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Information-Theoretic Joint Probabilistic Data Association Filter
Shaoming He , Hyo-Sang Shin , and Antonios Tsourdos

Abstract—This article proposes a novel information-theoretic
joint probabilistic data association filter for tracking unknown num-
ber of targets. The proposed information-theoretic joint probabilis-
tic data association algorithm is obtained by the minimization of
a weighted reverse Kullback–Leibler divergence to approximate
the posterior Gaussian mixture probability density function. The-
oretical analysis of mean performance and error covariance per-
formance with ideal detection probability is presented to provide
insights of the proposed approach. Extensive empirical simula-
tions are undertaken to validate the performance of the proposed
multitarget tracking algorithm.

Index Terms—Information-theoretic approach, joint probabilistic
data association, multiple target tracking.

I. INTRODUCTION

Multitarget tracking (MTT) is an important and fundamental tech-
nology in many engineering applications, including impact point pre-
diction [1], airborne surveillance [2], space situation awareness [3], au-
tonomous navigation [4], and computer vision [5]. The main objective
of MTT algorithm is to find tracks from noisy unlabeled measurements.
The issue of MTT is the uncertain source of the measurements: that is,
the mappings between the targets and the measurements are unknown.
Therefore, MTT algorithms usually require a data association process
to work out which measurement is originated from which target.

The well-established multiple hypothesis tracking (MHT) filter [6],
[7] maintains all possible data association hypotheses in a decision-
making tree with accumulated measurements. This tracking filter finds
the global association hypothesis with the highest probability by a
delayed decision logic for estimation update. Although MHT is math-
ematically Bayesian optimal, the exact solution is known as a NP-hard
problem and, thus, is computationally intractable for large-scale sce-
narios. Another frequently used data association algorithm, known as
joint probabilistic data association (JPDA), is a suboptimal approach
to the Bayesian filter [8], [9]. This algorithm makes soft decisions on
measurement-to-target associations, allowing for the possibility that a
measurement may have originated from a number of candidate targets.
Compared to MHT, JPDA can achieve reasonable results with lower
computational burden.

Due to the nature of the soft decision, the posterior distribution pro-
vided by JPDA is a Gaussian mixture probability density function (PDF)
with each Gaussian term representing one possible measurement-
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to-target association. Since the propagation of the Gaussian mixture is
computationally intractable in the implementation, JPDA approximates
the posterior Gaussian mixture by a single Gaussian using simple
moment-preserving approach. Clearly, this simple Gaussian mixture
reduction method can be utilized to approximate the posterior as long
as the Gaussian terms are well-spaced. If two Gaussian terms are
close enough, e.g., targets are moving closely, the posterior Gaussian
mixture will be highly bimodal (or multimodal), and therefore, the
single Gaussian approximation made by JPDA is not accurate enough
to represent the real posterior PDF [10]–[12]. This fact means that
the JPDA filter tends to ignore the interactions between those close
Gaussian terms and the estimation performance will degrade. Instead
of enumerating all possible joint association events, the exact nearest
neighbor JPDA (ENNJPDA) [10] only picks up the joint association
event with the highest probability for marginalization. This drastic
pruning strategy explicitly avoids the multimodal issue by utilizing
only one joint association event, but it causes significant information
loss as only one joint association event is used for marginalization. This
implies that the ENNJPDA is sensitive to the clutter rate. An adjusted
version of the JPDA filter, which is called the Set JPDA filter [11],
is proved to be an effective way to preserve the multimodality of the
posterior Gaussian mixture PDF. However, this algorithm assumes the
number of targets is known a priori and is unable to preserve the target
identity. The multimodality problem of JPDA is directly avoided in [13]
via a novel measurement driven approach. The measurement-driven
JPDA, however, is sensitive to measurement noise and cannot provide
the information on target label. By Bayesian variational approach, the
authors in [12] proposed another JPDA to approximate the posterior
PDF, but this approach requires an iterative optimization loop for the
implementation and, therefore, is computationally expensive.

Motivated by the aforementioned observations, the authors aim to
propose a MTT algorithm that can efficiently improve the tracking
performance of the original JPDA. More specifically, an information-
theoretic approach is utilized to approximate the posterior Gaussian
mixture PDF. This approximation is obtained by the minimization of an
information-theoretic metric, i.e., a weighted reverse Kullback–Leibler
divergence (KLD), and the resultant formula shows similar structure as
generalized covariance intersection (GCI) in sensor fusion. The moti-
vation behind using KLD as a metric is that it quantifies the similarity
between two PDFs. This enables us to find a best approximation of a
specific PDF in an information-theoretic way. Unlike in ENNJPDA,
leveraging the weighted KLD enables the resultant PDF to approach
the mode with the most probable association pair without completely
pruning other information. Therefore, the proposed approach could
alleviate the multimodal issue while providing a certain level of robust-
ness against clutters. Although the basic reverse KLD-based Gaussian
mixture reduction is available in the literature, see [14], for example,
no open publication utilizes this technique to refine the update rules
of JPDA. The uniqueness of this article is in choosing the weights
for the mixture as the marginal association probabilities over the basic
reverse KLD mixture model. Another benefit of using a weighted KLD
as the cost function is that it enables a simple closed-loop solution,
which largely resembles the concept of GCI and, therefore, provides
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robustness against the cross correlations between two Gaussian terms.
In the case of ideal detection probability, the performance bounds of
the error covariance and the mean performance is theoretically analyzed
to support the validity of the proposed approach. Extensive empirical
simulations are undertaken to validate the performance of the proposed
MTT algorithm for scenarios with closely moving targets.

