
A sample decreasing threshold
greedy‑based algorithm for big data
summarisation

Teng Li, Hyo‑Sang Shin* and Antonios Tsourdos

Introduction

The research of big data has received extensive attention due to its great significance

[1]. Data summarisation, which involves extracting representative information with cer-

tain constraints from a large-scale dataset, is one of the compelling directions of big data

processing [2]. Typical applications of big data summarisation include personalised rec-

ommendation systems [3–6], exemplar-based clustering [7–9], and summarisation of

text [10, 11], images [12–14], corpus [8, 15], and videos [16, 17], just to name a few.

The unprecedented growth of modern datasets requires efficient and effective

techniques to process a mass of data. Computational complexity is one of the grand

challenges of big data operations [1]. Fortunately, the quality of data summarisation

outcome can be often measured by submodular set functions [11, 12, 14], where the

marginal gain value of an element decreases as more elements have already been

Abstract

As the scale of datasets used for big data applications expands rapidly, there have been

increased efforts to develop faster algorithms. This paper addresses big data summari‑

sation problems using the submodular maximisation approach and proposes an

efficient algorithm for maximising general non‑negative submodular objective

functions subject to k‑extendible system constraints. Leveraging a random sampling

process and a decreasing threshold strategy, this work proposes an algorithm, named

Sample Decreasing Threshold Greedy (SDTG). The proposed algorithm obtains an

expected approximation guarantee of 1

1+k
− ǫ for maximising monotone submodular

functions and of k

(1+k)2
− ǫ in non‑monotone cases with expected computational

complexity of O
(

n

(1+k)ǫ
ln

r

ǫ

)

 . Here, r is the largest size of feasible solutions, and

ǫ ∈

(

0, 1
1+k

)

 is an adjustable designing parameter for the trade‑off between the

approximation ratio and the computational complexity. The performance of the

proposed algorithm is validated and compared with that of benchmark algorithms

through experiments with a movie recommendation system based on a real database.

Keywords: Big data summarisation, Submodular maximisation, k‑extendible system

constraints, Personalised recommendation

Open Access

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/.

RESEARCH

Li et al. J Big Data (2021) 8:30

https://doi.org/10.1186/s40537‑021‑00416‑y

*Correspondence:

h.shin@cranfield.ac.uk

School of Aerospace,

Transport and Manufacturing,

Cranfield University,

Cranfield MK43 0AL, UK

http://orcid.org/0000-0001-9938-0370
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40537-021-00416-y&domain=pdf

Page 2 of 21Li et al. J Big Data (2021) 8:30

selected, namely diminishing returns [18]. It is well known that the greedy-related

algorithms are efficient and can provide an approximation guarantee for maximising

submodular functions [19]. Hence, the big data summarisation problem can be han-

dled as maximising a submodular function based on a large-scale dataset, meanwhile

satisfying a certain constraint or a combination of several constraints [2].

This paper addresses big data summarisation problems using the submodular maxi-

misation approach, especially subject to k-extendible system constraints. Note that

the k-extendible system constraint is a general type of constraint that has been widely

studied. The concept of k-extendible systems was first introduced by Mestre in 2006

[20]. The intersection of k matroids based on the same ground set is always k-extend-

ible [20]. Many types of constraints handled in submodular maximisation problems

fall into the k-extendible system constraint, such as the cardinality constraint, parti-

tion matroid constraint, and k-matroid constraint.

The issue is that finding the optimal solution of submodular maximisation is NP-

hard, and the sizes of datasets tend to increase. NP-hard problems are known to sig-

nificantly suffer from “curse of dimensionality”, which implies that the complexity of

the problem explodes as the problem size increases. Therefore, the trend of increasing

sizes of datasets combined with the NP-hardness of the problem urges the develop-

ment of more computationally efficient optimisation algorithms. The Sample Greedy

algorithm (Sample, for short) proposed in [21] is one of the state-of-the-art algo-

rithms for constrained submodular maximisation problems. Specifically, Sample [21]

was the fastest algorithm (before this work) for maximising non-monotone submodu-

lar functions subject to a k-extendible system constraint.

Inspired by the sampling strategy from [21] and a decreasing threshold idea from

[22], this work proposes an algorithm that is even faster than Sample [21]. The pro-

posed algorithm, which is named as Sample Decreasing Threshold Greedy (SDTG),

provides an expected approximation guarantee of p − ǫ for maximising monotone

submodular functions and of p(1 − p) − ǫ for non-monotone cases with expected

time complexity of only O(
pn
ǫ
ln

r
ǫ
) , where p ∈ (0, 1

1+k
] is the sampling probability and

ǫ ∈ (0, p) is the threshold decreasing parameter. If the sampling probability p is set as
1

1+k
 , then SDTG provides the best approximation ratios for both monotone and non-

monotone submodular functions which are 1

1+k
− ǫ and k

(1+k)2
− ǫ , respectively. Here,

ǫ acts as a design parameter for the trade-off between the approximation ratio and the

computational complexity. The proposed algorithm is validated through experiments

with a movie recommendation system based on the MovieLens [23] which is a widely

used real movie information database. Experimental results demonstrate that the pro-

posed algorithm outperforms benchmark algorithms in terms of both solution quality

and computation efficiency. The main contributions of this work are summarised as

follows:

• This work proposes the current fastest algorithm, SDTG, for maximising non-

monotone submodular functions subject to k-extendible system constraints;

• Precise mathematical proofs are provided for analysing the theoretical guarantees

of the proposed algorithm;

Page 3 of 21Li et al. J Big Data (2021) 8:30

• Experiments with a movie recommendation system based on a real database are car-

ried out to reveal the practical performance of SDTG for solving the big data sum-

marisation problem.

 The rest part of this work is organised as follows. “Related works” section investigates

related articles for constrained submodular maximisation problems. In “Preliminar-

ies” section, some basic knowledge related to the proposed algorithm is presented.

“Algorithm and analysis” section demonstrates the proposed algorithm and analyses

its theoretical performance in detail. The performance and validity of the theoretical

results are then testified through experiments with a movie recommendation system

in “Experiments” section. “Conclusions” section offers the conclusions of this paper

and possible future research directions.

Related works

There have been numerous works recently carried out to develop more efficient con-

strained submodular maximisation algorithms, and many of them endeavour to increase

computational efficiency even by sacrificing some degree of approximation ratio. These

works are classified by the types of constraints, and their developments are summarised

in the following.

Cardinality constraint

The Sieve-Streaming proposed by Badanidiyuru et al. [12] is the first single-pass stream-

ing algorithm for maximising monotone submodular functions, achieving approxima-

tion guarantee of 1/2 − ǫ with computational complexity of O(n
ǫ
log r) . Here, n is the size

of the ground set, r is the size of the largest feasible solution. Norouzi-Fard et al. [9]

proposed another single-pass algorithm Salsa that improved the approximation guar-

antee to a value better than 1/2. They also extended their work to a multi-pass algorithm

P-Pass that provided the trade-off between the approximation ratio and the number of

passes. The Decreasing Threshold Greedy proposed in [22] obtained an approximation

ratio of 1 − 1/e − ǫ with time complexity of O(n
ǫ
log n

ǫ
) for monotone submodular func-

tions. This is the first streaming algorithm whose computational complexity is independ-

ent of r. Later, the sampling-based Stochastic Greedy proposed by Mirzasoleiman et al.

