. Here, we describe a complete workflow that combines laser-
capture microdissection (LCM) with low-input genome sequencing, while circumventing the use of whole-genome
amplification (WGA). The protocol is subdivided broadly into four steps: tissue processing, LCM, low-input library
generation and mutation calling and filtering. The tissue processing and LCM steps are provided as general guidelines that
might require tailoring based on the specific requirements of the study at hand. Our protocol for low-input library
generation uses enzymatic rather than acoustic fragmentation to generate WGA-free whole-genome libraries. Finally, the
mutation calling and filtering strategy has been adapted from previously published protocols to account for artifacts
introduced via library creation. To date, we have used this workflow to perform targeted and whole-genome sequencing of
small populations of cells (typically 100-1,000 cells) in th ds of microbiopsies from a wide range of human tissues.
The low-input DNA protocol is designed to be compatible with liquid handling platforms and make use of equipment and
expertise standard to any core seq ing facility. H , obtaining low-input DNA material via LCM requires
specialized equipment and expertise. The entire protocol from tissue reception through whole-g library g ti
can be accomplished in as little as 1 week, although 2-3 weeks would be a more typical turnaround time.

Introduction

Normal and cancerous tissues are complex ecosystems comprising different cell populations with
distinct morphologies, functional properties and spatial arrangements. Single-cell DNA sequencing
technologies provide insights into the genomic landscapes of tumor and normal tissues'. However,
these approaches remain suboptimal for identifying somatic mutations in normal cells as a con-
sequence of incomplete genome coverage, allelic dropout and amplification-induced errors'. An
alternative to single-cell sequencing is to expand single cells into colonies or clonal organoids in vitro,
providing sufficient material to use standard genome sequencing approaches to investigate the
genomes of individual cancer and normal stem cells™. Although these models have the advantage of
providing high-quality genome data derived from a single cell, they are challenging to derive for
certain tissues, might show biases toward particular cell types or toward cells with or without driver
mutations and can be afflicted by additional mutational processes activated during cell culture’. Both
single-cell sequencing and colony/organoid sequencing as approaches lose information about the
spatial distribution and histopathological features of mutant cells within a tissue.

We have established a method based on LCM that allows whole-genome sequencing (WGS) of
small, often clonal, cell populations for which predse phenotypic and spatial information is pre-
served” ™. Identifying somatic mutations in normal tissues is more challenging than sequencing
tumors, as normal tissues are typically polydonal, whereas cancers are monoclonally derived.
Nonetheless, the limited mobility and steady cell turnover in many tissues, particularly epithelial cells,

TCancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK. Department of Hematology, Erasmus University
Medical Center, Rotterdam, the Netherlands. *Present address: Inivata Limited, The Glenn Berge Building, Babraham Research Campus, Babraham, UK.
“These authors contributed equally: Peter Ellis, Luiza Moore, Mathijs A. Sanders, Timothy M. Butler. Ze-mail: pcB@sanger.ac.uk
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means that localized clonal patches do develop over time. The challenge for identifying mutations in
normal somatic cells is to isolate and sequence DNA from microbiopsies not much larger than the
size of these donal patches—hence, the need for a robust, high-fidelity library production protocol,
effective using only a few hundred cells.

Comparison with other methods

Our primary goal was to generate a DNA library construction workflow capable of processing low-
input DNA to enable effective identification, isolation and lysis of small cell populations or tissue
structures of interest (e.g., colonic crypts or gastric glands). Several library preparation techniques
have been previously developed that enable interrogation of DNA from single cells, including
degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR)°, multiple displacement
amplification (MDA) "% and multiple annealing and looping-based amplification cycles (MALBAC)"".
Although the protocol described here is not suitable for analysis of single cells, as a diploid human cell
contains only 6.6 pg of DNA, our approach has some advantages over current single-cell sequencing
techniques.

MDA and DOP-PCR both involve exponential amplification steps, and so small differences in
amplification efficiency during early cycles can result in substantial over- and under-representation of
lod in the final library, leading to allelic dropout rates on the order of 20%'. Our protocol also
involves an exponential amplification step (PCR), but the increased amount of input material
(100-1,000 cell equivalents rather than 1-2 copies of each locus) allows for fewer cycles of ampli-
fication, thus reducing the effect of variable amplification efficiency. MALBAC attempts to overcome
this issue by introducing complementary sequences at the ends of mature amplicons, which protects
them from further amplification by the formation of loop structures at intermediate temperatures,
resulting in quasi-linear amplification. However, despite the increased uniformity of coverage
afforded by MALBAC compared to other single-cell sequencing techniques, the false-positive rate for
single-nucleotide variant (SNV) calls is very high compared to bulk data, with ~1.1 x 10° false-
pasitive calls per genome''. As many of the samples we have sequenced have only 10°~10" somatic
SNVs per genome, the number of false-positive calls associated with MALBAC might be considerably
larger than the number of true calls, making MALBAC best suited for detection of large-scale
structural variants in single cells rather than accurate SNV calling.

Phasing of putative somatic SNVs with germline single-nucleotide polymorphisms (SNPs) has
been used to improve quality of SNV calls from single-cell data’. However, this approach is useful
only for the ~20% of SNV's that lie sufficiently dose to germline SNPs. Therefore, no extant single-cell
technique is able to achieve both genome-wide coverage and false-positive rates similar to bulk
sequencing. By contrast, the technique described here achieves high, even coverage across the vast
majority of the genome and has false-positive rates for SNVs below the somatic mutation burden in
many tissues. Therefore, we recommend using this protocol for studies that prioritize these features.
However, we note that single-cell approaches will still be necessary for highly palyclonal samples for
which colonies from single cells cannot be derived.

Development and overview of the protocol

To overcome limitations associated with the aforementioned methods® ", we developed a robust,
streamlined and high-throughput approach to generate whole-genome or targeted sequencing data
from just a few hundred cells isolated from tissue sections”*, while avoiding the errors and biases
introduced by WGA protocols, such as MDA or PicoPLEX ™. The procedure consists of three major
components: (i) effective tissue fixation, histology, LCM and cell lysis; (ii) genomic DNA isolation
and library construction from limited DNA amounts; and (iii) variant discovery and filtering. Where
possible, laboratory methods were developed to accommodate automation on robotic liquid handling
platforms (e.g., the Agilent Bravo and Beckman NX platforms) and to align with next-generation
sequencing (NGS) pipelines currently in operation. However, the workflow accommodates other
automation platforms or could be performed manually with, for instance, multi-channel pipettes. The
workflow from tissue preparation to DNA sequending data is outlined in Fig. 1.

Tissue fixation is an essential step in histology to preserve tissue morphology for accurate
microscopic assessment. However, standard histology fixatives, such as formalin, have a detrimental
effect on both the quality and quantity of extracted DNA". We, therefore, tested several non-
crosslinking fixatives and discovered that alcohol-based preparations (ethanol, methanol or com-
mercial alternatives, e.g., PAXgene Tissue FIX) were suitable for the proposed workflow. We routinely
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Fig. 1| Tissue processing and Ibrary preparation workflow. H, hematoxyling H&E, hematoxylin and eosirg OCT, optimal cutling temperature

use alcohol-based fixatives to prepare paraffin and frozen tissue sections and prefer paraffin
embedding as it is compatible with most tissue types and results in high-quality morphology pre-
servation. It should be noted that significant optimization has gone into the process of gencrating
microbiopsies via LCM, extraction of DNA and construction of WGS libraries. Additional optimi-
zation of these steps could improve the success rate of the protocal. The tisue preparation
and saining steps are included to document our approach, but it i by no means the only
approach possible.

We tested several methods to maximize DNA recovery from microdissected cellular material. We
discovered that proteinase K-based buffers work best within the proposed workflow and use dther an
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Fig. 2 | Comparison of DNA library perf in d i rkfl (Agilent SureSelect). We prepared human DNA libraries (mean
insert length, -175 bp) using reagents supporting ymatic or acoustic fi tation methods. Equal amounts of each library were enriched for

exome (a) or 2-Mb custom cancer panel (b) targets. Enriched libraries were subjected to 75-bp paired-end sequencing using the lllumina HiSeq 2500
platform. Data were normalized to -50 million (exome) or 30 million (custom cancer panel) reads per sample before analysis. ¢, Typical results from
Agilent 2100 Biocanalyzer after low-input WGS library construction (Step 47). d, Typical results from Agilent 2100 Bioanalyzer after WGS library
construction (Step 47) and subsequent targeted hybrid capture.

in-house version (described in ‘Reagent setup’) or the commercially available Arcturus PicoPure
DNA Extraction Kit. The ability to bypass traditional DNA purification and quantification steps is a
distinct feature of our proposed method. We propose a modified SPRI bead purification within the
library construction workflow and omit DNA quantification altogether. Early tests indicated that
genomic DNA recovery at the DNA purification step could be as low as 50% (unpublished results,
P.E.), which led us to think that a large proportion of high-molecular-weight genomic DNA was
refractory to elution from the SPRI beads. The entire post-elution sample (including beads) was
integrated into the library construction workflow to avoid these losses. It is likely that a combination
of buffer detergent, heat and action of the fragmentation enzymes in the next step promotes the
release of bound DNA into solution.

Standard NGS workflows operational in our institute typically use 200 ng of input DNA material,
often fragmented by acoustic shearing. Fragmented DNA is repaired, dA-tailed, ligated to adapter
sequences and indexed by PCR amplification for six cycles. With the standard pipeline, our ability to
produce sequencing data with meaningful library complexity drops dramatically when using less than
10 ng of input DNA. In developing the new protocol, we discovered that DNA fragmentation
approaches that use enzymatic, rather than acoustic, fragmentation, yielded a >ten-fold improvement
in DNA library yield. This increase in efficiency led to a dramatic reduction in PCR duplicate rates,
enabling the generation of whole-exome or custom-targeted sequencing data from DNA inputs as low
as 075 ng (Fig. 2). Importantly, we could readily control the mean fragment length for different
applications independent of DNA input. This approach has, therefore, been implemented to generate
DNA sequencing libraries from LCM microbiopsies.

