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Abstract: The dimensions and weight of machines, structures, and components that need to be
transported safely by road are growing constantly. One of the safest and most widely used transport
systems on the road today due to their versatility and configuration are modular trailers. These
trailers have hydraulic pendulum axles that are that are attached in pairs to the rigid platform
above. In turn, these modular trailers are subject to limitations on the load that each axle carries, the
tipping angle, and the oil pressure of the suspension system in order to guarantee safe transport by
road. Optimizing the configuration of these modular trailers accurately and safely is a complex task.
Factors to be considered include the load’s characteristics, the trailer’s mechanical properties, and
road route conditions including the road’s slope and camber, precipitation and direction, and force
of the wind. This paper presents a theoretical model that can be used for the optimal configuration
of hydraulic cylinder suspension of special transport by road using modular trailers. It considers
the previously mentioned factors and guarantees the safe stability of road transport. The proposed
model was validated experimentally by placing a nacelle wind turbine at different points within
a modular trailer. The weight of the wind turbine was 42,500 kg and its dimensions were 5133
× 2650 × 2975 mm. Once the proposed model was validated, an optimization algorithm was
employed to find the optimal center of gravity for load, number of trailers, number of axles, oil
pressures, and hydraulic configuration. The optimization algorithm was based on the iterative and
automatic testing of the proposed model for different positions on the trailer and different hydraulic
configurations. The optimization algorithm was tested with a cylindrical tank that weighed 108,500
kg and had dimensions of 19,500 × 3200 × 2500 mm. The results showed that the proposed model
and optimization algorithm could safely optimize the configuration of the hydraulic suspension of
modular trailers in special road transport, increase the accuracy and reliability of the calculation of
the load configuration, save time, simplify the calculation process, and be easily implemented.

Keywords: optimization configuration; modular trailer; load stability; safe transport; special transport

1. Introduction

There is a strong relationship between the special transport sector and manufacturers
of products that are bulky and heavy. Such products include electricity transformers,
metal castings, aircraft components, and wind-generator parts. The manufacturers of these
products require the means to transport larger and heavier loads. An item’s weight or
maximum dimensions are often determined by the transport’s constraints rather than man-
ufacturing capacity. The infrastructure may determine the maximum loads that vehicles
that are allowed to carry. The infrastructure includes the roads, regulations, capacity of
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roads or canals, or the load bearing capacity of vehicles [1,2]. Some types of loads are
transported by water to minimize traffic congestion and disruption on the roads [3]. This
occurs particularly when enterprises have convenient access to water. Not all countries
have long, internal waterways, such as Europe’s Rhine and Garonne rivers. Therefore,
most special loads in such countries are transported by road [4].

The safety of trailers as they travel around curves has been analyzed extensively
previously. The effect of axle spacing, the load and the height of the center of gravity
height on heavy trucks’ stability and handling properties have been studied [5–8]. Other
works [9–12] have revealed significant influence of loading and suspension stiffness on
tractor-semitrailer yaw stability. That revelation involved theoretical models, simulations
by computer, and full-scale tests. The theoretical transversal acceleration of a truck as it
enters a horizontal curve is commonly calculated as follows [13]:

aT =
v2

g·R ± k (1)

With g for the acceleration of gravity, v as the truck’s speed, R as the radius of the
curve, and k as the side-slope. However, the equation does not include several other factors
that affect the truck in actual operating conditions. These include the force of the wind and
the slope of the road. The authors discovered that the lateral acceleration of a 5-axle trailer
briefly exceeded the expected values. An earlier study [14] found that the rollover threshold
for various articulated vehicles ranges from 0.33 to 0.54 g, according to the dimensions and
weight of the load. Other authors [15] determined when the vehicle might roll over and
developed a dynamic rollover threshold. The critical lateral accelerations that these authors
determined range from 0.28 to 0.42 g according to the height of the center of gravity (CoG).
These are in agreement with the values that earlier studies have provided [14,16,17]. In
addition, the British Standard [18] describes blocking and lashing procedures for securing
loads. It established coefficients of 0.8 for forward direction (braking) and 0.5 for backward
(acceleration) and sideways (turning) directions. It does not relate these coefficients to the
speed or consider the inclination of the road or force of the wind. This means that the
coefficients cover all of these phenomena.