II. BACKGROUNDS AND PRELIMINARIES

A. System Model

The set of target states and measurements received at scan k are,
respectively, defined as

Xk =
{
x1
k, . . ., x

Nk
k

}
, Zk =

{
z0k, z

1
k, . . ., z

Mk
k

}
(1)

where Nk denotes the number of targets at scan k, xi
k the ith target at

scan k, Mk the number of measurements received at scan k, zjk(j �= 0)
the jth measurement received at scan k, z0k the dummy measurement
for convenient representation of miss detection. The temporal evolution
of each target is independent of others and follows a Markov transition
model p(xi

k|xi
k−1), which is determined by a linear system as

xi
k = F i

k−1x
i
k−1 + wi

k−1, zik = Hi
kx

i
k + vik (2)

where xi
k ∈ Rn and zik ∈ Rm denote the system state and the cor-

responding measurement at time step k, respectively. The notations
F i
k−1 and Hi

k correspond to the system matrix and observation matrix,
respectively. The process noise wi

k−1 and measurement noise vik are
assumed to be independent. These two signals are modeled as a zero-
mean Gaussian process with covariances Qi

k−1 and Ri
k, respectively.

For convenience, we make the following general assumptions, which
are widely accepted in MTT problems.

Assumption 1: Each target can generate at most one measurement
and each measurement can originate from at most one target. Each
target-generated measurement is independent of each other and is
detected with probability PD with measurement likelihood p(z|x).

Assumption 2: The clutter distribution is assumed to be unknown a
priori and is, thus, considered as Poisson distribution. Clutters or false
alarms are modeled by a local Poisson point process (PPP) with spatial
intensity λFA(z).

In MTT problem, the number of targets is usually unknown due to
target birth/death and, therefore, track management, i.e., target initial-
ization and deletion, is required for MTT algorithms. For this reason, we
utilize a PPP model with intensity λB(x), similar to [13], for target birth
and perform track confirmation/deletion by the existence probability
thresholding approach [15]. Within this framework, measurements that
originate from extraneous source, either new targets or false alarms,
can be modeled by a PPP with intensity λE = λB(xb)p(z|xb)PD +
λFA(z), where xb denotes the possible state vector of new birth targets.
Let Xk = {χ1

k, . . . , χ
Nk
k } denote the event of target existence at scan

k, where χi
k represents the event of the ith target existence. Then, the

prediction or time evolution of χi
k can be formulated by the Markov

Chain One model [15] as p(χi
k|Zk−1) = PSp(χ

i
k−1|Zk−1), where PS

denotes the target survival probability.

B. Problem Formulation

JPDA aims to calculate the marginalized association probability
for estimation update by enumerating all possible joint hypothe-
ses. A feasible joint hypothesis in JPDA is defined as one possible
measurement-to-target mapping such that: (1) each measurement (ex-
cept for the dummy one) is assigned to at most one target; (2) each

target is uniquely assigned to a measurement. Let Θk = {θik}, i ∈
{1, 2, . . . , Nk−1 +Mk}, denote the joint association vector. For each
pre-existed target i ∈ {1, 2, . . . , Nk−1}, define θik ∈ {0, 1, . . . ,Mk} as
the association hypothesis, and let θik = j denote the event that the jth
measurement is originated from the ith target with θik = 0 representing
a miss-detection event. We create a new track for each measurement
j ∈ {1, 2, . . . ,Mk} at scan k, and the association events for these
new targets are defined by θ

Nk−1+j

k ∈ {Nk−1 + 1, . . . , Nk−1 +Mk}.
That is, if target Nk−1 + j is associated with the jth measurement,
then θ

Nk−1+j

k = Nk−1 + j. Under the assumption that each single
association event is independent, the posterior of each target can be
modeled by a mixture term as

p
(
xi
k

∣∣χi
k, Zk

)
=
∑
θi
k

p
(
xi
k

∣∣θik, χi
k, Zk

)
p
(
θik
∣∣χi

k, Zk

)
. (3)

Generally, the number of mixture terms increases exponentially due
to the data association uncertainty. Since every mixture term requires a
Kalman filter for its prorogation, it is necessary to control the number of
mixture terms from the computational burden standpoint. The standard
JPDA simply approximates the posterior mixture PDF by a single distri-
bution through the moment-preserving method. More specifically, the
state correction xi

k|k of the ith target and its corresponding covariance
P i
k|k are obtained as

xi
k|k =

Mk∑
j=0

βi
jx

i,j
k|k

P i
k|k =

Mk∑
j=0

βi
j

{
P i,j
k|k +
(
xi,j
k|k − xi

k|k
)(

xi,j
k|k − xi

k|k
)T}

(4)

where {xi,j
k|k, P

i,j
k|k} denotes the estimate by associating the jth mea-

surement to the ith target and βi
j = p(θik = j|χi

k, Zk) is the existence-
conditioned marginal association probability that the jth measurement
is associated with the ith target.

