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inequality is obtained in terms of two parameters.
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The main objective of this paper is to establish an understanding of the two integrals

∞∫
0

∣∣∣∣ sinp,q x

x

∣∣∣∣r−1 sinp,q x

x
dx and

∞∫
0

∣∣∣∣ sinp,q x

x

∣∣∣∣m dx (1)

when r > 0 and m, p, q ∈ (1, ∞). The functions sinp,q in the integrands are deformations of the classical 
trigonometric sine when controlled by the values of the parameters p, q ∈ (1, ∞) and are known as the 
generalised trigonometric sine functions. They appear as eigenfunctions of the nonhomogeneous eigenvalue 
problem with the p-Laplacian:

−(|u′|p−2u′)′ = λ|u|q−2u (2)

under a Dirichlet boundary condition and are defined as the inverse of the function Fp,q : [0, 1] →
[
0, πp,q

2
]

which is given by the Abelian integral:
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sin−1
p,q x := Fp,q(x) =

x∫
0

(1 − tq)−1/pdt, x ∈ [0, 1],

where πp,q/2 := Fp,q(1) = B(1/p∗, 1/q)/q (B is the beta function and p∗ := p/(p − 1)). The generalised 
trigonometric sine is an increasing function on the interval 

[
0, πp,q

2
]

and is extended to the whole real 
line as a 2πp,q-periodic function by means of sinp,q x = sinp,q(πp,q − x) and sinp,q(−x) = − sinp,q x. Various 
properties of these functions and their counterparts cosp,q x := (sinp,q x)′ and tanp,q x := (sinp,q x)/(cosp,q x)
are explored. See [1,4,7,8,10,11,17,20,23].

The research we present in our paper is new of its kind, it started when D. E. Edmunds proposed the 
question about whether it is possible to form generalisations of the well-known integral inequality by K. 
Ball [2]:

√
m

∞∫
−∞

∣∣∣∣ sin x

x

∣∣∣∣m dx ≤
√

2π for m ≥ 2, (3)

and of its asymptotically sharpened form (as in [6] and [14])

√
m

∞∫
0

∣∣∣∣ sin x

x

∣∣∣∣m dx ∼
√

3π
2

(
1 − 3

20
1
m

− 13
1120

1
m2

)
+

∞∑
j=3

cj
mj

as m → ∞, (4)

in the case when the standard trigonometric sine function is replaced by its generalisation sinp := sinp,p for 
p > 1. The latter equivalence was explored in the works of D. Borwein, J. M. Borwein, I. E. Leonard, R. 
Kerman, R. Ol’hava, S. Spektor and many others [2,5,6,14] about integrals of standard sinc function.

Inspired by these, a first attempt to answer Edmunds’s question was investigated in the paper [9], and 
results about the asymptotic nature of the integral on the left-hand side of Ball’s inequality were obtained.

In the current paper we aim to provide further developments to the existing research. Our first result is 
Theorem 1.1, which justifies an identity involving integrals of integer powers of the (sinp,q x)/x. A second 
important outcome of the paper is expressed in Theorem 1.2, where an integral identity between two 
kinds of generalised trigonometric functions, sin2,q and sinq∗,q, is achieved. Both theorems provide fruitful 
generalisations of the classical identities:

∞∫
0

(
sin x

x

)2

dx =
∞∫
0

sin x

x
dx = π

2 , (5)

which are contained in the theorems as the case p = q = 2.
In addition, Theorem 2.1 and Corollary 2.1 communicate results about the second integral in (1) providing 

a generalisation of the asymptotically sharpened form (4) of the left-hand side of Ball’s integral inequality 
(3).

For p, q ∈ (1, ∞), define the function sincp,q to be sincp,q x := (sinp,q x)/x when x ∈ R\{0} and sincp,q 0 :=
1. It is obvious that sincp,q is an even function and has roots at nπp,q when n ∈ Z\{0}. Moreover, since 
|sinp,q x| ≤ 1 for all x ∈ R, lim|x|→∞sincp,qx = 0.

Lemma 0.1.

(i) For all x ∈ R, | sincp,q x| ≤ 1.
(ii) The function sincp,q is strictly decreasing on the interval 

(
0, πp,q

2
]
.

