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Abstract. This paper analyses the complexity of two Algorithms called COFFGA (Combinatorial Ordering First Fit 
Genetic Algorithm) and CONFGA (Combinatorial Ordering Next Fit Genetic Algorithm). It also identifies the parameters 
that affect the performance of these algorithms. The complexity of the GA depends on the problem being solved by this 
GA, as well as the operators of the GA itself. The complexity of COFFGA and CONFGA are analysed individually. Even 
of these algorithms are slightly different, they may have extremely different complexities depending on the differences in 
their fitness function or termination condition. To provide a provable bound on a problem, there must be a bound on the 
evaluation function as well as a manner by which the underlying problem is tied to the representation. Given that there is 
no standard complexity of the GA, and the complexity of any GA depends on the problem that being solved by this GA 
and its operators, then CONFGA and COFFGA are analysed with different complexities; although they built upon the same 
algorithm and they are used to solve the same problem (Cloud resource allocation problem), but they are different in their 
operators their fitness function and termination condition.  

INTRODUCTION 

This paper emphases the complexity of CONFGA and COFFGA [1], which are adapted for the problem: multi-
capacity vector bin packing problem in application to Cloud resource allocation [2], [3], [4], [5].These algorithms are 
based on the sequential GA [6],[7],[8] and the detailed description of the developed algorithms in [1] is discussed in 
Section 2.1 and Section 2.2. The first population is generated randomly, and the fitness function is built upon the 
decision that was generated using fast  2-D Vector Bin Packing (VBP) heuristics: 2-D Next Fit heuristic (2-D NF) in 
CONFGA, and 2-D First Fit (2-D FF) in COFFGA. The design of the novel algorithms for solving the 2-D VBPP in 
application to Cloud resource allocation using Combinational order GA (section (2.3)5.4.1),  

Previous genetic research in Cloud resource allocation and vector bin packing has used the heuristic for initializing 
a pool of individuals [9], [10], [11]. It also used complex encoding for representing these individuals, consequently 
suffering from extra difficulties in crossover and the permutation operations [9], [10], [11]. The approach of 
Combinatorial Ordering wrapping heuristic Genetic Algorithm in (Section ) ; the heuristic is used as a part of the 
objective function skipping over the complexity of encoding and crossover of previous research[11],[12],[13]. 

One of the most important characteristics of these algorithms (CONFGA and COFFGA) is the way of encoding; 
it is abstracted to 1-D array and solved as a combinatorial ordering problem with an intelligent fitness function.  

Section 3 describes the research methodology of analysing the complexities of CONFGA and COFFGA. Section 
4 shows the experiments that are required to analyse the relation between the average number of generations and the 
number of Virtual Machines (VMs) in the problem. Section 5 gives the main conclusions of this research. 
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BACKGROUND 

In terms of Cloud resource allocation there is a set of VMs, each one is a vector of different resources, such as 
CPU and Memory. Since Cloud computing is based on full virtualisation, then Cloud Resource allocation aims to 
consolidate the given VMs into minimum number of Physical resources (PMs) with the goal of minimizing the 
resources wastage and number of the required PMs [1],[3],[5],[6]. There is different ways to deal with Cloud resource 
allocation problem; some ways use multi-capacity VBP heuristics for scheduling and virtual machine packing such as 
NF, FF, FFD and Permutation(PP) [14], [15], [16]; others are modified natural based solution  to deal with Cloud 
resource allocation problem such as GA and Ant-colony[11],[12],[17]. 

Basically, the GA is an iterative procedure which borrows the concept of survival of the fittest individual from the 
Darwinian theory of natural selection. The GA is able to solve complex problems depending on simulating the natural 
evolution of these problems. By choosing a suitable representation of the given problem and emulating biological 
selection and reproduction techniques the GA can effectively search a large problem domain. It has been pointed that 
the classical GA performs poorly when applied to BPPs [7], [18], [19]. Therefore an adapted GA is needed for use 
with BPPs. Bin packing is an optimisation problem which seeks to minimise the number of bins used to pack a group 
of items, and great effort has been made to find an optimal way of ordering the items and finding relations between 
the items’ requirements in the VBPP. 

