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Abstract

This research aims at proposing a new modelling and control framework that

monitors the human operators’ psychophysiological state in the human-machine

interface to prevent performance breakdown. This research started with the ex-

ploration of new psychophysiological state assessment approaches to the adaptive

modelling and control method for predicting human task performance and bal-

ancing the engagement of the human operator and the automatic system. The

results of this research may also be further applied in developing advanced con-

trol mechanisms, investigating the origins of human compromised performance

and identifying or even remedying operators’ breakdown in the early stages of

operation, at least.

A summary of the current human psychophysiological studies, previous human-

machine interface simulation and existing biomarkers for human psychophysio-

logical state assessment was provided for simulation experiment design of this

research. The use of newly developed facial temperature biomarkers for assessing

the human psychophysiological state and the task performance was investigated.

The research continued by exploring the uncertainty of the human-machine inter-

face system through the use of the complex fuzzy logic based offline modelling

approach. A new type-2 fuzzy-based modelling approach was then proposed to

assess the human operators’ psychophysiological states in the real-time human-

machine interface. This new modelling technique integrated state tracking and

type-2 fuzzy sets for updating the rule base with a Bayesian process. Finally, this

research included a new type-2 fuzzy logic-based control algorithm for balancing

the human-machine interface systems via adjusting the engagement of the human

operators according to their psychophysiological state and task performance. This

innovative control approach combined the state estimation of the human operator

with the type-2 fuzzy sets to maintain the balance between the task requirements

(i.e. difficulty level) and the human operator feasible effort (i.e. psychophysio-

logical states). In addition, the research revealed the impacts of multi-tasking and

general fatigue on human operator’s performance.
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Chapter 1

Introduction

This project aims at producing a new system for the human-machine interface that

monitored human operators who undergo psychophysiological loading in order to

detect breakdown. This adaptive system was also implemented with a decision-

making process as to balance manual/automatic operations depending on the

predicted psychophysiological state of the subject at the time. This research was

conducted in the Human Performance Laboratory located in the Department of

Automatic Control and System Engineering (ACSE) of the University of Sheffield.

The real-time experiment and the collection of subjects’ data for the analysis and

modelling operations followed all the health and safety regulations of the Univer-

sity. The impact of the project findings was directly related to road, work and

flight safety whereby recommendations for a new road map on automation and

autonomy may be drawn for the future.

1.1 Human-Machine Interface

1.1.1 Human-Machine Interface

Human-machine interface (HMI) is naturally introduced with the implementation

of automatic systems nowadays, from daily uses of smart phones to international

regulation of physical distribution. The combination of a human operator and an

automatic system inherited the operational flexibility from manual intervention

1
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while expanded the processing capacity for the information flow. With the devel-

opment of automatic systems, the communication between the human operators

and systems had shifted from basic manual operations to behavioural or even

emotional communication. The lack of efficiency within HMI limited such com-

bination to fully utilise the computational ability of advanced automatic systems.

The misjudgement of both sides led to the compromised overall performance of

operations, the limited data processing of the automatic system and the elevated

demands on the human operator.

For the purpose of maintaining the high efficiency of operation state and re-

ducing the threat on the reliability and safety, the communication between the

human operator and the automatic system must remain accurate and punctual. It

requires a way to assess the human operator’s psychophysiological state for per-

formance evaluation and adjust the automation level of the system in response to

the breakdown. Therefore, the aims and objectives of this research are:

1. Explore new convenient and efficient human psychophysiological state as-

sessment methods.

2. Create new computational modelling approaches for predicting human psy-

chophysiological state in real-time.

3. Propose new control methods within the interface to ensure the safety and

efficiency of the system.

1.1.2 Psychophysiological State

Humans react to the outside stimuli through conditional reflex. A human response

is generated from neural communication, executed with the muscular system and

regulated with the endocrine. For a complex task, such as operations of automatic

systems, it requires a collaboration of multiple higher level activities, including self

consciousness, attention, etc. A human action demands an interpretation of core

affective for the analyses of situation and feasible resources, a memory recall of

previous experience and relevant knowledge for project planning, a motor based

on muscular system and regulated with others for the action execution and a self
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awareness of emotions and thoughts for memory formation. The monitoring of

the psychophysiological state is directly corresponded to human emotions and

action whereby predictions of human operator performance in HMI may be made

in real time.

1.1.3 Psychophysiological State Measurement

The human psychophysiological state measurements utilised in the current re-

searches focused on one or more common used aspects - subjective experience,

peripheral physiology, affect modulated startle, central physiology and behaviour.

These five aspects indicated part of activities within the central nerve system, car-

diovascular system and muscular system. By monitoring these systems, it was

able to estimate the attitude of a subject towards a certain task and the energy

invested for the performance. As human organs and cells are operated in multi-

function style, a single monitoring from a solo aspect cannot differentiate between

the activities for voluntary response and involuntary life support. Therefore, it is

necessary to assess psychophysiological state from a collective basis.

Electrocardiogram, electroencephalogram, pupil size and facial temperature

were selected for the monitoring of subjects’ psychophysiological state in this re-

search. Based on previous literature and experiment results, heart rate variability,

task load index, pupil diameter maker and facial temperature biomakers were

computed as to indicate task performance related psychophysiological activities

at the time.

1.1.4 Human-Machine Interface Simulation

A good human-machine interface simulation should be able to introduce work-

load in laboratory conditions similar to the real world HMI. Apart from the re-

quirement of similarity, it should also be simple to use and reliable to provide

distinguishable workload for the reproducibility of experiment. This research se-

lected a mental arithmetic test as the HMI simulation. Compared to the other

simulation methods, the mental arithmetic test had significant advantages such as

being effective, robust, simple to use and intuitive.
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1.2 Biomarkers for Psychophysiological State

1.2.1 Importance of New Biomakers

For a full integration of the human operator and the automatic system, one needs

to consider the human psychophysiological state and its corresponding behavior

in the design of automatic intervention. An effective biomaker is directly linked

with task related biological activity and able to reveal the subjects’ inner conditions

without the use of verbal or behavioral communication. Due to the multi-function

of cells and organs, each biomarker inevitably had its own limitation, depending

on the method and target of measurement. Existing biomarkers are mostly devel-

oped on the use of electrode or other physical attachments. Such measurements

suffered lack of accuracy from body contact. Furthermore, it limits the movement

of subjects and introduced additional noise to the recordings. It should be noted

that the research of human psychophysiological state was at the infancy stage with

most theories unverified. The search of new biomarkers was an effective way to

increment the understanding on the inner processes whereby recommendations

for a more complete conception of psychophysiological state may be drawn.

1.2.2 Facial Temperature Biomarkers

It was found that facial temperature, based mainly on vascular system, shared

strong connections with several human emotional and behavioral mechanisms.

The use of infrared cameras with modern imaging techniques provided a reliable

approach to study these relationships in real time. With the experimental results

of this research, it was found that the regional temperature of the nasal, forehead

and orbital areas showed a consistent correlation with stress related psychophysi-

ological state changes. Compared to the conventional biomarkers, the biomarkers

based on facial temperature exhibited similar or even better results in state dif-

ferentiation, especially for the low workload states which failed to trigger any

observable change in conventional biomakers. It suggested that the facial temper-

ature biomakers may compensate for the shortage of conventional biomakers and

expand the depth and breadth of human psychophysiological state research.
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1.3 Modelling and Control of Human-Machine Interface

1.3.1 Adaptive Online Modelling

Even with multiple biomakers monitoring subjects from diverse aspects it was

still difficult and sometime even impossible to predict the human task perfor-

mance from psychophysiological measurements. Previous researches and the use

of complex fuzzy inference modelling showed that the information of recordings

was time sensitive. It should be noted that human psychophysiological state is un-

repeatable. The effectiveness of patterns summarised from previous data rapidly

faded with time. Also, each subject’s personal knowledge and individual experi-

ence were unique and excluding to others. It limited the models and frameworks

to be case specific. Thus, a new type-2 fuzzy based modelling approach was intro-

duced to fulfil the requirement of adaptation. The new purposed model consisted

of a self-organised structure that could adapt to the time-varying HMI and predict

human task performance with high accuracy in real time.

1.3.2 Balancing Control

The objective of any endeavour towards the control of a HMI is to correctly balance

the engagement of the human operator and the automatic system by considering

the operator’s capability and capacity. In this way, human effort may be fully

integrated into the system without any psychophysiological breakdown due to

excessive amount of workload. In this research, a new balancing control method

based on adaptive type-2 fuzzy based modelling was investigated in real time.

The results proved that such control method was able to maintain the operators’

best performance consistently and steadily throughout the entire HMI sessions. In

addition, two main origins of the compromised task performance of human oper-

ator in the HMI, i.e. fatigue and multitasking, were studied. The impact of these

findings may be directly implementable to workload planning, performance im-

provement and work-rest schedule, whereby recommendations for more advanced

controlling method may be drawn.
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1.4 Thesis Structure

This thesis is organised as follows: Chapter 2 summarises the up-to-date HMI re-

searches from human psychophysiological studies to the modelling and control of

HMI. This chapter presents a literature based summary of current psychophysio-

logical state and performance studies. Additionally, the experimental designs for

the HMI simulation and the conventional psychophysiological assessment meth-

ods are introduced and compared through the findings of previous related re-

searches. Finally, the details of the design configurations which were included in

the experiment session are presented.

Chapter 3 presents the new designed facial temperature biomakers for pre-

dicting human psychophysiological state and task performance in the HMI. The

experiment results of the ten participants in the HMI simulation are presented for

validation.

Chapter 4 starts with a literature based introduction of type-2 fuzzy logic based

modelling and its application. It is then followed by a discussion of the limitation

of offline models for modelling human psychophysiological state in the HMI with

experimental results. Finally, a new type-2 fuzzy-based modelling approach com-

bined type-2 fuzzy sets with state tracking to update the rule base through a

Bayesian process is proposed and validated with online experiments.

Chapter 5 proposes a new balancing control for the HMI systems based on

the adaptive modelling method in Chapter 4. This newly proposed control ap-

proach is validated on mental arithmetic cognitive experiments for the same ten

participants and compared with the existing energy model-based control. In addi-

tion, the two common origins for human compromised performance in the HMI,

fatigue and multitasking, are explored and integrated in the design of control

configuration.

Chapter 6 summarises the work and makes recommendations for future re-

search.
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Chapter 2

Introduction to Human-Machine

Interface

This chapter discusses current applications of the human-machine interface as well

as their limitations. It also includes a brief introduction of the human psychophys-

iological state, which is supported by current psychological studies and biologi-

cal research. Several commonly used psychophysiological state measurement ap-

proaches in the relevant research are presented, and the human-machine interface

simulation method for this research is selected. Finally, this chapter summaries the

essential expectations for the control frameworks of the human-machine interface.

2.1 Human-Machine Interface

Automatic systems were widely implemented in diverse areas from daily life to

global regulations from the last decade, such as advanced manufacturing, trans-

portation and clinical medicine. Compared to conventional manual control sys-

tems, the combination of an automatic system and a human operator include sev-

eral significant advantages, including fast reaction to and processing of a large

amount of concurrent information [87]. Such a combination may be able to help

humans to deal with daily tasks with relatively high efficiency and low error rate.

Thanks to this revolutionary intelligent power, automatic systems have commonly

been adopted in many important management and operation systems.

8
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There are, however, many barriers yet to be broken for the above combination

to fulfil its full potential advantages and reach its theoretical efficiency. The lack

of trust and the over-trust with high expectations towards the automatic systems

compromised the overall performance of this combination, whereas increases of

the operational demands of the human operator was threatening the reliability

and the safety of the whole system [87]. Therefore, it is of paramount impor-

tance to introduce a mechanism that was able to bridge the communication gap

between the automatic system and the so-called ‘human in the loop’. Euphemisti-

cally speaking, the ideal system should be able to:

1. Estimate the human operator’s psychophysiological state and predict their

task performance.

2. Generate the corresponding automatic level for implementation and ensure

continuous productive operation output.

In order to achieve these requirements, it is necessary to expand current sim-

ple direct technical interaction with mental content interaction in HMI [87]. The

purpose of such intervention is to maintain the running of HMI in a fast and in

an adaptive manner for a sufficiently long period of time regardless of individual

differences and singular capabilities.

Humans respond to environmental stimuli through conditioned reflex and

subject to personal experience and psycho-physiological state [53]. The HMI con-

sists of communications at three different levels, namely, direct technical, emo-

tional and mental levels. The collaboration at different levels and the diverse

dynamic individual states lead, as a result, to a network with high complexity and

uncertainty [87]. This requires a shift from traditional modelling approaches, pri-

marily depending on mathematical expressions and physical laws towards data-

driven modelling approaches led by powerful pattern recognition and fast data

mining operation. These techniques, such as artificial neural networks and fuzzy

logic systems, exhibit an extraordinary ability to generate and applied conditional

patterns under uncertain environments with a limited amount of data.
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For the safety of HMI systems, the critical thinking and reasoning of human

operators should always be an intrinsic part of the final decision and cannot

be fully replaced by automation (e.g. Boeing 737 MAX crash). The decision of

splitting the workload into automatic machines and human operators lead to the

human-centred modelling to estimate operator’s psych-physiological state. The

existing data-driven automatic approaches for psycho-physiological prediction of

HMI systems mainly relied on adaptive neuro-fuzzy inference system (ANFIS),

type-1 Mamdani fuzzy model [23, 52, 80, 81], proportional integral Mamdani fuzzy

model [59–61], type-2 fuzzy model [83, 84] and support vector machines [97, 98].

The majority of the presented models have fixed configurations based on offline

training sessions. This has the potential of introducing an intrinsic default in the

modelling, for the time-validity of biological data often lasted for a limited period

only. As a result, the accuracy of offline models significantly declines with the

time, since the human psychophysiological state was highly dynamic. In addi-

tion, such model structures restricted the models to those who only share similar

patterns to the original training samples, i.e. the established models are not gen-

eralising and not robust for a broad implementation.

In order to overcome these shortages, advanced developments of self-organising

and adaptive learning were integrated with the existing modelling approaches.

For example, in the previous research, Luis proposed the adaptive general type-2

fuzzy c-means modelling (A-GT2-FCM) framework [84] that was able to generate,

modify and delete fuzzy rules from continuous observation, so that the framework

may be adaptable to the individuals’ differences and their psychophysiological

changes. However, the nonlinear changes of psychophysiological state and the

lack of flexible weight adjustment for inter- and intra-uncertainty compromised

the prediction performance of these models. Therefore, these models failed to an-

ticipate the situation changes in advance and required a certain amount of time

for reconfiguration, particularly, when the human operator was under some ex-

treme conditions (e.g. psychophysiological breakdown, multitasking and fatigue),

or when the performance of such models suffered severe instability and delay,

because of the variations in psychophysiological states.
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In summary, it is worth noting that current frameworks and models mentioned

above may not fulfil one or more of the following essential requirements for HMI

systems:

1. Adaptability: the ability to reconfigure themselves consistently according to

real-time system changes.

2. Intelligence: specifically refers to the ability to interpret the system state and

modify their inference engine correspondingly.

3. Robustness: the ability to handle inter- and intra-uncertainty and being gen-

eralised to any human operator.

4. Being Explicit: the ability to summarise the learning experiences via easy to

understand logical statements.

It is important to address the above mentioned features in the prediction of

human operator psychophysiological state. In order to balance the HMI system, a

more sophisticated model using easy-to-access psycho-physiological data in addi-

tion to existing models and frameworks is required.

2.2 Psychophysiological State

Conditioned reflex lay the foundation of human responses to the outside stim-

uli. The collective network of reflexes presents a general regulation across neural,

muscular and endocrine systems. This led to the rise of higher level psychophys-

iological activities, such as self consciousness, attention, reasoning, memory, cog-

nition, perception and execution [6, 7]. Therefore, the human psychophysiological

state may be partially or fully assessed by monitoring the biological processes of

some or all organs and systems [53]. Meanwhile, it suggested that the prediction

of human performance towards a certain task can also be achieved [67, 95, 96].
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2.2.1 Core Affective

The psychophysiological state is a temporal segment from core affective, a spon-

taneous voluntary time-variant collective comprising various transient biological

reflexes from both the autonomic arc and the somatic arc [41, 68]. Core affective

is the combination of past experience, individual perception and physical evalu-

ation, and consequently generates the primary impression and the basic affective

response to any received stimulus [41]. In other words, core affective, which is

based on the current physical condition, the scenario analysis and the previous

memory, determines feasible responses (from both emotional and behavioural) for

any triggered stimuli. Because of such coherence, human responses are regulated

and may be interpreted by body biological processes [41].

Present neurological studies locate several brain regions responsible for the

interlacement, e.g. amygdala, orbital-frontal cortex, prefrontal cortex, lateral pre-

frontal cortex, ventral striatum, hypothalamus and anterior cingulate cortex [6, 7,

41, 67, 68, 95, 96]. The positional overlaps within these regions observed with the

latest imaging technologies indicate functional fusions of core affect and cognition,

intracerebral communication and synchronisation for behavioural coordination.

In contrast, modern clinical researches suggest that the formation of psychological

disorders, e.g. trait anxiety, is consistently correlated with abnormal neural activ-

ity in some specific regions. Therefore, both direct and indirect biological activity

measurements over human brain may be applied to the prediction of one’s core

affective and task performance against certain tasks.

2.2.2 Core Affective Assessment

The direct measurement and assessment of human core affective is extremely dif-

ficulty and unnecessary, as it is a comprehensive integration and responsible for

all inter and intra systems. Therefore, the researches were more focused on the

psychophysiological state [3, 16, 53], which is the temporal segment from core af-

fective that has been interpreted by consciousness. Compared to core affective,

the psychophysiological state is recognisable and is experienced as some sort of
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emotion or feeling that can be recalled by human. Moreover, it is a concise subjec-

tive unified description of both body and mind, and therefore, it may be directly

expressed and interpreted by others.

There are two types of categorisation system applied in the current research

literature - dimensional frameworks and discrete perspectives [3]. Both of them

focus on the psychological experiences, for the physiological response varies with

individual physical conditions, cultural customs and personal backgrounds. Dis-

crete approaches were developed on the traditional understandings of psychophys-

iological state, which believe each state as being essentially linked with its own

exclusive profile of experience, physiology and behaviour. For example, a psy-

chophysiological state, such as mental stress and its relevant manifestations, is

considered as a consequence of intrinsic mechanisms triggered by a specific range

of stimulus only [53]. Dimensional approaches, however, consider a psychophysi-

ological state as a collective representations of three fundamental factors: valence,

arousal and tendency of approach-avoidance. Specifically, a psychophysiological

state may be segregated within these three dimensions and continuously trans-

ferred into others as one or more parameter changes [16]. However, it is possible

to reconcile two different theories comparatively by distributing various discrete

state into different segregated areas of dimensional space, as shown in Figure 2.1.

It is worth noting that the emotional terms used in Figure 2.1 are the repre-

sentatives of various psychophysiological states. Expressly, emotions prepare hu-

mans to respond to environmental stimulus and direct humans to meet the task

demands, as they emphasise the evaluation of the human-environment relation-

ship. Emotions are integrated with executive functions for behaviour control and

influenced cognition from perception and execution [11, 41, 49, 68]. Meanwhile,

the specific behavioural responses and physical conditions are conditionally initi-

ated and motivational dependent. However, as is shown in Figure 2.1, the most

psychophysiological states may be decomposed with two basic factors - valence

and arousal level, regardless of act or response differences.

Humans communicate with machines through direct technical interactions,

emotion based dialogue interactions and mental content interactions [87]. Due
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Figure 2.1: Combination of Dimensional and Discrete Affective State (data based
on [11, 41, 49, 68])
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to current technological development and application limitation, HMI is mainly

restricted to direct technical interactions, and consequently, compared to human-

human interface, human operators’ emotions expressed higher intensity and with

fewer categories of negative feelings. Future development of HMI emphasise on

functional innovative so as to empathetic to operator’s emotional needs, physi-

cal conditions and mental abilities. Therefore, for the purpose of exploring and

integrating the emotional and mental content within the current HMI, it is impor-

tant to establish a measurement approach for valence and arousal level of human

operators in HMI.

2.3 Psychophysiological State Measurement

Current research on psychophysiological state measurements focuses mainly on

following five aspects - subjective experience, peripheral physiology, affect modu-

lated startle, central physiology and behaviour [3, 8, 16, 24, 45, 53, 66]. The sub-

jective self-report provided the most direct measurement since the psychophys-

iological state may only be experienced and interpreted by subjects themselves

before any communication [3, 16]. Peripheral physiology consists of several invol-

untary physiological regulations including pupil reaction and circulatory system

that are responsible for strengthened sensory representations and control struc-

tures [45, 49]. Central physiology monitors the biological changes of psychophys-

iological state over specific brain regions through electroencephalography (EEG),

magnetic resonance imaging (MRI) or other bioimaging technologies, which pro-

vide an intrinsic description of task related cognitive process [8, 45]. The variation

of the psychophysiological state is consistently correlated with the behavioural

pattern change, as the feasible reaction plan was constantly confined to individual

time-varying physical conditions. Therefore, the participants’ inner states may be

revealed via their pupil size, facial temperature or other physical behaviours to a

certain degree [24, 66].

Valence indicates the tendency of humans towards a specific stimuli [11, 41,

49, 68], and within HMI it may be seen as the acceptance of operators towards a
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given task from the machine side. Because it is a subjective evaluation from the

operator himself or herself, the requirement of indirect observation is highly intri-

cate, expensive and sometime even impossible. For example, to monitor from the

central physiology prospective, it would be a complete observation of neural activ-

ities, such as long term memory recall and symbolic association, and some certain

adaptive filtering mechanism maybe needed for irrelevant interference from both

human self and environment. Therefore, the most accurate and effective assess-

ment method is a self-report.

Arousal level represents the energy resources of humans invested in the re-

sponse to a certain stimuli [11, 41, 49, 68], and within HMI it refers to the effort

that operators showed to their given task. Different from the valence, the arousal

level is able to be assessed with multiple indirect measurement methods beside

subjective report. These methods are supported with sufficient physical and med-

ical researches and cover a wide range of human organ systems. The most signif-

icant impact may be observed from respiratory system, circulatory system, mus-

cular system and nervous system, and sometime lymphatic system and urinary

system if more complex adjustment was required by further reactions. Such indi-

rect assessments and measurements may be completely developed on the online

monitoring of biological monitoring. They were capable of providing the most

objective and normalised evaluation results without disturbance or interrupt of

original HMI.

It is worth noting that, due to the complicity of interface, there is no single

measurement or assessment method that may reveal the complete psychophysio-

logical state of human operator in HMI. In practice, the subjective measurement

alone may be compromised because of personal experience. Individual self-report

entirely depends on the personal knowledge, experience and communication skill.

Thus, one’s actual psychophysiological state may be occasionally distorted and

hard to be understood by others. These variables in between each individual per-

ceptive level also determine an intrinsic issue of unifying or generalising different

report. Similarly, there is no singular objective measurement or assessment can

reveal the human psychophysiological state accurately alone. Organs and cells are
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highly specialised functional units that work collectively. Hence, they may not be

segregated for psychophysiological state estimation. The monitoring of a single

system may also lead to severe bias, as each organ or system is always under mul-

tiple regulations and is responsible for various mechanisms. Therefore, the fusion

of several measurements and assessments was necessary and should be incorpo-

rated in the design of any model or framework [53]. The combination of different

measurements is the only approach to reduced the noise within each measure-

ment method and generate comprehensive estimations from both psychological

and physical levels. Yet, the increase of measurement types also leads to the in-

crease of system redundancy and expenses. Therefore, the selection of a limited

number of the most efficient biomakers is required. From previous research, the

psychophysiological measurements and assessments applied, most are based on

electrocardiography (ECG), EEG, pupil size, heart rate, blood pressure, blood vol-

ume, blood volume pulse, respiration, muscle tension, electrodermal activity, gal-

vanic skin response and temperature signals [23, 28, 52, 56, 59–61, 80–84, 97, 98].

These objective measurements are mainly focused on four aspects - peripheral

physiology, affect modulated startle, central physiology and behaviour.

2.3.1 Peripheral Physiology

Peripheral physiology studies the electrical activities of nervous system outside

the brain and spinal cord. Working as a bridge between the central nervous sys-

tem and the limbs and organs, peripheral nervous system consists of peripheral

nerves, neuromuscular junctions and even some the roots and branches from the

cranial nerves and spinal nerves [21]. The part of the peripheral nervous system

under the voluntary control of the brain is called somatic nervous system. It trans-

mits signals from the brain to the end organs and created sensory and motion

response, which form the foundation of muscle tension and self experience re-

port, whereas, the rest peripheral nervous system creates a self-regulating system

called autonomic nervous system. It includes the sympathetic nervous system,

parasympathetic nervous system and enteric nervous system that are responsible

for maintaining homeostasis homeodynamics. It largely acts on unconscious body
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regulations, such as the pupil contraction, heart rate, respiration and perspira-

tion [21]. Current psychophysiological research mainly focuses on the antagonism

between the sympathetic nervous system and parasympathetic nervous system,

specifically heart rate, for efficiency and convenience. In this project, the ECG

is selected for assessing the psychophysiological state from peripheral nervous

system.

2.3.2 Electrocardiogram

Electrocardiogram (ECG) observes the activities of the heart through the recording

of varying electric potential difference. The heart is the core organ of circulatory

system, which also includes blood vessels and the blood. The heart, functioned

as the primary pump for the blood, has a deterministic impact on the sustainabil-

ity and versatility of circulatory system [21]. The circulation of blood within the

circulatory system starts from the heart and then goes through the lungs, arteries,

veins, coronary and portal veins before the return. The whole system is crucial for

the transportation of nutrients, oxygen, carbon dioxide, blood cells and hormones,

and it also provides support for the immune system and maintained homeostasis

through stabilising temperature and pH [21]. This system, with such importance,

is directly under the control of somatic nervous system and is highly influenced by

cognition process of central nervous system, for the preparation and persecution

of responses. Figure 2.2 depicts a simplified model for the relationship between

the heart rate and autonomic nervous system. As shown, the heart period and

parasympathetic control presents an antagonism effect with the increasing inten-

sity of sympathetic control. Therefore, the observation of heart activities provides

a reliable and effective way to access conditions of these key organ systems and

assess psychophysiological state [21].