A series of previously described post-processing filters were used to remove erroneous somatic
variants” 'Y, However, we discovered that our low-input, enzymatic fragmentation-based LCM
workflow also generated erroneous variants within inverted repeats capable of forming cruciform
DNA (Fig. 3). Reads containing these erroneous variants had similar, but not identical, alignment
start positions and could, therefore, not be marked as PCR duplicates. The erroneous variants often
coincided with other erroneous variants in close proximity (1-30 bp) within the same read (Fig. 3a).
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Fig. 3 | Genesis of false-positive cruciform DNA-induced variants. a, Integrative Genomics Viewer (IGV)
sc hot of reads ¢ ining false-positive variants calls (red Ts bracketed by dashed lines) typically introduced by

the erroneous processing of cruciform DNA. (Red and Yellow) Two sides of the semi-inverted repeats with
mismatches upon the formation of a hairpin. (Orange) Left flanking site of the imperfect inverted repeats. (Blue)
Right flanking site of the imperfect inverted repeats. b, A DNA fragment containing the imperfect inverted repeats.
¢, Before or during DNA fragmentation, cruciform DNA is formed from two inverted repeats present in both strands.
d, e, Resolvase activity cuts across cruciform structure. f, Ligation of the resolved hairpin. g, The hairpin is effectively
transferred from one strand to the other. The processed DNA fragment bears a similar sequence to the original DNA
fragment (b) with a few mismatches and, depending on the location of the single-strand nick, a small piece of ectopic
sequence that derives from the opposite strand (reverse complement left flanking region, a and g).

Erroneous processing of crucform DNA, either existing before DNA isolation or formed during
library construction, is the most likely explanation for these artifactual variants (Fig. 3b-d). Reads
containing these false-positive variants tended to align in close proximity to one another, which
served as a hallmark for their detection. We used the variant position in the read with respect to the
alignment start, the standard deviation (sd.) and the median absolute deviation (MAD) of the variant
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Fig. 4 | Effects of the different filtering steps. a, Fragment-based filtering is applied on three LCM small bowel microbiopsy samples. Left panel,
Mutational spectra after CaVEMan variant detection and application of the standard filtering practices (Protocol Steps 51-55). Middle panel,
Mutational spectra of the variants that get discarded by the fragment-based filter (Steps 56-58). Right panel, Mutational spectra of the variants
retained after fragment-based filtering (Steps 56-58). Right, The percentage of variants filtered by fragment-based filtering. b, Cruciform-based
filtering is applied to the variants retained after fragment-based filtering for the same three LCM small bowel microbiopsy samples. Right panel,
Mutational spectra of variants retained after fragment-based filtering (Steps 56-58). Middle panel, Mutational spectra of variants that get discarded
by the cruciform-based filter (Steps 59 and 60). Right panel, The final mutational spectra after fragment-based and cruciform-based filtering (final
spectrum after Step 61). Right, The percentage of variants that get filtered by the cruciform-based filtering after applying the fragment-based filter first.
Color indicates mutation type: blue - C>A, black - C>G, red - C>T, gray - T>A, green - T>C, pink - T>G. Trinucleotide context indicates the context in
which the mutation occurred identified by the base preceding the mutation, the mutated base and the base succeeding the mutation.

position within the read as features for filtering. Application of these filters to bulk tissue WGS data
showed that our new filtering approach removed only a few true somatic mutations per genome,
while specifically removing erroneous variants assodated with low-input, enzymatic fragmentation-
based LCM experiments (Fig. 4).

We performed a set of validation experiments to test the developed workflow. First, the repro-
dudbility of the workflow was assessed by generating pairs of biological ‘near-replicate’ samples and
processing them independently using our new library construction methodology. In these experi-
ments, two separate samples were generated from the same tissue structure, such as an appendiceal
crypt, and subjected to independent DNA extraction, cell lysis, library preparation and WGS
(Fig. 5a-d). Comparisons of somatic SNVs identified in each ‘near-replicate’ showed similar variant
allele frequency (VAF) distributions (Fig. 5b), a high degree of overlap for SNV (Fig. 5c) and similar
substitution mutational spectra (Fig. 5d).

We next compared WGS data generated by our new end-to-end workflow to LCM lysates
processed via traditional acoustic shearing methods. Similarly, pairs of biological ‘near-replicate’
samples were derived from the same histological structure; this time, one sample was processed with
our new workflow and the other with acoustic shearing. Again, comparison of the WGS data between
the two differently processed samples showed similar VAF distributions, SNVs and mutational
spectra (Fig. 5e-h).
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Fig. 5| il cing ‘nearceplicate” samples. a-d, Near-replicate’ samples were generated by spitting an appendiceal crypt
into two halves, Much were then uooeud and sequenced independently. a, Images acquired on the LCM of an appendiceal crypt before (upper),
after one half was microdissected (middie) and after ™e other half was microdissected (lower). Scale bar, 200 pm. b, VAF of al substitutions in both
halves show similar clonal datribution with & median VAF -0.5. ¢, Venn disgram demonstrating SNV iderity between both samples, d Trinuclectide
context of al substitutions are also simiar. e-h, ‘Near-replicate’ samples were generated by spitting a colonic arypt into two halves, which were
sutsequently processed with our fragmentase-based method (COL_S5_A3) and sonication-based method (COL_4_A3) e, Images acquired on the LCM
of a colonic arypt before (upper), after one half was microdssected (middie) and after the other ha¥ was microdissected (bwer). Scale bar, 200 pm.
Similar clonal VAF distributicns (), SNV calls (g) and trinuciectide context (R) are cbserved from the two samples.

Advantages and limitations of the protocol
Using our protocol, we obtained sufficient DNA from small cell populations for accurate WGS data,
while circumventing the artifacts typically obwvd with single-cell WGA. Stqutnchg data from
these experiments have already provided unpoﬂam ights into ti P in adult
stem cdls and their consequent donal exp

Where possible, protocols were developed to swpm high-throughput, automated pipelines, and
we aimed to minimize the number of steps from tissue preparation to variant detection. To date, we
have successfully processed more than 40,000 LCM microbiopsies acrass ~550 96-well plates. Suc-
cessful whole-genome libraries (library concentration >5 ng/ul) have been generated from 80% of
microbiopsies (Fig. 6ab). Failures are generally attributable to unsuccessful plicement of LCM
material in the collection vessd before lysis, resulting in a negative well or an insufficient microbiopsy
size/cell count. We think that a success rate of ~80% is an acceptable level for this protocol. Our
tradeoff here is between microdissecting a suffident number of cdls for which we an successfully
make a sequendng library versus microdissecting sufficiently few cells as to minimize the number of
clonal structures sampled. We can assess the quality of a given lbrary before soquencing it, which
means thal we an cost-effectively loltnlz a 20% Bbrary falure rate.

The ber of cells required for generating sufficient genome coverage is an obvious
limitation to our p l. Reference g DNA (gDNA) was used to formulate pass/fail criteria,
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Fig. 6 | Ubrary concentrations of epithelial LCM samples. a, Post-PCR Sbrary concentration of 1,721 LCM b of breast tissue
b, Fraction of breast microbiopsies meeting varying Ibv-y <on<u-lvl-on thrasholds. ¢, Mean WGS depth achieved for 526 breast and lung epithelial
microbopsies across a range of Ibrary ¢ depth was varied to avoid unnecessary sequencing of PCR duplicates.

d, Fraction of reads identified as PCR duplicates. & Proportion of GRCA37 covered at a given depth, comparing colonic crypts that underwent low- input
library genecastion via either sorication or enzymatic fragmentation.

and the DNA library yield from samples passing these criteria was subsequently used to predict WGS
data quality based on previously sequenced standard WGS libraries (Table 1). We estimate a mini-
mum requirement of 30-100 cell equivalents of DNA (180-600 pg) to obtain a coverage of 10-20x
reads for WGS (Figs. 2, 6). This trandates to an efficiency of 5-33% of all DNA molecules being
successfully converted to WGS data. We routinely captured 100-1,000 cells, depending on the tissue
histology of the sample and were, therefore, unaffected by this constraint in the setting of WGS.
Tissue microanatomic structures or clonal expansions can permeate multiple tissue sections, In this
context, depending on the spedifics of the research question, it could be beneficial to sample the same
clonal structure from scrial tissue sections to increase cdl numbers, Processing new tissue types
unalynvol\smmngCMmauhcpwﬁunamdempdmsb&n&yﬂn&nﬂnﬂlhﬁ
yields a desired final library conc Typiclly, microbiopsy volume more often governs LCM
cutting than cdl count, as the cutting area is quickly and automatically calculated by the LCM
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Table 1 | Identifying pass/fail criteria for WGS based on DNA library yield

Cell PCR Library Theoretical  q20 SNP Reads Duplicate
equivalents cycles yield (fmol) yield (fmol) data (Gb) coverage mapped (%) reads (%)
4,000 8 2,670 42,720 96.0 31 99.6 58

1,000 10 2,435 9,740 100.7 34 99.6 77

250 12 2,362 2362 95.2 29 99.6 17.2

60 14 2,348 587 935 21 99.2 393

30 4 1,240 310 853 12 982 548

Human genomic DNA (Horizon Discovery Tru-Q 6 Refernce Standard DNA) was subjected to DNA litrary construction using our LOM-based NGS
workflow. DNA Rbraries were saquenced using the llkumina HiSeq 4000 platiorm. Depth of coverage is indicated by averaging call depths across 26
common SNPs. TheoreScal yisld indicates the amount of Rrary produced if our standard 12 cycles of PCR were used and asumes finear response and
100% PCR efficiency.

software. The typical minimum input volume for epithelial tissues is 100,000 um®, with library
concentrations >3 ng/ul in over 75% of samples (Fig. 6a,b). Alcohol-based tissue fixation is another
protocol limitation, with an option for formalin-fixed tissues currently lacking.

