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Introduction

The research of big data has received extensive attention due to its great significance 

[1]. Data summarisation, which involves extracting representative information with cer-

tain constraints from a large-scale dataset, is one of the compelling directions of big data 

processing [2]. Typical applications of big data summarisation include personalised rec-

ommendation systems [3–6], exemplar-based clustering [7–9], and summarisation of 

text [10, 11], images [12–14], corpus [8, 15], and videos [16, 17], just to name a few.

The unprecedented growth of modern datasets requires efficient and effective 

techniques to process a mass of data. Computational complexity is one of the grand 

challenges of big data operations [1]. Fortunately, the quality of data summarisation 

outcome can be often measured by submodular set functions [11, 12, 14], where the 

marginal gain value of an element decreases as more elements have already been 
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selected, namely diminishing returns [18]. It is well known that the greedy-related 

algorithms are efficient and can provide an approximation guarantee for maximising 

submodular functions [19]. Hence, the big data summarisation problem can be han-

dled as maximising a submodular function based on a large-scale dataset, meanwhile 

satisfying a certain constraint or a combination of several constraints [2].

This paper addresses big data summarisation problems using the submodular maxi-

misation approach, especially subject to k-extendible system constraints. Note that 

the k-extendible system constraint is a general type of constraint that has been widely 

studied. The concept of k-extendible systems was first introduced by Mestre in 2006 

[20]. The intersection of k matroids based on the same ground set is always k-extend-

ible [20]. Many types of constraints handled in submodular maximisation problems 

fall into the k-extendible system constraint, such as the cardinality constraint, parti-

tion matroid constraint, and k-matroid constraint.

The issue is that finding the optimal solution of submodular maximisation is NP-

hard, and the sizes of datasets tend to increase. NP-hard problems are known to sig-

nificantly suffer from “curse of dimensionality”, which implies that the complexity of 

the problem explodes as the problem size increases. Therefore, the trend of increasing 

sizes of datasets combined with the NP-hardness of the problem urges the develop-

ment of more computationally efficient optimisation algorithms. The Sample Greedy 

algorithm (Sample, for short) proposed in [21] is one of the state-of-the-art algo-

rithms for constrained submodular maximisation problems. Specifically, Sample [21] 

was the fastest algorithm (before this work) for maximising non-monotone submodu-

lar functions subject to a k-extendible system constraint.

Inspired by the sampling strategy from [21] and a decreasing threshold idea from 

[22], this work proposes an algorithm that is even faster than Sample [21]. The pro-

posed algorithm, which is named as Sample Decreasing Threshold Greedy (SDTG), 

provides an expected approximation guarantee of p − ǫ for maximising monotone 

submodular functions and of p(1 − p) − ǫ for non-monotone cases with expected 

time complexity of only O(
pn
ǫ
ln

r
ǫ
) , where p ∈ (0, 1

1+k
] is the sampling probability and 

ǫ ∈ (0, p) is the threshold decreasing parameter. If the sampling probability p is set as 
1

1+k
 , then SDTG provides the best approximation ratios for both monotone and non-

monotone submodular functions which are 1

1+k
− ǫ and k

(1+k)2
− ǫ , respectively. Here, 

ǫ acts as a design parameter for the trade-off between the approximation ratio and the 

computational complexity. The proposed algorithm is validated through experiments 

with a movie recommendation system based on the MovieLens [23] which is a widely 

used real movie information database. Experimental results demonstrate that the pro-

posed algorithm outperforms benchmark algorithms in terms of both solution quality 

and computation efficiency. The main contributions of this work are summarised as 

follows:

• This work proposes the current fastest algorithm, SDTG, for maximising non-

monotone submodular functions subject to k-extendible system constraints;

• Precise mathematical proofs are provided for analysing the theoretical guarantees 

of the proposed algorithm;
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• Experiments with a movie recommendation system based on a real database are car-

ried out to reveal the practical performance of SDTG for solving the big data sum-

marisation problem.

 The rest part of this work is organised as follows. “Related works” section investigates 

related articles for constrained submodular maximisation problems. In “Preliminar-

ies” section, some basic knowledge related to the proposed algorithm is presented. 

“Algorithm and analysis” section demonstrates the proposed algorithm and analyses 

its theoretical performance in detail. The performance and validity of the theoretical 

results are then testified through experiments with a movie recommendation system 

in “Experiments” section. “Conclusions” section offers the conclusions of this paper 

and possible future research directions.

Related works

There have been numerous works recently carried out to develop more efficient con-

strained submodular maximisation algorithms, and many of them endeavour to increase 

computational efficiency even by sacrificing some degree of approximation ratio. These 

works are classified by the types of constraints, and their developments are summarised 

in the following.

Cardinality constraint

The Sieve-Streaming proposed by Badanidiyuru et al. [12] is the first single-pass stream-

ing algorithm for maximising monotone submodular functions, achieving approxima-

tion guarantee of 1/2 − ǫ with computational complexity of O(n
ǫ
log r) . Here, n is the size 

of the ground set, r is the size of the largest feasible solution. Norouzi-Fard et  al. [9] 

proposed another single-pass algorithm Salsa that improved the approximation guar-

antee to a value better than 1/2. They also extended their work to a multi-pass algorithm 

P-Pass that provided the trade-off between the approximation ratio and the number of 

passes. The Decreasing Threshold Greedy proposed in [22] obtained an approximation 

ratio of 1 − 1/e − ǫ with time complexity of O(n
ǫ
log n

ǫ
) for monotone submodular func-

tions. This is the first streaming algorithm whose computational complexity is independ-

ent of r. Later, the sampling-based Stochastic Greedy proposed by Mirzasoleiman et al. 