Proof. The proof is analogous to that of [9, Lemma 2.1], hence omitted. �
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1. Improper Riemann integrals of sincp,q functions

It is known that the improper integrals (5) of the sinc function over the positive interval exist in the 
sense of Riemann integrals. We start this section by a precise consideration of the convergence properties 
of the integrals in (1).

Proposition 1.1. Let p, q ∈ (1, ∞). Then,

(i)
∞∫
0

∣∣∣∣ sinp,q x

x

∣∣∣∣r−1 sinp,q x

x
dx is convergent for r > 0.

(ii)
∞∫
0

∣∣∣∣ sinp,q x

x

∣∣∣∣m dx is convergent for m > 1 and divergent for m = 1.

Proof. Since sincp,q x is continuous in [0, ∞), it suffices to observe the integrability for x sufficiently large.
(i) Let f(x) := | sinp,q x|r−1 sinp,q x and

F (x) :=
x∫

0

f(t) dt, x ≥ 0.

Then, F (x) is continuous in [0, ∞). Since f(x) is 2πp,q-periodic, we see that F (x +2πp,q) −F (x) = F (2πp,q) =
0. Thus, F (x) is also 2πp,q-periodic. Hence, F (x) is bounded on [0, ∞) and there exists M > 0 such that 
|F (x)| ≤ M for all x ∈ [0, ∞). Therefore, when 0 < u < v,∣∣∣∣∣∣

v∫
u

f(x)
xr

dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
[
F (x)
xr

]v
u

+ r

v∫
u

F (x)
xr+1 dx

∣∣∣∣∣∣ ≤ M

vr
+ M

ur
− M

vr
+ M

ur
= 2M

ur
.

As u → ∞, Cauchy’s test yields the convergence of the improper integral.
(ii) For m > 1, since | sincp,q x|m < 1/xm, the convergence is trivial.
Consider the case m = 1. For n = 0, 1, 2, . . .,

(n+1)πp,q∫
nπp,q

∣∣∣∣ sinp,q x

x

∣∣∣∣ dx =
πp,q∫
0

sinp,q x

nπp,q + x
dx

>
1

(n + 1)πp,q

πp,q∫
0

sinp,q x dx

=: C

n + 1 ,

where C = 2B (2/q, 1/p∗) /(qπp,q) by [15, Theorem 3.1]. Therefore,

nπp,q∫
0

∣∣∣∣ sinp,q x

x

∣∣∣∣ dx > C

n∑
k=1

1
k
.

The last summation diverges to ∞ as n → ∞, and so does the left-hand side. �
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Now we give analogues of the integrals in (5) for the set of non-standard trigonometric functions.

Theorem 1.1. For p, q ∈ (1, ∞),

∞∫
0

sinp,q x

x
dx = π

2

1∫
0

sinp,q (πp,qx)
sin (πx) dx, (6)

∞∫
0

(
sinp,q x

x

)2

dx = π2

2πp,q

1∫
0

[
sinp,q (πp,qx)

sin (πx)

]2

dx. (7)

In particular, when p = q = 2,

∞∫
0

sin x

x
dx = π

2 =
∞∫
0

(
sin x

x

)2

dx. (8)

Proof. Let r ∈ N. Since sincp,q x is an even function,

∞∫
0

(
sinp,q x

x

)r

dx = 1
2

∞∫
−∞

(
sinp,q x

x

)r

dx

= 1
2

∞∑
n=−∞

(n+1)πp,q∫
nπp,q

(
sinp,q x

x

)r

dx.

Setting x = (t + n)πp,q, we have

∞∫
0

(
sinp,q x

x

)r

dx = 1
2πr−1

p,q

∞∑
n=−∞

1∫
0

sinr
p,q (πp,qt)

(−1)rn

(t + n)r dt. (9)

To guarantee the interchange between the infinite sum and the integral, it suffices to show that

Lr(t) :=
∞∑

n=−∞

(−1)rn

(t + n)r (10)

converges uniformly on (0, 1). For any N ∈ N and t ∈ (0, 1), we define

Sr,N (t) :=
N∑

n=−N

(−1)rn

(t + n)r .

For N ≥ 2, we have

Sr,N (t) = 1
tr

+ (−1)r((t− 1)r + (t + 1)r)
(t2 − 1)r +

N∑
n=2

(−1)rn((t− n)r + (t + n)r)
(t2 − n2)r .