As stated in [16], the moment-preserving approximation, which
simply merges all Gaussian mixtures, is accurate enough provided
that the distance between Gaussian terms is far enough. If two targets
are not well-spaced or in a highly cluttered environment, the resulting
Gaussian mixture exhibits multimodality, and thus, this approximation
may destroy valuable information. Motivated by these observations, this
article aims to suggest a MTT algorithm that approximates the Gaussian
mixture PDF in a more accurate way to improve the performance of the
JPDA filter through an information-theoretic approach.

III. INFORMATION-THEORETIC JPDA

A. Mixture Approximation by Information-Theoretic Approach

Instead of simple moment-matching, we will propose an
information-theoretic approach for Gaussian mixture reduction in
JPDA. In general, there are many ways to quantify the proximity of two
PDFs. A detailed comparison of different statistical and information-
theoretic measures in mixture reduction has been presented in [14] and
[17]. The results demonstrate that the utilization of the information-
theoretic KLD could be a competitive alternative. The KLD or cross
entropy is defined as

DKL (p ‖q ) =
∫

p(x) ln
p(x)

q(x)
dx (5)

which reveals that DKL(p ‖q ) ≥ 0 with equality if and only if p(x) =
q(x). As the KLD quantifies how close a PDF is to a candidate PDF,
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Fig. 1. Comparison of different Gaussian mixture approximations. (a) p(x) = 0.5N (x;−2, 1) + 0.5N (x;−2, 1). (b) p(x) = 0.8N (x; 2, 0.5) +
0.2N (x;−2, 1). (c) p(x) = 0.3N (x;−2, 1) + 0.7N (x; 3, 0.5).

one can find a best approximation of a specific PDF in the sense
of minimization of KLD. Let p(x) be the original PDF and q(x)
the candidate PDF that approximates the original one. In information
theory, there are two different kinds of KLDs, forward KLD and reverse
KLD, that we can seek to minimize to obtain our solution q(x). These
two different KLDs are defined as [14]

Forward KLD: DKL (p ‖q ) =
∫

p(x) ln
p(x)

q(x)
dx

Reverse KLD: DKL (q ‖p ) =
∫

q(x) ln
q(x)

p(x)
dx. (6)

The solution ofminq D(p‖q) is known as moment projection, which
finds the mean of p(x) and overestimate the support of p(x). In [18],
the authors proposed a Gaussian mixture reduction method on the basis
of the forward KLD, which was proved to only consider the merging
operation for mixture reduction [14]. As a comparison, the minimiza-
tion of the reverse KLD results in a mode selection approximation [14].
Although the mode seeking property of the reverse KLD can explicitly
avoid the issue of multimodality, it does not permit an analytic solution.
This means that the utilization of reverse KLD in JPDA update requires
computationally expensive numerical optimizations, which might not
be suitable for the ever-increasing low-cost sensors [19]. To address
this problem, we propose to minimize an approximated reverse KLD,
i.e.,

argmin
pi

Mk∑
j=0

βi
jDKL

(
pi
∥∥pij ) (7)

where pij(x
i) = N (xi;xi,j

k|k, P
i,j
k|k) denotes the PDF representing the

relationship between the ith target and the jth measurement, pi the
candidate approximated posterior PDF of the ith target.

Since the marginal association probability βi
j quantifies the con-

fidence level that the jth measurement comes from the ith target,
βi
j is leveraged as the weight/penalty for the difference between the

candidate PDF pi and the single association Gaussian term pij(x
i).

This implies that the proposed cost function also considers matching
with the strongest Gaussian mode, i.e., with the highest marginal
association probability, to resolve the multimodality issue when targets
are moving very closely. The mathematical relationship between the
original reverse KLD and the proposed cost function is established in
the following proposition.