[24] achieved an expectantly the same approximation ratio with lower time complex-

ity of O(n log 1
ǫ
) , compared with the Decreasing Threshold Greedy [22]. The Stochas-

tic Greedy gets orders of magnitudes faster by losing only a bit of approximation ratio 

compared with other benchmark algorithms. Then Buchbinder et  al. [25] extended 

the Stochastic Greedy to general non-monotone cases and achieved an approximation 

guarantee of 1/e − ǫ with computational complexity of O( n

ǫ2
log 1

ǫ
) . Recently, Breuer 

et al. [26] proposed an efficient algorithm Fast for the monotone case, using the adap-

tive sequencing technique. Fast achieves an approximation ratio of 1 − 1/e − ǫ , with 

O(n log log r) queries.

Matroid constraint

The original greedy algorithm (Greedy) [19] provides an approximation ratio of 1/2 with 

time complexity of O(nr) for monotone submodular maximisation. Nemhauser and 

Wolsely [27] proved that no algorithm can achieve an approximation ratio better than 
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1 − 1/e with polynomial time complexity. The continuous greedy based on the multilin-

ear extension was utilised to achieve an approximation ratio of 1 − 1/e [28]. The meas-

ured continuous greedy algorithm developed by Feldman et al. [29] achieved a (1 − 1/e)

-approximation for the monotone case and a 1/e-approximation for the non-monotone 

case. This is the first algorithm to provide a constant factor of approximation for max-

imising non-monotone submodular functions subject to a partition matroid constraint. 

However, the sophisticated continuous algorithms are inherently too time-consuming to 

be applied directly in the real world [30]. To remedy this, the idea of decreasing thresh-

old [22] was adapted to reduce the computational complexity [31]. Badanidiyuru and 

Vondrak [22] proposed a new variant of the continuous greedy algorithm and achieved 

an approximation ratio of 1 − 1/e − ǫ with complexity of O(nr
ǫ4

log2 r

ǫ
) for monotone sub-

modular functions. Then, a close variant of the Decreasing Threshold Greedy described 

in [25] provided an approximation ratio of 1/2 − ǫ with computational complexity of 

O(n
ǫ
log r

ǫ
) for the monotone case.

k‑extendible system constraint

It is known that Greedy [19] achieves a 1

1+k
-approximation for maximising monotone 

submodular functions subject to a k-extendible system constraint. The Decreasing 

Threshold Greedy [22] provides a slightly worse approximation guarantee of 1

1+k+ǫ
 but 

requires lower computational complexity of O( n

ǫ2
log2 n

ǫ
) than Greedy [19] does for max-

imising monotone submodular functions. For the non-monotone case, Gupta et al. [32] 

proposed an algorithm achieving an approximation ratio of k

(k+1)(3k+3)
 with time com-

plexity of O(nrk). Then, the approximation ratio was improved to k

(k+1)(2k+1)
 by an algo-

rithm called Fantom proposed by Mirzasoleiman et al. [5] with the same complexity. 

After this, Feldman et al. [21] made a significant breakthrough in terms of both approxi-

mation ratio and time complexity. The Sample algorithm proposed in [21] achieved an 

approximation ratio of k

(k+1)2
 with complexity of O(n + nr/k) . Experiments based on a 

movie recommendation system in [21] confirmed that Sample outperformed Fantom in 

terms of computational efficiency.

In summary, gradual improvements have been made for solving the constrained sub-

modular maximisation problems recently. However, the rapid expansion in the scale of 

modern datasets urges persistent developments for faster algorithms. An immediate 

research question would be whether or not one can develop an algorithm that can fur-

ther improve the efficiency of maximising general non-negative submodular functions 

especially subject to k-extendible system constraints.

Preliminaries

This section presents some necessary definitions and basic concepts related to the pro-

posed algorithm. The definitions and concepts can also be found in our previous works 

[33–35].

Definition 1 (Submodularity [21]) A set function f : 2
N

→ R is submodular if, 

∀ X ,Y ⊆ N ,

f (X) + f (Y ) ≥ f (X ∩ Y ) + f (X ∪ Y ).
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where N  is named as “ground set” which is a finite set containing all elements. Equiva-

lently, ∀ A ⊆ B ⊆ N  and u ∈ N − B,

Definition 2 (Marginal gain value [36] (mgv)) For a set function f : 2
N

→ R , a set 

S ⊆ N  , and an element u ∈ N  , the marginal gain value of f at S with respect to u is 

defined as

where 
.
= means equal by definition. This work denotes the marginal gain value as “mgv” 

for tidiness.

The inequality (1) is known as the diminishing return, which is a crucial property 

of submodular functions: the mgv of a given element will never increase as more ele-

ments have already been selected. One intuitive example for the submodularity is the 

sensor placement problem: The space coverage increment obtained by adding an extra 

fire detector to a particular position of a room will never increase as more detectors 

have already been placed in the room.

Definition 3 (Monotonicity [36]) A set function f : 2
N

→ R is monotone if, 

∀A ⊆ B ⊆ N  , f (A) ≤ f (B) . f is non-monotone if it is not monotone.

The submodular objective functions considered in this paper are normalised (i.e. 

f (∅) = 0 ), non-negative (i.e. f (S) ≥ 0 , ∀S ⊆ N  ), and can be either monotone or 

non-monotone.

Definition 4 (Matroid [22]) A matroid is a pair M = (N , I) where N  is the ground 

set, and I ⊆ 2
N  is a collection of independent sets, satisfying:

• ∅ ∈ I ;

• If A ⊆ B,B ∈ I  , then A ∈ I ;

• If A,B ∈ I , |A| < |B| , then ∃ u ∈ B − A such that A ∪ {u} ∈ I .