ECG is a non-invasive way of monitoring the heart cardiac cycle by tracing the

electrical activity within the heart [13]. Within a normal cardiac cycle, an electrical

impulse travels through the sinoatrial node, the atrium, the atrioventricular node

and the ventricular septum in a coordinated way. Consequently, the four chambers

of heart contract and relax with a recognisable pattern. The neuron electrical sig-
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Figure 2.2: The Relationship between Heart Rate and Autonomic Nervous Sys-
tem [13]
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nals ensure the regulation for two main epochs, diastole and systole, of the heart

cycle. Figure 2.3 presents a complete cardiac cycle with three main components

- P wave, QRS complex and T wave. The P wave is normally a smooth rounded

peak on ECG and corresponded to atrial contraction. The QRS complex consist of

the Q wave, R wave and S wave, indicating ventricular contraction. The T wave

is a asymmetric peak following the same polarity of the QRS wave, unless some

sort of pathology persistent [21]. The most convenient approaches to calculate

the heart rate through a ECG recording facilitate the R wave, because of the sig-

nificant peak inflection. Based on the sequence method, the heart rate (bpm, i.e.

beats per minute) may be calculated with dividing the interval distance between

two R spikes with a constant value (typically 60,000). A complete heart period

(milliseconds) is calculated with the same constant value vice versa [13, 59].

2.3.3 Heart Rate Variability

Heart rate variability (heart rate variability (HRV)) is considered to be connected

with the respiratory cycle, the blood pressure and the heartbeat fluctuation, which

is regulated by the peripheral nervous system and is sometime influenced by the

central nervous system [2]. The HRV indicators HRV1 and HRV2 in this research,

have already been applied in previous experiments and studies at the University

of Sheffield [35, 60, 80, 81, 83, 84]. Further research studies proved the efficiency of

using HRV in stress assessment [2, 9, 17, 27, 38, 47, 74, 86, 89]. The ECG signal may

be divided into three frequency bands, which corresponds to variant biological

processes [13]:

1. High frequency band (0.12 Hz–0.4 Hz or 0.15 Hz–0.4 Hz): this frequency band

is used for respiratory sinus arrhythmia (RSA), as the heart rate increased

and decreased with inspiration and expiration.

2. Medium frequency band (0.05 Hz–0.15 Hz or 0.8 Hz–0.12 Hz): this frequency

band is mostly centred around 0.1 Hz and correlated with Mayer waves,

brought by periodic arterial blood pressure changes. It is also applied in the

measurement of mental workload.
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Figure 2.3: Example of ECG Signal [21]
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3. Low frequency band (0.003 Hz–0.05 Hz or below 0.003 Hz): this frequency

band is mainly related to the physiological control of autonomic nervous

system. It has been applied for pathological studies, but it is rarely involved

with psychological research [13].

The HRV has a profound correlation with the cardiovascular system. It was

found that the change of heartbeat pattern due to any sinus arrhythmia (such as

respiratory one) may be precisely represented by the variations in HRV [2]. The

following research had further investigated the relationships between the HRV

and sinus arrhythmias due to disease, stress, etc [9, 17, 27, 38, 74, 86, 89]. Stress,

regardless of due to physical or mental workload, significantly influenced the

change of HRV [47]. In some extreme cases such as job loss and death, a pro-

longed psychophysiological triggered effect may be identified with the HRV [69].

The same report also highlighted the use of HRV as a non-invasive measurement

of stress triggered cardiovascular changes for those who lack efficient communi-

cation method, e.g. infants. Therefore, HRV has been highly recommended in

the research of HMI and applied as an important indicator for human operators’

psychophysiological state assessments [60, 61, 80, 81, 84]. However, it is worth

noting that HRV responds to sinus arrhythmias regardless of the source of origin.

That is, as long as the cardiovascular system changes, the intentional respiration

may imitate sympathetic controls that are similar to the stress inducted results.

According to the experimental results in [9], the stress related sympathetic control

may predominate over the respiration and increase the low frequency component

(altering R-R interval). Yet, when in the absence of stress, such low frequency com-

ponent changes may be still observed with altering respiration alone. Therefore,

it is worth noting that, within these HMI experiments, HRV is actually reflecting

the workload related cardiovascular variance, prioritising cognitive response and

overwriting autonomic regulation.

HRV was integrated in the mental and physical assessments together with

other biomarkers in various HMI simulation experiments [35, 60, 80, 81, 83, 84].

Different simulation experiments required different standardisation of physical

workload, thus, the ratio between potential mental stress and physical demands
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varied. The HRV had succeed in detecting these mental stress and workload re-

lated psychophysiological state changes in Stoop Colour Word testing and mental

arithmetic operation [27, 38]. In these experiments, it was found that the HRV may

be affected by the breathing control introduced by the verbalisation. Therefore, the

combination of other biomarkers to differentiate psychophysiological state from

other activities was important for the assessment. Apart from the HRV, task per-

formance, heart rate, arterial blood pressure and hormone monitoring were also

commonly used for estimating the psychophysiological state directly and indi-

rectly. Meanwhile, it should be emphasised that the convenience and the reliabil-

ity of HRV may not be replaced easily with other biomarkers. Compared to the

ECG, the measurements based on EEG, electroocoulogram (EOG) and electromyo-

graphy (EMG) suffered more restrictions due to the equipment and operation re-

quirements in a real-time airplane environment [89]. It was suggested that the

integration of the HRV and the Bedford scale was able to assess the psychophys-

iological state real-time for some special conditions, such as during commercial

flights.

For this research, the two selected HRV indicators follow the previous exper-

iment work at the University of Sheffield [59–61, 80–84]. The raw ECG signal is

filtered with a low-pass filter with a cut-off frequency 5 Hz, and the time-stamps

are selected through R peak detection. HRV1 represented the 0.1 Hz component of

the ECG signal, and it is measured by averaging the power spectrum of frequency

components from 0.07 Hz–0.14 Hz in a time period of 30 seconds. HRV2 is the ra-

tio between the standard deviation and the mean value of the heart rate signal in

the same time frame. The ECG applied in this research follows the three electrode

system from ActiveTwo Biosemi®, as shown in Figure 2.4. The LL is located at the

end of the xiphoid process slightly towards to the left hand side. The LA is located

at the end of the left false rib no. 10. The RA is located below the sternal angle

and slightly towards to the right hand side. The three electrodes form a triangle

over the heart area.
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Figure 2.4: ECG Electrodes [1]

2.3.4 Central Physiology

Central physiology focuses on the physical activities of central nervous system,

which consists of the brain and spinal cord [21]. The whole system controls the

most functions of the body and mind. The brain is the center of the central ner-

vous system that is responsible for sensory information processing, voluntary

movement, cognition, perception, self-awareness and emotion. The spinal cord

provides a highway for the information communication between the brain and the

rest of human body. The neurons constitute the most of central nervous system

and communicate with each other with electric pulses and neurotransmitters for

processing information. Compared to the other human organ systems, the central

nervous system processes multiple tasks for variant targets coherently. Due to

such importance of central nervous system, it is securely protected with the bones

of the skull and spinal column and with the syrinx, a cavity filled with fluid in

between for shock absorbance [21].

The complexity of the functional configuration and the enhanced double pro-
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tection make the direct measurements and observations of a specific stimuli-triggered

response in the central nervous system extremely expensive and complicated.

Therefore, current central physiological studies focus on the collective activities

at the regional level and are mainly based on non-invasive measurements: EEG

and neuroimaging, such as functional magnetic resource imaging (fMRI) and po-

sition emission tomography (PET) [8, 11, 32, 41, 45, 49, 51, 53, 54, 68]. Similarly to

the ECG, the EEG measures the electrical activities over the skull as the neurons

communicate with electrical pulse, whereas the neuroimaging is commonly mon-

itoring the activities of brain regions through the blood flow. Compared to the

EEG, and despite the neuroimaging may provide in-depth dimensional perspec-

tive on brain activities, it requires expensive and complicated equipment as well

as corresponding environment. Meanwhile, EEG is frequently applied in research

on the psychophysiological state for its low operational cost.

2.3.5 Electroencephalogram

Electroencephalogram (EEG) was initially applied in 1924 by a German psychi-

atrist, Hans Berger [13]. He identified the electrical activity of neurons at static

relaxed awake condition between the forehead and occipital lobe - a rhythmic

oscillating wave around 10 Hz. This proved a strong support to link the pe-

riodic changes of EEG recordings to different psychophysiological state of hu-

mans [13]. Temporal resolution of EEG was remarkable with real-time recordings

of millisecond resolution, due to the transient existence of electrical pulse. How-

ever, the brain is spherical or elliptical object protected with the skull bone and

filled with the syrix, consequently, the volume conductivity of it is not evenly

distributed [21]. This inevitably led to the positional distortion of the electromag-

netic field recorded by the EEG and low signal to noise ratio. However, this may be

solved with improving sampling limitation, i.e. increasing number of electrodes

used. Despite these defaults, as a summation of neurons collective activation and

deactivation. EEG was able to present clear numerical comparisons between dif-

ferent cerebral cortex regions, e.g. anterior verse posterior or right-hemisphere

verse left-hemisphere [13].
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According to the frequency analyses, the EEG recordings may be decomposed

into five frequency band - delta, theta, alpha, beta and gamma:

• Delta band - It consists of the frequency components of EEG up to 4 Hz. It

is mostly identified in adults’ slow-wave sleep, associated with deep sleep

phase without dreaming. It is also commonly found in children, especially

with infants, and together with theta band components slowly diminish with

age; whereas, alpha and beta frequency band activities gradually predomi-

nate throughout human life [13]. Due to the limitation of age and the inhibi-

tion effect, delta band is rarely involved in research of psychophysiological

state in working conditions.

• Theta band - It represents the frequency components within the range of

4 Hz–8 Hz on the EEG recordings. It is mainly found in children but also

may be observed in adults with emotional stress, such as frustration and

disappointment. According to different observation locations, the theta band

frequency wave in adults may be correlated with drowsiness or arousal, re-

laxation or mediation. However, excessive amount of theta frequency band

activities for a certain age may indicate abnormal activities, such as de-

creased vigilance level or impaired information processing. The theta fre-

quency band activity distributes along with the frontal midline being associ-

ated with focus and attention, as the anterior cingulate cortex is responsible

for the information flow of the paleomammalian cortex [13]. Therefore, it is

one of the focused frequency bands in the researches of HMI.

• Alpha band - It includes the frequency components of EEG recordings within

the range of 8 Hz–13 Hz. It normally emerges during the state of relaxation

or wide wake with eye closed. It is the first observed rhythmic EEG wave

by Hans Berger, and it is widely spread over the posterior cortex (i.e. the

parietal lobe and the occipital lobe), elevated with dominant side. However,

it may also be observed from other regions, such as the temporal lobe and

the frontal lobe. Such temporary emergence, under the normal conditions, is

mostly associated with the attenuation of physical and mental exertion. The
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studies estimates that it is transformed from the theta band rhythmic wave

during the puberty, for the frequency for the posterior basic rhythm is com-

monly lower than 8 Hz [13]. However, since the alpha rhythmic wave rapidly

diminished as the eyes opened, it is not engaged within the researches of

psychophysiological state in HMI.

• Beta band - It is the collection of the rhythmic waves between the frequency

range of 13 Hz–30 Hz in the EEG recordings. It is found to be consistently

correspond with cognitive processes like information processing, motor be-

haviour and attenuation of actions. This frequency band may be further

divided into three ranges - the low range (13 Hz–16 Hz), the middle range

(16.5 Hz–20 Hz) and the high range (20.5 Hz–28 Hz). The rhythmic wave

within the low range emerges with a focus state under relaxed conditions.

The middle range rhythm is closely associated with processing sensory in-

formation. The frequency component of the high range is normally observed

with arousal or anxious state. It is the dominant rhythm distributed sym-

metrically on the both side of frontal lobe in the alert or concentrated con-

dition. Because of such correlation with vigilance and arousal level, the

beta band rhythm is the most focused in the most psychophysiological state

studies. However, it is also sensitive and vulnerable to the effect of drug use,

pathogens and cortical damage [13].

• Gamma band - It is the summary for the rhythmic waves with frequency

over 30 Hz and up to 100 Hz (mostly around 40 Hz) in the EEG recordings.

It is observed with cognitive processes associated with valence, imagination

and integration of different regions. The oscillation within the gamma band

emerges during networking variance simulators for a certain cognitive tar-

get [13]. It is usually applied in the researches of regulation for high level

cognition or complex motor function.

The method of using EEG recordings is highly depended on the purpose of

research, and for the researches of human psychophysiological state the most

recognised EEG based indicators are spectral power on a specific frequency range,
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event-related potentials and event-related desynchronisation or synchronisation [8,

32, 45, 49, 51, 54]. The spectral energy is mostly aimed for a general estimation

of human state for a short period, while the event-related measurements were de-

signed for monitoring consequential response of an instant stimulus. Among all

the developed indicators so far, task load index (TLI) is one of frequently used

indicators for the psychophysiological researches, which is based on the spectral

energy analyses of theta band rhythm and alpha band rhythm [28, 75].

2.3.6 Task Load Index

Task load index TLI was initially developed from the EEG recordings by Gevins

in 1997 with his team for the research of mental workload [28, 29, 75]. As men-

tioned earlier, the low frequency wave of the theta band is linked with arousal

or stress level as it represents the synchronisation of neurons, and the alpha band

rhythmic wave emerges with the state of increased focus and concentration. Based

on these two frequency bands, the TLI is able to assess human working memory

(WM), which was one’s cognitive ability to hold information of a focused event

temporarily against continuous disturbances of others [28, 75]. The WM is consid-

ered to be important for psychological reasoning, decision making and physical

behaviour. In this case, the abstract conceptional WM is mathematically repre-

sented by the direct measurement of EEG, which monitored the neural resources

involved in the process of solving task. This method ensures a certain level of

robustness and stability for the indicator against interference, as the raw EEG

recording may be severely influenced by artifacts and voluntary or involuntary

moves irrelevant to the researches. In addition, some degree of susceptibility and

flexibility introduced by the time-varying neural collective cooperation provides a

temporal resolution up to 0.25 seconds, which should sufficed the requirement of

most HMI psychophysiological researches [75].

It was found that the decrease of task related WM due to reduced task load,

fatigue or psychophysiological breakdown was usually accompanied with the loss

of focus and the decrease of performance, e.g. increased reaction time and error

rate. This phenomenon always emerged with a degraded theta band activity of
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the frontal lobe and elevated alpha band activity of the whole brain [28, 29, 75].

Therefore, in this research, the two selected TLI were TLI1 and TLI2, based on the

comparison between the theta band rhythm and the alpha band rhythm, and they

were calculated with the following equations:

TLI1 =
Pθ,Fz

Pα,Pz

,

TLI2 =
Pθ,AFz

Pα,CPz,POz

,
(2.1)

where Pθ and Pα are the spectrum energy of the theta band rhythmic wave 4 Hz–

7.5 Hz and the alpha band rhythmic wave 8 Hz–12.5 Hz. The spectrum energy is

calculated by averaging the intensity of rhythmic wave within that specific fre-

quency range over 30 seconds. The electrodes of Fz, Pz, AFz and the combination

of CPz and POz followed the Biosemi 10/20 system, as is showed in Figure 2.5.

Previous research on human performance had confirmed the high efficiency and

reliability of using these two TLI indicators for assessing human psychophysio-

logical state in the HMI experiments [60, 80, 81, 83, 84].

2.3.7 Affect Modulated Startle

Affect modulated startle measures the magnitude of startle response, as it reveals

the valence of human, especially at excited state. The startle response is a gen-

eral reflex towards to any immediate emerged stimuli that consists of a set of

voluntary and involuntary motor actions, such as temporal muscle tension and

attention diversion [53]. The whole system functions as a basic protective mech-

anism for organs and livings creatures against any potential harm. All startle

responses are established from current behavioural interruption and vigilance fa-

cilitation for a possible threat, which fundamentally depends on the eye move-

ment [53]. Research based on the electromyogram recordings of eye muscle ac-

tivity had showed that the startle response was effective in assessing human psy-

chophysiological state, particularly for the valence level, as the stimulus triggered

approach-avoidance mechanism encouraged or inhibited startle responses, com-

pared to the magnitude of neutral state [53]. However, the muscle contraction and
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Figure 2.5: EEG Electrodes [1]
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relaxation only indicate instant valence state of each individual stimuli, because

the intensity of the startle response dropped right after diverting attention. There-

fore, the pupil diameter marker (PDM) is applied for measuring human periodic

psychophysiological state in the HMI experiment.

2.3.8 Pupil Size

The human pupil is the dark circular tissue in the center of the iris of the eye,

which allows light to strike the retina through variation of size. Such regulation

adjusts the amount of light passing through so that a clear image may be formed

on the retina and provide enough details for cognitive information processing.

It serves as an adaptive reflex to the environmental stimulus, for the purpose of

vigilance control and focus regulation of human. For this reason, the contraction

and dilation of pupils are under the control of autonomic nervous system as part

of psychophysiological response. The regulation of pupil diameter is controlled

by sets of opposite muscles inside the iris, the iris dilator muscles, and guided by

the antagonism between the sympathetic and parasympathetic neural brunches.

Depended on the stimulus and environmental brightness, the pupil diameter may

vary from 1.5 mm to 9 mm [21].

The use of pupil size was explored in the research of affective state in the HMI

configuration related experiments [42, 57, 58, 72, 82, 91, 97, 98]. In these experi-

ments, the pupil size succeeded in differentiating the stressed and relaxed state

of participants during their interfaces with personal computers. The experiment

suggested using the combination of the pupil diameter and eye blink rate as the

indicator for affective state measurement, such as mental stress in the HMI. Mean-

while, the rate and acceleration of pupil size variation were also experimentally

proved to be effective for the psychophysiological state measurement. The effi-

ciency of using pupil size was validated through comparisons with conventional

psychophysiological biomarkers in the HMI configuration, including EEG, photo-

plethysmogram, skin conductivity, blood volume pulse and surface temperature.

Additionally, compared to the most traditional psychophysiological biomarkers,

the non-intrusive and distanced measurement approach of pupil size minimised



32 2.3. Psychophysiological State Measurement

the equipment and environment requirement. Thus, the noise introduced by the

psychophysiological state monitoring was reduced during the HMI experiment.

2.3.9 Pupil Diameter Marker

The pupil size biomarker used in this project was pupil diameter marker (PDM),

which was experimentally tested and applied in the previous HMI researches in

University of Sheffield [82–84]. The pupil diameter was recorded in real-time

through an eye tracker camera provided by Gazepoint™. Based on the pixel cal-

culation of pupils, in addition to a relative distance measurement and a head

movement scale factor, the Gazepoint™ software was able to provide accurate

pupil diameters from captured images, via the following equations:

PDML = (LPD) · (LPSF) · (LVF),

PDMR = (RPD) · (RPSF) · (RVF),

PDM =
N

∑
i=1

PDMLi + PDMRi

2N
,

(2.2)

where PDML and PDMR represent the left and right pupil diameter markers

respectively. Similarly, LPD and RPD are the left and right pupil diameters in

pixels, and LPSF and RPSF stand for two pupil scale factors, with N for the

sample number (depend on time frame). LVF and RVF are pupil valid flags for

left and right pupil respectively, which serve as a filter for blinking and other

invalid measurements during the experiment.

2.3.10 Behaviour

As mentioned earlier, each psychophysiological state is always involved with a

certain set of physical responses, including motor action and organ system varia-

tion [11, 41, 49, 68]. Therefore, it should be possible to assess one’s psychophysi-

ological state from these behavioural changes, such as vocal characteristics, facial

expressions and whole body behaviours [53].

Vocal characteristics infers one’s psychophysiological state mainly through

voice amplitude and vocal pitch. It was proved that these vocal characteristics
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were more connected with arousal level than valence level [53]. However, due to

the limitation of current HMI system, verbal communication was rarely applied

and therefore vocal characteristics were less focused. Facial expressions, however,

have been applied in the researches of assessing human psychophysiological state

in the HMI for a while [26, 53, 100]. Facial behaviours appeared to be a reli-

able and non-intrusive way of reflecting the participants’ valence level in real-time

experiment. However, the efficiency of facial expression in assessing human psy-

chophysiological state was excessively determined by the coding system, which

differentiated variance facial behaviours with muscle assessments. Furthermore,

as the core affective is also under the influence of individual experience [41], it

may be precarious to assume that facial expression may be a straightforward

read-out of a person’s psychophysiological state. This intrinsic default of facial

behaviour explains most contradictions between the estimation and validation in

the experiments. Because of it, facial expression is often applied together with

other psychophysiological state measurements, e.g. head movement, eye gaze and

blood pressure etc. The whole-body behaviour mostly focuses on communication

behaviour expressed bodily. Some studies showed that there may be some distinc-

tive bodily behaviour for some specific emotional state [53]. Yet, the observation

of such a behaviour or expression is also influenced by individual difference and

might be redundant, as localised electromyogram is able to capture more subtle

muscle regulation and provide higher accuracy of psychophysiological prediction

while minimised intrusive physical and mental interference [53].

Although the efficiency of behavioural biomarkers are lower than the other

type of conventional biomakers because of individual difference, the non-intrusive

approach of behavioural monitoring provided an irreplaceable way of measuring.

Nowadays, with the development of thermal imaging, a new method of human

psychophysiological state measurement is explored in this research. Apart from

the regulation of muscles, the blood also provides support for the physical be-

haviours and the flow of it may be estimated with human surface heat [21]. There-

fore, facial temperature is suggested here to provide an non-intrusive measure-

ment of psychophysiological sate.
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2.3.11 Facial Temperature

The blood flows and the blood vessel sizes are constantly regulated by the hy-

pothalamus and central nervous system, which are also responsible for the psy-

chophysiological state, such as memory coding and emotion processing [16, 39].

Previous studies found that the psychophysiological state may directly impact

the human thermoregulation and lead to perceptible temperature changes on the

surface skin [12, 14]. The facial behaviour is relatively more sensitive to the vari-

ation of psychophysiological state than the rest part of human body. These facial

expressions depend on the muscle movements and are supported by the blood,

therefore, the above research concentrated on the temperature information cap-

tured from the forehead, the periorbital and the nasal regions of the participants.

Compared to the rest of face, the soft tissue layer within the forehead region is

relatively thinner because of the skull, the temperature over that region was more

susceptible to the blood flow in the capillaries, which is regulated by the cardio-

vascular system [21]. Meanwhile, the blood pressure within the periorbital area

followed periodic rhythms associate with the eye ball movement and the muscle

activity, for the purpose of switching focused object and regulating vigilance for

the surrounding [21].

The temperature of the nasal region indicate a combination of the blood flow

from the cardiovascular system and the air flow from the respiratory system,

which are all controlled by the autonomic nervous system and are influenced

by the central nervous system [21]. Among the rest part of human face, these

three regions are the most sensitive to the variation of human psychophysiolog-

ical state. Moreover, the HMI experiment identified that the indicator based on

the spectrum analyses of facial temperature components, the differential energy

between philtrum and forehead (DEFP), consistently correspond to the heartbeat

rate and the concentration of cortisol in blood [39]. All these studies suggest a

significant correlation between the facial temperature and human arousal level.

Therefore, in this project, the psychophysiological biomarkers developed based

on the facial temperature are the mean forehead temperature T̄f , the maximum

facial temperature Tmax f , the mean nasal temperature T̄n and the DEFP. The ef-
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fectiveness and the efficiency of these facial temperature biomarkers in the HMI

experiment are validated in [34, 35]. The thermal recordings are acquired with a

FLIR E40bx thermal camera, with a distance of 0.5 meter between the lens and the

participant’s face. Because the human tissue is heterogeneous, the emissivity is

set to be 0.98, following the guideline of emissivity table. The sampling frequency

of the thermal camera is set to be 10 Hz and the values of the biomarkers are the

averages in a 15-second period window for reducing the effect of auto-calibration.

The environment temperature of the lab room is remained around 20 ◦C and the

relative humidity is remained around 50 %.

2.4 Human-Machine Interface Simulation

The primary goal of the HMI simulation experiment is to challenge the partici-

pants’ task solving ability in a similar way to the real world HMI situations. Dif-

ferent from the human-human interfaces, the human participants from the HMI

demonstrated lower emotional intensity over less diverse feelings [87], due to lack

of emotional content communication in the current HMI. Therefore, the simulation

of HMI should be focused on the approaches of introducing adequate adjustable

stimuli through workload. Different observable psychophysiological states trig-

gered from these stimuli should resemble human psychophysiological reactions

in real-life situations [87].

There were a lot of assessments used in the psychophysiological state re-

searches, such as air traffic control, university test, memory test, cold presser test

and coin stacking [23, 28, 56, 97, 98]. However, these tests were considered as be-

ing not qualified for the simulation of HMI. Most of them lacked reproducibility

or were mixed with human-human interface. In addition, there was no controlled

stimulus for variant psychophysiological states, and the performance evaluation

was based on subjective experience. These assessments were designed for the ex-

periments aiming at specified transient reactions rather than continuing interface.

The most frequently used HMI simulations in research are the Stroop colour-

word interference, the mental arithmetic and the virtual vehicle operation, the
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management system simulation [9, 38, 47, 56, 76, 84, 89]. According to the require-

ment of research, a desirable HMI simulation system should fulfil the following

requirements as much as possible:

1. Difficulty - the given task should be challenging enough to introduce ad-

justable psychophysiological workload for observable behavioural changes

in body and mind.

2. Similarity - the expressed psychophysiological state should cope with exist-

ing recognised human states in the real life HMI.

3. Reliability - the simulation mechanism should be verified to ensure an expli-

cable, controllable and reproducible experiment.

4. Simplicity - the configuration should be clear and direct to minimise the

interference of other activities besides the HMI simulation.

5. Generalisability - the related task-solving skills should be intuitive and uni-

versal to avoid performance difference due to personal experience and abil-

ity.

Besides all the requirements above, the desirable HMI simulation should also

be efficient in both time and expense. For the time efficiency, it requires a complete

simulation process maintain the highest ratio between the interface period and

the familiarisation phase. For the expense efficiency, the requirement of the lab

room and equipment should be simple and accessible for the most conditions. It

is worth noting that the selection of psychophysiological biomarkers should be

thoroughly considered. Not only these biomarkers should be convenient to use

and available for general cases, but they also should be adaptive to the variance

real-time HMI scenarios. Furthermore, a certain degree of robustness should be

included to circumvent possible noise within the HMI simulation, and for known

and unknown interference existing in the actual HMI.
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2.4.1 Stroop Colour-Word Interference

The Stroop colour-word interference was created by Stroop and had been com-

monly applied in psychophysiological research since 1935 [78]. Generally, par-

ticipants performing the Stroop colour-word interference were required to link

the given colours to their corresponding names through related graphic user in-

terface systems on computers. This interference was designed for introducing

certain amount of stress on the participants psychologically through limiting the

time for each response. A Stroop colour-word interference normally consisted of

two phases that were different in presenting the task - non-conflict and conflict.

The colour of the letters in a word was congruent with the colour of that words

represented in the non-conflict configuration (e.g. the word “green” coloured in

green), whereas for the conflict configuration the colour of a word was not consis-

tent with the meaning of that word (e.g. the word “red” coloured in blue). As the

experiments proved, compared to the non-conflict configuration with congruous

stimuli, the incongruous stimuli of conflict configuration increased reaction time

and cognitive error rate [78].