Our workflow is not limited to LCM-based experiments, and low-input material from multiple
sources has been successfully processed by our workflow. The two primary reasons to use this
workflow on other sources are: (i) we have demonstrated the ability to produce high-quality DNA
sequencing data from very limited amounts of DNA, and (ii) the workflow bypasses unnecessary
DNA isolation and quantification steps. We have successfully produced whole-genome or targeted
sequencing data from esophageal and skin biopsies, organoids, fluorescence-activated cell-sorted
lymphocytes and parasitic blood flukes (Schistosoma) (unpublished results, LM. and P.E.). Although
our workflow offers a powerful approach for sequencing these sample types, DNA quantity must be
considered to avoid overwhelming the limited enzymatic reagents. We recommend an input of
100-1,000 cells for our workflow, which is relatively simple to control during capture. Working
within this range enables the running of a standardized workflow that processes all samples in a
96-well plate under identical conditions. For new tissue types, we recommend running a pilot
experiment, measuring the DNA library yields and using these values to infer a DNA amount typical
for the starting material. Sample cohorts should be adjusted to achieve library concentrations greater
than 10 ng/l, or, for some cases, we reduce the number of library amplification cycles. A threshold of
10 ng/ul allows for WGS read depth of ~20x, whereas a lower threshold of 3 ng/ul can be used to
generate 10x read depth, for situations where that depth is sufficient (Fig. 6¢,d).

Several potential concerns were investigated and found not to be an issue. Using an enzymatic
rather than acoustic fragmentation could potentially lead to uneven genomic coverage. However, by
comparing sequending data from either sonicated or enzymatic fragmented DNA from colonic crypts,
we could not find any difference in genome coverage (Fig. 6e and Supplementary Data 1). Another
concern relates to microbiopsy sizes, which might result in the differential incidence of any artifacts.
We took two microbiopsies from the same breast tumor sample that differed in size tenfold (Fig. 7a).
Unsurprisingly, the larger cut was able to be sequenced to a greater median whole-genome depth
(33x versus 21x), at the expense of a lower median VAF (0.36 versus 0.44) (Fig. 7b,c). Despite these
differences, the two samples had a large proportion of shared mutations and no evidence of different
mutational patterns caused by a size-related artifact (Fig. 7d-f).

Experimental design

There are four major experimental design factors that require consideration before applying this
method: input material, germline filtering strategy, expected tissue clonality and sequencing
requirements.

Input material

Our protocol was specifically designed to be used with LCM-derived low-input material, but the
low-input library preparation protocol (Ste!:-s 7-49) has been successfully applied in non-LCM set-
tings. Studies investigating blood colonies'™"” and single-cell-derived organoids“’ have successfully
been used in the low-input pipeline to generate high-quality whole-genome libraries. However,
optimization of the required DNA input amount followed by the necessary number of PCR cydes is
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advised when DNA is extracted through alternative approaches. Two factors are considered pivotal
for LCM experiments and require further tailoring to achieve the optimal outcome: the thickness of
tissue sections (thinner sections provide better histology but yield less DNA) and the volume of tissue
to cut (tissues have varying cellular densities; therefore, larger cuts increase the risk of capturing more
unrelated clones, making mutation detection more difficult). Increasing the DNA input amount can
yield a more complex sequencing library, enabling deeper sequencing coverage, which might be
necessary for certain applications.

Germline filtering strategy
Germline filtering is important for identifying true somatic over germline variants. We used three
different strategies, depending on study design and tissue availability:

The ‘matched bulk normal’ approach. A bulk DNA sample derived from a different tissue than
what is being microdissected (typically a blood sample) undergoes traditional WGS. This approach
provides a high-quality normal sequence from which to identify germline variants but requires the
collection of multiple tissues from a single patient. Furthermore, the input DNA amount and library
preparation methods are fundamentally different, potentially leading to a mismatch in artifacts
present in the matched-normal and LCM-derived samples.

The ‘matched LCM normal’ approach. An LCM microbiopsy is cut from the same tissue but
comprises unrelated cell types, ideally from polyclonal tissues, to avoid clonal mutations or copy
number changes in the matched normal. Examples indude lymph nodes or areas of stroma or smooth
musde. Such microbiopsies are typically large (~1,000 cells) to ensure a high-depth library. The
matched LCM normal is subsequently used in mutation calling similar to the bulk normal, with the
added benefit of being subjected to the exact same library preparation conditions. This approach will
not always be possible depending on the cell types present in a tissue section and the architecture of
the tissue of interest.

The ‘unmatched’ approach. Variant calling can be performed against an artifidal genome
generated from the reference sequence, and all variant sites are aggregated across all samples
from the same individual. When analyzing multiple largely unrelated microbiopsies from the same
individual, germline variants can be conservatively removed by calculating the global allele
frequency (VAF) of a mutant site across all available samples from the same individual. Germline
mutations will be present at global allele frequendes ~0.5 (heterozygous mutations) or 1 (homo-
zygous mutations). Removal of germline mutations can be done using a global VAF cutoff or a
binomial test (testing for global VAF <0.5). Finally, a beta-binomial test is run, filtering out low-
frequency artifacts that, unlike genuine somatic mutations, are often present at similarly low fre-
quendies across multiple libraries from a given individual. An advantage of the ‘unmatched’ approach
when multiple unrelated samples are available from a patient is that no second source of tissue is
required and that early embryonic variants will not be filtered out by being present in a matched
normal. This approach improves as the aggregate coverage increases and requires at least a total of
50-fold coverage per individual.

Tissue clonality

Levels of clonality are largely dependent on tissue histology and the microenvironment, which should
be considered in the experimental design. Clonal entities, where all cells are derived from a single
progenitor, will have somatic mutations shared across all cells within the histological structure and
predicted VAFs at 0.5. Examples of these are colonic crypts, endometrial glands and prostate glands.
For these examples, high-confidence somatic mutations can be identified from samples sequenced to
a moderate depth (15x). Other tissues show a more disordered histological structure (sheets of
epithelial cells in the bronchus, esophagus and bladder, for example), or the histological structure is
derived from multiple progenitors or cell types and, therefore, is not clonal (breast acini and pan-
creatic islets). Mutations in these microbiopsies are typically shared by a subset of cells; VAFs in a
range of 0.2-0.4 are often seen in microbiopsies comprising two or three distinct cell populations
(‘oligoclonal” samples). Truly polyclonal samples can show lower VAFs or even yield no detectable
somatic mutations. In tissues with no dearly defined structure, it is not uncommon to see a wide
range VAFs depending on the number of dones present in each microbiopsy and the degree of
contamination by other cell types. One approach that can be useful to obtain high-quality whole
genomes from tissues with oligoclonal microbiopsies is to screen 2-3 times as many microbiopsies
using targeted or whole-exome sequencing as you intend to perform WGS on. Use the mutations
detected to identify libraries with sufficdently high VAFs (e.g. >0.25), or interesting driver mutations,
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Materials

for subsequent WGS. We do this by generating WGS libraries on all microbiopsies and performing
targeted or exome sequencing on a fraction of the available amount of library. A small pilot
experiment to determine the optimal sampling strategy is advised when the clonal architecture of a
tissue is unknown a priori before initiating a larger study. Using this protocol, ~80% of samples pass
our predefined quality controls, but this percentage could be further increased by taking larger
microbiopsies, with the added risk of sampling more individual clones.

The protoZol as outlined here primarily focusses on the use of LCM in combination with WGS to
identify structural variants (SVs), copy number alterations, SNVs and small insertions and deletions
(indels). The large number of somatic mutations identified allows for building of robust phylogenetic
trees describing the relationships between the samples and enables the identification of mutational
signatures present in the samples. We have successfully sequenced low-input LCM libraries to >100x
depth using several small (<5 megabase) targeted panels'”'* or a whole-exome panel, although the
maximum achievable coverage can be lower in libraries from small numbers of cells. For these
targeted samples, we first g d whole-genome libraries and subjected a subset of that library to
targeted pulldown, saving the remainder for potential follow-up WGS. Due to increased median
insert size of the whole-genome libraries, this approach can yield more off-target reads in targeted
sequencing than is typical (>30%).

Future development

We have developed a robust set of protocols for sequencing the genomes of discrete cell populations.
In addition, we are interested in integrating this workflow with multi-omic sequencing approaches,
including DNA, RNA and methylation analyses performed on the same microbiopsies. To date, we
have successfully generated Smart-Seq2 (ref. '*) RNA sequencing libraries from PAXgene-fixed tis-
sues; however, additional optimization steps are currently under development to ensure consistent
RNA yields and high-quality sequencing data.

In the context of oligodonal or polyclonal tissues, low-frequency variants could be reliably
detected by using an error-corrected sequencing approach, such as ‘duplex sequencing’ or other
unique molecular identifier approaches”*”'. The additional sequencing cost would make this
cost-prohibitive for WGS but would be highly effective for targeted gene panels. It is also possible
that some of the observed artifacts would be distinguished by these error-corrected
sequencing approaches.

Copy number variants, SVs and small indels were successfully identified from our WGS libraries
using our standard WGS analysis tools (ASCAT, BRASS and Pindel, respectively; available at https://
github.com/cancerit/dockstore-cgpwgs) (Fig. 8). The estimated purity from the copy number calls
robustly correlates with the median VAF identified from the SNVs, and the large chromosomal gains
and losses are identical between two samples taken from the same tumor (Figs. 7a,b and 8a,b).
Similarly, the tandem duplication and deletion calls made on chromosome 12 are the same between
both samples, despite a noisier copy number profile for sample PD39939a_lo0006 (Fig. 8c,d).
Although this is encouraging, the noisiness of the data, particularly the indels, will require some
additional filtering—an approach we are currently pursuing. Indels appear particularly error-prone
on account of the additional PCR cydes introducing higher numbers of single-base indels, which can
complicate separating true from artifactual mutations.