Specifically, matroid constraints include uniform matroid constraints and partition 

matroid constraints. The uniform matroid constraint is also called cardinality con-

straint, which is a special case of matroid constraints where any subset S ⊆ N  satisfy-

ing |S| ≤ r is independent, i.e. S ∈ I  . The partition matroid constraint means that an 

independent subset S can contain at most a certain number of elements from each of 

the disjoint partitions of N .

A typical example for the partition matroid constraint is the security camera sys-

tem: Each camera of the system can only point to one of its admissible directions at 

a certain moment. The partition matroid constraint is a special case of k-extendible 

system constraints where k equals to 1. A formal definition of the k-extendible system 

constraint is given following an auxiliary concept.

(1)f (A ∪ {u}) − f (A) ≥ f (B ∪ {u}) − f (B).

�f (u|S)
.
= f (S ∪ {u}) − f (S),
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Definition 5 (Extension [21]) If an independent set B strictly contains an independent 

set A, then B is called an extension of A.

Definition 6 (k-extendible system [20]) A k-extendible system is an independence 

system (N , I) that for every independent set A ∈ I  , an extension B of A, and an ele-

ment u /∈ A , A ∪ {u} ∈ I  , there exists a subset X ⊆ B − A with |X | ≤ k such that 

(B − X) ∪ {u} ∈ I .

Intuitively, if an element u is added into an independent set A of a k-extendible sys-

tem, it requires at most k other elements to be removed from A in order to keep the set 

independent [21]. For example, a certain user of a movie recommendation system likes 

three genres of movies: Action, Adventure, and Sci-Fi. Suppose that this user wants at 

most one movie from each of these three genres. Note that a movie can belong to multi-

ple genres. Here are four movies with genre information: mv1 (Action), mv2 (Adventure), 

mv3 (Sci-Fi), and mv4 (Action, Adventure, Sci-Fi). According to the requirement from 

the user, a recommendation list S = {mv1,mv2,mv3} is independent, i.e., S ∈ I  ; adding 

mv4 to S will make it dependent. Movies mv1 , mv2 , and mv3 must be removed from S to 

keep it independent if mv4 is remained in S. Therefore, the constraint in this example is a 

3-extendible system constraint.

The following is an important claim that provides the mathematical foundation for 

Sample [21] to work well in non-monotone submodular maximisation. Readers are 

referred to [37] for the proof of Claim 1.

Claim 1 (Due to [37]) Let h : 2
N

→ R≥0 be a submodular function, and let S be a ran-

dom subset of N . If each element of S appears with a probability at most p (not necessar-

ily independently), then E[h(S)] ≥ (1 − p)h(∅).

Algorithm and analysis

This section describes SDTG in Algorithm  1 and analyses its theoretical performance 

in detail. Note that the proposed algorithm is based on submodular optimisation like 

in our previous studies [33–35]. Hence the analysis shares some essences of logic in our 

previous works. An equivalent version of Algorithm 1 is introduced as Algorithm 2 to 

better analyse SDTG.

Algorithm

This work proposes to leverage the sampling strategy [21] and develop a variant of 

decreasing threshold idea to design a summarisation algorithm. On the one hand, 

the random sampling at the beginning of SDTG can help the algorithm to avoid get-

ting trapped in local optima. It can also help to accelerate the algorithm because only 

a small portion of elements from the ground set is considered. On the other hand, 

the decreasing threshold can further accelerate the algorithm. Note that Greedy [19] 

needs to reevaluate all the remaining elements to find the best one during each itera-

tion. In contrast, SDTG searches for a relatively good element whose mgv is no less 
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than the current threshold instead of looking for the best one. Therefore, SDTG does 

not have to reevaluate all remaining elements every time before selecting an extra 

element.

Some notations from Algorithm 1 are stated in the following: N  is the ground set 

containing all elements. I  is the collection of all feasible sets (independent); r is the 

maximum cardinality of feasible sets in I  ; p is the sampling probability (uniform dis-

tribution); ǫ is the threshold decreasing parameter determining the decreasing speed 

of the threshold; S is the solution set containing the selected elements; R is a set con-

taining the remaining sampled elements; θ is the decreasing threshold.

The structure of Algorithm 1 consists of two phases. The first phase (lines 1–4) is 

sampling where elements are randomly selected from the ground set N  with prob-

ability p to form a sample set R. The probability distribution of sampling is uniform. 

The second phase (lines 5–22) is selecting where an independent solution set S is 

selected from R using decreasing threshold greedy. The initial threshold is set as the 

largest mgv given the empty set and denoted as d (line 5). The terminal threshold is 

set as ǫ
r
d (line 6). The reason for choosing this value as the termination condition will 

be given later in the proof part.

Algorithm 1 SDTG

Input: f : 2N → R≥0, N , I, r, p, ǫ.
Output: A set S ∈ I.

1: S ← ∅, R ← ∅
2: for u ∈ N do

3: R ← R ∪ {u} with probability p // Random sampling.
4: end for

5: d ← maxu∈R ∆f(u|S)
6: for (θ = d; θ ≥ ǫ

r
d; θ ← θ(1 − ǫ)) do

7: for u ∈ R do

8: if S ∪ {u} /∈ I then // Check independence.
9: R ← R − {u}

10: else

11: if ∆f(u|S) ≥ θ then

12: S ← S ∪ {u}
13: R ← R − {u}
14: else

15: if ∆f(u|S) < ǫ

r
d then

16: R ← R − {u}
17: end if

18: end if

19: end if

20: end for

21: end for

22: return S

More details of the second phase are given in the following. One loop of the inner 

“for” loops is named as one iteration. At the beginning of each iteration, SDTG checks 

independency of S ∪ {u} . If it is not independent, then remove element u from R (lines 

8–9). Otherwise, calculate the mgv of u and compare it with the current threshold θ . 