The Stroop colour-word interference has now been applied in many research

studies of the human psychophysiological state [27, 38, 56–58, 98]. However, the

efficiency of using Stroop coloured-word interference as a reliable HMI simulation

was questioned in some studies lately. It was found that the HRV, a traditional

and commonly used biomarker for human psychophysiological state mentioned

earlier, failed to show significant change during the Stroop colour-word interfer-

ence [27]. Furthermore, the recordings of biomarkers suggested that there was less

observable human psychophysiological state changes during the Stroop colour-

word interference, compared to the other HMI simulation such as mental arith-

metic experiment [38, 56]. This suggested that the Stroop colour-word interference

may not be able to challenge the participants with proper psychophysiological

workload and satisfied the requirement for a significant psychophysiological state

change. In some other studies, the recorded psychophysiological changes during

the Stroop colour-word interference were proved to be more correlated with hu-

man natural fundamental regulation for external environmental adaptation and
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motor action rather than cognitive activities [9, 76]. According to these experi-

ments, the Stroop colour-word interference could provide contradict results with

different environment conditions. Therefore, it should not be considered as a suit-

able option for the HMI simulation, as it failed to minimise these irrelevant effects.

2.4.2 Virtual Vehicle Operation

Under laboratory conditions, the virtual vehicle operation bore the most resem-

blance to the nowadays HMI systems in the real world, which induced the psy-

chophysiological changes in a similar way through approximately identical in-

terface configurations [26]. The simulated transport vehicles normally included

automobiles, airplane and even space shuttle sometime, and the participants were

required to operate these virtual vehicle for certain goals in space or time while

against some predetermined interference. Virtual vehicle operation was widely

applied for the simulation and training of real world HMI systems at present, es-

pecially in the human-centered system where human experience and judgment

were inherent factors (e.g. captain or pilot).

The virtual vehicle operation had been applied in several research studies

of the human psychophysiological state in the HMI, such as in the examples

of [26, 36, 47, 89]. For these studies, the virtual vehicle operation was commonly

based on automobile driving and the assessment of performance focused on the

simulated side slip angle, yawing acceleration and rolling velocity. The human

psychophysiological state, such as stress or focus, was normally measured with

facial expression, HRV, skin conductivity, respiratory rate, electromyogram and

cardiovascular indices. However, the use of virtual vehicle operation in the HMI

research studies was severely restricted with its complexity and corresponding

high expense, and most importantly, these experimental results lacked repro-

ducibility. It is worth knowing that reproducibility was the only way to guarantee

the statistically significant results of a study. Particularly for these research stud-

ies comparing the experiment results between the simulation and actual in-car

driving, there led to a significant amount of uncertainties within the experiments

as many variables were not completely under control, such as road conditions,
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weather conditions and automobile conditions. Meanwhile, the complexity of in-

door simulation not only required a relatively large space maintained under con-

trolled conditions, but the expensive equipment also demanded complicated setup

that inevitably led to interference to each run. It was experimentally proved that

the environmental conditions and maintenance of the system could significantly

impact the effectiveness of each simulation [26, 100].

Furthermore, vehicle operation was a common learning process in real life,

as the participant could adapt to it through adaptation during each practice and

develop individual behaviour from past experience. The performance of the inex-

perienced participants might be more linked with the proficiency rather than the

psychophysiological state, whereas for the experienced ones the experiment might

need to last long enough or specially programmed to observe any significant psy-

chophysiological state change. Besides, the personal preference established from

daily life also influenced the performance assessment, for people valued differ-

ently on different road conditions (e.g. the reduced speed at a curve). The high

complexity of the system configuration, the high cost of the equipment and the

high uncertainty of the system operation deterred the application of virtual vehi-

cle operation in the human psychophysiological research of the HMI.

2.4.3 Management System Simulation

The management system simulation usually requires the participant to maintain

a simulated environment within a desired state through adjusting different pa-

rameters, i.e. stabilise an unbalanced system simulation with limited inputs. One

example of such simulations is the automation enhanced cabin air management

systems (aCAMS), which simulates the remote supervision and control of air con-

ditions in a space cabin. This software has been applied in several researches

of human psychophysiological state in the HMI [52, 59–61, 80, 81]. A dedicated

graphical user interface (GUI) ensures that the whole simulation is done with

computers restricted in the lab room and minimised the uncertainty from un-

controlled factors. Meanwhile, such software based configuration guarantees the

reproduciblity of simulation experiment and the validity of results. Despite of
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several advantages, a relatively long phase of familiarisation is necessary and es-

sential for operating aCAMS for it is not intuitive. Similar to the virtual vehicle

operation, a certain level of understanding on some key features and functions

and a general knowledge about fundamental processes are needed.

Figure 2.6: Model of aCAMS [80, 81]

As shown in Figure 2.6, an operator of aCAMS is required to maintain cabin

air condition within the breathable range according to the information of inter-

actions. In these management system simulations used in the HMI similar to

aCAMS, the participant is normally paired with an automatic controller and also

responsible for monitoring the performance of it. The different psychophysiologi-

cal state may be triggered with the level of automation, such as switching a certain

number of subsystems into manual control or tuning different frequency for auto-

matic control intervention. A number of potential failure needed to be anticipated

by the operator and the performance is normally assessed based on the time of

sustaining simulation within designed range. The experiment results indicated

that the change of manual control variables was significantly associated with hu-
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man psychophysiological state such as mental entanglement or stress. This sort of

induction bore numerous resemblance to the observations from real life human-

computer interface, e.g. human operators in modern powder grid regulation.

However, as Figure 2.6 shows, the management system simulation also suffers

from the problem of high complexity identical to the virtual vehicle operations.

The requirement of proficiency decreased the time efficiency of HMI simulation.

Moreover, the specified training for system operation of most management system

simulations is not applicable and referable to others, thus increases the costs of the

experiments.

2.4.4 Mental Arithmetic Experiment

The mental arithmetic experiment is based on mental arithmetic operation, includ-

ing elementary addition, subtraction and multiplication. The difficulty of task is

fully controllable with the number of operands’ digits and the respond time for

completing each calculation. Mental arithmetic calculation is intuitive and direct

for most people with basic algebra knowledge, and the computational requirement

for programming and implementation is relatively low compared to the others. It

offers a high efficient way for the HMI simulation, and due to its simplicity the

experiment is highly reproducible.

Though the mental arithmetic experiment differed from the previous conven-

tional approaches for the HMI simulation, it has been applied in many human

psychophysiological state researches [27, 38, 46, 56, 82–84]. Within these experi-

ments, it was observed that, during the mental arithmetic tests, the task difficulty

was significantly linked with the changes in human respiratory system, cogni-

tive workload and cardiovascular system. Compared to the other HMI simulation

approaches, the mental arithmetic experiment was selected for the human psy-

chophysiological state research in this project for:

1. Effectiveness: As mention in the previous subsection, the psychophysiologi-

cal state variances due to the stimuli of the Stroop colour-word interference

were less intensive and thus could be interfered with human intrinsic psy-



42 2.4. Human-Machine Interface Simulation

chophysiological process [9, 38, 56, 76].

2. Robustness: Different from the mental arithmetic experiment, the effective-

ness of the virtual vehicle operation was significantly depended on the lab

environment and the maintenance [26, 100].

3. Simplicity: Compared to the mental arithmetic test, the efficiency of using

the management system simulation was strictly limited with the complex

training phase [80, 84].

4. Intuitiveness: The simple knowledge requirement of mental arithmetic op-

eration made it suitable for everyone, regardless of the most inter- and intra-

individual differences such as age or gender.

2.4.5 Experimental Configuration

In this research, the mental arithmetic test was selected for the HMI simulation

and human psychophysiological state during the experiments was assessed with

EEG, ECG, pupil diameter and facial temperatures. The mental arithmetic test was

based on a GUI software, which was similar to the one applied in the previous

human psychophysiological researches at the University of Sheffield [82–84]. This

system had succeeded previously in providing participants controllable workload

through a simple and reproducible way. Meanwhile, as mentioned earlier, EEG

and ECG were recorded and processed with the hardware and corresponding

software from ActiveTwo Biosemi®, and a Gazepoint™ GP3 eye tracker was ap-

plied for the pupil diameter measurement. The experiment configuration used for

the acquisition of these psychophysiological data followed the previous examples

in [52, 60, 61, 80–84]. Facial temperature, as a new psychophysiological measure-

ment approach, was recorded with a FLIR E40bx thermal camera and analysed

with Matlab SDKs based system.

The experiment relied on two computers with TCP/IP communication. The

first computer was for the participant to perform the mental arithmetic test with

a Matlab based GUI system. While, the second computer ran all the software

for data acquisition, including the ActiView LabVIEW, Gazepoint™ Control and
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Matlab based thermal imaging system. The exchange of data across each software

and between two computers depended on TCP/IP communication. Such hard-

ware setup separated the data acquisition from the participant operation, which

minimised intervention to human psychophysiological state in real-time experi-

ments. Furthermore, it reduced the computational requirement and ensured the

smoothness of the whole system during running, especially for thermal image

processing as thermal imaging live streaming normally took the most of computer

drive.

Figure 2.7: Image of ActiView Software by Biosemi [1]

Figure 2.7 shows the Actiview LabView Acquisition software provided by

Biosemi®. The raw ECG and EEG signals are acquised with a frequency of 2048 Hz,

and after the filtering and processing of ActiView software the signals’ frequency

was reduced to 256 Hz for the convenience of communication. In addition, the

EOG of participant is also recorded at the same time for a lateral checkup, as the

movement of human eye and eyelid could impact significantly on the recording

of EEG signals. Meanwhile, the recordings of EOG may also be applied for fu-

ture investigations of the relationship between human facial expression and psy-
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chophysiological state. Figure 2.8 indicates the positions selected for the EOG

measurement in this research. The electrodes EXG1 and EXG3 are for the hori-

zontal channels, and the electrodes EXG2 and EXG4 form the vertical channels.

The reference level consists of signals from the electrodes EXG5 and EXG6, which

are placed on the bone behind the ears with less soft tissue.

Figure 2.8: EOG Electrodes [1]

The Actiview LabView software sends each EEG, ECG and EOG raw data

via TCP/IP with 3 bytes sample size. The mental arithmetic test GUI system

introduces an extra byte of zero value for computational endianness. These four

bytes samples are then unified and transformed into 32-bit format and stored in

real-time within the mental arithmetic test GUI system. The data file generated

includes the index of time of records (with an interval of 0.0039 s between two

adjacent rows), the EEG recordings (at positions of Pz, POz, CPz, Fz and AFz), the

ECG recordings (at the positions of LA, RA and LL), the EOG recordings of (at the

positions of HR, VR, HL and VL) and the reference (MR and ML).

The Gazepoint™ GP3 eye tracker software (see Figure 2.9) is responsible for the

acquisition and transmission of pupil size data from the camera. It comes with an

embedded TCP/IP communication channel via computational extensible markup

language. The images of the human pupil are evaluated with the Gazepoint™ GP3

eye tracker software and are then sent out with a native frequency of 60 Hz (the

sampling frequency of the eye tracker camera). The data received and formatted

by the mental arithmetic test GUI in real-time includes: time of record (with an

interval of 0.0167 s between two adjacent rows), the x and y coordinates of the left
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pupil in the image, the left pupil diameter in pixels, the left pupil scaling factor,

the left pupil validation flag (binary values of 0 or 1) and followed by the indices

for the right pupil in the same order. The mental arithmetic test GUI system

calculates the PDM biomarker with the equations mentioned previously.

Figure 2.9: Gazepoint™ GP3 Eye Tracker Software

The recordings of the FLIR thermal camera are integrated and processed with

the self developed Matlab GUI software based on the Matlab support SDKs files

from FLIR®. As shown, the software may connect to the thermal camera and

project the images in the real-time. The x, y, w and h correspond to the coordi-

nates, width and height of rectangles for measuring the regions of interest. The

distortion and displacement due to the head movement may be fixed with up-

dating the position and size of these rectangles during the real-time experiments.

The sampling frequency of thermal camera is set to be 10 Hz, and the GUI system

stores the raw data locally and sends the processed data with a decimated fre-

quency (1 Hz) to the mental arithmetic test GUI through TCP/IP communication.

The basic configuration of the arithmetic mental test GUI system consists of

global variable regulation, TCP/IP receiver and a timer object function to create

one-second loops performing the following tasks:
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Figure 2.10: Thermal Camera Software

1. Open TCP/IP channels and connect to the servers of all biomaker software.

2. Serve as the TCP/IP receiver and store the recording packages in a buffer.

3. Update the timer function based on TCP/IP responses for remaining time of

each operation and total experiment.

4. Compile the files for raw data storage.

5. Check the difficulty level of mental arithmetic test and switch the level if

required.

6. Generate variance biomarkers via corresponding functions.

7. Evaluate the participant performance with premeditate function.

8. Print out the updated remaining time for participant.

9. Present the new operation task if operation ends because of time or partici-

pant’s input.

10. Execute function calls for online modelling and control (if requested).
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11. Store biomarkers, actual and predicted performance in the model result file,

as well as control actions and fatigue index (only for control experiment).

As shown in Figure 2.11, the mental arithmetic test GUI software provides an

access for the participant to operate multiplication task with limited experiment

time and reaction time. It also ensures the operation of experiment was fully under

the control of participant as they may stop at anytime. The difficulty of multipli-

cation may be expressed with the number of operands’ digits and the countdown

timer of remaining operation time presented in the boxes. In the modelling ex-

periments, each experiment follows arranged phases with different difficulty level

for the evaluation of model prediction. While in the controlling experiments, the

difficulty level during each experiment follows the guidance from the controller

to cooperate with human operator psychophysiological state. Also, the fatigue

function was also implemented for further adjustments if requested.

Countdown timer for 
total experiment time

Countdown timer for 
each operation time

Fatigue self-report indicator
Icons to start and end 
of TCP/IP connections 
and experiment

Numbers generated for 
multiplication Answer box for

participant input

Icon to save 
participant input

Figure 2.11: Mental Arithmetic Test GUI

The mental arithmetic test GUI applied in this research provides the task that

requires the participant to complete the multiplication of two numbers (include
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both positive and negative integrals). The digits of the random generated numbers

and the time scale for answering each question constitute different difficulty levels

of mental arithmetic tasks. The numbers are generated from the Matlab stochastic

function, and the four difficulty levels defined in this research are shown in Ta-

ble 2.1. The total operation time for one mental arithmetic test lasted for twelve

minutes. For the modelling experiments there were four experiment phases with

equal time period corresponding to four difficulty levels, whereas for the control-

ling experiments the difficulty level varied in relate to the changing of operators’

psychophysiological state.

Difficulty Level Level 1 Level 2 Level 3 Level 4
Response Time (sec.) 10 5 10 5
Digit of the First Numbers 1 1 1 1
Digits of the Second Number 1 1 2 2
Value in the Plots 0.25 0.5 0.75 1

Table 2.1: Mental Arithmetic Difficulty Level

The whole mental arithmetic experiment received the ethical approval and

followed the health and safety restrictions of University of Sheffield. All the psy-

chophysiological measurements applied were independent from the direct electri-

cal current and ran on batteries with limited voltages. For hygiene, the electrodes

were carefully washed and maintained both before and after each experiment,

and alcohol free wipes were applied at human-electrode contact area before and

after experiment. The participants were informed with the aims and objectives of

the research as well as the complete experiment detail and rights during the ex-

periment. All data collected from the research remained anonymous and strictly

under the regulation of the University data protocols. The participants were asked

to avoid consuming any food or drink at least one hour prior to the experiment

and abstain from taking any medicine, caffeine or alcohol drink one day before

to avoid any psychophysiological alteration. They were also advised to maintain

relaxed both mentally and physically before the experiment. During the experi-

ment, they were told to avoid clenching jaws or massive movements in head and

leg to reduce the contamination within the recordings. Talking and specking were
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also not allowed during the experiment unless specifically for the personal request

or for the purpose of research.

2.5 Control of the Human-Machine Interface

Currently, HMI constitutes the foundation of current world, ranging from day-to-

day individual mobile communication to global logistics. New automatic algo-

rithms and advanced computational systems allow the HMI systems to be imple-

mented in many aspects of society and initiated revolutionary changes in diverse

areas. These advanced computational systems provide the opportunity to pro-

cess large information in a relatively short period of time for the human operators

in various complex fields, such as remote surgery and industrial networks [87].

Though automatic algorithm have largely relieved manual work for basic redun-

dant tasks and compensated human performance, human intervention is still nec-

essary for high level communication and general regulation. Therefore, certain

approaches and methods to regulate level of automation remain important for the

further application and development of the HMI systems.

In the past few decades, the requirement of human operators in the HMI sys-

tems had significantly shifted from working on constant predictable laborious

tasks to irregular complex immediate issues. This indicated that as automatic

systems in the HMI developed, the work hour of human operator decreased while

the work intensity increased. Thus, for such combination of an automatic sys-

tem with a human operator, the problem often rose from asymmetries between

continuously varying effort required for task-solving and relatively fixed process

capacity of human operators. System failures and performance breakdowns were

commonly correlated with the effort required exceeded human capability. While

the insufficient workload resulted in attentional shift and vigilant degradation,

and finally led to compromised process capacity. These phenomena were consid-

ered to be rooted in the prejudices of distrust or over-trust towards the automation

in the HMI. They had influenced the overall performance of HMI and sometimes

threaten the safety of whole system [87]. Since constantly assessing task difficulty
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and determining automatic level were inessential most of the time and demanded

extra effort from human operators, a more acceptable and practical approach was

to balance human-machine effort level according to human operator psychophys-

iological states.

For the purpose of balancing human-machine effort level, it is of great im-

portance to measure and predict human psychophysiological state accurately and

immediately in the real-time HMI. Current existing models and frameworks for

predicting human psychophysiological state in the HMI systems, e.g. ANFIS,

Mamdani-type fuzzy model and interval type-2 fuzzy model, were mostly devel-

oped from data-driven approaches [28, 39, 52, 61, 84]. They approximately failed

to satisfied the primary demand of balancing human-machine effort level: to as-

sess human psychophysiological state promptly and estimate the trend of operator

performance for tuning the automation correspondingly. The lack of investigation

for potential origins and possible causes of human operators’ compromised the

task performance created a disastrous flaw for these existing control approaches.

Such passive control approaches without prediction of future human behaviour

may not prevent operator mental breakdown or other scenarios and prepare the

automatic system adapt to the situation in advance. Therefore, an ideal control

method to balancing human-machine effort level in the HMI systems should meet

the following fundamental requirements:

1. Reliability: the control configuration should be established from solid as-

sessments of human psychophysiological state in real-time.

2. Adaptability: the control algorithm should be able to tolerate the estimation

error and was robust to the interference within the HMI.

3. Perception: the control action should be developed from an accurate un-

derstanding of the change of human psychophysiological states and human

cognitive performances.

4. Decisiveness: the control intervention should remain punctual and effective

to ensure the overall efficiency and safety of HMI systems.
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It was of great interest to address these requirements in the control of HMI

system. Therefore, with the aim of balancing human-machine effort level, a new

computational framework combing state tracking technique based on existing hu-

man psychophysiological state estimation algorithm is needed.

2.6 Summary

This section summarised current development of human-machine interface re-

search from human psychophysiological state assessments to the modelling and

control within the interface. After comparing the different human psychophysio-

logical state measurements, the HRV based on ECG, the TLI based on EEG and

PDM were recommended as the most suitable biomarkers for the HMI. Mean-

while, the up-to-date thermal imaging technology allowed future promising biomark-

ers for this research to be developed on human facial temperature. These findings

provided a theoretical foundation for the modelling and control of HMI and some

guidance for the design of new facial temperature related biomarkers as well.
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Facial Thermal Imaging for

Psychophysiological State

Detection

Psychophysiological state prediction is of great importance to the HMI as far as

both safety and reliability are concerned. In this chapter, the use of facial temper-

ature changes for predicting psychophysiological state and task performance has

been investigated. The effectiveness of using facial temperature with the thermal

camera to estimate the human psychophysiological state has been validated with

the statistical results from a carefully designed HMI experiments with ten (10)

healthy subjects. The new facial temperature biomarkers have exhibited a similar

or even better ability to differentiate various psychophysiological state in com-

parison with the traditional biomarkers (e.g. HRV, TLI and PDM). The mean

nasal temperature and the differential energy between philtrum and forehead

(DEFP) have been shown to be more sensitive to the psychophysiological state

changes comparing to the conventional biomarkers. The maximum facial temper-

ature and the mean forehead temperature have also shown clear correlations with

psychophysiological state and task performance.

52
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3.1 Background

3.1.1 Psychophysiological State Detection

The human operator’s performance on a certain task is dependent on his or her

attention span, cognition, perception and execution, which all develop from the

basic conditional reflex [6, 7]. Therefore, monitoring the activities of some specific

neurons and subsystems they regulate proved to be a valid approach to assess

one’s psychophysiological state [6, 7, 41]. In the area of human-machine inter-

face research, the assessment of the human operator’s psychophysiological state

usually combines peripheral physiology, startle response, central physiology and

behaviour. The frequently used measurements are ECG, EEG, pupil size, blood

pressure, blood volume, blood volume pulse, respiration, muscle tension, electro-

dermal activity, galvanic skin and temperature signals [23, 52, 61, 81, 82, 84, 97].

HRV from ECG and TLI from EEG are the most common and recommended

psychophysiological state biomarkers. HRV consistently corresponds to the cardio-

respiratory system, which is sensitive to the changes of psychophysiological stress [9,

48]. The aim of TLI is to calculate one’s work memory (WM), which constituted

one’s ability to maintain the focus on one specific task regardless of the surround-

ing interference [28, 75]. However, EEG and ECG measurements are normally in-

volved with using the electrodes to record voltage differences across the skin. Such

a requirement limits the movement and the range of movement of the human oper-

ator and disturbed his or her mental state as well. Meanwhile, the measurements

here remains sensitive to the noise introduced by defective skin-electrode connec-

tions and surrounding electromagnetic fields. The high complexity of EEG and

ECG measurements restricts the efficiency and the safety of applying HRV and

TLI in real-world situations. Therefore, it was important to design and integrate

new psychophysiological state biomarkers with the existing system to overcome

these constraints.
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3.1.2 Facial Temperature

It was found that the thermal homeostasis, the emotion and the fight or flight

response all share the same area of the brain - hypothalamus [16]. Apart from

the hypothalamus, the parasympathetic and sympathetic nervous system also in-

volves in the psychophysiological induced thermal regulation [39]. The control

of blood flow and the contraction and dilation of blood vessels were consistently

correlated with the psychophysiological state. These connections constituted the

foundation of human conditioned response, and as a result, these regulations led

to the observable temperature changes at the level of surface skin [12, 14]. Due to

the periodic regulation of blood circulation, most temperature regulations demon-

strated circular periods around 10 seconds, and others varied from seconds to

minutes [40, 73].

Infrared cameras have hitherto provided a reliable means of documenting the

facial temperature in real time without body contact, and they usually have fewer

requirements for the work environment compared with EEG and ECG. The tem-

perature of the target is measured by the recorded infrared radiation, the emissiv-

ity, the transmittance and the surrounding temperature [85]. The total radiation

W captured by the camera is as follows:

W = Wobj + Wre f + Watm, (3.1)

where Wobj, Wre f and Watm are the infrared radial emission from the target object,

surrounding environment reflection and atmosphere, and they are calculated via

the following equations:

Wobj = εobj · τatm · σ · (Tobj)
4,

Wre f = (1− εobj) · τatm · σ · (Tre f )
4,

Watm = (1− τatm) · σ · (Tatm)
4,

(3.2)

where Tobj, Tre f and Tatm are the temperatures of the target object, surrounding

environment and atmosphere, σ is a constant. εobj is the emissivity of the object

that is depended on the material, and τatm is the transmittance of the atmosphere
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which is determined by the distance and the relative humidity. Infrared cam-

eras provide a non-contact measurement that is free from the psychophysiological

changes for connecting the electrodes in EEG and ECG. A comparison between ar-

eas and a tracking of changing thermal patterns can be obtained with the real-time

two-dimensional thermal image from the camera [85].

The facial temperature recorded by infrared cameras has been shown to be a

potential valid reflection of the human mental state nowadays. Previous studies

have also shown that temperature readings from the forehead, the periorbital and

the nasal regions are closely correlated to psychophysiological state [62, 63, 65].

The thin soft tissue layer of the forehead make the observation of temperature

change more convenient than the other areas, while the high blood pressure

around the eye orbit formed the maximum facial temperature point in the pe-

riorbital region. The temperature of the nasal regions represent the regulation of

cardio-respiratory system, as it is under the control of both blood flow and air flow.

Also, it was proven that the energy spectrum from the frequency analysis of the

facial temperature was consistently correlated with the heartbeat rate and cortisol

level [39]. Thus, the biomarkers based on the facial temperature readings from

the camera had a better chance of providing accurate psychophysiological state

estimation instantaneously, and also retained adequate distance from the subject

as compared to the HRV and TLI.

3.2 Experimental Setup

3.2.1 Participants

The participants of this experiment included a total of ten (10) healthy research

students, selected from the Department of Automatic Control and Systems Engi-

neering at the University of Sheffield (UK). The selection of participants covered

both genders from different races and countries to avoid any bias. They were

between 22 to 30 years old, with an average age of 25. In addition, all the partici-

pants were required to abstain from taking any medicine, caffeine or alcohol drink

at least two hours before the experiment to avoid abnormal psychophysiological
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reaction. They were informed with the experiment procedures and their rights

during the experiment, and all the experiments were conducted under the Health

and Safety regulations of the University of Sheffield.

3.2.2 Simulation Experiments

The mental arithmetic experiment was selected as the HMI simulation. It was

based on the Matlab GUI app developed by a previous PhD student Luis A. Torres-

Salomao in the University of Sheffield [82, 84].

The entire experiment for each student lasted around 40 minutes, including

two 12-minute mental arithmetic test sessions and one 12-minute comparison ses-

sion as a control group in the interval, with 2-minute breaks in between the ses-

sions. There were a total of four difficulty levels and each difficulty lasted 180

seconds that should comply with the time requirement for a full transition of hu-

man psychophysiological state. As shown in Figure 3.1, the order of difficulty

levels varied between two mental arithmetic test sessions for eliminating the infer-

ence of human adaptation, where the participants subjectively controlled their task

performances and psychophysiological states based on their previous experiences.
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Figure 3.1: Difficulty levels for facial temperature experiment session 1 (progres-
sive increase) and session 2 (random)
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3.2.3 Temperature Data Acquisition

The facial temperature was recorded with a FLIR E40bx thermal camera that is

positioned horizontally 0.5 meter away from the participant’s face. The emissivity

of the human tissue was 0.98, and the sampling frequency of the camera was set to

be 10 Hz. The laboratory room provided a steady environment temperature and

a relative humidity of around 20.0 ◦C and 50 % respectively.