 

Design of Combinatorial Ordering Heuristic in Wrap Genetic Algorithm 

This approach has been developed to treat vector bin packing as an optimisation ordering problem, then using an 
adapted genetic wrapping heuristic algorithm to solve it [1]. It uses the cooperation of a GA with traditional multi-
dimension packing heuristics to produce packing solutions under multiple constraints. The GA evolves to find a new 
packing solution. The decision is configured by finding the best VM order to be packed by an heuristic objective 
function. The packing solution catches the minimum number of servers and least resource wastage; finding the best 
order is achieved by evaluating the chromosomes using a fast multi-dimensional heuristic as an objective function. 
On the other hand, using the heuristic as a part of the objective function will be useful in constructing the packing 
solution across the available servers. In the box below the proposed hybrid Multi-capacity Combinatorial Ordering 
GA Procedure is shown in more detail.  
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Problem Modelling and Algorithms Development 

The procedure describes the way to apply the proposed Combinatorial Ordering GA to the Cloud resource 
allocation problem. It is divided into three main functions: INITIALIZE VMs, FIND PLACEMENT USING 
COMBINATORIAL ORDERING GA, and PLACE VMs. Each function is dedicated to a specific purpose. 

Multi-Capacity Combinatorial Ordering GA Procedure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
      //FIND PLACEMENT USING COMBINATORIAL ORDERING GA 

1 Initiate Termination Condition, Pool Size; 
2 ChromLength=VMs;  
3 Pool = N;  
4  While T < Termination Condition: 
5 Begin  
6       N = Pool Size;  
7       T = T+1; 
8       While N≠0: //Find Fitness for all Pool Chromosomes 
9       Begin 
10   Fetch servers’ capacities and VM’s requirements; 
11              Pack the given VMs order using Multi-capacity vector bin packing heuristic;   
12              Use packing function to convert the chrome VMs order to PackingSolution; 
13              Calculate the chromosome fitness using the fineness function in (5.2.3);  
14              N = N – 1;  
15              bestSolution = findBestOrder(Pool); 
16       End 
17       For i=1..PoolSize/2; // apply selection and crossover 
18       Begin    
19               [chrom1, chrom2] = Mini-Roulette; (5.2.4);.       
20               [chd1, chd2] = Crossover(chrom1, chrom2); (5.2.5); 
21               Save(newPool, chd1, chd2); 
22      End 
23      Pool=newPool; 
24 End 

 
 
 
 
 
 

1 Initially, J=0 ; VMs=0; T=0; // number of jobs; number of VMs; termination condition 
2 Initially, OptSolution = NULL; 

//To host a number of jobs with multi-capacity demands in hosted servers: 
3 Initialize a descriptive file that identifies number of servers, capacity of the servers’ resources, number of jobs [services], 

and the requirements of each job [service]. 
4 Call INITIALIZE VMs 
5 Call FIND PLACEMENT USING COMBINATORIAL ORDERING GA 
6 Call PLACE  VMs 

//INITIALIZE VMs  
1 While J < number of jobs: // from descriptive file 
2 Begin  
3           J = J+1; 
4           Encapsulate  into a proper VM.  
5           VMs= VMs+1;    
6 End 

//PLACE VMs 

1 If (OptSolution=NULL or fit(OptSolution)<fit(BestSolution) 
2          OptSolution = BestSolution; 
3          OptPacking = PackingSolution(BestSolution); 
4         Apply OptPacking (VMs, Servers); 
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INITIALIZE VMs describes the initialization of the VMs according to the input workload of each job of the given 
workload and should be encapsulated into a proper VM according to the job requirements.  

FIND PLACEMENT USING COMBINATORIAL ORDERING GA function produces the deploying decision of 
the pre-initialized VMs. It presents the proposed Combinatorial Ordering GA that wraps a fast heuristic as an objective 
function to make the optimal packing solution. It starts with creating a pool of N chromosomes; each chromosome 
comprises a random VM order.  

