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22 Abstract

23 There are few reliable datasets to inspire confidence in policymakers that soil organic carbon 

24 (SOC) can be measured on farms. We worked with farmers in the Tamar Valley region of 

25 southwest England to select sampling sites under similar conditions (soil type, aspect and 

26 slope) and management types. Topsoils (2-15 cm) were sampled in autumn 2015 and 

27 percentage soil organic matter (%SOM) was determined by loss-on-ignition and used to 

28 calculate %SOC. We also used the stability of macroaggregates in cold water (WSA) (‘soil 

29 slaking’) as a measure of ‘soil health’ and investigated its relationship with SOC in the clay-

30 rich soils. %SOM was significantly different between management types in the order 

31 woodland (11.1%) = permanent pasture (9.5%) > ley-arable (7.7%) = arable (7.3%). This 

32 related directly to SOC stocks that were larger in fields under permanent pasture and 

33 woodland compared to those under arable or ley-arable rotation whether corrected for clay 

34 content (F = 8.500, p < 0.0001) or not (F = 8.516, p < 0.0001). WSA scores were strongly 

35 correlated with SOC content whether corrected for clay content (SOCadj R2 = 0.571, p < 

36 0.0001) or not (SOCunadj R2 = 0.490, p = 0.002). Time since tillage controlled SOC stocks and 

37 WSA scores accounting for 75.5% and 51.3% of total variation, respectively. We conclude 

38 that (1) SOC can be reliably measured in farmed soils using accepted protocols and related to 

39 land management and (2) WSA scores can be rapidly measured in clay soils and related to 

40 SOC stocks and soil management.

41

42 Keywords Carbon sequestration; aggregate stability; soil health; agriculture; management 

43 type; tillage

44

45 Highlights
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46  On-farm SOC measurements are rare and prevent the development of a reward system 

47 for farmers

48  SOC was measured in samples of clay-rich soil from different management types on 

49 14 farms in the same region

50  Stability of aggregates in water was directly related to SOC stocks

51  Time since tillage controlled SOC and WSA that can both be reliably measured on 

52 farm soils using widely available technologies

53

Page 3 of 43



For Peer Review

54 Introduction

55 Rural businesses have a positive role to play in climate change mitigation because there is 

56 significant potential for carbon dioxide (CO2) to be removed from the atmosphere by the 

57 process of photosynthesis and stored as living biomass (vegetation) or as soil organic carbon 

58 (SOC; i.e. carbon sequestration) in agricultural soils (Lal, 2018). In general, agricultural soils 

59 are degraded relative to their pre-agricultural condition and therefore have a capacity for SOC 

60 stocks to be rebuilt if managed appropriately (Sanderman et al., 2017). The target of 0.4 

61 tonnes carbon (i.e. 0.4%) per hectare per year in the top 40 cm of soil was described as 

62 achievable in the ‘4 per mille’ initiative launched by the French Government at the Paris 

63 Climate Summit (COP21) (Soussana et al., 2019), although the scientific basis for this is 

64 debated (Poulton et al., 2018). Nevertheless, for a range of environmental and agricultural 

65 reasons, there are few if any circumstances where an increase in SOC would not be 

66 beneficial. SOC is a key indicator of soil health (Lal, 2016) because it promotes the agents 

67 and mechanisms of aggregation important for maintaining soil physical condition (Jensen et 

68 al., 2019), thereby aiding the infiltration of air, water and nutrients, and promoting water and 

69 nutrient retention and sequestering carbon (Stockmann et al., 2013). Consequently, 

70 optimising carbon storage in agricultural soils is regarded as a win-win strategy providing 

71 multiple benefits, foremost the sustainable production of crops through increased soil fertility 

72 and improved soil structure (Paustian et al., 2019). 