3.3 Developed Facial Temperature Biomarkers

The thermal imaging sequences were analysed in MATLAB®to extract the tem-

perature magnitude and frequency changes in the regions of interest (ROI), which

were the periorbital area, the nasal area and the forehead (see Figure 3.2). The de-

veloped biomarkers based on these were the maximum facial temperature (around

periorbital), the mean nasal temperature, the mean forehead temperature and the

differential energy between philtrum and forehead (DEFP).

Figure 3.2: Regions of interest: periorbital, nasal and forehead

The maximum facial temperature Tmax f is captured by the point measurement
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of the camera. The calculation is as follows:

Tmax f =
{

max(T(i,j))|∀i ∈ L, ∀j ∈W
}

, (3.3)

where T(i,j) represents the temperature value recorded at pixel (i, j), and L and W

are the numbers of the columns and rows of pixels in a frame.

The mean nasal temperature T̄n is captured by the rectangle measurement of

the camera. The calculation is as follows:

T̄n =

{
1

XY ∑ T(i,j)|∀i ∈ X, ∀j ∈ Y
}

, (3.4)

where T(i,j) represents the temperature value recorded at pixel (i, j) from the se-

lected rectangle region over the nasal area, and X and Y are the numbers of the

columns and rows of pixels in the region.

The mean forehead temperature T̄f is captured by the rectangle measurement

of the camera. The calculation is as follows:

T̄f =

{
1

MN ∑ T(i,j)|∀i ∈ M, ∀j ∈ N
}

, (3.5)

where T(i,j) represents the temperature value recorded at pixel (i, j) from the se-

lected rectangle region over the forehead, and M and N are the numbers of the

columns and rows of pixels in the region.

The differential energy between philtrum and forehead (DEFP) is obtained by

the differential energy from the Fourier transform analysis of the temperatures

between the philtrum and forehead. After filtering the raw data with a bandpass

filter (0.4 Hz–4 Hz representing 24-240 beats per minute), the Fast Fourier Trans-

form (FFT) is performed with a window size of 10 seconds to extract the energy

spectrum within that frequency range. The final value is then generated from

the subtraction between the maximum energy value of the philtrum temperature

and the mean energy value of the forehead temperature. The whole process is

summarised via the following equations (the Discrete Fourier Transform DFT to

represent the Fast Fourier Transform FFT for simplicity):
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ŜTp,j[k] =

{
N−1

∑
n=0

T̄p[2− n− j]e−i 2π
N kn|∀k ∈ [4, 40], N = 100

}
,

ŜT f ,j[k] =

{
N−1

∑
n=0

T̄f [2− n− j]e−i 2π
N kn|∀k ∈ [4, 40], N = 100

}
,

DEFPj = max ŜTp,j − ŜT f ,j

(3.6)

where T̄n and T̄f represents the mean philtrum temperature and the mean fore-

head temperature respectively. N is the sample size of the selected window.

3.4 Evaluation of Facial Temperature Biomarkers

In this research, the efficiencies of different biomarkers are determined by their

abilities to measure human operators’ psychophysiological state in real-time. As

are already mentioned in the previous chapter, in the normal state, there exist syn-

chronised connections between human operators’ psychophysiological state and

the task they are dealing with. Therefore, in reverse, the difficulty level (DL)

and the task performance capable of representing psychophysiological state in

some degree. However, the stability of human operators’ task performance are

compromised by the disturbances from the random mental arithmetic tasks and

the mathematical abilities of different individuals, which were irrelevant to the

actual psychophysiological state. Conversely, the DL was associated with a pro-

longed 3-minute subsection with similar mental arithmetic tasks, thus, it was able

to represent a general human operator’s psychophysiological state within that cor-

responding period. Accordingly, the following evaluations of facial temperature

biomarkers, Tmax f , T̄n, T̄f and DEFP, were focused on the analysis of correlations

between the indicators and the DL.

3.4.1 Maximum Facial Temperature

T-test H Value

In this research, the two-sample T-test is applied to compare the efficiency of using

facial temperature as suitable psychophysiological indicators with HRV, TLI and
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PDM. The test statistic is given as follows:

t =
x̄1 − x̄2√

s2( 1
N1

+ 1
N2
)

, (3.7)

where t is a quantile with N1 + N2 − 2 degrees of freedom which is an indicator

ratio between the samples and noises, and the pooled sample variance s2 was

measured as follows:

s2 =

N1

∑
i=1

(xi − x̄1)
2 +

N2

∑
j=1

(xj − x̄2)2

N1 + N2 − 2
, (3.8)

in which the two x̄ were the means of two compared sequences, and N1 and N2

represented the sample sizes, see Table 3.1 for details. The null hypothesis of

the test was that there is no statistically significant difference between the two

samples. The t value is checked with a critical value at the probability level of 0.05

to determine the acceptance or rejection of the null hypothesis.

Phase 1 Phase 2 Phase 3 Phase 4
Sample Sizes 150 180 180 180

Table 3.1: Sample Sizes of Different Phase within the Experiment Session

According to the two-sample T-test, each indicator is tested for its ability to dis-

tinguish different psychophysiological state. For H = 0, we found no significant

difference observed within a 5% confidence level. For H = 1, there were significant

differences between the data from two adjacent subsection with different difficulty

levels. Original H value of the two-sample T-test is a binary indicator for showing

whether difference can be found between two compared sequences. By summer-

ing the H values over the different participants, it can be found whether the change

of human psychophysiological state had triggered any change in the recordings

of biomarkers during the experiments. For this research, the H value was consid-

ered as the primary criterion for the assessments of biomarkers, because it was

the most direct and clear estimation of how sensitive a biomarker was to a change

in psychophysiological state. A biomarker with the higher H value required less
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effort to extract psychophysiological related information from its records.

H value DL 1 DL 2 DL 3 DL 4
DL 1
DL 2 0.9500
DL 3 1.0000 1.0000
DL 4 1.0000 1.0000 0.8500

Table 3.2: Overall Maximum Facial Temperature T-test Results for the Experimen-
tal Sessions

The overall average H value of the maximum facial temperature for all the ten

volunteers was 0.9667. This suggested that the maximum facial temperature was

sensitive to the operators’ psychophysiological state changes. As shown in Ta-

ble 3.2, the biomarker was able to differentiate the different psychophysiological

states of the participants with medium workloads. For some individuals, the low

workloads of DL 1 & 2 were not high enough to trigger observable psychophys-

iological changes between these two difficulty levels, thus, the performance of

the biomarker was compromised. Meanwhile, some participants met their math-

ematical limitation on mental arithmetic with DL 3 and failed to handle the more

challenging DL 4 properly. This led to no actual psychophysiological change exist

and to be observed when the difficulty level increased from 3 to 4. To support

the finding of the H value, the following sections presented a further investiga-

tion on how the some features of the maximum facial temperature indices were

consistently correlated with psychophysiological state.

Arithmetic Mean

The arithmetic mean was one of the most observable statistical differences for the

temperature indicators. Table 3.3 summarises the overall arithmetic means of max-

imum facial temperature for all the participants in the incremental and random

difficulty level sessions. As shown in this table, the maximum facial temperature

was generally increased as the task difficulty level increased, regardless the order

of the difficulty levels. It is worth noting that the mean value of difficulty level 4

was lower than the mean value of difficulty level 3 in the random sessions. This

was due to the fatigue and breakdown of the participants, considering it was the
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last subsection for an hour-long experiment (plus the setup time). Therefore, the

maximum facial temperature are able to directly indicate human psychophysio-

logical state.

Mean value (◦C) DL 1 DL 2 DL 3 DL 4
Incremental session 36.1602 36.1568 36.1775 36.1802
Random session 36.3570 36.4011 36.4083 36.3328

Table 3.3: Overall Arithmetic Means for the Maximum Facial Temperature

The overall mean value of the maximum facial temperature for all the ten

volunteers was 36.2713 ◦C. Changes in temperatures for different sessions were

mostly around 0.4397 ◦C, and around 0.0634 ◦C for any two adjacent subsection.

In addition, compared to the period of the control sessions, both the mean and

the standard deviation of the maximum facial temperature for the experimental

sessions showed some increases, e.g. from 35.7329 and 0.4108 ◦C to 36.2713 and

0.4894 ◦C.

Correlation

Correlation checked the dependence between the biomarkers and the operators’

psychophysiological states. In this research, the Pearson product-moment correla-

tion coefficients were measured via the following equation:

ρxo =

N
∑

i=1
(xi − x̄)(oi − ō)√

N
∑

i=1
(xi − x̄)2

N
∑

i=1
(oi − ō)2

(3.9)

where x is the recordings of the biomarkers and o is the observation (difficulty

level). N is the total sample size and was set to be 692 for a session. x̄ and ō are

the mean values of the biomarkers and the observation. Table 3.4 summarises the

correlation between the maximum facial temperature and the difficulty level for

the ten participants.

In the experiment with ten (10) participants, the maximum facial temperatures

for five subjects were consistently correlated with their psychophysiological state
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Correlation (%)
Incremental session Random session

Participant
1 0.7304 0.4788
2 -0.4925 0.1148
3 -0.2055 0.2654
4 0.5436 0.6491
5 -0.0560 0.0046
6 0.5066 0.2670
7 -0.7933 -0.1562
8 -0.0994 -0.4141
9 -0.1684 0.5163
10 -0.3923 0.5736

Table 3.4: Total Correlation between Maximum Facial Temperature and Difficulty
Level

for both increasing and random difficulty order (see Table 3.4). Among the five

participants, two showed negative correlations between the temperature and the

accuracy, while the other three demonstrated positive correlations. Therefore, the

psychophysiological state induced change of the maximum facial temperature was

predominantly affected by the individual differences. Meanwhile, the absolute

value of correlation coefficient between the maximum facial temperature and the

task accuracy performance were relatively high in some cases, e.g. Figure 3.3.

This suggested that the maximum facial temperature showed a great potential of

representing an online indicator.

Dispersion Ratio

The dispersion ratio measured the density of data distribution, which is the ratio

between the variances σx and the means µx, as the following equation shows:

D = σ2
x /µx. (3.10)

Table 3.5 shows the total dispersion ratio of the maximum facial temperature

for the ten participant. The table suggests that the dispersion ratios of the rest

states are different from the experimental sessions. This was due to the change of

thermal regulation based on the circular system. However, there was no significant
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(a) Normalised maximum facial temperature (-.-), accuracy (- -) and difficulty level (-)
plots for participant 1. Session 1 with elevated difficulty levels

(b) Normalised maximum facial temperature (-.-), accuracy (- -) and difficulty level (-)
plots for participant 1. Session 3 with random difficulty levels

Figure 3.3: Maximum Facial Temperature

Dispersion ratio Incremental session Random session
rest states 0.6665 0.6174
DL 1 0.5769 0.6391
DL 2 0.6656 0.6305
DL 3 0.7135 0.5730
DL 4 0.6376 0.5956

Table 3.5: Total Dispersion Ratio for Maximum Facial Temperature
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general pattern that can be observed between the difficulty level and dispersion

ratio. Nevertheless, the differences of dispersion ratio between different difficulty

level were significant. This may contribute to the change of stress level or arousal

of the psychophysiological state in response to different requirements of the task.

Therefore, the dispersion ratio of the maximum facial temperature was also in-

dicative of the human psychophysiological state.

Zero-Crossing Rate

The zero-crossing rate measures the rate of changes within a data recording. It

checks the stability and frequency component within the data. In this experiment,

the zeros set to be the mean values x̄ of each phase and the rate was measured

through the following equations:

zcr =
1

N − 1

N−1

∑
i=1

1R<0((xi − x̄)(xi−1 − x̄)), (3.11)

where N is the sample size of x in each phase (see Table 3.1) and 1R<0((xi −

x̄)(xi−1 − x̄)) is an indication function defined as follows:

1R<0((xi − x̄)(xi−1 − x̄)) =


1, if (xi − x̄)(xi−1 − x̄) < 0

0, if (xi − x̄)(xi−1 − x̄) ≥ 0
(3.12)

Table 3.6 summarises the total zero-crossing rate for maximum facial temper-

ature of the participants in the mental arithmetic experiments. Similarly to the

dispersion ratio, the pattern between the difficulty level and zero-crossing rate

was not obvious in general. However, the differences of the zero-crossing rate

for the maximum facial temperature between the rest states and the experimental

sessions were significant. This may also be the results of the regulation of blood

flow due to the changes in psychophysiological states. Still, the zero-crossing rate

suggests that there exist some consistent connection between the maximum facial

temperature and the participant’s psychophysiological state.
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Zero-crossing rate Incremental session Random session
rest states 0.1378 0.1313
DL 1 0.1026 0.1263
DL 2 0.1161 0.1171
DL 3 0.1115 0.1099
DL 4 0.1257 0.0925

Table 3.6: Total Zero-crossing Rate for Maximum Facial Temperature

3.4.2 Mean Nasal Temperature

Following the results of maximum facial temperature analyses, the statistical anal-

yses of mean nasal temperature were focused on the T-test H value, arithmetic

mean and correlation.

T-test H Value

The overall average H value for the mean nasal temperature encompassing all the

ten participants in the experiment was 0.9500. This indicated that the mean nasal

temperature was also sensitive to the psychophysiological changes.

H value DL 1 DL 2 DL 3 DL 4
DL 1
DL 2 0.9500
DL 3 1.0000 0.9500
DL 4 0.9500 0.9500 0.9500

Table 3.7: Overall Mean Nasal Temperature T-test Results for Experimental Ses-
sions

As shown in Table 3.7, the mean nasal temperature demonstrated an excellent

ability to differentiate various psychophysiological states. Compared to the per-

formance of the maximum facial temperature, the mean nasal temperature had a

more balanced performance throughout the entire experiment. However, the lower

H value suggested that the mean nasal temperature shared a weaker connection

to the operators’ psychophysiological state. It was found, in some cases, that the

moustache of male participants disturbed the air flow in the nasal area. This may

be one of the reasons for the compromised overall average H value of the mean

nasal temperature indicator. To further investigated the relationships between the
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psychophysiological state and the mean nasal temperature, the arithmetic mean

and the correlation analyses were also provided.

Arithmetic Mean

Table 3.8 shows the overall arithmetic means of the mean nasal temperature for

all the participants in the incremental and random difficulty level sessions. As

shown in the table, the mean nasal temperature was slightly reduced as the task

difficulty level increased in the both sessions. The mean values of difficulty level

4 were significantly lower than the mean values of difficulty level 1 in the both

two sessions. This was due to the increased speed of air flow at the nasal area

when the participants’ raised their arousal or stress level for more challenging

tasks. The consistent performance of the mean nasal temperature in the both two

sessions suggested that it was able to represent the human psychophysiological

state precisely.

Mean value (◦C) DL 1 DL 2 DL 3 DL 4
Incremental session 33.9163 34.0144 33.9394 33.7517
Random session 33.9331 34.1069 33.9776 33.8240

Table 3.8: Overall Arithmetic Means for Mean Nasal Temperature

The general mean value of the mean nasal temperature for all ten (10) test sub-

jects was 33.9293 ◦C. The change of temperature over the different sessions ranges

from 0.1527 up to 1.8739 ◦C with a mean value of 0.7758 ◦C, and from 0.0021 to

0.8933 ◦C with a mean value of 0.2287 ◦C for any two nearby sub-sessions. Mean-

while, the standard deviation of the mean nasal temperature remained around

1.0285 ◦C for all the participants across the entire experiment. It suggested that

the mean nasal temperature was able to be a relatively stable indicator for predict-

ing the psychophysiological state.

Correlation

Table 3.9 summarises the correlation between the mean nasal temperature and the

difficulty level of all the ten participants for the entire experiment. As shown in
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Correlation (%)
Incremental session Random session

Participant
1 0.6804 0.5682
2 -0.4725 -0.1972
3 -0.3730 0.4792
4 0.8899 0.5022
5 -0.0239 -0.3436
6 0.7615 -0.3980
7 0.6955 0.3215
8 0.2656 0.6778
9 0.4606 0.6736
10 -0.2865 0.4220

Table 3.9: Total Correlation between Mean Nasal Temperature and Difficulty Level

this table, there were seven participants (1, 2, 4, 5 & 7-9) presented consistent cor-

relations between their mean nasal temperatures and psychophysiological states

regardless of the difficulty order. Within these seven subjects, five showed nega-

tive correlations between their mean nasal temperature and task accuracy, while

the other two provided positive correlations. This suggested that the changes of

the mean nasal temperature were also consistently correlated to the change of the

subjects’ psychophysiological performance, which supported the findings from

previous research mentioned in the background section [62, 63, 65], see Figure 3.4

for example.

3.4.3 Mean Forehead Temperature

Similar to the mean nasal temperature analyses, the statistical analyses of mean

forehead temperature were focused on the T-test H value, arithmetic mean and

correlation.

T-test H Value

The overall average H value for the mean forehead temperature for all the ten

participants in the entire experiment was 0.9333. Compared to the maximum facial

temperature and the mean nasal temperature, the mean forehead temperature was

slightly less sensitive to the operators’ psychophysiological changes.
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(a) Normalised mean nasal temperature (-.-), accuracy (- -) and difficulty level (-) plots for
participant 1. Session 1 with elevated difficulty levels

(b) Normalised mean nasal temperature (-.-), accuracy (- -) and difficulty level (-) plots for
participant 1. Session 3 with random difficulty levels

Figure 3.4: Mean Nasal Temperature
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Table 3.10 summarises the H value for the mean forehead temperature in each

difficulty levels. As shown in this table, the performance of the biomarker was

slightly compromised in the comparisons of DL 1 and DL 2, DL 1 and DL 3. This

was mainly because as compared to the other facial areas the forehead had a rel-

atively thinner soft tissue layer. The reduced blood flow of that area made the

temperature more susceptible to the environment disturbances, especially when

the participants were under lower arousal states or stress levels and the temper-

ature changes were minor. Nevertheless, the overall H value analysis of mean

forehead temperature suggested that it was still a credible biomarker for assessing

human psychophysiological state.

H value DL 1 DL 2 DL 3 DL 4
DL 1
DL 2 0.9000
DL 3 0.8500 0.9500
DL 4 0.9500 1.0000 0.9500

Table 3.10: Overall Mean Forehead Temperature T-test Results for Experimental
Sessions

Arithmetic Mean

Mean value (◦C) DL 1 DL 2 DL 3 DL 4
Incremental session 34.3702 34.4102 34.4096 34.2615
Random session 34.4604 34.4890 34.5064 34.4035

Table 3.11: Overall Arithmetic Means for Mean Forehead Temperature

Table 3.11 presents the overall arithmetic means of the mean forehead tem-

perature for all the participants in the incremental and random difficulty level

sessions. It is worth noting that despite the different difficulty level orders, the

changes of the mean forehead temperature followed the same pattern: it increased

with the difficulty levels at first and then decreased with the difficulty levels. This

suggested there were two significantly different behaviors for the mean forehead

temperature in the lower and higher arousal states (stress levels). It was found

that when participants were under the low difficulty levels, the temperature was
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predominately determined by the blood flow, which increased with the stress and

raised the temperature of forehead. However, once the temperature was raised

after a certain threshold (individual depend), the perspiration gradually took the

control of forehead temperature regulation. As a result, the mean forehead tem-

perature presented a negative correlation with the difficulty level when the partic-

ipants were under higher stress.

The overall mean value of the mean forehead temperatures across all the ten

participants was 34.4130 ◦C. The mean temperature difference between the ses-

sions ranged from 0.1090 to 1.2535 ◦C with a mean value of 0.4802 ◦C, and were

mostly around 0.1285 ◦C between any two neighbouring subsection. Different

from the mean nasal temperature, the standard deviation of mean forehead tem-

perature were increased from 0.8405 to 1.3546 ◦C in the incremental sessions, and

from 0.9957 to 1.0689 ◦C in the random sessions. This also indicated the pro-

nounced nonlinearity within the mean forehead temperature increased with hu-

man stress level, as it was regulated by both blood flow and perspiration.

Correlation

Correlation (%)
Incremental session Random session

Participant
1 0.5083 0.2948
2 -0.5341 0.4979
3 -0.4672 -0.2347
4 0.1116 0.0486
5 0.7872 0.0304
6 0.5434 0.3464
7 0.7581 0.7197
8 -0.3537 0.0800
9 -0.3508 0.2770
10 -0.7146 0.1366

Table 3.12: Total Correlation between Mean Forehead Temperature and Difficulty
Level

Table 3.12 shows the correlation between the mean forehead temperature and

the difficulty level of all the ten participants for the whole experiment. There were

six participants showed consistent correlations between the difficulty level and the
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mean forehead temperature in both two different difficulty orders. Meanwhile,

there were eight participants presented consistent correlations between their task

performance and the mean forehead temperature in both sessions. An example

was provided in Figure 3.5. Within these eight participants, half of them showed

positive correlations, while the rest showed negative correlations. This indicated

that the changes of the mean forehead temperature were able to assess the human

psychophysiological state directly in most cases.

(a) Normalised mean forehead temperature (-.-), accuracy (- -) and difficulty level (-) plots
for participant 7. Session 1 with elevated difficulty levels

(b) Normalised mean forehead temperature (-.-), accuracy (- -) and difficulty level (-) plots
for participant 7. Session 3 with random difficulty levels

Figure 3.5: Mean Forehead Temperature
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3.4.4 Differential Energy between Philtrum and Forehead

Similarly to the previous biomarkers, the statistical analyses of differential energy

between philtrum and forehead (DEFP) included the T-test H value, arithmetic

mean and correlation.

T-test H Value

The overall average H value for the DEFP of all the ten participants in the whole

experiment was 0.9667. Compared to the previous biomarkers, the DEFP re-

mained relatively high sensitivity in the most situations.

As shown in Table 3.13, the H value of DEFP was only compromised in the ses-

sion of DL 4. As already stated, the DEFP was correlated with the heartbeat rate

and the cortisol level. It was mainly under the influence of the human hormone

regulations, and the changes of it was affected by the typical hormone regulation

effects, e.g. slow but lasting. Both experimental sessions were ended with the DL

4, when the cortisol level of participants could already reached the peak value and

the similar psychophysiological effect might remained for a long period. There-

fore, compared to the previous subsections, the DEFP in DL 4 led to sightly less

significant statistical changes.

H value DL 1 DL 2 DL 3 DL 4
DL 1
DL 2 1.0000
DL 3 1.0000 1.0000
DL 4 0.9000 0.9500 0.9500

Table 3.13: Overall DEFP T-test Results for Experimental Sessions

Arithmetic Mean

Table 3.14 provides the overall arithmetic means of DEFP for all the ten participant

in the whole experiment. In the both sessions, the mean value of DEFP decreased

when the difficulty level increased from 1 to 3. As DEFP was closely linked to

the cortisol level, this inverse ratio between the difficulty level and DEFP clearly

indicates the positive correlation between the participant stress level and the task
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difficulty level. However, compared to the neural regulation, the hormone regu-

lation suffered a relatively larger hysteresis. As a consequence, the mean value of

DEFP in DL 2 of the random session was abnormally higher than those in DL 1

and 3. Also, it is worth noting that the overall mean value of DEFP sudden in-

creased in DL 4 in both sessions. This was mainly because of the sudden increases

in DEFP for these participants who experienced performance breakdown in the

DL 4.

Mean value (◦C) DL 1 DL 2 DL 3 DL 4
Incremental session 0.1383 0.0587 0.0513 0.1476
Random session 0.1529 0.1922 0.1157 0.2139

Table 3.14: Overall Arithmetic Means for DEFP

The mean DEFP for the ten subjects was 0.1265 during the experiment sessions.

Compared to the control sessions, the DEFP values increased up to around 10 %.

DEFP values changed around 0.1117 for crossing the two neighboring subsection

and 0.1163 for crossing different sessions. Compared to the other biomarkers,

the DEFP was relatively more sensitive to the participant psychophysiological or

task performance breakdown. This suggested though DEFP suffered more severe

hysteresis than other biomarkers, it was able to provide a more direct indication

of human psychophysiological state, especially for the stress level.

Correlation

Correlation (%)
Incremental session Random session

Participant
1 0.1129 -0.3704
2 -0.1458 0.0284
3 0.1003 0.2257
4 -0.6103 -0.4327
5 0.0626 -0.1361
6 -0.4007 0.1812
7 -0.1391 -0.2961
8 0.5303 0.1472
9 0.5021 -0.0739
10 -0.1086 0.0749

Table 3.15: Total Correlation between DEFP and Difficulty Level



Chapter 3. Facial Thermal Imaging for Psychophysiological State Detection 75

Table 3.15 summarises the correlation between the DEFP and the difficulty

level for all the participants across the whole experiment. As shown in this table,

there were only four participants (3, 4, 7 & 8) showed consistent correlations be-

tween their DEFP and the difficulty levels in both sessions. Meanwhile, among

these four participants, there were only two participants (4 & 7) showed consistent

correlations between their DEFP and the task performance. This was mainly due

to the breakdown in the subsection of difficulty level 4, see Figure 3.6 for example.

In the first pair of plots in Figure 3.6, the DEFP showed a clear increase at time

around 530s, while the accuracy of the participant continuous decreased for the

next 60 seconds. Meanwhile, in the second pair of plots, the increases of DEFP

were somewhat following the compromised performance in the subsections of DL

2 and 4. Therefore, these observations prove that DEFP is an efficient indicator for

assessing the stress level relevant to the psychophysiological state.

3.4.5 Comparison of Facial Temperature Biomarkers with Conventional

Biomarkers

HRV and TLI mentioned previously were selected as the biomarkers for the psy-

chophysiological state estimation for years, and PDM was validated as an effective

biomarker for the psychophysiological state assessment [9, 28, 48, 75, 82, 84].

The details about the test results are summarised in Table 3.16.

Biomarkers Incremental session Random session Mean
T̄n 0.9667 0.9667 0.9667
T̄f 0.9333 0.9667 0.9500
Tmax f 0.9667 0.9000 0.9333
DEFP 0.9667 0.9667 0.9667
HRV1 0.9167 0.9333 0.9250
HRV2 1.0000 1.0000 1.0000
TLI1 0.7333 0.8833 0.8083
TLI2 0.8667 0.9333 0.9083
PDM 0.9500 0.8833 0.9167

Table 3.16: Mean H Values for T-test Summary

The H values of the temperature markers were all above 0.9 and higher than

the scores of the most conventional biomarkers. Therefore, in general, the new
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(a) Differential Energy (-.-), accuracy (- -) and difficulty level (-) plots for participant 4.
Session 1 with elevated difficulty levels

(b) Differential Energy (-.-), accuracy (- -) and difficulty level (-) plots for participant 4.
Session 3 with random difficulty levels

Figure 3.6: Differential Energy between Philtrum and Forehead
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markers developed from the data relating to the facial temperature exhibited a

similar or even a better ability to assess the subjects’ psychophysiological state

changes in comparison with the traditional biomarkers. This is mainly because the

biomarkers based on facial temperature were more sensitive to the minor changes

in the psychophysiological state during low work load periods, especially for the

maximum facial temperature, the mean nasal temperature and DEFP, as shown in

Tables 3.17, 3.18 and Appendix A.