Biological materials

* This approach was successfully used on a variety of human tissues (including bladder, breast, colon,
endometrium, lung and stomach) and colon and small intestine from mice.

* Sequencing data from colonic and appendiceal tissue used in Fig. 5 were obtained from a warm-body
autopsy of a 78-year-old man. Tissue was processed by ethanol fixation and frozen sectioning (Protocol
Step 1B). The samples were collected in line with the protocols approved by the NRES Committee East
of England (NHS National Research Ethics Service reference 13/EE/0043).

* Sequencing data from breast tissue used in Figs. 7 and 8 were obtained from a mastectomy sample of
an estrogen receptor-positive lobular carcinoma from a 70-year-old woman. Tissue was processed
using PAXgene fixation and paraffin embedding (Protocol Step 1A). Ethics approval was obtained
from the Wellcome Sanger Institute (UK) and the University of Queensland (Australia).
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<« Fig. 8 | Copy-number variant, SV and small indel calling. a, b, Allele-specific copy number analysis of tumors

(ASCAT)*?; copy number segments for two microbiopsies taken from the same breast tumor (Fig. 7a). ¢, d, SV
identified on ch e 12 using BReakpoin AnalySiS BRASS (https://github.com/cancerit/BRASS). D, deletior;
HH, head-to-head inversion; TD, tandem duplication; TT, tail-to-tail inversion. e, f, Mutational spectrum for small
indel calls made using Pindel™.

! CAUTION All experiments on human and animal tissues must have ethics approval in accordance
with governmental and institutional regulations. Informed consent must be obtained for all human
samples. Human samples were processed to destruction.

Reagents

Tissue fixation, sectioning and staining

* Absolute ethanol (VWR International, cat. no. 1.08543.0250)

* PAXgene FIX Kit (PreAnalytiX, cat. no. 765312)

* PAXgene Tissue STABILIZER Concentrate (PreAnalytiX, cat. no. 765512)

* Water (VWR International, cat. no. 22934.K7)

* Phosphate-buffered saline (PBS; 1x)

* Gill’s hematoxylin II (Leica, cat. no. 3801501)

* Aqueous eosin 1% (Leica, cat. no. 3801591)

* Xylene (VWR International, cat. no. 28975.325) ! CAUTION Flammable and harmful; wear protective
clothes and gloves; perform all procedures in a fume hood

* Neo-Clear xylene substitute for microscopy (Sigma-Aldrich, cat. no. 1.09843) ! CAUTION Flammable
and harmful; wear protective clothes and gloves; perform all procedures in a fume hood.

* Poly-ethyl napthalate (PEN)- brane slides (Arcturus, cat. no. LCM0522 or Leica, cat. no.
11600288) A CRITICAL To minimize DNA cross-contamination, it is important to place all slides in a
UV crosslinker (recommended time, 30 min at maximum power) before mounting of tissue sections.

* Optimal cutting temperature (OCT) compound (Thermo Fisher Scientific, cat. no. 23-730-625)

* Paraffin (congealing point, 55-58 °C; VWR International, cat. no. 361077E)

Cell lysis and digestion

A CRITICAL This step can be performed using either a commerdially available kit (Arcturus PicoPure
DNA Extraction Kit; Thermo Fisher Scientific, cat. no. KIT0103) or our in-house protease buffer
composed of the reagents below (for preparation, see ‘Reagent setup’).

* Proteinase-K (Qiagen, Protease, 7.5 AU, cat. no. 19155)

* Tris-HCI, pH 8.0 (Sigma-Aldrich, cat. no. RES3098T-B701X)

* Tween-20 (Sigma-Aldrich, cat. no. P1379-500ML)

* IGEPAL CA-630 (Sigma-Aldrich, cat. no. 18896-100ML)

* Nuclease-free water (Ambion, cat. no. AM9937)

Purification of gDNA from LCM lysates/purification of amplified libraries

* Eppendorf TwinTec PCR plates (Eppendorf, cat. no. 0030128648)

* TE buffer, pH 8.0 (Ambion, cat. no. AM9858)

« Nuclease-free water (Ambion, cat. no. AM9937)

* Agencourt AMPure XP Beads (Beckman Coulter, cat. no. A63881)

 Ethanol, 95-97% (vol/vol), AnalaR NORMAPUR analytical reagent (VWR Intemational, cat. no.
20823.327).

DNA library construction and amplification of adapter-ligated libraries
* NEBNext Ultra II FS DNA Library Prep Kit for llumina (New England Biolabs, cat. no. E7805L)
* Duplexed adapters (IDT, HPLC grade, ¥ represents phosphorothicate modification)

5'-ACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3 '
5’ -phos-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG-3"

* PELO primer (IDT, Ultramer synthesis, standard desalt, “* represents phosphorothioate modification):

5'-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC*T-3'

NATURE PROTOCOLS | www.nature com/nprot

235



NATURE PROTOCOLS PROTOCOL

*iPCR-Tag (IDT, Ultramer synthesis. ‘X’ represents one of 96 unique 8-base indexes):

5'-CAAGCAGAAGACGGCATACGAGATXGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTC
CGATC-3'

* Kapa HiFi HotStart ReadyMix (Kapa Biosystems, cat. no. KK2601)

DNA library quality control and DNA sequencing

 Reagents for DNA library quantification (e.g. Kapa Biosystems, cat. no. KK4824)

* Agilent High-Sensitivity DNA Kit (Agilent Technologies, cat. no. 5067-4626)

* 1.5-ml Microcentrifuge Safe-Lock tubes, polypropylene (Sigma-Aldrich, cat. no. T9911-1000EA)
* Buffer EB (Qiagen, cat. no. 19086)

+ ISPCR oligo (IDT, HPLC grade)

5'-AAGCAGTGGTATCAACGCAGAGT-3'

Equipment

* Tissue fixation, processing, sectioning and staining ! CAUTION Tissue sectioning and/or fixation of all
fresh or frozen human tissue samples must be performed in a hood (laminar flow hood is
recommended) in a Containment Level 2 category laboratory.

¢ Cryostat (Leica CM3050S)

* Tissue processor (Sakura Finetek Tissue Tek VIP 6 AI)

* Tissue embedding station (Sakura Finetek Tissue Tek TEC 5)

* Rotary microtome (Accu-Cut SRM 200 Leica)

* Paraffin Section Flotation Bath (Electrothermal, model no. MH8517)

* Disposable microtome blades (PFM Medical, cat. no. 207500000)

« Disposable cryostat blades (Leica, cat. no. 14035838382)

* Small paint brushes

* Glass staining (Coplin) jars (VWR International, cat. no. 720-0707) or EasyDip Slide Staining System
(Scientific Laboratory Supplies, cat. no. HIS0274) A CRITICAL To minimize DNA cross-contamina-
tion, autoclave staining jars between experiments.

* UVP ultraviolet crosslinker (Thermo Fisher Scientific, model no. CX-2000)

o Sterile large (150 mm x 25 mm) cell culture dishes for fixing frozen sections (Sigma-Aldrich,
cat. no. CLS430599-60EA)

* Multi-purpose refrigerated centrifuge (Eppendorf, model no. 5810 R)

* Standard laboratory equipment including different size tubes, filter tips, freezer and refrigerator for
storing samples and reagents

* Reverse osmosis water system (e.g.,, Thermo Fisher Sdientific, cat. no. 50132388)

* Slide scanner (e.g., Hamamatsu s60, cat. no. C13210-01)

* Glass cover slips (e.g., VWR International, cat. no. MENZBC022070A1)

* Rubber cement (e.g., Marabu Fixogum)

LoM

 Laser-capture microscope (Leica, LMD7000)

* UVP ultraviolet crosslinker (Thermo Fisher Scientific, model no. CX-2000)
* DNA-OFF (Takara, cat. no. 9036)

*70% (vol/vol) ethanol spray for decontaminating working surfaces

* Adhesive PCR plate seals (Thermo Fisher Scientific, cat. no. AB0558)

* Eppendorf TwinTec PCR plates (Eppendorf, cat. no. 0030128648)

©22 mm x 50 mm, glass coverslips (VWR International, cat. no. 631-0137)
¢ Fully skirted 96-well plate holder

Cell lysis and digestion

* Thermocycler (M] Research, DNA Engine Tetrad PTC-225)

* Multi-purpose refrigerated centrifuge (Eppendorf, model no. 5810 R)

* Vortex shaker (Cole-Parmer, Vortex-Genie 2 at 2,600 rp.m. to 2,700 r.p.m., 230 VAC)
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gDNA purification; library preparation, amplification and quality controk DNA sequencing
* Plate centrifuge (eg. Eppendorf S810R)

* Thermal cyder (e.g, MJ Research Tetrad PTC-225)

* Microcentrifuge (eg., Eppendarf 5424R)

* Vortex shaker (Cole-Parmer, Vortex-Genie 2 at 2600 rp.m. to 2700 r.p.m., 230 VAC)
*96-well magnet (eg., Alpaqua 96S Super Magnet Plate)

« Single-channd and multi-channd pip (e.g. P2, P20, P200, P1000 (Anachem; LTS))

« Agilent 2100 Bicanalyzer (Agilent Technologies, cat. no. G2938C)

* [Bumina next-generation sequencing platform (eg. HiSeq X platform)

* Suitable compating infrastructure for next-generation sequence data analyss

Automation platforms

ACRITICAL The following automation platforms are optional and can be replaced either with suitable

alternative platforms or manual approaches (e.g, multi-channd pipetting).