For t ∈ (0, 1) and n ≥ 2, clearly t < n/2. Then, it is easy to see that |(t − n)r + (t + n)r| ≤ c1n
r−1 for 

some c1 > 0 when r is odd; and |(t − n)r + (t + n)r| ≤ c2n
r for some c2 > 0 when r is even. Similarly, 

|(t2 − n2)r| > c3n
2r for some c3 > 0. Thus, for r ∈ N, letting c := max{c1, c2}/c3 gives
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∣∣∣∣ (−1)rn((t− n)r + (t + n)r)
(t2 − n2)r

∣∣∣∣ < c

n2

for t ∈ (0, 1) and n ≥ 2. Since 
∑∞

n=2(c/n2) < ∞, we conclude that Sr,N (t) converges uniformly to Lr(t) on 
(0, 1) as N → ∞.

By (9) and (10), we obtain

∞∫
0

(
sinp,q x

x

)r

dx = 1
2πr−1

p,q

1∫
0

sinr
p,q (πp,qt)Lr(t) dt. (11)

From [12, 1.422, p.44],

L1(t) = π

sin (πt) , L2(t) = π2

sin2 (πt)
;

hence (6) and (7) hold. �
Regarding Theorem 1.1, it is worth pointing out that (6) and (7) contain (8). It follows from [22, Lemma 

4.2] that, the function sinp,q (πp,qx) (with x ∈ (0, 1/2) ∪(1/2, 1)) is strictly decreasing in any of its parameters 
p or q ∈ (1, ∞) whenever the second is fixed. Therefore, the right-hand sides of (6) and (7) are strictly 
decreasing functions in the same parameter. From this fact, we see that (letting p = q for simplicity)

∞∫
0

sinp x

x
dx � π

2 and
∞∫
0

(
sinp x

x

)2

dx � π2

2πp
if p � 2.

It is also possible to obtain the formulas of integrals for r ≥ 3. By the summation theorems [18, Theorem 
4.4.1, p.305 & Exercise 5, p.313], which follow from the residue theorem, we have

Lr(t) = − 1
(r − 1)! lim

z→−t

dr−1

dzr−1

[
π

ϕ(πz)

]
, (12)

where ϕ(z) = sin z if r is odd; and ϕ(z) = tan z if r is even. For instance, (12) gives

L3(t) = π3(2 − sin2 (πt))
2 sin3 (πt)

, L4(t) = π4(3 − 2 sin2 (πt))
3 sin4 (πt)

;

hence by (11) we have,

∞∫
0

(
sinp,q x

x

)3

dx = π3

4π2
p,q

1∫
0

[
sinp,q (πp,qx)

sin (πx)

]3

(2 − sin2 (πx)) dx,

∞∫
0

(
sinp,q x

x

)4

dx = π4

6π3
p,q

1∫
0

[
sinp,q (πp,qx)

sin (πx)

]4

(3 − 2 sin2 (πx)) dx.

These contain
∞∫
0

(
sin x

x

)3

dx = 3π
8 ,

∞∫
0

(
sin x

x

)4

dx = π

3 ,

respectively.
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Remark 1.1. The values of the integrals (6) and (7) for (p, q) 
= (2, 2) still remain as open questions.

Theorem 1.1 shows a relationship between the integrals of the left-hand sides of (6) and (7) as follows.

Corollary 1.1. For p, q ∈ (1, ∞),

⎛⎝ ∞∫
0

sinp,q x

x
dx

⎞⎠2

≤ πp,q

2

∞∫
0

(
sinp,q x

x

)2

dx. (13)

Moreover, the equality holds if and only if p = q = 2.

Proof. Applying Schwarz’s inequality to (6), we obtain

⎛⎝ ∞∫
0

sinp,q x

x
dx

⎞⎠2

≤ π2

4

1∫
0

[
sinp,q (πp,qx)

sin (πx)

]2

dx.

By (7), the right-hand side is equal to

πp,q

2

∞∫
0

(
sinp,q x

x

)2

dx.