H value DL 1 DL 2 DL 3 DL 4
DL 1
DL 2 0.9000
DL 3 1.0000 0.9000
DL 4 1.0000 0.9000 0.8000

Table 3.17: Overall HRV1 T-test Results for Experimental Sessions

H value DL 1 DL 2 DL 3 DL 4
DL 1
DL 2 1.0000
DL 3 1.0000 1.0000
DL 4 1.0000 1.0000 1.0000

Table 3.18: Overall HRV2 T-test Results for Experimental Sessions

As already mentioned, the conventional biomarkers based on EEG and ECG

had some major limitations - noise from bad electrode-skin connections, the in-

terference of other non HMI relevant activities and the complex equipment setup.

These limitations had significantly restricted the efficiency of using conventional

biomarkers for assessing human psychophysiological state, see examples in Ta-

ble 3.17, 3.19 and 3.20. Compared with the facial temperature biomarkers, the

statistical data of HRV and TLI showed less diverse characteristics to differentiate

each psychophysiological state. However, in Table 3.18 the overall H values for

HRV2 were all equal to 1, it is worth knowing that HRV2 is the ratio between the

standard deviation and the mean of heart rate. HRV2 was more sensitive to noise

which were due to bad electrode-skin connections and muscle movements. As

shown in Table 3.21, the efficiency of using PDM was also limited for the same

reason - interference of other non HMI relevant activities, i.e. movements of eye
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and head. Therefore, a combination of both the new facial temperature biomarkers

and the conventional biomarkers should be the optimal solution for assessing the

human psychophysiological state. The facial temperature biomarkers were able

to compensate for the low accuracy of conventional biomarkers and increase the

reliability of the overall observations.

H value DL 1 DL 2 DL 3 DL 4
DL 1
DL 2 0.8500
DL 3 0.7500 0.8500
DL 4 0.9000 0.8000 0.7000

Table 3.19: Overall TLI1 T-test Results for Experimental Sessions

H value DL 1 DL 2 DL 3 DL 4
DL 1
DL 2 0.9500
DL 3 0.8500 0.9500
DL 4 1.0000 0.9500 0.7500

Table 3.20: Overall TLI2 T-test Results for Experimental Sessions

H value DL 1 DL 2 DL 3 DL 4
DL 1
DL 2 0.8500
DL 3 0.9000 0.9000
DL 4 0.9500 0.9500 0.9500

Table 3.21: Overall PDM T-test Results for Experimental Sessions

3.5 Discussion

The effectiveness and efficiency of using the facial temperature to estimate the

subjects’ psychophysiological state changes was validated via the experiments,

yet in practice these biomarkers were still limited by two major problems: auto-

calibration of the camera and the subjects’ head movement.

Auto-calibration was an intrinsic design of the camera to deal with the problem

of thermal drift in the data recording. The thermal drift was related to the abnor-

mal temperature shifts in the recordings, and it was introduced by the changing
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temperature of the camera itself. The process was automatically programmed to

calibrate the camera depending on the temperature change of the camera. During

the one or two seconds of auto-calibration, the camera measured the temperature

within itself rather than the target. As a consequence, the recording was dis-

turbed by the sudden fluctuations that needed to be manually removed during

data processing. The lack of actual data in those periods of time affected the abil-

ity of the facial temperature indicators to reflect the psychophysiological state at

those precise moments. In addition, auto-calibration also significantly interrupted

the frequency analysis of the temperature signal. The effect of the calibration

was limited by switching on the camera at least ten minutes before each experi-

ment. However, this method only reduced the number of calibration cycle for a

12-minute recording instead of eliminating them completely. Better cameras may

well provide more effective solutions to this problem in the future.

Both FLIR ResearchIR and MATLAB®were only able to support fixed spatial

windows for data extraction. However, the subject’s head movements were un-

avoidable for any long periods of observation. Therefore, spatial windows with

fixed positions and fixed shapes were not capable of handling the displacement

and distortion caused by these movements. Therefore, due to the failure of track-

ing the regions of interest, the biomarkers based on the data were not able to

faithfully represent the actual temperature changes in those areas consistently,

and thus their efficiency was compromised. Unfortunately, in contrast to the ob-

ject tracking of the normal RGB images, the thermal image lacked enough shape

contrast for the normal tracking algorithm to follow. Since there was little research

on thermal image tracking and barely any actual algorithm, the participants were

advised to be conservative with their head movements, which in this case may be

considered as a source of disturbance to the psychophysiological state in human-

machine interface, e.g. multitasking.

The tracking of the region of interest seems to represent the toughest challenge

among all the other mentioned challenges. However, a new tracking algorithm

based on particle-filter might be a useful solution to this problem [20, 22, 50, 90,

101, 102]. The algorithm, built on the Matte algorithm that was based on the pixel
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dependence, is able to deal with nonlinear motion within the predict-update cycle

in a simple way. Despite the limitations of the current thermal imaging technique,

the facial temperature was proved to be a reliable tool for psychophysiological

state measurement in HMI.

3.6 Summary

In summary, the experimental results of the facial temperature validated the ef-

fectiveness and efficiency of using thermal imaging for psychophysiological state

estimation. Such a method proposed a more reliable marker for assessing the

psychophysiological state of the operator. Furthermore, the combination of the

facial temperature and other well-known biomarkers significantly increased the

robustness of the system and the precision of the prediction, as the facial tem-

perature measurement required no body contact and was more sensitive to the

changes within the low mental stress states. These findings provided solid sup-

port for the modelling of the human operators’ psychophysiological state during

the human-machine interface in the next chapter.



Chapter 4

Adaptive General Type-2 Fuzzy

Modelling for

Psychophysiological State

Prediction

In this chapter, a new type-2 fuzzy-based modelling approach is proposed to

assess the human operators’ psycho-physiological states for both safety and re-

liability of the human-machine interface systems. Such a new modelling tech-

nique combined type-2 fuzzy sets with state-tracking to update the fuzzy rule-

base through a Bayesian process. These new configurations led to an adaptive,

robust and explicable computational framework that may be utilised to iden-

tify the dynamic (i.e. real-time) features without prior training of implementa-

tion. Validated on mental arithmetic cognitive real-time experiments with the

psycho-physiological data for ten (10) participants, the proposed framework out-

performed other paradigms (e.g. an adaptive neuro-fuzzy inference system and

an adaptive general type-2 fuzzy c-means modelling approach) in terms of dis-

turbance rejection and adaptive learning capabilities. Furthermore, good accuracy

and performance were obtained via the proposed framework when compared to

other models that have been presented in the related literature. In addition, the

81
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new framework may be considered to be a promising development in human-

machine interface systems where it may be utilised to (i) estimate the human

operator performance in real-time (ii) develop advanced control mechanisms for

human-machine interface, (iii) investigate the origins of the compromised human

operator performance and (iv) identify and remedy psycho-physiological break-

down at their early stages.

4.1 Background

4.1.1 Fuzzy Logic Development

The original fuzzy logic was found by Prof. Lotfi Zadeh in 1973 and the first fuzzy

sets were proposed in his seminal paper in 1965 [55]. In 1974 and 1975, Mamdani

and Assilian made a major breakthrough by implementing a type-1 fuzzy rule-

based control to a nonlinear system. Other applications of type-1 fuzzy systems

also began to appear, such as in the control of Sendai city subway system and a

water treatment system in Japan. Zadeh also introduced the type-2 fuzzy sets as

an extension of the type-1 fuzzy sets, which were later developed by Mizumoto,

Tanaka, Nieminen, Dubois and Prade [55]. In 1998 and 2001, Karnik and Mendel

extended the works of the type-2 fuzzy logic systems by providing two practical

algorithms for computation.

4.1.2 Fuzzy Logic

Different from the conventional Boolean logic which is based on “true or false”

(1 or 0), fuzzy logic computes on “degree of truth”. Fuzzy logic consideres 0 and

1 as the two extreme cases of truth and includes various states of truth in be-

tween them. In this way, two different forms of knowledge, objective knowledge

(e.g. mathematical representations) and subjective knowledge (e.g. linguistic in-

formation), were able to be coordinated and synergised within an unified system.

The idea was initially introduced by Zadeh in 1965 in the shape of type-1 fuzzy

sets [55]. The left plot in Figure 4.1 shows an example of a type-1 fuzzy set. When

only the numbers of 0.3, x, 0.5 and 0.8 are considered in the X domain, the type-1
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fuzzy set may be written as {0/0.3, 0.5/x, 1/0.5, 0/0.8}, where 0.5/x represented

that the number x had a membership degree of 0.5. While, for a crisp set, the

membership degree for each element was only either 0 or 1. In addition, fuzzy

logic is also able to include the secondary “degree of truth” which describes the

reliability of the initial “degree of truth”. This normally forms a type-2 fuzzy set,

within which the membership degrees of one or more elements are described by a

range values rather than single values. As shown in the second plot of Figure 4.1,

the membership degree of the number x becomes 0.3 to 0.7, with equal (for inter-

val type-2 fuzzy sets) or unequal (for general type-2 fuzzy sets) intensity for each

membership degree value.

Figure 4.1: Diagram of type-1 fuzzy sets and type-2 fuzzy sets

4.1.3 Fuzzy System

A typical fuzzy logic system consists of a fuzzifier, a rule-base, an inference and

an output processing [55]. The fuzzifier transfers the crisp inputs into fuzzy input

sets. For example, in this research, the readings of biomarkers are transferred into

linguistic variables (e.g. ‘Low’ or ‘High’). The rule-base contains a series of rules

that can be a summary from previous knowledge or experience. The rules are

structured as “IF-THEN” statements, in which the IF part is the antecedent and

the THEN part is the consequent. Within the inference, the fuzzy inputs determine

which rules are related and are assigned the weights for the corresponding rules,

and the final fuzzy output sets are calculated based on the weights and the rules.
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For example, when the reading of HRV1 is 0.75, the rules of “if the value of HRV1

is ‘Medium’, then the arousal level is ‘Medium’", and “if the value of HRV1 is

‘High’, then the arousal level is ‘High’", are assigned with weights 0.5 and 0.5

correspondingly, and the fuzzy output is something similar to “the arousal level is

‘Medium High’". In this research, the developed system is based on type-2 fuzzy

logic sets, which means that the rules themselves are fuzzy and are described

with their own membership functions and weights of corresponding rules are

represented with ranges. Each value within the ranges is with different intensity

(general type-2 fuzzy set). Therefore, the output processing of the system includes

a type-reducer prior to the defuzzifier that transferred the type-1 fuzzy sets to crisp

outputs.

Figure 4.2: Example of a simple fuzzy logic system

Compared with the conventional systems such as neural network, fuzzy sys-

tems share unique advantages as follows:

1. Flexibility: nonlinearity is well described with representations of “degrees of

truth”.

2. Simplicity: “IF-THEN” structure unify linear and nonlinear patterns without

hard-coding for complex problems.

3. Intuitiveness: the transparent rule-bases are transparent as well as inter-
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pretable to human for justifying the system results.

Fuzzy logic deals with uncertainties intrinsically and can handle small sizes

of data and sparsity in data better than other machine learning paradigms. Such

advantages are even remarkably enhanced for type-2 fuzzy logic systems. How-

ever, the complicated base structures of type-2 fuzzy logic systems also lead to

additional mathematical inference engines. These may result in negative impacts

as follows and limit the application of such systems:

1. Convergence: there may not exist a numerical closed-form solution existed

for the problem with current mathematical approaches.

2. Intensity: the available approach may be computationally taxing and time-

consuming.

3. Interpretability: the extra layer of “degree of truth” may add difficulty in

understanding and the rule-bases lack of transparency.

With regards to these problematic features, several approaches were proposed

to restrict the issues while retaining the most advantages [55]. One of the most

significant approaches was to create systems based on interval type-2 fuzzy sets,

where the simplification of the secondary membership degree provides systems

with an opportunity for real-time simulations. In this research, the type-2 fuzzy

logic modelling is based on interval type-2 fuzzy sets in the inference process

for the purpose of fast computation. However, the element-specified secondary

membership degrees were reintroduced during the defuzzification to ensure that

the same flexibility and accuracy of the results can be achieved as general type-2

fuzzy logic systems.

It is worth noting that type-2 fuzzy logic systems represent an ongoing research

area for system modelling and control with many new approaches addressing the

mathematical problems of inference and defuzzification. Detailed explanations

and summaries on this specific topic may be found in [55].
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4.1.4 Type-2 Fuzzy Logic Modelling

The psychophysiological state of a subject in HMI consists of both inner conscious-

ness and outer behaviour. Therefore, it would be tricky to find the associated con-

ventional mathematical model representations. Existing models and frameworks

for predicting the psychophysiological state include ANFIS, Mamdani-type fuzzy

model, proportional integral Mamdani fuzzy model, type-2 fuzzy model and sup-

port vector machines (SVMs) [23, 28, 39, 52, 61, 81, 84, 97]. ANFIS models often

suffer from over-fitting problems because of lack of adaptation. SVM models re-

quire to specify kernel functions for individuals to optimise the feature extraction

operation. Mamdani-type fuzzy models are transparent and are more efficient to

describe the subjective part of the state. Type-2 fuzzy models can achieve the best

prediction results for they are able to handle uncertainty with less data require-

ment and are usually less prone to over-fitting.

Different subjects respond to the same stimuli differently. For example, the

same level of psychophysiological pressure may contribute to one’s efficiency in

completing a given task but compromise others. Such uncertainty requires that

the general model be tolerant to individual differences and to recognise the cor-

rect correlation between the psychophysiological state and task performance. The

systems monitored by the biomarkers were also responsible for other psychophys-

iological regulations beside HMI. In addition, the unconscious movements of the

participants may introduce noise and data loss for the recordings. Therefore, the

model must have some level of robustness. The ideal model needs to be imple-

mented for the online real-time process. This requires the model to be adaptive

to continuous observations and to self adjust its structures and parameters as the

participant’s psychophysiological states evolve with time.

Fuzzy logic models are capable of handling a large amount of uncertainty,

which is supported with a wide range of previous research studies in the litera-

ture [23, 28, 39, 52, 59–61, 80, 81, 83, 84, 97, 98]. A type-2 fuzzy model is capable

of dealing with the heuristic or linguistic uncertainty within the system. Addi-

tionally, it is also able to tolerant to random uncertainties which limit current

predictive approaches. The systems based on type-2 fuzzy sets are effective in
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the circumstances where there are the uncertainties in both the fuzzy rule and

the measurement [55]. As already mentioned, the human psychological responses

to the same stimulus are individual-dependent. Hence, in this research, type-2

fuzzy logic systems are selected to create a generalising model that may be easily

interpreted by the human.

4.2 Experimental Setup

4.2.1 Data Acquisition

The data relating to the selected psychophysiological biomarkers for this experi-

ment were collected from four major measurements - EEG, ECG, pupil sizes and

facial temperatures. EEG and ECG were recorded by the Biosemi®ActiveTwo sys-

tem with a sampling frequency of 2048 Hz. EEG signals were collected from the

32-channel system according to the standard Biosemi 10/20 layout. ECG signals

were collected from the triangle 3-lead system covering the heart area. The initial

filtering and reconstruction of signals were processed by the Biosemi®ActiView

software. Pupil movements were monitored with a Gazepoint™ eye-tracking cam-

era, and the sizes were calculated by the Gazepoint™ software. Facial tempera-

tures were based on the infrared imaging recordings from a FLIR E40bx thermal

imaging camera at a sampling frequency of 10 Hz. The methods of data record-

ings followed the experimental frameworks in [23, 35, 81–84]. Figure 4.3 shows a

participant during the experiment in the research.

The mental arithmetic applied in this research was based on the Matlab®GUI

app similar to the one used in [35, 82–84]. The participants in this research were

ten (10) healthy students from the University of Sheffield ageing from 22 to 30.

The selected subjects included both genders from different countries and back-

grounds. The participants were advised to abstain from taking any medicines,

coffee or alcohol at least two hours before the experiment to avoid any bias in task

performance and psychophysiological measurements.
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Figure 4.3: A Picture of a participant during the HMI experiment
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4.2.2 Modelling Experiment Configuration

For the modelling configuration, the psychophysiological data were recorded from

the participants during the premeditated HMI simulation sessions. The prediction

of subjects’ task performances was generated by the computational framework of

the adaptive general type-2 fuzzy model based on the recordings in real time.

The whole prediction experiment for one subject lasted approximately 30 min-

utes, including two 12-minute mental arithmetic test sessions and a 5-minute break

in the interval. The participants were required to complete a two-number multi-

plication within a certain amount of time in the mental arithmetic test. In each test

session, there were four 3-minute phases with different difficulty levels. The first

difficulty level required the subjects to answer the multiplication questions of two

random one-digit numbers within ten seconds. Compared with the first difficulty

level the second difficulty level only provided five seconds for each question. The

third and fourth levels followed the same answering time pattern as the first and

second levels except for the switching of the questions to the multiplication of a

one-digit number and a two-digit number both randomly generated. The order

of the difficulty levels was different between two mental arithmetic sessions for

checking the adaptiveness of the model (see Figure 4.4).

4.3 Offline Modelling

The previous research studies had showed that the conventional data driven mod-

elling approaches were insufficient for predicting human operator’s psychophysi-

ological state [52, 60, 61, 80, 81]. The uncertainty of HMI was considered as being

the major cause of limited performance of these models. Compared with the train-

ing group, the performance of these offline models in the testing group constantly

dropped beyond the expectations. It suggested that a considerable amount of

uncertainty was not included during the modelling. Based on the previous psy-

chophysiological literature, it was known that the human performance of a certain

task was a collective results of multiple biological processes and instant environ-

ment factors. Such stochastic system significantly complicated demands for the
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Figure 4.4: Difficulty level for prediction experiment session 1 (progressive in-
crease) and session 2 (random)

model structure and base function. In addition, considering the timing, human

factor and other environment factors, each experiment is irreproducible. There-

fore, it is worth noting that the feasible data for modelling was always insufficient

to describe the complete dynamic of the HMI. For modelling, the uncertainty

within the data may be solved with complex model and advanced optimisation,

while the uncertainty outside the data required the model to be adaptive in real

time. It is worth noting that the complexity and adaptability of a model conflicts at

a given time and computing power. For the purpose of balancing the optimisation

and adaptation, complex fuzzy inference modelling was applied to investigate

the main source of uncertainty within the HMI. Complex fuzzy logic inference

employed a simplified type-2 fuzzy modelling approach that ensured high com-

putational efficiency with enhanced nonlinear pattern recognition. The test results

should be able to identify whether the compromised prediction performance of

conventional offline models and frameworks came from limited complexity bound

by existing modelling approaches or from the limited information presented in the

feasible laboratory data.
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4.3.1 Complex Fuzzy Sets and Logic

Complex fuzzy sets were initially proposed by Daniel Ramot etc. in 2002 [70, 71],

and their corresponding logic in modelling was implemented in 2005 by Scott

Disk [18]. Compared with the traditional fuzzy membership functions, the range

based on complex fuzzy sets extend the membership functions from [0, 1] to an

unit circle on the complex plane. Thus, with the expression of membership in a

set of complex numbers, the complex fuzzy sets provide a secondary dimension

for the uncertainty. In contrast to a traditional fuzzy set, the primary membership

in the value range [0, 1] is retained as the amplitude or the real part of the mem-

bership grade, while the secondary membership is represented with the phase or

the imaginary part of the membership grade. The following equations represent a

complex fuzzy set S, defined on a universe of discourse U with Euler’s formula:

S = {(x, µs(x))|x ∈ U} ,

µs(x) = rsejws(x),
(4.1)

where, for any element x within the set, its corresponding membership function

µs(x) is characterised by the magnitude rs and the phase ws. By definition, the

real number rs represents the primary membership within the range [0, 1], while

the secondary membership is determined by the angular value ws and j2 = −1.

4.3.2 Single Partition Complex Fuzzy Inference Modelling

Most current models and frameworks developed using complex fuzzy logic have

achieved a high accuracy and a reliable performance, especially when dealing

with periodic data [15, 79, 92–94]. Compared to the general type-2 fuzzy logic

systems, complex fuzzy logic system retains the secondary information of uncer-

tainty through imaginary dimension. Thus, the original surface represented by

the general type-2 fuzzy logic sets in the 3 dimensional space is simplified to be

a trajectory. Therefore, complex fuzzy logic systems benefit from the simplicity of

using complex numbers in inference while being able to handle the intra and inter

uncertainty better. A complex fuzzy logic based system is commonly combined
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within neural networks to form models and frameworks that are able to fulfill the

following requirements:

1. Comprehensive - be able to handle both numerical data and linguistic data

2. Intuitive - generate simple fuzzy rules and model structure for interpretation

3. Efficient - ensure rule inferences in parallel

In this research, a single partition complex fuzzy inference modelling is ap-

plied. This approach generates a single feature partition for each rule that consists

of the antecedents in the form of type-1 fuzzy Gaussian membership function and

the consequences with complex fuzzy singleton membership functions. This struc-

ture guarantees transparency and interpretability of the relationship between the

phase variances of the consequences and the feature partitions of the antecedents.

By definition, the interaction within different partition may be represented by the

straightforward vector interference. Such arrangement avoids the linear growth

of rule-based size with additional features with the grid partition method. Con-

sequently, a clustering algorithm for generating the rule-base of the model may

be simplified, and the computational requirement of model implementation is re-

duced.

For each partition in a feature of antecedents in the single partition complex

fuzzy inference model, the Gaussian membership function is as follows:

µs(x) = e−(x−c)2
/

2σ2

, (4.2)

where c and σ are the centre and the standard deviations of corresponding par-

tition respectively. For each consequences, the complex singleton membership

function is as follows:

βs(x) = rsejws(x),

βRe
s (x) = rs cos(ws(x)),

βIm
s (x) = jrs sin(ws(x)),

(4.3)
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where rs is the magnitude of corresponding consequence and ws(x) is the phase

determined by the inferences between input x and partitions. βRe
s (x) represents

the real part of the vector for final result computation, while the imaginary part

βIm
s (x) is stored for additional improvement on the transparency of the model.

The single partition complex fuzzy inference model implemented in this re-

search is based on the Mamdani type fuzzy rule-base with singleton defuzzifica-

tion. Figure 4.5 presents the structure of models that resembles the radial basis

function neural network. A group of membership degrees is generated through

the first fuzzification layer with every partition membership function of each fea-

ture. The second layer provides the normalisation for the membership degrees.

The third layer performs the algebraic product as the implication operation. The

normalised membership degree is multiplied with the consequence complex sin-

gleton membership function. In the fourth layer, the complex products of the third

layer are separated and summed up in the real and imaginary group respectively.

The last layer calculates the magnitude of the complex number formed from the

fourth layer as the final output.

Figure 4.5: The structure of single partition complex fuzzy inference model

Each feature is to be partitioned into 4 partitions and is labelled with corre-
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sponding Gaussian membership functions mentioned above, with the intersection

set at the 0.5 membership value. The initial magnitudes of the consequence are

assigned with the partial correlation coefficients from analysing the training data.

The initial phases of the consequence are obtained by partitioning 2π evenly. The

optimisation of the real number parameters c, σ and w are based on Levenberg-

Marquardt optimisation method and the iteration is set to be 1000 times. The es-

tablished models are trained with the recording of the first session and are tested

on the data of the second session. In this research, the input vector of the model

was I(t) = [HRV1(t), HRV2(t), TLI1(t), TLI2(t), PDM(t), T̄n(t), T̄f (t), Tmax f (t),

DL(t)] and the corresponding output was performance prediction. The models

were trained and tested individually according to different subjects. A model was

trained with the data from session 1 (incremental difficulty level) of one single

participant and then was tested with the data from session 2 (randomised diffi-

culty level) of the same participant. After the training, the final model consisted

of 36 rules. Table 4.1 shows an example rule from a final single partition complex

fuzzy inference model based on Gaussian membership function.

Table 4.1: Example rule of single partition complex fuzzy inference model after
training

HRV1(t) HRV2(t) TLI1(t) TLI2(t) PDM(t)
Weight -1.205 -1.461 0.619 3.224 0.445
Angle -0.542 5.128 5.133 5.926 3.119
Sigma 0.100 0.158 0.010 0.654 0.039
Center 0.053 0.983 0.972 2.134 0.970

T̄n(t) T̄f (t) Tmax f (t) DL(t) Performance
Weight 0.249 0.228 -1.791 0.573 -1.204
Angle 3.821 5.014 4.311 4.874 -0.542
Sigma 0.052 0.013 0.512 0.097 0.100
Center 0.901 0.752 1.846 0.923 0.053

4.3.3 Evaluation of the Single Partition Complex Fuzzy Inference Model

Assessments of the single partition complex fuzzy model were based on the Pear-

son Correlation and the Root Mean Squared Error. The details of the computation

are presented in the next section. Table 4.2 summarises the model performance
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Table 4.2: Correlations and Root Mean Squared Errors (RMSE) for Real Accuracy
versus Predicted Accuracy of single partition complex fuzzy inference model

Participant Correlation (%) Root Mean Squared Error (%)
Training Testing Training Testing

01 95.823 63.874 9.994 32.301
02 98.764 41.122 18.666 39.560
03 99.217 55.451 13.943 28.610
04 99.565 47.223 6.522 27.145
05 98.121 7.444 10.640 38.767
06 99.360 52.118 7.196 24.992
07 98.859 74.056 13.778 35.881
08 98.744 59.939 18.384 33.754
08 98.363 61.440 18.085 38.443
10 99.033 72.110 12.446 34.157
Mean 98.551 51.192 12.877 33.080

for all ten participants in the HMI simulation experiment. The model for each

participant is trained with the data of incremental difficulty session and is tested

with randomised difficulty sessions. As shown in this table, the performance of

a single partition complex fuzzy model varied significantly between the training

data and the testing data. The correlation between the predictions and actual per-

formance dropped from 98.55% to 51.19%, while the root mean squared error rose

from 12.87% to 33.08%. These results matched the performances of similar offline

models and frameworks applied in this field previously [83, 84].

Figures 4.6 and 4.7 presents the comparisons of the single partition complex

fuzzy model prediction and the actual performance of the participant 08 in both

sessions. It may be seen in Figure 4.6 that the model prediction roughly matched

with the actual accuracy performance. It is reasonable to assume that the model

may be further improved with more iterations of optimisation or more advanced

optimisation techniques. However, the Root Mean Square Standardised Error of

models in the training was around 0.863 which less than 1. Suffice to say that

for the training session the variability considered by the single partition complex

fuzzy model closely matched the variability of data. This suggested that the the

nonlinearity within the HMI was not the main reason for the compromised per-

formance of offline models and frameworks.
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Figure 4.6: Accuracy performance from the participant 08 and from the single
partition complex fuzzy inference model prediction in training session

As shown in Figure 4.7, the model prediction failed to represent the actual per-

formance based on the recordings of testing group. It is worth noting that the the

Root Mean Square Standardised Error of the models increased from around 0.863

in the training sessions to around 2.043 in the testing sessions. The single partition

complex fuzzy models implemented are offline models with the fixed parameters.

