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One of the most crucial factors for the overall success of an Unmanned Aerial Vehicle 

(UAV) mission is navigation performance, which is severely affected in Global Navigation 

Satellite Systems (GNSS) challenging environments. A solution to this problem could come 

through path planning optimization. This paper investigates the impact that GNSS quality 

information included in the UAV path planning process would have on the overall UAV 

mission success rate (MSR) when flying through an urban canyon. Number of visible satellites 

and Horizontal Dilution of Precision (HDOP) in addition to mission-specific requirements are 

given as input to the Particle Swarm Optimization (PSO) algorithm to calculate the optimal 

path for two cases. One includes the GNSS observables, and the other does not. Optimal paths 

for three different altitudes are obtained. All paths are simulated by a GNSS signal simulator, 

including a comprehensive multipath model. GNSS data are collected by a hardware receiver 

for analysis of the UAV positioning error and GNSS availability. Mission failures cases are 

defined accordingly, and the overall mission success rate (MSR) of each scenario is assessed. 

By analyzing the findings, it is concluded that in 83% of cases, the path planning process that 

included GNSS information was able to increase the MSR. Also, the increase in MSR was 

bigger when flying at low altitude. 

I. Nomenclature 

AL =  Alert Limit 

BVLOS =  Beyond Visual Line of Sight    

CAA =  Civil Aviation Authority 

FAA =  Federal Aviation Administration 

fcost =  Cost Function 

GNSS =  Global Navigation Satellite System 

GPS =  Global Positioning System 

HAL =  Horizontal Alert Limit 

HDOP =  Horizontal Dilution of Precision 

ICAO =  International Civil Aviation Organization 

MF =  Mission Failure 
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MSR =  Mission Success Rate 

NSIM =  Number of Simulations 

NVS =  Number of Visible Satellites 

SVID =  Space Vehicle ID 

TTA =  Time-to-Alert 

UAM =  Urban Air Mobility 

UAV =  Unmanned Aerial Vehicle 

UTM =  UAV Traffic Management 

II.Introduction 

The use of UAV is of increasing popularity nowadays for civilian, military and commercial operations around the 

world. There are multiple factors that can contribute to an overall successful autonomous UAV mission. One of the 

most critical is navigation performance, as most UAV missions rely exclusively on the onboard GNSS receiver for 

navigating correctly and accurately. This is typically sufficient for missions that are operated in open sky 

environments. However, in dense urban environments, it is widely common for the GNSS signals to be severely 

degraded or even completely missing. Therefore, in order to ensure successful future Urban Air Mobility (UAM) 

missions, various techniques have been investigated and proposed that enhance the performance in urban 

environments with degraded GNSS quality.  

One of these techniques is path planning optimization, which has been identified as a good way to de-risk 

operations by taking into consideration various mission parameters and produce a flight path that would minimize 

their impact on the mission. A lot of these mission parameters have been identified in the literature. For instance, [1] 

considered the total UAV flight distance, the maximum speed, time, maximum weight and minimum battery depth of 

discharge in their work. Additionally, [2] describe the ‘no-fly zones’ that a UAV cannot enter during its flight. These 

are defined by the National Aviation Authorities (like Civil Aviation Authority (CAA) in the UK or Federal Aviation 

Administration (FAA) in the USA) and include airspace over sensitive facilities like airports, national parks, prisons 

and more. Also, regarding safety, [3] highlights the importance of keeping the existing minimum separation 

requirements. These can be either for another UAV flying in the area or obstacles such as buildings.  

It is obvious that the choice for which of the above requirements needs to be considered during the path planning 

process depends on the UAV mission scenario itself. Taking all these into consideration, in our paper we focus on 

investigating what the benefits of including GNSS quality information in the UAV path planning process would be 

and how the benefits can be evaluated in terms of UAV MSR.  