Proposition 1: The reverse KLD provides the lower bound of the
proposed cost function, i.e.,

DKL

(
pi

∥∥∥∥∥
Mk∑
j=0

βi
jp

i
j

)
≤

Mk∑
j=0

βi
jDKL

(
pi
∥∥pij ) (8)

where the equality holds if and only if pij′ = pij , ∀j ′ �= j.
Proof: Please refer to Appendix A. �
Remark 1: Proposition 1 indicates that the proposed cost function

reduces to the reverse KLD once all Gaussian terms have the same mean
and covariance. Fig. 1 provides a comparison example of different
Gaussian mixture approximation approaches, where the solution of
minimizing the reverse KLD is obtained via numerical algorithms.
From Fig. 1(a), it can be clearly noted that minimizing the reverse
KLD and the proposed weighted KLD generate the same solution if all
Gaussian terms have the same distribution. Comparing to the moment
matching, i.e., minimizing the forward KLD, optimizing the reverse
KLD provides the opportunity of mode selection and, therefore, can di-
rectly resolve the issue of multimodality in JPDA. As an approximation
of the reverse KLD, the proposed cost function provides the solution
with approximate mode selection, as confirmed by Fig. 1.

Proposition 2: The closed-form solution of optimization problem
(7) is given by a Gaussian distribution

pi∗ = N
(
xi;xi

k|k , P
i
k|k
)

(9)

with

xi
k|k = P i

k|k

Mk∑
j=0

βi
j

(
P i,j
k|k
)−1

xi,j
k|k

P i
k|k =

[
Mk∑
j=0

βi
j

(
P i,j
k|k
)−1
]−1

. (10)

Proof: Please refer to Appendix B. �
Remark 2: Proposition 2 reveals that the optimal solution is the

weighted geometric mean of all PDFs, which coincides with the GCI
in information fusion [20]. This means that the proposed algorithm
holds similar property as GCI. That is, the proposed method is robust
against the unknown correlations among the information sources.

Remark 3: By using the computational complexity of the related
matrix manipulations, the computational complexity comparisons of
the proposed Gaussian mixture approximation and the simple moment-
preserving approach of the original JPDA are presented in Table I .
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON

From this table, one can note that the proposed approach has higher
computational complexity than the simple moment-matching method
due to the inversion operation of P i,j

k|k. However, the computational
complexities of both algorithms are scalable with respect to the number
of measurements.

B. Performance Analysis

In this section, the performance of the proposed mixture approx-
imation (9) is analyzed to provide better insights of its properties.
Intuitively, continuous miss detection results in significant information
loss, leading to the divergence of the estimation filter. Therefore, the
performance is analyzed under condition PD = 1 in this section, while
the performance of the proposed algorithm in a more realistic scenario
will be empirically studied in the simulation parts.

Theorem 1: (Mean Performance) Under the condition PD = 1, the
proposed approach (9) yields unbiased estimation for linear system (2)
if E[xi,j

k|k] = xi
k.

Proof: DefineY i
k|k = (P i

k|k)
−1 andyi

k|k = (P i
k|k)

−1xi
k|k. Then, (9)

can be rewritten as

yi
k|k =

Mk∑
j=0

βi
jy

i,j
k|k , Y i

k|k =

Mk∑
j=0

βi
jY

i,j
k|k (11)

which reveals that the proposed mixture reduction algorithm can be
viewed as a weighted sum of information terms.

The remaining proof is given by mathematical induction. Consider
the case that the ith target has two valid measurements, e.g., j = 1, 2.
Then, (11) reduces to

yi
k|k = βi

1y
i,1
k|k +
(
1− βi

1

)
yi,2
k|k

Y i
k|k = βi

1Y
i,1
k|k +
(
1− βi

1

)
Y i,2
k|k . (12)

Applying the matrix inversion lemma, we have(
Y i
k|k
)−1 (

βi
1Y

i,1
k|k
)
= I −B (13)

where

B
Δ
=
(
βi
1Y

i,1
k|k
)−1

A−1, A
Δ
=
(
βi
1Y

i,1
k|k
)−1

+
[(
1− βi

1

)
Y i,2
k|k
]−1

.

(14)
Through simple manipulations, we have

(
1− βi

1

)
Y i,2
k|k
(
βi
1Y

i,1
k|k
)−1

+ I =
(
1− βi

1

)
Y i,2
k|kA (15)

lI +
(
1− βi

1

)
Y i,2
k|k
(
βi
1Y

i,1
k|k
)−1

= Y i
k|k
(
βi
1Y

i,1
k|k
)−1

. (16)

Combining (15) and (16) yields(
Y i
k|k
)−1 (

1− βi
1

)
Y i,2
k|k =

(
βi
1Y

i,1
k|k
)−1

A−1 = B. (17)

Based on (13) and (17), it is straightforward to evaluate the expec-
tation E[xi

k|k] as

E
[
xi
k|k
]
= E

[(
Y i
k|k
)−1

yi
k|k

]

= E

[(
Y i
k|k
)−1 (

βi
1Y

i,1
k|k x

i,1
k|k +
(
1− βi

1

)
Y i,2
k|k x

i,2
k|k
)]

= E
[
(I −B)xi,1

k|k +Bxi,2
k|k
]

= xi
k. (18)

