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Abstract: Unmanned aircraft, which are more commonly known as drones, are nowadays extensively
used in an ever increasing set of applications. In a wider system, the aircraft are usually associated to
additional elements such as ground-based controllers. Furthermore, when these components form a
network of elements that can communicate, the system is said to form an Unmanned Aircraft System
(UAS). This system is particularly effective when the aircraft within are organized into swarms with
sets of objectives to accomplish. The extensive use of swarms into UASs is more and more exploited
nowadays due to the decreasing cost of those aircraft. In the present work we are interested in a
particular application of UASs, namely their deployment in disaster scenarios for communications
services provision to targets on the ground. These ground targets, however, are not part of the
UASs and should not be confused with ground-based controllers. The present work does not only
focus on coverage for ground targets but also on a guaranteed minimum number of covers for
each target, which is called the redundancy requirement. The research work also ensures that the
deployed UAS forms a unique connected component so that a steady stream of communication is
kept with the targets to cover. Research work similar to the present perform the initial deployment of
their aircraft in a different manner, either randomly, based on a predetermined grid formation, or
using other elaborated methods. This work proposes a new solution based on the use of clustering
algorithms, combined to a design of the problem formulated as a set cover optimization model. The
clustering phase is used to discretize the search space and ease the optimization phase by locating
regions of interest, and then a further procedure is applied, only when needed, to reconnect scattered
connected components and guarantee connectivity in the networks. This way of doing it has achieved
a deployment of UASs with maximum coverage for all targets, a guaranteed minimum number of
covers for each of them, and results in a competitive computation time. The latter also allowed for
more scalability by extending the tests to very large input instances.

Keywords: disaster management; unmanned aircraft systems; clustering algorithms; set cover approach

1. Introduction

It is always a complicated task to know how serious a disaster scenario can be. Nobody
can confidently assert that the consequences of an aftermath can be controlled. It can even
be more dramatic when there are people trapped in isolated crowds that are unable to use
their communication devices, often because of loss of network coverage. It has indeed
been reported that in disaster scenarios people are usually unable to use their mobile
and/or smart-phones in a normal way [1,2]. In order then to prevent such hardship, a
lot of effort has been used to provide efficient responses, and among those we find the
use of Unmanned Aircraft Systems (UASs), suggested for relief operations in disaster
scenarios [3,4] and effective to monitor difficult-to-access regions [5].
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Originally, UASs with a single aircraft were introduced. However, due to significant
technological advancements, particularly improvements in wireless communication, the
swarm in the UASs became larger, and with it the number of missions to accomplish. With
these advancements the UASs were, for example, able to act as access points for users
making calls or connecting to the Internet [6,7]. One such application can for instance be
found in the deployment of UASs for provision of reliable communication services to fixed
targets on the ground [8].

In this work, we consider these kinds of applications where the goal is to deploy a
UAS for communication services provisions to targets on the ground.

Although the term aircraft (or even Unmanned Aerial Vehicles (UAVs)) is more widely
used by the public, official institutions such as the International Civil Aviation Organiza-
tion and the Single European Sky Air-Traffic-Management Research Joint, have adopted
Unmanned Aircraft Systems as the terminology that better emphasizes the importance of
elements other than just the aircraft (ground control stations, data links, etc.). For instance,
in our context, ground-based control stations could be added to the UAS, and would regu-
larly assemble new updates about the positions of moving ground targets in order to decide
on new deployments. However, given that the transmission range of aircraft is usually
high with respect to the expected mobility of ground nodes, and also that in a disaster
scenario context most people are trapped, the expected mobility would be moderate and
thus the changes between updates.

Considering then the deployment of UASs for communication provision to ground
targets in a disaster scenario, a minimum guarantee of reliable services is required. With
then the aim of establishing minimum conditions for safe communication, the present
work mainly focuses on two requirements: the coverage and redundancy requirements [9].
These two requirements have for respective concern: (1) to maximize the number of targets
covered, and (2) to strengthen the ability of a ground node to stay covered in the event of
aircraft failure. Furthermore, to a lesser extent, the research work also considers a sharing
of work between the aircraft in case of congestion.

This redundancy requirement is also often referred to as the k-coverage problem [10],
where k is the minimum number of covers required for each target. Furthermore, although
the coverage requirement is considered as the most significant objective in this work, the
redundancy is also profitable for two already aforementioned reasons: (1) a ground node
covered more than once can stay covered in the event of covers failure, (2) a heavily charged
aircraft can be relieved of some ground targets and transfer them to other aircraft. We
then focus on providing methods for the two components at the same time: coverage and
redundancy requirement.

This work is contributing to the research by proposing a new strategy for dealing
with the deployment of UASs, consisting in: finding good and limited potential locations
for aircraft placements, and filter them by solving a set cover problem combining both
the coverage and the redundancy requirement into a single mono-objective model. The
approach consists of two principal procedures: (1) apply clustering methods to generate
locations into areas of interest. These locations are obtained by iteratively considering
shorter ranges for aircraft, which adds diversity in the search space. (2) run the optimization
phase to further filter the generated locations and keep the ones that satisfy the best the
coverage and redundancy requirements. Finally, when both the coverage and redundancy
constraints are satisfied, an additional routine is applied, only when necessary, that builds
a single connected component in order to satisfy the connectivity of the resulting network.

With this approach, we were able to achieve good results in a competitive computation
time: full coverage for all the targets, a guaranteed k-coverage, and the connectivity of the
overall UAS. Plus, since the solution provided results very fast for instances of moderate
size, it allowed us to expand the tests and scale the solution to much larger search space,
both on the number of targets to cover and on the size of the map.

This report is structured as follows: related work is presented in Section 2 and a formal
description of the task under consideration in Section 3. We are presenting in Section 4 our
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proposed approach: the selected formulation for the problem (Section 4.1) and details on
the approach we adopted to generate the required SCP instances (Section 4.2). In Section 5
we provide details on how the redundancy requirement is incorporated in the model and
describe how we managed to guarantee the connectivity of our network. We present in
Section 6 the results of our experiments, plus additional tests for the scalability of the
solution, and we finally conclude in Section 7.

2. Related Work

There is already a considerable amount of material available on the subject of deploy-
ment of UASs. It is an issue that has been thoroughly studied, and many solutions are
already available for several of its components, coverage in particular.

For instance, several approaches similar to ours are using clustering algorithms to find
appropriate positions for the UASs. In [7], the authors use clustering methods to deploy
their UAS in a context where aircraft are used to complement macrocell infrastructures in
regions with high traffic of user equipment. In their work, the authors use the K-means
clustering algorithm to deploy a predefined number of aircraft, which is function of the
number of targets to offload from the macrocells and the maximum number of targets that
can be simultaneously offloaded by a single aircraft. They subsequently seek macrocells
with high numbers of user equipment connected to them, while also computing the distance
of these macrocells to the aircraft so that they can identify macrocells to offload first. In
our work we also consider this capacity constraint for the aircraft, even though it is not
explicitly mentioned. For us, when an aircraft is overloaded, we provide a solution to ease
congestion by constraining targets to be covered with more than one aircraft. Thus making
possible the sharing of burden in the UASs.