The equality of (13) holds if and only if there exists a constant k such that sinp,q (πp,qx) = k sin (πx) for 
all x ∈ [0, 1]. Then, as x = 1/2, we see that k = 1. As described immediately after the proof of Theorem 1.1, 
sinp,q (πp,qx), x ∈ (0, 1/2) ∪ (1/2, 1), is strictly decreasing in p, q. Therefore, we conclude p = q = 2. �

The paper [23] states the so-called multiple-angle formula between two types of generalised trigonometric 
functions: for all x ∈ R and q ∈ (1, ∞),

sin2,q (22/qx) = 22/q sinq∗,q x| cosq∗,q x|q
∗−2 cosq∗,q x. (14)

This formula is an essential tool to establish the following result.

Theorem 1.2. For q ∈ (1, ∞),

∞∫
0

∣∣∣∣ sinq∗,q x

x

∣∣∣∣q dx = q∗

22/q

∞∫
0

∣∣∣∣ sin2,q x

x

∣∣∣∣q−2 sin2,q x

x
dx. (15)

Hence, when q is even,

∞∫
0

(
sinq∗,q x

x

)q

dx = q∗

22/q

∞∫
0

(
sin2,q x

x

)q−1

dx;

in particular, when q = 2,

∞∫ (
sin x

x

)2

dx =
∞∫ sin x

x
dx.
0 0
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Proof. From (14),

| sin2,q (22/qx)|q−2 sin2,q (22/qx) = 22/q∗ | sinq∗,q x|q−2 sinq∗,q x cosq∗,q x.

Using this identity, we obtain

∞∫
0

∣∣∣∣ sinq∗,q x

x

∣∣∣∣q dx =
[

1
1 − q

x1−q| sinq∗,q x|q
]∞
0

− 1
1 − q

∞∫
0

x1−q · q| sinq∗,q x|q−2 sinq∗,q x cosq∗,q x dx

= q∗
∞∫
0

x1−q · 2−2/q∗ | sin2,q (22/qx)|q−2 sin2,q (22/qx) dx

= q∗

22/q

∞∫
0

∣∣∣∣ sin2,q x

x

∣∣∣∣q−2 sin2,q x

x
dx.

Therefore, the proof is complete. �
It is known that sinp,q x satisfies (2) with λ = q/p∗, i.e.

−(| cosp,q x|p−2 cosp,q x)′ = q

p∗
| sinp,q x|q−2 sinp,q x.

Integration by parts yields,

∞∫
0

1 − | cosp,q x|p−2 cosp,q x
xq

dx = q∗

p∗

∞∫
0

∣∣∣∣ sinp,q x

x

∣∣∣∣q−2 sinp,q x

x
dx. (16)

Now, from (16), both sides of (15) are equal to

21−2/q
∞∫
0

1 − cos2,q x
xq

dx.

In particular, when q = 2, the famous equalities are obtained:

∞∫
0

(
sin x

x

)2

dx =
∞∫
0

sin x

x
dx =

∞∫
0

1 − cosx
x2 dx.

2. The Lm-norm behaviour of sincp,q functions

Here in Theorem 2.1 below we pay a close attention to the Lm-norm behaviour of the sincp,q function 
and its asymptotic expansion (with explicit first two terms) for large values of m. Independent of that, 
we calculate the limit of this integral as m → ∞. But before we embark on this study, we highlight the 
following lemma, which is essentially due to L.I. Paredes and K. Uchiyama [21, Theorem 3.2].
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Lemma 2.1. Let p, q ∈ (1, ∞). Then, the function sinp,q x has the convergent expansion near x = 0:

sinp,q x = x− 1
p(q + 1) |x|

qx + 1 − p + 3q − pq

2p2(q + 1)(2q + 1) |x|
2qx + · · · .

Proof. The function u(t) = sinp,q(kt) satisfies (2) with λ = 1 on 
(
−πp,q

k ,
πp,q

k

)
when kp = p∗/q. Therefore, 

applying [21, Theorem 3.2] to our case, with σ = 0 and A = k, we see that u(t) has the convergent expansion 
near t = 0:

u(t) = kt− kq−p+1

(p− 1)q(q + 1) |t|
qt + (1 − p + 3q − pq)k2q−2p+1

2(p− 1)2q2(q + 1)(2q + 1) |t|
2qt + · · · .

