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The development of biodegradable soft robotics requires an appropriate eco-friendly
source of energy. The use of Microbial Fuel Cells (MFCs) is suggested as they can be
designed completely from soft materials with little or no negative effects to the
environment. Nonetheless, their responsiveness and functionality is not strictly defined
as in other conventional technologies, i.e. lithium batteries. Consequently, the use of
artificial intelligence methods in their control techniques is highly recommended. The use of
neural networks, namely a nonlinear autoregressive network with exogenous inputs was
employed to predict the electrical output of an MFC, given its previous outputs and feeding
volumes. Thus, predicting MFC outputs as a time series, enables accurate determination
of feeding intervals and quantities required for sustenance that can be incorporated in the
behavioural repertoire of a soft robot.

Keywords: microbial fuel cells, soft robotics, neural network, nonlinear autoregressive network, robotic control

1 INTRODUCTION

Modern society is both driven by and highly dependent on technology. One significant technological
field that has entered many aspects of our everyday lives is robotics. Robots are often required to
operate autonomously in environments that are too dangerous or distant for humans to occupy, such
as in the open ocean or on other planets. This can lead to the robot becoming a pollutant in the event
of a breakdown in the field, if it cannot be recovered. The continuously faster incorporation of
innovations to the market and the heavy duty use of robotics, render a great amount of devices
outdated, unusable or problematic. As a result, there is a vast amount of non-recyclable and
sometimes toxic parts and materials that need to be disposed. This leads to significant environmental
issues that further complicate climate change.

Robots that are no longer functional, leave a variety of components useless, like rigid parts (metal
and plastic) for the body, electronics for controlling, motors for movement and batteries for energy
storage. Consequently, an innovative, possible countermeasure for this is the design of biodegradable
and bio-compatible soft robotics (Rossiter et al., 2016). Soft bodied robots are additionally useful for
interacting benignly with natural environments and organisms due to their structural compliance.
Tough and elastic soft materials have the potential to reduce damage incurred by the robot when
interacting with unpredictable, open environments. The development of smart materials can enable
the fabrication of robots with biodegradable and bio-compatible components for all different parts
(Philamore et al., 2016; Rossiter et al., 2017), like body parts, movement and control. So, when the
robot is released in the environment it will degrade and not burden the climate balance, or have
negative toxic effects to animals or plants.
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The part of the robot that will be considered here is the one
responsible for providing the energy (for movement, sensing,
control etc). In specific, Microbial Fuel Cells (MFCs) (Santoro
et al., 2017) are proposed as their long history of research
permitted the transit of construction materials from toxic and
expensive to biodegradable and cheap. Namely, they have been
previously build by all kinds of bio-combatible materials
(Winfield et al., 2013a; Winfield et al., 2013b; Winfield et al.,
2015a; Winfield et al., 2015b), i.e. lanolin, gelatine, egg and paper.
Moreover, MFCs are not toxic, as they accommodate anaerobic
bacteria that release electrons as a byproduct of their metabolism
on organic matter. These electrons are collected to form an
electrical current that can be stored or used on-the-fly to
move a soft robot (Ieropoulos et al., 2003; Ieropoulos et al.,
2005; Ieropoulos et al., 2010). Numerous examples ofMFCsmade
from soft materials exist (Winfield et al., 2014; Slate et al., 2019),
making them highly suitable for use in soft robots. These soft and
bio-compatible sources of power therefore show great potential
for use in robots deployed safely and benignly in natural
environments, for purposes such as environmental monitoring,
when compared to conventional batteries comprised of rigid and
toxic components.

MFCs and soft robots pose a common challenge in that it is
difficult to predict the output behaviour for a given input using
conventional model based approaches. In the case of soft robot
control, model-based control theory developed for rigid body
robots is often poorly suited due to the difficultly in defining exact
kinematic and dynamic models of highly non-linear and under-
actuated systems. Complex shapes and smart materials widely
used in soft robotic sensors and actuators make it difficult and to
define constitutive equations of the materials. Materials that
exhibit other mechanical non-linearities such as creep,
hysteresis and non-stationarity, further increasing the difficulty
in modelling soft robots and sensors for control purposes. A
widely used approach is therefore to use bio-inspired learning
algorithms for control of soft robots (Wilson et al., 2016;
Thuruthel et al., 2018). Strategies include learning the inverse
kinematics of soft actuators (Thuruthel et al., 2016), predictive
control (Thuruthel et al., 2019), and mapping sensor outputs to
real world values (Pastor et al., 2019).