In a more recent work [11], the authors propose a multiobjective optimization model
which seeks to minimize the number of deployed aircraft while minimizing the data rate
dissatisfaction of relays. In this research work, the idea relevant to our purpose is to
take advantage of the position of ground targets to reduce the search space. The authors
use a convex hull envelope to reduce their search space and position their UASs into a
mesh formation on which they can apply genetic modifications using the NSGA-II elitist
multiobjective evolutionary algorithm. The use of the mesh network allows them to easily
apply genetic modifications while keeping the overall UAS connected. This work is also
similar to our set cover model in the fact that their model has elements common with our
model of reference: one of their two objectives is to minimize the number of used aircraft
while constraining at least one of them to cover each ground node. The model, however,
has its own specificity and cannot be presented as just a multiobjective problem integrating
a set cover model.

Similarly to the two aforementioned works [7,11], our approach also takes advantage
of the positions of ground targets to infer suitable positions for aircraft to be placed.
However, unlike these works, our work does not impose any predefined number of
partitions nor enforce a predefined network formation. We rather use different methods
mainly consisting in generating as many varied potential partitions as it is possible to find.
We then give the UASs the possibility to have a nondeterministic formation. Our approach
can then be seen as more dynamic.

Each of the preceding choices have both advantages and drawbacks, particularly
when used for our specific problem. In [7], applying a dynamic search, that is the ratio of
the number of user equipment (ground targets) needed to offload, to the maximum capacity
of aircraft, can avoid many hardships. However, if there is more user equipment found
in a given partition than an aircraft can handle, there can never be overlaps of coverage.
That means that only one aircraft can be deployed at the exact coordinates of one centroid
(Voronoi cell), unless several aircraft are deployed at these precise coordinates. In other
words, only the amount of user equipment that a single aircraft can handle can be offloaded.
For our part, we approach the matter differently and use a dynamic assignment of the



Electronics 2021, 10, 422 4 of 26

number of aircrafts to deploy. We were able to find a way of generating several different
potential locations for the UAS, even in the coordinates already generated for some aircraft.

For [11], even though deploying a mesh network in a reduced search space can be
beneficial on many points, in some cases this can cost a lot and not provide any improve-
ment. That is the case when the targets to cover are largely spread over the map, or when
there are large gaps between distinct connected components. For example, in our test
instance of Section 6 that can be visualized in Figure 1, we have 125 ground targets in red,
mainly aggregated into four regions but largely spread over the map. If we had used the
approach of enclosing the search space into the convex hull of the target nodes, and placed
the potential placement points for the UAS in a grid layout where the distance between two
placements is equal to the range of the aircraft, just only one placement point on the bottom
right of the map (the red point) would have been discarded. Moreover, depending on the
distance used to fix neighbor aircraft in the UAS mesh network, a lot of them would be
needed just for connecting the gaps between the separated connected components, without
covering any ground target at all. The convex hull search space reduction would have
returned roughly the entire map.

Figure 1. Candidates for aircraft placement as a mesh network within a convex hull.

Another interesting work is [12]. In this research work, the authors have developed
a biobjective linear model where one of the objective is to minimize the deployment cost
of the UASs, and the other is to find the best altitude for an aircraft that provides the best
coverage. Their model is also constrained to maintain full coverage of the targets on the
ground, as well as a connectivity constraint in the resulting UASs. In their experiments
they consider a 3D environment search space where the aircraft can have different altitudes
but need to stay in range for coverage and communication requirements. However, as
in [11], the UAS is placed in a grid formation. Furthermore, in spite of guaranteeing the
connectivity of the UASs, these are still deployed in a rather rigid manner that can be very
expensive when the different connected components are far apart.
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The problem we are dealing with is also to be found in other domains related to
our subject. It is indeed the case that different communities are actively endeavoring to
tackle the coverage problem and alike issues. For instance, the coverage problem is widely
studied in research for wireless sensor networks. A large collection of genetic ([10,13])
and evolutionary solutions ([9,14]) have been suggested to solve the coverage problem
and other similar objectives. Likewise, exact approaches have also been used jointly with
heuristics to solve for example the network lifetime maximization problem ([15,16]). This
latter objective is not to provide simultaneous coverage but to maximize the total amount
of time during which the targets are covered. This kind of problem is usually solved using
a strategy of deploying more sensors than actually needed so that they can be able to switch
between active and dormant sensors [16].

Nonetheless, it seemed to us that many of these work would have been even more
productive if they had started with better initial solutions. In most of these works the initial
deployment is performed either randomly ([9,16]), using predetermined formation ([11]) or
through the use of more sophisticated methods, such as the Monte-Carlo method ([13]). So,
further to the concern of finding good deployments to start with, we were able to provide
an approach that finds good initial positions based on the coordinates of the ground nodes
to cover. We suppose then that, prior to the deployment, a scan of the search space has
been accomplished to collect the positions of all the ground nodes.

For instance, in [17], the authors use a particle swarm optimization based approach to
fast-track positions of target nodes with potential convergence into areas with high amount
of targets. Furthermore, in the same spirit, there are other solutions that could help detect
or approximate the positions of isolated ground targets without being able to provide the
full services that a UAS could. Using satellite images or low cellphone signal detection with
a sweep of the search space can give a close representation of the positions of the targets.

The other criterion related to practical considerations for UASs deployments in disaster
scenarios is to take into account the cost of physical equipment. High precision material
for problems such as the one at hand are still far from being very accessible. Military and
scientific grade navigation systems are the only ones able to provide very good accuracy
and small error rate even for non static objects tracking. However, they often come at a
very high cost. More common and cheaper equipment on the other hand are less reliable
and usually subject to disruptions. So, depending on the acceptable degree of accuracy
required by the deployment, that difference should always be remembered.

As a conclusion, when we compared our research work to those seen previously, we
could see from experiments that we have yet to improve our approach in tackling the
connectivity issue. Indeed, our goal being to ensure first full coverage and redundancy for
the target nodes, the connectivity issue is tackled only afterwards and only if necessary. The
method used for that matter can be perceived as too straightforward as it seeks to connect
the spread components by iteratively linking the two closest. Still, even with this simple
method we were able to obtain fast results of fully connected UASs with full coverage for a
substantial number of targets scattered over large maps.