[24] achieved an expectantly the same approximation ratio with lower time complex-

ity of O(n log 1
ǫ
) , compared with the Decreasing Threshold Greedy [22]. The Stochas-

tic Greedy gets orders of magnitudes faster by losing only a bit of approximation ratio

compared with other benchmark algorithms. Then Buchbinder et al. [25] extended

the Stochastic Greedy to general non-monotone cases and achieved an approximation

guarantee of 1/e − ǫ with computational complexity of O(n

ǫ2
log 1

ǫ
) . Recently, Breuer

et al. [26] proposed an efficient algorithm Fast for the monotone case, using the adap-

tive sequencing technique. Fast achieves an approximation ratio of 1 − 1/e − ǫ , with

O(n log log r) queries.

Matroid constraint

The original greedy algorithm (Greedy) [19] provides an approximation ratio of 1/2 with

time complexity of O(nr) for monotone submodular maximisation. Nemhauser and

Wolsely [27] proved that no algorithm can achieve an approximation ratio better than

Page 4 of 21Li et al. J Big Data (2021) 8:30

1 − 1/e with polynomial time complexity. The continuous greedy based on the multilin-

ear extension was utilised to achieve an approximation ratio of 1 − 1/e [28]. The meas-

ured continuous greedy algorithm developed by Feldman et al. [29] achieved a (1 − 1/e)

-approximation for the monotone case and a 1/e-approximation for the non-monotone

case. This is the first algorithm to provide a constant factor of approximation for max-

imising non-monotone submodular functions subject to a partition matroid constraint.

However, the sophisticated continuous algorithms are inherently too time-consuming to

be applied directly in the real world [30]. To remedy this, the idea of decreasing thresh-

old [22] was adapted to reduce the computational complexity [31]. Badanidiyuru and

Vondrak [22] proposed a new variant of the continuous greedy algorithm and achieved

an approximation ratio of 1 − 1/e − ǫ with complexity of O(nr
ǫ4

log2 r

ǫ
) for monotone sub-

modular functions. Then, a close variant of the Decreasing Threshold Greedy described

in [25] provided an approximation ratio of 1/2 − ǫ with computational complexity of

O(n
ǫ
log r

ǫ
) for the monotone case.

k‑extendible system constraint

It is known that Greedy [19] achieves a 1

1+k
-approximation for maximising monotone

submodular functions subject to a k-extendible system constraint. The Decreasing

Threshold Greedy [22] provides a slightly worse approximation guarantee of 1

1+k+ǫ
 but

requires lower computational complexity of O(n

ǫ2
log2 n

ǫ
) than Greedy [19] does for max-

imising monotone submodular functions. For the non-monotone case, Gupta et al. [32]

proposed an algorithm achieving an approximation ratio of k

(k+1)(3k+3)
 with time com-

plexity of O(nrk). Then, the approximation ratio was improved to k

(k+1)(2k+1)
 by an algo-

rithm called Fantom proposed by Mirzasoleiman et al. [5] with the same complexity.

After this, Feldman et al. [21] made a significant breakthrough in terms of both approxi-

mation ratio and time complexity. The Sample algorithm proposed in [21] achieved an

approximation ratio of k

(k+1)2
 with complexity of O(n + nr/k) . Experiments based on a

movie recommendation system in [21] confirmed that Sample outperformed Fantom in

terms of computational efficiency.

In summary, gradual improvements have been made for solving the constrained sub-

modular maximisation problems recently. However, the rapid expansion in the scale of

modern datasets urges persistent developments for faster algorithms. An immediate

research question would be whether or not one can develop an algorithm that can fur-

ther improve the efficiency of maximising general non-negative submodular functions

especially subject to k-extendible system constraints.

Preliminaries

This section presents some necessary definitions and basic concepts related to the pro-

posed algorithm. The definitions and concepts can also be found in our previous works

[33–35].

Definition 1 (Submodularity [21]) A set function f : 2
N

→ R is submodular if,

∀ X ,Y ⊆ N ,

f (X) + f (Y) ≥ f (X ∩ Y) + f (X ∪ Y).

Page 5 of 21Li et al. J Big Data (2021) 8:30

where N is named as “ground set” which is a finite set containing all elements. Equiva-

lently, ∀ A ⊆ B ⊆ N and u ∈ N − B,

Definition 2 (Marginal gain value [36] (mgv)) For a set function f : 2
N

→ R , a set

S ⊆ N , and an element u ∈ N , the marginal gain value of f at S with respect to u is

defined as

where
.
= means equal by definition. This work denotes the marginal gain value as “mgv”

for tidiness.

The inequality (1) is known as the diminishing return, which is a crucial property

of submodular functions: the mgv of a given element will never increase as more ele-

ments have already been selected. One intuitive example for the submodularity is the

sensor placement problem: The space coverage increment obtained by adding an extra

fire detector to a particular position of a room will never increase as more detectors

have already been placed in the room.

Definition 3 (Monotonicity [36]) A set function f : 2
N

→ R is monotone if,

∀A ⊆ B ⊆ N , f (A) ≤ f (B) . f is non-monotone if it is not monotone.

The submodular objective functions considered in this paper are normalised (i.e.

f (∅) = 0), non-negative (i.e. f (S) ≥ 0 , ∀S ⊆ N), and can be either monotone or

non-monotone.

Definition 4 (Matroid [22]) A matroid is a pair M = (N , I) where N is the ground

set, and I ⊆ 2
N is a collection of independent sets, satisfying:

• ∅ ∈ I ;

• If A ⊆ B,B ∈ I , then A ∈ I ;

• If A,B ∈ I , |A| < |B| , then ∃ u ∈ B − A such that A ∪ {u} ∈ I .

Specifically, matroid constraints include uniform matroid constraints and partition

matroid constraints. The uniform matroid constraint is also called cardinality con-

straint, which is a special case of matroid constraints where any subset S ⊆ N satisfy-

ing |S| ≤ r is independent, i.e. S ∈ I . The partition matroid constraint means that an

independent subset S can contain at most a certain number of elements from each of

the disjoint partitions of N .

A typical example for the partition matroid constraint is the security camera sys-

tem: Each camera of the system can only point to one of its admissible directions at

a certain moment. The partition matroid constraint is a special case of k-extendible

system constraints where k equals to 1. A formal definition of the k-extendible system

constraint is given following an auxiliary concept.

(1)f (A ∪ {u}) − f (A) ≥ f (B ∪ {u}) − f (B).

�f (u|S)
.
= f (S ∪ {u}) − f (S),

Page 6 of 21Li et al. J Big Data (2021) 8:30

Definition 5 (Extension [21]) If an independent set B strictly contains an independent

set A, then B is called an extension of A.

Definition 6 (k-extendible system [20]) A k-extendible system is an independence

system (N , I) that for every independent set A ∈ I , an extension B of A, and an ele-

ment u /∈ A , A ∪ {u} ∈ I , there exists a subset X ⊆ B − A with |X | ≤ k such that

(B − X) ∪ {u} ∈ I .