If the mgv of u is greater than or equals to θ , then add u to S and remove it from R 

(lines 11–13). An element u is named as a qualified element if the mgv of u given S is 

no less than the current threshold θ . If the mgv of an element is already less than ǫ
r
d , 
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it will never become greater or equal to ǫ
r
d in subsequent iterations due to submodu-

larity. Therefore, this element can be removed from R immediately, as stated in lines 

15–17. Note that each element in R will be evaluated only for one time under one 

threshold. If the mgv of an element is between ǫ
r
d and θ , this element will remain in R 

for the next outer loop where the threshold will decrease. The remaining elements in 

R will be reevaluated and their updated mgvs will be compared with a decreased new 

threshold. The threshold keeps decreasing after all remaining elements in R have been 

evaluated until reaching the termination condition.

Analysis

To better analyse the theoretical approximation performance of Algorithm 1, this work 

leverages some analysing techniques that were used in [21]. A few auxiliary variables 

have been introduced to transform SDTG to an equivalent version, i.e., Algorithm 2.

Algorithm 2 Equivalent SDTG

Input: f : 2N → R≥0, N , I, r, p, ǫ.
Output: A set S ∈ I.

1: S ← ∅, Ns ← ∅, R ← N ,
2: C ← ∅, Q ← OPT

3: for u ∈ R do

4: Ns ← Ns ∪ {u} with probability p

5: end for

6: d ← max
u∈Ns

∆f(u|S)

7: for (θ = d; θ ≥ ǫ

r
d; θ ← θ(1 − ǫ)) do

8: for u ∈ R do

9: if S ∪ {u} /∈ I then

10: R ← R − {u}
11: else

12: if ∆f(u|S) ≥ θ then

13: c ← u
14: Sc ← S
15: C ← C ∪ {c}
16: R ← R − {c}
17: if u ∈ Ns then

18: S ← S ∪ {c}
19: Q ← Q ∪ {c}
20: Let Kc ⊆ Q − S be the smallest set s.t. Q − Kc ∈ I
21: else

22: if c ∈ Q then

23: Kc ← {c}
24: else

25: Kc ← ∅
26: end if

27: end if

28: Q ← Q − Kc

29: else

30: if ∆f(u|S) < ǫ

r
d then

31: R ← R − {u}
32: end if

33: end if

34: end if

35: end for

36: end for

37: return S
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In Algorithm 2, variables C, Sc , Q, and Kc are introduced only for the convenience of 

analysis and have no effect on the final output S. Therefore, Algorithm 2 and Algorithm 1 

are equivalent in terms of solution quality. The rules of these variables are as follows.

C is a set that contains all considered elements that have mgvs greater or equal to the 

threshold θ in a certain iteration of Algorithm 2 no matter whether they are added into 

S or not.

Sc is a set that contains the selected elements at the beginning of the current iteration. 

At the end of this iteration, S = Sc ∪ {c} if c is added into S and Q, otherwise S equals to 

Sc.

Q is a set that bridges the relationship between the solution S and the optimal solu-

tion OPT. Q starts at OPT at the beginning of the algorithm and changes over time. 

Note that, Q is introduced only for analysis and there is no need to know the exact 

value of Q or OPT. In each iteration, the element added into S is also added into Q. 

At the same time, a set Kc is removed from Q to keep the independence of Q if an ele-

ment c is added into Q. Note that, if an element c is already in Q and is considered but 

not added into S at the current iteration, then this element c should be removed from 

Q.

Kc is a set that is introduced to keep Q independent and help Q to remove c that is 

not added to S. According to the property of k-extendible systems, Algorithm 2 is able 

to remove a set Kc ⊆ Q − S which contains at most k elements from Q if an element 

is added into the currently independent set Q. In addition, if c is not added to S and 

c ∈ Q at the beginning of some iteration, then Kc = {c}.

The theoretical performance of the proposed algorithm SDTG is summarised in 

Theorem 1.

Theorem 1 SDTG achieves an approximation guarantee of at least 1

1+k
− ǫ for maxim-

ising monotone submodular functions subject to k-extendible system constraints and of 
k

(1+k)2
− ǫ for non-monotone cases with computational complexity of O( n

(1+k)ǫ
ln r

ǫ
), 

where n sis the size of the ground set, r is the largest size of a feasible solution, and 

ǫ ∈ (0, 1

1+k
) is the threshold decreasing parameter.

The computational complexity can be easily proved. Assume that there are in total x 

number of loops in the outer “for” loop of Algorithm 1. Thus,

Solving the above equation yields

There are expectantly at most p · n function evaluations in each outer loop. Therefore, 

the time complexity of Algorithm 1 is O(
pn
ǫ
ln

r
ǫ
). �

The following part of this section analyses the approximation ratios of SDTG in 

both monotone and non-monotone cases through Algorithm 2.

(1 − ǫ)x =

ǫ

r
.

x =
ln

r

ǫ

ln
1

1−ǫ

≤
1

ǫ

ln
r

ǫ

.
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Lemma 1 f (S) > 1

1+ǫ
f (Q).

Proof According to Algorithm 2, at the end of each iteration, the set Q is independ-

ent i.e. Q ∈ I  . S is a subset of Q, i.e. S ⊆ Q , as every element c that is added to S is also 

in Q. Therefore, S ∪ {q} ∈ I ∀q ∈ Q − S by the property of independent systems and 

|Q − S| ≤ r . At the termination of Algorithm 2, �f (q|S) < ǫ
r d ∀q ∈ Q − S and f (S) ≥ d . 

Thus,

Let Q − S = {q1, q2, . . . , q|Q−S|} , then

The result is clear by rearranging the above inequality. �

Remark 1 Lemma 1 indicates that, at the termination of Algorithm 2, f(S) gets close to 

f(Q) if ǫ is small enough. This means that if the mgv of an element is less than ǫ
r
d , then 

this element can be considered negligible because it has very limited contribution to f(S). 

