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Abstract

When solving the linear programming (LP) relaxation of a mixed-integer program (MIP) with

column generation, columns might be generated that are not needed to express any integer optimal

solution. Such columns are called strongly redundant and the dual bound obtained by solving the

LP relaxation is potentially stronger if these columns are not generated. We introduce a sufficient

condition for strong redundancy that can be checked by solving a compact LP. Using a dual solution

of this compact LP we generate classical Benders cuts for the subproblem so that the generation of

strongly redundant columns can be avoided. The potential of these cuts to improve the dual bound of

the column generation master problem is evaluated computationally using an implementation in the

branch-price-and-cut solver GCG. While their efficacy is limited on classical problems, the benefits

of applying the cuts is demonstrated on structured models to which a temporal decomposition can

be applied.

Key words: Benders decomposition, Dantzig-Wolfe reformulation, domain reduction, column gener-

ation

1 Introduction

Dantzig-Wolfe reformulation is a mathematical programming technique that exploits model structure

within mixed integer programs (MIPs). Models that are particularly suitable for its application exhibit
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a constraint matrix with a bordered block diagonal form, such as

min
∑
k∈K

cTk x
k (1a)

s. t.
∑
k∈K

Akx
k ≥ b (1b)

Dkx
k ≥ dk ∀k ∈ K (1c)

xk ∈ Znk

≥0 ∀k ∈ K . (1d)

In the original model (1), we have a set K of disjoint subsystems, as given by constrains (1c), which

in particular do not share any variables. The subsystems are linked by constraints (1b). For ease of

exposition we initially focus on the integer program (IP) given by (1). A generalization of the results to

MIPs will be presented later in this paper.

Consider subsystem k ∈ K from problem (1) and the corresponding feasible region defined as Xk =

{x|Dkx ≥ dk , x ∈ Znk

≥0}. All feasible solutions in Xk can be written as a binary combination of integer

points {xp}p∈Pk ⊆ Xk and non-negative integer combination of integer rays {xr}r∈Rk ⊆ Xk

xk =
∑
p∈Pk

xpλp +
∑
r∈Rk

xrλr,
∑
p∈Pk

λp = 1 ∀k ∈ K, λ ∈ ZPk∪Rk

≥0 , (2)

where both P k and Rk are finite sets [18]. This type of reformulation is called the discretization

approach [26].

Vanderbeck and Savelsbergh [27] refer to the xp and xr as generators of Xk . Each generator cor-

responds to a variable/column in the Dantzig-Wolfe reformulated model. Throughout this paper, we

will sometimes refer to solutions x̄k ∈ Xk as columns, although solution x̄k is multiplied with Ak in

order to obtain the corresponding column. Since every subsystem (1c) ignores all the other constraints,

a solution in Xk (embedded in the original space) need not be feasible for (1). The generators/columns

leading to such infeasible solutions are redundant in the sense that the corresponding variables take a

zero value in all integer solutions to (1). Reducing the domain of Xk , and thus avoiding the generation

of redundant columns is the primary focus of this paper.

A Dantzig-Wolfe reformulation of (1), using the above discretization approach is performed by sub-

stituting xk with (2) and applying the transformations cj = cTk xj and aj = Akxj for all j ∈ P k ∪ Rk .
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This results in the reformulation of (1) given by the following master IP

min
∑
k∈K

∑
p∈Pk

cpλp +
∑
r∈Rk

crλr

 (3a)

s. t.
∑
k∈K

∑
p∈Pk

apλp +
∑
r∈Rk

arλr

 ≥ b (3b)

∑
p∈Pk

λp = 1 ∀k ∈ K (3c)

λ ∈ ZP∪R
≥0 . (3d)

The reformulated model (3) usually consists of an exponential number of so-called master variables,

as given by the large cardinalities of P =
⋃

k∈K P k and R =
⋃

k∈K Rk . As a result, a delayed column

generation algorithm is required to solve the LP relaxation. One starts with a restricted master LP by

replacing P k and Rk with P̄
k ⊆ P k and R̄

k ⊆ Rk , respectively, for all k ∈ K in (3), and dropping the

integrality constraints on the variables. Additional variables with negative reduced cost for the restricted

master LP—either points or rays to append to P̄
k

and R̄
k
, respectively—are identified by solving a

subproblem (or pricing problem) for each subsystem k. Denoting π as the dual values associated with

constraints (3b) and πk
0 as the dual value associated with constraint (3c) for subsystem k, the subproblem

for k ∈ K is given by

min (cTk − πTAk )xk − πk
0 (4a)

s. t. Dkx
k ≥ dk (4b)

xk ∈ Znk

≥0 . (4c)

The column generation algorithm terminates when (4) solves with a non-negative optimum for all

k ∈ K . This indicates that for each k ∈ K no feasible solution of Xk corresponds to a column in

the restricted master LP with a negative reduced cost. If the solution to the restricted master LP is

fractional, then branch-and-price [3] is employed to find an integer optimal solution.

A characteristic of Dantzig-Wolfe reformulation is that most master variables are zero in an integer

solution. In particular, it can be observed from (2) that for each k ∈ K exactly one λp, p ∈ P k ,

is required to express any integer solution to the original IP, including any integer optimal solution.

Given an optimal integer solution Vanderbeck and Savelsbergh [27] characterize all columns that are not

required to express this solution as redundant :

Definition 1.1 (Redundant column [27]). A column is redundant when the master IP admits an optimal
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integer solution that can be expressed without this column.

It could be advantageous to avoid the generation of redundant columns while solving (3). In fact,

solving (3) by column generation and avoiding all redundant columns would result in a root node dual

bound that closes the entire integrality gap. Even though this is maybe too much to aim for in practice,

the potential dual bound improvement from reducing the domains of the Xk motivates the research

presented in this paper.

Our paper is structured as follows: The remainder of this section presents the related literature and

our contribution. Section 2 uses the special case |K | = 2 of problem (1) to formally describe redundant

columns and the methods proposed to identify and eliminate the corresponding generators from the

subproblem. We present the more practically and computationally relevant alternative definition of

strong redundancy. An extension of our proposals to the general case will be discussed in Section 3.

The algorithm developed to replace the pricing stage of the column generation algorithm is described

in Section 4. Section 5 presents our computational results to assess the effectiveness of the proposed

approach. Finally, in Section 6 we conclude and point to directions for future research.

1.1 Related Work

Several concepts of redundant columns have been used in the context of column generation, and—

the closely related—Lagrangian relaxation. Lübbecke and Desrosiers [17] discuss the weaker concept

of columns that are redundant for the LP relaxation. This includes the idea by Sol [23] whereby a

column is redundant if the corresponding constraint of the dual problem is redundant. Vanderbeck and

Savelsbergh [27] are among the first to present general ideas of redundancy in the context of integer

solutions. They suggest that the generation of redundant columns can be avoided with the addition of

variable bounds to the subproblem that are implied from the master problem constraints. Gamrath and

Lübbecke [13] extend the ideas of Vanderbeck and Savelsbergh [27] by performing domain propagation

in the original problem to derive the bound changes for the subproblem.

When the reduced costs of the original variables can be computed, or at least bounded, reduced cost

fixing can be used to eliminate variables from the subproblem altogether. Specifically, variables from the

original problem, and thus from the subproblem, are fixed to zero if their reduced cost is greater than

the current optimality gap. This results in implicitly fixing all columns for the restricted master LP that

have non-zero coefficients corresponding to the fixed original variables. Beasley [4] and Ceria et al. [5]

both employ this approach within a Lagrangian-based heuristic. An example of reduced cost fixing in the

context of column generation is presented by Hadjar et al. [14]. Their approach is limited to subproblems

formulated as shortest path problems. Extending that work, Irnich et al. [15] provide one of the most

in depth investigations of reduced cost fixing for column generation. They again specialize to the case

where the subproblem is a variant of a shortest path problem that can be formulated as an LP. Fahle and

Sellmann [9] and Fahle et al. [8] present constraint propagation techniques from constraint programming
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to identify original variables that can be fixed to zero in the subproblems. The domain propagation

techniques presented by Gamrath and Lübbecke [13] can in turn be viewed as a generalization of the

approach of Fahle and Sellmann [9] and Fahle et al. [8].

Desrosiers and Lübbecke [7] give an example in which the objective function value of the subproblem

can be bounded by the dual bound obtained from the current restricted master LP in the form of an

“objective function cut.” This precludes columns from being generated that would violate this bound.

In the context of the vehicle routing problem, the exact solution method proposed by Baldacci et

al. [2] exploits the concept of redundant columns (even though this term is not used). The approach by

Baldacci et al. [2] forms a restricted master problem by enumerating all columns with a reduced cost less

than UB − LB, where UB and LB are valid upper and lower bounds respectively. Thus, the restricted

master problem is guaranteed to contain all non-redundant columns and can be solved by branch-and-

bound to find an optimal integer solution to the original problem. While an integer optimal solution can

be expressed using the columns from the restricted master problem, many of the enumerated columns

are redundant.