Intuitively, if an element u is added into an independent set A of a k-extendible sys-

tem, it requires at most k other elements to be removed from A in order to keep the set

independent [21]. For example, a certain user of a movie recommendation system likes

three genres of movies: Action, Adventure, and Sci-Fi. Suppose that this user wants at

most one movie from each of these three genres. Note that a movie can belong to multi-

ple genres. Here are four movies with genre information: mv1 (Action), mv2 (Adventure),

mv3 (Sci-Fi), and mv4 (Action, Adventure, Sci-Fi). According to the requirement from

the user, a recommendation list S = {mv1,mv2,mv3} is independent, i.e., S ∈ I ; adding

mv4 to S will make it dependent. Movies mv1 , mv2 , and mv3 must be removed from S to

keep it independent if mv4 is remained in S. Therefore, the constraint in this example is a

3-extendible system constraint.

The following is an important claim that provides the mathematical foundation for

Sample [21] to work well in non-monotone submodular maximisation. Readers are

referred to [37] for the proof of Claim 1.

Claim 1 (Due to [37]) Let h : 2
N

→ R≥0 be a submodular function, and let S be a ran-

dom subset of N . If each element of S appears with a probability at most p (not necessar-

ily independently), then E[h(S)] ≥ (1 − p)h(∅).

Algorithm and analysis

This section describes SDTG in Algorithm 1 and analyses its theoretical performance

in detail. Note that the proposed algorithm is based on submodular optimisation like

in our previous studies [33–35]. Hence the analysis shares some essences of logic in our

previous works. An equivalent version of Algorithm 1 is introduced as Algorithm 2 to

better analyse SDTG.

Algorithm

This work proposes to leverage the sampling strategy [21] and develop a variant of

decreasing threshold idea to design a summarisation algorithm. On the one hand,

the random sampling at the beginning of SDTG can help the algorithm to avoid get-

ting trapped in local optima. It can also help to accelerate the algorithm because only

a small portion of elements from the ground set is considered. On the other hand,

the decreasing threshold can further accelerate the algorithm. Note that Greedy [19]

needs to reevaluate all the remaining elements to find the best one during each itera-

tion. In contrast, SDTG searches for a relatively good element whose mgv is no less

Page 7 of 21Li et al. J Big Data (2021) 8:30

than the current threshold instead of looking for the best one. Therefore, SDTG does

not have to reevaluate all remaining elements every time before selecting an extra

element.

Some notations from Algorithm 1 are stated in the following: N is the ground set

containing all elements. I is the collection of all feasible sets (independent); r is the

maximum cardinality of feasible sets in I ; p is the sampling probability (uniform dis-

tribution); ǫ is the threshold decreasing parameter determining the decreasing speed

of the threshold; S is the solution set containing the selected elements; R is a set con-

taining the remaining sampled elements; θ is the decreasing threshold.

The structure of Algorithm 1 consists of two phases. The first phase (lines 1–4) is

sampling where elements are randomly selected from the ground set N with prob-

ability p to form a sample set R. The probability distribution of sampling is uniform.

The second phase (lines 5–22) is selecting where an independent solution set S is

selected from R using decreasing threshold greedy. The initial threshold is set as the

largest mgv given the empty set and denoted as d (line 5). The terminal threshold is

set as ǫ
r
d (line 6). The reason for choosing this value as the termination condition will

be given later in the proof part.

Algorithm 1 SDTG

Input: f : 2N → R≥0, N , I, r, p, ǫ.
Output: A set S ∈ I.

1: S ← ∅, R ← ∅
2: for u ∈ N do

3: R ← R ∪ {u} with probability p // Random sampling.
4: end for

5: d ← maxu∈R ∆f(u|S)
6: for (θ = d; θ ≥ ǫ

r
d; θ ← θ(1 − ǫ)) do

7: for u ∈ R do

8: if S ∪ {u} /∈ I then // Check independence.
9: R ← R − {u}

10: else

11: if ∆f(u|S) ≥ θ then

12: S ← S ∪ {u}
13: R ← R − {u}
14: else

15: if ∆f(u|S) < ǫ

r
d then

16: R ← R − {u}
17: end if

18: end if

19: end if

20: end for

21: end for

22: return S

More details of the second phase are given in the following. One loop of the inner

“for” loops is named as one iteration. At the beginning of each iteration, SDTG checks

independency of S ∪ {u} . If it is not independent, then remove element u from R (lines

8–9). Otherwise, calculate the mgv of u and compare it with the current threshold θ .

If the mgv of u is greater than or equals to θ , then add u to S and remove it from R

(lines 11–13). An element u is named as a qualified element if the mgv of u given S is

no less than the current threshold θ . If the mgv of an element is already less than ǫ
r
d ,

Page 8 of 21Li et al. J Big Data (2021) 8:30

it will never become greater or equal to ǫ
r
d in subsequent iterations due to submodu-

larity. Therefore, this element can be removed from R immediately, as stated in lines

15–17. Note that each element in R will be evaluated only for one time under one

threshold. If the mgv of an element is between ǫ
r
d and θ , this element will remain in R

for the next outer loop where the threshold will decrease. The remaining elements in

R will be reevaluated and their updated mgvs will be compared with a decreased new

threshold. The threshold keeps decreasing after all remaining elements in R have been

evaluated until reaching the termination condition.

Analysis

To better analyse the theoretical approximation performance of Algorithm 1, this work

leverages some analysing techniques that were used in [21]. A few auxiliary variables

have been introduced to transform SDTG to an equivalent version, i.e., Algorithm 2.

Algorithm 2 Equivalent SDTG

Input: f : 2N → R≥0, N , I, r, p, ǫ.
Output: A set S ∈ I.

1: S ← ∅, Ns ← ∅, R ← N ,
2: C ← ∅, Q ← OPT

3: for u ∈ R do

4: Ns ← Ns ∪ {u} with probability p

5: end for

6: d ← max
u∈Ns

∆f(u|S)

7: for (θ = d; θ ≥ ǫ

r
d; θ ← θ(1 − ǫ)) do

8: for u ∈ R do

9: if S ∪ {u} /∈ I then

10: R ← R − {u}
11: else

12: if ∆f(u|S) ≥ θ then

13: c ← u
14: Sc ← S
15: C ← C ∪ {c}
16: R ← R − {c}
17: if u ∈ Ns then

18: S ← S ∪ {c}
19: Q ← Q ∪ {c}
20: Let Kc ⊆ Q − S be the smallest set s.t. Q − Kc ∈ I
21: else

22: if c ∈ Q then

23: Kc ← {c}
24: else

25: Kc ← ∅
26: end if

27: end if

28: Q ← Q − Kc

29: else

30: if ∆f(u|S) < ǫ

r
d then

31: R ← R − {u}
32: end if

33: end if

34: end if

35: end for

36: end for

37: return S

Page 9 of 21Li et al. J Big Data (2021) 8:30

In Algorithm 2, variables C, Sc , Q, and Kc are introduced only for the convenience of

analysis and have no effect on the final output S. Therefore, Algorithm 2 and Algorithm 1

are equivalent in terms of solution quality. The rules of these variables are as follows.