This is the reason why the terminal threshold is set as ǫ
r
d.

Lemma 2 E[|Ku|] ≤ Prmax where Prmax = max(pk , 1 − p).

Proof There are three cases to analyse, depending on whether the current element u 

is considered at some point of iteration, i.e. u ∈ C , and whether u is already in Q at the 

beginning of the iteration in Algorithm  2. Note that the size of Ku is kept as small as 

possible.

 i. If u /∈ C for whole iterations, Ku = ∅ and thus the expectation is obtained as:

 ii. If u ∈ C and u ∈ Q at the beginning of the iteration, then Ku = ∅ for u ∈ Ns and 

Ku = {u} for u /∈ Ns . Since u is sampled in Ns with probability p, the expectation is 

obtained as:

 iii. If u ∈ C and u /∈ Q at the beginning of the iteration, then Ku contains at most k ele-

ments for u ∈ Ns , and Ku = ∅ for u /∈ Ns . According to the property of k-extend-

ible systems, if Q becomes dependent after adding u, then Q can remove at most 

∑

q∈Q−S

�f (q|S) <
∑

q∈Q−S

ǫ

r
d ≤ ǫ ·

|Q − S|

r
f (S) ≤ ǫ · f (S).

(submodularity)

f (S) = f (Q) −

|Q−S|∑

i=1

�f (qi|S ∪ {q1, . . . , qi−1})

≥ f (Q) −

|Q−S|∑

i=1

�f (qi|S)

> f (Q) − ǫ · f (S).

E[|Ku|] = 0.

E[|Ku|] = p · |∅| + (1 − p)|{u}| = 1 − p.
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k elements to remain independence. If Q is still independent after adding u, then 

Ku = ∅ . Therefore,

In summary, E[|Ku|] ≤ max(pk , 1 − p) .  �

Lemma 3 E[f (S)] =
∑

u∈N

pE[�f (u|Su)].

Proof Let us define a random variable Gu such that its value is equal to the increase of 

f(S) when u ∈ N  is considered, i.e.

Note that since f is assumed to be normalised, f (∅) = 0 . Given the event Eu specifying 

all the decisions made before considering u, the conditional expectation of Gu is obtained 

as

Here, if u is sampled, Gu is equal to �f (u|S′
u) with the probability of P(Gu|Eu) = p , where 

S
′

u is defined as Su given the event Eu . Note that if u is sampled but not in C, �f (u|S′
u) is 

defined as 0 by convention. Otherwise if u is not sampled, Gu is zero. Hence, the condi-

tional expectation of Gu is:

By the law of total expectation, the expectation of Gu is obtained as:

Hence, the expectation of f(S) is obtained as:

 �

Lemma 4 E[f (S)] >
(1−ǫ)p

(1−ǫ2)p+Prmax
E[f (S ∪ OPT )].

Proof In a certain iteration and given the current threshold θ , if u ∈ C it implies that

While if an element q ∈ Ku − S was not selected before this iteration, then

Combining Eqs. (2) and (3) yields

E[|Ku|] ≤ p · k + (1 − p)|∅| = pk .

f (S) = f (∅) +
∑

u∈N

Gu.

E[Gu|Eu] =
∑

Gu

P(Gu|Eu)Gu.

E[Gu|Eu] = p�f (u|S′
u) = pE[�f (u|Su)|Eu].

E[Gu] = E[E[Gu|Eu)]] =
∑

Eu

P(Eu)E[Gu|Eu] = pE[�f (u|Su)].

E[f (S)] =
∑

u∈N

pE[�f (u|Su)].

(2)�f (u|Su) ≥ θ .

(3)�f (q|Su) < θ/(1 − ǫ).
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Additionally, any element can be removed from Q at most once. In other words, the ele-

ment that is contained in Ku at one iteration is always different from those in other itera-

tions when Ku is not empty. Therefore, the sets {Ku − S}u∈N  are disjoint. According to 

the definition and evolution of Q, Q can be expressed as

Denote N  as N = {u1,u2, · · · ,u|N |} . Then we define Qi
u as

where Ni = {u1, · · · ,ui} . Denote Ku and Su corresponding to ui in the i-th iteration as K i
u 

and Siu , respectively. It is clear that Siu ⊆ S ⊆ Qi
u . Using Eq. (5), one can have

Taking expectation over f(S) yields

The result is clear by rearranging the above inequality.  �

Let us finish the proof of Theorem 1 in the following part of this section.

Proof (Theorem 1) Recall that, p is the sampling probability and p ∈ (0, 1] . Hence

It is necessary to analyse the relationship between f (S ∪ OPT ) and f(OPT) with mono-

tone and non-monotone submodular objective functions, respectively, to get the approx-

imation guarantees for both cases.

(4)�f (u|Su) > (1 − ǫ)�f (q|Su) ∀q ∈ Ku − S.

(5)Q = (OPT − ∪u∈NKu) ∪ S = (S ∪ OPT ) − ∪u∈N (Ku − S).

Qi
u

.
= (S ∪ OPT ) − ∪u∈Ni

(Ku − S)

f (Q) = f (S ∪ OPT ) −

|N |∑

i=1

�f (K i
u − S|Qi

u)

≥ f (S ∪ OPT ) −

|N |∑

i=1

∑

q∈K i
u−S

�f (q|Siu) (submodularity)

> f (S ∪ OPT ) −
∑

u∈N

|Ku − S|
1

1 − ǫ
�f (u|Su) (Eq. (4))

≥ f (S ∪ OPT ) −
∑

u∈N

|Ku|
1

1 − ǫ
�f (u|Su).