Moreover, despite the plethora of advantages that MFCs have,
one major limitation is the low predictability of their
performance, the differentiation of their outputs and the
significance of some environmental conditions to their
efficient performance (Picioreanu et al., 2010). The MFC
electrical output is determined by a large number of constant
and time dependent parameters, many of which are difficult to
control due to their biological (e.g. bio-film growth) or
environmental nature (e.g. temperature). While there are
several works that simulate the behaviour of MFCs
(Picioreanu et al., 2008; Pinto et al., 2010; Tsompanas et al.,
2017a; Tsompanas et al., 2018), a more dynamic modelling tool is
required to tackle the non linear behaviour observed in MFCs.
Inspired by this, we propose the training and utilization of
Nonlinear Autoregressive Networks with exogenous inputs
(NARX) (Lin et al., 1996; Menezes and Barreto, 2008) to
predict a time series of the outputs of MFCs that can be used

on biodegradable soft robotics. Thus, we can anticipate the
intervals that refueling is needed and maximize the capabilities
of these soft robots.

The predictive modelling proposed will enable scheduling of
feed-times with reduced energy spent on sampling the MFC
voltage output. For example, a robot may be able to estimate at
what point within the next week it will need to refuel. In soft
robots this may be coupled with ANN control systemsmaking the
realisation of soft, biomimetic and environmentally-friendly
robots more viable.

2 PREVIOUS WORK

MFCs have been used as a bio-inspired source of electrical power
in the pioneering EcoBot robot series; autonomous mobile robots
powered by an on-board bank of MFCs (Ieropoulos et al., 2010).
More recently, MFC power sources have been used in biomimetic
robots such as the Row-bot, an insect-inspired swimming robot
with a single MFC ‘artificial stomach’ as its sole source of power
(Philamore et al., 2015b). The powered actuation of the Row-bot
includes the operation of a soft-robotic mouth which is used to
energy-autonomously ‘feed’ the artificial stomach with fresh-fluid
from its surroundings. The simple control system of the Row-bot
uses the threshold voltage of a storage capacitor to determine the
timing of the Row-bot’s behavioral cycle to swim and feed. This
behavioural control could be greatly improved by using machine
learning (ML) tools to predict the temporal voltage profile for a
given input volume and thereby determine the optimum feeding
interval for maximising the energy stored per batch of food and
the robot’s powered activity. This is of particular importance due
to the extreme low energy budget of a robot powered by a single
MFC and the resulting critical need to run as efficiently as
possible to remain operational. The viability of miniature
MFC-powered robots may be greatly improved by employing
intelligent feeding control algorithms such as Artificial Neural
Networks (ANNs). The use of ANNs and other ML algorithms
are a promising technology to enable mobile MFC-powered, soft
swimming robots, deployed in the field in unknown aquatic
environments to learn and adapt to their surrounding
environments.

Other examples of MFCs as power sources for soft robots
include the use of ionic polymer metal composites (IPMCs) as
both low-voltage soft robotic actuators and, in a novel
application, as the ion exchange membrane of an MFC in an
MFC-powered tadpole-inspired soft robot (Philamore et al.,
2015a). This work demonstrated the potential to build
miniature bio-powered soft robots by using multi-functional
smart materials for power and actuation. However, a bottle-
neck with this technology is the extremely low power
generated by such miniaturized MFC systems, which may be
more efficiently managed using predictive ML. The combination
of bio-inspired ANNs for power management of a bio-hybrid
source of power to drive bio-mimetic soft mechanisms therefore
holds great potential for the development of robots with robust
morphological and behavioural adaptation to the environment,
analogous to a natural organism.
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The behaviour of MFCs in general have been previously
predicted by ML methods. Specifically, voltage outputs,
Chemical Oxygen Demand removal rates, Coulombic
efficiency and other characteristics of MFCs have been
approximated by multilayer perceptron ANNs (Tardast
et al., 2012; Tardast et al., 2014; Jaeel et al., 2016; Ismail
et al., 2017; Lesnik and Liu, 2017; Tsompanas et al., 2019; de
Ramón-Fernández et al., 2020), multi-gene genetic
programming (Garg et al., 2014), adaptive neuro-fuzzy
inference systems (Esfandyari et al., 2016), nonparametric
Gaussian process regression models (He and Ma, 2016) and
support vector regression forward and inverse model (Wang
et al., 2018). Despite the increasing popularity of modelling and
optimizing MFC outputs with ML (Ghasemi et al., 2020; Jadhav
et al., 2020), implementing time series analysis is not that
frequent. For instance, time parameters were used as inputs
for neural networks in the study of MFCs (Garg et al., 2014;
Jaeel et al., 2016; Ismail et al., 2017); however, this methodology
has some limitations. In specific, in time series analysis, a few
past states of the system are more informative than the time
past from the moment t � 0. Thus, several modifications of
neural networks, like convolutional and recurrent neural
networks and NARX, have proved to be more efficient in
time series prediction. The use of NARX networks is ideal
for time series analysis, and have been used for smart
biosensing with MFCs (Feng et al., 2013).