* Bravo G5574A NGS Workstation option B (Agilent Technologies). We use this platform for gDNA
purification and DNA library construction.

*Bockman NX-96 (Beckman Coulter) We wse this platform for purification of amplified
DNA libraries.

* Beckman NX-8 (Beckman Couter). We use this platform for DNA Ebrary pooling.

Software

* Annotate BAMStatistics (https-//github.com/Math isSanders/Annotate BAMS tatistics)
* AdditionalBAMStatistics (https:// github.com/MathijsSanders/AdditionalBAMStatistics)
* ANNOVAR (httpy//annovar.openbioinformat ksorg/) ™

* BWA (http://bio-bwa sourceforge.net/)™

* CaVEMan (https// github.com/cancerit/ qgpCaVEManWrapper)™

* CGPWGS (https://github.com/cancerit/dockstore-cgpwgs)

© GATK (https://software broadinstitute.org/gatk/)™

® Picard (https://broadinstitute.github.io/ picard/)**

* Samtoals (http-//www.htsliborg/)*”

* SangerL.CMFiltering (https//github.com/MathijsSanden/SangerLCMFiltering)

* Unmatched normal filtering (https//github.com/TimCoorens/Unmatched NormSeq)

Reagent setup

Protease buffer

Prepare Arcturus PicoPure DNA buffer as per the manufacturer’s instructions. Alternatively, follow

these steps to prepare our in-house protease-type buffer:

(1) Reconstitute a vial of lyophilised proteinase-K powder with 7 ml of nuclease-free water
(concentration, 23.81 mg/ml stock). Store in 1-ml aliquots at 4 °C (buffer is stable for up to
2 months) we suggest putting “best before date” on each aliquot.

(2) On the day of the cell lysis, dilute the buffer as follows. To 10 pl of reconstituted protease, add
90 W of nuclease-free water (concentration, 2.38 mg/ml)

(3) Further dilute protease from 238 mg/ml to 25 pg/ml by adding 10 pl of protease to 990 pl of
nudease-froe water,

(4)  To prepare the working buffer, add the following:

Reagent Stock Final Units Volume (ul) for 1ml
Tris-HCl, pH 8.0 1000 30 mM 30

Tween-20 00 05 % (vol/wol) 5

IGEPAL CA-630 00 05 % (vol/vol) 5

Protease 25 125 R/ ml 50

Nuclease-free water 910

(5)  Vortex (1 min) and spin down (20-30 s, 18 °C, 1,000g). Keep on ice until LOM is completed.

NATURE PROTOCOLS | wwvw 1 st re com,/nge ot

237



NATURE PROTOCOLS PROTOCOL

Procedure

Equipment setup

Microtome

! CAUTION Care must be taken when handling microtome blades. Always use a brush to clean wax

residuals from the blade. If interrupted during tissue cutting, ensure that the blade guard is in place and

the hand wheel is locked A CRITICAL Only required when following the paraffin tissue sectioning,
fixation and staining procedure (Fig. 1; Procedure Step 1A).

1 Pre-cool paraffin blocks on ice (~2 h to ~4 °C).

2 Place the blade in the holder on the microtome and cdamp in place. Check that there is no
movement of the blade. ! CAUTION The clearance angle should be set at 5°.

3 With the hand wheel locked, damp the wax block in the chuck, tissue outermost, and with the
bevelled edge of the cassette pointing to the right of the microtome. Check that there is no
movement of the block in the chuck.

4 Release the hand wheel lock on the rotary wheel. Select tissue section thickness (can vary from 5 to 30 pm).

Cryostat
!CAUTION Tissue section preparation of all unfixed human samples must be performed in a

Containment Level 2 laboratory. All users must be screened for immunizations in accordance with local

guidelines. Care must be taken when handling cryostat blades; always use a brush to clean tissue

residuals from a blade A CRITICAL Only required when following the frozen tissue sectioning, fixation
and staining procedure (Fig. 1, right; Procedure Step 1B)

1 Ensure that all trimmings and solid material are removed from the instrument. Disinfect the
chamber using 70% (vol/vol) ethanal spray.

2 Pre-cool the cryostat by changing temperature for the chamber (CT) and specimen holder (OT).
Refer to the manufacturer’s instructions for specific temperature settings, as these will vary
depending on the tissue type. We found that many tissues can be cut with the following temperature
settings: CT: —18°C to —25°C and OT: —18°C to —25°C.

3 Slide a disposable blade into the holder to pre-cool, making sure that it is securely held in place using
the locking mechanism.

4 Place the knife guard over the blade until it is required. Place brushes and chucks in the cryostat to
pre-cool (15-20 min).

5 Select tissue section thickness; use the ‘+’ and ‘-’ buttons on the left-hand side. We usually cut
10-30-pum thick sections.

Lo

! CAUTION To minimize DNA cross-cc ination, wear a lab coat and gloves during the LCM experiments.

Decontaminate all working surfaces with DNA-OFF, paying particular attention to the microscope stage, slide

and plate holders. Next, repeat the decontamination procedure with 70% (vol/vol) ethanol spray.

Set up the LCM through the following steps:

1 Switch on the microscope and laser power control and open the LMD software. Select the correct
camera type and set up image brightness, exposure and white balance.

2 Laser cutting settings vary depending on the tissue type and section thickness; however, the following
setting can be used on many tissues: aperture 2, power 17-25, speed 5-10. A CRITICAL Make sure to
calibrate laser settings and align plate position before the start of dissection. To maximize cell
capture, avoid draft from air conditioning and open windows.

3 Select correct slide and sample holders. We usually dissect directly into 96-well plates, but dissection
can also be performed into strips of caps or PCR-type tubes, depending on the experiment setup.
Open MIC control and laser control and calibrate the laser. Regulady calibrate the plate holder to
ensure that tissue microbiopsies are properly landing in wells.

Tissue sectioning, fixation and staining
1 For instructions on how to section, fix and stain tissues embedded in paraffin, follow Option A. To
section frozen material, follow Option B.
(A) Paraffin sections @ Timing 1-2 d
(i) To fix a fresh tissue sample, place it either into 70% (vol/vol) ethanol or in PAXgene FIX Kit
and follow the manufacturer’s instructions. Fixation time will vary depending on the tissue
dimensions, but a rate of 1 mm/h penetration can be used for general guidance for both
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Table 2 | Tissue processor program for small tissue (<0.5 cm maximum dimension)

Solution Time Temperature P/V (pump/vacuum) Mix
90% ethanol (vol/vol) 10 min 35°C On Slow
100% ethanol (vol/vol) 10 min 350G On Slow
100% ethanol (vol/vol) 10 min S510G On Slow
100% ethanol (vol/vol) 10 min S5 On Slow
Xylene 10 min IDSE On Slow
Xylene 10 min 350G On Slow
Xylene 10 min S50 On Slow
Wax 20 min 63 °C On Slow
Wax 10 min 63 °C On Slow
Wax 10 min 63 °C On Slow

Table 3 | Tissue processor program for large tissue (>0.5 cm maximum dimension)

Solution Time Temperature P/V Mix
50% (vol/vol) ethanol 45 min Ambient (18-22 °C) On Slow
70% (vol/vol) ethanol 45 min Ambient On Slow
90% (vol/vol) ethanol 45 min Ambient On Slow
100% (vol/vol) ethanol 60 min Ambient On Slow
100% (vol/vol) ethanol 60 min Ambient On Slow
100% (vol/vol) ethanol 60 min Ambient On Slow
Xylene 60 min Ambient On Slow
Xylene 60 min Ambient On Slow
Xylene 60 min Ambient On Slow
Wax 75 min 60 °C On Slow
Wax 75 min 60 °C On Slow
Wax 75 min 60 °C On Slow
Wax 75 min 60 °C On Slow

(ii)

(iii)

(iv)

W)

PAXgene FIX Kit and ethanol approaches. To fix frozen tissue, first briefly thaw it at 4 °C
(thawing time will vary based on the tissue size; we typically thaw a 1-cm® sample for 15 min).
Place fixed tissue samples into standard histology cassettes and process using the
conditions outlined in either Table 2 or Table 3, depending on the tissue size. For small
tissue samples (<0.5 cm in maximum dimension), using the tissue processor, execute the
program outlined in Table 2. For larger samples (>0.5 cm in maximum dimension), using
the tissue processor, execute the program outlined in Table 3.

Once the tissue processing is complete, transfer tissue samples onto the tissue embedding
station for embedding and trimming,

To cut sections, cool down the paraffin tissue block by placing it on ice (~2-3 h for a
standard histology block). Fill the water bath with reverse osmosis water, set temperature to
37 °C and then cut sections to the desired thickness. We have successfully generated
libraries from 10-30-pm thick sections.

A CRITICAL STEP To minimize contamination with external DNA, use new microtome
blades and fresh water for each batch of samples and ensure pre-labeled PEN-slides have
been crosslinked in a UV crosslinker instrnu t (recc ded time, 30 min).

Before staining tissue sections, remove xylene by placing slides in Coplin jars or
staining pots and sequentially immersing in the following: xylene (2 min, twice),
100% (vol/vol) ethanol (1 min, twice), 70% (vol/vol) ethanol (1 min) and deionised
water (1 min).
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(vi) Stain tissue sections by sequential immersing in the following: hematoxylin (10-20 s), tap
water (10-15 s, twice), eosin (5-10 s), tap water (10-15 s), 70% (vol/vol) ethanol (5-10's,
twice), 100% (vol/vol) ethanol (5-10 s, twice) and xylene (or Neo-Clear, 5 s, once). Proceed
to LCM cell isolation or store slides at 4 °C.

A CRITICAL STEP To minimize DNA cross-contamination, change Coplin jars/staining
pots between samples from different patients.
B PAUSE POINT To preserve DNA quality, store paraffin tissue blocks and slides at
4 °C until ready to proceed with LCM. We have successfully generated libraries from slides
stored at 4 °C for up to 1.5 years.