The aerodynamic forces on a truck affect the performance in various ways [19–21].
Forces acting on the side increase the roll instability like the lateral acceleration in curve
driving does. Furthermore, the longitudinal force affects the speed and acceleration of the
truck and, consequently, its fuel consumption [22]. When a standard heavy truck drives at
a speed of 70 mph, 65% of its fuel consumption, it has been estimated, is used to overcome
the aerodynamic force [23]. Aerodynamic forces usually have a significant effect on the
stability of abnormal loads. These forces are caused by the truck’s movement relative to
the air. They emanate from the truck’s body, the chassis, the suspension, the axles, the
wheels, the trailer, the load, and the space between the truck and trailer or payload. The
drag equation below is generally used to calculate the aerodynamic forces:

FD =
1
2
·ρ·v2

w·A·Cd (2)

with FD as the drag force, ρ as the fluid density, vw as the velocity of the air relative to the
truck, A as the area that is vertical to the relative motion and Cd as the drag coefficient. The
drag coefficient depends on the relative position and geometry of the payload. However,
the equation is accurate only for isolated objects. It is normally employed for basic load
shapes. The actual truck–trailer configuration can increase the aerodynamic forces. The
greatest contributor to the longitudinal aerodynamic force acting in commercial tractor-
trailer configurations is the space between tractor and semitrailer [22,23]. The space is
expressed by b/

√
A, a non-dimensional form, in which b is the width of the space (gap)

and A is the area. The drag force that the gap produces is zero for small gaps. It increases
suddenly when b/

√
A ≈ 0.5, but becomes stable at 0.7 [22,23]. The other parameter that

raises the drag force is the yaw angle, especially in trucks that have sharp-edged cabs.
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Crosswinds on exposed highways and bridges can cause difficulties in driving in tall and
long vehicles and the risk of a serious accident. The force of the crosswind on a conventional
truck–trailer in North America as it crosses a bridge was examined by using Computational
Fluid Dynamics (CFD) [24]. The authors validated the model with experimental data that
previous studies had provided [25,26]. The conclusion was that wind pressure can be
sufficient to overturn the truck–semitrailer at the wind speeds that were studied.

This paper describes a novel theoretical model that can determine the stability of
special transport. The proposed model determines the load on each axle, the tipping
angle, and the suspension system’s oil pressure. It was based on modular trailers models
that appear in the literature, as well as those in common use within the heavy transport
sector [27]. The model was tested experimentally by a full scale test [28] in which oil
pressure data and output from the model were compared. To conduct the test, a nacelle
wind turbine that weighed 42,500 kg and was 5133 × 2650 × 2975 mm in length, width,
and height, respectively, was placed at different points within a modular trailer. With the
validated theoretical model, a proposed optimization algorithm is capable of determining
the optimal CoG of the load, as well as the number of trailers, number of axles, oil pressures,
and hydraulic configuration. The theoretical model and optimization algorithm were tested
with a cylindrical tank that weighed 108,500 kg and had dimensions of 19,500 × 3200 ×
2500 mm. The results showed that the optimization algorithm could safely optimize the
configuration of the hydraulic suspension of modular trailers in special road transport,
increase the accuracy and reliability of the calculation of the load configuration, save time,
simplify the calculation process, and be easily implemented. The theoretical model and
the optimization algorithm proposed are able to (1) optimize safely the configuration of
modular trailers’ hydraulic suspension in special road transport, (2) improve the reliability
and accuracy of load configuration calculations, (3) saves time, (4) simplify the calculation
process, and (5) be easily implemented.

2. Materials and Methods
2.1. Modular Trailers

This work concentrates on the transport of heavy and voluminous payloads by modu-
lar trailers. Modular trailer is a term that refers to a multi-axle trailer that has a hydraulic
and mechanical steering system, hydraulic suspension, and a steel chassis that provides
very good structural rigidity for the transport of oversized and abnormal haulage for long
distances by road. Modular trailers provide a cost-effective and flexible means to transport
heavy loads. Voluminous payloads can be transported by connecting several modules side
by side and/or end to end. Necks, drawbars, turn tables, ballast, and other additional
components ensure that the trailers are optimally adapted to the requirements of various
loads. The deck of the trailer can be lowered or raised by the hydraulic suspension for
loading or removing cargos. The trailer’s hydraulic suspension can be used to level its
deck. This is done by increasing the volume of oil on one side. This is possible because
each pendulum axle has a hydraulic cylinder that is connected to other cylinders. This
ensures uniform loading on pendulum axles. While the trailer is in motion, the hydraulic
suspension permits swing axles to have different deflections (See Figure 1).