At the inductive step, assume that the ith target has L− 1 valid
measurements, e.g., j = 1, 2, . . . , L− 1 and the proposed Gaussian
approximation approach yields unbiased estimation

yi
k|k =

L−1∑
j=1

βi
jy

i,j
k|k , Y i

k|k =

L−1∑
j=1

βi
jY

i,j
k|k . (19)

Following similar procedures, shown in (12)–(18), it is easy to verify
that, if the ith target has L valid measurements, e.g., j = 1, 2, . . . , L,
the proposed Gaussian approximation approach yields unbiased esti-
mation. Then, the proof is completed by mathematical induction. �

Remark 4: Notice that the expectation E[xi
k|k] is evaluated based

on the posterior p(xi
k|χi

k, Zk), which is a function of xi
k given current

measurementsZk. Since data association only depends on the target dy-
namics model and current measurements Zk, the marginal probability
βi
j is determined once the association process is finished and therefore

βi
j is considered as a known constant in the analysis of Theorem 1.

Remark 5: The establishment of Theorem 1 requires the assump-
tion that every hypothesis leads an unbiased estimate. Notice that each
single association hypothesis is updated by the classical linear Kalman
filter, which provides unbiased estimate provided that the noises are
Gaussian. For this reason, we utilize the unbiased assumption of each
hypothesis in the analysis.

Theorem 1 reveals that, if the original estimator for single association
pair update is unbiased, the proposed algorithm yields unbiased estima-
tion. Now, let us investigate the error covariance performance, which
quantifies the estimation accuracy, of the propose information-theoretic
approach. Before providing the results, a useful lemma regarding the
boundedness of the Kalman filter [21] is briefly reviewed first. Consider
the following linear system:

xk = Fk−1xk−1 + wk−1, zk = Hkxk + vk (20)

where xk ∈ Rn and zk ∈ Rm denote the system state and the cor-
responding measurement at time step k, respectively. The notations
Fk−1 and Hk correspond to the system matrix and observation matrix,
respectively. The signals wk−1 and vk are process noise and measure-
ment noise, which are assumed to be the zero-mean Gaussian process
with covariances Qk−1 and Rk, respectively.
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Definition 1: System (20) is uniformly controllable and observable
if there exist a positive integer k0 and positive constants κ1 ≤ κ2 < ∞,
κ3 ≤ κ4 < ∞ such that κ1I ≤∑k

i=k−k0+1 Φk,iQiΦ
T
k,i ≤ κ2I and

κ3I ≤∑k
i=k−k0

ΦT
i,kH

T
i R−1

i HiΦi,k ≤ κ4I with

Φk,l =

{
Fk−1Fk−2 · · ·Fl, k > l
I, k = l

, Φi,k = Φ−1
k,i. (21)

By applying Kalman filter to system (20), we can have the following
result [21].

Lemma 1: Suppose system (20) is uniformly controllable and uni-
formly observable. If the initial error covariance P0|0 is positive, then
there exists a positive integer k0 such that the error covariance provided
by the Kalman filter is uniformly bounded from below and above for
all k ≥ k0 as P ≤ Pk|k ≤ P , where P and P are positive matrices.

Theorem 2: (Error Covariance Performance) Suppose PD = 1 and
the linear system (2) is uniformly controllable and uniformly observ-
able. If the initial error covariance P i,j

0|0 > 0, then the estimation error
given by (9) is asymptotically bounded in a mean square sense and the
corresponding error covariance is uniformly bounded from below and
above as P ≤ P i

k|k ≤ P , where P and P are positive matrices.
Proof: According to JPDA, the error covariance update of each

association pair is obtained by the linear Kalman filter as(
P i,j
k|k
)−1

=
(
P i,j
k|k−1

)−1

+
(
Hi

k

)T (
Ri

k

)−1
Hi

k

=

⎧⎨
⎩F i

k−1

[
Mk∑
j=1

βi
j

(
P i,j
k−1|k−1

)−1
]−1(

F i
k−1

)T
+Qi

k−1

⎫⎬
⎭

−1

+
(
Hi

k

)T (
Ri

k

)−1
Hi

k. (22)

Note that the previous equation is derived based on the information
form of the Kalman filter. According to Lemma 1, the hypothesis-
conditioned error covariance is uniformly bounded from below and
from above asP i ≤ P i,j

k|k ≤ P i, whereP i andP i are positive matrices.
Based on this fact, at each scan, we can choose the upper and lower
bounds of P i,j

k|k, i.e., P i,U
k|k and P i,L

k|k , such that

P i,U
k|k − P i,j

k|k ≥ 0, P i,L
k|k − P i,j

k|k ≤ 0 ∀j ∈ [Mk] (23)

where [Mk]
Δ
= {1, 2, . . . ,Mk}. Then, one can imply that

Mk∑
j=1

βi
j

(
P i,j
k|k
)−1

≤
Mk∑
j=1

βi
j

(
P i,L
k|k
)−1

=
(
P i,L
k|k
)−1

Mk∑
j=1

βi
j

(
P i,j
k|k
)−1

≥
Mk∑
j=1

βi
j

(
P i,U
k|k
)−1

=
(
P i,U
k|k
)−1

. (24)