(B) Frozen sections @ Timing 2 h

(i) To prepare frozen sections, place tissue sample in OCT compound in a moulding block
and leave to solidify on dry ice (15-30 min).

(ii) Once the block is set, use cryostat to cut sections of desired thickness (typically, 10-30 pm)
and mount them onto PEN-slides.

A CRITICAL STEP To minimize contamination with extemal DNA, crosslink pre-labeled
PEN-slides in a UV-crosslinker instrument for 30 min before mounting tissue onto slides.
Once tissue is mounted to slides, proceed to fixation.

B PAUSE POINT Alternatively, unfixed sections can be stored at 80 °C for up to 1 week
until ready to proceed with the next steps.

(iii) Immerse tissue slides in 0.5-1 ml of 70% (vol/vol) ethanol in a 6” Petri dish. Leave to fix for 2 min
and then aspirate residual ethanol with a pipette. Wash with 0.5-1 ml of PBS (15-30 s, twice).
ACRITICAL STEP Ensure that the entire tissue section is covered in ethanol during
fixation.

! CAUTION Take care not to wash tissue sections off the dides.

(iv) Leave tissue slides in PBS at 4 °C until ready for staining, 1 min-1 h (ideally, proceed to
staining and LCM experiments within 24 h).

(v) Place fixed tissue slides in Coplin jars and stain by sequential immersing in the following:
hematoxylin (10-20 s), tap water (10-15 s, twice), eosin (5-10 s), 70% (vol/vol) ethanol
(5-10 s, twice), 100% (vol/vol) ethanol (5-10 s, twice) and xylene (or Neo-Clear, 5 s).
Proceed to LCM cell isolation within 24 h.

B PAUSE POINT To preserve DNA quality, store frozen tissue blocks and slides at —80 °C
until ready to proceed with LCM. We have successfully generated libraries from slides
stored at —80 °C for up to 1.5 years.

LCM @ Timing Variable
A CRITICAL The duration of this part of the workflow is highly variable and depends on the experimental
design. However, when working on frozen sections, we recommend to complete LCM experiments within
24 h to minimize DNA degradation. For PAXgene-fixed, paraffin-embedded samples (from Step 1A), we
have successfully constructed libraries from membrane slides stored at 4 °C for over 1 year.
A CRITICAL We recommend taking a whole-slide overview image before and after LCM cutting for all
tissue slides. To speed up imaging and increase image quality, x20 or x40 before images of slides with
temporarily mounted glass coverslips are taken using the NanoZoomer S60 digital slide scanner. As the
tissue cut on the LCM is typically dried out, and without a coverslip, using the higher-resolution slide
scanner image to guide the LCM cutting is recommended.
2 Using the LCM software, acquire images immediately before and after taking each LCM
microbiopsy.
3 Cut microbiopsies into a 96-well plate.
A CRITICAL STEP Occasionally, tissue might not release from the PEN membrane. In that case,
adjust the LCM laser settings or manually pulse with stronger power settings to detach the tissue
into a well.
A CRITICAL STEP To minimize DNA cross-contamination, crosslink all plates before the start of
LCM for 30 min. We recommend leaving several empty wells to serve as negative controls to test
for potential cross-contamination.
4 Once dissection is completed, proceed immediately to cell lysis and digestion.
B PAUSE POINT If necessary, the plate can be covered and stored at 4 °C for up to 48 h. This is not
recommended, as any additional plate seal application and removal can lead to unnecessary loss of
microbiopsies.
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Cell lysis and digestion ® Timing 2 h
A CRITICAL No DNA quantification is done after cell lysis, but successful library generation rates in
excess of 80% are routine (Fig. 6b).
5  Visually inspect the plate to ensure that tissue did not miss the wells. Tissue in between wells can be
an indication of potential cross-contamination.
6  To use the in-house protease buffer, follow Option A. If using the Arcturus PicoPure buffer, follow
Option B.
(A) In-house protease buffer
(i) Add 20 pl of in-house protease buffer to each well.
(i) Lightly vortex the plate for 5-10 s and centrifuge at 1,500g for 1 min at 4 °C.
A CRITICAL STEP Visually inspect the wells and make sure that LCM samples are at the
bottom of each well, but bear in mind that, for microbiopsies smaller than 100,000 pmj‘
tissue might not be visible to the human eye.
(iii) Run the following program on the thermocyder:

Step Temperature (°C) Time (min)
1 50 12

2 75 30

3 4 Hold

M PAUSE POINT LCM lysates can be stored at —20 °C for up to 1 month.
(B) Arcturus PicoPure protease buffer
(i) Add 155 pl of Arcturus PicoPure DNA reconstitution buffer to the Arcturus PicoPure
Proteinase K. Pulse vortex and briefly spin down (5-10 s).
(i) Add 20 pl of solution to each well.
(iii) Lightly vortex the plate for 5-10 s and centrifuge at 1,500g for 1 min at 4 °C.
A CRITICAL STEP Visually inspect the wells and make sure that LCM samples are at the
bottom of each well. For microbiopsies smaller than 100,000 pm’, tissue might not be
visible to the human eye.
(iv) Seal plate and place on thermocyder and run the following program: 60 °C for 3 h, 75 °C
for 30 min, hold at 4 °C.
M PAUSE POINT LCM lysates can be stored at —20°C for up to 1 month.

Purification of gDNA from LCM lysates @ Timing 45 min

A CRITICAL Perform all steps in a dedicated pre-PCR amplification space. We use an Agilent Bravo

NGS Workstation to perform Steps 9-34, but these steps can be performed on other platforms or

manually. We refer to sample processing in 96-well plates throughout the remaining steps in the

workflow, but the protocol may also be performed in individual tubes.

7 Allow Agencourt AMPure beads to reach room temperature for 15 min before use. Vortex AMPure
beads to ensure that the beads are resuspended.

8  Thaw LCM lysate plates and centrifuge for 1 min at 1,000g at 4 °C. Each sample well should contain
20 pl of liquid in total.

9  To each LCM lysate, add 100 pl of a 1:1 mixture of AMPure beads and TE buffer (pH 8.0).

10 Mix thoroughly by pipetting up and down and allow the mixture to stand for 5 min at room
temperature. We use diluted AMPure beads to avoid dispensing small volumes. The final ratio of
AMPure beads to sample is ~0.7:1.

11 Transfer the plate to the magnet, allow the beads to settle for 5 min at room temperature and then
carefully remove and discard the supernatant.

12 With the plate still on the magnet, wash the beads with 150 pl of 80% (vol/vol) ethanol for 1 min.
Remove and discard the ethanol wash.

13 Repeat Step 12 one more time, removing all traces of the ethanol wash.

14 Air dry the beads for 5 min at room temperature.

15 Resuspend the beads in 26 pl of TE buffer by repeated pipetting up and down. Proceed directly to
Step 16.
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DNA library construction and amplification of adapter-ligated libraries ® Timing 25 h

A CRITICAL Continue the protocol in the same pre-PCR amplification laboratory until DNA library

amplification (Step 35) and then move to the post-PCR amplification laboratory.

16 Prepare the fragmentation/end repair/dA-tailing mix as described in the table below, which will provide
sufficient mastermix for one 96-well plate. Mix thoroughly by pipetting up and down and place on ice.

Component Volume (pl)
NEBNext Ultra Il FS Reaction Buffer 770
NEBNext Ultra Il FS Reaction Enzyme 220

17 Place a fresh 96-well plate onto a chilled position of the robot deck or on ice and add 9 pl of
fragmentation/end repair/dA-tailing mix from Step 16 to each well.

18 Transfer the entire volume, including the beads (26 pl) from Step 15, to the reaction plate. It might
be necessary to resuspend the beads if they have settled.

19 Place the plate in a thermal cyder with a heated lid and perform the following steps:

Step Temperature (°C) Time (min)
1 37 12

2 65 30

3 4 Hold

20 Prepare the ligation mix as described in the table below, which will provide sufficient mastermix for
one 96-well plate. Mix thoroughly by pipetting up and down and place on ice.

Component Volume (pl)
NEBNext Ultra Il Ligation Master Mix 3,300
NEBNext Ultra Il Ligation Enhancer 1o
Nuclease-free water 2475
Duplexed adapter (100 uM) 275

21 Place a fresh 96-well plate onto a chilled position of the robot deck or on ice and add 33.5 pl of
ligation mix from Step 20 to each well.

22 Transfer the entire volume, indluding the beads (35 pl) from Step 19, to the reaction plate from Step
21 and mix thoroughly by pipetting up and down.

23 Incubate for 15 min at 20 °C and proceed immediately to Step 24.

24 To each ligation reaction, add 35 pl of a 1:1 mixture of AMPure beads and TE and mix thoroughly
by pipetting up and down. Allow the mixture to stand for 5 min at room temperature.

25 Transfer the plate to the magnet, allow the beads to settle for 5 min at room temperature and then
carefully remove and discard the supernatant.

26 With the plate still on the magnet, wash the beads with 150 pl of 80% (vol/vol) ethanol for 1 min.
Remove and discard the ethanol wash.

27 Repeat Step 26 one more time, removing all traces of the ethanol wash.

28 Air dry the beads for 5 min at room temperature.

29 Resuspend the beads in 23 pl of nuclease-free water by repeated pipetting up and down and
incubate for 2 min at room temperature.

30 Place the plate on the magnet and prepare the PCR reaction.

31 Prepare the mix as described in the table below, which will provide sufficient PCR mastermix for
one 96-well plate. Mix thoroughly by pipetting up and down and place on ice.