3. Problem Description

Presented briefly, the problem we intend to solve consists in deploying UASs to
monitor (or cover) as many ground targets nodes as possible. We also assume that the size
of the search space (the map) is known, and the positions of the ground targets too (given
by their coordinates). For the objective of our model, we need to cover all the ground nodes
with a minimum number of aircraft. Furthermore, in order to strengthen the covers we
also enforce as a constraint a redundancy feature (or k-coverage), that ensures each target is
covered with at least k covers.

More formally, we have a set U of k potential locations available for the deployment
of the UAS: U = {u1, . . . , uk} with their respective coordinates (xu1 , yu1), . . . , (xuk , yuk ).
The ground nodes (or targets), to cover are given by a set T of size n: T = {t1, . . . , tn}
with fixed coordinates (xt1 , yt1), . . . , (xtn , ytn) within the limits of a two-dimensional map.
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Every potential location of U can only be established within the boundaries of the map,
and we also assume a transmission range rangei for every such location i ∈ U, that
allows an aircraft assigned to that location to cover ground nodes within that transmission
range, or communicate with other aircraft in other locations. We then have an undirected
graph G(V, E), where V = T ∪ U, and E is the set of edges expressing whether there
is a connection target-aircraft or aircraft-aircraft. An edge is a pair (i, j) ∈ E, indicating
whether a ground node is covered by an aircraft situated at a given location, or if two
aircraft assigned to two different locations can share information. Such edges exist either
if (1) i ∈ U, j ∈ T and j is in the covering range of i (j is covered by i); or (2) i, j ∈ U
and both aircraft are in the transmission range of each other. To this end, we use the disk
model, or Boolean disk coverage model ([13,18]), to assess whether either of the conditions
above hold:

i ∈ U, j ∈ T, j is covered by i if : distance(i, j) < rangei (1)

i, j ∈ U communicate if :distance(i, j) < min
{

rangei
rangej

}
(2)

The considered distance is the usual Euclidean distance:
√
(xi − xj)2 + (yi − yj)2 ,

where (xi, yi), (xj, yj) are the respective coordinates of i and j. And for symmetry breaking
purposes, if a ground node v is covered by an aircraft located at u then (u, v) ∈ E and
(v, u) 6∈ E; and if two aircraft at location up and uq are in the range of each other, then
(up, uq) ∈ E for p < q, and (uq, up) 6∈ E.

Regarding the redundancy requirement, a ground node i is said to have a redundancy,
or accessibility of p, if it can be covered simultaneously from p different aircraft. One
way of computing the total redundancy of the deployment of the UAS is, for each target
to sum the number of deployed aircraft that cover it. In [9] for instance, the authors
encoded such measurement, that they optimized under a multiobjective model. The
optimization expression can be translated in our notation with (3), whereas if the expression
is only needed for measurement purposes, (4) can be used. In our model, zu is used as a
decision variable stating whether a given aircraft is activated at the potential location u in
the deployment.

max ∑
v∈T

( ∑
(u,v)∈E|u∈U

zu) (3)

for v ∈ T, redundancy(v) = ∑
(u,v)∈E|u∈U

zu (4)

In the present work, we chose a different approach than using the redundancy as a
specific objective in a multiobjective problem. We propose a simple mono-objective SCP
approach consisting in minimizing the number of deployed aircraft in the UAS while
guaranteeing a minimum redundancy for the targets. Furthermore, although (3) is not
explicitly included in the model, it is used in Section 6 as a means of measurement to
evaluate our experiments.

As stated, our work focuses mainly on the coverage and redundancy matters. Even
though the connectivity constraint is also enforced on networks, this step is performed after
obtaining a deployment that satisfies the two aforementioned constraints. It is only then
that we apply an additional routine to connect all the spread connected components. We are
fully aware of how tricky the connectivity requirement can be. Although the connectivity
constraint is an essential component of all the research work presented in Section 2, it is
always at the expense of either the deployment cost (number of used aircraft), the quality of
the coverage, or even the time cost: whereas the stiff mesh deployment of [11,12] causes a
deployment of more than needed aircraft to keep the connectivity, the clustering approach
of [7] does not allow for a full coverage in some cases. Furthermore, compared to these
works, the proposed solution favors input instances with much larger targets to cover
and provides results in much faster time. Hence, the straightforward method used for
connectivity does not undermine the results of the solution.
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In the next section we present the set cover integer model used for solving our problem,
before we can detail how the instances for the Set Cover Problem were obtained. We made
that choice to first give an in depth presentation of the approach selected for solving our
problem, and then show how we managed to obtain the input data.

4. Proposed Approach
4.1. Set Covering Optimization Problem Formulation

Given the problem described in Section 3, the proposed set covering problem formula-
tion is stated in (5)–(7). It is an Integer Programming problem (IP problem) whose objective
function (5) is to activate for deployment the minimum number of aircraft (or covers), to
complete their mission. aircraft locations are activated for deployment through the use of a
set of integer decision variables stated in constraint (7) where: a given aircraft is activated
for deployment at location u ∈ U when zu = 1, otherwise, no aircraft is deployed at this
position (zu = 0). The redundancy restriction of covering targets with a given minimum
number p of aircraft is stated in constraint (6).

min ∑
u∈U

zu (5)

s.t. ∑
(u,v)∈E|u∈U

zu ≥ p, ∀v ∈ T (6)

zu ∈ {0, 1} ∀u ∈ U (7)

This model is not always easy to solve. It is a hard problem in itself (NP-Complete [19]),
which is added to the fact that IP problems are hard at some point compared to their linear
counterparts [20]. IP problems are usually solved based on the results of their linear
relaxations, which consists in loosening some or all of the integer constraints by allowing
them to be continuous. One simple such strategy is to relax the integer variables, solve the
linear problem, and translate back the linear problem to its original IP version by fixing
the continuous values to their closest integers. However, it is an oversimplification at the
expense of qualitative results. For the most part, and in spite of ensuing longer running
time, IP/MIP solvers usually provide better strategies for solving the problems or detect
earlier unfeasible instances.

Still, due to the combinatorial explosion of IP problems, precautions are to be taken
so as to not make the problem harder from the start. Some procedures used in IP solvers,
such as enumeration approaches, branch-and-bound, or cutting-plane techniques, are
indeed very sensitive to growth in size. Enumeration methods are time-consuming when
building and searching through large branching trees needed to check the possible solutions,
and cutting planes, in some instances, generate substantial cuts to find integer optimums,
leading to lengthy operations. Fortunately, other techniques are used to ease the process,
among which is the use of heuristics.

For our purpose, rather than using heuristics to solve IP problems efficiently, we chose
to use them to generate good input values for the IP/MIP solver. Our solution produces
input data of limited size that are used to solve the problem with an IP/MIP solver. We
were cautious not to produce too many locations too big for the solver. Our approach
generates limited positions around areas of interest, by learning from the positions of the
targets. In this paper, due to the fact that we are using a set cover approach, we often refer
to the generated locations as covers.