C is a set that contains all considered elements that have mgvs greater or equal to the

threshold θ in a certain iteration of Algorithm 2 no matter whether they are added into

S or not.

Sc is a set that contains the selected elements at the beginning of the current iteration.

At the end of this iteration, S = Sc ∪ {c} if c is added into S and Q, otherwise S equals to

Sc.

Q is a set that bridges the relationship between the solution S and the optimal solu-

tion OPT. Q starts at OPT at the beginning of the algorithm and changes over time.

Note that, Q is introduced only for analysis and there is no need to know the exact

value of Q or OPT. In each iteration, the element added into S is also added into Q.

At the same time, a set Kc is removed from Q to keep the independence of Q if an ele-

ment c is added into Q. Note that, if an element c is already in Q and is considered but

not added into S at the current iteration, then this element c should be removed from

Q.

Kc is a set that is introduced to keep Q independent and help Q to remove c that is

not added to S. According to the property of k-extendible systems, Algorithm 2 is able

to remove a set Kc ⊆ Q − S which contains at most k elements from Q if an element

is added into the currently independent set Q. In addition, if c is not added to S and

c ∈ Q at the beginning of some iteration, then Kc = {c}.

The theoretical performance of the proposed algorithm SDTG is summarised in

Theorem 1.

Theorem 1 SDTG achieves an approximation guarantee of at least 1

1+k
− ǫ for maxim-

ising monotone submodular functions subject to k-extendible system constraints and of
k

(1+k)2
− ǫ for non-monotone cases with computational complexity of O(n

(1+k)ǫ
ln r

ǫ
),

where n sis the size of the ground set, r is the largest size of a feasible solution, and

ǫ ∈ (0, 1

1+k
) is the threshold decreasing parameter.

The computational complexity can be easily proved. Assume that there are in total x

number of loops in the outer “for” loop of Algorithm 1. Thus,

Solving the above equation yields

There are expectantly at most p · n function evaluations in each outer loop. Therefore,

the time complexity of Algorithm 1 is O(
pn
ǫ
ln

r
ǫ
). �

The following part of this section analyses the approximation ratios of SDTG in

both monotone and non-monotone cases through Algorithm 2.

(1 − ǫ)x =

ǫ

r
.

x =
ln

r

ǫ

ln
1

1−ǫ

≤
1

ǫ

ln
r

ǫ

.

Page 10 of 21Li et al. J Big Data (2021) 8:30

Lemma 1 f (S) > 1

1+ǫ
f (Q).

Proof According to Algorithm 2, at the end of each iteration, the set Q is independ-

ent i.e. Q ∈ I . S is a subset of Q, i.e. S ⊆ Q , as every element c that is added to S is also

in Q. Therefore, S ∪ {q} ∈ I ∀q ∈ Q − S by the property of independent systems and

|Q − S| ≤ r . At the termination of Algorithm 2, �f (q|S) < ǫ
r d ∀q ∈ Q − S and f (S) ≥ d .

Thus,

Let Q − S = {q1, q2, . . . , q|Q−S|} , then

The result is clear by rearranging the above inequality. �

Remark 1 Lemma 1 indicates that, at the termination of Algorithm 2, f(S) gets close to

f(Q) if ǫ is small enough. This means that if the mgv of an element is less than ǫ
r
d , then

this element can be considered negligible because it has very limited contribution to f(S).

This is the reason why the terminal threshold is set as ǫ
r
d.

Lemma 2 E[|Ku|] ≤ Prmax where Prmax = max(pk , 1 − p).

Proof There are three cases to analyse, depending on whether the current element u

is considered at some point of iteration, i.e. u ∈ C , and whether u is already in Q at the

beginning of the iteration in Algorithm 2. Note that the size of Ku is kept as small as

possible.

 i. If u /∈ C for whole iterations, Ku = ∅ and thus the expectation is obtained as:

 ii. If u ∈ C and u ∈ Q at the beginning of the iteration, then Ku = ∅ for u ∈ Ns and

Ku = {u} for u /∈ Ns . Since u is sampled in Ns with probability p, the expectation is

obtained as:

 iii. If u ∈ C and u /∈ Q at the beginning of the iteration, then Ku contains at most k ele-

ments for u ∈ Ns , and Ku = ∅ for u /∈ Ns . According to the property of k-extend-

ible systems, if Q becomes dependent after adding u, then Q can remove at most

∑

q∈Q−S

�f (q|S) <
∑

q∈Q−S

ǫ

r
d ≤ ǫ ·

|Q − S|

r
f (S) ≤ ǫ · f (S).

(submodularity)

f (S) = f (Q) −

|Q−S|∑

i=1

�f (qi|S ∪ {q1, . . . , qi−1})

≥ f (Q) −

|Q−S|∑

i=1

�f (qi|S)

> f (Q) − ǫ · f (S).

E[|Ku|] = 0.

E[|Ku|] = p · |∅| + (1 − p)|{u}| = 1 − p.

Page 11 of 21Li et al. J Big Data (2021) 8:30

k elements to remain independence. If Q is still independent after adding u, then

Ku = ∅ . Therefore,

In summary, E[|Ku|] ≤ max(pk , 1 − p) . �

Lemma 3 E[f (S)] =
∑

u∈N

pE[�f (u|Su)].

Proof Let us define a random variable Gu such that its value is equal to the increase of

f(S) when u ∈ N is considered, i.e.

Note that since f is assumed to be normalised, f (∅) = 0 . Given the event Eu specifying

all the decisions made before considering u, the conditional expectation of Gu is obtained

as

Here, if u is sampled, Gu is equal to �f (u|S′
u) with the probability of P(Gu|Eu) = p , where

S
′

u is defined as Su given the event Eu . Note that if u is sampled but not in C, �f (u|S′
u) is

defined as 0 by convention. Otherwise if u is not sampled, Gu is zero. Hence, the condi-

tional expectation of Gu is:

By the law of total expectation, the expectation of Gu is obtained as:

Hence, the expectation of f(S) is obtained as:

 �

Lemma 4 E[f (S)] >
(1−ǫ)p

(1−ǫ2)p+Prmax
E[f (S ∪ OPT)].

Proof In a certain iteration and given the current threshold θ , if u ∈ C it implies that

While if an element q ∈ Ku − S was not selected before this iteration, then

Combining Eqs. (2) and (3) yields

E[|Ku|] ≤ p · k + (1 − p)|∅| = pk .

f (S) = f (∅) +
∑

u∈N

Gu.

E[Gu|Eu] =
∑

Gu

P(Gu|Eu)Gu.

E[Gu|Eu] = p�f (u|S′
u) = pE[�f (u|Su)|Eu].

E[Gu] = E[E[Gu|Eu)]] =
∑

Eu

P(Eu)E[Gu|Eu] = pE[�f (u|Su)].

E[f (S)] =
∑

u∈N

pE[�f (u|Su)].

(2)�f (u|Su) ≥ θ .