Component Volume (pl)
Kapa HiFi HotStart ReadyMix (2x) 2,750
PE1Q primer (100 uM) 10
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32 Place anew %-well plate containing indexed iPCR-Tag primers (2.5 pl of each primer at 40 pM) onto a chilled
position of the robot deck or on ice if performed manually. This plte wil become the PCR reaction plate

33 Using a separate pipette tip for each wel, transfer 26 pl of PCR mix to each well containing indexed primers.

34 Keeping the plate on the magnet, transfer 21.5 pl of adapter-ligated library from Step 30 to a well of
the PCR plate (Step 33) and mix thoroughly by pipetting up and down 4-6 times.

35 Seal the plate, move to the post-PCR amplification laboratory and perform library amplification as
detailed in the table below.

Cycle number Denature Anneal Extend Hold

1 95 °C, 5 min

2-12 98°C,30s 65°C,30 s 72°C, 1 min

3 72°C, 5 min

14 4°C, o

A CRITICAL STEP We use 12 cycles of PCR for LCM lysates from 100-1,000 cells, which is
equivalent to 5-50 cells per pl of lysis buffer. If lysates contain a higher concentration of cells and,
therefore, available DNA, then either dilute the lysate or reduce the number of PCR cydes. More
than 12 amplification cycles can be used for lysates containing fewer than 100 cells. However, we
estimate from tests using purified human gDNA that 60-100 cells are required to achieve a
sequenced human genome with an average read depth of 20. Below this input, the level of PCR
duplicates in the sequence data can exceed 50% (Table 1).

B PAUSE POINT Amplified libraries can be stored at —20°C for several months before purification.

Purification of amplified libraries ® Timing 45 min

A CRITICAL We use a Beckman NX-96 to perform Steps 36-43, but these steps can be performed on

other liquid handling platforms or manually.

36 Toeach PCR reaction from Step 35, add 35 pl of AMPure beads and mix thoroughly by pipetting
up and down. Allow the mixture to stand for 5 min at room temperature.
A CRITICAL STEP We use a bead-to-sample ratio of 0.7:1 to target a median insert length of 350 bp.
Lower ratios (e.g., 0.6:1) will lead to a reduced fraction of overlapping reads (e.g., on 150-bp paired-
end reads) but a lower concentration of DNA library.

37 Transfer the plate to the magnet, allow the beads to settle for 5 min at room temperature and then
carefully remove and discard the supernatant.

38 With the plate still on the magnet, wash the beads with 150 pl of 80% (vol/vol) ethanol for 1 min.
Remove and discard the ethanol wash.

39 Repeat Step 38 one more time, removing all traces of the ethanol wash.

40 Air dry the beads for 5 min at room temperature.

41 Resuspend the beads in 25 pl of nuclease-free water by repeated pipetting up and down and
incubate for 2 min at room temperature.

42 Place the plate on the magnet for 2 min at room temperature.

43 Transfer the amplified and purified libraries to a fresh 96-well plate and proceed to DNA library
quality control.

DNA library quality control and DNA sequencing ® Timing Approximately 3 d for HiSeqX
platform
A CRITICAL To ensure even representation of libraries within a multiplex sequencing reaction, we quantify
each library using a fluorescence-based DNA quantitation assay (Accuclear; Biotium). We have successfully
used Picogreen (Invitrogen), UV absorption or g-PCR (Kapa Library Quantification Kit for Illumina
platforms; Kapa Biosy ) for high-throughput approaches and Qubit (Invitrogen) or Bioanalyzer (Agilent
Technologies) for low-throughput applications. For DNA library pooling, we use a Beckman NX with eight
independent pipetting channels, but these steps can be performed on other platforms or manually.
44 Quantify DNA libraries and transfer an equimolar amount of each DNA library into a 1.5-ml
microcentrifuge tube.
A CRITICAL STEP This quantification step is the first opportunity to assess the success and quality
of the library.
? TROUBLESHOOTING
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45
46

47

48

49

Mix thoroughly and briefly centrifuge.

Dilute the library pool to ~5 nM. We use a conversion of 2.45 ng/ul to 1 nM to estimate the pool
concentration.

Check the quality and quantity of the library pool using a high-sensitivity chip on an Agilent
Biocanalyzer. A typical library pool will consist of DNA fragments from 300 to 1,000 bp (Fig. 2c).
Record the concentration of the library pool (nM). We dilute each pool or individual sample to
2.8 nM such that 5 pl of the library pool solution can enter the recommended workflow for lllumina
HiSegX sequencing.

Perform paired-end sequencing in accordance with the manufacturer’s protocols.

A CRITICAL STEP We use a custom ISPCR primer to read the 8-base index sequence introduced
with our ISPCR-Tags. For many ‘off-the-shelf' adapters and sequences, this will not be necessary.

Mapping data and marking duplicates ® Timing 2-3 d

50

Align processed sequencing data (in fastQ format) to the human reference genome (data presented
here used NCBI build 37; build 38 has also been used without issue) using the Burrows-Wheeler
aligner (BWA-MEM)™, Mark PCR and optical duplicates with the MarkDuplicates command
within the GATK package™. This will output a binary alignment map (BAM) file.

? TROUBLESHOOTING

SNV discovery @ Timing 1d

51

Compare the BAM file of the LCM sample of interest to the BAM file of a control sample to
determine the somatic variants. We highlight three potential control approaches: (A) matched bulk
normal, (B) matched LCM normal and (C) unmatched normal. This comparison will output a
variant call format (VCF) file.

(A) Matched bulk normal

(i) Generate a WGS sequencing library from a bulk tissue sample obtained from the same
donor using a more traditional amount of DNA input (>500 ng) and a standard library
preparation protocal ™.

(ii) Sequence this sample to at least 30x depth.

(iii) Proceed with paired somatic mutation calling (Step 52) using the LCM sample of interest
as ‘tumor’ and the bulk normal sample as ‘normal’.

(B) Matched LCM normal

(i) Generate a low-input LCM-derived sequencing library taken from the same donor but
from a different tissue type (lymph node, stroma, muscle, etc.). Follow the procedure
outlined in Steps 2-50.

(ii) Sequence this sample to at least 30x depth.

(iii) Proceed with paired somatic mutation calling (Step 52) using the LCM sample of interest
as ‘tumor’ and the nominated nommal LCM sample as ‘normal’.

(C) Unmatched normal

A CRITICAL For more detail on filtering out germline SNPs, and for the appropriate scripts,

see https://github.com/TimCoorens/Unmatched_NormSeq. The approach outlined below is

different from conventional approaches, as germline SNPs are removed when consistently
detected at VAFs of 0.5 across all microbiopsies from the same donor.

The following steps are required to filter germline SNPs and artifactual variants when using
unmatched controls:

(i) Identify sites different from the reference genome for all samples taken from the
same donor.

(ii) Recount all variant sites across all samples and aggregate total coverage and variant-
supporting reads (using ‘AnnotateBAMStatistics’ in the SangerLCMFiltering Singularity
container).

(iii) Filter out germline variants using the exact binomial test— null hypothesis P = 0.5;
alternative hypothesis P < 0.5. A germline variant should be omnipresent across all
samples, and the total number of variant-supporting reads is binomially distributed with
P = 0.5 (use ‘germline_exact_binom.R’ in Unmatched_NormSeq).

(iv) Filter out artifactual variants using a beta-binomial test (using ‘beta_binom_filter.R’ in
Unmatched_NormSeq).

(v) Proceed to Step 56.
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24

52 Detect variants using the Cancer Variants Through Expectation Maximization (CaVEMan)
algorithm, available on GitHub (https://github.com/cancerit/dockstore-cgpwgs), using a copy
number state of 10/2, which we found maximizes sensitivity.

SNV filtering @ Timing 1d

A CRITICAL Several post-processing filters can be applied to maximize the variant detection
spedificity. We first apply three filtering steps commonly used in our filtering strategies to

remove a substantial fraction of erroneous variants. The CGPWGS container provides software that
calculates a set of statistics that inform which variants are likely false. In addition, detected variants
are further filtered based on a list of previously detected variants in a panel of 75 control

samples that have been sequenced using the same platform and at the same sequencing center.
Examples of the number of variants filtered by these steps can be found in Fig. 9.

Filtering out erroneous variants

A CRITICAL In the following steps, CaVEMan calculates a set of values, some of which (listed in

Step 53) are ‘hard filters that would cause a variant to automatically fail, whereas the filtering based on

the ASRD and CLPM score described in Steps 54 and 55 must be done manually.

53 Remove variants that fail one or more of the post-processing filters. The current post hoc filters are
described below and are added to the VCF file upon using CaVEMan from the CGPWGS container.
The indicated values are flags for variants that fail filtering:

« CR, centromeric repeat: Position falls within centromeric repeat using a predefined BED file.

« DTH, depth: Fewer than 1/3 of mutant alleles were 25 base quality.

G, germline indel: Position falls within a germline indel for this sample.

* MN, matched normal: Matched normal has VAF 20.03 for this mutation with base quality >15.

* MNP, matched normal proportion: Tumor VAF—Nomnal VAF <0.2.

* MQ. mapping quality: Mean mapping quality of the mutant allele reads <21.

*SE, single end: Coverage is 210 on each strand, but mutant allele is present only on
one strand.

SR, simple repeat: Position falls within simple repeat region using a predefined BED file.

* VUM, variant unmatched normal panel: Variant is present at VAF 20.03 in 1% of the unmatched
normal panel. Our panel comprises 75 whole-genome sequencing samples generated from whole
blood, sequenced to at least 30x depth.

A CRITICALSTEP We recommend generating your own VUM panel, as platform- and institution-
specific sequencing artifacts have been observed, and an unmatched normal panel is a reasonable
approach to addressing those.

54 For each variant, the ‘Read-adjusted Median Alignment Score’ (ASRD) is calculated by
CGPWGS based on the variant-supporting reads and adjusted by read length. Discard variants
with a score lower than 0.93 (corresponding to a ‘Median Alignment Score’ of 140 for 150-bp
paired-end reads).