The fundamental ideas underlying the approach by Baldacci et al. [2] is formalized in the work of

Rönnberg and Larsson [21]. The main results of Rönnberg and Larsson [21] provide sufficient conditions

for when the current set of columns in the restricted master problem will solve the original integer

program. Similar to Baldacci et al. [2], redundant columns may still exist, but it is guaranteed that at

least one integer optimal solution can be expressed with the given set of columns.

Concepts related to avoiding redundant columns are employed in the integral simplex method [20,

22, 28]. Broadly, the integral simplex method aims to maintain integer feasibility at each pivot. In the

context of Dantzig-Wolfe reformulation, columns, possibly redundant, are generated that are sufficient to

express integer feasible solutions, not necessarily optimal. This paper differs from the proposed integral

simplex algorithms [20,22,28] and the approaches by Baldacci et al. [2] and Rönnberg and Larsson [21]

by defining necessary and sufficient conditions for identifying non-redundant columns.

1.2 Our Contribution

All the authors above report that avoiding the generation of redundant columns increased the root node

dual bound and improved the overall efficiency of the column generation algorithm. However, these

methods are limited, with the exception of domain propagation presented by Gamrath and Lübbecke [13],

in their general applicability since they have been developed to solve specific problem types—mainly

vehicle routing, knapsack, and airline crew assignment problems. In particular, a general implementation

that could be tested across applications is missing. In this paper we attempt to address this lack

of research by investigating how to generically reduce the subproblem domain in order to avoid the

generation of redundant columns.

Our contributions are as follows: While it is computationally impractical to eliminate all redundant
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columns, we expect that the elimination of a subset still helps achieving a tighter root node relaxation.

To this end, we (a) define the more practically relevant notion of strongly redundant columns. We

then (b) devise a systematic method for the identification and elimination of such columns, that (c)

is based on a novel integration of Benders decomposition and Dantzig-Wolfe reformulation. In fact,

using non-trivial inequalities to reduce the subproblem domain offers more generality than all the above

mentioned approaches. We (d) provide a generic implementation that is planned to be made available to

the academic community. It is used in (e) a detailed computational study to evaluate the improvements

in the root node dual bounds for reformulated problems. This study investigates the extent to which

the application of subproblem cuts can tighten the root node relaxation for classical problems. Further,

we identify problem structures that are most suitable for the application of the developed approach.

2 Strongly Redundant Columns

Definition 1.1 states that a column is redundant if there exists an optimal integer solution that can be

expressed without this column. This definition of redundancy fundamentally depends on a reference

optimal solution—making identifying redundant columns as difficult as solving the original problem.

Thus, we would like to relax this dependency by proposing the following definition.

Definition 2.1 (Strongly redundant column). A column is strongly redundant if all optimal integer

solutions to the master IP can be expressed without this column, i.e., the corresponding master variable

is set to zero in all optimal integer solutions.

Clearly, strongly redundant columns are also redundant (see Definition 1.1). While previous ap-

proaches were developed to eliminate redundant columns, they are in fact eliminating only strongly

redundant columns. An example is the fixing of original variables to zero if their reduced cost is strictly

greater than the current optimality gap. Master LP solutions expressed using columns with non-zero

coefficient corresponding to such original variables would have an objective function value greater than

the optimum, which cannot be and thus such columns do not appear in any optimal solution. Although

Definition 1.1 is more general, this suggests that Definition 2.1 is more practically relevant.
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2.1 Identifying Strongly Redundant Columns

Consider the special case of (1) with |K| = 2:

min cT1 x
1+ cT2 x

2 (5a)

s. t. A1x
1+A2x

2 ≥ b (5b)

D1x
1 ≥ d1 (5c)

D2x
2 ≥ d2 (5d)

x1 ∈ Zn1

≥0 (5e)

x2 ∈ Zn2

≥0 . (5f)

The special case given by Problem (5) is used throughout this section to simplify the discussion related

to the identification redundant columns and the methods proposed to avoid their generation. We extend

our methods to the general case in Section 3.

Assume that a Dantzig-Wolfe reformulation is applied to the original problem (5) using the dis-

cretization approach, resulting in the master IP (3) (with |K | = 2) and a subproblem in form of (4).

For the following results, recall that Xk = {xk ∈ Znk

≥0, Dkx
k ≥ dk} defines the set of feasible solutions

Xk to Problem (4) for subsystem k.

Strongly redundant columns for the master IP (3) can be characterized as follows:

Lemma 2.1. Given a column x̄1 ∈ X1 and the optimum z∗ of the original problem (5). Column

x̄1 is strongly redundant if and only if there does not exist any x̄2 ∈ X2 with A1x̄
1 + A2x̄

2 ≥ b and

cT1 x̄
1 + cT2 x̄

2 ≤ z∗.

Proof. By Definition 2.1, column x̄1 is strongly redundant if the corresponding master variable is set to

zero in all optimal solutions to the master IP (3) (with |K | = 2). Since the optimum z∗ of the original

problem (5) is equal to the optimum of the master IP (3) (with |K | = 2), this holds if and only if there

does not exist any x̄2 ∈ X2 with A1x̄
1 +A2x̄

2 ≥ b and cT1 x̄
1 + cT2 x̄

2 ≤ z∗.

Symmetrically, we can check whether x̄2 ∈ X2 is redundant. For ease of exposition we will only

consider the case used in Lemma 2.1, i.e., the redundancy of columns in X1.

We can identify redundant columns using the following verification IP that is formulated to be
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infeasible if and only if the column x̄1 ∈ X1 is strongly redundant:

min cT2 x
2 (6a)

s. t. A2x
2 ≥ b−A1x̄

1 (6b)

D2x
2 ≥ d2 (6c)

cT2 x
2 ≤ z∗ − cT1 x̄1 (6d)

x2 ∈ Zn2

≥0 . (6e)

Note that verification IP (6) could be formulated as a feasibility problem since constraint (6d) makes the

objective function unnecessary. However, the objective function will be important for results presented

later in this section.

We state the desired properties of the verification IP as a lemma:

Lemma 2.2. Given a column x̄1 ∈ X1 and the optimum z∗ of the original problem (5). Column x̄1 is

strongly redundant if and only if Problem (6) is infeasible.

Proof. Follows directly from Lemma 2.1.

Checking strong redundancy of a column with Lemma 2.2 is called the redundancy check. Even

though x̄1 is fixed, proving infeasibility or finding a feasible solution to (6) can still be as difficult as

solving the original problem (5).

We can reduce the effort required to perform a redundancy check by relaxing the verification IP,

which corresponds to relaxing the redundancy check. We state this as a lemma:

Lemma 2.3. Given a column x̄1 ∈ X1 and a relaxation of Problem (6). If the given relaxation of

Problem (6) is infeasible, column x̄1 is strongly redundant.

Proof. Clearly, if the given relaxation of Problem (6) is infeasible, Problem (6) itself is infeasible and

hence, by Lemma 2.2, column x̄1 is strongly redundant.

Note that Lemma 2.3 states only a sufficient condition for strongly redundant columns, while the

condition in Lemma 2.2 is also necessary. Hence, with Lemma 2.3 we can only identify a subset of

strongly redundant columns. We expect, however, that avoiding even only the generation of a subset of

strongly redundant columns suffices to improve the dual bound obtained from the master LP.

Any relaxation of Problem (6) can be used in Lemma 2.3 to obtain a sufficient condition for strong

redundancy. The following relaxation proves particularly useful. We first relax integrality on the x2

variables. Next, to eliminate the need for finding the optimum z∗ of the original problem (5) we replace

z∗ with the best known primal bound z̄UB for the original problem (5). This primal bound is finite

e.g., when primal heuristics were successful, but could initially be infinite. The resulting relaxation of
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verification IP (6), called verification LP , is given by

min cT2 x
2 (7a)

s. t. A2x
2 ≥ b−A1x̄

1 (7b)

D2x
2 ≥ d2 (7c)

cT2 x ≤ z̄UB − cT1 x̄ (7d)

x2 ∈ Rn2

≥0 . (7e)

Using verification LP (7) and Lemma 2.3, the following sufficient condition for identifying strongly

redundant columns can be specified.

Theorem 2.1. Given a column x̄1 ∈ X1 and an upper bound z̄UB on the optimum z∗ of the original

problem (5). If Problem (7) is infeasible, column x̄1 is strongly redundant.

Proof. First, by removing the integrality constraints on x2 the resulting problem is the LP relaxation of

verification IP (6). By Lemma 2.3, column x̄1 is strongly redundant if the LP relaxation of verification

IP (6) is infeasible. Second, since z∗ is replaced by z̄UB in (6d) it is sufficient to prove that cT1 x̄
1+cT2 x̄

2 >

z̄UB implies cT1 x̄
1 + cT2 x̄

2 > z∗; this holds because z̄UB ≥ z∗.