More specifically, in order to address this problem, a UAV path planning optimization process is developed, which 

takes into consideration the GNSS quality and other constraints of a specific UAV mission scenario and produces an 

optimal trajectory for the given parameters. Multiple trajectories are produced by the optimization process for various 

cases, which are then analyzed using GNSS tools, and data from a GNSS receiver are used to evaluate its MSR. 

For the assessment of the MSR of the case scenarios, first, the mission failure had to be defined. The idea was to 

follow the guidance of [4] where it states that for Beyond Visual Line of Sight (BVLOS) UAV flights, there should 

be an operational volume defined for the flight to be conducted safely inside its boundaries and an emergency buffer 

surrounding the operational volume, as depicted in Figure 1. 

 

Figure 1 Operational volume and emergency buffer according to CAA CAP1915 [4] 
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The operational volume consists of the flight volume and the contingency volume. Flight volume is the area inside 

which the entire mission should be operated. It includes a sufficient buffer available for all flight movements and 

maneuvers, as well as navigational errors and weather conditions. The contingency volume provides extra space 

around the flight volume so that if the UAV enters inside it, predefined procedures should be triggered so that it enters 

back into the flight volume. If it fails to do so and enters the emergency buffer, then emergency procedures should be 

triggered for safely flight termination.  

In order to solve the UAV path planning problem, researchers have used various techniques throughout the years. 

The recent work of [5] has presented a complete review of the available techniques for path planning and categorized 

them in representation techniques, cooperative techniques, non-cooperative techniques, and coverage and 

connectivity. In recent studies, there is a trend to use bio-inspired models for path planning. This is done because, in 

the case of complex multi-objective problems, other techniques struggle to produce an optimal solution to the path 

planning problem. Instead, bio-inspired techniques manage to converge to the desired goal. One popular optimization 

algorithm of this category is Particle Swarm Optimization (PSO). It is widely used in various optimization problems 

because of its simple implementation and can converge very quickly. It has only a few parameters for tuning, which 

makes it more insensitive compared to other algorithms. Also, variants of the original algorithm from [6] have been 

proposed in the literature, which makes the algorithm even more efficient and solve some of its issues like premature 

convergence and local minima trap. 

For including navigation performance into the path planning process, the performance criteria should be 

determined initially. The common criteria of GNSS performance, which are accepted and used in this paper, are 

defined by ICAO [7] with integrity and availability terms as below: 

  Integrity: The measure of trust that can be placed in the correctness of the information supplied by a 

 navigation system. 

 Availability: The percentage of time that the services of the system are usable by the navigator. 

On the research area of UAV path planning by considering GNSS performance, work [8] developed a pre-flight 

planning method in an urban environment where the GNSS availability is assessed in order to prove the necessity of 

using alternative navigation sensors. Their approach was to create a tool that will generate heatmaps of visible satellites 

and Dilution of Precision (DOP) values, which then are used by an optimization algorithm to produce the optimal 

path. Their model included only information of loss of direct line of sight and they suggested for future work to 

enhance it with better models of multipath, scattering and reflections. Our intention in this paper is to fill this gap by 

including a realistic multipath model, which would simulate diffractions and reflections, and thus to effectively assess 

their impact on GNSS signal quality, path planning, as well as GNSS availability and integrity metrics.  

In their work, authors of study [9] created a tool that would model the multipath effect in an urban area in Hong 

Kong, by using 3D building models and ray-tracing simulations. Then, they used this tool to predict the GPS 

positioning error in different heights and put it in an error map which then is used by A* optimization algorithm to 

create an optimal flight path. They verify the predicted model by experimental data of UAV carried by pedestrians. 

They highlighted as a weak point the fact that the error map creation demanded high computational efforts. Also, the 

output of the optimization algorithm produced sharp turning angles, which may not allow flights for all UAV 

platforms. Therefore, in our approach, one of the constraints included in the path planning optimization process is the 

maximal heading angle change of the UAV, so that the generated path is as realistic as possible. 