Mechanically, a modular trailer consists of a rigid platform that is supported by
hydraulic pendulum axles that are attached in pairs. Each pendulum axle consists of a
hydraulic cylinder, two or four wheels, and a hinged elbow joint. The hydraulic cylinder
and the hinged elbow joint provide lifting capability of the trailer and also serve as a
suspension system. The hydraulic system also enables the cargo load to be distributed
across multiple pendulum axles in uneven surface conditions as illustrated in Figure 2.



Appl. Sci. 2021, 11, 305 4 of 17

Figure 1. Modular trailer axle compensation [28].

Figure 2. Hydraulic suspension system.

2.2. Stability Area

The load’s characteristics (dimension, weight, etc.) and the route determine the
number of modules used and their hydraulic configuration. After settling the number
of axles and the type of trailer, it is necessary to decide how to group the cylinders for
a haulage arrangement that is as stable as possible. Each of the trailer’s modules has a
hydraulic system. It consists of various valves, pipes, and cylinders that enable several
trailers to connect hydraulically. In practice, the grouping of cylinders is accomplished
by a set of valves below the trailer’s platform. Figure 3 shows a configuration of valves
that create three groups that are known as 3-point suspension. The minimum number of
groups is three, which is actually the most stable configuration.
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Figure 3. 3-point suspension and stability area.

The transport is deemed to be stable if the total force projection is within the stability
area. If this projection is not within the stability area, there is a risk of damage to the trailer
and/or of tipping. If the force projection is vertical, inertial forces do not affect the stability
of the trailer (deceleration or acceleration, turning, and/or wind force). The corners of the
area of stability define a plane that can be defined as ax + by + cz − K_0 = 0 (plane Π). This
can be calculated by solving the following determinant:∣∣∣∣∣∣

x− x0 y− y0 z− z0
x1 − x0 y1 − y0 z1 − z0
x2 − x0 y2 − y0 z2 − z0

∣∣∣∣∣∣ = 0 (3)

with (x0, y0, z0), (x1, y1, z1), and (x2, y2, z2) as the coordinates of the centers of the groups
0, 1, and 2, respectively. One can calculate these coordinates’ geometrically by using the
location of the junction of the axles and cylinders or analytically is as follows:

xi =
1
ni
·

ni
∑

j=1
Xij

yi =
1
ni
·

ni
∑

j=1
Yij

zi =
1
ni
·

ni
∑

j=1
Zij

(4)

with (xi, yi, and zi) as coordinates of group i, ni as the number of group i pendulum axles,
and (Xij, Yij, and Zij) are the pendulum axle fulcrum j’s coordinates in group i. Camber
and inclination of the road change the spatial position of the cylinders and, therefore, the
coordinates of the groups. These inclinations can increase or decrease the safety, depending
on the stability area’s definition and the forces that are acting on the transport.

2.3. Forces Acting upon the Transportation Model

The weight of the load itself, as well as that of each if the trailer’s component, must
be considered. Thus, the total weight of the load is the sum of the weights of all individ-
ual components:

W = M·g =

(
mload +

n

∑
i=1

mi

)
·g (5)

with the total mass of the trailer and load in kilogram as M, the load’s mass as mload, the
mass of the trailer’s component i as mi, the acceleration of gravity as g and the weight as
W. This force is exerted on the CoG. The latter is located at a point that corresponds to the
weighted average of the CoGs of all items or parts that are being transported:

xCoG = 1
M ·
(

mload·xload +
n
∑

i=1
mi·xi

)
yCoG = 1

M ·
(

mload·yload +
n
∑

i=1
mi·yi

)
zCoG = 1

M ·
(

mload·zload +
n
∑

i=1
mi·zi

) (6)
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with (xCoG, yCoG, and zCoG) as coordinates of the final CoG and (xi, yi, and zi) as the coordi-
nates of the component i’s CoG.

Breaking (acceleration or deceleration) creates an inertial force in the driving direction
(axis X). This force is calculated by the following Equation (7):

FA = M·a (7)

with FA for the acceleration force, M for the total weight, and a for the acceleration. FA is
applied at the CoG.