Therefore, it may be found that the variability of the data changes between the

training sessions and testing sessions. These changes may due to the changes of

difficulty level order, environmental factors and participants’ psychophyiological

state. The model performance of the testing group clearly shows that these time-

varying changes reshaped the participants’ behaviour in the HMI the cannot be

simply neglected. Meanwhile, it also indicates that the patterns presented in the

training data and the testing data lacked resemblance.

Similar offline model failures may be found in [83]. These offline type-2 fuzzy

logic based modelling results had clearly showed that the type-2 fuzzy sets were

capable of representing the nonlinearity relationship between the biomarkers’

recordings and the participants’ performance in the HMI. However, these patterns

varied with time because of the uncontrollable human psychophysiological states,
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Figure 4.7: Accuracy performance from the participant 08 and from the single
partition complex fuzzy inference model prediction in testing session

e.g. valence level, and environment factors, such as timing. Therefore, in order

to achieve the acceptable accuracy in the prediction, it was important to create

online models that can be adaptive to these time-varying states and can ultimately

provide predictions based on updated patterns.

4.4 Adaptive General Type-2 Fuzzy Modelling

An adaptive general type-2 fuzzy framework was selected and devised to exploit

the advantages of type-2 fuzzy logic to handle the intra and inter uncertainty while

achieving fast adaptive learning with Bayesian theory. The model first predicted

the trend of the subject’s future performance based on the latest biomarker record-

ings. The type-2 fuzzy framework used the psychophysiological data as the input

and applied the centre-of-sets (COS) type-reduction based method to generate the

initial prediction of each fired fuzzy rules. The final prediction combined all the

predictions with the performance trend. When the final prediction was varying

from the actual observed value, the selected fuzzy rule from the rule-base was

updated with the observation recursively via Bayesian theory [43].
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Figure 4.8: Example rule of GT2FM for the first state

One example fuzzy rule of the adaptive general type-2 fuzzy model (GT2FM)

is illustrated in Figure 4.8, where the shaded area represented the footprint of

the first degree uncertainty, and its sample corresponding linguistic form reads as

follows:

Rule 1: IF T̄n is large and T̄f is medium and Tmax f is small and HRV1 is small and

HRV2 is large and TLI1 is large and TLI2 is small and PDM is large, THEN the task

accuracy is small.

The primary degree of uncertainty of the fuzzy rule remains fixed during the

inference, whereas the secondary degree of uncertainty varies with the current

state estimation. Table 4.3 summarises two sample fuzzy rules of the adaptive

general type-2 fuzzy model, which describes the relationships between the inputs

and output under the condition of the same difficulty level. The linguistic labels

applied in the fuzzy rules are illustrated in Table 4.4.

The following steps explain the inference mechanism leading to an output:

1. Calculate the latest transition matrix P for each state; in a period of time,

different task performance ranges indicate different K states of the subject

(the states describe the performance in descending order). The entries in

the first row of the transition matrix P represents the probability for the
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Table 4.3: Rule-Base of GT2FM for the First State

Inputs
T̄n T̄f Tmax f HRV1 HRV2

Rule 1 Large Medium Small Small Large
Rule 2 Medium Large Medium Large Small

Inputs Output
TLI1 TLI2 PDM DL TaskAccuracy

Rule 1 Large Small Large 0.25 Small
Rule 2 Medium Medium Small 0.25 Large

Table 4.4: Linguistic Labels of the Inputs and Output for the First State

Linguistic Labels T̄n T̄f Tmax f HRV1 HRV2

Small <33.5 <33.9 <36.0 <0.37 <0.18
Medium 33.5-34.1 33.9-34.1 36.0-36.1 0.37-0.53 0.18-0.23
Large >34.1 >34.1 >36.1 >0.53 >0.23
Linguistic Labels TLI1 TLI2 PDM TaskAccuracy
Small <0.18 <0.28 <0.14 <0.72
Medium 0.18-0.29 0.28-0.30 0.14-0.16 0.72-0.97
Large >0.30 >0.30 >0.16 >0.97

adjacent two states 0 & 2 and the same state 1 following the first state 1 (task

performance measurement is continuous), and similarly for the remaining

rows:

P =


P(1,0) P(1,1) P(1,2)

P(2,1) P(2,2) P(2,3)
...

P(K,K−1) P(K,K) P(K,K+1)

 , (4.4)

P(Sn=i,Sn+1=j) = P(Sn+1=j|Sn=i) · P(Sn=i), (4.5)

where P(i,j) is estimated via Equation 4.5 in a certain amount of time, except

P(1,0) = P(K,K+1) = 0. P(Sn=i) represent the total probability of initial state i,

and P(Sn+1=j|Sn=i) represent the probability of state j given the initial state i.

2. Perform the state estimation for the current time t with the transition matrix

P; The following gives the expectation of each state to be presented at the

time t:

E =
[

E1 E2 . . . EK

]
, (4.6)
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Et = Et−1 · Pt−1, (4.7)

where E(i,j) denotes the expectation of the state j at the time i.

3. Compute the upper and lower membership functions F & F for firing the

fuzzy rules; The rule-base R consists of the 4K fuzzy rules describing each

state with M different difficulty levels:

R =


R(1,1) . . . R(1,K)

...
. . .

R(M,1) R(M,K)

 , (4.8)

where R(i,j) represents the fuzzy rule describing the state j at the difficulty

level i. The input values of each rule are range values with means µx and

standard deviations σx, representing the measurement uncertainty and indi-

vidual difference. The firing of the fuzzy rules involves the K fuzzy rules

covering every state of the participants for the difficulty levels that they

currently experience. The inference between the input values and one fir-

ing fuzzy rule depends on the Gaussian functions, and for simplification,

the functions has the same standard deviation value from that rule. The

following summarises the inference processes to find the upper and lower

membership functions f & f for one single input x and one firing fuzzy rule:

(a) if x < µx − σx, then find m and n that satisfy:

f (m|x, σ2
x) = f (m|µx + σx, σ2

x),

f (n|x, σ2
x) = f (n|µx − σx, σ2

x),
(4.9)

where:

f (x̄|µ, σ2) =
1

σ
√

2π
e−(x̄−µ)2

/
2σ2

, (4.10)

which gives:

f =
f (m|x, σ2

x)

f (x|x, σ2
x)

,

f =
f (n|x, σ2

x)

f (x|x, σ2
x)

;
(4.11)
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(b) if µx − σx ≤ x ≤ µx + σx, then find l that satisfy:

f (l|x, σ2
x) = f (l|µx, σ2

x), (4.12)

which gives:

f =
f (l|x, σ2

x)

f (x|x, σ2
x)

,

f = 1;

(4.13)

(c) if µx + σx < a, then find m and n that satisfy:

f (m|x, σ2
x) = f (m|µx − σx, σ2

x),

f (n|x, σ2
x) = f (n|µx + σx, σ2

x),
(4.14)

which gives:

f =
f (m|x, σ2

x)

f (x|x, σ2
x)

,

f =
f (n|x, σ2

x)

f (x|x, σ2
x)

.
(4.15)

This way, the final membership functions for one firing fuzzy rules F & F

are:
F =

{
max( f

i
)|∀i ∈ L

}
,

F =
{

max( f i)|∀i ∈ L
}

,
(4.16)

where L represents the number of the inputs.

4. Find the initial prediction of each firing fuzzy rule with the transition matrix

P and the membership functions F. Similarly to the input values, each fuzzy

rule has a range for the output values ∀y ∈ [y, y]. The following summarises

the type-reduction processes to find the prediction value yk for one firing

fuzzy rule k with the transition matrix P and membership function F (sort y

& y in ascending order):

(a) if P(k,k−1) < P(k,k+1) or for the fuzzy rule representing the last state
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P(k,k−1) < P(k,k), then

yk =
∑k

n=1 Fn · yn + ∑K
n=k+1 Fn · yn

∑k
n=1 Fn

+ ∑K
n=k+1 Fn , (4.17)

(b) if P(k,k+1) < P(k,k−1) or for the fuzzy rule representing the first state

P(k,k+1) < P(k,k), then

yk =
∑k−1

n=1 Fn · yn + ∑K
n=k Fn · yn

∑k−1
n=1 Fn + ∑K

n=k Fn , (4.18)

(c) if P(k,k−1) = P(k,k+1) or for the fuzzy rule representing any meddle state

P(k,k) > max(P(k,k−1), P(k,k+1)) or for both fuzzy rules representing two

end states P(k,k) = P(k,k−1) + P(k,k+1), then

y(k,l) =
∑k

n=1 Fn · yn + ∑K
n=k+1 Fn · yn

∑k
n=1 Fn

+ ∑K
n=k+1 Fn ,

y(k,h) =
∑k

n=1 Fn · yn + ∑K
n=k+1 Fn · yn

∑k
n=1 Fn + ∑K

n=k+1 Fn ,

yk =
y(k,l) + y(k,h)

2
.

(4.19)

The main idea of the type-reduction algorithm is to keep the prediction con-

sistently corresponding to the tendency measured from the state tracking.

Take Equation (4.18) for example, yk is a maximised prediction. Since the

probability of switching to a better state dominates, the likelihood for yn

from a back state decreases, and for yn from a front state increases. For

n < k, the yk calculation uses the lower membership weights; for n ≥ k, the

yk calculation uses the upper membership weights. This algorithm ensures

that the prediction is maximised by the transition matrix.

5. Generate the final prediction ŷt from the state estimations Et and the initial

predictions y(t,k); The following gives the final prediction of the model at the

time t:

Yt =
[
y(t,1) y(t,2) . . . y(t,K)

]
, (4.20)
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ŷt = Yt · ET
t , (4.21)

where Yt donates the set of all individual predictions from every firing fuzzy

rule at the time t.

The adaptive general type-2 fuzzy modelling algorithm used two fuzzy mem-

bership sets for the prediction computation. The primary memberships represent

the individual difference and measurement uncertainty. The type-reduction of the

primary membership weights is based on the participant state tracking, which

forms the secondary membership sets of the model. This membership is com-

puted with the comparison between the input vector to the selected fuzzy rules,

and the prediction is generated based on the latest state information. The mod-

elling algorithm utilises a simplified inference to combine the statistical estimation

and the fuzzy logic mechanism. Thus, it takes into account the data uncertainty

and aligns this uncertainty with the forecast without a computationally expensive

type-reduction algorithm that limits the use of general type-2 fuzzy logic sets [55]

nowadays. In addition, the intra-uncertainty is integrated with the framework by a

simplified learning algorithm. Intra-uncertainty developed with time and gradu-

ally reduces the reliability of the model. Therefore, an adaptive learning algorithm

based on Bayesian theory [43] is implemented for updating the rule-base.

The adaptive learning algorithm follows the following steps:

1. Calculate the prediction error and check it is within the maximum error

tolerance ETmax. The adaptive learning algorithm is only applied if the error

between the prediction ŷt−1 and the observation ot−1 at the time t-1 exceeds

the limitation:

‖ŷt−1 − ot−1‖ > ETmax (4.22)

2. When the learning algorithm is needed, update the selected fuzzy rule with

the observation ot−1 using the Bayesian theory [43]. The selected fuzzy rule

has the same subject state under the same difficulty level as the observation

ot−1, with the means µt−1 and the standard deviations σt−1 for the inputs

and output. The observation ot−1 is described with the Gaussian functions
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via the means µo,t−1 and the standard deviations σo,t−1. Since the prior (rule)

and the posterior (observation) are of the same type (both Gaussian), the

posterior mean and the posterior standard derivation of the conjugate prior

for the normal distribution are calculated as follows:

E(µt|µo,t−1) =
σ2

t−1 · µt−1 + σ2
o,t−1 · µo,t−1

σ2
t−1 + σ2

o,t−1
,

Var(σt|σo,t−1) =
σ2

t−1 · σ2
o,t−1

σ2
t−1 + σ2

o,t−1
,

(4.23)

where σo,t−1 are equal to the initial values of standard deviations of the fuzzy

rule, considering that the individual difference and the measurement uncer-

tainty are time-independent.

3. Calculate the distance between the new fuzzy rule and the observation and

checked it with the maximum distance tolerance DTmax:

(a) if ‖µt − µo,t−1‖ > DTmax, replace µt−1 & σt−1 with µt & σt and repeat

the Bayesian update;

(b) else if ‖µt − µo,t−1‖ ≤ DTmax, stop learning algorithm and replace the

old fuzzy rule with the new one.

4.5 Evaluation of Adaptive General Type-2 Fuzzy Modelling

This section focuses on the prediction results of the adaptive general type-2 fuzzy

framework mentioned in the previous section. The fuzzy model is implemented

in the HMI mental arithmetic experiments for online real-time experiments. This

section also includes the prediction results of a generalised offline ANFIS model

and the real-time A-GT2-FCM model based on the same experimental data for

comparisons. The evaluations and summaries of the experiment results in the

following should be able to demonstrate the performances of the system.
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4.5.1 Model Configuration

The adaptive GT2FM is built using the computational frameworks of MATLAB®.

The HMI mental arithmetic experiment includes four different difficulty levels

M = 4. In this research, the input vector for the system was I(t) = [HRV1(t),

HRV2(t), TLI1(t), TLI2(t), PDM(t), T̄n(t), T̄f (t), Tmax f (t), DL(t)]. The correspond-

ing output of the HMI simulation system is the Actual Accuracy o(t), which is also

recorded as being the Observation for the prediction at time t + 1. The prediction

output of the model is the Predicted Accuracy ŷ(t). Figure 4.9 shows the diagram

of the GT2FM that is designed for the whole HMI simulation.

Figure 4.9: Diagram of the GT2FM for the HMI simulation experiment (controller
and other sections in - - will be the subject of the next chapter, chapter 5)

The GT2FM model starts to generate the prediction 30 seconds after the ex-

periment begins. The computational framework consists of eight (8) fuzzy rules

in total, which leads to two (2) fuzzy rules per difficulty level and divides the

operator task performance into two states. The Root Mean Square Standardised

Error ermsse is introduced to evaluate the complexity of the model and to compare
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it with the real HMI simulation results, as follows:

ermsse =

√
∑n

i=1[(ŷi − oi)/σ̂o]2

n
, (4.24)

where σ̂o is the standard error of the observations and n is the length of the data.

The mean error for ten participants is eRMSSE = 0.1376 < 1, which indicated the

variability of the model should suffice the HMI prediction and there is no need to

divide any extra state further for introducing more fuzzy rules.

The generalised offline ANFIS model was constructed and trained with the

Matlab®build-in functions genfis and anfis. The model implemented fuzzy c-means

(FCM) to each participant, dividing 5 clusters for each input. The ANFIS model

was trained with all the experimental data from the first session and then validated

with the individual data from the second session for each participant. The real-

time A-GT2-FCM model was the same one applied as in the previous research [84].

The error tolerance ETmax of the A-GT2-FCM model was set to be 0.01, the same

as in the GT2FM model.

4.5.2 Modelling Results Comparison

As described in the previous section, one complete experiment consisted of two

HMI mental arithmetic test sessions for real-time modelling. The participant took

the first session with incremental difficulty levels and then the following second

session with randomised difficulty levels, with a ten-minute interval.

The model framework started with an initial rule-base from the generalised

results in the previous experiment [35], with the first state estimation matrix E1 =

[1 0] and the first transition matrix P = [1 0; 0 1]. Figure 4.10 shows the member-

ship function between the task performance and two facial temperature readings

T̄n and T̄f , which was based on the two initial fuzzy rule for describing the first

state. The adaptive learning algorithm thereupon calculated the new state esti-

mation and elicited the new individual dependent fuzzy rules according to the

psychophysiological recordings and the observations.

The Pearson Correlations c and the Root Mean Squared Error ermse were in-
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Figure 4.10: Membership for the performance function fA(T̄n, T̄f )

troduced to assess the prediction of the adaptive general type-2 fuzzy model. Ta-

ble 4.5 shows the correlations and the errors between the observations and the

predictions for each participant in each session. The calculations of these indices

for n samples were via the following equations:

cŷ,o =
1

n− 1

n

∑
i=1

(
ŷi − µŷ

σŷ
)(

oi − µo

σo
),

ermse = 100 ·
√

∑n
i=1(ŷi − oi)2

n
,

(4.25)

where µŷ and σŷ are the mean and standard deviation of the prediction ŷ, respec-

tively, and µo and σo are the mean and standard deviation of the observation o.

The sampling rate for the model is 1 Hz so the total samples for one session is

n = 690.

Tables 4.5, 4.6 and 4.7 summarises the prediction results for all the participants

from the real-time online modelling of GT2FM and A-GT2-FCM and the off-line

generalised ANFIS. From Table 4.5, it can be seen that the mean correlations and

the mean errors of the GT2FM remained consistent. Compared to the A-GT2-FCM

(Table 4.6) and the ANFIS models (Table 4.7), the prediction results of GT2FM
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Table 4.5: Correlations and Root Mean Squared Errors (RMSE) for Real Accuracy
versus Predicted Accuracy of GT2FM

Participant Correlation (%) Root Mean Squared Error (%)
Session 1 Session 2 Session 1 Session 2

01 98.755 99.558 3.628 2.430
02 98.331 98.857 1.725 1.476
03 99.520 99.424 2.265 2.237
04 99.609 99.402 2.205 1.982
05 98.193 98.693 4.109 3.635
06 99.504 99.376 2.504 2.773
07 98.916 99.077 2.081 2.208
08 98.627 99.128 2.276 2.392
08 98.291 98.960 2.365 1.972
10 98.678 99.224 2.192 1.706
Mean 98.840 99.171 2.535 2.281

Table 4.6: Correlations and Root Mean Squared Errors (RMSE) for Real Accuracy
versus Predicted Accuracy of A-GT2-FCM

Participant Correlation (%) Root Mean Squared Error (%)
Session 1 Session 2 Session 1 Session 2

01 97.060 98.156 5.536 4.977
02 95.433 97.344 2.931 2.375
03 98.211 97.705 4.957 4.541
04 98.675 97.537 4.201 4.159
05 95.669 96.768 6.505 5.995
06 98.800 97.953 3.965 5.086
07 97.046 98.501 3.583 2.877
08 96.457 97.190 3.710 4.398
08 96.691 97.256 3.397 3.387
10 97.391 98.199 3.178 2.758
Mean 97.142 97.663 4.198 4.058



Chapter 4. Adaptive General Type-2 Fuzzy Modelling for Psychophysiological
State Prediction 109

Table 4.7: Correlations and Root Mean Squared Errors (RMSE) for Real Accuracy
versus Predicted Accuracy of ANFIS

Participant Correlation (%) Root Mean Squared Error (%)
Session 1 Session 2 Session 1 Session 2

01 80.631 72.272 13.740 18.590
02 70.028 57.243 6.828 52.290
03 84.880 59.187 12.280 22.800
04 96.763 73.328 6.223 47.430
05 80.741 72.895 12.800 20.460
06 90.991 -32.545 10.800 82.180
07 75.955 91.371 9.326 8.505
08 75.979 22.890 8.987 23.640
08 84.388 79.680 7.793 15.350
10 93.127 56.762 4.961 37.030
Mean 83.348 61.813 9.374 32.828

achieved the highest correlations and the lowest error rates across all the partici-

pants. Overall, the GT2FM model performed well and consistently throughout the

entire experiment. Based on the prediction outcome, the GT2FM model presented

an excellent predictive ability due to the forecast prediction of the participant’s

state. The learning algorithm was capable of fast individual features extraction

without any prior knowledge or specific training. To further evaluate the ability

of the model, Figures 4.11, 4.12, 4.13 and 4.14 show the detailed time sequences

of the prediction and the psychophysiological biomarkers for participant 08 real

time experiment results of both sessions.

From the task performance plot (Figure 4.12), compared to the A-GT2-FCM

and ANFIS model, the predictions of the GT2FM matched with the actual per-

formance of the participant the most. It could be observed how fast the adaptive

general type-2 fuzzy model adjusted itself at the beginning of the experiment.

The plot also showed the GT2FM model capability of handling high-frequency

state change from the last phase. The psychophysiological inputs for all the mod-

els are presented in Figure 4.11. It is worth noting that all the psychophysiological

biomarkers were suffering from a certain degrees of delay in representing partici-

pant inner state. However, the GT2FM model was still able to maintain the delay

within 1 to 2 seconds throughout all participants in this research, despite of the
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Figure 4.11: Psychophysiological biomarker recordings (HRV1, HRV2, TLI1, TLI2,
PDM, T̄n, T̄f , Tmax f ) for the participant 08 in session 2
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Figure 4.12: Accuracy performance from the participant 08 and from the adaptive
general type-2 fuzzy model prediction in session 2

intra-parameter variations. The merging between the existing fuzzy rules and the

observations kept the rule-base simple and up-to-date. It ensured the efficiency

and effectiveness of the prediction inference process.

The psychophysiological biomaker readings (HRV1, HRV2, TLI1, TLI2, PDM,

T̄n, T̄f , Tmax f and DL) in all figures of this section were all normalised for the

purpose of illustration only. The adaptive general type-2 fuzzy model did not

require any type of normalisation to operate.

4.5.3 Adaptive Learning of General Type-2 Fuzzy Model

Table 4.5, Figures 4.12 and 4.14 illustrate the adaptive learning of the adaptive

general type-2 fuzzy model via comparisons between the predictions and the ob-

servation. As already stated above, the GT2FM algorithm combined the inter-

and intra-uncertainty within the type-2 fuzzy sets. The state tracking algorithm

finalised the prediction according to the trend estimation and the probability. The

learning algorithm kept the fuzzy rule configuration consistent with the current

situation. In this research, the adaptive learning of GT2FM may be interpreted as
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follows:

1. The model was able to self-organise in real-time. From the task performance

plots of Figures 4.12 and 4.14, it may be observed that the model quickly

adjusted itself at the beginning of the experiment and when the participant’s

task performance became unstable. The psychophysiological indices of the

participants varied with multiple factors besides the task load. Thus, the psy-

chophysiological recordings demonstrated clear different patterns even for

the same person with the same difficulty level (e.g., the psychophysiological

recordings plots of Figures 4.11 and 4.13). However, similar performances

from all participants suggested that the learning and self-organising abilities

of the model were sufficient for this intra-uncertainty.

2. The model was generalising for every participant. The model did not re-

quire individual-based calibration or off-line training for the operation. The

initial rule-base, the first state estimation matrix and the first transition ma-

trix were universal for all the participants. It is worth noting that the ini-

tial rule-base was based on sample mathematical estimations from previous

inputs and output data. The initial statistical means and deviations only

influenced the speed of the convergence (personalise) rather than itself. De-

spite the inter/intra participant uncertainty, the model had succeeded in

extracting these uncertainties and transferring them into recognisable pat-

terns. For example, comparing the psychophysiological biomarker record-

ings in Figures 4.13 and 4.15, there were significant differences between these

biomarker values even when participants 03 and 08 were under the same ex-

perimental conditions. It could also be observed that participant 08 showed

higher values than participant 03 in all the facial temperature indicators T̄n,

T̄f and Tmax f . HRV1 provided another evident inter-subject variation. Com-

pared with the ones from participant 03 these HRV1 values of participant

08 were doubled. These may explain the performance differences within the

participants based on the work memory theory. Inter-differences of the pre-

dicted accuracy at the beginning of the prediction in the task performance



Chapter 4. Adaptive General Type-2 Fuzzy Modelling for Psychophysiological
State Prediction 113

30 180 360 540 720
0

0.5

1
Psychophysiological Biomarkers

HRV1 HRV2

30 180 360 540 720
0

0.5

1
TLI1 TLI2

30 180 360 540 720
0

0.2

0.4

30 180 360 540 720
0.65

0.7

0.75

30 180 360 540 720
0.64

0.66

0.68

30 180 360 540 720

Time (Seconds)

0.85

0.9

0.95

Figure 4.13: Psychophysiological biomarker recordings (HRV1, HRV2, TLI1, TLI2,
PDM, T̄n, T̄f , Tmax f ) for the participant 08 in session 1
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Figure 4.14: Accuracy performance from the participant 08 and from the adaptive
general type-2 fuzzy model prediction in session 1

plot (Figures 4.14 and 4.16) were also obvious. This suggested that the initial

fuzzy rule-base described participant 03 more precisely than for participant

08.

3. The model was able to manage temporal information loss and noise. In

the real-time HMI simulation experiment, the information losses occasion-

ally happened because of sudden disconnections between the electrodes and

the subject. Meanwhile, the noise was introduced with task-irrelevant events

such as unconscious movement. The red circles in Figures 4.13 and 4.15 indi-

cated some cases of such information loss. The noise within the recordings

may be conspicuous and may be persistent throughout the whole session.

One extreme example may be found in the psychophysiological recording

plots for PDM in Figure 4.13, the value drops nearly to 0 during the first

phase, which is clearly impossible for human pupils and could only be a

result of eye tracker’s misinterpretation for something else. Still, the model

had managed to maintain the high accuracy during these periods from the

task performance plots of Figures 4.14 and 4.16. The combination of different
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Figure 4.15: Psychophysiological biomarker recordings (HRV1, HRV2, TLI1, TLI2,
PDM, T̄n, T̄f , Tmax f ) for the participant 03 in session 1
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biomarkers provided the model with the ability to quickly switch the lead

biomarkers it depended on and maintained the consistency of the model

prediction. In some other cases where all the facial temperature biomarkers

T̄n, T̄f and Tmax f were taken out from the model input vector for the purpose

of testing, the time lag between the model prediction and the observation

was still steadily remained within three seconds.

30 180 360 540 720
Time (Seconds)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

A
cc

ur
ac

y 
P

er
fo

rm
an

ce

Task Performance

Actual Accuracy
GT2FM Prediction
A-GT2-FCM Prediction
ANFIS Prediction

Figure 4.16: Accuracy performance from the participant 03 and from the adaptive
general type-2 fuzzy model prediction in session 1

4.5.4 Computation of General Type-2 Fuzzy Model

Compared with the conventional type-2 fuzzy modelling systems, GT2FM also

demonstrated several excellent computational advantages in addition to its ad-

vanced adaptive features. The unified secondary uncertainty of GT2FM ensured

the existence of numerical closed-form solutions and simplified the type-reduce

process. The adaptive learning algorithm based on Bayesian theory had signifi-

cantly contribution to the implementation of GT2FM in online experiments. The

details of these computational advantages can be summarised as follows:

1. The fuzzy sets of GT2FM were based on the interval type-2 fuzzy sets, where
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all the secondary uncertainty was equal. The simplification avoided the def-

inition, computation and storage of extra uncertainty from the secondary

dimension. In fact, in this research, it was also hard and unnecessary to

link such uncertainty to any actual physical factor. The use of interval type-

2 fuzzy sets reduced the redundancy of the modelling system and made

the calculation of the numerical close-form solutions feasible and straight-

forward. As a result, it guaranteed a fast inference between the input sets

and the fired fuzzy rules. However, compared to the type-1 fuzzy sets, the

primary uncertainty of GT2FM was enhanced (e.g. Figure 4.8). Such uncer-

tainty was applied on both the input sets and the fired rules (the same stan-

dard deviations σx). Meanwhile, the state estimation involved in the type-

reduce process combined the final prediction with tendency measurement.