Instead of randomly generating these covers then, we propose a solution that produces
limited numbers of them that at the very least will never be empty, as might happen in
random procedures. Surely, there would be no real advantage of using the SCP model
if we were not able to provide smaller and good input instances for the solver. The risk
with random generations is that not only a lot of generated covers are usually not valuable
enough, but it can also be hard to find the appropriate number of covers to generate and
find an easy instance for the solver. In other words, there are too few covers—the result
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might miss valuable choices, potentially leading to unfeasible solutions—, and too many
covers —and the instances could lead to an intractable problem. In the former case, it is
even possible to have randomly generated covers with no targets covered at all. With our
approach we propose a method that always find covers with targets within and that are
never empty.

In the next section we describe with more details how these discrete instances are found.

4.2. Generating SCP Instances

As stated before, in its raw form, only the coordinates of the ground nodes are known;
thus, there is no cover available yet (instances) for the SCP solver. In order to transform raw
data into SCP instances, we performed a preprocessing using clustering methods: to group
targets into clusters of diverse sizes. These clusters (covers), are circular areas of radius the
range of the aircraft. For simplification, at this point we suppose that all the aircraft in the
UAS have the same range. Furthermore, given that in the beginning the number of needed
covers is not known, we use a clustering algorithm known as the single pass algorithm [21] in
order to find it. As a result, we also obtain the coordinates of the representatives or centroids
of the clusters. These representatives are points in the map such that the distance of a
ground node in a given cluster to its representative (the aircraft location in our case) is
strictly less to a given threshold (the range of the aircraft). This representative is also the
closest compared to other representatives: if a target ti belongs to a cluster uj, then, from
(1): (uj, ti) ∈ E, and there is no other cluster ul such that distance(ul , ti) < distance(uj, ti).

The single pass algorithm is given in Algorithm 1. In short, the algorithm scans
once over the whole set of ground nodes and for each ground node seeks the closest
representative in range and assigns it to that cluster. If no representative is close enough,
then a new cluster is created with the current target as its representative.

Algorithm 1 begins by considering the first read ground node as the first representative
and as the only node in the first cluster. It then repeats the updating step until all ground
nodes are organized into clusters. The updating rule for the representatives consists in
computing mean vectors of the points within each cluster. In the algorithm, Cclosest_repr
represents the closest cluster to the current target tl ; Vclosest_repr is the centroid of the closest
cluster; and d ∈ Cclosest_repr is every target in cluster Cclosest_repr.

At the end, we have K clusters, with K ≤ N, where N is the number of targets to
collect into clusters. It is guaranteed that if we assign K aircraft to the coordinates of the
representatives of each cluster, then all the ground nodes will be covered. The complexity

of Algorithm 1 is polynomial (
1
2

N(N + 1), or O(N2)), with the worst case occurring when
there are as many clusters as there are ground nodes (K = N). This happens when the
distance between the two closest ground nodes is higher than the highest threshold. It is
useful to note that even though this situation is in reality less likely to occur, the algorithm
provides for that scenario the optimal maximum coverage, as there is no better solution
than to deploy as many aircraft as there are ground nodes if the objective is a maximum
coverage of the ground nodes. It is also important to point out that except for this worst case
scenario, the algorithm can never deploy all the aircraft at the exact position of the targets.

Some comments should be made about the results of the algorithm. First, although us-
ing the single pass clustering method has advantages such as generating discrete instances,
it also has flaws. Indeed, the formed clusters and their representatives are dependent of the
order in which the nodes are read [22]. Nonetheless, the resulting number of cluster is a
good indicator to start with. Plus, now that the needed number of clusters is approximated,
the algorithm can be supplemented with better clustering methods, such as the k-means
algorithm, to improve the values of the representatives.
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Algorithm 1 Single pass algorithm

1: Inputs:

T = {t1, . . . , tN} the set of N target coordinates.

2: K ← 1

3: CK = {t1} // The clusters and their contents

4: VK = {t1} // The representatives of each cluster

5: for l ∈ {2 . . . N} do

6: smallest_dist← min
1≤j≤K

euclidian_distance(tl , Vj)

7: closest_repr← argmin
1≤j≤K

euclidian_distance(tl , Vj)

8: if smallest_dist ≤ range then

9: Cclosest_repr = Cclosest_repr ∪ {tl}

10: Vclosest_repr =
1

|Cclosest_repr|
( ∑

d∈Cclosest_repr

d)

11: else

12: K ← K + 1

13: CK = {tl}

14: VK = {tl}

15: end if

16: end for

17: Returns:

V a set of K representatives (potential locations for aircraft) and C the

partitions of ground nodes (covers).

Second, and related to the first remark, the single pass algorithm and k-means are
hard-clustering algorithms, that assign each ground node to only one single cluster. That
somehow makes them not appropriate for our purpose. Indeed, because of the redundancy
requirement, we value more targets that are present in diverse covers. We could use a
soft-clustering algorithm that would allow ground nodes to belong to different clusters
at the time. However, it turns out that the time complexity of a classic soft-clustering
algorithm cannot get any better than using a routine that simply checks whether a ground
node is in the range of a given aircraft: using a k-means type algorithm to improve the
position of representatives and combine it to a subroutine that pairs each ground node to
accessible representatives, the overall complexity sums up to TNK + NK (O(TNK)), with
T the number of iterations needed to reach the tolerable error range (the stopping criterion).
While on the other hand, the complexity of a soft-clustering algorithm, like fuzzy c-means,
is O(TNK2) [23], without taking into account the dimension of the problem.

Finally, and similarly to the second point, since there are other objectives that need to
be optimized, building stiff covers is not really valuable for the diversity of the solution.
With the tight results obtained with hard clustering algorithms, we might end up using
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some results and miss other interesting ones, as for instance with the arguments we
presented concerning the hard kind of clustering used in [7]. As mentioned in Section 2,
this causes the deployment of aircraft to not be able to really adapt to the topology of the
targets to cover. Moreover, if as in our case, the objective is to find the best covers between
large given choices, then it is precisely better to have a large and diverse choice than just a
predefined number of partitions. Therefore, we believe that adding further alternatives
to the solutions could be more profitable. For that purpose then, we adopted a strategy
consisting in shortening the range of the aircraft while running the single pass algorithm
several times, so that we have smaller and smaller clusters and can generate more different
centroids and more positions inside the centroids. In addition to having all ground nodes
covered, the approach also produces more positions than if only the true range is used.
Furthermore, these locations are produced only around areas of interest, i.e., in areas where
at least one ground node is present.

This method works as follows: start by running the single pass algorithm with the
true range of the aircraft as the threshold for each clusters, then keep applying the single
pass algorithm with shortened threshold until a stopping criterion is met. We chose to
shorten the threshold by dividing the true range of the aircraft by 2, 3, 4, and so on, until
the stopping criterion is met. Furthermore, for each iteration, we kept the representatives
found previously, except for the duplicates. The intuition behind is to gather the targets into
smaller and smaller groups, starting with clusters of radius the initial range of the aircraft.

