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ABSTRACT

Anomaly detection is a challenging problem, mainly due to
the lack of a sufficient set of abnormal samples that represents
every possible anomaly. Therefore unsupervised methods are
employed to model normality and anomaly is detected as an
outlier to such models. This paper introduces Fourier Trans-
forms into AutoEncoders to demonstrate how the inclusion
of a frequency domain presents less noisy features for a deep
learning network to detect anomalies. Comparing our results
to the state of the art on a variety of datasets, we show how
the proposed method can provide competitive results.

Index Terms— Anomaly detection, Auto-encoder, Fourier
Transform

1. INTRODUCTION

Anomaly detection is the practice of detecting rare patterns
in data, which deviate beyond a particular distribution of ex-
pected behaviour. Anomalies by definition are rare, auto-
mated mechanisms that are able to detect anomalies would be
valuable as they have the potential to significantly reduce hu-
man operators’ time and therefore minimise errors and costs.

Classic machine learning approaches tackle the problem
by measuring the distance between data points with respect
to the area occupied by the majority of normal data; examples
of such approaches are Isolation Forests [1], Local Outlier
Factor [2, 3] and Gaussian Mixture Models [4].

Fourier Transform, which transforms any sequence from
time domain to a frequency domain, has been used before
for anomaly detection in classic machine learning approaches
[5, 6]. Therefore, if a particular data instance appears to have
frequent content that is significant different from the expected
frequencies, it is likely to be an anomaly [7, 8, 9].

Deep learning methods appear to have overtaken classic
machine learning in recent years. AutoEncoders, which al-
low for data such as images and videos to be reduced to a
low dimensional latent space, have attracted the interest of
researchers in anomaly detection [10, 11, 12]. This process
seems to remove most redundant noise before data is recon-
structed. Others have attempted to expand traditional deep
learning by performing classic machine learning on the latent
space [13].

An evolved version of AutoEncoders is the Variational
AutoEncoders [14, 15], which randomly sample from a nor-
mal distribution on the latent space. This allows for fewer
gaps in the latent space and trains the network to reconstruct
areas which may not be in the training data.

Approaches using semi-supervised learning have also
been explored [16, 17, 18] which incorporate Generative
Adversarial Networks (GANs), consisting of a Generator
and a Discriminator. EGBAD [17] and AnoGAN [18] use
GANs to train a Discriminator to distinguish the difference
between real and fake samples, under the logical assump-
tion that anomalous samples would resemble fake samples.
GANomaly [16] utilizes GANs differently to AnoGAN and
EGBAD; GANomaly uses GANs to better train an AutoEn-
coder by checking whether the Discriminator can distinguish
the differences between the input and output. This method
seems to be effective as it outperforms AnoGAN and EGBAD
[19].

Our contribution bridges the gap between using Fourier
Transforms to detect anomalous features and modern deep
learning methods. Anomaly detection in images is not with-
out noisy data, often RGB features may not be enough to
train a network to distinguish features, which differentiate
normal samples from anomalous ones. However, by incor-
porating Fourier Transform features into our model and ap-
plying a combined loss function of Kullback–Leibler (KL)
divergence and Binary Cross-entropy, we show that Fourier
Transform features improve the ability of a deep network to
detect anomalies.

The rest of this paper is organized as following: section 2
describes the proposed deep neural network model, section 3
presents the evaluation results, analysis and comparison and
finally section 4 concludes the findings of this research.

2. FOURIER AUTO-ENCODER FOR ANOMALY
DETECTION

An anomaly detection dataset can be abstractly described by
a set D containing normal and anomalous samples X and X̂
respectfully, such that X ⊂ D, X̂ ⊂ D, X ∩ X̂ = ∅,
X ∪ X̂ = D and |X| � ˆ|X|.



2.1. Related concepts and methodologies

One of the modern methods for detecting anomalies is Au-
toEncoders (AEs). An AE can be conceptually composed
of an Encoder followed by a Decoder, E : X → Z and
D : Z → X ′ respectfully.

X Z X ′E D (1)

The Encoder would map any x ∈ X to E(x) ∈ Z, where
X ⊆ Rm, Z ⊆ Rn and m > n. The dimensionally reduced
space Z is formally known as the latent space. The Decoder
then maps E(x) ∈ Z to D(E(x)) ∈ X ′, where X ′ ⊆ Rm is
similar to X . If |x−D(E(x))| exceeds a certain threshold the
sample is considered anomalous.

The presumption is that because AEs are trained on nor-
mal data, they will be unable to reconstruct anomalous data,
therefore the AE output will differ significantly to the AE in-
put.

An extension of an AE is the Variational AutoEncoder
(VAE). VAEs are similar to AEs except they randomly sample
from a normal distribution on the latent space, often within
one standard deviation of E(x) so that even small differences
within samples may be mapped.