Authors of work [10] propose a path planning strategy for a swarm of UAVs in an environment with mixed GNSS 

coverage. They aim to show that with cooperation techniques such as the use of father-son approach where the father 

UAV is outside the GNSS challenging environment, the GNSS challenging areas can be passed with safety by the son 

UAV. In order to define the GNSS challenging areas, they use a threshold for accepted DOP value. They verified the 

results with real-time experiments. They conclude that the use of multiple constellations (GPS, GLONASS, Galileo) 

provided better results as the number of challenging areas with high DOP was reduced significantly in this case. In 

our research method, we included not only the DOP values for characterizing the GNSS quality but also information 

for the number of visible satellites (NVS). 

Taking all the above into consideration, the overall aim of our paper is to investigate the possible impact on a UAV 

mission success rate, if GNSS quality parameters would be included in the UAV path planning process. The novel 

contribution of this work is in embedding of multiple GNSS quality metrics (DOP and number of visible satellites) 

into UAV path planning process with comprehensive analysis of multipath effect contribution, definition and use of 

mission success rate for quality analysis of the generated UAV trajectory.  

The rest of the paper is organized as follows. Section III contains a detailed description of our methodology to 

produce the desired results, the rationale behind chosen approaches and the research limitations. In Section IV, the 

results are analyzed and discussed. Finally, Section V contains the conclusions of this paper. 
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III.Simulations and Results 

A. Simulation Setup 

In order to determine the impact that the GNSS signal quality has in the path planning process and the mission 

success itself, two cases are considered in this research. In the first case, the path planning procedure would include 

all other mission requirements except for the GNSS signal quality, which would be added only in the second case. By 

comparing the results obtained by the two cases, important findings could be extracted regarding the impact of GNSS 

of the final trajectory and subsequent mission success. 

The most realistic results could be obtained if the case studies would run in a real environment using a UAV with 

an onboard GNSS receiver to take the necessary measurements. However, due to obvious difficulties that this approach 

would have had, we decided to go for an alternative approach which included both hardware and software solutions 

provided by Spirent Communications plc, so that the above case studies could be simulated in the university lab. The 

tools used were the following: 

 The GSS7000 GNSS simulator [11], which is capable of reproducing accurate and reliable multi-frequency, 

multi-GNSS RF signals and can be connected to an GNSS receiver through its RF output. 

 The SimGEN software [12] which is responsible for operating the GSS7000. In SimGEN various scenario 

parameters can be defined, and the UAV trajectories can be simulated. 

 The Sim3D software [13] which is a realistic multipath and obscuration simulation software. It connects with 

SimGEN and GSS7000 and reproduces the impact that a local environment may have on the GNSS signals 

(multipath effect).  

 The employed GNSS receiver was Ublox NEO-M8N [14] connected to a serial COM port of the PC running 

SimGEN (baud rate 9600). The GNSS data collection frequency was set to be 1 Hz. 

For each scenario simulation, the GNSS data captured by the GNSS receiver were recorded for processing. These 

data were in NMEA file format, which is a standard format for the majority of GNSS receivers. The NMEA file 

consists of multiple sentences. Each sentence starts with a specific word called “data type” which defines the content 
of the sentence. The data type used for analysis in this paper is the “GGA” data type, which provides time, position 
and fix related information. 

The positioning information which are in the dm (degrees minutes) format in the GGA sentence, need to be 

translated to the ENU (East North Up) coordinate system with reference point the starting point of every simulation. 

The Hardware in the Loop (HIL) simulation setup that was used can be seen in Figure 2. 

 

 

Figure 2 Simulation setup 
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Sim3D’s realistic 3D model of downtown Miami environment (buildings, streets, objects) was chosen to be the 

UAV mission scenario environment, as it includes an urban canyon region as well as suburban areas where we could 

investigate the impact of GNSS signal in the path planning performance and the corresponding mission success rate. 