(3)�f (q|Su) < θ/(1 − ǫ).

Page 12 of 21Li et al. J Big Data (2021) 8:30

Additionally, any element can be removed from Q at most once. In other words, the ele-

ment that is contained in Ku at one iteration is always different from those in other itera-

tions when Ku is not empty. Therefore, the sets {Ku − S}u∈N are disjoint. According to

the definition and evolution of Q, Q can be expressed as

Denote N as N = {u1,u2, · · · ,u|N |} . Then we define Qi
u as

where Ni = {u1, · · · ,ui} . Denote Ku and Su corresponding to ui in the i-th iteration as K i
u

and Siu , respectively. It is clear that Siu ⊆ S ⊆ Qi
u . Using Eq. (5), one can have

Taking expectation over f(S) yields

The result is clear by rearranging the above inequality. �

Let us finish the proof of Theorem 1 in the following part of this section.

Proof (Theorem 1) Recall that, p is the sampling probability and p ∈ (0, 1] . Hence

It is necessary to analyse the relationship between f (S ∪ OPT) and f(OPT) with mono-

tone and non-monotone submodular objective functions, respectively, to get the approx-

imation guarantees for both cases.

(4)�f (u|Su) > (1 − ǫ)�f (q|Su) ∀q ∈ Ku − S.

(5)Q = (OPT − ∪u∈NKu) ∪ S = (S ∪ OPT) − ∪u∈N (Ku − S).

Qi
u

.
= (S ∪ OPT) − ∪u∈Ni

(Ku − S)

f (Q) = f (S ∪ OPT) −

|N |∑

i=1

�f (K i
u − S|Qi

u)

≥ f (S ∪ OPT) −

|N |∑

i=1

∑

q∈K i
u−S

�f (q|Siu) (submodularity)

> f (S ∪ OPT) −
∑

u∈N

|Ku − S|
1

1 − ǫ
�f (u|Su) (Eq. (4))

≥ f (S ∪ OPT) −
∑

u∈N

|Ku|
1

1 − ǫ
�f (u|Su).

E[f (S)] >
1

1 + ǫ
E[f (Q)] (Lemma 1)

>
1

1 + ǫ
E[f (S ∪ OPT)] −

1

(1 + ǫ)(1 − ǫ)
· E[|Ku|] ·

∑

u∈N

E[�f (u|Su)]

≥
1

1 + ǫ
E[f (S ∪ OPT)] −

1

(1 + ǫ)(1 − ǫ)
· Prmax ·

∑

u∈N

E[�f (u|Su)] (Lemma2)

=
1

1 + ǫ
E[f (S ∪ OPT)] −

1

(1 + ǫ)(1 − ǫ)
·
Prmax

p
· E[f (S)]. (Lemma3)

Prmax = max(pk , 1 − p) =

{

1 − p for p ∈ (0, 1
1+k

]

pk for p ∈ (1
1+k

, 1].

Page 13 of 21Li et al. J Big Data (2021) 8:30

• If f is monotone, then f (S ∪ OPT) ≥ f (OPT) . According to Lemma 4,

When p ∈ (0, 1

1+k
] , it holds that

When p ∈ (1

1+k
, 1] , it holds that

• If f is non-monotone, let us define a new submodular and non-monotone function

h : 2
N

→ R≥0 as h(X) = f (X ∪ OPT) ∀X ⊆ N . Since S contains each element

with probability at most p and according to Claim 1, it is clear that

Combining Eq. (6) with Lemma 4 yields

When p ∈ (0, 1

1+k
] , it holds that

When p ∈ (1

1+k
, 1] , it holds that

In summary, if f is monotone, the expected approximation ratios are

If f is non-monotone, the expected approximation ratios are

E[f (S)] >
(1 − ǫ)p

(1 − ǫ2)p + Prmax
· E[f (S ∪ OPT)]

≥
(1 − ǫ)p

(1 − ǫ2)p + Prmax
· f (OPT).

E[f (S)] >
(1 − ǫ)p

(1 − ǫ2)p + 1 − p
· f (OPT)

> (p − ǫ) · f (OPT).

E[f (S)] >
(1 − ǫ)p

(1 − ǫ2)p + pk
· f (OPT)

> (
1

1 + k
− ǫ) · f (OPT).

(6)E[f (S ∪ OPT)] = E[h(S)] ≥ (1 − p)h(∅) = (1 − p)f (OPT).

E[f (S)] >
(1 − ǫ)p

(1 − ǫ2)p + Prmax
· E[f (S ∪ OPT)]

≥
(1 − ǫ)p(1 − p)

(1 − ǫ2)p + Prmax
· f (OPT).

E[f (S)] >
(1 − ǫ)p(1 − p)

(1 − ǫ2)p + 1 − p
· f (OPT)

> [p(1 − p) − ǫ] · f (OPT).

E[f (S)] >
(1 − ǫ)p(1 − p)

(1 − ǫ2)p + pk
· f (OPT)

> (
1

1 + k
− ǫ)(1 − p) · f (OPT).

(7)E[f (S)] >

{

(p − ǫ) · f (OPT) for p ∈ (0, 1
1+k

]

(1
1+k

− ǫ) · f (OPT) for p ∈ (1
1+k

, 1].

Page 14 of 21Li et al. J Big Data (2021) 8:30

Eqs. (7) and (8) show that, for p ∈ (1

1+k
, 1] , the expected approximation ratio

becomes stagnated in the monotone case and decreasing in the non-monotone case.

Moreover, the computational complexity increases as the sampling probability gets

larger. On the other side, for p ∈ (0, 1

1+k
] , the sampling probability provides adjust-

ment capability for the trade-off between the approximation ratio and computational

complexity. As the probability increases for p ∈ (0, 1

1+k
] , the expected approxima-

tion ratios improve for both monotone and non-monotone cases, but the computa-

tional complexity also increases.

Recall that the theoretical time complexity is O
(pn

ǫ
ln

r
ǫ

)

 . The impact of ǫ on the solution

quality and time complexity is more desirable than that of p. Therefore, this work fixes

the sampling probability as p =
1

1+k
 and leave ǫ as an adjustable designing parameter for

the trade-off of solution quality versus time complexity. According to Eqs. (7) and (8),

the best expected approximation ratios can be readily obtained, when p =
1

1+k
 , as:

 �

Experiments

This section testifies the proposed algorithm SDTG through experiments using a real

database and compares its performance with that of Greedy [19] and Sample [21]. For

a fair comparison, this section uses the basic versions of these algorithms without inte-

grating the Lazy strategy [38]. Note that the performance of Sample and Fantom [5] has

already been compared in [21].

Experimental setup

The database used in the experiments is MovieLens 20M [23]. This database contains 20

million ratings and 465,000 tag applications applied to 27,000 movies by 138,000 users.

Movies in the database are classified into 19 genres, such as Action, Comedy, Drama,

etc. Besides, each movie is also scored according to the relevance with 1128 genome tags

forming 12 million relevance scores in total.