The length of each chromosome is set to the number of VMs created for the jobs given in the workload. The 
chromosomes will be evaluated using the objective function of a fast multi-capacity heuristic according to the given 
chromosome order; each VM of the given chromosome is an index to N capacities associated to this VM. The packing 
solution will be generated for each chromosome based on the VMs’ capacities and the VMs’ order using a multi-
capacity vector bin packing heuristic, and then a fitness value will be given to the chromosome using the fitness 
function developed in [1] The output of this function will be a chromosome’s fitness function and chromosome 
packing solution. As with any other GA this GA will be evolve until reaching the termination condition.  

Finally, the PLACE VMs function deploys the packing solution associated with the best solution generated by the 
previous function onto Cloud servers. All of the related GA functions including chromosome encoding, selection, 
mutation, fitness function, and termination condition are described in the sections below. 

Two algorithms, CONFGA and COFFGA, were developed in [1]using the above procedure. CONFGA uses Next 
Fit (NF algorithm is the quickest algorithm among the other heuristic as it requires O(N) time [20]) as a packing 
solution governor, whereas COFFGA employs the multi-capacity FF heuristic as a packing governor instead. NF is 
able to deal with D-capacity requirement items instead of one requirement items. The FF Algorithm is also an 
approximation heuristic that is used with multi-capacity vector bin packing problems, but it removes the restriction of 
NF as it allows the current item to be packed in any non-empty bin which can accommodate the item[18], [21]. It is 
also known as a fast heuristic with O(N logN) time complexity, where N is the number of items to be packed [22], 
[23]. The algorithms (CONFGA and COFFGA) were implemented as a group of strongly connected functions. Some 
of these functions are already present in LibGA [6],[7], such as pool initialization, crossover and mutation. Some 
others are developed in [1], for example: objective function, chromosome encoding, main function, VMs initialisation 
from input files, and Packing function. 

 

RESEARCH METHODOLOGY 

Since CONFGA and COFFGA are new algorithms, the time complexity of both were analysed. This section 
analyses the complexity of COFFGA and CONFGA algorithms and identifies the parameters that affect the 
performance of these algorithms. Given that the complexity of the GA depends on the problem being solved by this 
GA, as well as the operators of the GA itself; therefore, the time complexity of both algorithms was conducted by 
analysing the key aspects of theses algorithms in terms of the computational complexity. The complexity of COFFGA 
and CONFGA are analysed individually CONFGA and COFFGA were implemented using a number of functions and 
operators that work in the LibGA development package. All these functions and operators were analysed in details 
below: 

 

Chromosome encoding 

In the problem of Multi Capacity Cloud Resource allocation, each Chromosome is encoded as a string of integers 
that represents a random order of VMs. Each VM in the chromosome is an index to M capacities associated to this 
VM. In this research, two capacities are considered. The consolidation decision will be generated using one of the 
algorithms COFFGA or COFNGA. The main parameters of the given problem are: 

N: the number of VMs; number of inputs; the length of the individual 
Ts: the Total number of servers generated by the fitness function. 
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P: is the population size 
G: is the number of generations 
The length of each chromosome equals to the number of VMs need to be deployed over the available servers. The 

time for chromosome encoding mainly depends on the number of VMs (N), it does not exceed the O(N), the 
complexity of a population of chromosomes is equal to O(PN), N is constant and P also is constant; therefore O(PN) 
is also a constant. Both CONFGA and COFFGA have the same complexity of encoding. 