E[f (S)] >
1

1 + ǫ
E[f (Q)] (Lemma 1)

>
1

1 + ǫ
E[f (S ∪ OPT )] −

1

(1 + ǫ)(1 − ǫ)
· E[|Ku|] ·

∑

u∈N

E[�f (u|Su)]

≥
1

1 + ǫ
E[f (S ∪ OPT )] −

1

(1 + ǫ)(1 − ǫ)
· Prmax ·

∑

u∈N

E[�f (u|Su)] (Lemma2)

=
1

1 + ǫ
E[f (S ∪ OPT )] −

1

(1 + ǫ)(1 − ǫ)
·
Prmax

p
· E[f (S)]. (Lemma3)

Prmax = max(pk , 1 − p) =

{

1 − p for p ∈ (0, 1
1+k

]

pk for p ∈ ( 1
1+k

, 1].
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• If f is monotone, then f (S ∪ OPT ) ≥ f (OPT ) . According to Lemma 4,

When p ∈ (0, 1

1+k
] , it holds that

When p ∈ ( 1

1+k
, 1] , it holds that

• If f is non-monotone, let us define a new submodular and non-monotone function 

h : 2
N

→ R≥0 as h(X) = f (X ∪ OPT ) ∀X ⊆ N  . Since S contains each element 

with probability at most p and according to Claim 1, it is clear that

Combining Eq. (6) with Lemma 4 yields

When p ∈ (0, 1

1+k
] , it holds that

When p ∈ ( 1

1+k
, 1] , it holds that

In summary, if f is monotone, the expected approximation ratios are

If f is non-monotone, the expected approximation ratios are

E[f (S)] >
(1 − ǫ)p

(1 − ǫ2)p + Prmax
· E[f (S ∪ OPT )]

≥
(1 − ǫ)p

(1 − ǫ2)p + Prmax
· f (OPT ).

E[f (S)] >
(1 − ǫ)p

(1 − ǫ2)p + 1 − p
· f (OPT )

> (p − ǫ) · f (OPT ).

E[f (S)] >
(1 − ǫ)p

(1 − ǫ2)p + pk
· f (OPT )

> (
1

1 + k
− ǫ) · f (OPT ).

(6)E[f (S ∪ OPT )] = E[h(S)] ≥ (1 − p)h(∅) = (1 − p)f (OPT ).

E[f (S)] >
(1 − ǫ)p

(1 − ǫ2)p + Prmax
· E[f (S ∪ OPT )]

≥
(1 − ǫ)p(1 − p)

(1 − ǫ2)p + Prmax
· f (OPT ).

E[f (S)] >
(1 − ǫ)p(1 − p)

(1 − ǫ2)p + 1 − p
· f (OPT )

> [p(1 − p) − ǫ] · f (OPT ).

E[f (S)] >
(1 − ǫ)p(1 − p)

(1 − ǫ2)p + pk
· f (OPT )

> (
1

1 + k
− ǫ)(1 − p) · f (OPT ).

(7)E[f (S)] >

{

(p − ǫ) · f (OPT ) for p ∈ (0, 1
1+k

]

( 1
1+k

− ǫ) · f (OPT ) for p ∈ ( 1
1+k

, 1].
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Eqs. (7) and (8) show that, for p ∈ ( 1

1+k
, 1] , the expected approximation ratio 

becomes stagnated in the monotone case and decreasing in the non-monotone case. 

Moreover, the computational complexity increases as the sampling probability gets 

larger. On the other side, for p ∈ (0, 1

1+k
] , the sampling probability provides adjust-

ment capability for the trade-off between the approximation ratio and computational 

complexity. As the probability increases for p ∈ (0, 1

1+k
] , the expected approxima-

tion ratios improve for both monotone and non-monotone cases, but the computa-

tional complexity also increases.

Recall that the theoretical time complexity is O
( pn

ǫ
ln

r
ǫ

)

 . The impact of ǫ on the solution 

quality and time complexity is more desirable than that of p. Therefore, this work fixes 

the sampling probability as p =
1

1+k
 and leave ǫ as an adjustable designing parameter for 

the trade-off of solution quality versus time complexity. According to Eqs. (7) and (8), 

the best expected approximation ratios can be readily obtained, when p =
1

1+k
 , as:

 �

Experiments

This section testifies the proposed algorithm SDTG through experiments using a real 

database and compares its performance with that of Greedy [19] and Sample [21]. For 

a fair comparison, this section uses the basic versions of these algorithms without inte-

grating the Lazy strategy [38]. Note that the performance of Sample and Fantom [5] has 

already been compared in [21].

Experimental setup

The database used in the experiments is MovieLens 20M [23]. This database contains 20 

million ratings and 465,000 tag applications applied to 27,000 movies by 138,000 users. 

Movies in the database are classified into 19 genres, such as Action, Comedy, Drama, 

etc. Besides, each movie is also scored according to the relevance with 1128 genome tags 

forming 12 million relevance scores in total.

The objective of the movie recommendation system in the experiments is to select a 

shortlist of movies that are representative yet diverse for users based on their favour-

ite movie genres. The objective function is introduced from [5, 21]. Let N  be the set 

of all movies and G be the set of all movie genres. Denote N (g) as the set of all movies 

that belong to the movie genre g ∈ G . Denote G(i) as the set of genres that the movie i 

belongs to. Note that one movie can belong to different genres, hence |G(i)| ≥ 1 . Let sij 

represent the similarity between movie i and movie j. Denote Gµ as the set of all movie 

genres that the user µ likes, Gµ ⊆ G . The movies that can be considered by the user µ is 

(8)E[f (S)] >

{

[p(1 − p) − ǫ] · f (OPT ) for p ∈ (0, 1
1+k

]

( 1
1+k

− ǫ)(1 − p) · f (OPT ) for p ∈ ( 1
1+k

, 1].