Compared to the conventional general type-2 fuzzy modelling systems, this

configuration could achieve equal or higher flexibility and accuracy while

maintaining lower computational requirement.

2. The learning algorithm based on the Bayesian theory contributed to the com-

putation of GT2FM in three major aspects. First, compared to other updating

method (e.g. A-GT2-FCM), the Bayesian updating was straightforward and

represented a relatively fast way to generate a close-form solution. In the

experiment, it demonstrated a better convergence and increased the overall

performance of model computation. Second, it restricted the size of fuzzy

rule-base by continuously integrating the new observations with the clos-

est existing rules. This ensured the complexity of the inference process and

the storage of the rule-base remained simple and consistent throughout the

experiment. Third, the algorithm allowed the uncertainty of the rules con-

tinuously converge with the updated observations. Figure 4.17 shows an

example of how the uncertainty value converged with the iterations of the

adaptive learning process, as the fuzzy rule-base representation transferred

from the general to the specific individual. It is reasonable to believe that

with each Bayesian updating, the difficulty of computation was remarkably

reduced and the prediction outcome was significantly improved.
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Figure 4.17: Example of uncertainty convergence with the learning algorithm

3. In this research, the model was implemented on Matlab®GUI system. The

redundancy of the overall system had severe influence of model computa-

tion, such as the delay caused by the equipment-software desynchronisation

and the inefficient build-in function. Real-time online image processing re-

quired a massive amount of computational resource which led to the lim-

ited memories shared by other experiment equipment software and caused

desynchronisation and delay. Meanwhile, the redundancy of Matlab®build-

in functions occupied extra computational resources, caused system error

with preassigned threshold and slowed down the computation. It is worth

noting that the experiment results in this project were not able to present the

full capacity of GT2FM. Therefore, it was reasonable to expect better perfor-

mance outcome of GT2FM with a clean and clear coding structure on a more

specified program language and a better computational environment.
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4.6 Summary

This section focused on the prediction of the human operator psycho-physiological

state in the HMI system. The mental arithmetic was selected as the simula-

tion of HMI systems for 10 participants. In addition to the previous psycho-

physiological biomarkers TLI, HRV and PDM, new facial temperature indicators

were introduced and integrated with others for assessing the operators’ psycho-

physiological state.

A new modelling approach named adaptive general type-2 fuzzy modelling

was proposed to predict human psycho-physiological state based on real-time ex-

periments. Such a new modelling approach integrated system uncertainty with

type-2 fuzzy sets and state tracking with defuzzification to estimate human psycho-

physiological state. The model prediction results were compared to participant-

specific ANFIS and A-GT2-FCM, and it was found that the proposed model out-

performed the other models presented in the related literature. The design of

adaptive learning algorithm based on Bayesian theory proved its ability to ex-

tract patterns from observations in real-time. With the estimation and classifica-

tion of psycho-physiological state, high accuracy and reasonable correlation were

achieved, including during the breakdown periods.

In summary, the results of the simulation experiment provided an evaluation

for applying adaptive general type-2 fuzzy modelling to systems similar to HMI.

Furthermore, it created the foundation of more advanced control mechanisms for

HMI systems and can be applied for the exploration of the origins of human opera-

tor compromised performance in the future. The next chapter will introduce a new

type-2 fuzzy logic-based control algorithm based on this adaptive general type-2

fuzzy modelling algorithm to balance the human effort in the human-machine

interface.



Chapter 5

Adaptive General Type-2 Fuzzy

Controller for Balancing

Human-machine Interface

This chapter presents a new type-2 fuzzy logic-based control algorithm for bal-

ancing the human-machine interface systems via adjusting the automation level

of the machine correspondingly to the estimation of the human operator psy-

chophysiological state. The newly proposed control approach combines the state

estimation of the human operator with the type-2 fuzzy sets to ensure equilib-

rium between the task requirements (i.e. difficulty level) and the human operator

feasible effort (i.e. psychophysiological states). Validated on mental arithmetic

cognitive experiments for ten (10) participants and compared with the existing

energy model-based control (E-MBC), the results revealed the impacts of the mul-

titask and fatigue on human operator performance. A selection of indicators are

presented for the detection of these two human compromised task performance

related psychophysiological states. In addition, the new control approach with

fatigue management showed the best performance with the highest consistency

and stability throughout the experiment. These findings allowed for path-opening

to the prevention of the human operator psychophysiological breakdown and for

the further development of other human-machine interface systems.

120
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5.1 Background

In this research, two major origins of human compromised task performance, mul-

titasking and fatigue, were investigated for developing a more advanced control

strategies for the HMI systems.

5.1.1 Multitasking

The term task may be referred to a cognitive or behavioural aim that requires some

certain corresponding responses to achieve [44]. Undoubtedly, such a broad def-

inition may result in some inconsistency under some special circumstances, e.g.

hierarchical tasks and multistep tasks. However, from the prospective of neural

science, a task may be explained with the synchronisation activities of the human

brain. In this way, multitasking may be expressed as a goal-directed, instructed or

self-instructed behaviour for maintaining information from multiple items over a

short period in the WM [5]. A typical cognitive process of task stimulated response

consists of task state tracking, feasible resource evaluation and outcome predic-

tion. Consequently, in addition to dual concurrent task that may share the same

information and pathways, simultaneous regulations such as serial task switching

(interruptions and resumptions) existed in the multitasking. Both dual-tasking

and task-switching can be identified to having a significant influence on the hu-

man task performance from three aspects, namely, cognitive structure, flexibility

and plasticity, and this increased performance costs in the individual tasks [44].

The research of the stimulus onset asynchrony, when it is not long enough for

sequential behaviour, in dual task paradigms show the more temporal overlap of

task processes the worse human task performance may be observed. Meanwhile,

as compared to the single-task, task-switching between different goals requires

switching estimation and the coordination of at least two task sets, including cog-

nitive process and behavioural response. The switch costs of task-switching is for

changing the task set regardless of the interference of other activities. While the

coordination costs represent the preparation and maintenance of multiple task sets

coherently. It is typical to find that task performance is worse in task switching
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than in the repetitive work [44]. The influence of multitasking on human task

performance is, therefore, of great importance for controllers to balance the HMI

systems.

This may be explained by the synchronisation of neurons and neural networks

that are responsible for promoting the neural communication and memory pro-

cessing [25]. The human cognition study suggests that the compromised per-

formance is related to the processing of information stream and memory in the

cortex [88]. As already mentioned, WM indicates one’s ability to maintain the task

related information against interference from other irrelevant stimuli. It is based

on various EEG frequency components that are generated by the collaboration of

transient inter neural electromagnetic pulses. Subtle synchronous coordination

laid the foundation of the multi sensory modality combination. Neural popula-

tions selected by encoded sensory stimuli modalities formed rapid and transient

connections through functional enhanced synchronisation [88]. Previous research

papers and books found that such neural activities may lead to observable oscil-

lation patterns in the gamma waves (25 to 100 Hz) on the human EEG over the

prefrontal cortex [4]. The simultaneous maintenance of increasing items in WM

is accomplished by continuously regulated cross-frequency coupling. Hence, the

increasing memory load from multitasking compromises the task performance

significantly [4]. Meanwhile, attention is related to the EEG alpha rhythm and

gamma rhythm. Evidence showed, at a given cortical site, the alpha rhythm reg-

ulated the information processed by that area and the gamma rhythm adjusts

attention for different sensory modalities [88]. Therefore, attention control and

WM for completing tasks are competing for a common cortical circuit substrate.

Additionally, multitasking also requires the reconfiguration of prefrontal cortex

tuning profiles to map different task contexts constantly. The transform of net-

work impacts the coding space for decision making and might lead to a complete

behavioural choice drift in order to cope with other task context [77]. These find-

ings also prove the possibility of assessing human multitasking with measurable

psychophysiological indicators, such as EEG.
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5.1.2 Fatigue

The term fatigue describes the psychophysiological state of experiencing tired-

ness and is commonly associated with a compromised performance from both the

cognitive and physical levels [30]. For the physiological prospective, fatigue may

lead to strength reduction, exercise capacity loss, effort level increase and mus-

cle power decrease. For the psychological prospective, fatigue may refer to an

overwhelming feeling of tiredness and impaired cognitive performance, such as a

diminished short-term memory, a reduced vigilance and a degraded communica-

tion skills [30]. Previous statistical research papers and books have shown a high

correlation between the human fatigue level and the human error rate [19, 30].

Most HMI nowadays focused on cognitive tasks more than physiological tasks.

Therefore, this project researched mainly the acute mental fatigue that may be

defined as an emotion involved with tiredness or exhaustion and often associated

with reluctant behaviour towards the current task, including reduced commitment

and impaired performance [10, 64]. Compared with multitasking, the fatigue had

a more significant impact on human task performance - cognitive slowing and

cognitive lapses that prolonged the reaction time for the task and increased the

probability of breakdowns in physical performance [31, 37]. For the safety and ef-

ficiency of the HMI systems, the control strategies should be capable of detecting

such fatigue of human operators and respond adequately to avoid any breakdown.

Although mental fatigue is a well known psychophysiological state, there is

no unified definition nor straightforward measurement [30]. As a brain-derived

emotion, fatigue is mainly assessed by the subjective self-report and the reac-

tion time [10, 30, 31, 99]. There are two observable traits in task performance

may be linked with mental fatigue - cognitive slowing (slowdown in short re-

action time tasks) and cognitive lapses (psychophysiological breakdowns lasting

from seconds to hours) [31]. Current studies have established mathematical mod-

els explaining the relationships between fatigue, sleep deprivation and working

hours [31, 37, 99]. These research studies focused on fatigue generated from over-

loaded physical or mental tasks and sleep deprivation based on the studies of

long time experiment. However, some partial equations from these existing model
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may be applied to the modelling of acute mental fatigue in HMI. It was found

that, under a constant workload, mental fatigue level approximated a circadian

self-sustaining oscillator [99]. From these psychophysiological research works, it

may be proved that fatigue was able to be estimated with the regulation of human

body homeostasis.

However, it was proved that such acute mental fatigue could be restrained

or relieve with certain methods [10]. Based on the research of fundamental goal

directed behaviour, a human is only motivated for a certain task when its bene-

fits overcame its effort costs. Therefore, for a prolonged period of time, fatigue

rose when the accumulated effort invested in eventually outweighed the poten-

tial benefits. Previous records showed the minimised requirement of effort level

may significantly improve experience of solving tasks. Therefore, acute mental

fatigue may be regarded as an adaptive strategy to constraining effort on high re-

ward goals and increasing overall energy efficiency. It revealed that such a fatigue

may be overrode with increased task reward or relieved with decreased effort re-

quirement temporarily. However, it must be aware that the suppression of acute

mental fatigue for a prolonged time came at a price, as it elevated psychophys-

iological stress level and contributed to burnout and long term health disorder.

Meanwhile, the individual difference was also important, considering that the

evaluation of efforts and benefits different differed from person to person.

5.2 Experimental Setup

5.2.1 Human-Machine Interface Simulation

The mental arithmetic experiment had been selected for this research because of its

effectiveness, simplicity and intuitiveness [33]. For the consistency, the experiment

environment and the ten (10) selected participants were the same as in previous

modelling part of this study, except for the difficulty level of the task, where it

was adjusted by the human-machine interface balance control (HMIBC) controller

rather than predetermined. The simulation system took records of heart rate vari-

ability (HRV1 and HRV2), task load index (TLI1 and TLI2), pupil sizes (PDM)
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and facial temperature biomarkers (T̄n, T̄f and Tmax f ) from the human operators

in real-time. Based on the psycho-physiological monitoring, the adaptive generate

type-2 fuzzy model provided task performance prediction, psychophysiological

state estimation and the rule-base for the controller to determine the necessity of

the appropriate intervention to meet the expectation of the HMI system.

5.2.2 Controlling Experiment Configuration

For the control configuration, the HMIBC controller was implemented in order

to adjust the task difficulty level according to the participant psychophysiolog-

ical state prediction based on the adaptive general type-2 fuzzy model in real-

time. The psychophysiological recordings of the human operator under fatigue

and multitasking conditions were collected concurrently.

The entire control experiment consisted of three 12-minute mental arithmetic

test sessions and two 5-minute breaks in between for each participant. The partic-

ipants went through four 30-second phases with all four difficulty levels without

any control intervention to familiarise themselves with the system in the begin-

ning. The controller then adjusted the difficulty level according to the model

predictions and the subjective fatigue report.

A fatigue indicator was integrated with the software for studying the human

operator psychophysiological fatigue in the HMI and fatigue management in the

first and the last mental arithmetic test sessions. The indicator relied on the self-

report of the participants during the experiments and marks the period when the

subjects experienced fatigue-related feelings, e.g. tired, bored or anxious. In the

last mental arithmetic test session, the controller combined the fatigue indicator

to improve the control efficiency and created a more intelligent system based on

participant subjective self-evaluations. The second mental arithmetic test session

focused on the multitasking of human operators. In additional to the normal tasks,

the participants were required to maintain a casual conversation throughout the

whole session (secondary task).
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5.3 Human-Machine Interface Balance Control

A control action depends on the inference between the input vector It and the pre-

dicted output ŷt, the state estimations Et, the fuzzy rule-base R from the adaptive

general type-2 fuzzy model.

The aim of the human-machine interface balance control (HMIBC) is to balance

the HMI system. Therefore, the controller must be able to maintain the consistent

overall performance against the time while maximising the subjects’ participation.

The idea of balance control is to assign the participant with the suitable task load

according to the mapping between the psychophysiological states and the diffi-

culty levels. In this way, the task performance remains at a suitable range for each

difficulty level.

The detailed inference process for a control prediction is as follows:

1. Check whether a control action is necessary. A control action is only intro-

duced when:
¯̂yt =

∑t
i=t−N+1 ŷi

N
,

¯̂yt 6∈ [y(i,l), y(i,u)],
(5.1)

where y(i,l) and y(i,u) represent the lower and the upper performance bound-

aries of the current difficulty level i, and N stood for the length of selected

performance window.

2. Compute the densities between selected fuzzy rules and input vector It using

Gaussian membership function. The selected fuzzy rules are as follows:

R =


R(1,m) R(1,n)

R(2,m) R(2,n)
...

...

R(M,m) R(M,n)

 , (5.2)

where the predicted output is between the two states ym ≥ ŷt > yn (if

ŷt ≥ y1, then select all the fuzzy rules describing the 1st and the 2nd state;

correspondingly, the K− 1 and K for yK ≥ ŷt). The density D(i,j) between the



Chapter 5. Adaptive General Type-2 Fuzzy Controller for Balancing
Human-machine Interface 127

input vector It to each selected fuzzy rule µ(i,j) & σ(i,j) were:

D(i,j) = e

−(It−µ(i,j))
2

2σ2
(i,j) . (5.3)

3. Decide on the type of control action and the density matrix Dt:

(a) If ŷt < y(i,l), then the current difficulty level DLt should be decreased.

Correspondingly, The density matrix D is as follows:

D =


D(1,m) D(1,n)

...
...

D(DLt−1,m) D(DLt−1,n)

 ; (5.4)

(b) If ŷt > y(i,u), then the current difficulty level DLt should be increased.

Correspondingly, The density matrix D is as follows:

D =


D(DLt+1,m) D(DLt+1,n)

...
...

D(M,m) D(M,n)

 . (5.5)

4. Generate the new difficulty level DLt+1 from the state estimation Et. The

control strategy depends on the comparison between two state estimations

E(t,m) & E(t,n):

(a) If E(t,m) ≥ E(t,n), then the participants’ performance tends to increase.

The suitable new difficulty level DLt+1 should be generated from m

states and is close to the current input vector to achieve the most possi-

ble improved performance, as follows:

DLt+1 = a, where

D(a,m) =
{

max(D(i,m))|∀D(i,m) ∈ D
}

;
(5.6)

(b) If E(t,m) < E(t,n), then the participants’ performance tends to decrease.

The suitable new difficulty level DLt+1 should be generated from n
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states and is far from the current input vector to avoid the most possible

declined performance, as follows:

DLt+1 = b, where

D(b,n) =
{

min(D(i,n))|∀D(i,n) ∈ D
}

.
(5.7)

5.4 Evaluation of Impaired Task Performance and Controller

This section focuses on the experimental results of the HMIBC controller based on

adaptive general type-2 fuzzy framework mentioned in the previous section, as

well as the analyses of the human operator fatigue and multitasking states in the

HMI system. The controller is integrated within the HMI mental arithmetic exper-

iments for online real-time controls, and the results are compared with the HMI

simulation sessions without any controller. Additionally, this chapter also pro-

vides the results of E-MBC based on A-GT2-FCM framework for comparison. It is

worth mentioning that any real-time experiment session is impossible to replicate,

even for the same subject under the same conditions. The evaluations and sum-

maries of the comparison results, however, should still be helpful to show some

different characteristics among the control-free sessions and two types of control

methods.

5.4.1 Controller Configuration

The HMIBC controller based on the adaptive general type-2 fuzzy framework

started working from 140 seconds after the experiment begins. Figure 5.1 shows

the diagram of the controller integrated within the HMI simulation. The hystere-

sis of the control action was 10 seconds for the participant to adjust to the new

difficulty level and the performance window was N = 10. This ensured the par-

ticipant had adequate time to adapt to any new difficulty level applied. Table 5.1

summarises the performance boundaries for each difficulty level in this experi-

ment. An intervention of the task difficulty level from the controller depended

on the input vector I(t) = [HRV1(t), HRV2(t), TLI1(t), TLI2(t), PDM(t), T̄n(t),

T̄f (t), Tmax f (t)], the state estimation matrix Et = [ea eb] and the rule-base R of
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Figure 5.1: Diagram of the controller for the HMI simulation experiment (GT2FM
and other sections in - - is the subject of the previous chapter, chapter 4)
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eight type-2 fuzzy set based rules from the modelling framework as mentioned in

the previous chapter.

Table 5.1: Upper and Lower Performance Boundaries

Difficulty Level 1 2 3 4
Accuracy (%) ≤0.975 0.875∼0.925 0.825∼0.875 ≥0.775

5.4.2 Controller Evaluation

Similarly to the modelling experiment in the previous chapter, the control exper-

iment started with a general rule-base from the previous thermal temperature

experiment and the first state estimation matrix E1 = [1 0]. The assessment of

control efficiency considered two aspects - the consistency and stability of the hu-

man operator task performance. The stability represents the controllers’ ability to

avoid the abnormal human operator psychophysiological state (e.g. breakdown)

and restricts the consequent impact on the HMI system. In this experiment, it was

quantified with breakdown percentages, which measured the occupation of the

breakdown period (when the actual accuracy was less than 0.667 - the participant

failed on more than four consecutive questions) over the whole time for each diffi-

culty levels and the entire session. The consistency required maintaining the HMI

overall performance at a reasonable level regardless of the changes in the human

operator psychophysiological state and task difficulty level. For this research, this

consistency was assessed by the statistical means and the standard deviations of

the actual accuracy for each difficulty levels over the whole session.

Tables 5.2, 5.3 and 5.4 summarised the breakdown percentages, means and

standard deviations of two modelling sessions and one controlling session for ten

participants. Compared with the two modelling sessions with fixed difficulty level,

the controlling session showed more stability and consistency in the task perfor-

mance. From Tables 5.2, it can be seen that the overall breakdown percentage of

the controlling session was the lowest among the three sessions for an accuracy

trade-off between the easy and hard difficulty levels. It revealed that the controller

succeeded in restricting the duration and influence of the abnormal human psy-
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chophysiological state by adjusting the task difficulty to suit the human operator.

Based on Table 5.3, the controller was able to help the participants to maintain a

balanced task performance with relatively high accuracy throughout the HMI sim-

ulation with their various psychophysiological states. This avoided the inequality

between the needs for human effort and the operator’s capacity. Furthermore, the

task performances of the human operators, in general, were more stable with the

controller as shown in Table 5.4, especially during the high difficulty level periods.

Figure 5.2 provided an example for comparing the task performances of the same

participant with and without the HMIBC. Compared with the control free session,

the accuracy of the human operator remained at a reasonable level without any

sudden decrease following psychophysiological breakdown.

Table 5.2: Breakdown Percentages (%) for Modelling and Controlling Sessions

Sessions
Difficulty Levels

Total
1 2 3 4

Incremental Difficulty 0.261 0.444 12.725 52.501 17.111
Random Difficulty 2.565 0.074 12.176 49.897 16.800

Controlled Difficulty 2.258 6.345 6.289 20.800 10.271

Table 5.3: Means of Actual Accuracy for Modelling and Controlling Sessions

Sessions
Difficulty Levels

Total
1 2 3 4

Incremental Difficulty 0.961 0.942 0.795 0.587 0.816
Random Difficulty 0.948 0.956 0.815 0.605 0.826

Controlled Difficulty 0.862 0.873 0.890 0.861 0.855

Table 5.4: Standard Deviations of Actual Accuracy for Modelling and Controlling
Sessions

Sessions
Difficulty Levels

Total
1 2 3 4

Incremental Difficulty 0.059 0.066 0.085 0.126 0.181
Random Difficulty 0.077 0.052 0.091 0.163 0.183

Controlled Difficulty 0.131 0.053 0.091 0.108 0.138
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Figure 5.2: Real-time experiment results for the participant 08 with and without
the HMIBC

5.4.3 Controller Comparison

Figure 5.3 compares the real-time experiment results for the HMIBC controller

and the E-MBC controller. From the second set of plots in this figure it may be

observed that the control actions from the HMIBC controller were more flexible

and adaptive to the human operator psychophysiological changes than these from

the E-MBC controller, despite the two controllers having the same hysteresis for

generating new control actions. In contrast, the E-MBC controller increased the

difficulty level when a clear performance breakdown was presented 540 seconds

after the experiment started, which significantly damaged the task performance

in the first set plots of the same figure. It is also worth noting that the lack of

flexibility in the control actions of the E-MBC restricted the human operator’s

ability to perform high demanding tasks, as the time for the level four task was

remarkably less in the experiment with the E-MBC. It should also be mentioned

that the prediction accuracy of the modelling framework is of great importance

for the efficiency of the control actions. In this respect, the E-MBC controller was

compromised, for it is based on the A-GT2-FCM framework [84] with less accurate

psychophysiological prediction (as shown in the previous chapter, chapter 4).

To further illustrate the HMIBC control’s capabilities, additional statistical

comparisons were provided in Tables 5.5, 5.6 and 5.7. From Table 5.5, and com-
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Figure 5.3: Real-time experiment results for the HMIBC and the E-MBC
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pared with the E-MBC, the HMIBC significantly reduced the likelihood of break-

down, especially for difficulty levels 3 and 4. Apart from minimising the likelihood

of breakdown, the HMIBC ensured consistency of human operators’ performance

throughout different difficulty levels with limited persistent disturbances in Ta-

bles 5.6 and 5.7. In summary, the HMIBC provided a more reliable and efficient

approach for balancing the task requirement and human operator psychophysio-

logical state in HMI systems.

Table 5.5: Breakdown Percentages (%) for the HMIBC and the E-MBC

Sessions
Difficulty Levels

Total
1 2 3 4

HMIBC 5.170 0.000 8.333 3.732 4.916
E-MBC 0.002 0.001 18.621 32.209 11.728

Table 5.6: Means of Actual Accuracy for the HMIBC and the E-MBC

Sessions
Difficulty Levels

Total
1 2 3 4

HMIBC 0.857 1.000 0.801 0.853 0.853
E-MBC 0.939 0.963 0.808 0.700 0.864

Table 5.7: Standard Deviations of Actual Accuracy for the HMIBC and the E-MBC

Sessions
Difficulty Levels

Total
1 2 3 4

HMIBC 0.140 0.000 0.164 0.125 0.141
E-MBC 0.049 0.067 0.269 0.272 0.225

5.4.4 Multitasking

As one of the main contributions to the human operator compromised perfor-

mance or even breakdown, multitasking in the HMI systems was investigated.

The requirement of the participates to fulfil both a casual conversation and the

mental arithmetic test concomitantly was significantly impacted on their task per-

formance in the HMI simulation. Compared with the values from the original

single-tasking sessions in Tables 5.8, 5.9 and 5.10, the total breakdown percentage
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Figure 5.4: Real-time experiment results for the participant 10 in Single-tasking
and Multitasking
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of the multitasking sessions rose to 11.54 %, whereas the total mean and stan-

dard deviation of accuracy performance fell to 0.839 and 0.133. The increases

of breakdown likelihood in difficulty levels 1, 2 and 3 and the decreases of the

task performance for difficulty levels 1 and 3 were a significant influence on the

overall compromised performance. Figure 5.4 provides the real-time experiment

results for participant 10 in the sessions with the single-tasking and multitasking.

It showed that, compared with the single-tasking session, the task performance of

the human operator in multitasking was less stable with the increased likelihood

of breakdown.

Table 5.8: Breakdown Percentages (%) for the Task Performance of Single-tasking
and Multitasking

Sessions
Difficulty Levels

Total
1 2 3 4

Single-tasking 2.252 6.344 6.287 20.805 10.279
Multitasking 6.171 7.140 14.765 12.414 11.548

Table 5.9: Means of Actual Accuracy for the Task Performance of Single-tasking
and Multitasking

Sessions
Difficulty Levels

Total
1 2 3 4

Single-tasking 0.862 0.873 0.890 0.861 0.855
Multitasking 0.843 0.884 0.823 0.862 0.839

Table 5.10: Standard Deviations of Actual Accuracy for the Task Performance of
Single-tasking and Multitasking

Sessions
Difficulty Levels

Total
1 2 3 4

Single-tasking 0.131 0.053 0.091 0.108 0.138
Multitasking 0.117 0.079 0.130 0.107 0.133

Despite the fact that multitasking was a subjective behaviour, the psychophys-

iological changes may still be observed and was measurable for the feature ex-

traction of system modelling. A two-sample T-test was applied in this research

to compare the differences of psychophysiological biomarker indices between the
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normal and multitasking sessions. According to the principle of the two-sample

T-test, a significant difference in marker readings provided a H value of 1, while

H = 0 if no difference can be distinguished at a 5 % confidence level. Table 5.11

summarises the H values for all the psychophysiological biomarkers generated by

the same ten participants. It showed that the mean nasal temperature (T̄n), the task

load index 1 (TLI1), the mean forehead temperature (T̄f ) and the heart rate vari-

able 1 (HRV1) demonstrated significantly different patterns when the participants

were engaged in multitasking.