 

Fitness Function  

The quality of individuals is evaluated by fitness functions; the developed fitness function comprises a 2-D VBP 
heuristic as packing governor.  The Vector bin packing problem is NP hard, furthermore the 2-D  the vector bin 
packing problem is known to be APX-hard which means that there is no asymptotic PTAS for the problem, unless P 
= NP [24], [25].  The packing decision will be generated for each chromosome using a 2-D vector bin packing heuristic 
that is encapsulated in the fitness function. The packing decision is a set of vertices {( , ), ( , ), ( , 

), , ), …..}. The developed fitness function is identified in formula 1 [1]:  
 

                  (1) 
 
Ts is generated by the 2-D VBP heuristic, consequently the time of the fitness function of COFFGA is different 

from CONFGA. Since the former uses the 2-D FF in its fitness function, the time of the 2-D FF is O(N log N) 
[25],[1164]. Whereas, the latter algorithm uses 2-D NF heurist to generate the total number of required servers. NF is 
a very fast heuristic that works with time equal to O(N) [24], [25]. In regard to the time complexity of  it has the 
same complexity for CONGA and COFFGA that is equal to O( ), depending on the following formulas: 

 
 

           =  +                                                                       (2) 

           ,                                                            (3) 

                                                                      (4) 
 
Finally, the time of the COFFGA fitness function is (O(N log N)+O( )), and the time complexity of the 

CONFGA fitness function is (O(N)+O( )).  
 

Selection 

The proposed algorithms use the adopted mini roulette strategy; roulette-wheel selection scheme is common in the 
traditional GA. A probability, , is used to decide the selection operator. The mini-selection roulette is similar to 
the classic roulette selection, where each individual is assigned a slice of a circular roulette wheel with ,  

 but the size of the slice of the roulette wheel is, the exception in the mini-selection roulette wheel strategy 

is that chromosomes are assigned a fitness , which is inversely proportional to the total fitness function of the 

given pool, . It is equal to: . Accordingly, the time complexity of the mini roulette section 
algorithm equals O(P). 
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Crossover 

The Crossover operator that was mainly used with the developed algorithms is Order1 crossover, which is 
abbreviated to OX [27]. To analyse the complexity of OX, the procedure will be described to support the time 
complexity that is assigned to OX. 

The input is a pair of parents,  and , which will be used to generate two new individuals, and . The 
algorithm randomly assigns two cutting sites i and j in , here i = 4 and j = 6. Then, the substring (i) ··· (j) is 
copied into the new individual with index of  (i) ···  (j). Then,  is swept circularly from j + 1 onward to complete 
the missing holes of .on the other hand,  is also filled circularly from j + 1. The example in Figure 18 shows how 
OX creates the first child . The other child, , will be generated by exchanging the roles of  and .The whole 
procedure is implemented in O(N) [28]. This crossover will be applied to the best half of individuals in the given pool.  

 

Figure 1: Order 1 Procedure Applied to One Parent 
 
 

Termination Condition 

The termination criterion is a critical parameter that affects the running time and the final decision of the developed 
algorithms. From the experiments, it has been concluded that, the number of generations for the multi-capacity Cloud 
resource allocation problem depends on the number of VMs and the corresponding requirements of these VMs from 
one side. From the other side, it depends on the randomness of the pool generation. Since the problem is a 
combinatorial order problem, the initial pool of individuals greatly affects the speed of algorithms convergence.  

There are two termination conditions that have been used. One is that the GA process will be terminated when the 
chance of improvement equals to ‘0’, then after 50 generations the algorithm will converge. The evolution procedure 
will be repeated until the best solution shows no further improvement. This termination does not work effectively 
within CONFGA, but it can work with COFFGA. The second termination condition is by specifying a maximal 
number of evolution generations, and then evolution will run for a long time, but might get better solutions. This 
termination condition was specified by making a number of experiments in Section 4. 