E[f (S)] >

{

( 1

1+k
− ǫ) · f (OPT ) if f is monotone

[ k
(1+k)2

− ǫ] · f (OPT ) if f is non-monotone .
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contained in the set Nµ = ∪g∈Gµ
N (g) . The objective function of movie recommenda-

tion for user µ is given by

where � ∈ [0, 1] is the penalty parameter for the similarity between movies within the 

recommendation list S. The objective function Eq. (9) is non-negative, non-monotone, 

and submodular. The first term of Eq. (9) reflects the representativeness of the selected 

movies, and the second term helps to increase diversity. It is desired to achieve high 

objective function value with low computational complexity.

The similarity value between movie i and movie j can be calculated based on the 

Euclidean distance of relevance scores

where Nt = 1128 is the number of all genome tags, γ i
t  and γ

j
t  are the relevance scores in 

terms of the tag t for movie i and movie j, respectively. The calculation of the similar-

ity map took around 35 days on Cranfield HPC—Delta,1 using 128 CPUs with parallel 

computing.

The constraints of the movie recommendation system come from the upper limits of 

the number of movies in total and in each movie genre. The first constraint is an upper 

limit m on the total number of movies in the movie recommendation list for the user. 

The second one is an upper limit mg (named as a genre limit) on the number of movies 

that belong to the movie genre g. According to [21], the movie recommendation system 

is subject to a |Gµ|-extendible system constraint.

In the experiments, suppose that the user’s favourite movie genres are Action, Adven-

ture, and Sci-Fi. Then, the constraint of the movie recommendation system is a 3-extend-

ible system constraint. Movies with ids less than 30,000 are within consideration since 

not all movies have genome scores in the database. Set the upper limit on the total num-

ber of movies as m = 15 , and the genre limit as varying numbers from 1 to 6. Set the 

sampling probability for Sample and SDTG as p = 0.25 , and the threshold decreasing 

parameter for SDTG as ǫ = 0.2 . Set the penalty parameter as � = 0.8 . Denoted Max 

Sample (4) and Max SDTG (4) as the best selections from 4 rounds of Sample and SDTG, 

respectively. The results of Sample and SDTG are based on 100 rounds of these two algo-

rithms. The running time for these algorithms is measured as the number of objective 

function evaluations which is independent on the computer conditions. Note that, the 

experimental results for Sample and SDTG vary somehow each time as the algorithms 

are related to random sampling.

(9)
fµ(S) =

∑

i∈S

∑

j∈Nµ

sij − �

∑

i∈S

∑

j∈S

sij

sij =

1
√

Nt
∑

t=1

(γ i
t − γ

j
t )

2

1 Please refer to https ://www.cranfi eld.ac.uk/study /it-servi ces for details about Delta. Accessed 15 Dec 2020.

https://www.cranfield.ac.uk/study/it-services
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Results

The performance of SDTG is compared with that of benchmark algorithms in terms of 

both function values and running time in Fig. 1. It is clear from Fig. 1a that, on average, 

Sample and SDTG related algorithms outperform Greedy in terms of solution quality. 

The quality of solutions provided by SDTG is better than that of Sample, although SDTG 

has a slightly worse theoretical approximation guarantee than Sample does. Overall, 

Max SDTG (4) achieves the highest function value. Figure 1b shows the number of func-

tion evaluations consumed by different algorithms. Four rounds of Sample requires the 

largest number of function evaluations when mg ≥ 2 . Relatively, Greedy requires a bit 

fewer function evaluations than Max Sample (4) does. But four rounds of SDTG requires 

significantly fewer evaluations. Overall, Greedy and Sample-related algorithms consume 

increasing numbers of function evaluations as mg goes up. However, the numbers of 

function evaluations of the SDTG-related algorithms almost stay constant when mg ≥ 2 . 

When mg = 6 , four rounds of SDTG is even faster than one round of Sample.

b Running Time

mg = 2

a Function Value

c Function Value Distribution d Running Time Distribution

e Ratio Comparison f Ratio Comparison mg = 5

Fig. 1 Performance comparison of different algorithms
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Figure  1c, d illustrate the distribution of function value and running time for 100 

rounds of Sample and SDTG algorithms. Recall that, Max Sample (4) and Max SDTG (4) 

represent the maximum values achieved by four rounds of Sample and SDTG, respec-

tively. And Greedy is a deterministic algorithm. Therefore, these three items do not 

appear in Fig.  1c, d that are for demonstrating the distribution resulted from random 

sampling. Overall, the function value distribution of SDTG has similar spreads with 

Sample’s, but SDTG achieves higher median values than Sample does. In terms of run-

ning time, SDTG has significantly smaller spreads and lower median values than Sam-

ple does. The comparison between Sample and SDTG indicates that SDTG not only 

achieves better function values but also is faster and more reliable.

Figure 1e, f demonstrate the ratio comparison of the solution quality and running time 

of different algorithms. The performance of Max Sample (4) is set as a baseline for other 

algorithms in comparison. When mg = 2 , Max SDTG (4) achieves a significantly bet-

ter function value but consumes fewer function evaluations than Max Sample (4) does. 

While mg = 5 , Max SDTG (4) achieves a much better function value (38.4% higher) and 

consumes a dramatically smaller number of function evaluations (76.1% fewer). On aver-

age, SDTG finds better solutions but only consumes 6.1% of function evaluations com-

pared with Max Sample (4). In both cases, Greedy is the least competitive one among all 

algorithms because it achieves the worst function values and requires the second larg-

est number of function evaluations. SDTG provides high-quality solutions yet consumes 

the fewest function evaluations, which is of great advantage when handling large-scale 

datasets.