Setting x = kt gives the expansion in the lemma. �
Let us now explore the behaviour of the Lm-norm of sincp,q when m is large enough.
For m, p, q ∈ (1, ∞), define

Ip,q(m) := m1/q
∞∫
0

∣∣∣∣ sinp,q x

x

∣∣∣∣m dx.

Then we can show the following lemma.

Lemma 2.2. Let p, q ∈ (1, ∞). Then, for any α ∈ (0, ∞),

lim
m→∞

Ip,q(m) = lim
m→∞

m1/q
α∫

0

∣∣∣∣ sinp,q x

x

∣∣∣∣m dx.

Hence, the value of the limit is independent of α.

Proof. For α ∈ (0, ∞), we define Ip,q(m) as

Ip,q(m) = m1/q
α∫

0

∣∣∣∣ sinp,q x

x

∣∣∣∣m dx + m1/q
∞∫
α

∣∣∣∣ sinp,q x

x

∣∣∣∣m dx.

Let α ∈ [1, ∞). In this case,

∞∫
α

∣∣∣∣ sinp,q x

x

∣∣∣∣m dx = lim
β→∞

β∫
α

∣∣∣∣ sinp,q x

x

∣∣∣∣m dx ≤ lim
β→∞

β∫
α

x−mdx = 1
m− 1α

1−m.

Then,

lim
m→∞

m1/q
∞∫
α

∣∣∣∣ sinp,q x

x

∣∣∣∣m dx ≤ lim
m→∞

m1/q

(m− 1)αm−1 = 0.

Next, when α ∈ (0, 1),

∞∫ ∣∣∣∣ sinp,q x

x

∣∣∣∣m dx =
1∫ ∣∣∣∣ sinp,q x

x

∣∣∣∣m dx +
∞∫ ∣∣∣∣ sinp,q x

x

∣∣∣∣m dx
α α 1
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≤
1∫

α

∣∣∣∣ sinp,q x

x

∣∣∣∣m dx + 1
m− 1 .

From [11, (2.17), p.39], observe that (α, 1) ⊂ (0, πp,q

2 ). Then by Lemma 0.1 (ii) we have

0 <
sinp,q x

x
<

sinp,q α

α
< 1, x ∈ (α, 1).

Then,

lim
m→∞

m1/q
∞∫
α

∣∣∣∣ sinp,q x

x

∣∣∣∣m dx ≤ lim
m→∞

m1/q
[(

sinp,q α

α

)m

(1 − α) + 1
m− 1

]
= 0,

and the lemma follows. �
With the aid of Lemma 2.2, we now present Theorem 2.1 and Corollary 2.1 below. Because of the 

independency of α in Lemma 2.2, it suffices to complete the study on a positive interval (0, α) for some 
α > 0. In what follows we use the notation f(x) ∼ g(x) for f(x)/g(x) → 1 as x → ∞.

Theorem 2.1. Let p, q ∈ (1, ∞). Then, there exist constants γ2, γ3, . . ., independent of m, such that for m
large enough

Ip,q(m) ∼ 1
q
Γ
(

1
q

)
(p(q + 1))1/q

[
1 − (q + 1)(pq2 + 2pq − 3q2 + p− 2q)

2q2(2q + 1)
1
m

]
+ 1

q

∞∑
j=2

Γ
(
j + 1

q

)
γj
mj

.

Proof. Let α ∈ (0, 1). Then, by Lemma 2.2,

Ip,q(m) ∼ J(m,α) := m1/q
α∫

0

(
sinp,q x

x

)m

dx. (17)

In what follows, we observe the asymptotic expansion of J(m, α) instead of Ip,q(m). To use Theorem 8.1 
in Olver’s book [19, p.86], we rewrite J(m, α) as

J(m,α) = m1/q
α∫

0

exp
(
m ln

(
sinp,q x

x

))
dx

= m1/q

q

αq∫
0

e−mf(t)g(t) dt,

where

f(t) := − ln
(

sinp,q (t1/q)
t1/q

)
, g(t) := t1/q−1.

It is easy to see that f(t) and g(t) satisfy (i), (ii), and (iv) in [19, §7.2]. We need to find constants μ, fj , λ
and gj (j = 0, 1, 2, . . .) such that μ, λ > 0, f0, g0 
= 0 and as t → 0+,
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f(t) ∼ f(0) +
∞∑
j=0

fjt
j+μ, g(t) ∼

∞∑
j=0

gjt
j+λ−1.