 

EXPERIMENTS AND RESULTS 

To identify the termination condition for both algorithms (CONFGA and COFFGA) about 200 experiments were 
done with different problem sizes from (20-340) VMs. These experiments are conducted with a goal of identifying 
the relationship between the number of generations for convergence and the size of the input. It is useful to draw a 
mathematical relationship between maximum number of required generations and the size of the input. Identifying 

Rank 1 2 3 4 5 6 7 8 9 

    i=4 
 

 j=6    

 1 3 2     | 6 4 5      | 9 7 8 

 3 7 8     | 1 4 9      | 2 5 6 

 8 1 9 6 4 5 2 3 7 

 2 6 5 1 4 9 7 8 3 
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the number of maximum generations over different problem instances is a clever way to accelerate the tested 
algorithm: it prevents unnecessary generations that algorithms spent without improving the minimum fitness value. 
Therefore, mathematical relationship helps to find a suitable termination condition for each of the tested algorithms, 
and then finding the complexity over these conditions. All experiments were carried out using the data developed in 
[1] and the GA parameters as in table 1 

 
 

Table 1: The Chosen Parameters for CONFGA and COFFGA 
 

 

Analysing the Relation between Number of Generations and the Problem Size over 
CONFGA  

Experiments were carried out with the goal of identifying the relationship between the number of generations and 
the minimum fitness values within CONFGA. CONFGA was tested over 26 problem instances for three times. Table 
2 shows the number of generations over three runs. It also specifies the minimum, maximum and average fitness 
values for the problem instances. It shows which generation related to which fitness value.  

The table’s data is analysed in detail: it illustrates that CONFGA needs a different number of generations to reach 
to the minimum fitness value for different runs of the tested problem instance over the all problem cases. Clearly, 
there is a considerable difference in the minimum fitness value for the same problem instance over different runs; 
correspondingly the resultant packing solutions of these fitness values are varied. For example the problem of size 
280 VMs comes with 21,390 as the maximum resultant fitness value of CONFGA over the three runs, and 14,058 as 
the minimum fitness value for the same problem instance over these runs. The corresponding number of required 
servers of the given fitness values are 24 and 26. 

In order to analyse the main factors that affect CONFGA’s convergence of the given problem, the results are 
analysed against fitness values the maximum fitness value and the minimum fitness value; and examine which one 
comes with minimum generations, which one needs the maximum generations, and how it changes across different 
problem sizes. 

 In some problem instances the maximum fitness value accompanies the minimum number of generations, the 
minimum fitness value comes with the maximum number of generations, and the third run needs a number of 
generations between the maximum and the minimum generations; this is reported in Table 2 in the fields of white 
background. It cannot be blamed that CONFGA minimum fitness values come with the maximum number of 
generations, because in some tested cases the minimum fitness value comes with minimum number of generations as 
can be seen in the rows with a dark grey background in Table 2. In other tested cases, the maximum fitness values do 
not accompany the minimum number of generations, or the third run requires the maximum generations: this situation 
is recognised with the light grey background. The main conclusion of this analysis is that the randomness of the pool 
plays a crucial role in the performance of the CONFGA as it determines the convergence and the resultant packing 
solution. 

To draw out the relationship between the problem size and the number of the required generations, the average 
number of generations is compared against the problem size for all the tested problems. Figure 2 depicts the 
relationship between the average number of generations and the number of VMs in the input that were tested using 
CONFGA. It can be seen from Figure 2 that the number of generations is not exponential. In fact, the maximum 
generations in all cases are less than a second order polynomial in regards to the chromosome length.  

Genetic Parameters   Magnitude  

Crossover probability 1.0 

Population Size 75 
Type of crossover Order or asexual 
Selection type Mini Roulette  
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Finally, after analysing all the tested problem instances, the maximum number of generations is defined as: 
maxgen= , where N is the length of the chromosome or, in other words, the number of VMs. It is obvious that the 
length of the chromosome is significantly affects the number of generations that CONFGA algorithm needs to produce 
its solutions, where .  