2.2 Avoiding the Generation of Strongly Redundant Columns

To simplify the description of methods for avoiding the generation of strongly redundant columns, we

will use the following alternative notation for verification LP (7):

min cT2 x
2 (8a)

s. t. B̃x2 ≥ b̃− Ãx̄1 (8b)

cT2 x
2 ≤ z̄UB − cT1 x̄1 (8c)

x2 ∈ Rn2

≥0 , (8d)

where

Ã :=

A1

0

 , B̃ :=

A2

D2

 , b̃ :=

 b

d2

 .
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The dual of verification LP (8) will be helpful for the following methods and results. For completeness,

the dual problem is given by

max wT
(
b̃− Ãx̄1

)
+ wc

(
cT1 x̄

1 − z̄UB
)

(9a)

s. t. wT B̃ − wccT2 ≤ cT2 (9b)

w ∈ Rm
≥0 (9c)

wc ∈ R≥0 . (9d)

Let T c denote the set of dual rays of verification LP (8), i.e., the set of solutions to the homogeneous

version of the dual problem (9)

T c := {(w̃, w̃c) ∈ Rm+1
≥0 : w̃T B̃ − w̃ccT2 ≤ 0} . (10)

Farkas’ Lemma [10] connects the feasibility of verification LP (8) (and hence, the redundancy of x̄)

with the existence of certain dual rays. It states that Problem (8) is infeasible if and only if there exists

a dual ray (w̃, w̃c) ∈ T c of verification LP (8) with positive dual objective function value, i.e., with

w̃T (b̃− Ãx̄1) + w̃c(cT1 x̄
1 − z̄UB) > 0 . (11)

Hence, solution x̄1 inducing an infeasible instance of verification LP (8) can be eliminated from the

corresponding subproblem (4) by adding

w̃T (b̃− Ãx1) + w̃c(cT1 x
1 − z̄UB) ≤ 0 , (12)

which corresponds to a classical Benders feasibility cut. Inequality (12) is called a subproblem cut. It

can only be violated by solutions to the subproblem corresponding to strongly redundant columns:

Theorem 2.2. Let (w̃, w̃c) ∈ T c be a dual ray of Problem (8). Inequality (12) is valid for all solutions

x̄1 ∈ X1 corresponding to columns that are not strongly redundant.

Proof. Let x̄1 ∈ X1 be a solution to the subproblem corresponding to a column that is not strongly

redundant. Hence, x̄1 induces a feasible instance of (8) and the corresponding dual problem (9) is

bounded, i.e., the objective function value of all dual rays in T c are non-positive. In particular, this

holds for the given dual ray (w̃, w̃c), i.e., Inequality (12) holds for x̄1.

We will distinguish between two types of dual rays (w̃, w̃c) ∈ T c: Dual rays with w̃c = 0, corre-

sponding to instances of verification LP (8) that remain infeasible when Inequality (8c) is removed, and

dual rays with w̃c > 0, only occurring in instances of verification LP (8) that are feasible when Inequal-

ity (8c) is removed. When generating Inequality (12) using a dual ray of the first type, the variable
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corresponding to x̄1 is set to zero in all feasible solutions to the master IP. In this case the resulting

Inequality (12) is called a feasibility (subproblem) cut. Dual rays of the second type can also occur if the

variable corresponding to x̄1 is not set to zero in all feasible solutions to the master IP. Nevertheless,

taking the objective function into account by considering Inequality (8c), we can conclude that it is set

to zero in all optimal solutions to the master IP. In this case, Inequality (12) is called an optimality

(subproblem) cut and can be written as

cT1 x
1 +

w̃

w̃c
(b̃− Ãx1) ≤ z̄UB . (13)

The reader may note that in our quest to avoid the generation of (strongly) redundant columns, as

a by-product, we additionally avoid certain columns from one subproblem that are incompatible with

solutions of another, when using feasibility subproblem cuts.

2.3 Practical Considerations for the Generation of Subproblem Cuts

The theory presented in Section 2.2 shows the relationship between verification LP (8) and the generation

of subproblem cuts to avoid the generation of redundant columns. While the results from Section 2.2

can be directly applied to avoid the generation of redundant columns, there are practical aspects of

Dantzig-Wolfe and Benders decomposition that when considered can simplify the implementation effort

and improve the effectiveness of the developed algorithms.

The most important practical considerations are related to the formulation and implementation of the

verification LP and the efficacy of the subproblem cuts. First, it can be observed that verification LP (8)

comprises the same variables and constraints as the LP relaxation of the original IP with the addition of

Inequality (8c). Thus, relaxing Inequality (8c) enables the use of the LP relaxation of the original IP—

with variables fixed to values corresponding to a subproblem solution—to identify redundant columns.

This observation greatly simplifies the implementation of the results presented in Section 2.2. Second,

our experience with Benders decomposition has indicated that optimality cuts tend to be stronger than

feasibility cuts. This is due to the fact that infeasible LPs have an infinite number of dual extreme rays

and there is no clear method to identify the best for generating feasibility cuts. Relaxing Inequality (8c)

will enable the generation of optimality cuts in the event that infeasbility is caused by the violation of

the best known upper bound—leading to more efficacious cuts. The remainder of this section will show

that relaxing Inequality (8c) to address these considerations provides a practical verification LP that is

as effective as verification LP (8).

Remember that feasibility subproblem cuts are generated if verification LP (8) remains infeasible
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when Inequality (8c) is removed. Hence, it suffices to consider the following problem:

min cT2 x
2 (14a)

s. t. B̃x2 ≥ b̃− Ãx̄1 (14b)

x2 ∈ Rn2

≥0 , (14c)

and the corresponding dual of (14):

max wT
(
b̃− Ãx̄1

)
(15a)

s. t. wT B̃ ≤ cT2 (15b)

w ∈ Rm
≥0 . (15c)

Analogously to Problem (8), we define the set of dual rays of Problem (14), i.e., the set of solutions to

the homogeneous version of the dual problem (15) as

T := {w̃ ∈ Rm
≥0 : w̃T B̃ ≤ 0} . (16)

Note that column x̄1 ∈ X1 is strongly redundant if Problem (14) is either (i) infeasible or (ii) feasible

but the corresponding objective function value is greater than the best known upper bound z̄UB .

On the one hand, if Problem (14) is infeasible, feasibility cuts can be generated from its dual rays.

Let w̃ ∈ T be a dual ray of an infeasible instance of (14); the corresponding cut takes the form of a

feasibility cut (12) with w̃c = 0, i.e.,

w̃T (b̃− Ãx̄1) ≤ 0 . (17)

Theorem 2.3. Let w̃ ∈ T be a dual ray of (14). Inequality (17) is valid for all solutions x̄1 ∈ X1

corresponding to columns that are not strongly redundant.

Proof. Let x̄1 ∈ X1 be a solution to the subproblem corresponding to a column that is not strongly

redundant. Hence, x̄1 induces a feasible instance of Problem (8). Furthermore, Problem (14) is feasible

and the corresponding dual problem (15) is bounded, i.e., the objective function value of all dual rays

in T is non-positive. In particular, this holds for the given dual ray w̃, i.e., Inequality (17) holds for

x̄1.

On the other hand, if Problem (14) is feasible, a dual solution to (14) can be used to generate a cut

similar to (13). Let S be the set of dual solutions to (14) (the set of feasible solutions to the dual (15)),

i.e.,

S := {w̃ ∈ Rm
≥0 : w̃T B̃ ≤ cT2 } . (18)

Assume that x̄1 induces a feasible instance of (14). By applying weak duality, each dual solution w̃
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to (14) induces a lower bound on the optimum of (14), i.e.,

min
{
cT2 x

2 : B̃x2 ≥ b̃− Ãx̄1, x2 ∈ Rn2

≥0

}
≥ w̃(b̃− Ãx̄1) . (19)

Furthermore, if x̄1 is not strongly redundant, then it is possible to derive a lower bound on the optimum

z∗ of the original problem (5) from Equation (19):

z∗ ≥ cT1 x̄
1 + min

{
cT2 x

2 : B̃x2 ≥ b̃− Ãx̄1, x2 ∈ Zn2

}
(20a)

≥ cT1 x̄
1 + min

{
cT2 x

2 : B̃x2 ≥ b̃− Ãx̄1, x2 ∈ Rn2

}
(20b)

≥ cT1 x̄
1 + w̃(b̃− Ãx̄1) . (20c)

Given an upper bound z̄UB on the optimum z∗ of (5) and a dual solution w̃ ∈ S of Problem (14), we

can derive the following valid inequality to cut-off strongly redundant columns:

cT1 x
1 + w̃(b̃− Ãx1) ≤ z̄UB . (21)

Such inequalities, because of their form and role being similar to optimality cuts (13), are also called

optimality (subproblem) cuts.

Theorem 2.4. Let w̃ ∈ S be a dual solution of (14). Inequality (21) is valid for all solutions x̄1 ∈ X1

corresponding to columns that are not strongly redundant.

Proof. Let x̄1 ∈ X1 be a solution to the subproblem corresponding to a column that is not strongly

redundant. Hence, x̄1 induces a feasible instance of (8). Furthermore, Problem (14) is feasible and x̄1

is part of an optimal integer solution to the original problem (5):

z∗ = cT1 x̄
1 + min

{
cT2 x

2 : B̃x2 ≥ b̃− Ãx̄1, x2 ∈ Zn2

}
.

With (20) and z̄UB ≥ z∗ this implies:

z̄UB ≥ z∗

= cT1 x̄
1 + min

{
cT2 x

2 : B̃x2 ≥ b̃− Ãx̄1, x2 ∈ Zn2

}
≥ cT1 x̄

1 + w̃(b̃− Ãx̄1) .