The objective of the movie recommendation system in the experiments is to select a

shortlist of movies that are representative yet diverse for users based on their favour-

ite movie genres. The objective function is introduced from [5, 21]. Let N be the set

of all movies and G be the set of all movie genres. Denote N (g) as the set of all movies

that belong to the movie genre g ∈ G . Denote G(i) as the set of genres that the movie i

belongs to. Note that one movie can belong to different genres, hence |G(i)| ≥ 1 . Let sij

represent the similarity between movie i and movie j. Denote Gµ as the set of all movie

genres that the user µ likes, Gµ ⊆ G . The movies that can be considered by the user µ is

(8)E[f (S)] >

{

[p(1 − p) − ǫ] · f (OPT) for p ∈ (0, 1
1+k

]

(1
1+k

− ǫ)(1 − p) · f (OPT) for p ∈ (1
1+k

, 1].

E[f (S)] >

{

(1

1+k
− ǫ) · f (OPT) if f is monotone

[k
(1+k)2

− ǫ] · f (OPT) if f is non-monotone .

Page 15 of 21Li et al. J Big Data (2021) 8:30

contained in the set Nµ = ∪g∈Gµ
N (g) . The objective function of movie recommenda-

tion for user µ is given by

where � ∈ [0, 1] is the penalty parameter for the similarity between movies within the

recommendation list S. The objective function Eq. (9) is non-negative, non-monotone,

and submodular. The first term of Eq. (9) reflects the representativeness of the selected

movies, and the second term helps to increase diversity. It is desired to achieve high

objective function value with low computational complexity.

The similarity value between movie i and movie j can be calculated based on the

Euclidean distance of relevance scores

where Nt = 1128 is the number of all genome tags, γ i
t and γ

j
t are the relevance scores in

terms of the tag t for movie i and movie j, respectively. The calculation of the similar-

ity map took around 35 days on Cranfield HPC—Delta,1 using 128 CPUs with parallel

computing.

The constraints of the movie recommendation system come from the upper limits of

the number of movies in total and in each movie genre. The first constraint is an upper

limit m on the total number of movies in the movie recommendation list for the user.

The second one is an upper limit mg (named as a genre limit) on the number of movies

that belong to the movie genre g. According to [21], the movie recommendation system

is subject to a |Gµ|-extendible system constraint.

In the experiments, suppose that the user’s favourite movie genres are Action, Adven-

ture, and Sci-Fi. Then, the constraint of the movie recommendation system is a 3-extend-

ible system constraint. Movies with ids less than 30,000 are within consideration since

not all movies have genome scores in the database. Set the upper limit on the total num-

ber of movies as m = 15 , and the genre limit as varying numbers from 1 to 6. Set the

sampling probability for Sample and SDTG as p = 0.25 , and the threshold decreasing

parameter for SDTG as ǫ = 0.2 . Set the penalty parameter as � = 0.8 . Denoted Max

Sample (4) and Max SDTG (4) as the best selections from 4 rounds of Sample and SDTG,

respectively. The results of Sample and SDTG are based on 100 rounds of these two algo-

rithms. The running time for these algorithms is measured as the number of objective

function evaluations which is independent on the computer conditions. Note that, the

experimental results for Sample and SDTG vary somehow each time as the algorithms

are related to random sampling.

(9)
fµ(S) =

∑

i∈S

∑

j∈Nµ

sij − �

∑

i∈S

∑

j∈S

sij

sij =

1
√

Nt
∑

t=1

(γ i
t − γ

j
t)

2

1 Please refer to https ://www.cranfi eld.ac.uk/study /it-servi ces for details about Delta. Accessed 15 Dec 2020.

https://www.cranfield.ac.uk/study/it-services

Page 16 of 21Li et al. J Big Data (2021) 8:30

Results

The performance of SDTG is compared with that of benchmark algorithms in terms of

both function values and running time in Fig. 1. It is clear from Fig. 1a that, on average,

Sample and SDTG related algorithms outperform Greedy in terms of solution quality.

The quality of solutions provided by SDTG is better than that of Sample, although SDTG

has a slightly worse theoretical approximation guarantee than Sample does. Overall,

Max SDTG (4) achieves the highest function value. Figure 1b shows the number of func-

tion evaluations consumed by different algorithms. Four rounds of Sample requires the

largest number of function evaluations when mg ≥ 2 . Relatively, Greedy requires a bit

fewer function evaluations than Max Sample (4) does. But four rounds of SDTG requires

significantly fewer evaluations. Overall, Greedy and Sample-related algorithms consume

increasing numbers of function evaluations as mg goes up. However, the numbers of

function evaluations of the SDTG-related algorithms almost stay constant when mg ≥ 2 .

When mg = 6 , four rounds of SDTG is even faster than one round of Sample.

b Running Time

mg = 2

a Function Value

c Function Value Distribution d Running Time Distribution

e Ratio Comparison f Ratio Comparison mg = 5

Fig. 1 Performance comparison of different algorithms

Page 17 of 21Li et al. J Big Data (2021) 8:30

Figure 1c, d illustrate the distribution of function value and running time for 100

rounds of Sample and SDTG algorithms. Recall that, Max Sample (4) and Max SDTG (4)

represent the maximum values achieved by four rounds of Sample and SDTG, respec-

tively. And Greedy is a deterministic algorithm. Therefore, these three items do not

appear in Fig. 1c, d that are for demonstrating the distribution resulted from random

sampling. Overall, the function value distribution of SDTG has similar spreads with

Sample’s, but SDTG achieves higher median values than Sample does. In terms of run-

ning time, SDTG has significantly smaller spreads and lower median values than Sam-

ple does. The comparison between Sample and SDTG indicates that SDTG not only

achieves better function values but also is faster and more reliable.

Figure 1e, f demonstrate the ratio comparison of the solution quality and running time

of different algorithms. The performance of Max Sample (4) is set as a baseline for other

algorithms in comparison. When mg = 2 , Max SDTG (4) achieves a significantly bet-

ter function value but consumes fewer function evaluations than Max Sample (4) does.

While mg = 5 , Max SDTG (4) achieves a much better function value (38.4% higher) and

consumes a dramatically smaller number of function evaluations (76.1% fewer). On aver-

age, SDTG finds better solutions but only consumes 6.1% of function evaluations com-

pared with Max Sample (4). In both cases, Greedy is the least competitive one among all

algorithms because it achieves the worst function values and requires the second larg-

est number of function evaluations. SDTG provides high-quality solutions yet consumes

the fewest function evaluations, which is of great advantage when handling large-scale

datasets.