As for the stopping criterion, lowering too much the range could lead to unproductive
clusters where, for example, all the clusters cover only a single ground node. Thus, tuning
the right value for the reduction is also of great importance. Diversity is important but
having a dense search space with not so much differences between the covers fades the
allure of the solutions. Furthermore, finding too many representatives could prolong the
search when few good ones could have been enough. In order then to find a good limited
reductions, we applied the elbow method usually used to approximate the number of clusters
needed for the partitions. The method finds the number P of clusters such that adding
another cluster does not significantly decrease the Within-cluster Sum of Squares (WSS), the

sum of squares of the standard deviation, or intracluster variations:
K
∑

j=1
∑

d∈Cj

(d− µj)
2, where

d is an element in cluster Cj, and µj the mean vector of that cluster. After that number P,
the state of the clusters is more or less stable and there is not much benefit in increasing P.

In our approach the elbow method is used to find the value where the minimum WSS
significantly changes for series of reductions: first with the true range, and then with the
latter divided by 2, 3, 4, and so on until the elbow criteria is reached. This can be seen in
Figure 2, where the WSS is plotted for series of reduction of range. The line chart presents
a stiff bend after the range is reduced to a quarter of its true value. As a consequence, for
that specific instance we fixed the value of the reduction to a quarter of the true range. It is
the reduction we used to produce the covers illustrated in Figure 3. That avoids having too
many clusters and fix a number of clusters such that the arrangements of targets within the
clusters is stable.

Still, the elbow method should not be the only stopping criteria. Indeed, if for instance
the input instance consists of only isolated ground nodes and our approach is used, we will
always obtain as many clusters as there are ground nodes, given that the WSS will always
be 0 since there will be no intracluster variation. As a consequence, we will never find any
elbow criterion. Thus, the iterations should stop when the elbow criterion is reached or
when the WSS is close to 0.
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Figure 2. Minimum within-cluster sum of square measurements for different reductions.

Figure 3. Set of aircraft placements obtained using reduced ranges.

Figure 4 illustrates the clusters when the single pass algorithm is used with just the
true ranges, while Figure 3 shows them when the reducing range method is applied.

It is important to notice that not all resulting locations are generated at the exact
locations of target nodes.
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Figure 4. Set of aircraft placements obtained using true ranges.

5. Redundancy and Connectivity

The other benefit of using the reduction strategy is that if many clusters are generated,
then the ground nodes are more likely to be covered by several centroids (the aircraft
placements) than they would if the usual range is used. That situation is very helpful for
the other issue we are working on: the redundancy of coverage. It helps enhancing the
robustness of the network by preventing aircraft failures to cause ground nodes to lose
coverage and can also help prevent congestion. The idea is to simultaneously cover each
ground node with more than one aircraft. By doing so, the coverage stays valid even when
some aircraft fail, and since the targets have many covers they can switch to other aircraft
when they start overcrowding.

Redundancy is simply achieved by fixing a minimum needed k-coverage in constraint
(6) of the SCP model. Indeed, even if a coverage of 1 is usually required, it is still possible
to restrict more the constraint. However, small minimum values of k-coverage should
be favored if inexpensive solutions are preferred. Otherwise, it gets less and less likely
to satisfy the constraint as p increases. Occasionally, the clustering step is not enough to
satisfy constraint (6) when the generated positions offer less than p covers for a given target.
This mostly happens for isolated target nodes. In these specific cases, one can replicate the
coordinates of aircraft that cover distant target.

Once coverage and redundancy are guaranteed, the remaining hardship is to provide
connectivity in the UAS as the resulting networks might indeed not always be organized
as a single connected component. The issue with this sparse deployment is that even
though the targets are fully covered, a proper flow of communication in the UAS, as
well as communication services for the targets, is still not possible. These breaches in
communication break the integrity of the network, hence making the connectivity an
essential element of the problem.

In the previous Section 4, we introduced the difficulty of handling the connectivity
requirement. We have seen that grid networks can guarantee the sustainability of connec-
tivity in the UASs, however, most of the time at the expense of the number of aircraft to use.
The other option not using rigid deployments could be to add in the linear programming
model a connectivity constraint of type flow network, as in [12]. This would however
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further complicate the problem by expanding the search space to the whole map, as there
are no aircraft positions completely dedicated to connecting the different components.
Furthermore, if we try to reduce the search space to the convex hull of the targets as in [11],
this would not help much, as the search space reduction would be marginal.

At this stage we came up with a simple alternative that does not take into account
the size of the map and provides a connected solution in a limited number of operations.
It is a quite simple solution consisting in a pairwise comparison of validated aircraft
placements contained in different connected components. It takes as input the aircraft
locations returned by the IP solver satisfying the coverage and redundancy constraints.
Then the solution works by (1) iteratively finding the two closest location that belong
to different connected components, (2) adding a new aircraft placement at the center,
and then (3) repeating the operation until only one connected component remains. It is
important to note that after a new aircraft placement is added by (2), it is still possible that
the two connected components are still disconnected when their two closest locations are
too far away from each other. In that case the new position can even create an additional
connected component with only this new location inside. However, after all the iterations
are performed, at the end only a unique connected component remains.

In spite of its simplicity, the deployment in our approach is still better than the two
approaches of Section 2, by its flexibility, given that it does not require any rigid grid
deployment, and the complexity of its search of a unique connected component is still
polynomial: O(LK2), L being the number of iterations required to link all the different
connected components.

Still, the approach does not provide good results for what is called the k-connectivity
or k-vertex-connectivity measure of a graph. The k-connectivity of a graph is the minimum
number of vertices needed to break the connectivity of the graph. That means if a graph is
of k-connectivity k, then removing at most any k-1 vertices does not disconnect the graph
but removing specific k vertices will. The k-connectivity should not be confused with
the k-coverage seen previously. In [9], the k-connectivity is used as a specific objective to
optimize, and referred to as the fault-tolerance. In this research work the k-connectivity is
usually of 1 but tends to slightly improve due to its presence in the objective functions,
which is inciting for the model that leans toward more rewarding solutions.

With our solution the resultant k-connectivity will usually be of 1, unless it is coin-
cidental. When it is missing from the start, the connectivity is indeed built by iteratively
finding the position that links the two closest components, and for each iteration, there
can only be one such position. But as we will see next, the k-connectivity of our result can
be improved.