Table 5.11: H Value Summary for T-test between Single-tasking and Multitasking

Difficulty Level 1 2 3 4 Mean
T̄n 0.909 0.727 0.909 1.000 0.884
T̄f 0.909 0.727 0.818 0.900 0.837

Tmax f 0.909 0.636 0.909 0.800 0.814
HRV1 0.909 0.455 0.800 1.000 0.786
HRV2 1.000 0.727 0.818 0.800 0.837
TLI1 0.818 0.818 0.818 1.000 0.861
TLI2 0.727 0.727 0.727 0.900 0.767
PDM 0.818 0.909 0.818 0.700 0.814

For the T̄n and TLI1, observable differences were able to be found in the mean

and standard deviation of accuracy performance for each difficulty level and the

entire sessions. From the level 1 to 4, the T̄n remained between 29 and 30.00 ◦C

with a standard deviation of 2.310 ◦C in the normal session and rose to 33.080 ◦C

with a reduced deviation of 0.206 ◦C. This variation may be due to the change

of the respiratory system regulation in multitasking. The mean value and the

standard deviation of TLI1 decreased from 0.103 to 0.088 and from 0.035 to 0.16

throughout all difficulty levels when switched to multitasking. These suggested

that the multitasking suppressed the overall working memory and restrained the

activation level of the participant. Similarly to the T̄n and TLI1, T̄f and HRV1 pre-

sented distinguishable differences in their standard deviations between the normal

working condition and multitasking, where their values being reduced from 0.760

to 0.140 ◦C and from 0.212 to 0.038. Such decreases may also be regarded as an in-

dication of the reduced excitement of the participants in multitasking. Figures 5.5
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Figure 5.5: Psychophysiological biomarker recordings (HRV1, HRV2, TLI1, TLI2,
PMD, T̄n, T̄f , Tmax f ) for the participant 02 in multitasking session
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and 5.6 show the psychophysiological biomarkers and task performance of the

participant 02 during the multitasking session with HMIBC controller. It may be

found that the changes of psychophysiological biomakers were not entirely syn-

chronised with the change of the participant performance. For example, the task

performance met a decrease around 540s, where there was barely any change in

the recordings of most biomarkers. These findings corresponded to the psycho-

biological theory mentioned in [4, 88] that multiple tasks fought for the limited

brain resource, such as attention and working memory, and as a result an addi-

tional effort was required for the regulation of these tasks (See Appendix B for the

detailed summary).
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Figure 5.6: Accuracy performance and HMIBC control action from the participant
02 in multitasking session

5.4.5 Fatigue

As already stated, fatigue is a subjective cognition of the human psychophysiolog-

ical conditions that cannot be objectively quantified or qualified. Different from

multitasking, fatigue analysis depends on the subjective self-reports from the hu-

man operators. Figure 5.7 presents an example of the extraction of the fatigue state
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Figure 5.7: Real-time experiment results for the participant 03

during this session. The shaded area covered the time when the human operator

experiences fatigue-related feelings such as frustration and triteness. From Ta-

bles 5.12, 5.13 and 5.14, the statistical results of the ten participant showed, for the

normal and the fatigue states, their mean breakdown percentages as being 4.75 %

and 11.89 % respectively, and their corresponding means and standard deviations

of accuracy performances being 0.868 & 0.133 and 0.735 & 0.157. These figures

suggest similar patterns as in other research studies [30, 31, 89, 99] that fatigue is

able to compromise human task performance significantly and eventually leads to

psychophysiological breakdown.

Table 5.12: Breakdown Percentages (%) for the Task Performance of Normal and
Fatigue States

Sessions
Difficulty Levels

Total
1 2 3 4

Normal 2.657 5.815 7.124 11.917 4.573
Fatigue 1.899 85.008 25.008 50.056 11.895

Table 5.13: Means of Actual Accuracy for the Task Performance of Normal and
Fatigue States

Sessions
Difficulty Levels

Total
1 2 3 4

Normal 0.899 0.877 0.887 0.809 0.868
Fatigue 0.863 0.515 0.790 0.589 0.735

Different from multitasking, fatigue is difficult to identify solely from the psy-

chophysiological biomarkers. Similarly, the two-sample T-test was applied from
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Table 5.14: Standard Deviations of Actual Accuracy for the Task Performance of
Normal and Fatigue States

Sessions
Difficulty Levels

Total
1 2 3 4

Normal 0.097 0.107 0.108 0.126 0.133
Fatigue 0.070 0.034 0.070 0.106 0.157

ten-sample experiment to compare these biomarkers’ effectiveness and efficiency

to differentiate fatigue from the normal psychophysiological state, see Table 5.15.

The most correlated indicators appeared to be the heart rate variable 1 (HRV1),

the mean forehead temperature (T̄f ) and the maximum facial temperature (Tmax f ).

The relatively low H values for all the biomarkers indicate that fatigue was leaning

more towards a psychological state rather than a physiological state, and combin-

ing the subjective methods with existing indirect measurements is of great impor-

tance for the detection and assessment of the human operator fatigue in the HMI

systems.

Table 5.15: H Value Summary for T-test between Normal State and Fatigue

Difficulty Level 1 2 3 4 Mean
T̄n 0.875 0.667 0.750 0.625 0.733
T̄f 0.875 1.000 0.750 0.625 0.800

Tmax f 0.875 0.833 0.750 0.750 0.800
HRV1 0.750 1.000 0.875 0.875 0.867
HRV2 0.500 0.833 0.875 0.375 0.633
TLI1 0.500 0.667 0.375 0.750 0.567
TLI2 0.500 0.833 0.625 0.625 0.633
PDM 0.750 0.667 0.750 0.625 0.700

Significant differences may be found for HRV1, where the total mean values

were 0.460 and 0.623 for the normal state and the fatigue state respectively. The

mean value for the fatigue state increased from 0.517 to 0.627 with a reduced stan-

dard deviation across the difficulty levels 1 to 4, whereas the mean value for the

normal state was around 0.46 with a relatively larger standard deviation. Com-

pared with the normal psychophysiological state, T̄f for the fatigue state rose

around 1 ◦C and was maintained at 33.47 ◦C throughout all difficulty levels.
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The total standard deviation of the T̄f showed an obvious decrease from 0.706

to 0.120 ◦C when the participant entered the fatigue state. The significant differ-

ence for the Tmax f was that the general standard deviations for the normal and

the fatigue states were 0.146 ◦C and 0.025 ◦C. Figures 5.9 and 5.8 show the psy-

chophysiological biomarkers and task performance of the participant 06 during

the multitasking session with HMIBC controller. It may be found that some of the

psychophysiological biomarkers were sensitive to the fatigue state. For example,

there was a rapid increase for T̄f during the fatigue period around 360s. The three

indicators above were consistently correlated with the cardiovascular system, and

the lack of fluctuation might suggest that the participant lacked engagement for

the task (See Appendix C for a more detailed summary).
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Figure 5.8: Accuracy performance and HMIBC control action from the participant
06 in fatigue session (shade green area represented self-report fatigue)

5.4.6 Fatigue Management

Based on the theoretical study [10], fatigue was a psychological state related to

the effort-reward equilibrium. For each task, the cognitive system analysed the

reward from completing the task and the effort required. Fatigue rose when the

effort overcame the reward and encouraged the organism to seek lower reward

targets and/or lower effort strategies. In this case, it compromised the task perfor-

mance of the human operator and eventually caused psychophysiological break-
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represented self-report fatigue)
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down. The mathematical model in another research [99] illustrated that within

a certain period (such as an hour) human effort could be regarded as a self-

sustaining oscillation. These findings suggested two strategies for avoiding the

breakdown and reversing fatigue to a certain degree - increasing the potential re-

wards and/or decreasing the task demand. For this research, the potential reward

of completing the task was mainly from the satisfaction of answering questions

correctly, whereas the task demand was fundamentally established based on the

difficulty level. Since the psychological satisfaction was subjective and individual-

dependant, the reduction of the task difficulty level during fatigue state was inte-

grated for more intelligent control of the HMI system.
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Figure 5.10: Real-time HMIBC experiment results for the participant 01 without
vs. with the fatigue management
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Figure 5.10 presents the real-time experiment results for participant 01 in the

sessions with and without fatigue management in the HMIBC. It may be observed

from the second set of plots in Figure 5.10 that the controller with fatigue man-

agement adjusted the task difficulty level during the periods of fatigue state (the

shaded areas) according to the fatigue index. In the first plot of the same figure,

without fatigue management integrated in the controller, the task performance

nearly decreased to the breakdown point (0.6) around 540 seconds. Compared

with the task performance without fatigue management, the task performance

with fatigue management showed fewer oscillations and remained at a relatively

higher level (see the second plot of Figure 5.10). It is also worth noting that in the

session with fatigue management the participant maintained a higher accuracy

in difficulty level 4 for a longer time in a single trial. This indicated that fatigue

management was not only constructive for the human operator to perform sta-

bly and accurately, but it also had allowed for path-opening to advanced human

performance in complex situations.

Table 5.16: Breakdown Percentages (%) for the HMIBC without/with the Fatigue
Management

Sessions
Difficulty Levels

Total
1 2 3 4

Original Control 2.251 6.345 6.280 20.800 10.272
With Fatigue 3.454 6.089 3.115 9.012 4.152

Table 5.17: Means of Actual Accuracy for the HMIBC without/with the Fatigue
Management

Sessions
Difficulty Levels

Total
1 2 3 4

Original Control 0.862 0.873 0.890 0.861 0.855
With Fatigue 0.894 0.850 0.851 0.880 0.893
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Table 5.18: Standard Deviations of Actual Accuracy for HMIBC without/with the
Fatigue Management

Sessions
Difficulty Levels

Total
1 2 3 4

Original Control 0.131 0.053 0.091 0.108 0.138
With Fatigue 0.107 0.081 0.096 0.070 0.111

Furthermore, Tables 5.16, 5.17 and 5.18 compared the breakdown percentages,

means and standard deviations of the original HMIBC session and the HMIBC

with the fatigue management session for ten participants. Compared with the

task performance in the original HMIBC session, the task performance with fa-

tigue management had a higher accuracy and stability, and the probability of the

breakdown was significantly reduced. In Table 5.16, the breakdown percentages

of the fatigue management session were significantly reduced for the difficulty

levels 3 & 4, which also led to a decrease in the overall percentage. This suggested

that fatigue management was an efficient strategy to avoid the psychophysiologi-

cal breakdown of human operators in the HMI system. According to the results in

Table 5.17, fatigue management had ensured the human operators’ performance

well especially in the difficulty level 4. This suggested that fatigue management

was an effective way of inspiring improved human performance, which was es-

sential for solving even more demanding tasks. Additionally, the overall task

performance of the human operators was more stable and more consistent with

fatigue management as shown in Table 5.18.

5.5 Summary

This chapter presented a new type-2 fuzzy logic-based control algorithm for the

HMI systems based on the human operator psychophysiological state. The HMI

systems were simulated with the mental arithmetic cognitive experiment for 10

participants. In addition to the comparison of the various control methods pre-

sented previously, the two main causes of human operator compromised task per-

formance, i.e. multitasking and fatigue, were also investigated.

The new HMIBC approach adjusted the task difficulty level to respond to
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the varying human operator psychophysiological state. It combined the state es-

timation of the adaptive general type-2 fuzzy modelling and the human state-

performance correlation described by the type-2 fuzzy logic sets. Compared with

the results of the E-MBC, the ones of new HMIBC showed better performances

with higher consistency and stability with all the participants.

The experiment results also identified the impacts of the multitasking and fa-

tigue on human operator task performance. In general, multitasking detection

mainly depended on the temperature changes in the nasal area and the working

memory from the EEG signal, whereas fatigue detection required a combination

of these with the subjective self-report. Finally, a new HMIBC integrated with

fatigue management achieved the best performance as compared with the other

controllers. It suggested the importance of integrating existing psychological find-

ings with balancing the HMI systems.

The combination of existing psychophysiological findings on human task per-

formance and the HMIBC algorithm guaranteed the equilibrium between the task

requirement and the human operator feasible effort in the HMI systems. It ex-

plored the full potential of the HMI systems without the psychophysiological

breakdown of the human operator. This ensured a further possible application

of the HMIBC and GT2FM framework in the fields that share similar characteris-

tics with the HMI systems.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research thesis started by introducing the current human psychophysiological

studies. It was found that human psychophysiological state played a core role in

the task performance of human operators in the HMI. A summary of the existing

biomarkers for human psychophysiological state assessment was provided in ad-

dition to commonly used HMI simulation configurations from previous research

studies. These findings contributed to the experiment design of this research and

suggested a human-centred modelling and control for the HMI systems.

Based on the discussions in relation to the facial temperature in the previous

studies, this research developed new biomakers, facial temperature biomarkers,

to assess the human psychophysiological state in real-time HMI. With the same

experiment configuration across ten participants, the newly developed biomakers

performed equally or even better in differentiating different psychophysiological

state than the conventional biomarkers TLI, HRV and PDM, especially in the range

of low workload state. The experiment results suggested that the mean nasal tem-

perature and the differential energy between philtrum and forehead were more

sensitive to the human psychophysiological state changes in comparison to the

conventional biomarkers. The maximum facial temperature and the mean fore-

head temperature demonstrated clear correlations with the operators’ state and

task performance in the real-time HMI. These findings proved the efficiency and

148
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effectiveness of using facial temperature biomakers for the research of the HMI.

The results of participant specific complex fuzzy inference modelling showed

that the time-varying pattern was the major issue for current offline models and

frameworks. Therefore, an adaptive type-2 fuzzy-based modelling approach was

proposed and applied to assess human operators’ psychophysiological states for

both safety and reliability of the HMI systems. The new modelling approach was

compared with offline ANFIS models and online A-GT2-FCM frameworks under

the same experimental conditions, and its prediction accuracy exceeded that of

previously mentioned approaches for all participants. In terms of both the distur-

bance rejection and the learning capabilities, the prediction of proposed models

achieved the best performance compared to other models that have been pre-

sented in the relevant literature. The design of state tracking to update the rule

base through a Bayesian process allowed the model to incorporate time-varying

patterns and individual difference across participants in real-time. The implemen-

tation of type-2 fuzzy rules was able to take into account the inter and intra par-

ticipant uncertainty. The computational frameworks based on these new features

were able to adapt to the dynamic changes within the HMI while maintaining

interpret-ability and robustness. These new configurations successfully lead to an

adaptive, robust and transparent computational framework that can be utilised to

identify dynamic (i.e., real-time) features without prior training. It was believed

that this new modelling approach would be a promising development in human-

machine interface systems and relevant research studies. The simplicity of the

designed type-2 fuzzy logic inference makes it open to new and exciting devel-

opment of advanced modelling and control mechanisms for many other similar

challenges in real world situations where the human-centred design is required.

In addition, this research introduced a new balancing control approach based

on the adaptive type-2 fuzzy-based modelling to maintain the equilibrium be-

tween the human operators and the automation, along with the exploration of

compromised task performance. Validated with the same ten participants in men-

tal arithmetic cognitive experiments, this new innovative control outperformed the

energy model-based control presented in the previous research, in terms of break-
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down avoidance and human engagement. Meanwhile, the relationships between

the operators’ performance and abnormal psychophysiological states, fatigue and

multitasking, were revealed in the HMI experiments. Furthermore, a selection of

biomakers was agreed upon for the detection of these two compromised perfor-

mance related states in the HMI. In addition, the new control approach combined

with fatigue management demonstrated the best performance with the highest

consistency and stability throughout the experiment for all ten participants. These

findings open paths for the identification and remedy of the human operator psy-

chophysiological breakdown in the early stage and the further exploration of hu-

man psychophysiology in similar human-centred operations.

6.2 Future Recommendations

The importance of adaptive modelling and control for the HMI has rapidly in-

creased with the incremental implementation of automatic systems in the real

world. Future work should be particularly focused on the psychophysiological

state of human operators. As the information flow showed an exponential growth

with the development of advanced software and hardware, the operational de-

mands may exceed the maximum capacity of the human operators and endanger

the safety and reliability of the whole system. Looking from this perspective, it

was of great importance to fully understand the machines behind human task

performance, e.g. decision making and action. Compared to the other relevant

researches, this research study successfully combined the latest psychophysio-

logical theories and clinical findings with the modelling and control. The use

of facial temperature biomakers and the tracking of human psychophysiological

state should open new research directions. However, these were just a mere use of

current discoveries and there is a lot more to be explored, such as the facial expres-

sions which have accumulated a lot of attention in human psychophysiological re-

search studies in the field of anthropology [26, 53, 100]. Meanwhile, the advanced

imaging technique was able to measure the pulse and calculate heartbeat based

on skin image. The development of these non-invasive or contact assessment tools
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from imaging analyses may significantly reduce the interference introduced by the

psychophysiological measurement.

This research explored the impact of fatigue and multitasking on human task

performance and selected possible biomakers for the identification of these states.

Yet, the integration of these findings in the modelling and control of the HMI still

remains at its infancy. More studies of neuroscience and psychology are still re-

quired to support a clear glimpse of the actual human cognitive process and to

create a generalised, transparent and accurate model structure. Further investiga-

tion on the fatigue and multitasking should be able to contribute to more intelli-

gent controlling methods with higher level functions such as workload planning

and work/rest schedules. The findings of fatigue control indicated the existence

of the elasticity within the human capacity. Future research study which focuses

on these pattern may be directly related to system safety and human well-being.

It is worth noting that current research study of HMI wae limited to the HMI

in a relatively short time period. Neither the length of time nor the intensity of

workload may be completely matched with the HMI systems as applied in the

real world. A human may adapt to the HMI in many different ways and the long

term psychophysiological effect is still yet to be discovered. It is reasonable to

believe that the documentation of human operator psychophysiological state and

the intelligent adaptation of model and control over a long period of time should

be one of the next focus points of any future HMI research study.



Appendix A

Summary of Two Sample T Test

for Facial Temperature Experiment

H value subsection 1 subsection 2 subsection 3 subsection 4
subsection 1
subsection 2 0.9000
subsection 3 1.0000 1.0000
subsection 4 1.0000 1.0000 0.9000

Table A.1: Overall Maximum Facial Temperature T-test Results for Experimental
Session 1

H value subsection 2 subsection 3 subsection 1 subsection 4
subsection 2
subsection 3 1.0000
subsection 1 1.0000 1.0000
subsection 4 1.0000 1.0000 0.8000

Table A.2: Overall Maximum Facial Temperature T-test Results for Experimental
Session 2
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H value subsection 1 subsection 2 subsection 3 subsection 4
Subsection 1
Subsection 2 1.0000
Subsection 3 1.0000 0.9000
Subsection 4 0.9000 0.9000 0.9000

Table A.3: Overall Mean Nasal Temperature T-test Results for Experimental Ses-
sion 1

H value Subsection 2 Subsection 3 Subsection 1 Subsection 4
Subsection 2
Subsection 3 0.9000
Subsection 1 1.0000 1.0000
Subsection 4 1.0000 0.9000 1.0000

Table A.4: Overall Mean Nasal Temperature T-test Results for Experimental Ses-
sion 2

H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 0.9000
Subsection 3 1.0000 1.0000
Subsection 4 1.0000 1.0000 0.900

Table A.5: Overall Mean Forehead Temperature T-test Results for Experimental
Session 1

H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 0.9000
Subsection 3 0.7000 0.9000
Subsection 4 0.9000 1.0000 1.0000

Table A.6: Overall Mean Forehead Temperature T-test Results for Experimental
Session 2

H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 1.0000
Subsection 3 1.0000 1.0000
Subsection 4 0.9000 0.9000 1.0000

Table A.7: Overall DEFP T-test Results for Experimental Session 1
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H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 1.0000
Subsection 3 1.0000 1.0000
Subsection 4 0.9000 1.0000 0.9000

Table A.8: Overall DEFP T-test Results for Experimental Session 2

H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 0.9000
Subsection 3 1.0000 0.9000
Subsection 4 1.0000 0.9000 0.8000

Table A.9: Overall HRV1 T-test Results for Experimental Session 1

H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 0.9000
Subsection 3 1.0000 0.9000
Subsection 4 1.0000 1.0000 0.8000

Table A.10: Overall HRV1 T-test Results for Experimental Session 2

H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 1.0000
Subsection 3 1.0000 1.0000
Subsection 4 1.0000 1.0000 1.0000

Table A.11: Overall HRV2 T-test Results for Experimental Session 1

H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 1.0000
Subsection 3 1.0000 1.0000
Subsection 4 1.0000 1.0000 1.0000

Table A.12: Overall HRV2 T-test Results for Experimental Session 2

H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 0.7000
Subsection 3 0.8000 0.8000
Subsection 4 0.8000 0.8000 0.5000

Table A.13: Overall TLI1 T-test Results for Experimental Session 1
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H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 1.0000
Subsection 3 0.7000 0.9000
Subsection 4 1.0000 0.8000 0.9000

Table A.14: Overall TLI1 T-test Results for Experimental Session 2

H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 0.9000
Subsection 3 0.9000 0.9000
Subsection 4 1.0000 0.9000 0.7000

Table A.15: Overall TLI2 T-test Results for Experimental Session 1

H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 1.0000
Subsection 3 0.8000 1.0000
Subsection 4 1.0000 1.0000 0.8000

Table A.16: Overall TLI2 T-test Results for Experimental Session 2

H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 0.9000
Subsection 3 0.8000 1.0000
Subsection 4 1.0000 1.0000 1.0000

Table A.17: Overall PDM T-test Results for Experimental Session 1

H value Subsection 1 Subsection 2 Subsection 3 Subsection 4
Subsection 1
Subsection 2 0.8000
Subsection 3 1.0000 0.8000
Subsection 4 0.9000 0.9000 0.9000

Table A.18: Overall PDM T-test Results for Experimental Session 2



Appendix B

Summary of Means and Standard

Deviations of the

Psychophysiological Biomarkers

for Multitasking

Table B.1: Mean Values of Biomarkers in Single-tasking

Difficulty Level 1 2 3 4 Mean
T̄n 30.181 29.935 30.928 29.472 30.129
T̄f 33.320 32.981 33.228 33.220 33.187

Tmax f 36.026 35.989 35.969 35.946 35.982
HRV1 0.649 0.447 0.584 0.599 0.570
HRV2 0.236 0.231 0.218 0.244 0.232
TLI1 0.089 0.111 0.099 0.112 0.102
TLI2 0.095 0.127 0.112 0.121 0.114
PDM 0.102 0.123 0.128 0.122 0.119
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Table B.2: Mean Values of Biomarkers in Multitasking

Difficulty Level 1 2 3 4 Mean
T̄n 33.200 32.893 33.060 33.174 33.080
T̄f 33.830 33.502 33.659 33.723 33.677

Tmax f 35.940 35.951 35.930 35.933 35.939
HRV1 0.731 0.434 0.579 0.621 0.591
HRV2 0.196 0.277 0.259 0.205 0.235
TLI1 0.078 0.097 0.093 0.084 0.088
TLI2 0.088 0.106 0.112 0.098 0.101
PDM 0.134 0.116 0.115 0.119 0.121

Table B.3: Standard Deviations of Biomarkers in Single-tasking

Difficulty Level 1 2 3 4 Mean
T̄n 2.399 2.506 2.386 1.945 2.309
T̄f 0.677 0.925 0.812 0.626 0.760

Tmax f 0.166 0.165 0.136 0.115 0.146
HRV1 0.232 0.187 0.217 0.212 0.212
HRV2 0.093 0.063 0.083 0.080 0.080
TLI1 0.034 0.048 0.028 0.031 0.035
TLI2 0.040 0.060 0.040 0.040 0.045
PDM 0.047 0.049 0.041 0.043 0.045

Table B.4: Standard Deviations of Biomarkers in Multitasking

Difficulty Level 1 2 3 4 Mean
T̄n 0.283 0.171 0.174 0.196 0.206
T̄f 0.198 0.122 0.119 0.121 0.140

Tmax f 0.049 0.035 0.030 0.038 0.038
HRV1 0.117 0.059 0.098 0.095 0.092
HRV2 0.031 0.028 0.027 0.037 0.030
TLI1 0.020 0.010 0.011 0.022 0.015
TLI2 0.021 0.008 0.008 0.026 0.016
PDM 0.046 0.022 0.016 0.027 0.028



Appendix C

Summary of Means and Standard

Deviations of the

Psychophysiological Biomarkers

for Fatigue

Table C.1: Mean Values of Biomarkers in Normal State

Difficulty Level 1 2 3 4 Mean
T̄n 29.249 28.590 30.052 29.519 29.336
T̄f 33.110 32.583 32.724 33.139 32.893

Tmax f 36.032 36.030 35.954 35.953 35.993
HRV1 0.550 0.358 0.408 0.521 0.460
HRV2 0.252 0.258 0.269 0.264 0.261
TLI1 0.105 0.119 0.112 0.119 0.114
TLI2 0.107 0.141 0.133 0.124 0.126
PDM 0.109 0.122 0.124 0.125 0.120
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Table C.2: Mean Values of Biomarkers in Fatigue State

Difficulty Level 1 2 3 4 Mean
T̄n 29.849 32.115 31.796 29.191 30.646
T̄f 33.463 33.585 33.496 33.355 33.467

Tmax f 35.965 35.819 35.842 35.911 35.889
HRV1 0.517 0.651 0.706 0.627 0.623
HRV2 0.292 0.180 0.201 0.212 0.224
TLI1 0.082 0.082 0.087 0.097 0.087
TLI2 0.077 0.035 0.077 0.094 0.073
PDM 0.137 0.138 0.113 0.171 0.140

Table C.3: Standard Deviations of Biomarkers in Normal State

Difficulty Level 1 2 3 4 Mean
T̄n 1.777 1.502 2.146 1.920 1.829
T̄f 0.658 0.716 0.853 0.612 0.706

Tmax f 0.159 0.138 0.160 0.127 0.146
HRV1 0.180 0.116 0.162 0.184 0.161
HRV2 0.082 0.055 0.093 0.088 0.079
TLI1 0.030 0.044 0.033 0.021 0.032
TLI2 0.037 0.059 0.046 0.034 0.044
PDM 0.042 0.053 0.053 0.043 0.047

Table C.4: Standard Deviations of Biomarkers in Fatigue State

Difficulty Level 1 2 3 4 Mean
T̄n 0.878 0.028 0.862 0.013 0.473
T̄f 0.186 0.018 0.163 0.087 0.120

Tmax f 0.055 0.004 0.031 0.003 0.024
HRV1 0.123 0.028 0.116 0.020 0.075
HRV2 0.068 0.003 0.053 0.008 0.035
TLI1 0.013 0.003 0.008 0.005 0.007
TLI2 0.009 0.002 0.003 0.004 0.004
PDM 0.020 0.010 0.009 0.014 0.013
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