One of the capabilities of the Sim3D software is that it can generate GNSS performance heatmaps for various 

GNSS parameters. These were used in the next stage of the research method as an input in the path planning 

optimization algorithm to compute the optimal trajectory of the UAV mission.  

 

 

Figure 3 Mission environment (Miami Downtown) (https://www.google.com/maps) 

B. Multipath 

For the multipath effect of the environment being applied into 

the simulation, the Sim3D software had to be connected with the 

SimGEN software to run in parallel. The options that were available 

to be changed in the Sim3D were the following: 

• Date/Time of simulation. 

• Flight Altitude. 

• Number of multipath traces per Space Vehicle ID (SVID), 

which relates to the number of GNSS signal beams originated from 

the same satellite that would be taken into consideration for the 

multipath calculation. 

• Maximum number of reflections of the selected environment 

(e.g. buildings, ground, and objects) that a GNSS signal beam could 

have before reaching the GNSS receiver onboard the UAV. 

The last two parameters can be better understood by looking at 

Figure 4. The number of multipaths per SVID option was set at 0, 1 

and 2 based on hardware capabilities of the GSS7000 simulator. The 

number of reflections was set to either 1 or 2 because after two 

reflections, the signal attenuation was found to be too high to make 

an effect in the GNSS receiver. 

C. Heatmap Generation 

For the selected Miami case scenario, it was decided to produce and use the following heatmaps. 

• Building heatmap 

• Number of visible satellites heatmap 

• HDOP heatmap 

Figure 4 Multipath effect simulation 

https://www.google.com/maps
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The building heatmap will be used for the first simulation scenario, where GNSS quality would not be considered 

in the path planning procedure. The other two heatmaps will be used in the second simulation scenario, which includes 

the impact of GNSS performance. 

The heatmaps were generated for three specific flight altitudes: 10 m, 30 m and 100 m above ground. The altitude 

selection was made in compliance with the CAA Air Navigation Order (ANO) 2016, which defines the maximum 

flight altitude for a Small Unmanned Aircraft (SUA), having a weight of less than 20 kg, to be 120 m (400 ft) [15]. 

That is also in-line with FAA Unmanned Traffic Management (UTM) concept of operations [16]. 

The building heatmaps generated by the Sim3D software do not change as the altitude increases; therefore, it was 

not possible to account for an increase of flight volume availability (building-free) with altitude change. So, regardless 

of the altitude level, we assumed that the buildings in the surrounding environment are tall enough to be considered 

as obstructions in flight path optimization. For the heatmaps concerning the number of visible satellites and HDOP, 

appropriate thresholds were used, considering the findings in [17]. As a result, the path planning algorithm would 

penalize use of the areas where these thresholds (NVS<4 and HDOP>3) are exceeded. Illustration of two types of 

heatmaps can be seen in Figure 5.  

 

Figure 5 Miami heatmaps: NVS (Left) – HDOP (Right) 

D. Path Planning  

For the path planning (optimization) process, the PSO algorithm was chosen for its simple concept and ease of 

implementation, as well as its popularity and efficacy in similar optimization problems. 

The aim of the path planning algorithm is to produce an optimal flight trajectory for each case by including in its 

computation the following mission requirements: 

• Flight distance minimization 

• Obstacle avoidance (buildings) 

• Maneuverability constraints (change of heading angle) 

• Avoidance of areas with low GNSS quality (for the 2nd case study) 

 

The choice of the above parameters was made under the hypothetical scenario that the mission would simulate an 

emergency medical transportation, so the most important aspect of being considered was time, which translates into 

the distance as we assume a constant flight speed. Also, for the scenario to be realistic, the trajectory should not pass 

through buildings. In terms of safety, less maneuvering in a UAV path would be better. The inclusion of more 
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parameters would increase the complexity of the algorithm, which would impact its computational time and may not 

provide the desired outputs for further analysis.  