The stages of building a unique connected component are reported in Figure 5, where
we used the same instance as in Figure 4, and the redundancy value is set to 2. Figure 5a
shows the deployment returned by the MIP solver. The results satisfy the coverage and
redundancy constraints but not the connectivity. The ground targets in red are linked to the
aircraft in green, with links depicted with blue lines. In Figure 5b, only the links between
aircraft within admissible range are displayed. 15 connected components are counted,
with some aircraft covering only one target. There are four such aircraft (with 2 duplicates
of 2 aircraft) that form two isolated components covering the 2 lone targets. Due to the
redundancy requirement, the two isolated targets have two aircraft covering each of them
and that are deployed at their exact coordinates. This cannot however be seen with the
2D visualization.

Using then the iterative unions of the two closest connected components, we obtain a
first feasible solution displayed in Figure 5c. We can next improve the k-connectivity by
extending this first result and restrict some connectivity aircraft positions in the following
solutions. For example, in Figure 5d we have three new connectivity positions generated
by forbidding some links from the previous solutions. The new solutions are displayed
with solid lines of the same color as their forbidden counterparts (with dashed lines). The
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operation can be repeated as many times as wanted until there is no pair of positions to
forbid left.

(a) Coverage (b) Connected components

(c) Unique connected component (d) Extension

Figure 5. Stages of building a connected component.

To sum up, the approach proposed in the present paper works in three main stages:

1. perform a first phase of generating good positions of interest for the aircraft around
ground targets,

2. use an MIP solver to filter out as many positions generated in step 1 as possible and
keep the ones that cover more efficiently the targets with the minimum number of
aircraft, while at the same time satisfy the redundancy requirement,

3. connect (only if necessary) the different components into a single one.

If the K positions produced in the first clustering phase are not sufficient for the redun-
dancy constraint, an additional duplication phase is used to complete them, and only then
the second (optimization) phase can be applied. After the third and last phase, the unique
connected component is obtained by iteratively connecting the two closest components.
Furthermore, diversity in the connectivity can be added by extending the initial results
with a tabu search like process, which is beneficial for the k-connectivity feature.
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6. Experimental Results and Scalability of the Solution

In order to evaluate the efficiency of the proposed approach and demonstrate its
validity for the problem at hand, we assembled different sets of test instances to run with
the application. In this section we present the results of our experiments and study the
extent of scalability of the solution by analyzing its behavior on instances of very large sizes.

The instances to use had to present features of disaster scenarios in a two-dimensional
map. We generated instances with nonuniform distribution of the targets, with some form
of aggregations into clusters in order to model the natural inclination of people to gather
into groups. This configuration also turns out to be more challenging for the network
coverage problem than random and densely deployed networks [24,25].

We should also highlight the importance of considering legal regulations when actual
physical implementations of UASs deployments are to take place. They do not always apply
the same way under different rules. For instance, under European rule the Commission
implementing regulation (EU) 2019/947 of 24 May 2019 established set of categories under
which UASs are to operate. They were made in order to evaluate the degree of risk
involved by the UASs and decide the requirements they have to abide to. The present
work is however still on its preliminary stage and does not consider any particular legal
framework. It is only proposing a proof-of-concept research work that has yet to be
physically implemented.

The experiments were then organized into two series of tests. The first, with instances
of lighter number of targets to cover, was used to follow the different processes the solution
goes through and for which it was easier to interpret the results. For the second series,
with instances of much higher amount of number of targets, and larger size of maps,
we have used it to further assess the cost of the solution in terms of execution time and
identify the configurations that challenge the most the application as a whole, as well as its
specific steps.

Early on, we had to choose which MIP solver we would use for our SCP model. In
Section 4.1, we gave some context for the reasons of preferring a pure MIP solver over linear
relaxations. We also mentioned the fact that instances with many targets can sometimes
be harder for the solver and can even be intractable. There are many free or commercials
Mixed-Integer Programming (MIP) available, and occasionally, free solvers can outperform
commercial ones [26]. Free solvers are usually limited by the size of the instances they can
take on, but even in that case they can handle problems of relatively large size. For our
part, we chose the free MIP solver GLPK (GNU Linear Programming Kit (accessed on 29
December 2020)) that is easy to handle, can take up big problems without much difficulties
(up to a thousand integer variables [27]) and is among the most effective free MIP solvers
available [26]. Its C/C++ API gives users lots of procedures they can use to configure,
change, and set different control parameters, and it can also accept many standards input
formats. However, of course, compared to commercial solvers, it is outperformed in terms
of available algorithms and performance, but on instances of decent size we have witnessed
that it performs very well and is fast. For the anecdote, we also tried the naive solution
outlined in Section 4.1, consisting in relaxing the integer variables of the SCP model and
activate for example the positions whose values returned by the linear solver are greater or
equal to 0.5. As expected, the quality of the results between the two methods was largely
in favor of the pure MIP solver.

6.1. Simulation Set-Up

All the experiments were accomplished with the solution coded in C++, with the
GLPK API used to solve the MIP programs, and the igraph C library (accessed on 29
December 2020) used to find the different connected components of the generated graphs.
The solution was running on a computer under Debian 10, with an Intel Core i3-3220 @
3.30GHz processor and a RAM of 8 Gigabytes.

As aforementioned, we have implemented two series of experiments: the first a
collection of five instances, used to study the inherent validity of the application and

https://www.gnu.org/software/glpk/
https://igraph.org/c/
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follow the different steps of the approach. With these instances it was easier to control the
results graphically, simpler to identify and manipulate the different steps the solution goes
through, and was also possible to compare the results with other benchmarks. Furthermore,
in order to assess the reliability of our solution, we assumed necessary to examine how it
responded on more challenging instances and how its run-time cost behaved on gradually
increasing numbers of targets to cover. That is why we implemented the second series
of experiments.

The simulations parameters of the first and second series of experiments are sum-
marized in Table 1. In the first series there are five instances with different distribution
of targets contained within a map of area dimension 1000 × 1000 m2. In addition, for all
these instances the aircraft are considered to have a range of 125 m. The instances consist
of 50, 75, 100, and 125 targets to cover, plus an additional instance of 50 targets with all
targets isolated, used to constrain the solution on the specific task of reconnecting the
different connected components. The distributions of targets in the different instances
are presented from Figure 6a–e, where the positions of the ground nodes are marked in
red. The instances with 50, 75, 100, 125 ground nodes are respectively represented from
Figure 6a–d, while Figure 6e presents the distribution of the special case where all the
ground nodes are isolated.

Table 1. Simulation parameters of the two series of experiments.

Simulations Parameters Simulation 1 Simulation 2

Area dimensions 1000 m × 1000 m (see Table 2)
Number of instances 5 6 sets of 20 instances each
Number of targets per instances [50, 75, 100, 125, 50] (see Table 2)
Mobility of grounds nodes static static
Range of aircraft 125 m 125 m

The second series of experiments on the other hand consist of six sets of 20 instances
each. For the twenty instances in each set, the number of targets to cover is increasingly
getting larger: from 50 targets, and growing every time by 50 more targets, until an instance
of 1000 targets is reached (50, 100, 150, . . . , 900, 950, 1000). The difference between the
instances in the sets resides in the dispersion of the targets which is growing with each
consecutive set. This second series was made to challenge the application and detect the
configurations that are harder to handle, but also, since the goal is to get as close as possible
to realistic scenarios, to use instances with numerous and separate targets, as it is usually
the case in real-life.