Table 2: Relation between Number of Generations and Minimum Fitness Value in CONFGA  

No-of-VMs 
                  No-of-Generations              Fitness  Values 

G-3rd Run G.-Max-FV G-Min- FV Average Maximum Minimum 

20 10 15 10 473 474 471 

30 20 15 20 626.6 636 608 

40 50 50 100 186.6 196 168 

50 90 65 150 368.3 465 235 

60 75 145 175 1108 1248 906 

70 225 200 90 1615.6 1652 1568 

80 200 145 285 1985 2264 1115 

90 295 300 220 949.3 1120 816 

100 495 475 450 1404 1719 990 

110 275 445 485 1993.3 2370 1560 

120 690 870 685 1818.6 2167 1386 

130 830 290 840 2164.3 4543 710 

140 775 790 895 1334.6 1518 1100 

150 1125 975 1145 2216 3240 1500 

160 940 960 940 2834 4121 1937 

170 1045 1130 1080 5049.3 5614 4144 

180 1175 556 880 6990 7665 5880 

190 1175 300 1115 6481.3 9184 3300 

200 1465 1315 1185 3855.3 3968 3662 

220 1410 1385 1115 6762 7686 6174 

240 1890 1500 1905 8873 10298 5719 

260 1995 1800 1910 13797 14889 12810 

280 1920 1790 1985 18677.6 21390 14058 

300 2400 2000 2440 15600 16872 14568 

320 2360 2470 2215 21892 22048 21710 

340 2885 2900 2490 18615.3 24580 13284 
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Figure 1: Relationship between the Average Number of Generations and the Number of VMs in CONFGA over Different 

Problem Instances 

Analysing the Relationship between Number of Generations and Problem Size over 
COFFGA  

This section discusses the relationship between the number of generations and the performance of COFFGA. This 
relationship is extremely important to consider as it helps to specify the termination condition for this algorithm. 
Defining the termination condition is required to prevent unnecessary running time.  

COFFGA was tested over the 26 problem instances and the results of three runs are listed in Table 3. The results 
are organised in a way that specify maximum, minimum and average fitness values over the three runs. It also shows 
the number of required generations in the three runs and identifies the generations that related to the minimum, 
maximum and the third run. By analysing the data in Table 3, it is evident that there is no significant difference in the 
fitness values over the three runs of the same problem instance. Correspondingly, the number of required servers from 
the resultant packing solutions for these fitness values is identical. 

By analysing the number of generations of minimum, maximum and third run fitness values, it has been concluded 
that in most tested cases the maximum fitness value goes together with the minimum number of generations; the 
minimum fitness value accompanies the maximum number of generations; and the third run needs a number of 
generations between the maximum and the minimum generations. The main conclusion behind this observation is the 
randomness of the pool affects the performance of COFFGA, but the fitness function of COFFGA is strong enough 
to be the driver of the convergence. The randomness of the initial generated pool affects the number of required 
generations, but it does not seriously affect the resultant minimum fitness value. Thus the number of servers that result 
from the COFFGA packing solutions is rarely varied over all the problem instances. 

Given that the relationship between the input size and the number of generations is a vital issue to be identified 
over the tested COFFGA, the average number of generations is compared against the problem size for 28 problem 
instances in Figure 3. The relationship between the input size and the number of generations is analysed as linear with 
exemption of sudden decline in the number of generations. It is obvious from Figure 3 that the average number of 
generations increases linearly with the size of the problem, but it suffers from unexpected fluctuation in some problems 
instances. There are two reasons behind this sudden fluctuation: the first one is that COFFGA’s performance depends 
mainly on the values and the combination of vectors in the input data, thus it sometimes converged easily when the 
combination of the VMs requirements in the input data is not very complex to organize; the second reason is that 
COFFGA is really fast because of the effectiveness of its fitness function, and therefore it sometimes finds the 
minimum fitness value with very short time. On the other hand, it cannot be ignored that the size of input clearly 
affects the performance of COFFGA, as the average number of generations increases with the input size for all problem 
instances. 
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Finally, after analysing all the tested problem instances, the maximum number of generations is calculated as: 
maxgen= min(10n, 3000), where n is the length of the chromosome or the number of VMs. As the number of 
generations does not exceed 2,000 in all problem instances, the number of required generations in COFFGA mainly 
depends on the values and the combination of vectors in the input data from one side, and the size of the input data 
from the other side. 