A turn can be described as a movement by the trailer along a circular path or along
a circumference, both of which generate centripetal acceleration. This, together with the
weight of the load, creates an inertial force in a direction that is perpendicular to the driving
direction (axis Y). This force is calculated by Equation (8):

FT = M·v
2

R
(8)

where FT is the centrifugal force, M is the total weight, R is the turn’s radius, and v is the
trailer’s velocity. FT is applied to the center of gravity. Depending on the turning direction,
it can be positive or negative. The radius in Equation (8) is positive when it appears on the
left. It is negative if it appears on the right (See Figure 4).

Figure 4. Centrifugal forces with: (a) positive radius; (b) negative radius.

The relative movement between the air and the trailer creates an aerodynamic force
against the trailer. This study considers only the forces of drag on the cargo, as they are
much greater than those on truck and trailer. The equation to calculate the drag is the same
one that is employed to calculate the longitudinal (FDx) and transversal (FDy) drag forces
that movement through a fluid creates:

FDx =
1
2
·ρ·(v + vw x)

2·Ax·Cdx =
1
2
·ρ·(v + cos(αw)·vw)

2·Ax·Cdx (9)

FDy =
1
2
·ρ·v2

w·y·Ay·Cdy =
1
2
·ρ·(sin(αw)·vw)

2·Ay·Cdy (10)

with FDy for the longitudinal and transverse drag forces, ρ for the fluid’s density, vw for the
velocity of the air, αw for the angle between the air velocity and the trailer’s longitudinal
axle, and Ax and Ay denote the reference areas. Finally, Cdy and Cdx are drag coefficients,
and are dimensionless (they depend on the geometry, surface, and relative position). One
should remember that three aerodynamic forces generally act on the trailer. They are a
longitudinal force (axis X), a transversal force (axis Y), and a lifting force (axis Z). However,
the equations for these forces are valid for certain objects. The drag force on the truck,
trailer, and load together cannot be determined easily. Obtaining realistic values for the
forces that are acting on the three axles requires CFD and/or wind tunnel experiments.
Only transversal and longitudinal forces that act on the load have been considered in order
to simplify the calculations, as they are not great and their effect is minor. The model
assumes that all of the forces are applied at the CoG. Therefore, the total force on the



Appl. Sci. 2021, 11, 305 7 of 17

trailer and its load is the vector total of the dynamic, aerodynamic, and static forces as
expressed by:

Fx = FA + FDx
Fy = FT + FDy

Fz = −W
(11)

A vector and a point determine the line force equation. The point represents the CoG
that is calculated by Equation (11), whereas the vector is the combination of forces Fx, Fy
and Fz. Thus, the vector of the force can be represented by Equation (12)

Line L : (x, y, z) = (xCoG, yCoG, zCoG) +
(

Fx, Fy, Fz
)
·t (12)

2.4. Stability Calculation

A transport’s stability is normally expressed by the “tipping angle”. The tipping angle
is the angle between the vertical and the maximum deviation of a trailer with load from
the vertical without tipping over [29]. Calculation of that angle requires the coordinates of
points O, I, C, and P in Figure 5 to be determined.

Figure 5. Tipping angle calculation.

Point O is represents center of gravity (CoG), which is calculated by Equation (13).
The center of gravity’s vertical projection over the plane Π (1-2-3) is represented by P. The
vertical line that intersects CoG can be expressed in parametric form as:

x = xCoG + 0·t
y = yCoG + 0·t
z = zCoG − 1·t

(13)

By combining Equations (12) and (13), t can be obtained as follows:

t =
K0 − (a·xCoG + b·yCoG + c·zCoG)

−Fz
(14)

P, the intersection point is calculated replacing t by p in Equation (15). Point C is
the point that is closest point I on the stability area at any edge. First, the plane that is
perpendicular to edge i through point I is calculated by the following:

(xi+1 − xi)·(x− xI) + (yi+1 − yi)·(y− yI) + (zi+1 − zi)·(z− zI) = 0 (15)

with (xi, yi, zi) and (xi+1, y i+1, zi+1) as coordinates for two consecutive corners. The equation
for the plane Ω is obtained by developing this expression:

Plane Ω : +(xi+1 − xi)·x + (yi+1 − yi)·y + (zi+1 − zi)·z−(xi+1 − xi)·xI + (yi+1 − yi)·yI + (zi+1 − zi)·zI = 0 (16)
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The equation for the edge is the following:

x = xi + (xi+1 − xi)·t
y = yi + (yi+1 − yi)·t
z = zi + (zi+1 − zi)·t

(17)

Point C marks the intersection of this line with plane Ω:

(xi+1 − xi)·(xi + (xi+1 − xi)·t)− (xi+1 − xi)·xI+
(yi+1 − yi)·(yi + (yi+1 − yi)·t)− (yi+1 − yi)·yI+
(zi+1 − zi)·(zi + (zi+1 − zi)·t) − (zi+1 − zi)·zI = 0

(18)

By developing the preceding further, t can be obtained by:

t =
(xi+1 − xi)·(xi − xI) + (yi+1 − yi)·(yi − yI) + (zi+1 − zi)·(zi − zI)

(xi+1 − xi)
2 + (yi+1 − yi)

2 + (zi+1 − zi)
2 (19)

Point C’s coordinates can be obtained by replacing t in equation. The tipping angle is
determined by points O, I, and C. The tipping angle that is calculated by the following:

αtip = acos
(
|VIO ×VCO|
|VIO|·|VCO|

)
(20)

with vCD and vID as the vectors between points (I,O) and (C,O), vIO × vCO as the cross
product, and |vIO| and |vCO| as the modulus of these vectors.

αtip = acos

(∣∣( xI − xO yI − yO zI − zO
)
×
(

xC − xO yC − yO zC − zO
)∣∣∣∣( xI − xO yI − yO zI − zO

)∣∣·∣∣( xC − xO yC − yO zC − zO
)∣∣
)

(21)

2.5. Reactions of the Suspension Groups

A 3-point suspension can be considered as a mechanical system static determinate (or
isostatic). The reason is that the unknown reactions and equilibrium equations are equal in
number (See Figure 6). The calculation of the reactions assumed the following:

• Load (W) and reactions (F1, F2, and F3) are perpendicular to the stability plane.
• There are no forces in X or Y and/or moment in Z. Thus, the equilibrium equations

are three in number.
• The system affects quasi-static loading. That is, it is assumed that the time and mass

do not influence the load.
• The ground is assumed to be a completely rigid plane.

∑ Fz = 0 : F1 + F2 + F3 −W = 0 (22)

∑ Mx = 0 : F1·y1 + F2·y2 + F3·y3 −W·yw = 0 (23)

∑ My = 0 : F1·x1 + F2·x2 + F3·x3 −W·xw = 0 (24)

These equations can also be expressed as matrices: 1 1 1
y1 y2 y3
x1 x2 x3

·
 F1

F2
F2

 =

 W
W·yw
W·xw

 (25)

To calculate the force in a cylinder (fcyl,j), divide the force in group i (Fi) by the number
of cylinders in the group (ni):

fcyl,j =
Fi
ni

(26)



Appl. Sci. 2021, 11, 305 9 of 17

with Fi as the force in group I and ni as the number of cylinders in the group. Calculate the
pressure in each cylinder by the following equation:

pcyl j =
fcyl j

Aj
(27)

with pcyl j as the cylinder’s oil pressure j and Aj as this cylinder’s area.

Figure 6. Forces in a 3-point suspension system: (a) 3D coordinate systems with X, Y and Z axes (b) 2D coordinate systems
with X and Y axes.

3. Results and Discussion
3.1. Experimental Validation of the Proposed Model

For the purpose of validating the proposed theoretical model, several experiments
were conducted to measure the oil pressure of the hydraulic cylinders with the load located
in various positions on a modular trailer. This validation process is used to determine
the reliability of a theoretical model, and is usually applied in the same way in many
fields of study [30–33]. The greater the number and variety of experiments, the more
reliable is the validation. However, experiments are generally very expensive. Therefore,
it is very important to adopt the correct experimental procedures in order to obtain a
successful validation. The number of experiments depends on the number of inputs. The
model considers load weight, CoG location, load shape, trailer modules, groups’ definition,
road inclinations, speed, acceleration, turning radius, and wind speed. Testing some of
these inputs is very difficult. For example, measuring the acceleration and the platform
inclination is very complicated, because the trailer is in motion. Dynamic and aerodynamic
inputs were not considered in designing a feasible set of experiments in this study. Further,
it is assumed that the stability of the trailer depends mainly on the load’s location on
the platform. In order to simplify the experiments, only the longitudinal and transverse
locations of the load were considered. All of the experiments were carried out under the
following conditions:

• Trailer: SPMT 6-axle: weight 23.5 and maximum capacity 216.3 Tn.
• The oil pressure is supplied to the hydraulic cylinders at the axles by a Power

Unit (PPU).
• Even surface: camber and slope equal zero.