55 For each variant, the ‘Median Clipping Length® (CLPM) is calculated by COGPWGS
based on variant-supporting reads. Discard variants with a median clipping length score greater
than 0.

Filtering specific to low-input samples

A CRITICAL The following filtering steps were developed specifically to improve variant detection for

this low-input pipeline. Variants that pass the filters described in Steps 53-55 are run through the filters

in Steps 56-61.

56 Select variants passing filtering flags and predefined criteria specified in Steps 53-55 by running the
following command. The algorithm automatically detects whether the VCF is produced by
CaVEMan or a different variant caller (substitute DataDirectory with the directory where data
are stored).

singularity run -bind /DataDirectory --app preselect SangerLCMFilter-
ingSingularity latest.sif -v Input VCF > Filtered VCF
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<« Fig. 9 | Example of SNV filtering results. a, b, Flowchart of SNV filtering strategy of two microbiopsies taken from
the same breast tumor (Fig. 7a). Numbers indicate the SNV counts that remain after the indicated filter is applied.
Numbers in parentheses indicate number of mutations removed by the indicated filter. Numbers in square brackets
indicate the cumulative fraction of the initial mutation count removed. ¢, Counts of SNVs filtered by the CaVEMan
post-processing filters. Many SNVs are filtered by multiple filters; data shown are any SNVs removed by a given
filter, not uniquely removed by that filter. d, Flowchart of SNV filtering strategy of LCM microbiopsy using the
unmatched normal approach (Protocol Step 52C).

Key parameters are summarized below:

Parameter Description

-v / —vcf-file Input VCF file (either vcf or vef gz)

-d / —deactivate-pass Do not filter variants based of the 'PASS' flag.

-a / —asmd ASMD score (CaVEMan) threshold (default: 140)
-c / —clpm CLPM score (CaVEMan) threshold (default: 0)

57 Convert the VCF files to ANNOVAR output format or annotate with ANNOVAR'” using the
following command:

singularity run -bind /DataDirectory --app imitateANNOVAR SangerLCM-
FilteringSingularity latest.sif -v Filtered VCF > ANNOVAR FILE

The input file is specified as follows:

Parameter Description

-v / —vci-file Input VCF file (either vcf or vef.gz)

58 Fragment-based filtering. Use AnnotateBAMStatistics to mark fragments (i.e,, paired-end reads) as
being high quality when the average alignment score (i.e., average across mate pairs) is greater than
40 and the maximum base Phred quality score (i.e., maximum across both paired reads in case of an
overlap) is greater than 30. Fragment-based statistics are calculated for each variant using the
associated BAM file. This set of statistics includes fragment coverage, fragment variant allele count
and the fragment VAF.
singularity run -bind /DataDirectory annotateBAMStatistics SangerLCM-
FilteringSingularity latest.sif -a ANNOVAR_FILE -b COMMA SEPARATED_
BAM_ FILES -t THREADS > ANNOTATED_ ANNOVAR_FILE

-a / —-annovar-file  Input ANNOVAR file
-b / —-bamfiles Comma-separated list of BAM files

-t / —threads Number of threads
-m / --min- Mini li score threshold for considering read/
lig score frag as high quality

ACRITICAL STEP Our library preparation protocol yields smaller insert-size DNA libraries
than typical shearing protocols (eg. acoustic shearing). Hence, mate pairs in a paired-end
sequencing context partially overlap, resulting in counting a mutation twice whenever it is
present in the overlapping segment. Therefore, we have substituted traditional read-based variant
statistics with a fragment-based approach that collapses overlapping paired-end reads into a
single fragment.

59 Filtering variants introduced by the erroneous processing of cruciform DNA (Steps 59 and 60). Use
‘AdditionalBAMStatistics' (found at https://github.com/MathijsSanders/SangerLCMFiltering) to
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calculate statistics concerning the variant location, s.d. and MAD of the variant location within
reads separately for positive and negative strand reads:

singularity run -bind /DataDirectory --app additionalBAMStatistics
SangerLCMFilteringSingularity latest.sif -a ANNOTATED_ANNOVAR FILE
=b BAM_FILE -t THREADS -r REFERENCE_FASTA FILE -s SNP_DATABASE > FULL-
Y_ANNOTATED ANNOVAR FILE

The key par are ized below:

Parameter Description

-a / —-annovarfile Input ANNOVAR file for further annotation

-b / —-bamfile BAM file from the sample of interest

-r / --reference The indexed reference FASTA file used for alignment

-0 / --output-file Output file for writing the results (default: standard out)

-s / —-snp-database SNP database for annotating reads with too many mismatches not
reported as SNPs (either vcf or vefgz)

-m / --max-non-snp The i number of mismatches not reported as SNP before a
read is marked as having too many mutations (default: 2)

-d/--diff-alignment-score The difference between the current and alternative alignment score
before (default: 5)

-t / —threads Number of threads

-¢ / —current-heapsize The maximum heap size JAVA can use (default: 10 Gb).

60 For each variant, if the number of variant-supporting reads determined in Step 59 is low (ie, 0-1

61

reads) for one strand, follow Option A. For each variant, if both strands have sufficient variant-
supported reads (ie, 22 reads), follow Option B.
(A) Low number of variant-supporting reads on one strand

(i) For each variant, if one strand had too few variant-supporting reads, the other strand must

conform to:
« Fewer than 90% of variant-supporting reads have the variant located within the first 15%
of the read ed from the alig start position.

«MAD >0 and s.d. >4 for that strand.
(B) Sufficient variant-supporting reads on both strands
(i) For each variant, if both strands have sufficient variant-supporting reads (ie., 22 reads),
then one of the following must be true:
e Fewer than 90% of variant-supporting reads should have the variant located within the
first 15% of the read ed from the alig t start position.
*MAD >2 and s.d. >2 for both strands.
¢MAD >1 and s.d. >10 for one strand (ie., strong evidence of high variability in variant
position in variant-supporting reads).
Filter the fully annotated variant file with SangerLCMFiltering.

singularity run -bind /DataDirectory --app filtering SangerLCMFilter-
ingSingularity latest.sif -a FULLY ANNOTATED ANNOVAR FILE -v ORIGI-
NAL_VCF_FILE -o OUTPUT_DIRECTORY -p NAME PREFIX

The key p are ized below:
Parameter Description
-a / —-annotated-file Input annotated ANNOVAR file
-v / —vcf-file Original VCF file after running the pre-select step
-0 / —-output-dir Output directory for writing the results
-p / —prefix Pre-fix for output files
-f / —~fragi threshold Frag hreshold used for filtering (default: 4).
NATURE PROTOCOLS| www.nature.com/nprot 7
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In our experience, the proposed filtering strategies remove erroneous variants due to (i) poor
overall quality of the called variant or the presence of the variant in a panel of normal cases; (ii) a low
number of variant-supporting fragments; and (iii) the likelihood that the variant is introduced due to
erroneous processing of cruciform DNA. Application of the described pipeline to bulk tissue WGS
data revealed that the final filtering steps (i.e., filtering variants introduced by erroneous cruciform
DNA processing) removes virtually none of the detected variants while spedifically removing
erroneous variants commonly observed in LCM experiments (Fig. 4).

Troubleshooting

Troubleshooting advice can be found in Table 4. Most, if not all, problems that we observe can be explained by too little or too
much starting DNA. Possible causes and actions are summarized.

Table 4 | Troubleshooting table

Step Problem Possible reason Solution
44  DNA library yield too low  Failed DNA library construction Validate own protocol and ts, such as ol leotid
using isolated DNA
Failed collection of LCM material In cases where LCM samples are large enough to be visible to

the eye, the capture rate can be improved as follows:
(i) Check the rim of each well for the presence of LCM sample.
Slide microbiopsy to the bottom of the well using the
micropipette tip
(ii) After the addition of protease buffer, make sure that each
LCM sample is at the bottom of the well, immersed in buffer. If
the sample is found sticking on the wall of the wel|, wash down
using protease buffer
Ensure plate holder is properly calibrated to prevent wells from
being missed
Minimize air flow near LCM to prevent microbiopsies from
missing wells

Not enough cells captured Increase area or cell count of microbiopsy; consider adding
multiple adjacent z-sections of the same histological feature to
increase DNA input
Increase section thickness

High adapter DNA input too low See 'DNA library yield too low' above
contamination

Adapter input too high Use amounts recommended in the Procedure. If necessary, batch
test and titrate adapters using isolated DNA tests
Overamplification of DNA  DNA input too high For human DNA, adjust input to 100-1,000 cells. For known
libraries higher inputs, reduce PCR cycling
50 PCR duplicates >50% Typically caused by low DNA inputs See 'DNA library yield too low' above

Timing

Tissue sectioning, fixation and staining

Step 1Ai-vi, paraffin sections: 1-2 d

Step 1Bi-v, frozen sections: 2 h

Steps 2-4, LCM: variable

Steps 5-6, cell lysis and digestion: 2 h

Steps 7-15, purification of gDNA from LCM lysates: 45 min

Steps 16-35, DNA library construction and amplification of adapter-ligated libraries: 25 h

Steps 36-43, purification of amplified libraries: 45 min

Steps 44-49, DNA library quality control and DNA sequencing (Steps 44-49): 3 d for HiSegX platform
Steps 50-61, data analysis: 4-5 d
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Anticipated results

Table 5 | Performance metrics based on HiSegX lane aiming for 30X
genome (human) WGS

Metric Typical value

DNA library yield® 250-2,500 fmol; 70-700 ng
% adapters <1%

% mapped to reference genome >99%

GC content 40-42

% PCR duplicates 10-50°

No. of variants (SNV) Variable®

Median insert length (bp) 300-400

‘|zwdmnmmmhuemmdmmm-nwcammm
“Number of variants is tissue ecific and age dependent As an example, in hepatocytes, we cbserve -1200
SNV per genome of a healfy 60 year old.
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