Thus, Inequality (21) holds for x̄1.

Instead of using verification LP (8), we can use the more practical Problem (14) to perform the

relaxed redundancy check for each column. Thus, we call Problem (14) the practical verification LP.

The only difference between the two is the omission of the upper bound constraint (8c). Subproblem
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cuts (12) are generated using dual rays of infeasible instances of verification LP (8); subproblem cuts (17)

and (21) are generated using dual rays of infeasible instances and dual solutions to feasible instances

of (14), respectively. In the following we prove the equivalence of subproblem cuts generated using

Problems (8) and (14). We start with the feasibility cuts.

Theorem 2.5. Let x̄1 ∈ X1. There exists a dual ray (ũ, ũc) ∈ T c of Problem (8) with ũc = 0 satisfying

ũ(b̃− Ãx̄1) + ũc(cT1 x̄
1 − z̄UB) > 0 (23)

if and only if there exists a dual ray w̃ ∈ T of Problem (14) satisfying

w̃T (b̃− Ãx̄1) > 0 .

Proof. When fixing variable wc to zero in the dual problem (9), the resulting problem is equivalent to

the dual problem (15). Hence, the set of dual rays T of Problem (15) is identical to the set {ũ : (ũ, ũc) ∈

T c, ũc = 0}. This proves the theorem.

We next show the equivalence of optimality cuts derived from Problems (8) and (14).

Theorem 2.6. Let x̄1 ∈ X1. There exists a dual ray (ũ, ũc) ∈ T c of Problem (8) with ũc > 0 satisfying

ũ(b̃− Ãx̄1) + ũc(cT1 x̄
1 − z̄UB) > 0 (24)

if and only if there exists a dual solution w̃ ∈ S of Problem (14) satisfying

cT1 x
1 + w̃(b̃− Ãx1) > z̄UB . (25)

Proof. Let (ũ, ũc) ∈ T c be a dual ray of Problem (8) with ũc > 0 satisfying (24). We define w̃ :=
ũ
ũc .

Obviously, w̃ ≥ 0 holds. Furthermore, a ray of problem (9), given by ũT B̃ − ũccT2 ≤ 0, implies

w̃T B̃ =
ũT B̃

ũc
≤ ũccT2

ũc
= cT2 .

Hence, solution w̃ is a dual solution of Problem (14), i.e., w̃ ∈ T . By construction, Inequality (25) holds.

Let w̃ ∈ S be a dual solution of Problem (14) satisfying (25). We define ũc := 1 and ũ := w̃.

Obviously, ũc ≥ 0 and ũ ≥ 0 hold. Furthermore, Equation (15b) implies

ũT B̃ − ũccT2 = w̃T B̃ − cT2 ≤ 0 .

Hence, (ũ, ũc) is a dual ray of Problem (8). By construction, Inequality (23) holds.
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Although the sets of optimality cuts generated by solving the verification LP (8) and practical

verification LP (14) are equally strong (c.f. Theorem 2.6), there is a difference between these optimality

cuts: Optimality cuts generated by solving practical verification LP (14) maximize the violation of the

considered solution x̄1, while optimality cuts generated by solving verification LP (8) in general do not.

Note that the violation of Inequality (13) is increased if the corresponding objective function value of

Problem (15), the dual of practical verification LP (14), is increased; this objective function value is

maximized if practical verification LP (14) is minimized.

By maximizing the violation at the considered solution, we expect to obtain more efficacious opti-

mality cuts, which are violated by potentially more solutions x1 ∈ X1. This is why we will focus on the

use of the practical verification LP to generate subproblem cuts for the remainder of this paper.

2.4 The Relationship Between Reduced Cost Fixing and Subproblem Cuts

As explained in Section 1.1, a concept related to avoiding the generation of redundant columns is reduced

cost fixing. The relationship between subproblem cuts and reduced cost fixing is connected to how these

two concepts exploit LP duality. Using the results presented in Section 2.3 and Theorem 2.3, we will

show that the arguments used to perform reduced cost fixing can be derived from the generation of

subproblem cuts.

In this section we use an original problem given in the standard form:

min cTx (26a)

s. t. Ax ≥ b (26b)

x ∈ Zn
≥0 (26c)

While the standard form is used in this section to explain the relationship between subproblem cuts

and reduced cost fixing, the presented results can be simply extended to original problems in the form

of problem (1). Let x := (x1, x2, x3, . . . , xn1
) and define x̂i as the vector x without element i:

x̂i := x\xi := (x1, . . . xi−1, xi+1, . . . , xn1
) . (27)

Similarly, we define Âi as the constraint matrix A without column i. Column i from constraint matrix

A is denoted by A(i). Finally, the cost vector ĉTi is equivalent to cT without entry i and c(i) is element

i from c. We also define w as the vector of dual variables corresponding to the rows of (26b).

Consider a variable xi that could be fixed to zero by reduced cost fixing. This implies that xi = 0 in

an optimal solution to (26). At the same time, the dual solution w given by solving the LP relaxation
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of (26) after setting xi = 0 satisfies the inequality

c(i)− wTA(i) > zUB − wT b, (28)

where zUB is some known upper bound on (26). Note that the left-hand side of Inequality (28) corre-

sponds to the reduced cost of variable xi and the right-hand side is the optimality gap (since wT b is

a lower bound on (26)). Since the reduced cost of variable xi exceeds the optimality gap, the variable

takes non-zero values only in sub-optimal solutions; hence, it can be fixed to zero.

An inequality based on reduced cost arguments that fixes xi to zero can be derived from the procedure

used for generating subproblem cuts. This connection between subproblem cuts and the derivation of

variable bound constraints is the source of the relationship between reduced cost fixing and avoiding the

generation of redundant columns.

The following theorem formalizes this relationship.

Theorem 2.7. Given a variable xi, which can be fixed to zero by reduced cost fixing, then a subproblem

cut can be generated to eliminate all solutions where xi ≥ 1 by solving verification LP with xi fixed to 1.

Proof. Since xi can be fixed to zero by reduced cost fixing, there exists a dual solution w of the LP

relaxation of (26) satisfying Inequality (28). Consider the verification LP given by

min ĉTi x̂i, (29a)

s. t. Âix̂i ≥ b−A(i)x̄i, (29b)

− ĉTi x̂i ≥ c(i)x̄i − z
UB , (29c)

x̂i ∈ Zn
≥0, (29d)

where x̄i = 1. We can use w as dual values corresponding to Constraints (29b) and set the dual value

wc corresponding to Constraint (29c) to 1. Inequality (28) implies that these dual values satisfy:

c(i)− wTA(i) + wT b− zUB > 0 . (30)

Thus, the dual values (w, 1) are a Farkas ray proving the infeasibility of (29). Hence, we can derive the

following subproblem cut

c(i)xi − wTA(i)xi − zUB + wT b ≤ 0 , (31)

which is equivalent to

xi ≤
zUB − wT b

c(i)− wTA(i)
. (32)

Since the right-hand side of (32) is smaller than one, subproblem cut (31) eliminates all solutions xi ≥ 1
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from (26).

Theorem 2.7 shows that the generation of subproblem cuts derives a variable bound constraint that

has the same effect on the domain of xi as when performing reduced cost fixing. In fact, the addition

of Inequality (31), which is equivalent to xi ≤ ε where 0 ≤ ε < 1, to the column generation subproblem

will result in fixing xi = 0 through the application of domain propagation.

While Theorem 2.7 shows the relationship between reduced cost fixing and avoiding redundant

columns, the two approaches are not computationally equivalent. The generation of Inequality (31)

requires determining whether fixing variable xi to 1 induces an infeasible instance of the verification LP.

Further, if setting xi = 1 induces an infeasible instance of the verification LP, then it would be much

more convenient to include the constraint xi = 0 to the subproblem to eliminate this variable from all

subsequent columns, instead of applying Inequality (31) and relying on domain propagation to derive

the same bound.

The results of this section show that the concept of reduced cost fixing need not be restricted to single

master problem variables, but combinations of variables that form feasible columns. The subproblem

cuts developed in this paper are a generalization of reduced cost fixing, whereby columns are eliminated

from the subproblem through the addition of inequalities. While in this paper we focus on generating

subproblem cuts for eliminating full solutions from the column generation subproblem, it is possible

to apply this method in a more general way. One such approach could be to fix variables in the

verification LP that correspond to partial solutions of the column generation subproblem and then

generate corresponding subproblem cuts. Such cuts may be stronger than those presented in this paper

since the same partial subproblem solutions may arise in many full feasible solutions. Investigating the

generation of subproblem cuts from partial subproblem solutions is left for future work.

3 Generalization of the Proposed Methods

In this section, we consider generalizations of the proposed methods to problems with multiple subprob-

lems in Section 3.1 and problems with continuous variables in Section 3.2.

3.1 Multiple Subproblems

The methods developed for avoiding the generation of redundant columns in Sections 2.1–2.2 focus on

the special case of the original problem (1) with |K| = 2. From our presentation it should be clear how

these generalize to |K| > 2. For completeness, we state the identification of redundant columns and the

methods for avoiding their generation in the general case. We also present the general formulation of the

verification LP used for the redundancy check and the form of the subproblem cuts. Further, we restate

Theorems 2.1, 2.3, and 2.4 with respect to the general formulation of Problem (1). We focus on the
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generalization of subproblem cuts obtained by solving practical verification LP (14). The generalization

of subproblem cuts obtained by solving verification LP (8) can be accomplished analogously.