Other important parameters such as flight altitude and flight speed, was decided not to be part of the optimization 

process but would be analyzed as parameters of the simulation stage. 

The above-selected parameters were formed into a cost function which was given to the optimization algorithm 

for minimization. This formation, which adopts the rationale of [18], is as follows: 𝑓𝑐𝑜𝑠𝑡 = 𝑓𝑑𝑖𝑠𝑡(𝛼 + 𝛽𝑓𝑜𝑏𝑠 + 𝛾𝑓ℎ𝑒𝑎𝑑), 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑐𝑜𝑠𝑡 𝑓𝑢𝑛𝑡𝑖𝑜𝑛 𝑡𝑜 𝑏𝑒 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑑 (1) 𝑓𝑑𝑖𝑠𝑡 =  ∑ 𝑑(𝑃𝑖 , 𝑃𝑖+1)𝑛−1𝑖=1 =  ∑ √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2,   𝑛−1𝑖=1   

is the Euclidean distance of two consecutive points in the path 

 

(2) 

𝑓𝑜𝑏𝑠 = {1,             𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑖𝑠 𝑛𝑜𝑡 𝑓𝑟𝑒𝑒 𝑜𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠0,                     𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑖𝑠 𝑓𝑟𝑒𝑒 𝑜𝑓 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 

 

(3) 

𝑓ℎ𝑒𝑎𝑑 = ∑ |𝜃𝑖|𝑛−1
𝑖=1 = ∑ |𝑡𝑎𝑛−1 (𝑦𝑖+1 − 𝑦𝑖)(𝑥𝑖+1 − 𝑥𝑖) |𝑛−1

𝑖=1 , 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑒𝑎𝑑𝑖𝑛𝑔 𝑎𝑛𝑔𝑙𝑒 (4) 𝛼, 𝛽, 𝛾: 𝑎𝑟𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑎𝑛𝑑 𝑛: 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑎𝑛𝑑𝑙𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ  
 

The choice of weighting factors (α=1, β=1000, γ=0,1) was made after conducting an experiment to decide the most 

efficient combination of weightings that give more importance to the path being free of obstacles (buildings and low 

GNSS quality areas) and less to its total distance and smoothness. 

The PSO algorithm implementation also consisted of the following parameters that required tuning: 

• n: Number of handle points for path computation. The higher the n, the more precise the path would be, but 

also the algorithm complexity would increase dramatically. 

• iter: Number of maximum iterations for the algorithm to be terminated. 

• pop: Swarm population size. The higher the population, the more possible it is to find an optimal solution, but 

also more computational power and time is needed.  

After experimenting, the best values of the above parameters were decided to be n=6, iter=200 and pop=60. The 

internal PSO parameters, such as inertial weight, damping ratio, personal and global learning coefficient, were left to 

its default values. The PSO algorithm was executed in MATLAB version R2019b on a PC with Intel Core i7-7700 

CPU running @ 3.6 GHz, 16 GB RAM and under 64-bit Windows 10 Enterprise OS. 

E. Trajectory Simulation 
As described in Section III.C, the 

optimization process produces trajectories 

for both cases, one which ignores GNSS 

parameters as input and one that includes 

them. As a result, in the first case the 

trajectory passes “through” the urban 
canyon and in the second case it tries to 

avoid the GNSS challenging environment 

of the urban canyon, so produces an 

“around” trajectory. 

The optimal trajectory outputs of the 

previous stage were then simulated in the 

Cranfield UAV Technology LAB using 

the setup described in Section III.A.  

All simulations were run at the same 

Date/Time: 2nd July 2020, 15:00 UTC. In order to assess the impact of the mission requirements when flying “through” 
the Miami urban canyon and when flying “around”, the start and end points of all the simulations were picked as seen 

in Figure 6, in the beginning, and at the end of the urban canyon. Also, all trajectories were simulated using different 

altitude and flight speed values: 

• Flight altitude: 10 m, 30 m and 100 m above ground level. 