Zµ

X Z ZN (µ,σ) X ′

Zσ

E D (2)

For many cases, it has been shown that VAEs perform better
than AEs.

A Fourier Transform is a transformation which maps any
sequence on the time domain in Rn to a frequency domain
on the complex plane, Cn with Cn = R2n. Furthermore, a
Fourier Transform is an isomorphism, let’s initially define it
as F : Rn → Cn. An isomorphism is an injective, surjective
and homomorphic map.

• Injective - For every unique value x ∈ Rn there ex-
ists a unique value F(x) ∈ Cn, which implies F is
invertable.

• Surjective - F maps the space Rn to the entire space
Cn.

• Homomorphic - For any two abstract binary operations
(say ◦ and ∗) and any a, b ∈ Rn,
F(a ◦ b) = F(a) ∗ F(b).

This means calculations can be made on a Fourier Transform
F(X) as though they were being made on X , while still re-
taining all of the information. Fourier Transform offers an en-
hanced representation of abnormal points and therefore it can
improve the performance of anomaly detection approaches.

2.2. Fourier Models for Anomaly Detection

The proposed method takes advantage of Fourier Transform’s
representation to identify anomalies by combine them with
AEs and VAEs. Firstly, a function F is defined which maps
any dataset X to its Fourier Transform in the complex plane,
F : Rn → Cn. Since Fourier Transform is isomorphic,
the values of F(X) could be used to perfectly represent the
values of X . As a result a conceptually valid AE is shown in
equation (3).

X XF Z X ′
F X ′F E D F−1

(3)

However, E (i.e. Encoder) andD (i.e. Decoder) for the model
in (3) would need to have complex weights. Furthermore,
we also recall that Cn = R2n, which means F(X) can be
split into two for each Rn ⊂ R2n = Cn. Let us define
the functions FR and FI which map any dataset X to their
Fourier Transform Real Value and Fourier Transform Imagi-
nary Value datasets respectfully as.

FR : X → XR

FI : X → XI
(4)

The proposed method builds three Encoders E , ER, EI which
map X , XR, XI to their latent spaces Z, ZR, ZI respectfully.
Each Encoder represents a sequence of Convolution layers,
Activation Function layers and Batch Normalization layers
- that are denoted as a Sequence of Neural Network Layers
(SNNL).

E : X → Z

ER : XR → ZR

EI : XI → ZI

(5)

We define K[Z,ZR,ZI] to be the concatenation of Z, ZR, ZI as
our combined latent space. The intuition behind this method
is that the latent space K[Z,ZR,ZI] should have features of
lower dimensionality from both the original data X and its
Fourier Transform F(X). The latent space K[Z,ZR,ZI] is then
decoded byD to a space Y , whereD also represents a SNNL.

D : K[Z,ZR,ZI] → Y (6)

Once K[Z,ZR,ZI] is decoded, Y is split by two maps, one
that represents real values YR and the other the imaginary ones
YI. Both maps in equation (7) are a SNNL.

Y → YR

Y → YI
(7)

Since for both of them we have YR ⊂ Rn and YI ⊂ Rn,
they are combined to represent the real and imaginary parts
of YC ⊂ Cn, respectively.
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Fig. 1. FAE Complete Model

YI

YC

YR

(8)

An Inverse Fourier Transform is then applied to the space
YC ⊂ Cn to attain Y ′ ⊂ Rn. Lastly we add a final mapping
from Y ′ to X ′ which is also a SNNL, where X ′ is our out-
put and should be relatively similar to our input X . A full
diagram of the FAE methodology can be found under Figure
1.

Y ′ → X ′ (9)

Additionally to the above mentioned FAE we also pro-
posed a Fourier enabled Variational AutoEncoder. The FVAE
is similar to the FAE, except it samples from the latent space
following the architecture of a classic VAE, before being
passed to the decoder, as it is shown in equation (10). The
complete FVAE is shown in Figure 2.

Kµ

K[Z,ZR,ZI] KN (µ,σ)

Kσ

(10)

2.3. Architecture of the Proposed Model

Each Encoder ( E , ER, EI) is made of 10 layers consisting
of Conv2D, Max-Pooling and Batch Normalization Layers.
The Decoder (D) is made of 11 layers consisting of Conv2D
Transpose, Up-Sampling2D and Batch Normalization Lay-
ers. To build the Fourier Transform Layers we used Lambda
Layers combined with the inverse and forward Fourier Trans-
forms. Each model was trained for 100 epochs, with a batch
size of 200 using an Adam Optimizer. The loss function for
the Fourier Models were the combined sum of Binary Cross-
entropy and KL Divergence.