One drawback in all current systems is their reliance on
silicon computation. The resilience and questionable
biocompatibility of conventional computational systems limits
the deployment of MFC-based soft robots in real-world open
environments. Unconventional or non-silicon computation has
been previously reported (Teuscher, 2014) and recently,
significant advances in soft materials computation systems
and organic electronics, have opened the way for truly
embedded computation and learning within the body of the
robot. For example, Rothemund et al. (2018) developed a soft
valve capable of controlling worm-like robot. These valves were
subsequently composed to form elementary electronic
components, including two-bit adders and shift registers
(Preston et al., 2019). Fluidic controls have also been
integrated into origami structures (Li and Wang, 2015), and
mechanical logic gates (Song et al., 2019). Complex digital and
analog computing and control have been demonstrated in the
soft matter computer (SMC) (Garrad et al., 2019) which can be
integrated directly into the body of a soft (or MFC-based) robot
with only minimal modification. The SMC is driven by fluidic
energy (available as a by-product in many MFC systems) and
couples electrofluidic ‘transistors’, a range of ‘receptor’ sensors,
and soft actuators. Turing completeness with cellular automata
has been reported using MFCs that make reference to additional
pins - akin to transistors - which has been shown to solve the
Game of Life algorithm, as an example where MFCs can be used
as information processing units (Tsompanas et al., 2017b).
Finally, advancements in materials science have made
bacterial communities, such as Shewanella oneidensis,
integration into organic electronics (PEDOT-PSS) possible,
resulting in organic microbial electrochemical transistors

(Méhes et al., 2020), i.e. the building blocks of computation.
This provides the complete toolkit of components needed to
implement simple processes within soft-bodied MFC-powered
robots.

3 NONLINEAR AUTOREGRESSIVE
NETWORK WITH EXOGENOUS INPUTS

Some applications of NARX networks are predictors, nonlinear
filters or models of nonlinear dynamic systems. NARX network is
a recurrent dynamic network, equipped with feedback loops that
can include several layers. The NARXmodel is frequently utilized
for modeling time series (Lin et al., 1996; Menezes and Barreto,
2008). It can be mathematically represented by the following
equation:

y(n + 1) � f [y(n), y(n − 1), ..., y(n − dy+1), u(n), u(n − 1), ...,

u(n − du+1)] (1)

where y(n) and u(n) are the output and the inputs, respectively,
of the network at the discrete time step n. Whereas, dy and du
are the orders of memory in the output and input, respectively,
and they need to obey to: dy ≥ 1 and du ≥ 1 and du ≥ dy. This
means that the future value of the dependent output variable
(y(n + 1)) is regressed on previous values of the output and
previous values of an independent (exogenous) input. To
implement the function f, a feedforward neural network can
be utilized.

Equation 1 can be given in vector form as:

y(n + 1) � f [y(n), u(n)] (2)

where the vectors y(n) and u(n) can be termed as the output
and input regressors, respectively. Generally, there are two
configurations of the NARX neural network model training
procedure, the parallel mode (also known as open loop, shown
in Figure 1A) and the series-parallel mode (also known as
open loop, shown in Figure 1B). In the open loop case, the
output regressor (y(n)) is formed only by output values of the
actual system to be modelled. On the other hand, in the closed
loop case, the estimated outputs by the network are used to
form the output regressor. Typically, the open loop mode is
utilized during the training of the network, given that the real
output values of the actual system are known a priori.
Consequently, the input to the feed-forward network is
more accurate and conventional back-propagation can be
used for training, resulting to better performance. When the
network is used for prediction, the closed loop case can be
utilized to provide long term predictions. A more detailed
configuration is depicted in Figure 1C.