Consider the k-th subproblem (4) for some k ∈ K and the column corresponding to some solution

x̄k ∈ Xk . The redundancy of x̄k can be evaluated by checking the conditions of Theorem 2.1. This is

achieved by solving the following LP, which is a generalization of practical verification LP (14):

z ′′(x̄k ) = min
∑

k′∈K\{k}

cTk′xk
′

(33a)

s. t.
∑

k′∈K\{k}

Ak′xk
′
≥ b−Ak x̄

k (33b)

Dk′xk
′
≥ dk′ ∀k′ ∈ K\{k} (33c)

xk
′
∈ Rnk′

≥0 ∀k′ ∈ K\{k} . (33d)

We will also call Problem (33) practical verification LP. Note that it includes all constraints related to

subproblems k′ ∈ K\{k}. Constraints (33b) correspond to the linking constraints (1b); the variables

xk , however, are fixed to the values of x̄k .

The dual of practical verification LP (33), is given by

max (w0)T (b−Ak x̄
k ) +

∑
k′∈K\{k}

(wk′
)T dk′ (34a)

s. t. (w0)TAk′ + (wk′
)TDk′ ≤ cTk′ ∀k′ ∈ K\{k} (34b)

w0 ∈ Rm
≥0 (34c)

wk′
∈ Rmk

≥0 ∀k′ ∈ K\{k} . (34d)

The generalization of Theorem 2.1 to the case with more than two subproblems can be stated as

follows:

Theorem 3.1. Given a column x̄k to the k-th subproblem (4) and an upper bound z̄UB on the optimum

of the original problem (1). Column x̄k is strongly redundant if one of the following conditions holds:

(i) Problem (33) is infeasible,

(ii) for the optimum z ′′(x̄k ) of Problem (33) it holds that

z̄UB − cT1 x̄k< z ′′(x̄k ) .

Proof. Can be proven analogously to Theorem 2.1, using variants of Lemma 2.2 and Lemma 2.3 for

multiple subproblems.
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Analogously to Theorem 2.1, Theorem 3.1 can be used to identify strongly redundant columns.

Similar to the procedure explained in Section 2.2, the generation of such columns can then be avoided

by using the dual solutions and dual rays of practical verification LP (33) to construct classical Benders

cuts.

Let Sk be the set of all dual solutions and let T k be the set of all dual rays of practical verification

LP (33), i.e.,

Sk :=
{
w =

(
w0, (wk′

: k′ ∈ K \ {k})
)

: (34b)− (34d)
}

(35a)

T k :=
{
w =

(
w0, (wk′

: k′ ∈ K \ {k})
)

: (34c)− (34d), (35b)

(w0)TAk′ + (wk′
)TDk′ ≤ 0 ∀k′ ∈ K\{k}

}
. (35c)

Given a dual ray w̃ ∈ T k of practical verification LP (33). Inequality (17) can be generalized as

follows:

(w̃0)T (b−Ak′xk ) +
∑
k′∈K
k′ 6=k

(w̃k′
)T dk′ ≤ 0 . (36)

Theorem 3.2. Let k ∈ K be fixed, and let w̃ ∈ T k be a dual ray of Problem (33). Inequality (36) is

valid for all solutions x̄k ∈ Xk corresponding to columns that are not strongly redundant.

Proof. Can be proven analogously to Theorem 2.3.

Given a dual solution w̃ ∈ T k of practical verification LP (33), we can analogously generalize In-

equality (21) as follows:

cTk′xk
′
+ (w̃0)T (b−Ak′xk

′
) +

∑
k′∈K
k′ 6=k

(w̃k′
)T dk′ ≤ z̄UB . (37)

Theorem 3.3. Let k ∈ K be fixed, and let w̃ ∈ Sk be a dual solution of Problem (33). Furthermore,

let z̄UB be a primal bound for (1). Inequality (37) is valid for all solutions x̄k ∈ Xk corresponding to

columns that are not strongly redundant.

Proof. Can be proven analogously to Theorem 2.4.

3.2 Mixed-Integer Programs

When applying the discretization form of Dantzig-Wolfe reformulation to a MIP, one obtains integrality

constraints on sums of λ-variables [27]: For each integer x-variable, there exists an integrality constraint

in the reformulated problem for the sum of λ-variables corresponding to subproblem solutions with the

same solution value for this particular integer x-variable. Notice that the reformulated problem (3) for

IPs contains integrality constraints for each individual λ-variable. Hence, Theorem 3.1 can be extended
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to MIPs by only fixing the integer x-variables of a given solution x̄k in practical verification LP (33)

and by adding the constraints Dkx
k ≥ dk to practical verification LP (33).

4 Algorithm for Avoiding the Generation of Redundant Columns

Identifying and then, subsequently, avoiding the generation of redundant columns involves a modification

to the pricing stage of the column generation algorithm. Briefly, the solutions found by the subproblem

are checked for strong redundancy, using the methods previously described. If the solution induces a

redundant column, then a subproblem cut is generated. Algorithm 1, presented in Section 4.1, describes

the modified pricing iteration that includes the redundancy check based on Theorem 3.1. Note that we

use the practical variant to generate subproblem cuts, presented in Section 2.3.

To better explain the connection between the many different mathematical programs introduced in

the previous sections, a diagram of their relationship in the method for identifying redundant columns

and avoiding their generation is given in Figure 1. The different mathematical programs are variants of

problems that commonly arise in the context of Dantzig-Wolfe reformulation and Benders decomposition.

Original Problem

min
∑
k∈K

cTk x
k

s. t.
∑
k∈K

Akx
k ≥ b

Dkx
k ≥ dk ∀k ∈ K
xk ∈ Znk

≥0 ∀k ∈ K

(OP)

Restricted master LP

min
∑
k∈K

∑
p∈P̄ k

cpλp +
∑
r∈R̄k

crλr


s. t.

∑
k∈K

∑
p∈P̄ k

apλp +
∑
r∈R̄k

arλr

 ≥ b
∑
p∈P̄ k

λp = 1 ∀k ∈ K

λ ∈ RP̄ ∪R̄
≥0

(RMLP)

subproblem for chosen k

min (cTk − πTAk )xk − πk
0

s. t. Dkx
k ≥ dk
xk ∈ Znk

≥0

(PP-k)

Subproblem cuts for k

0 ≥ (w̃0)T (b−Ak′xk ) +
∑
k′∈K
k′ 6=k

(w̃k′
)T dk′

z̄UB ≥ cTk′xk
′
+ (w̃0)T (b−Ak′xk

′
) +

∑
k′∈K
k′ 6=k

(w̃k′
)T dk′

(CUT)

Partial LP relaxation

min cTk x
k +

∑
k′∈K
k′ 6=k

cTk′xk
′

s. t. Ak x̄
k +

∑
k′∈K
k′ 6=k

Ak′xk
′
≥ b

Dk′xk
′
≥ dk′ ∀k′ ∈ K \ {k}

Dkx
k ≥ dk

xk
′
∈ Rnk′

≥0 ∀k′ ∈ K \ {k}

xk ∈ Znk

≥0

(PLP)

DW reformulation;

relax λ ∈ ZPk∪Rk

≥0

choose P̄
k ⊆ P k ,

R̄
k ⊆ Rk for k ∈ K

Choose some k ∈ K ;

relax xk
′ ∈ Znk′

≥0 for k′ ∈ K \ {k}
duals π and πk

0 for chosen k

fix xk

dual solution w̃/
dual ray w̃

avoid generating redundant columns
by adding feasibility/optimality cuts

Figure 1: An overview of various problems, and their relationship, used in the column generation algo-
rithm and the generation of the subproblem cuts.
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Given a solution x̄k to the k-th subproblem for some k ∈ K , we can interpret solving practical verification

LP (33) as solving the partial LP relaxation (PLP) of the original problem (OP) from Figure 1 with

partially fixed solution xk = x̄k . This gives a lower bound (which might be infinite if practical verification

LP (33) is infeasible) on the optimum of the original problem with partially fixed solution xk = x̄k .

Given an upper bound on the optimum (or given that practical verification LP (33) is infeasible), we can

generate a subproblem cut for the k-th pricing problem using a dual ray or a dual solution as depicted

by (CUT) in Figure 1.

4.1 Modified Pricing Iteration

As in a regular column generation pricing iteration, the output of Algorithm 1 is a set of negative

reduced cost columns. If no such columns exist, then the empty set is returned—indicating that the

current solution to the restricted master LP is optimal for the master LP.

Data: Upper bound z̄UB , subproblems (4) (potentially including some subproblem cuts).

Result: Set C of columns having negative reduced cost or C = ∅ if none exist.