3. RESULTS

3.1. Datasets

We tested FAE and FVAE on 3 different image datasets -
MNIST [20], CIFAR10 [21] and Concrete Cracks [22]. For
MNIST and CIFAR10 we used a one-versus-the-rest ap-
proach [19]; meaning one class would be considered normal
and the rest would be considered anomalous. The Con-
crete Cracks dataset is evenly split between two classes. The
MNIST dataset consists of 60,000 28x28 grayscale hand writ-
ten training images and 10,000 test images. Both the training
and testing dataset have evenly distributed classes between 0
to 9. The CIFAR10 dataset consists of 50,000 32x32 RGB
training images and 10,000 test images. Both the training
and testing datasets have 10 evenly distributed classes of the
following categories; plane, car, bird, cat, deer, frog, horse,
ship, truck, dog. The Concrete Cracks dataset consists of
40,000 227x227 RGB images of concrete. Half of the dataset
consists of concrete images without cracks (normal class)
and the other half consists of concrete images with cracks
(anomalous class).

3.2. Evaluation

Let us define A, a set of models to be trained. The set A
will consist of a FAE, a FVAE, a Vanilla AE and a Vanilla
VAE. Both FVAE and the Vanilla VAE used a combined loss
function of binary cross-entropy and KL divergence, while
the FAE Vanilla AE only used binary cross-entropy.

Each model in A was trained on each class in MNIST
and CIFAR10, where the training dataset consisted of only a
single class (considered to be the normal samples). There-
fore, a total of 40 models were trained on the MNIST and
40 on the CIFAR10 datasets. Each of the 80 models scored
an Area Under Curve (AUC) value on their respective test
data. The results are shown in Figures 4 and 5, comparing
the Fourier models and the current state of the art in unsu-
pervised learning [19] and displaying a mean AUC for each
one. In Figures 4 and 5 all the results are summarised and the
best cases are highlighted. On the MNIST dataset the results
of the Fourier Models tended to outperform or were relatively
close to GANomaly’s performance. Something similar can
be observed for the CIFAR10 dataset with the exception of
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Fig. 3. Samples Split between normal (left) and abnormal (right)

Model Class 0 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 mean
GANomaly 0.881 0.675 0.953 0.801 0.827 0.864 0.849 0.682 0.856 0.558 0.795
AnoGAN 0.623 0.31 0.521 0.458 0.442 0.431 0.492 0.401 0.392 0.368 0.444
EGBAD 0.783 0.294 0.523 0.506 0.453 0.436 0.593 0.398 0.523 0.358 0.487
Vanilla VAE 0.652 0.968 0.571 0.606 0.715 0.648 0.739 0.77 0.602 0.683 0.695
Vanilla AE 0.647 0.987 0.905 0.677 0.913 0.611 0.71 0.83 0.72 0.76 0.776
Fourier VAE 0.951 0.996 0.814 0.609 0.858 0.8 0.917 0.921 0.756 0.716 0.834
Fourier AE 0.895 0.998 0.576 0.693 0.775 0.502 0.723 0.899 0.592 0.871 0.752

Fig. 4. MNIST Results

Model plane car bird cat deer frog horse ship truck dog mean Cracks
GANomaly 0.633 0.631 0.51 0.585 0.593 0.683 0.605 0.616 0.617 0.628 0.61 0.86
AnoGAN 0.516 0.492 0.411 0.399 0.335 0.321 0.399 0.567 0.511 0.393 0.43 na
EGBAD 0.577 0.514 0.383 0.448 0.374 0.353 0.526 0.413 0.555 0.481 0.46 na
Vanilla VAE 0.651 0.436 0.529 0.476 0.484 0.47 0.476 0.596 0.499 0.508 0.51 0.79
Vanilla AE 0.713 0.407 0.679 0.566 0.735 0.638 0.494 0.702 0.41 0.549 0.59 0.99
Fourier VAE 0.678 0.443 0.52 0.5 0.481 0.477 0.485 0.638 0.51 0.51 0.52 0.85
Fourier AE 0.667 0.428 0.656 0.608 0.724 0.661 0.55 0.744 0.428 0.61 0.61 0.99

Fig. 5. CIFAR10 and Concrete Cracks Results

‘cars’ and ‘trucks’, which are quite similar and their Fourier
Transform may not enhance distinct differences. Similar re-
sults were obtained for the Concrete Cracks dataset and figure
5 shows the results of the proposed FAE models and the state
of the art GANomaly [19] method.

4. CONCLUSION

In this work we proposed a novel Anomaly Detection ap-
proach utilizing Fourier Transforms in AutoEncoders and

Variational Autoencoders, allowing the latent space to extract
more relevant feature representations. We evaluated the sug-
gested methodology on three datasets (MNIST, CIFAR10,
Cracks) and the proposed Fourier-based models achieved
similar or better results than the current state of the art.
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