It is clear that

λ = 1
q
, g0 = 1, gj = 0 (j ≥ 1). (18)

Regarding μ and fj , we will expand f(t). By Lemma 2.1, taking α small if necessary, we obtain

sinp,q (t1/q)
t1/q

=
∞∑
j=0

ajt
j , t ∈ (0, αq),

where the first three terms of aj are

a0 = 1, a1 = − 1
p(q + 1) , a2 = 1 − p + 3q − pq

2p2(q + 1)(2q + 1) . (19)

Since ∣∣∣∣∣∣
∞∑
j=1

ajt
j

∣∣∣∣∣∣ =
∣∣∣∣ sinp,q (t1/q)

t1/q
− 1

∣∣∣∣ < 1, t ∈ (0, αq),

it is immediate that for t ∈ (0, αq),

f(t) = − ln

⎛⎝1 +
∞∑
j=1

ajt
j

⎞⎠ =
∞∑
k=1

(−1)k

k

⎛⎝ ∞∑
j=1

ajt
j

⎞⎠k

,

which yields

f(t) = −a1t +
(
−a2 + a2

1
2

)
t2 + O(t3).

This means that μ and the first two terms of fj are

μ = 1, f0 = −a1, f1 = −a2 + a2
1
2 . (20)

We are now in a position to give the asymptotic expansion of J(m, α). Applying [19, Theorem 8.1, p.86]
to our case, with x = m, p(t) = f(t), q(t) = g(t), s = j, μ = 1 and λ = 1/q, we establish the existence of 
real constants γj , j = 0, 1, 2 . . ., such that as m → ∞,

J(m,α) ∼ m1/q

q
e−mf(0)

∞∑
j=0

Γ
(
j + 1

q

)
γj

mj+1/q = 1
q

∞∑
j=0

Γ
(
j + 1

q

)
γj
mj

,

where Γ is the gamma function.
The coefficients γ0 and γ1 are given in [19, (8.07), p.86] as follows: by (18), (19) and (20) we obtain

γ0 = g0

μf
λ/μ
0

= (p(q + 1))1/q,
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and

γ1 =
(
g1

μ
− (λ + 1)f1g0

μ2f0

)
1

f
(λ+1)/μ
0

= −
(

1
q

+ 1
)

(p(q + 1))2+1/q
(
−a2 + a2

1
2

)

= − (p(q + 1))1/q(q + 1)(pq2 + 2pq − 3q2 + p− 2q)
2q(2q + 1) .

This completes the proof. �
Next we present an immediate corollary of Theorem 2.1 on the limit of the integral Ip,q(m) as m → ∞. 

Alternatively and independent of this, we give a self-contained proof for the corollary.

Corollary 2.1. Let p, q ∈ (1, ∞). Then,

lim
m→∞

Ip,q(m) = 1
q
Γ
(

1
q

)
(p(q + 1))1/q.

Proof. Let ε ∈ (0, 1) be any number and α := sin−1
p,q ε ∈

(
0, πp,q

2
)
. For this α, we define J(m, α) as (17). 

Changing the variable in the integral J(m, α) to y = sinp,q x we get

J(m,α) = m1/q
ε∫

0

(
y

sin−1
p,q y

)m

(1 − yq)−1/p dy.

From the result of Bhayo and Vuorinen [3, Theorem 1.1 (1)], we have

(1 − yq)1/(p(q+1)) <
y

sin−1
p,q y

<

(
1 + yq

p(q + 1)

)−1

, y ∈ (0, ε).

Thus,

ε∫
0

(1 − yq)m/(p(q+1))−1/p dy <
J(m,α)
m1/q <

ε∫
0

(
1 + yq

p(q + 1)

)−m

(1 − yq)−1/p dy. (21)

We denote by L(m, ε) the left-hand side of (21) and by R(m, ε) the right-hand side of (21).
L(m, ε) is estimated as follows.

L(m, ε) =
1∫

0

−
1∫

ε

(1 − yq)m/(p(q+1))−1/p dy =: L1 − L2.