In that regard then, the generated 20 input instances in each sets were organized such
that they were growing larger in number but also such that the dispersion in each set was
higher compared to its previous. In order to demonstrate that the dispersion was indeed
expanding, we calculated the standard deviation of the targets in each of the 20 instances in
the sets, and then calculated the quartiles of these standard deviations needed to draw the
box-plots in Figure 7 (see Table 2). The dispersion is indeed expanding with each successive
sets, the interquartile range is relatively the same for all the sets, and there are no outlets.

Table 2. Simulation parameters of second series of experiments.

2nd Simulation
Parameters

Number of Instances (Number
of Targets per Instance)

Average Area
Dimensions

Quartiles of Standard Deviations of
Targets in Instances (1st Quartile,
2nd, and 3rd)

set 1 20 ({i× 50 targets | 1 ≤ i ≤ 20}) 871.6 m × 866.9 m 178.11, 230.34, 284.21
set 2 20 ({i× 50 targets | 1 ≤ i ≤ 20}) 1210.5 m × 1212.1 m 271.88, 331.50, 382.89
set 3 20 ({i× 50 targets | 1 ≤ i ≤ 20}) 1564.6 m × 1568.2 m 375.19, 434.08, 508.99
set 4 20 ({i× 50 targets | 1 ≤ i ≤ 20}) 1915.6 m × 1912.1 m 489.15, 534.49, 603.94
set 5 20 ({i× 50 targets | 1 ≤ i ≤ 20}) 2265.9 m × 2263.5 m 612.87, 660.76, 697.05
set 6 20 ({i× 50 targets | 1 ≤ i ≤ 20}) 2609.3 m × 2609.9 m 705.20, 747.64, 809.67
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(a) Instance 1: 50 ground nodes (b) Instance 2: 75 ground nodes

(c) Instance 3: 100 ground nodes (d) Instance 4: 125 ground nodes

(e) Instance 5: 50, all isolated ground nodes

Figure 6. Distribution of the different test instances.
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Figure 7. For each test set used for scalability analysis (set 1 to set 6): the box-plots of the standard
deviation of the targets in each of the 20 input data (50 targets to 1000 targets).

6.2. Simulation Results
6.2.1. Results of First Series of Experiments

For the five different instances in the first series of experiments, and for the values of
p = 1 and p = 2 of (6), the application provided solutions satisfying all the constraints:
coverage, redundancy, and connectivity; in less than 1 decisecond. Table 3 presents the
results of the application on the five input instances, executed with different values of
p. The table provides the number of locations generated on each of the three stages of
the application: (1) the clustering phase that finds regions of interest around the target
nodes; (2) the optimization phase that filters the locations generated in the first phase
and keep those that minimize the objective function (5), subject to the constraints; (3)
when necessary, complete coverage and redundancy with the connectivity constraint. The
number of aircraft in the first phase does not change for different values of p since in that
phase p is not relevant. Table 3 also provides the value of redundancy for the overall
network. In instance 5 with p = 2, we can notice that there are twice the number of aircraft
deployed than there are number of targets. This is due to the fact that there are numerous
gaps between the generated UAS, which hinders it to form a unique connected component.
This shows that the positions of target nodes influence the cost of the final network.

The final solutions for the five different instances, all with p = 2 can be seen in Figure 8.
For each figure, the red crosses represent the ground nodes, the green squares represent
the aircraft generated by the MIP solver (2nd phase), and the orange squares those used
for connections. The edges represent the connections aircraft-aircraft. For Figure 8e, the
targets cannot be seen as they are hidden by the aircraft covering them, and only 50 aircraft
used for coverage can be seen in green rather than 100, since aircraft are overlapping, due
to the redundancy of 2, and the fact that targets are isolated.

As expected, the number of aircraft deployed increase with the number of targets but
more importantly with their dispersion. This can be seen with instance 5 (Figure 6e) where
there are very few targets but many gaps between them. For this special case it would be
more profitable to place the aircraft at the middle of two isolated ground nodes, but it is
hard to identify those structures beforehand.

The other interesting case, more plausible as UASs deployments are usually needed
in places with targets gathered into relatively compact groups, is Figure 8d where several
targets are spread on the map. When p = 2, the first phase generates 105 potential locations,
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then in the second phase, the GLPK MIP solver filters these positions to less than a half of
them (42 aircraft to deploy).

(a) Instance 1: 50 ground nodes (b) Instance 2: 75 ground nodes

(c) Instance 3: 100 ground nodes (d) Instance 4: 125 ground nodes

(e) Instance 5: 50, all isolated ground nodes

Figure 8. Graphical results for the 5 input tests instances, with p = 2.
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In addition, although it is not apparent in the 2D figures, aircraft can overlap due to
the duplication required for the redundancy on isolated ground nodes. For instance, in
Figure 8d, two aircraft are overlapping at coordinates about (500,800), and cover an isolated
target at that exact position. These isolated ground nodes, together with aircraft used for
connectivity, are with not much surprise the ones that cost the most. So, the redundancy
requirement should be fixed with caution if one does not want the number of activated
aircraft to steadily grow. Nonetheless, into areas with great concentration of ground nodes
there is a strong potential of redundancy, as in the instance in Figure 8d where sometimes
ground nodes are covered with up to five active aircraft.

Table 3. Results for the input instances with 2 values of required minimum redundancy parameter p.

Instances p of (6)
Number of Active Locations ∑

v∈T
redund(v), of (3) CPU Time

(in secs)1st Phase 2nd (SCP Results) Final Graph

1 (Figure 6a) 1 36 2 5 81 0.005642
1 (Figure 6a) 2 36 4 7 131 0.007040
2 (Figure 6b) 1 64 17 35 216 0.012458
2 (Figure 6b) 2 64 35 48 267 0.015921
3 (Figure 6c) 1 83 17 33 281 0.016422
3 (Figure 6c) 2 83 36 49 376 0.019009
4 (Figure 6d) 1 105 19 39 351 0.018976
4 (Figure 6d) 2 105 42 56 472 0.022005
5 (Figure 6e) 1 50 50 97 158 0.015618
5 (Figure 6e) 2 50 100 147 208 0.044414

6.2.2. Scalability (Results of Second Series of Experiments)

As presented in Section 6.1, with regard to the second series of experiments, the
objective was to analyze the overall run-time growth of the approach on large and growing
sets of instances. It was also to evaluate the execution time of the particular three main
steps of the approach so that we can detect the ones that are more challenged depending
on the number of targets to cover and their distribution. The results for the six datasets are
given in Figures 9 and 10, where on the left we have the consecutive run-times on a specific
set and on the right the distribution of the most challenging instance for that particular set
(the peak). The time costs are represented in green (•) for the first phase, cyan (•) for the
MIP problem, yellow (•) for the connectivity, and fuchsia (•) for the overall cost.