• Flight speed: 3 m/s and 10 m/s. 

Figure 6 Start and end points of the simulations 
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The selection for the altitude values was made in order to investigate how the GNSS signal quality is affected 

when flying at a low, medium and high altitudes, both through and around the urban canyon. In the same context, the 

speed selection was made in order to investigate what the impact of flying at low and high speeds could be. 

Another parameter that should be selected by the SimGEN software was the GNSS constellation. It was decided 

that only the GPS constellation case would be investigated for this research. The investigation of the impact of GNSS 

quality on the path planning optimization considering multiple GNSS constellations is planned to be covered in future 

works.   

The reference trajectory, which was considered the ground truth of the UAV path for each mission scenario, was 

simulated by using only the SimGEN software, by taking into account only the waypoints created, the date/time, the 

flight altitude and the flight speed.  

  In total, 60 simulations were performed (5 multipaths x 3 altitudes x 2 speeds x 2 paths). The summary of all the 

parameters that were changing in each simulation can be seen in Table 1. 

Table 1 Simulation parameters summary 

Parameter Multipath Altitude Speed Path 

Values 

0 multipath (only direct beam) 10m 3m/s Through 

1 multipath - 1 reflection 30m 10m/s Around 

1 multipath - 2 reflections 100m  
 

2 multipaths - 1 reflection   
 

2 multipaths - 2 reflections      

IV.Analysis and Discussion 

In the first case where the GNSS parameters are not included in the optimization process, the PSO calculates the 

optimal path by trying to minimize the distance between the start and end points and minimize the heading angle 

change rate. The result is that the optimal path passes “through” the urban canyon. Whereas, in the second case, where 

GNSS observations are taken into account in the PSO, the result is that the urban canyon where GNSS quality is 

degraded, is being avoided and the optimal UAV path leads “around” it. Illustration of simulated trajectories can be 
seen in Figure 7.  

 

Figure 7 Simulated trajectories around and through the urban canyon. 
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 In order to validate the findings of the optimization procedure, all the optimal paths were simulated as described 

in Section III. The optimal paths for the “through” the canyon and the “around” the canyon case were simulated 30 

times each one, according to the information in Table 1, so there was a total of 60 simulations. For each simulation, 

the mission failure cases were calculated, as summarized in Table 2. For the simulation analysis, two cases of mission 

failures are considered. The first one, when there are missing GNSS data (NVS < 4) for more than Time-to-Alert 

(TTA) (10 s) and the second one, when the positioning error of the UAV path compared to the reference trajectory is 

more than the Horizontal Alert Limit (HAL) (10 m) for more than TTA (10 s). 

Table 2 Mission Failure Definition 

MISSION FAILURE CASE CONDITION 

MF_A (NVS < 4) for (Time > TTA = 10s) 

MF_B (PosErr > HAL = 10m) for (Time > TTA = 10s) 

In this context, from the GNSS integrity point of view, a HAL regarding positioning error was decided to be 

defined at the boundary between flight and contingency volume, as described in Section II. The value of the HAL was 

decided to be 10 m. For this selection, the average street width of the Miami area (urban canyon and surroundings), 

which is 30 m, was taken into consideration. TTA value is selected as 10 s, which is defined for safety-critical 

applications in [19], as our application is also considered safety-critical. This selection gives the UAV sufficient time 

to recover from its first entry into the contingency volume. The selected TTA value is also sufficient from the GNSS 

availability point of view, e.g. in the case where GNSS data are missing during a simulation, i.e. when the number of 

visible satellites for the GNSS receiver has fallen below 4, such as for GPS no Fix case.  