Table 3: Relationship between Number of Generations and Minimum Fitness Value in COFFGA  

No-of-VMs 
No-of-Generations Fitness  Values 

G-3rd Run G.-Max-FV G-Min- FV Average Maximum Minimum 

10 4 4 4 98 98 98 

20 5 5 5 246 246 246 

30 6 6 6 333.5 357 357 

40 19 21 17 76 76 76 

50 15 17 25 688.2 760 760 

60 33 30 45 400 450 433 

70 107 97 107 102 120 72 

80 120 85 110 154 96 84 

90 135 145 180 195.7 201 184 

100 215 120 175 381 396 369 

110 195 215 250 150 165 140 

120 300 325 500 824 825 715 

130 600 450 530 510 440 620 

140 655 580 850 414.75 460 407 

150 850 780 910 1046.75 1007 996 

160 480 375 965 2184 1495 1391 

170 575 615 1000 2842 3010 2786 

180 800 485 1005 2268 2660 2380 

190 1100 850 1160 1417.5 1320 810 

200 1400 885 1480 1608 1936 1744 

220 1500 870 1745 3026.7 2261 2646 

240 1850 1380 1955 5377 5510 4940 

260 1115 1360 1940 9769.2 9765 7220 

280 1460 995 1800 9152 9812 9416 

300 1160 1060 1695 10352 9288 14328 

320 1205 1160 1200 10975 12500 13200 

340 1440 1200 1520 10231.5 14013 13017 
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Figure 3: The relationship between the average number of generations and the number of the VMs in the input tested using 
COFFGA 

 

 Results 

The maximal number of evolution generations depends on the problem size. It is considered as a main factor to 
affect the maximal number of generations: the maximum number of generations for CONFGA is calculated as 
maxgen= (see Figure 2) and the COFFGA maximum generations is identified as maxgen= min(10N, 3000) (see 
Figure3). In this case, the termination criterion is only related to the problem size, not to the randomness of solutions 
in each run. It has been used to verify the effectiveness of COFFGA and CONFGA. An important fact that the 
experiments show is that CONFGA needs more function evaluations than COFFGA in all problem instances (see 
Tables 2 and 3). 

Finally, Table 4 compares the total complexity of the COFFGA and CONFGA, not just for single chromosome, 
but for the whole population. The main conclusion from the previous analysis is that both of number of VMs (i.e. the 
length of the chromosome), and the size of the pool have dramatic effects on the overall GA complexity. Even 
COFFGA has higher complexity than CONFGA, but it easily converges, which makes COFFGA faster than 
CONFGA. 

 

Table 4: Comparison between CONFGA and COFFGA Complexities for a Population of Chromosomes 
 

Developed   
GA 

Fitness Function Selection Population 
Encoding 

Crossover Max 
Generation 

COFFGA O(P(N log 
N+ )) 

O(P) O(P(N)) O(PN) O(N) 

CONFGA O(P(N+ )) O(P) O(P(N)) O(PN) O( ) 
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CONCLUSIONS 

The complexities of the new algorithms (CONFGA and COFFGA) are analysed individually, with the aim of 
identifying the parameters that affect their performance.  

The complexities of CONFGA and COFFGA are conducted by analysing their key aspects in terms of the 
computational complexity. However the analysis indicates that the complexities of both algorithms depend mainly on: 
the number of VMs (or the length of the chromosome N), as it directly affects the fitness evaluation of the 
chromosome; the termination condition, as it impacts on running time and the final solution of the developed 
algorithms; and also the size of the pool, as it has a dramatic effect on the overall complexity. COFFGA has a fitness 
function with a higher complexity O(P(N log N+ )) than CONFGA’s fitness function, which is O(P(N+ )), but 
COFFGA converges faster than CONFGA. In terms of the relationship between number of generations and problem 
size for the two algorithms, the maximum for COFFGA is identified as (10N), while CONFGA’s maximum number 
of generations equals . 

COFFGA and CONFGA have different time complexities which depend on the length of the chromosome, the 
size of the pool, and the termination condition. Although that COFFGA is characterised with a higher complexity than 
CONFGA, it is still faster than CONFGA because COFFGA easily converges with a fewer number of generations. 
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