Substituting (24) into (22) yields(
P i,j
k|k
)−1

≤
(
F i
k−1P

i,L
k−1|k−1

(
F i
k−1

)T
+Qi

k−1

)−1

+
(
Hi

k

)T (
Ri

k

)−1
Hi

k(
P i,j
k|k
)−1

≥
(
F i
k−1P

i,U
k−1|k−1

(
F i
k−1

)T
+Qi

k−1

)−1

+
(
Hi

k

)T (
Ri

k

)−1
Hi

k. (25)

Note that the right-hand sides of (25) can be considered as two
standard Kalman filter error covariance updates as

P i,j
k|k ≥ Ψk

(
Ψk−1 · · ·

(
Ψ1

(
P i,L
0|0
)
· · ·
))

P i,j
k|k ≤ Ψk

(
Ψk−1 · · ·

(
Ψ1

(
P i,U
0|0
)
· · ·
))

(26)

Algorithm 1: Information-Theoretic JPDA Filter.

1: Predict the existing targets using target dynamics
2: Update each track with all possible measurements by Kalman

filter
3: Calculate the marginal probability p(θik|Zk)
4: Calculate the posterior existence probability p(χi

k|Zk)
5: Calculate the existence-conditioned marginal probability

p(θik|χi
k, Zk)

6: Use Proposition 2 to update Nk−1 existing targets
7: Generate Mk new targets (one for each measurement)
8: Perform track confirmation and deletion based using the

existence probability p(χi
k|Zk)

where the operator Ψk(·) is defined as

Ψk(P )
Δ
=

[(
F i
k−1P
(
F i
k−1

)T
+Qi

k−1

)−1

+
(
Hi

k

)T (
Ri

k

)−1
Hi

k

]−1

. (27)

Consequently, the estimation error given by (9) is asymptotically
bounded in a mean square sense and the corresponding error covariance
is uniformly bounded from below and above, following Lemma 1. �

IV. IMPLEMENTATION OF PROPOSED JPDA

This section presents the details of the implementation of the
proposed information-theoretic JPDA filter. The implementation de-
tails of the proposed information-theoretic JPDA is summarized in
Algorithm 1.

A. Implementation Details

Theoretically, the marginal association probability p(θik|Zk) can be
obtained by finding all the feasible joint association hypotheses as

p
(
θik = j |Zk

)
=
∑

θi
k
(∈Θk)=j

p (Θk |Zk ) (28)

where the posterior distribution of the joint association hypothesis
p(Θk|Zk) is given by p(Θk|Zk) ∝ fm × fd × fn, where fm, fd, and
fn refer to the terms related to miss-detection, target detection, and new
target, respectively, as

fm ∝

⎡
⎢⎣ ∏

i∈[Nk−1],θ
i
k
=0

1− PDp
(
χi
k |Zk−1

)
⎤
⎥⎦

fd ∝

⎡
⎢⎣ ∏

i∈[Nk−1],θ
i
k
=j

PDp
(
χi
k |Zk−1

)
p
(
zjk

∣∣∣xi
k|k−1

)⎤⎥⎦

fn ∝

⎡
⎢⎣ ∏

θ
Nk−1+j

k
=Nk−1+j

Nb∑
s=1

PDλB (xs
b) p
(
zjk |xs

b

)
+ λFA

(
zjk
)
⎤
⎥⎦
(29)

where xs
b denotes sth possible state vector of new birth targets and Nb

represents the total number of possible initializations for new targets.
After finding p(θik|Zk), the joint probability p(θik, χ

i
k|Zk) can be

calculated using the chain rule of probability as

p
(
θik, χ

i
k |Zk

)
= p
(
χi
k

∣∣θik, Zk

)
p
(
θik |Zk

)
(30)
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where the hypothesis-conditioned existence probability p(χi
k|θik, Zk)

can be easily obtained as

p (χi
k |θik, Zk ) ∝

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(χi
k
|Zk−1 )(1−PD)

1−p(χi
k
|Zk−1 )+p(χi

k
|Zk−1 )(1−PD)

, θik = 0

1, θik = j
PDλBp(zjk |xb )

λFA+PDλBp(zjk |xb )
, θ

Nk−1+j

k = Nk−1 + j.

(31)
The posterior probability of target existence p(χi

k|Zk) and the
existence-conditioned marginal association probability p(θik|χi

k, Zk)
can then be calculated using the Bayesian rule as

p
(
χi
k |Zk

)
=
∑
θi
k

p
(
θik, χ

i
k |Zk

)

p
(
θik
∣∣χi

k, Zk

)
=

p (θik, χ
i
k |Zk )

p (χi
k |Zk )

. (32)

Usingp(χi
k|Zk) andp(θik|χi

k, Zk), we can now perform track update
for the proposed JPDA using (9).