For the Mission Success Rate (MSR) definition of each mission scenario (fixed altitude and fixed speed), the 

number of Mission Failures that occur in each of the 5 multipath cases, as described in Table 1, are counted for each 

Mission Failure case (Table 2) separately. The corresponding Mission Success Rates (MSR_A and MSR_B) as well 

as the overall MSR are defined as follows: 𝑀𝑆𝑅𝐴 = (1 −  𝑁𝑀𝐹_𝐴𝑁𝑆𝐼𝑀 ) ∗ 100% (5) 𝑀𝑆𝑅𝐵 = (1 −  𝑁𝑀𝐹_𝐵𝑁𝑆𝐼𝑀 ) ∗ 100% 𝑁𝑀𝐹_𝐴: 𝑀𝑒𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑝𝑒𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑁𝑀𝐹_𝐵: 𝑀𝑒𝑎𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 𝑝𝑒𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑁𝑆𝐼𝑀: 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 

(6) 

𝑀𝑆𝑅 = (𝑀𝑆𝑅𝐴 + 𝑀𝑆𝑅𝐵)2  (7) 

 

The overall MSR value of a mission scenario is the indication of the probability that this scenario is entirely 

successful, i.e. without any failures as defined in Table 2. The closer the MSR to 100%, the more probable it is to be 

without failure.  

Accordingly, the mission success rates were computed as in equations (5) to (7). The calculated values for MF_A, 

MF_A, MSR_A, MSR_B and MSR are summarized in Table 3. 

Table 3 Summary of simulation results. 

CASE 
Overall 

failed A 

Overall 

failed B 
MSR_A MSR_B MSR 

3 m/s 

10 m 
Through 2 4 0.6 0.2 0.4 

Around 1 3 0.8 0.4 0.6 

30 m 
Through 0 4 1 0.2 0.6 

Around 0 3 1 0.4 0.7 

100 m 
Through 0 0 1 1 1 

Around 0 2 1 0.6 0.8 
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10 m/s 

10 m 
Through 5 3 0 0.4 0.2 

Around 2 1 0.6 0.8 0.7 

30 m 
Through 5 1 0 0.8 0.4 

Around 2 2 0.6 0.6 0.6 

100 m 
Through 4 2 0.2 0.6 0.4 

Around 1 1 0.8 0.8 0.8 

  Total 22 26    

From the simulation results, it can be observed that the overall MSR is improved in 5 out of 6 cases (83.3%) when 

the “around” path of the path planning optimization process is followed instead of the “through” path. The only case 
where it is not improved is at high altitude (100 m) and low speed (3 m/s), in which case the MSR is very high in both 

cases (100% “through” and 80% “around”). This is a good indication that the inclusion of GNSS parameters in the 

path planning process can improve the probability of a mission being successful. This can also be identified as 

increasing the mission safety factor. 

 Moreover, when flying “through” the canyon at low speed (3 m/s), as the altitude increases the corresponding 

MSR increases as well and reaches 100% at 100 m altitude. This is an expected finding, as in higher altitudes, the 

urban environment is less dense, and it does not affect the GNSS signal quality as much as in lower altitudes. 

 Furthermore, when flying at high speed (10 m/s), the improvement of MSR due to path planning in all three 

altitudes is much bigger compared to low speed (3 m/s), as shown in Figure 8 MSR when flying at constant speeds.. 

This is mainly because of the degradation of GPS availability at high speed when flying through the canyon, as shown 

in Figure 9. The GPS availability (NVS < 4) is the main contributor for mission failures when flying through the 

canyon at high speeds regardless of the flight altitude. Also, at high speed (10 m/s), flying the optimal path “around” 
the canyon has an impressive positive impact of 60% in the MSR_A at every altitude when only MSR_A is considered. 

 

Figure 8 MSR when flying at constant speeds. 

 

Figure 9 MSR due to NVS<4 at constant speeds. 