In addition, the load used in the experiments was a nacelle wind turbine. The cover
housing contained the generator and gearbox, drive train, brake assembly, and all other
generating components of the wind turbine. The properties of the nacelle wind turbine are:

• Weight: 42,500 kg.
• Dimensions: 5133 × 2650 × 2975 mm.
• CoG position: 97.5 × 0 × −180 mm.

Figure 7 shows the elements used in the experiments to validate the proposed model.
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Figure 7. Configuration of the experiments to validate the proposed regression model: Crane, trailer
and load.

Design of experiments (DoE) is a set of methods to determine relationships between
the inputs and outputs of processes [34–36]. These techniques establish the order of
variables to determine cause and effect relationships with confidence. DoE is used here
to define the combination of inputs to determine the accuracy of the model. There are
many DoE techniques. However, all involve the construction of a table, in which each row
corresponds to a single experiment and each column to a factor. The input variables are
called factors, and each of the values are called levels. However, factors can be controllable
or uncontrollable, also called noise. The uncontrollable factors are due to environmental
changes or small variations in components properties. Their effects can be minimized
by randomizing and grouping the experiments. Nevertheless, experiments always have
uncontrollable effects, called experimental errors. These can be determined by repeating
the same experiment to measure the dispersion of the responses. In this case, there are
two inputs with which to create the set of experiments. Table 1 shows the inputs and their
symbols, units, and levels (design matrix), whereas Figure 8 clarifies the physical meaning
of the inputs.

Table 1. Design of experiments: inputs, units, and levels.

Inputs Symbol Unit
Levels

−1 0 +1

Longitudinal location of the load X mm 0 675 1350
Transversal location of the load Y mm 0 175 350

Figure 8. Nacelle wind turbine on the 6-axle SPMT.
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A full factorial design consists of several factors and levels where the experiments
involve all possible combinations of these levels for all factors. In most cases, the levels
are quantitative. However, they can be qualitative, as in the cases of gender or logical
values. A 2k design is a kind of full factorial design that has only two levels, which are
called “low” and “high” or “−1” and “+1.” All possible combinations without repetition
of the two levels and the k factors generate 2k experiments. A 3k design is a full factorial
design that has three levels, which are coded as “+1”, “0”, and “−1”, that generate 3k
experiments without repetition. In this study, 3k DoE with two factors with central points
(32 = 9 experiments) were selected for validation of the theoretical model. In addition
to nine experiments, four additional repetitions or repeated experiments were proposed
to measure the variability of the results of the experiments and equipment in satisfying
Equation (28):

σ =

√
1
n
·

n

∑
i=1

(xi − µ)2 (28)

where xi is a result of the experiment, µ is the mean of this variable, and n is the number of
cases (just repeated).

The configuration for all experiments involved a downhill slope of 0.35◦ and a camber
of 0.1◦. However, as the values are very low, it was assumed that the ground was perfectly
even. In addition, the configuration of the experiments assumes a wind speed of zero, as
the latter was very low. The trailer was configured in 3-point suspension, as Figure 6 shows.
The platform was set at a height of 1550 mm from the floor. A crane was employed to
move the nacelle wind turbine, whereas the location and configuration of the trailer were
unchanged. The output was the oil pressure of each group of hydraulic cylinders. The
experimental inputs and pressures that were recorded by the manometers are summarized
in Table 2.

Table 2. Experiment inputs (X and Y) and pressures obtained from manometers.

X Y
Pressures [bar]

A B C D

1 0 0 59 61 77 75
2 0 0 55 62 80 79
3 0 0 60 61 75 72
4 0 0 64 56 90 92
5 0 0 58 63 78 74
6 0 335 24 97 80 80
7 0 435 13 108 81 85
8 675 0 66 75 58 58
9 675 335 38 103 58 59

10 675 435 27 117 58 58
11 1350 0 79 85 39 40
12 1350 335 47 120 39 38
13 1350 435 38 127 38 38

Additionally, the variabilities of each pressure group were calculated according to
Equation (28) and are summarized in Table 3. The average variability of the pressures in the
table of the first four experiments is 4.45 bar. This represents a value of 4.45/69.55 (6.39%)
compared to the average pressure. This means that the values registered experimentally
in the pressure gauges show a low variability. This can be considered to be very good, in
view of the fact that the values were obtained experimentally.
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Table 3. Variability of the experiments 1 to 5.