B. Efficient Computation of p(θik|Zk)

It is clear that the exact brute force solution through full enumeration
(28) is computationally intractable except for a few simple cases be-
cause of the combinatorial nature. For efficient implementation, we
utilize the stochastic Gibbs sampling to approximate the marginal
association probability. The Gibbs sampling algorithm enables fast
calculation of the marginal probability with ignorable performance
sacrifice [22], [23]. We generate sufficient samples of Θk by Gibbs
sampling and then it is straightforward to approximate the marginal
probability by the event occurrence. Based on the theory of Gibbs sam-

pling, the transition kernel from one joint eventΘk =
(
θ1k, . . . , θ

Nk−1
k

)
to another joint event Θ̄k =

(
θ̄1k, . . . , θ̄

Nk−1
k

)
is given by

π
(
Θ̄k |Θk

)
=

Nk−1∏
m=1

πm

(
θ̄mk

∣∣∣θ̄1k, . . . , θ̄m−1
k , θm+1

k , . . . , θ
Nk−1
k

)
(33)

where pm is determined by

πm

(
θ̄mk

∣∣∣θ̄1k, . . . , θ̄m−1
k , θm+1

k , . . . , θ
Nk−1
k

)

=
p
(
θ̄1k, . . . , θ̄

m
k , θm+1

k , . . . , θ
Nk−1
k

)
p
(
θ̄1k, . . . , θ̄

m−1
k , θm+1

k , . . . , θ
Nk−1
k

)
∝ p
(
θ̄1k, . . . , θ̄

m
k , θm+1

k , . . . , θ
Nk−1
k

)
∝ p
(
θ̄mk
)

(34)

where the last line is obtained based the basic assumption that each
single association hypothesis is independent of each other utilized in
JPDA.

The preceding equation reveals that the Gibbs sampling only requires
the individual prior association distribution, thus, avoiding full enu-
meration in the marginalization. The prior distribution of an individual
association is given by

p
(
θik
) ∝
⎧⎪⎪⎨
⎪⎪⎩
1− PDp (χi

k |Zk−1 ) , θik = 0

PDp (χi
k |Zk−1 ) p

(
zjk

∣∣∣xi
k|k−1

)
, θik = j

λFA + PDλBp
(
zjk |xb

)
, θik = Nk−1 + j.

(35)

Fig. 2. Sample ground truth and measurements (grey “x: for measure-
ments and color lines for targets).

Given the joint event Θk, a joint event Θ̄k can, therefore, be recur-
sively sampled as

θ̄mk ∼ πm

(
θ̄mk

∣∣∣θ̄1k, . . . , θ̄m−1
k , θm+1

k , . . . , θ
Nk−1
k

)
. (36)

Then, the Gibbs samples will exponentially converge to the station-
ary distribution p(Θk|Zk) as [22], [23]∣∣πn

(
Θ̄k |Θk

)− p
(
Θ̄k |Zk

)∣∣ ≤ (1− 2β)
n/2� (37)

where πn(Θ̄k|Θk) denotes the nth power of transition kernel
π(Θ̄k|Θk), β = minπ2(Θ̄k|Θk) ∈ (0, 0.5] the least likely two-step
transition probability.

V. SIMULATION STUDIES

In this section, the effectiveness of the proposed MTT algorithm is
demonstrated through extensive empirical numerical simulations. Our
experiments explore a very challenging scenario, involving ten closely
moving targets. These four targets appear at time step from t = 0˜s
to t = 90˜s at every 10˜s interval. The state vector contains planar
position and velocity. We assume that all targets share the same motion
model and use the well-known constant velocity (CV) model for target
prediction. The CV model is defined as

xk = FCVxk−1 +Gwk−1 (38)

with

FCV
Δ
= I2×2 ⊗

[
1 T
0 1

]
, G

Δ
=
[
T 2/2, T, T 2/2, T

]T
(39)

where I2×2 denotes the 2× 2 identity matrix, T = 1˜s the sampling
period, and wk ∼ N (·; 0, σ2

v) the Gaussian process noise with σv =
0.1˜m/s2. The linear position measurements, generated withPD = 0.9,
are modeled by

zk = [xT,k, yT,k]
T + vk (40)

where (xT,k, yT,k) denotes target position, and vk ∼ N (·; 0, Rk) the
Gaussian measurement noise with Rk = σ2

zdiag([1, 1]). Snapshots of
one sample trajectory for each target and measurements are depicted
in Fig. 2. The clutter is assumed to be uniformly distributed in the
surveillance region with its number being Poisson with ten average
returns at each scan. In order to cover the entire region of interest,
the target birth model is λB(x) = λBN (x;xb, Pb) with λB = 0.05,
xb = [0, 0, 0, 0]T , Pb = diag([1002, 1, 1002, 1]). A tentative track is
confirmed if the existence probability satisfies p(χi

k|Zk) ≥ 0.8 and a
confirmed track is deleted immediately once p(χi

k|Zk) ≤ 0.1.
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Fig. 3. Mean OSPA distance of 100 Monte Carlo simulations. (a) σz = 0.3162. (b) σz = 1. (c) σz = 2.2361.