Table 1 Movies recommended by different algorithms, mg = 2

Algorithm Movie id Genres

Greedy 2367 Adventure, Fantasy, Romance, Sci‑Fi, Thriller

26513 Action, Adventure, Comedy, Sci‑Fi

4629 Action, Crime, Thriller

Max Sample (4) 4629 Action, Crime, Thriller

736 Action, Adventure, Romance, Thriller

6106 Adventure

4545 Comedy, Sci‑Fi

4738 Romance, Sci‑Fi

Max SDTG (4) 4369 Action, Crime, Thriller

42 Action, Crime, Drama

146 Adventure, Children

231 Adventure, Comedy

1965 Comedy, Sci‑Fi

2656 Horror, Sci‑Fi

42 146 231 736 1965 2367 2656 4369 4545 4629 4738 6106 26513

Page 18 of 21Li et al. J Big Data (2021) 8:30

Discussion

The reason why Greedy performs poorly in terms of solution quality is that it greed-

ily selects the best element during each iteration heading to bad local optima. On

the other side, with the help of the sampling process, Sample and SDTG related algo-

rithms are able to avoid those elements that can get the algorithms trapped in bad

local optima. The threshold in SDTG can further help the algorithm to avoid those

local optima. This is why SDTG practically outperforms Sample in terms of solution

quality. Table 1 explains the reason in detail. According to the definition of the genre

limit constraint, at most two movies can be selected from each genre of Adventure,

Action, and Sci-Fi when mg = 2 . The maximum number of movies without violat-

ing the aforementioned constraint is six. Greedy only recommends three movies and

reaches the upper genre limit. However, Max Sample (4) and Max SDTG (4) are able

to recommend five and six movies, respectively, which better fit the objective of the

movie recommendation system.

The reason why Greedy performs poorly in terms of running time is that it has to

calculate the mgvs of all remaining elements given the current selection to find the

best one. Sample is faster than Greedy because it only considers a small portion of the

ground set, although it also needs to evaluate all remaining elements in the sample

set. Different from Sample, SDTG can stop evaluating once it finds one qualified ele-

ment and adds this element to the selection set immediately. This means that SDTG

does not have to evaluate all the remaining elements in the sample set in order to

select an extra element. Therefore, SDTG consumes fewer function evaluations than

Sample does on average. In addition, the running time of Sample is highly dependent

on the size of the sample set because it needs to evaluate all elements in the sample

set. In contrast, SDTG can usually find a qualified element from the front positions

of the sample set and stop evaluating. Therefore, the running time of SDTG is less

related to the size of the sample set compared with Sample’s. This is the reason why

the spread of running time distribution of SDTG is smaller than Sample’s.

Trade‑off of solution quality vs. running time

This section also examines the impact of the threshold parameter ǫ on solution qual-

ity and running time. This will help us to choose a desirable value of ǫ and to have a

a Function Value Distribution b Running Time Distribution

Fig. 2 The effect of ǫ on function value and running time

Page 19 of 21Li et al. J Big Data (2021) 8:30

deeper comprehension of SDTG. The value of ǫ varies from 0.04 to 0.24 with a step of

0.04. Two cases are checked where mg equals to 2 and 5, respectively. Other settings

are as same as previous ones. We run 100 rounds of SDTG and record the function

values and the number of function evaluations in each round.

Figure 2 demonstrates the experimental results with varying values of the threshold

decreasing parameter. The distributions of function value and running time are illus-

trated in Fig. 2a, b, respectively. Figure 2a shows that the impact of changing ǫ on func-

tion values is not significant. Function values fluctuate slightly when ǫ ≥ 0.08 . However,

the solution quality for both mg = 2 and mg = 5 is obviously worse when ǫ equals to 0.04

than that with larger values of ǫ . This is because the threshold decreases very slowly with

an extremely small ǫ . In this case, the mgv of the element selected by SDTG in each itera-

tion is very close to the largest one. As mentioned before, the decreasing threshold can

also help SDTG to avoid local optima. An extremely small ǫ makes SDTG close to Sam-

ple, which weakens the advantage of the decreasing threshold. Figure 2b shows that the

median values of running time decrease obviously as ǫ increases. The spreads of running

time also become smaller as ǫ goes up. The reason is that the threshold decreases faster

with a larger ǫ . When evaluating the mgvs of the remaining elements one by one, SDTG

can find a qualified element more quickly with a smaller threshold. The running time of

SDTG also becomes less dependent on the size of the sample set.

Conclusions

This paper has presented an efficient algorithm, Sample Decreasing Threshold Greedy

(SDTG), to deal with big data summarisation problems. The proposed algorithm

achieves an expected approximation ratio of k

(1+k)2
− ǫ for maximising general non-

monotone submodular objective functions subject to k-extendible system constraints

with only O
(

n

(1+k)ǫ
ln

r

ǫ

)

 value oracle calls. The performance of SDTG is testified and

compared with that of benchmark algorithms through experiments with a movie recom-

mendation system based on a widely-used movie information database. The experimen-

tal results indicate that the proposed algorithm has great application potentials in

large-scale discrete optimisation problems where the sizes of datasets are enormous

such as the applications of machine learning and big data science. We believe that our

results are also instrumental for the personalised recommendation systems on internet

platforms, like Netflix, YouTube, and Amazon, etc. SDTG can be further accelerated by

adapting the Lazy Greedy strategy [38]. A future research direction could also be accel-

erating the proposed algorithm by combining distributed computing.

Abbreviations

SDTG: Sample decreasing threshold greedy; mgv: Marginal gain value; OPT: Optimal solution; Max Sample (4): Run 4

rounds of Sample and get the maximum function value; Max SDTG (4): Run 4 rounds of SDTG and get the maximum

function value.

Acknowledgements

The authors thank the Cranfield IT Department team for helping with the Cranfield HPC—Delta operations.

Authors’ contributions

TL contributed to the algorithm design and analysis, experiments, and manuscript drafting. HS contributed to the theo‑

retical and experimental analysis, manuscript drafting. AT helped to arrange the resources required by the experiments.

All authors read and approved the final manuscript.

Page 20 of 21Li et al. J Big Data (2021) 8:30

Funding

Not applicable.

Availability of data and materials

The datasets generated during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 4 November 2020 Accepted: 16 January 2021

References

 1. Jin X, Wah BW, Cheng X, Wang Y. Significance and challenges of big data research. Big Data Res. 2015;2(2):59–64.

 2. Mirzasoleiman B. Big data summarization using submodular functions. Doctoral dissertation, ETH Zurich; 2017.

 3. Tschiatschek S, Djolonga J, Krause A. Learning probabilistic submodular diversity models via noise contrastive estima‑

tion. In: Proceedings of the 19th international conference on artificial intelligence and statistics (AISTATS); 2016. p. 770–9.

 4. Yu Q, Xu EL, Cui S. Submodular maximization with multi‑knapsack constraints and its applications in scientific literature

recommendations. In: 2016 IEEE global conference on signal and information processing (GlobalSIP); 2016. p. 1295–9.

 5. Mirzasoleiman B, Badanidiyuru A, Karbasi A. Fast constrained submodular maximization: personalized data summariza‑

tion. In: Proceedings of the 33rd international conference on machine learning (ICML). vol. 48; 2016. p. 1358–67.

 6. Mirzasoleiman B, Karbasi A, Krause A. Deletion‑robust submodular maximization: data summarization with the right to

be forgotten. In: Proceedings of the 34th international conference on machine learning (ICML). vol. 70; 2017. p. 2449–58.

 7. Mirzasoleiman B, Karbasi A, Sarkar R, Krause A. Distributed submodular maximization: identifying representative ele‑

ments in massive data. In: Advances in neural information processing systems (NIPS); 2013. p. 2049–57.