From these figures, one can already notice that run-time does not always grow with
the number of targets to cover. Also, even though at some point the execution times of the
three phases vary a lot and even intertwine, some important features are noticeable from
the results:

• the cost of the clustering phase revolves on the number of targets but also on the
distance between them, since the generated positions depend on these distances and
thus the number of iterations until the stopping criterion is reached. This phase is the
one with a relatively more consistent run-time growth that is unlikely to explode.

• the execution cost of the MIP solver depends on the number of targets (the constraints)
and the positions generated in the first step (the decision variables), but it most
importantly depends on the structure of the problem. Indeed, the branch-and-cut
method used by glpk is most sensitive to the steps needed to reach the optimal integer
solution than on the size of the problem.

• the time cost of the connectivity step depends on the gaps in the separate con-
nected components.



Electronics 2021, 10, 422 21 of 26

(a) Set 1 (b) Peak run-time set 1: 950 ground nodes

(c) Set 2 (d) Peak run-time set 2: 750 ground nodes

(e) Set 3 (f) Peak run-time set 3: 900 ground nodes

Figure 9. Datasets overall run-time and specific to the 3 main steps; and distribution of instance with highest execution time
(Part 1).



Electronics 2021, 10, 422 22 of 26

(a) Set 4 (b) Peak run-time set 4: 850 ground nodes

(c) Set 5 (d) Peak run-time set 5: 1000 ground nodes

(e) Set 6 (f) Peak run-time set 6: 1000 ground nodes

Figure 10. Datasets overall run-time and specific to the 3 main steps; and distribution of instance with highest execution
time (Part 2).



Electronics 2021, 10, 422 23 of 26

The execution time expansion of the clustering phase is somewhat regular and takes
less than two seconds for all the instances in the dataset. It grows with the number of
targets and moderately fluctuates with the extent of separation between groups of targets.
Moreover, compared to the other steps, it is the one that is less likely to increase drastically.

On the other hand, the second step can sometimes be considerably expensive, even for
small numbers of targets. In Figure 9f for example, we see a very substantial increase for
the instance of 900 targets, whereas for the previous and its next (950 and 1000 targets), the
duration is much more moderate. That is due to the numbers of branching and cuts used
to reach the optimal integer solution for that specific instance. That is why the structure of
the input instance is more challenging for the solver than its size.

As for the last phase, it is obvious to expect seeing a sharp escalation in execution
time for instances with large gaps within the different connected components. What is
more interesting to observe for this phase, is the effect of using a type of greedy strategy
as the one we used: for the connectivity, we have adopted as a solution to connect the
two closest connected components. The greedy approach can sometimes make a detour
and take a longer path, causing a generation of larger number of aircraft used only for
connectivity. Such instance can be seen in Figure 11d where there are considerable numbers
of aircraft dedicated just for connectivity (in green) than those used for coverage (in blue):
1114 aircraft for connectivity, vs 616 for coverage. This instance (1000 targets to cover) was
part of an additional set of input tests used to examine the performance of our approach
for the specific connectivity feature. Compared to the other sets of the second series of
experiments, this new set of instances (“Large” in Figure 11a) had a much greater extent of
expansion but still had the same pool of number of targets (50 to 1000). We can clearly notice
in Figure 11b that on much larger maps the cost of connecting the connected components
is the one that stands out the most. The detours caused by the greedy approach are also
apparent in Figure 11d. From that graphical representation it is easy to realize that a better
solution can be found.

(a) Standard deviations (b) Execution times (set “Large”)

Figure 11. Cont.
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(c) Grounds only (1000 targets) (d) Grounds + covers + connectivity

Figure 11. Results on the dataset with large gaps between connected components.

7. Conclusions

In order to provide efficient solutions for the deployment of Unmanned Aircraft
Systems (UASs) for ground targets communication provision in disaster scenarios, the
present work proposed a solution providing a maximum coverage for targets on the
ground and a guaranteed minimum number of covers for each target to ensure that in
case of aircraft failures in the UAS, targets stay covered. However, also, in order to keep a
steady stream of communication between the UAS and the ground targets, the approach
provides a way of building networks that always form unique connected components.
This report presented the method that works in three main phases: (1) Apply clustering
methods to generate locations for the aircraft into good area of interest. This phase uses a
procedure of building smaller clusters on each iteration to add more potential locations and
diversify the search space for the next phase; (2) Run an optimization phase that filters the
generated locations and keep only the ones that best satisfy two requirements: coverage
and redundancy of the covers; (3) When necessary, build a unique connected component of
the UAS by iteratively connecting the two closest separated connected components.

With the clustering method, we wanted to produce good and limited locations for the
UASs, with the intention of using them as discrete data for a set cover type problem. The
optimization phase then minimized the results from phase 1 by filtering them and keep
only the best. This way of doing things has enabled us to offer maximum coverage for all
the target nodes on the ground and guarantees a minimum k-coverage for each target with
a low number of aircraft to deploy. Finally, if the results from phase 2 do not form a unique
connected component, a last phase ensures that a single one is built from the spread ones.
We tested our approach with different scenarios, and assessed its cost on several sets of
instances, different by the number of targets to cover, as well as their distributions. The
approach provided good results but most importantly in a very short period of time.

Still, at this stage of the work, we believe that the way connectivity is enforced into the
UASs can be improved. Indeed, our approach builds a unique connected component with
a greedy solution: connect the two closest aircraft in two different connected components.
For this, a pairwise comparison of aircraft locations is required and it can get heavy as the
number of aircraft increases. So, as a further assignment, it could be interesting to test new
methods and draw ideas from others research work in order to tackle this issue. In many
of the works presented in Sections 1 and 2, the connectivity requirement is dealt with as a
network flow problem and directly included as a constraint in an integer programming
model. It can indeed be convenient to solve the whole process into a single model, but, if the
search space for the connectivity cannot be discretized as it is done in the present work, the
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problem might certainly stay complex to handle and the solutions could hardly be scaled
to larger instances. Exact and approximate methods like [9,15,16,28] propose to solve more
objectives on larger scale but on the expense of computation time and sometimes even on
the quality of the solutions. So, we believe that the present work could be a new addition
to the research and could really benefit from other research too. The greatest benefit of the
proposed approach is that it is modeled as a simple mono-objective optimization problem,
which makes it really convenient to transform into a multiobjective model.
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