We obtain

L1 = 1
q

1∫
0

z1/q−1(1 − z)m/(p(q+1))−1/p dz = 1
q
B

(
1
q
,

m

p(q + 1) − 1
p

+ 1
)

= 1
q
Γ
(

1
q

)
Γ(m/(p(q + 1)) − 1/p + 1)

Γ(m/(p(q + 1)) − 1/p + 1 + 1/q)

∼ 1
q
Γ
(

1
q

)
(p(q + 1))1/qm−1/q. (22)
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The last equivalence is due to the fact that

Γ(m + a)
Γ(m + b) ∼ ma−b as m → ∞,

which follows from Stirling’s formula; see also [13, Problem 2, p.45]. Moreover, for m large enough,

L2 < (1 − εq)m/(p(q+1))−1/p(1 − ε) = o(m−1/q). (23)

Then from (22) and (23),

lim inf
m→∞

m1/qL(m, ε) = lim inf
m→∞

m1/q(L1 − L2) ≥
1
q
Γ
(

1
q

)
(p(q + 1))1/q. (24)

Similarly, R(m, ε) is estimated as follows. We obtain

R(m, ε) < (1 − εq)−1/p
∞∫
0

(
1 + yq

p(q + 1)

)−m

dy.

Letting yq = p(q + 1)(1 − z)/z, we see that for m large enough, the integral of the right-hand side can be 
rewritten as

1
q
(p(q + 1))1/qB

(
m− 1

q
,
1
q

)
∼ 1

q
Γ
(

1
q

)
(p(q + 1))1/qm−1/q.

Then

lim sup
m→∞

m1/qR(m, ε) ≤ (1 − εq)−1/p 1
q
Γ
(

1
q

)
(p(q + 1))1/q. (25)

Applying Lemma 2.2, (24) and (25) to (21), we have

1
q
Γ
(

1
q

)
(p(q + 1))1/q ≤ lim

m→∞
Ip,q(m) ≤ (1 − εq)−1/p 1

q
Γ
(

1
q

)
(p(q + 1))1/q.

These inequalities hold for any ε ∈ (0, 1). Note that both sides of the first inequality are independent of ε. 
Therefore, as ε → 0+, we conclude

lim
m→∞

Ip,q(m) = 1
q
Γ
(

1
q

)
(p(q + 1))1/q,

and the proof is complete. �
We finish by observing that the asymptote to the function Ip,q(m) as m → ∞ is 1

qΓ 
(

1
q

)
(p(q + 1))1/q for 

all p, q ∈ (1, ∞). While the behaviour of the integral Ip,q(m) is not fully understood yet for the values of m
in the interval (1, ∞), one can establish some knowledge about how the function Ip,q(m) is approaching its 
asymptote as m → ∞.

Based on Theorem 2.1, for sufficiently large m we may regard Ip,q(m) as

Ĩp,q(m) := 1Γ
(

1
)

(p(q + 1))1/q
[
1 − (q + 1)(pq2 + 2pq − 3q2 + p− 2q)

2
1
]
.

q q 2q (2q + 1) m
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Now choose p, q ∈ (1, ∞) so that p < q(3q+2)
(q+1)2 , then the function Ĩp,q(m) becomes convex and decreasing for 

sufficiently large m as opposed to the classical case when p = q = 2 (where the integral Ĩ2,2(m) is concave 

and increasing when approaching its asymptote 
√

3π
2 as m → ∞).

We end this remark by leaving the following as open questions:

(a) Explicit computation of the coefficient γ2 in the asymptotic expansion in Theorem 2.1 (cf. c2 =
−
√

3π
2

13
1120 in (4)).

(b) Behaviour of the integral Ip,q(m) as a function of m ∈ (1, ∞). In particular, the supremum of Ip,q(m)
on [2, ∞) gives a generalisation of Ball’s integral inequality (3).

(c) Inspired by the explicit formula (which can be found in [16, Exercise 22, p.471] attributed to Wolsten-
holme),

∞∫
0

(
sin x

x

)n

dx = 1
(n− 1)!

π

2n

�n/2�∑
k=0

(−1)k
(
n

k

)
(n− 2k)n−1

for integers n ≥ 1, we refer to Remark 1.1 wondering whether it is possible to obtain a similar expression 
for integrals of (sincp,q)r when r = n ∈ N.
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