C := ∅ // set of columns that will be added to restricted master LP

rk := True ∀k ∈ K // store if subproblem k was refined/needs resolve

do

C0 := ∅ // set of potential columns that will be added to C

// (re)solve subproblems

for k ∈ K do

if rk = True then

Solve the k-th subproblem (4) and add columns x̄k with negative reduced cost to C0

rk := False // subproblem k was solved

end for

// check columns in C0 for redundancy

for x̄k ∈ C0 do

C0 := C0 \ {x̄k}
Solve practical verification LP (33) with optimum z ′′

if practical verification LP (33) is infeasible then

Construct feasibility cut and add it to the k-th subproblem (4)

rk := True // subproblem k was refined

else if z̄UB − cTk x̄k < z ′′ then

Construct optimality cut and add it to the k-th subproblem (4)

rk := True // subproblem k was refined

else

C := C ∪ {x̄k} // column x̄k passed relaxed redundancy check

C0 := C0 \ {x̄k}

end for

// exit loop if C contains some columns or no subproblem was refined

while C = ∅ and there exists some k ∈ K with rk = True

return C

Algorithm 1: Pricing iteration with redundancy check.
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The main steps of Algorithm 1 are as follows: First, subproblems (4) (potentially including some

subproblem cuts) are solved. Then, all found columns x̄k with negative reduced cost are checked for

strong redundancy by solving the corresponding practical verification LP (33). If practical verification

LP (33) is infeasible or the optimum is sufficiently large, we can construct a subproblem cut that is

violated by x̄k and add it to the k-th subproblem (4). Otherwise, we add x̄k to the set of columns that

will be added to the restricted master LP. Finally, we repeat this procedure: All subproblems that were

changed by adding subproblem cuts in the previous round are resolved. If no subproblem cuts can be

generated for the set of found columns with negative reduced cost, the algorithm terminates.

We remark that in each pricing iteration, the current upper bound z̄UB can be used to strengthen

the previously generated optimality cuts. Hence, the right hand side of the optimality cuts is updated

whenever an improved upper bound is found.

5 Computational Results

We implemented the generation of subproblem cuts (see Algorithm 1) in the branch-price-and-cut solver

GCG [13] that extends SCIP [1]. We used a development version of GCG 2.1.4, which is based on a

development version of SCIP 5.0.1. Furthermore, we used CPLEX 12.7.1.0 as LP solver for the restricted

master LP and as MIP solver for the subproblems.

Two different settings are used for these experiments: The first is Default , which is the default

parameter settings for GCG, and the second is Subcuts, which is Default but with the generation of

subproblem cuts—as described in Algorithm 1—enabled. In Subcuts, the subproblem cuts are only

generated for the subproblems while solving the root node of the branch-and-price tree. For both

settings the subproblems are first solved heuristically using a gap limit of 20% and a node limit of 1000

nodes. If no negative reduced cost columns are found using the heuristic pricing, the subproblems are

then solved to optimality.

All computations were performed on a cluster consisting of Xeon L5630 Quad Core 2.13 GHz pro-

cessors with 16 GB DDR3 RAM. The time limit used for all experiments is 3600 seconds.

5.1 Classical Instances

Classical problems for which Dantzig-Wolfe reformulation applies well were used for the initial computa-

tional experiments evaluating the potential of the subproblem cuts. Test instances were collected for bin

packing, cutting stock, vertex coloring, capacitated p-median, generalized assignment, and single-source

capacitated facility location problems. In this initial set of computational experiments on classical prob-

lems, (almost) no subproblem cuts were generated. While this is an undesired result, it is valuable in

highlighting a limitation to the proposed methods and the subproblem cuts, and it also gives an insight

into the nature of (strong) redundancy.
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An explanation for the inability to generate subproblem cuts can be easily seen when considering the

bin packing problem (similar arguments apply to the other classical problem classes). In the bin packing

problem a set of n items is given, each having some positive weight ai, i ∈ {1, . . . , n}, and a set of n

bins, all having the same capacity. The goal is to pack the items into bins such that the capacity of the

bins is not exceeded and the number of used bins is minimized. The classical textbook model reads

min

n∑
j=1

yj (38a)

s. t.

n∑
j=1

xij = 1 ∀i = 1, . . . , n (38b)

n∑
i=1

aijxij ≤ b · yj ∀j = 1, . . . , n (38c)

xij , yj ∈ {0, 1} ∀i, j = 1, . . . , n , (38d)

where xij for i, j ∈ {1, . . . , n} equals 1 to indicate that item i is packed in bin j, and 0 otherwise. Further,

yj for j ∈ {1, . . . , n} indicates whether bin j is used (yj = 1) or not (yj = 0). Constraints (38c) are

knapsack constraints that ensure that the capacity of each bin is not exceeded and constraints (38b) are

set partitioning constraints enforcing that each item is packed in exactly one bin. When Dantzig-Wolfe

reformulation is applied to (38), the knapsack constraints (38c) are chosen as subproblem constraints,

yielding one subproblem for each bin. Since the bins are identical, the subproblems can be aggregated.

Suppose we are given a column, which corresponds to a packing of a bin, and we solve the corre-

sponding practical verification LP (33) by choosing some bin k in the original problem as representative.

Then practical verification LP (33) corresponds to fractionally packing all items that are not in the fixed

packing into the other bins. Since finding such a packing is possible under mild conditions (the total

weight of unpacked items should not exceed the total capacity of all other bins), practical verification

LP (33) is usually feasible. Hence, Condition (i) of Theorem 3.1 is not satisfied and hence no feasibility

subproblem cuts can be generated. Furthermore, the original LP relaxation of the bin packing problem

is very weak, meaning that Condition (ii) of Theorem 3.1 is usually not satisfied; hence, (almost) no

optimality subproblem cuts can be generated.

This explanation is particular to our methods but it may be inherent to the notion of (strong)

redundancy. In the textbook models with classical decompositions that comprise many subproblems, a

column generated from a single subproblem is very rarely not complemented to a feasible master problem

solution with columns from other pricing problems. For objective functions that simply sum the master

variables, there may be many optimal solutions, making it more unlikely for a column not to appear in

any optimal solution. Even if it does not, it might not be generated in the subproblems and thus no

subproblem cut would be generated.
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5.2 Temporal Decompositions

The computational experiments on classical instances highlighted that structure in the decomposition

and dependency between the subproblems is necessary for the generation of subproblem cuts. A type of

decomposition where such structure and dependency is exhibited is the temporal decomposition. Thus,

to evaluate the potential of the subproblem cuts, the proposed methods have been applied when solving

instances from lot sizing and unit commitment problems on which a temporal decomposition has been

performed.

Temporal decompositions exploit a time-dependent structure between variable subsystems. There

are two major types of temporal decompositions: period and horizon decompositions. A period decom-

position is characterized by each subproblem being formed of a subsystem from a single time period.

Alternatively, in horizon decompositions each subproblem comprises subsystems from multiple, consec-

utive time periods. Figure 2 illustrates the temporal structure of lot sizing [24] and unit commitment

problems [12]. A period decomposition for unit commitment problems is obtained by choosing the con-

straints that only belong to one period (blue constraints in Figure 2a) as subproblem constraints and

all other constraints (orange and red constraints in Figure 2a) as master constraints, resulting in one

subproblem per period. A horizon decomposition with horizon k is obtained by choosing the constraints

that belong to k consecutive periods as well as some related linking constraints as subproblem con-

straints. Particularly, the first k periods will form the first subproblem, the second k periods the second

subproblem, etc., resulting in one subproblem for every consecutive k periods. Constraints that only link

periods belonging to the same subproblem are also chosen as subproblem constraints (some of the orange

constraints in Figure 2a). In the horizon decomposition with horizon 2 for the example illustrated in

Figure 2a, the orange constraints linking the first and the second period as well as the ones linking the

global constraints

period 1

period 2

period 3

period 4

(a) Unit commitment problems.

period 1

period 2

period 3

period 4

(b) Lot sizing problems.

Figure 2: Figure illustrating the temporal structure in the constraint matrix of the unit commitment
and lot sizing problems. The horizon decomposition with horizon 2 is indicated by the black rectangles:
Each black rectangle corresponds to a subproblem.
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third and the fourth period are chosen as subproblem constraints, as indicated by the black rectangles.

Analogously, by replacing linking constraints with linking variables, we can apply horizon decomposition

to lot sizing problems, as depicted in Figure 2b.

We remark that there is a difference between horizon decompositions for unit commitment and

lot sizing problems: In lot sizing problems, horizon decompositions are applied by introducing linking

variables between different subproblems, whereas horizon decompositions for unit commitment problems

introduce linking constraints instead.

A particular interest in temporal decomposition comes from recent successes reported when such

a Dantzig-Wolfe reformulation is applied to lot sizing and unit commitment problems. Previously,

temporal decomposition has been applied to single-level capacitated lot sizing problems with setup

times [25] in order to obtain a period decomposition [6, 19]. More generally, temporal decompositions

are applied to lot-sizing problems to obtain horizon decompositions [11]. As mentioned by de Araujo et

al. [6], these decompositions can also be applied to multi-level capacitated lot sizing problems with setup

times. Similar decompositions can also be applied to unit commitment problems. In particular Kim et

al. [16] applied horizon decompositions (called temporal decompositions in their paper) to linearized unit

commitment problems.