Here, a NARX network was implemented for the prediction of
the voltage of aMFC that can be employed as an energy source for
soft robots. For the training and the testing phase of the network,
the open loop form was used, as described in the previous, given
that the dataset used is containing the output values of actual
MFCs developed in the lab (more details in Section 4). Moreover,
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one independent (exogenous) input was defined, namely the
volume of feedstock inserted to the MFC chamber during that
time interval.

4 METHODS

To evaluate the efficiency of a NARX network in predicting the
voltage output of MFCs, a dataset was constructed after the
development of MFCs in the lab. The MFCs under study are
constructed via 3D printing with ABS (Acrylonitrile Butadiene

Styrene). Both anode and a pair of cathode chambers have a
volume of 165 ml each. The anode electrode is made from
activated carbon modified carbon veil sheets with dimensions
of, (9 × 30) � 270 cm2 and with 5 sheets used total dimensions of
270 × 5 � 1350 cm2. Whereas, double cathode electrodes are
made from hot-pressed activated carbon onto stainless steel mesh
backbone, with dimensions of (6 × 11) × 2 � 132 cm2 (each
cathode size of 66 cm2). The membrane separating the anode and
cathode chambers is a custom-made ceramic sheet (product no.:
366, Goerg & Schneider, Siershahn, Germany) of 7.5 cm width,
11 cm height and wall thickness of 3 mm. Open-to-air and

FIGURE 1 | Configuration of NARX. (A) Parallel and (B) Series-Parallel modes (C) NARX architecture utilized in this study.

FIGURE 2 | Photographs of the MFCs used in laboratory experiments. (A) Front view and (B) top view.
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partially submerged to 80 ml tap water (added to each cathode
chamber of 3D printed boxes) type cathodes were used. The final
3D printedMFCs are depicted in Figure 2. MFCs were inoculated
with 1:1 mixture of human urine and activated sewage sludge
(Wessex Water Scientific Laboratory, Cam Valley, Saltford, UK)
enriched with 1% tryptone, 0.5% yeast extract and 0.5% sodium
acetate. The MFCs were batch fed with human urine and initially
loaded with an external resistance of 500Ω. On day 2, MFCs were
inoculated with the same inoculum again, and the external load
changed to 200 Ω. After 4 days of the second inoculation the
voltage measurements were used. A multichannel Agilent
recorder data logger (LXI 34972A data acquisition/Switch
unit) was used to continuously monitor the MFC voltage, by
taking measurement every 5 min.

The dataset was compiled with pairs of voltage output and
feedstock volume inserted, with time stamps for each pair, namely
two time series. Two identical MFCs were developed and the same
procedure was used for both of them to enhance the robustness of
the prediction model. The measurements have lasted for 14 days
and consecutive samples were 5 min apart (resulting to 4032 data
points for each MFC, in total 8064). The dataset used was
extracted from these data points by taking 1 h intervals instead
of 5 min. This was decided based on two main reasons. First, the
application in mind is the implementation of soft robots equipped
with MFCs, so the response of MFCs -being based on biological
processes- is better positioned at hourly intervals rather than
5 min and the frequent monitoring of the MFC output in the field
will cost even more energy dissipation overheads. Moreover, the
use of hourly intervals will reduce the risk of over-fitting the neural
network model, given the fact that the feeding instances are only
two in the 14 days long experiments. To implement the NARX
model training and testing, the Deep Learning Toolbox of Matlab
2019b was used (Mathworks, 2020).

As mentioned before, the dataset was filtered to make the time
intervals between data points 1 h. The critical time intervals,
when feedstock was added, were maintained in all cases. This

resulted to a dataset of 336 data points for each MFC. The voltage
outputs for both MFCs and the feedstock added are presented in
Figure 3. The initial voltage output of both MFCs after the
inoculation phase is c. 0.3 and 0.35 V (as can be observed
based on the left y-axis and the blue line). Then, voltage is
reducing in an exponentially manner, until the first feeding
instance of 100 ml (at data point or hourly interval of 172, as
can be observed based in the right y-axis and the orange line).
After that the voltage sharply increases, reaches a plateau and
then exponentially decreases again. The second feeding instance
of 80 ml is occurring at data point 316, followed by a similar
behaviour of both MFCs.