Case Range Mean [µ] SD [s]

Pressure A 9 bar 59.2 bar 2.9 bar
Pressure B 7 bar 60.6 bar 2.4 bar
Pressure C 15 bar 80.0 bar 5.3 bar
Pressure D 20 bar 78.4 bar 7.2 bar

Average values 69.55 bar 4.45 bar

After the 13 experimental values were obtained according to the preset configuration
of experimental inputs (X, Y) in Table 3, weight (42,500 kg), dimensions of (5133 × 2650
× 2975 mm), and CoG (97.5 × 0 × −180 mm) of the nacelle wind turbine, the theoretical
values of the pressures of the proposed model were obtained (See Table 4). In addition, the
accuracy of the proposed theoretical model is measured by the Mean Absolute Percentage
Error (MAPE). This is defined by Equation (29):

MAPE =
1
n
·

n

∑
i=1

∣∣∣∣Mi − Ei
Ei

∣∣∣∣ (29)

where Mi is the model’s result, Ei is the experimental result, and n is the number of cases.

Table 4. Predicted values and errors.

Case
Pressures

A
[bar]

B
[bar]

C
[bar]

D
[bar]

MAPE
[%]

1–5 59.0 58.0 84.4 84.4 4.4
6 28.0 89.3 84.4 84.4 8.8
7 18.3 98.7 84.4 84.4 13.6
8 69.8 68.9 62.6 62.6 7.4
9 38.6 100.2 62.6 62.6 4.6

10 29.2 109.6 62.6 62.6 7.6
11 80.7 79.8 40.9 40.9 3.8
12 49.4 111.1 40.9 40.9 6.2
13 40.1 120.4 40.9 40.9 6.4

Average: 7.0%

Table 4 indicates that the mean pressure error is 7.0%. This reduced value of the MAPE
means that the proposed theoretical model is quite accurate in predicting the values of the
hydraulic pressures of each of the cylinders. It should be noted that a large part of this
MAPE is due not only to the proposed theoretical model, but also to the variability of the
measurements, which is 6.4%.

3.2. Optimization Process Proposed

After the theoretical model had been validated by experimental data, an optimization
algorithm was proposed. This was done to ensure that that transport of a load of given
weight, dimensions, and CoG by road would be safe, taking into account such route condi-
tions as camber, wind pressure, and slope. The objective of optimization is to minimize the
number of axles that are necessary to carry the desired load. The optimization increases
the maneuverability of the load and reduces the costs of assembly and transport. The
optimization algorithm was developed in R language [37]. Its programming was based
on the iterative and automatic testing of the proposed model in different locations on the
trailer and with different hydraulic configurations. Accordingly, the load’s weight and
CoG, and the trailer’s weight, number of axles, axle distance, and configuration were
considered, in addition to highway conditions. The optimization process assumed that the
tipping angle would be less than 7◦ and that the loads per axle would be less than 50% of
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the limit that the manufacturer had established. This 50% axle load limit is a restriction
that is usually imposed by most transport companies as a means to increase the trailer’s
useful lifers. The tipping angle restriction ensures the stability of the transport under any
road condition.

The optimization was carried out in two stages. The first stage involved determining
the minimum number of axles that were necessary and establishing the trailer’s hydraulic
configuration and the load’s probable location. In this first stage, the optimization algorithm
randomly generated a number of transport designs with different axes, configurations,
and location of the transport’s CoG. These were obtained from a grid of 500 × 500 mm
nodes. This grid was constructed from the properties of the surfaces of the trailers that
were available. They should cover the entire stability triangle. Each transport design
was calculated by using the proposed theoretical model for the camber, slope, and wind
pressure (route conditions) considered. The model determined the tipping angle and
maximum load on the trailer’s axles for each transport design. After these values had been
obtained, the design that required the least number of axles and best complied with the
tipping angle and load per axle optimization restrictions was selected.