We compare the proposed JPDA filter with standard JPDA and
measurement-driven JPDA [13] for various cases. In order to make
fair comparisons, the Gibbs sampling-aided marginalization is also
utilized in other two algorithms. The optimal subpattern assignment
(OSPA) distance metric [24] is considered here for overall evaluation
of performance. The results of mean OSPA distance obtained by 100
Monte Carlo runs are shown in Fig. 3. The peaks of mean OSPA distance
before 100˜s in this figure are resulted from track confirmation for target
birth. Since all targets cross each other at around 100 s, all filters cannot
correctly assign measurements to targets, which in turn results in perfor-
mance degradation. Although the measurement-driven JPDA can also
mitigate the multimodality issue in Gaussian mixture approximation,
the resultant solution is sensitive to measurement noise, as confirmed
by Fig. 3. It is clear from Fig. 3 that the proposed information-theoretic
JPDA outperforms other two algorithms in terms of tracking accuracy
and shows strong robustness against the variation of measurement
noise in all cases. The reason is that minimizing the proposed KLD
provides approximate mode selection in Gaussian mixture reduction
for updating JPDA and, therefore, can alleviate the multimodality
issue when targets are moving closely around 100 s. Therefore, the
proposed information-theoretic approach is a competitive alternative to
the original JPDA and can be expected to address the Gaussian mixture
approximation problem in related methods.

VI. CONCLUSION

We have proposed a novel information-theoretic JPDA algorithm
that can be utilized to track varying number of targets in this article.
The proposed JPDA filter is derived through the minimization of a
weighted reverse KLD to approximate the posterior Gaussian mixture
PDF. Analytical performance bounds are also derived to support the
proposed approach. Extensive empirical simulations clearly validate
the effectiveness of the proposed approach.

APPENDIX A
PROOF OF PROPOSITION 1

According to the log-sum inequality, we have

DKL

(
pi

∥∥∥∥∥
Mk∑
j=0

βi
jp

i
j

)
=

∫
pi
(
xi
)
ln

pi (xi)∑Mk
j=0 β

i
jp

i
j (x

i)
dxi

≤
∫ Mk∑

j=0

ajp
i
(
xi
)
ln

ajp
i (xi)

βi
jp

i
j (x

i)
dxi

=

Mk∑
j=0

aj

∫
pi
(
xi
)
ln

pi (xi)

pij (x
i)
dxi +

Mk∑
j=0

aj ln
aj

βi
j

=

Mk∑
j=0

ajDKL

(
pi
∥∥pij )+

Mk∑
j=0

aj ln
aj

βi
j

(41)

where 0 ≤ aj ≤ 1 and
∑Mk

j=0 aj = 1, and the equality holds if and only
if

aj′p
i (xi)

βi
j′p

i
j′ (x

i)
=

ajp
i (xi)

βi
jp

i
j (x

i)
∀j ′ �= j. (42)

Then, Proposition 1 can be proved by choosing aj = βi
j .

APPENDIX B
PROOF OF PROPOSITION 2

From (7), one can imply that

Mk∑
j=0

βi
jDKL

(
pi
∥∥pij ) =

Mk∑
j=0

βi
j

∫
pi
(
xi
)
ln

pi (xi)

pij (x
i)
dxi

=

∫
pi
(
xi
)
ln

pi (xi)∏Mk
j=0

[
pij (x

i)
]βi

j

dxi

=

∫
pi
(
xi
)
ln

pi (xi)

cpi∗ (xi)
dxi

= DKL

(
pi
∥∥pi∗ )− ln c (43)

where pi∗ =
1
c

∏Mk
j=0 [p

i
j(x

i)]
βi
j and c is a constant.

SinceDKL(p
i ‖pi∗ ) ≥ 0 and the equality holds if and only if pi = pi∗,

the solution of optimization problem (7) is pi = pi∗. Assume that pij(x
i)

takes Gaussian distribution N (xi;xi,j
k|k, P

i,j
k|k), then, we have

[
pij
(
xi
)]βi

j ∝ N
(
xi;xi,j

k|k , P
i,j
k|k /β

i
j

)
Mk∏
j=0

pij
(
xi
) ∝ N (xi;μi,Σi

)
(44)

where μi = Σi
∑Mk

j=0 (P
i,j
k|k)

−1
xi,j
k|k,Σ

i = (
∑Mk

j=0 (P
i,j
k|k)

−1
)−1.

Substituting (44) into pi∗ yields pi∗ ∝ N (xi;xi
k|k, P

i
k|k). Since∫

pi∗(x
i)dxi = 1 and

∫ N (xi;xi
k|k, P

i
k|k)dx

i = 1, it is easy to verify
that pi∗ = N (xi;xi

k|k, P
i
k|k).
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