The test instances for the computational experiments presented in this paper consist of multi-level

lot sizing problems instances collected from Tempelmeier and Derstroff [24] and the unit commitment

instances collected from Frangioni [12]. For the multi-level lot sizing problems by Tempelmeier and

Derstroff [24] we consider both period and horizon decompositions. In the computational experiments,

the test set including the period decomposition is labeled ls-Derstroff-period. Since there are only 4

time periods, we restrict the horizon decompositions to have a horizon of 2. The corresponding test

set is labeled ls-Derstroff-horizon2. For the unit commitment problem, we apply horizon decomposi-

tions with horizons 8 (uc-Frangioni-horizon8) and 12 (uc-Frangioni-horizon12) to linearized thermal unit

commitment instances from Frangioni [12], which consist of 24 planning periods.

5.2.1 Example of Subproblem Cuts for Lot Sizing Problems

The proposed methods for generating subproblem cuts employs a Benders-like cut generating LP. As

such, the generated cuts may take a form that does not have any practical meaning. However, for the Lot

Sizing Problem, after applying a temporal decomposition, the cut generating LP produces subproblem

cuts that have a practically meaningful form.

When considering temporal decompositions for lot sizing problems, each subproblem corresponds to

some consecutive subset of periods and each column that is generated by such subproblem represents

a possibly infeasible production plan for those periods. The subproblems are linked by demand or

balance constraints. In the following, we will assume that period decomposition was applied, but similar

subproblem cuts exist for horizon decompositions.
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Suppose that the original lot sizing problem contains binary variables yit for each product i and each

period t with

yit =

1, if product i is produced in period t,

0, else.

These variables usually have setup times and costs. When solving practical verification LP (33) for a

column (corresponding to a production plan for period t), some of these variables are set to 0, which

can result in an infeasible problem. A subproblem feasibility cut for period t then forbids setting some

of these variables to 0; for some subset I ′ of products the subproblem feasibility cut has the form

∑
i∈I′

yit ≥ 1 .

Similar subproblem cuts can be generated with horizon decompositions. For this type of decomposition,

the cut is not associated with a single time period t, but a set of consecutive time periods Tk ⊆ T that

form a given horizon k.

5.2.2 Solving the Linear Programming Relaxation

Table 1 gives an overview of the computational results for solving the LP relaxation of the master

problem (3), called the master LP. This table contains the following columns: the number of instances

(ninst); the number of affected instances, i.e, instances in which subproblem cuts are generated (naff);

the average number of generated subproblem cuts per affected instance (ncuts); the number of instances

in which the master LP is solved within the time limit (nsol); the shifted geometric mean of master LP

solving time in seconds with a shift of 1 (time); the shifted geometric mean of the number of column

generation iterations for the master LP with a shift of 1 (iters); and the shifted geometric mean of the

gap closed in comparison to the original LP relaxation, i.e., the LP relaxation of the original problem (1)

(gapcl). The geometric mean displayed in the columns time, iters, and gapcl is computed over the

instances where the master LP was solved by both settings in the given time limit.

Subproblem cuts are generated on the majority of the instances from all test sets (c.f. Table 1,

Column naff). Furthermore, a relative large number of subproblem cuts are found on these instances

(c.f. Table 1, Column ncuts). When comparing Default and Subcuts, it can be observed that the number

of instances in which the master LP can be solved within the time limit is almost identical (c.f. Table 1,

Column nsol). For most other instances, only a small increase in the solution time for the master LP is

observed. The exceptions to this are the unit commitment instances using horizon decompositions with

horizon 8, reporting a large increase in the solution time for the master LP. Finally, it can be observed

that with Subcuts the number of pricing iterations increases on lot sizing instances from the Derstroff

test set, whereas it decreases on all other test sets.

An important observation from Table 1 is that the addition of the subproblem cuts results in an
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overall Default Subcuts
ninst naff ncuts nsol time iters gapcl nsol time iters gapcl

ls-Derstroff-period 81 59 30.20 80 1.61 39.85 8.10 81 2.43 40.36 13.69
ls-Derstroff-horizon2 81 53 39.13 62 1.13 73.53 84.78 62 1.17 73.42 87.94
uc-Frangioni-horizon8 42 40 144.25 10 47.86 98.00 78.76 10 64.02 90.72 83.88
uc-Frangioni-horizon12 42 36 36.14 10 39.90 50.65 97.97 10 48.07 50.01 98.04

Table 1: Computational results when solving the master LP of the lot sizing and unit commitment
instances using Default and Subcuts.

increase to the root node dual bound across many of the considered instances. For the Derstroff test

sets, ls-Derstroff-period and ls-Derstroff-horizon2, an increase in the dual bound of 5.59% and 3.16%,

respectively, is observed on average. A similar result is also shown for the uc-Frangioni-horizon8 and

uc-Frangioni-horizon12 instances, reporting an average increase in the dual bound of 5.12% and 0.07%.

These results demonstrate the ability of the subproblem cuts to improve the master LP dual bounds on

structured integer programs.

It must be noted that the Default settings for GCG includes the domain propagation method of

Gamrath and Lübbecke [13]. Thus, the results presented here demonstrate an improvement over the

only other general method for avoiding the generation of redundant columns provided in the literature.

This suggests that the subproblem cuts are stronger than the variable bounds derived from performing

domain propagation on the original problem.

The methods proposed in this paper introduce extra work in the pricing stage of the column gen-

eration algorithm to avoid the generation of redundant columns. While an increase in the dual bound

is achieved, this comes at the cost of an increased time to solve the root node of the restricted master

LP. It can be seen in Table 1 that using Algorithm 1 in the pricing stage increases the time to solve

the root node of the restricted master LP for all test sets. Unfortunately, this cost is unavoidable when

generating subproblem cuts. Ideally, the extra work to increase the dual bound will aid in solving the

restricted master LP to integer optimality, which is evaluated in Section 5.2.3.

Interestingly, the results show that only feasibility cuts are generated on all tested instances. Even

if we provide the optimum z∗ instead of an z̄UB when generating the subproblem cuts. This could be

explained by weak original LP relaxations and hence, “weak” practical verification LPs (33). In this

setting, it appears that even by fixing a column from one pricing problem the objective function value

of practical verification LP is never greater than the objective value of the integer optimal solution.

This observation highlights a potential direction of future work to investigate alternative relaxations of

verification IP to improve the strength of the subproblem cuts.

The improved dual bound on multi-level lot sizing and unit commitment instances is depicted in

Figure 3. The y-axis shows the percentage of the gap of the original LP that was closed by the

Dantzig-Wolfe reformulation and subproblem cuts, where a value of 1.0 indicates that the complete gap

was closed. Except for the unit commitment instances using horizon decompositions of horizon 12, the
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Figure 3: The gap of the original LP relaxation that was closed by Dantzig-Wolfe reformulation (blue)
and the additional gap that was closed by the generation of subproblem cuts (orange).

subproblem cuts close a large amount of the gap on several instances. Note that the gap that was closed

varies considerably, even on instances of the same test set. An interesting observation from Figure 3 is

that as the horizon period increases, the ability to improve the dual bound decreases. This could be

explained by the same reason why subproblem cuts are most effective when a temporal decomposition

is applied: An increased horizon period results in less subproblems, reducing the possibility of columns

causing infeasibilities between subproblems. Considering the uc-Frangioni-horizon12 instances, the total

number of time periods is 24, so horizons of 12 means that there are only 2 subproblems. As such, within

each horizon period there will be no infeasibilities caused by the scheduling decisions between the time

periods. The infeasibilities caused by preceding scheduling decisions can only occur between the two

horizon periods—significantly limiting the number of subproblem cuts that can be generated, which is

shown in Table 1. A similar result is observed for the ls-Derstroff-horizon2 instances, shown in Figure

3b, since there are only 4 time periods the horizon of 2 affords less opportunities to identify infeasibilities

between the periods. Thus, the results show that subproblem cuts are most useful when there are many

subproblems and the decomposition structure is such that fixing decisions from one subproblem causes

infeasibilities in the others.

5.2.3 Solving the Integer Program

Table 2 presents the computational results for solving the master problem (3) using a branch-price-and-

cut algorithm. Table 2 contains similar columns as Table 1 with the following differences: The Columns

nsol and time correspond to solving the problems to integer optimality instead of solving only the LP
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overall Default Subcuts
ninst naff nsol time nds gapcl nsol time nds gapcl

ls-Derstroff-period 81 59 56 72.50 865.69 8.10 56 68.08 793.79 13.69
ls-Derstroff-horizon2 81 53 58 13.62 35.06 84.78 58 9.91 18.97 87.94
uc-Frangioni-horizon8 42 40 6 95.15 6.56 78.76 6 79.11 4.52 83.88
uc-Frangioni-horizon12 42 36 8 31.86 1.32 97.97 8 34.59 1.32 98.04

Table 2: Computational results when solving the lot sizing and unit commitment instances by branch-
and-price using Default and Subcuts.

relaxation, and Column nds specifies the geometric mean of the number of nodes in the branch-and-price

tree on instances solved in both settings.

Comparing Default and Subcuts, we observe a general decrease in the run times from the use of

the subproblem cuts. The largest absolute difference in the average run times is observed for the uc-

Frangioni-horizon8 test set, with a 16.04 second average decrease, where the largest relative decrease

(time(Default) − time(Subcuts)/time(Default)) is given by the ls-Derstroff-horizon2 test set (27.24%).