In contrast, at lower speeds (3 m/s), GPS availability seems not to be an issue when flying over 30 m. At 10 m, 

when flying the optimal “around” path, there is an increase of 20% in the corresponding MSR. So, when a flight 
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through the urban canyon is mandatory, the results show that a low-speed flight would significantly increase the GPS 

availability at all altitudes. This may be caused by the intense degradation of signal acquisition. Under low visibility 

conditions, slow movement speed provides more time to receiver for position estimations. 

Considering the mission failures due to positioning error in Figure 10 it can be seen that the path planning process 

improves the MSR_B only at the low flight altitude (10 m) and the medium (30 m) when flying at low speed (3 m/s). 

Also, in nearly all cases, the MSR_B performance improves when flying at high speed (10 m/s), compared to low 

speed (3m/s), regardless of the flight altitude in both “through” and “around” the canyon cases.  

 

Figure 10 MSR due to positioning error at constant flight speeds. 

Finally, from Figure 11, it is clear that an increase in speed during a flight “through” the canyon would have a 

negative impact in the overall MSR at all altitudes. This is mostly because of the degraded GPS availability at high 

speed, as explained above. For the path “around” the canyon, the increase of the flight speed has only a small impact 

in the overall MSR. 

 

Figure 11 MSR at constant flight altitudes. 

To summarize the above experimental findings, the proposed in this paper method of including GPS observations 

in the path planning optimization process has a positive impact on the mission success rate in the majority of the cases 

(83%). It was found that the mission success rate depends on flight altitude selection: the lower the UAV flight, the 

worse the MSR in general. The proposed method increases the MSR at low altitudes by 20%. At higher altitudes, the 

MSR values are better, and the improvement due to the proposed path planning procedure is lower, but still possible. 

When the flight speed is concerned, it can be deduced that a low flight speed gives a better performance in MSR 

when flying through the urban canyon. In contrast, when flying around the canyon due to path planning, the average 

performance seems not to be affected by the change in flight speed. As far as mission failure metrics are concerned, 

there seems to be a relationship between these metrics and the flight speed. More particular, when flying at low speed, 

the mission failures due to positioning error exceeding the HAL set is dominant. The opposite occurs when flying at 

high speeds, where the mission failures due to unavailable GPS (NVS < 4) are the majority. 

It can be seen that variation in multipath severity, represented in this work through number of multipath beams 

and reflections variation, leads to an increase in the number of mission failures. However, this trend is observed only 

at low flight speeds. When flying at higher speeds, the number of mission failures and the multipath parameters do 

not indicate any increase in mission failures. 
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In general, according to the above findings, better results are obtained when flying at low speed (3 m/s), compared 

to the high speed, where the results do not follow well a designed trajectory. The characteristic example of such 

behavior represents poor GPS availability (NVS < 4) at 100 m altitude. Therefore, if there is a possibility for a flight 

speed selection during path planning, the preference should be given to a low speed.  

We have also found that the positioning error metric of mission failure is better suited for the path planning process 

as it describes the variance in the results from case to case. The other metric used, the number of visible satellites, is 

less efficient, in particular at low speeds and altitude of 30 m and 100 m, where the GPS availability is 100% for all 

cases. Therefore, if someone wants to select a single metric to account for GNSS performance in path planning, the 

results suggest this to be the positioning error.  

V. Conclusion 

This paper proposes the inclusion of GNSS parameters in the UAV path planning optimization process to maximize 

its mission success rate. GNSS availability and integrity measures (Number of Visible Satellite and Positioning Errors, 

represented by DOP coefficients) are used as input in the path planning algorithm (based on PSO) to produce flight 

paths, which are validated using hardware GNSS simulator and realistic multipath and 3D city model of Miami. The 

experimental results suggest that if the proposed method is followed, the overall mission success rate can be increased 

in the majority of the cases (83%). Additionally, the path planning process has better results (the increase in MSR is 

bigger) when flying at low altitude (10 m). In future it is planned to investigate the performance of the method if 

multiple GNSS constellations would be used instead of the GPS-only case. 
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