 8. Mirzasoleiman B, Karbasi A, Sarkar R, Krause A. Distributed submodular maximization. J Mach Learn Res.

2016;17(1):8330–733.

 9. Norouzi‑Fard A, Tarnawski J, Mitrović S, Zandieh A, Mousavifar A, Svensson O. Beyond 1/2‑approximation for submodu‑

lar maximization on massive data streams. In: Proceedings of the 35th international conference on machine learning

(ICML); 2018. p. 3829–38.

 10. Balkanski E, Mirzasoleiman B, Krause A, Singer Y. Learning sparse combinatorial representations via two‑stage submodu‑

lar maximization. In: Proceedings of the 33rd international conference on machine learning (ICML); 2016. p. 2207–16.

 11. Lavania C, Bilmes J. Auto‑summarization: a step towards unsupervised learning of a submodular mixture. In: Proceed‑

ings of the 2019 SIAM international conference on data mining (sDM). SIAM; 2019. p. 396–404.

 12. Badanidiyuru A, Mirzasoleiman B, Karbasi A, Krause A. Streaming submodular maximization: massive data summariza‑

tion on the fly. In: 20th ACM SIGKDD international conference on knowledge discovery and data mining (KDD). New

York: ACM; 2014. p. 671–80.

 13. Balkanski E, Breuer A, Singer Y. Non‑monotone submodular maximization in exponentially fewer iterations. In: 32nd

conference on neural information processing systems (NeurIPS 2018); 2018. p. 2353–64.

 14. Mitrovic M, Kazemi E, Zadimoghaddam M, Karbasi A. Data summarization at scale: a two‑stage submodular approach.

In: Proceedings of the 35th international conference on machine learning (ICML). vol. 80. PMLR; 2018. p. 3596–605.

 15. Mirzasoleiman B, Karbasi A, Badanidiyuru A, Krause A. Distributed submodular cover: succinctly summarizing massive

data. In: Advances in neural information processing systems (NIPS); 2015. p. 2881–9.

 16. Xu J, Mukherjee L, Li Y, Warner J, Rehg JM, Singh V. Gaze‑enabled egocentric video summarization via constrained sub‑

modular maximization. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR); 2015. p. 2235–44.

 17. Gygli M, Grabner H, Van Gool L. Video summarization by learning submodular mixtures of objectives. In: 2015 IEEE

conference on computer vision and pattern recognition (CVPR); 2015. p. 3090–8.

 18. Krause A, Guestrin C. Near‑optimal observation selection using submodular functions. In: Proceedings of the 22nd

national conference on artificial intelligence. vol. 2. Palo Alto: AAAI Press; 2007. p. 1650–4.

 19. Nemhauser GL, Wolsey LA, Fisher ML. An analysis of approximations for maximizing submodular set functions—I. Math

Program. 1978;14(1):265–94.

 20. Mestre J. Greedy in approximation algorithms. In: European symposium on algorithms (ESA). New York: Springer; 2006.

p. 528–39.

 21. Feldman M, Harshaw C, Karbasi A. Greed is good: near‑optimal submodular maximization via greedy optimization. In:

Proceedings of the 2017 conference on learning theory (COLT). vol. 65. PMLR; 2017. p. 1–27.

 22. Badanidiyuru A, Vondrák J. Fast algorithms for maximizing submodular functions. In: Proceedings of the 25th annual

ACM‑SIAM symposium on discrete algorithms (SODA). SIAM; 2014. p. 1497–514.

 23. Harper FM, Konstan JA. The movielens datasets: history and context. ACM Trans Interac Intell Syst (TIIS). 2016;5(4):1–19.

 24. Mirzasoleiman B, Badanidiyuru A, Karbasi A, Vondrák J, Krause A. Lazier than lazy greedy. In: 29th AAAI conference on

artificial intelligence. Palo Alto: AAAI Press; 2015. p. 1812–8.

 25. Buchbinder N, Feldman M, Schwartz R. Comparing apples and oranges: query trade‑off in submodular maximization.

Math Oper Res. 2016;42(2):308–29.

 26. Breuer A, Balkanski E, Singer Y. The FAST algorithm for submodular maximization. In: International conference on

machine learning. PMLR; 2020. p. 1134–43.

Page 21 of 21Li et al. J Big Data (2021) 8:30

 27. Nemhauser GL, Wolsey LA. Best algorithms for approximating the maximum of a submodular set function. Math Oper

Res. 1978;3(3):177–88.

 28. Calinescu G, Chekuri C, Pál M, Vondrák J. Maximizing a monotone submodular function subject to a matroid constraint.

SIAM J Comput. 2011;40(6):1740–66.

 29. Feldman M, Naor J, Schwartz RA, unified continuous greedy algorithm for submodular maximization. In: 2011 IEEE 52nd

annual symposium on foundations of computer science (FOCS). New York: IEEE. 2011. p. 570–9.

 30. Amanatidis G, Fusco F, Lazos P, Leonardi S, Reiffenhäuser R. Fast adaptive non‑monotone submodular maximization

subject to a knapsack constraint. In: Advances in Neural Information Processing Systems. 2020;33.

 31. Segui‑Gasco P, Shin HS. Fast non‑monotone submodular maximisation subject to a matroid constraint. arXiv preprint

arXiv :17030 6053. 2017.

 32. Gupta A, Roth A, Schoenebeck G, Talwar K. Constrained non‑monotone submodular maximization: offline and secretary

algorithms. In: International workshop on internet and network economics (WINE). New York: Springer; 2010. p. 246–57.

 33. Li T, Shin HS, Tsourdos A. Fast submodular maximization subject to k‑extendible system constraints. arXiv preprint arXiv

:18110 7673v 1. 2018.

 34. Shin HS, Li T, Segui‑Gasco P. Sample greedy based task allocation for multiple robot systems. arXiv preprint arXiv :19010

3258. 2019.

 35. Li T, Shin HS, Tsourdos A. Threshold greedy based task allocation for multiple robot operations. arXiv preprint arXiv :19090

1239. 2019.

 36. Krause A, Golovin D. Submodular function maximization. Tractability. 2014;3:71–104.

 37. Buchbinder N, Feldman M, Naor JS, Schwartz R. Submodular maximization with cardinality constraints. In: Proceedings

of the 25th annual ACM‑SIAM symposium on discrete algorithms (SODA). SIAM; 2014. p. 1433–52.

 38. Minoux M. Accelerated greedy algorithms for maximizing submodular set functions. Optimization techniques.

Berlin: Springer; 1978. p. 234–243.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/170306053
http://arxiv.org/abs/181107673v1
http://arxiv.org/abs/181107673v1
http://arxiv.org/abs/190103258
http://arxiv.org/abs/190103258
http://arxiv.org/abs/190901239
http://arxiv.org/abs/190901239

	A sample decreasing threshold greedy-based algorithm for big data summarisation
	Abstract
	Introduction
	Related works
	Cardinality constraint
	Matroid constraint
	k-extendible system constraint

	Preliminaries
	Algorithm and analysis
	Algorithm
	Analysis

	Experiments
	Experimental setup
	Results
	Discussion
	Trade-off of solution quality vs. running time

	Conclusions
	Acknowledgements
	References