While a general decrease in the run times is observed, there are still instances where the addition of

the subproblem cuts has a negative effect. In particular, the uc-Frangioni-horizon12 test set exhibits an

average increase of 2.73 seconds. An important observation is that while the generation of subproblems

cuts may not always be effective, Algorithm 1 does not greatly affect the overall solving performance.

However, when the subproblem cuts are effective, avoiding the generation of redundant columns can

significantly improve the performance of the branch-and-price algorithm.

The benefit for improving the root node dual bound with the addition of subproblem cuts is shown

by a decrease in the number of branch-and-bound nodes to solve the instances. A large decrease is

observed for both lot sizing and uc-Frangioni-horizon8 test sets, with the largest relative decrease of

45.89% produced by the ls-Derstroff-horizon2 instances. This result demonstrates that the tighter root

node relaxation achieved by eliminating redundant columns can have an overall positive effect on the

performance of the branch-and-price algorithm.

5.2.4 Impact of Subproblem Cuts on the Difficulty of Subproblems

In this section, we turn our attention to the computational impact of generating subproblem cuts. Since

more constraints are added to the subproblems, it is expected that these problems become more difficult

to solve. However, the addition of the subproblem cuts aims to eliminate generators that correspond to

redundant columns. As such, it may be possible to observe a decrease in the number of pricing iterations.

Average results for the complete test sets will be presented along with details for specific instances to

better demonstrate the effect that the addition of subproblem cuts has on the pricing of new columns.

In Table 3 we display information on solution times of the subproblems. Table 3 contains the columns:

the geometric mean of the overall pricing times per instance (ptime), the number of column generation
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overall Default Subcuts
ninst naff ptime piters avgptime ptime piters avgptime

ls-Derstroff-period 81 59 1.3843 963.7515 0.0009 2.2779 971.8153 0.0014
ls-Derstroff-horizon2 81 53 1.0380 326.7728 0.0034 1.0851 327.7981 0.0035
uc-Frangioni-horizon8 42 42 66.1607 1049.2352 0.0870 67.1152 975.5090 0.0882
uc-Frangioni-horizon12 42 42 37.0855 184.6146 0.2287 46.5918 174.6371 0.3226

Table 3: subproblem statistics when solving the master LP of the lot sizing and unit commitment
instances using Default and Subcuts.

pricing iterations (piters) and of the average pricing time per instance (avgptime).

We observe in Table 3 the generation of subproblem cuts only results in a small increase in the

average solving time of the subproblems. However, the magnitude of the increase in the subproblem

solving time depends greatly on the test set. Overall, the results in Table 3 suggests that the subproblem

cuts do not have a significant effect on the difficulty of the subproblems.

The exception to the preceding results is the uc-Frangioni-horizon12 test set, where a large increase

in the pricing time is observed. This result could be explained by the fact that the horizon of 12 time

periods already results in a more difficult subproblem compared to a horizon of 8 time periods, with

an average of 0.2287 and 0.087 seconds per pricing iteration respectively. Thus, the subproblem cuts

exacerbate the difficulty in solving the subproblems. Also, the subproblem cuts will add further linking to

the time periods within the selected horizon. As a result, these inequalities can destroy the separability

within the subproblems and affect the performance of the MIP solver. These results indicate that the

generation of subproblem cuts is most advantageous when the subproblem is not too difficult. Identifying

such limits of difficulty is a topic of future work.

In Figure 4, we depict the solution times of the subproblems with and without subproblem cuts (the

left-hand axis). Additionally, we present, on the right-hand axis, the number of generated subproblem

cuts. The subproblem solution times in Figure 4 is given by the dots and crosses for the heuristic and

exact pricing methods. Also, the columns in Figure 4 cumulatively show the number of subproblem cuts

generated. Note that the number of pricing rounds can differ between the Default and Subcuts settings.

The results presented in Figure 4 verify the average results from Table 3 showing that there is little

difference between the subproblem solving times for Default and Subcuts in most iterations. The biggest

difference between the two settings is that after generating subproblem cuts in the beginning of the

column generation algorithm, for some instances the subproblem solving times can increase significantly

(c.f. Figure 4a and 4b), but then decrease to the solving times exhibited by Default . This behavior can

be explained by the importance of the subproblem cuts in the generation of non-redundant columns.

After the addition of some subproblem cuts, these constraints can become tight in an optimal solution

to the subproblems. Since these constraints are typically more numerically difficult than the original

problem constraints, and the fact that they link periods within each horizon, their existence affects the

run times for the subproblem. After the initial generation of subproblem cuts, less columns are found
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Figure 4: Solution times (primary y-axis) and number of subproblem cuts (secondary y-axis) are depicted
in each pricing iteration (x-axis) on three lot sizing instances. Furthermore, we indicate whether the
subproblems were solved heuristically ({default,subcuts} heur) or optimally ({default,subcuts} opt).
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to be redundant and fewer subproblem cuts are tight, leading to a decrease in the time for each pricing

iteration. Additionally, solution times can be large when solving the subproblems to optimality, which is

often the case in the last pricing iterations, if subproblem cuts have been added. However, this increase

in the subproblem solving times at the end of computation is similar for both Default and Subcuts.

Overall, the results show that the addition of subproblem cuts can improve the dual bound with little

increase in the solving times of the column generation subproblems.

6 Conclusions

Our methods for identifying redundant columns and avoiding their generation extends the work of

Vanderbeck and Savelsbergh [27] and Gamrath and Lübbecke [13]. Instead of only tightening variable

bounds in the subproblems, this work, to the best of the authors’ knowledge, is the first to propose a more

general approach that uses Benders-type inequalities to avoid the generation of a subset of redundant

columns using so-called subproblem cuts. Subproblem cuts are generated by exploiting classical Benders

cuts, which is a novel, interesting integration of Benders decomposition and Dantzig-Wolfe reformulation.

Although generating subproblem cuts, which are based on information from the master constraints

(i.e., on global information), is contrary to the decomposition principle, these cuts do not greatly increase

the difficulty of the subproblem. The main benefit of generating subproblem cuts is a stronger relaxation

yielding tighter dual bounds. Initial experiments showed that it was not possible to generate subprob-

lem cuts on classical problem classes where Dantzig-Wolfe reformulation applies well. Our investigations

identified that the generation and addition of subproblem cuts is most efficacious for problems exhibit-

ing structure, in particular time-dependent structure. The computational experiments show that the

addition of subproblem cuts can achieve tighter dual bounds and an improved performance for problems

where a temporal decomposition is performed.

While the generation of subproblem cuts achieves an improvement in the dual bound, this improve-

ment is not as great as expected. There are two main explanations for this result. First, the proposed

methods to generate subproblem cuts are based on the LP relaxation of the original problem, which can

be much weaker than the master LP. This could be a major reason why no optimality cuts are generated

on the considered test instances. The second explanation is that we solve an individual LP for each

potentially new column, which can be time consuming if a large number of columns are generated. If we

would base the generation of subproblem cuts on a different, stronger relaxation (in combination with

Lemma 2.3), generating subproblem cuts would be even more time consuming, but we could obtain even

stronger dual bounds.

Given the potential of the proposed methods for avoiding the generation of redundant columns,

a promising and interesting area of future research is the investigation of alternative relaxations of

practical verification LP that could improve the computational performance. One direction of future
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research is to use the master LP, instead of the original LP, in combination with Lemma 2.3 in order

to generate stronger subproblem cuts. In this case one would solve the practical verification LP using

column generation, which may not be very efficient. Furthermore, this raises the question on how to

handle columns that are generated while checking redundancy: should redundancy of these columns be

checked as well or should we just disregard these columns in the master LP? Finally, in the presented

methods, only classical Benders optimality and feasibility cuts are added to the subproblem. Another

direction of future research is to investigate the use of Benders decomposition enhancement techniques

while generating subproblem cuts.
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[7] J. Desrosiers and M. Lübbecke. A primer in column generation. In G. Desaulniers, J. Desrosiers,

and M. Solomon, editors, Column Generation, pages 1–32. Springer, Berlin, 2005.



REFERENCES 34

[8] T. Fahle, U. Junker, S. E. Karisch, N. Kohl, M. Sellmann, and B. Vaaben. Constraint programming

based column generation for crew assignment. Journal of Heuristics, 8(1):59–81, 2002.

[9] T. Fahle and M. Sellmann. Cost based filtering for the constrained knapsack problem. Annals of

Operations Research, 115(1):73–93, 2002.

[10] J. Farkas. Theorie der einfachen Ungleichungen. Journal für die Reine und Angewandte Mathematik,

124:1–27, 1902.

[11] I. Fragkos, Z. Degraeve, and B. D. Reyck. A horizon decomposition approach for the capacitated

lot-sizing problem with setup times. INFORMS Journal on Computing, 28(3):465–482, 2016.

[12] A. Frangioni, C. Gentile, and F. Lacalandra. Tighter approximated MILP formulations for unit

commitment problems. IEEE Transactions on Power Systems, 24(1):105–113, 2009.
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