For the training process the dataset frommeasurements of the
first MFC was randomly divided into three subsets. The training
set was defined at 80% (i.e. 269 data points), the validation set
was defined at 15% (i.e. 50 data points), while the test set at 5%
(i.e. 17 data points). Note that the test set was determined at a
very low percentage as it does not affect the training procedure,
but it is just an independent measure of the performance of the
network. Moreover, the network was then tested upon the
measurements acquired from the second MFC to certify its
robustness.

The NARX network was set in the open loop mode for the
training. The hidden layer was assigned with eight neurons and
the order of memory (or delay) for both input and output was set
to 6 (du � dy � 6 on Eq. 1), as illustrated in Figure 1C. The
training process was implemented with the Levenberg-
Marquardt backpropagation (Hagan and Menhaj, 1994; Hagan
et al., 1996), as developed under the Matlab 2019b Deep Learning
Toolbox (Mathworks, 2020).

5 RESULTS AND DISCUSSION

The network was trained for 25 epochs and the behaviour of the
network can be realized by the regression plots illustrated in

FIGURE 3 | Dataset of voltage output and feedstock added of both MFCs.
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Figure 4. More specifically, all data points seem to be close
enough to the 45° that denotes the perfect fit between network
output and targeted real values. The correlation coefficient (R) for
training, validation, test and the whole data set are 0.99978,
0.99988, 0.99994 and 0.9998, respectively. The response of the
network during training is illustrated in Figure 5 and a close up to
the first feeding interval is illustrated in Figure 6. The target
(actual) data points and the network outputs are depicted with
appropriate encoding in these figures for the training, validation
and testing sets.

After training the NARX network on the dataset
obtained by the first MFC measurements, it was tested
on a dataset not included in the training procedure;
namely, the measurements of the second MFC. The
resulted response that the open loop NARX provided
with the associated errors are depicted in Figures 7, 8.
The performance of the network can be characterized by a
Mean Square Error (MSE) of 1.049 × 10−5 and R of
0.999317. This reveals that despite the fact that the

network was trained on a limited dataset of just one
MFC behaviour, when deployed to predict a time-series
never processed before, it performed almost perfectly.

Note that despite the fact that both MFCs are fabricated with
identical procedures, their behaviour after inoculations and
refilling feedstocks are significantly different. This observation
enhances the suggestion that MFCs should be approximated with
nonlinear modeling techniques, i.e. the NARX model
proposed here.

6 CONCLUSION

A novel alternative of toxic materials used for energy storage
on soft robotics can be MFCs. Their ability to be developed by
biodegradable and bio-compatible materials enable the entire
soft robot entity to not burden the environment. However,
MFCs are not easily modeled nor their outputs can be exactly
replicated. As a result, the use of ML and, in specific, NARX

FIGURE 4 | Regression plots showing network results compared with targets for (A) training, (B) validation, (C) test and (D) whole data set.
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model for the prediction of their outputs was proposed here.
By using this smart method of tracking the MFCs outputs and
predicting the behaviour after new feedstock is added, will
enhance the effective applicability of MFCs as energy providers
for soft robotics.

The choice of NARX model was based on the fact that they
are easy to implement and can be transformed between open

loop and closed loop modes based on the application phase.
More specifically, open loop allows for more accurate
training, while closed loop networks enable multistep
predictions. In other words, closed loop mode continues
to predict when external feedback is missing or unavailable
at the instant needed, by using internal feedback. The same
network can alternate between open and closed loop form,

FIGURE 5 | Response of NARX on training, validation and testing dataset time-series of first MFC.

FIGURE 6 | Zoomed in response of NARX on training, validation and testing dataset time-series of first MFC at the first refilling of feedstock.
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depending on the availability of the last time interval reading
availability.

Future work will include implementation of the model in
energy-autonomous robots to evaluate its efficacy for

determining feed times, and the efficiency of this mode of feed
scheduling compared to sampling the MFC voltage with higher
frequency. This will be employed in the future development of
self-feeding soft robots.

FIGURE 7 | Response of trained NARX on dataset time-series of second MFC and associated errors.

FIGURE 8 | Zoomed in response of trained NARX on dataset time-series of second MFC at the second refilling of feedstock and associated errors.
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