Table 1 Movies recommended by different algorithms, mg = 2

Algorithm Movie id Genres

Greedy 2367 Adventure, Fantasy, Romance, Sci‑Fi, Thriller

26513 Action, Adventure, Comedy, Sci‑Fi

4629 Action, Crime, Thriller

Max Sample (4) 4629 Action, Crime, Thriller

736 Action, Adventure, Romance, Thriller

6106 Adventure

4545 Comedy, Sci‑Fi

4738 Romance, Sci‑Fi

Max SDTG (4) 4369 Action, Crime, Thriller

42 Action, Crime, Drama

146 Adventure, Children

231 Adventure, Comedy

1965 Comedy, Sci‑Fi

2656 Horror, Sci‑Fi

42 146 231 736 1965 2367 2656 4369 4545 4629 4738 6106 26513
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Discussion

The reason why Greedy performs poorly in terms of solution quality is that it greed-

ily selects the best element during each iteration heading to bad local optima. On 

the other side, with the help of the sampling process, Sample and SDTG related algo-

rithms are able to avoid those elements that can get the algorithms trapped in bad 

local optima. The threshold in SDTG can further help the algorithm to avoid those 

local optima. This is why SDTG practically outperforms Sample in terms of solution 

quality. Table 1 explains the reason in detail. According to the definition of the genre 

limit constraint, at most two movies can be selected from each genre of Adventure, 

Action, and Sci-Fi when mg = 2 . The maximum number of movies without violat-

ing the aforementioned constraint is six. Greedy only recommends three movies and 

reaches the upper genre limit. However, Max Sample (4) and Max SDTG (4) are able 

to recommend five and six movies, respectively, which better fit the objective of the 

movie recommendation system.

The reason why Greedy performs poorly in terms of running time is that it has to 

calculate the mgvs of all remaining elements given the current selection to find the 

best one. Sample is faster than Greedy because it only considers a small portion of the 

ground set, although it also needs to evaluate all remaining elements in the sample 

set. Different from Sample, SDTG can stop evaluating once it finds one qualified ele-

ment and adds this element to the selection set immediately. This means that SDTG 

does not have to evaluate all the remaining elements in the sample set in order to 

select an extra element. Therefore, SDTG consumes fewer function evaluations than 

Sample does on average. In addition, the running time of Sample is highly dependent 

on the size of the sample set because it needs to evaluate all elements in the sample 

set. In contrast, SDTG can usually find a qualified element from the front positions 

of the sample set and stop evaluating. Therefore, the running time of SDTG is less 

related to the size of the sample set compared with Sample’s. This is the reason why 

the spread of running time distribution of SDTG is smaller than Sample’s.

Trade‑off of solution quality vs. running time

This section also examines the impact of the threshold parameter ǫ on solution qual-

ity and running time. This will help us to choose a desirable value of ǫ and to have a 

a Function Value Distribution b Running Time Distribution

Fig. 2 The effect of ǫ on function value and running time
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deeper comprehension of SDTG. The value of ǫ varies from 0.04 to 0.24 with a step of 

0.04. Two cases are checked where mg equals to 2 and 5, respectively. Other settings 

are as same as previous ones. We run 100 rounds of SDTG and record the function 

values and the number of function evaluations in each round.

Figure 2 demonstrates the experimental results with varying values of the threshold 

decreasing parameter. The distributions of function value and running time are illus-

trated in Fig. 2a, b, respectively. Figure 2a shows that the impact of changing ǫ on func-

tion values is not significant. Function values fluctuate slightly when ǫ ≥ 0.08 . However, 

the solution quality for both mg = 2 and mg = 5 is obviously worse when ǫ equals to 0.04 

than that with larger values of ǫ . This is because the threshold decreases very slowly with 

an extremely small ǫ . In this case, the mgv of the element selected by SDTG in each itera-

tion is very close to the largest one. As mentioned before, the decreasing threshold can 

also help SDTG to avoid local optima. An extremely small ǫ makes SDTG close to Sam-

ple, which weakens the advantage of the decreasing threshold. Figure 2b shows that the 

median values of running time decrease obviously as ǫ increases. The spreads of running 

time also become smaller as ǫ goes up. The reason is that the threshold decreases faster 

with a larger ǫ . When evaluating the mgvs of the remaining elements one by one, SDTG 

can find a qualified element more quickly with a smaller threshold. The running time of 

SDTG also becomes less dependent on the size of the sample set.

Conclusions

This paper has presented an efficient algorithm, Sample Decreasing Threshold Greedy 

(SDTG), to deal with big data summarisation problems. The proposed algorithm 

achieves an expected approximation ratio of k

(1+k)2
− ǫ for maximising general non-

monotone submodular objective functions subject to k-extendible system constraints 

with only O
(

n

(1+k)ǫ
ln

r

ǫ

)

 value oracle calls. The performance of SDTG is testified and 

compared with that of benchmark algorithms through experiments with a movie recom-

mendation system based on a widely-used movie information database. The experimen-

tal results indicate that the proposed algorithm has great application potentials in 

large-scale discrete optimisation problems where the sizes of datasets are enormous 

such as the applications of machine learning and big data science. We believe that our 

results are also instrumental for the personalised recommendation systems on internet 

platforms, like Netflix, YouTube, and Amazon, etc. SDTG can be further accelerated by 

adapting the Lazy Greedy strategy [38]. A future research direction could also be accel-

erating the proposed algorithm by combining distributed computing.

Abbreviations

SDTG: Sample decreasing threshold greedy; mgv: Marginal gain value; OPT: Optimal solution; Max Sample (4): Run 4 

rounds of Sample and get the maximum function value; Max SDTG (4): Run 4 rounds of SDTG and get the maximum 

function value.
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