The second stage focused on the search for the load’s optimal location on the trailer,
without changing the number of axles and hydraulic configuration that were obtained in
stage 1. The best node in stage 1 was assumed to be the CoG of a new 10 × 10 mm node
grid. The same iterative process that was used in the first stage was employed in the second
stage with the 10 × 10 mm node grid. Thus, the optimal location of the load on all of the
modular trailers was located with a precision of 10 mm. Figure 9 provides a flowchart for
which the proposed optimization algorithm had been used to find the optimal location of
the CoG.

Figure 9. Flowchart of the optimization process.

Figure 10 shows the node grids that both stages of the optimization used. Shown on
the left is the first 500 × 500 node grid. It covers the entire stability triangle. The first stage
of the optimization provided the best node. It can be considered as a first estimation of the
optimal CoG location. It is the center of the 10 × 10 node grid and appears at the right of
the same figure. This second grid will be used to find the position of the CoG of the load
with a precision of 10 × 10 mm.
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Figure 10. Graphical representation of search grids.

The optimization process that was used to validate the proposed methodology appears.
It is based on the optimal conditions for a load to be carried by a trailer that has two 4-
and 6-axle modules. The trailer properties that were considered in this study are those of
the Intercombi model of Scheuerle company [38]. In this case, the proposed load was a
cylindrical tank of 108.5 tons with five large pipes on its left side (Figure 11). The figure
shows the hydraulic configuration of the trailer, which consists of group 1 (red) with six
cylinders and groups 2 and 3 (purple and red) with seven cylinders. This configuration
traces a stability triangle that also appears in Figure 10.

Figure 11. Optimized transport: 108.5 Tn cylindrical tank on 10 axle trailer (Intercombi model of Scheuerle company [38]).

Table 5 shows the data of the proposed load (weight, dimensions, and position of
its CoG). It also shows the optimal number of modular trailers and axles, coordinates to
locate the CoG of the load, and oil pressures of the suspension system, as determined by
the optimization algorithm.

Table 5. Key values of the optimized transport.

Characteristics Value

Load Cylindrical tank
Dimensions 19.5 × 3.2 × 2.5 m
Load weight 108,500 kg

Trailer weight 33,000 kg
Initial CoG coordinates 0.0 × 0.2 × 2.1 m

Optimum CoG coordinates 0.3 × 0.0 × 2.1 m
Number of trailers 2
Number of axles 10 (4 + 6)

Tipping angle (on even road) 7.2◦

Maximum axle load 21,600 kg
Oil pressures 8.1 × 8.1 × 5.9 bar

Hydraulic configuration 6, 7, 7
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4. Conclusions

This paper describes a theoretical model that is capable of calculating complex load
safety requirements, including the load per cylinder, oil pressures, and tipping angle. It
considers the trailers’ mechanical properties, the cargo’s characteristics, road inclinations,
and wind pressure. The hydraulic cylinder suspension has been discussed, as well as how
the hydraulic groups are defined. The hydraulic cylinders’ spatial position provided a
base for calculation of the “stability area” and “plane of stability”. The trailer’s load has
been described by use of this data. They include the dead weight, dynamic forces, and
aerodynamic forces. The combined force and “stability area” determined the transportation
model’s stability and the resulting “tipping angle” or instability. Finally, the load for
each cylinder, load on each suspension group, and oil pressures have been calculated.
The theoretical model that is proposed has been validated experimentally to measure oil
pressures and the platform inclination. The MAPE of the oil pressures that were determined
by the model is 7.0% for the data that were obtained experimentally. This error is minimal,
which shows the validity of the proposed model. Once the proposed model was validated,
an optimization algorithm was proposed in order to find the optimal center of gravity of
the load, number of trailers, number of axles, oil pressures, and hydraulic configuration.
The algorithm was based on the iterative and automatic testing of the proposed model in
different positions on the trailer and different hydraulic configurations. The results showed
that the proposed model and optimization algorithm can safely optimize the configuration
of the hydraulic suspension of modular trailers in special road transport, increase the
accuracy and reliability of the calculation of the load configuration, save time, simplify the
calculation process, and be easily implemented. In summary, the novel theoretical model
and optimization algorithm that this paper describes improves the reliability and accuracy
of heavy transport stability calculations, saves time, minimizes human error, and greatly
facilitates the decision-making process.
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