73

74 The protection of peatland and other organic soil carbon stocks, and the management of 

75 cropland, grassland and forest soils to increase carbon sequestration, will be crucial to the 

76 maintenance of the UK carbon balance (Ostle et al., 2009). Yet, this potential remains 

77 frustrated by the apparent difficulty in establishing how to monitor changes in SOC in 

78 agricultural land efficiently and effectively with sufficient confidence beyond research 
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79 settings (de Gruijter et al., 2016). A plethora of formal scientific studies have explored the 

80 impacts of various crop and soil management practices on SOC/soil organic matter (SOM) 

81 and resultant crop responses (e.g. Meng et al., 2018), some that have been running for almost 

82 two hundred years (Christensen and Johnston, 1997). It is fair to say that we understand the 

83 basic controls on SOC and know reasonably well which management practices can be used to 

84 increase SOC storage across a wide range of environments (Paustian et al., 2019), including 

85 regions of the UK (King et al., 2004; Thomas et al., 2020). Indeed, the successful 

86 measurement of SOC in land across England and Wales and Scotland has been carried out 

87 using standardised methodologies as part of the Countryside Survey in 1978, 1998 and 2007 

88 (Reynolds et al., 2013; Thomas et al., 2020) amongst other initiatives (e.g. Howard et al. 

89 1995; Chapman et al. 2013).

90

91 The search for reliable soil health indicators is in a state of limbo in the UK as the debate 

92 over the most appropriate metric is confounded by lack of local evidence. Yet, a suite of soil 

93 health indicators is used by farmers for the reliable and comparable assessment of their soils 

94 in the USA based on methods developed for the assessment of physical soil quality more than 

95 30 years ago, e.g. Doran & Parkin (1997), and supported by the resources of the USDA-

96 ARS/NRCS. Of these, soil aggregate stability in water (or ‘the slake test’) is widely 

97 recognized as a key indicator of soil quality and health, and methods for in-field assessment 

98 developed by Herrick et al. (2001) are regularly used in the USA for rapid evaluation by 

99 farmers and advisors, but infrequently in the UK. Stable macroaggregates (1-10 mm size 

100 range) are soil components observed by eye during the examination of soil structural quality 

101 using the spade method that indicates the quality of soil structure in agricultural soils, i.e. 

102 Visual Examination of Soil Structure (VESS; Ball et al., 2007). The progressive reduction of 

103 SOC in cropland soils (Heikkinen et al., 2013) and mechanical destruction of soil structure by 
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104 tillage (Abdollahi et al., 2014, Wang et al., 2015, Watts et al., 1996; Schjønning et al., 2018) 

105 reduce the number and stability of macroaggregates. The biological contributions to 

106 aggregate stability are dependent on the supply and turnover of SOC by microorganisms 

107 (Tisdall and Oades, 2006); therefore, stable aggregates may serve as a proxy for SOC for 

108 efficient field assessments. However, the clay content of soils with expanding clay 

109 mineralogy may confound the influence of SOC content on aggregate stability because soils 

110 with more than 15-20% clay usually demonstrate moderate-to-strong aggregate structure 

111 (Jarvis, 2007). Thus, the relationship between soil slaking and SOC content may be reduced 

112 in soils with large clay contents, making the test an unreliable proxy in the slowly permeable, 

113 clay-rich ‘heavy’ soils that are typical in many areas of England under agricultural 

114 management type. 

115

116 This study was designed to examine the feasibility of standard and accessible methods (i.e. 

117 %SOM by loss-on-ignition and the stability of soil macroaggregates in water) to discern the 

118 effects of different management practices on SOC stocks in working farmland soils, thereby 

119 encompassing all of the idiosyncrasies typical of real rural businesses that are absent in the 

120 unavoidably artificial scenarios of scientific experiments. We focussed on topsoils because 

121 the effect of soil management and field operations is most notable here (Thomas et al., 2020) 

122 (although we well recognise that management of surface soils has significant effects on SOC 

123 dynamics in deeper soil horizons, e.g. Collier et al., 2017, Gregory et al., 2016). We tested 

124 the overarching hypothesis that variations in SOC stocks in agricultural soils can be measured 

125 and related to land management. The hypothesis was tested by meeting two objectives: (1) to 

126 test the ability of standard methods to discern a correlation between SOC stocks and 

127 historical management practices on working farmland; and (2) to establish whether a 
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128 commonly used indicator of soil quality, the stability of soil (macro)aggregates in water (‘the 

129 slake test’), can be used as a proxy measurement for SOC.

130

131 2. Materials and methods

132

133 2.1 Site characteristics and management history

134 This study was carried out in 2015 and was focused on farmland within the Tamar Valley 

135 Catchment in Devon and Cornwall, southwest England. Soil survey maps (Soil Survey of 

136 England and Wales, 1997, Sheets SS 30 and SX47; scale 1:25,000; Harrod, 1997; 1998) were 

137 used to identify areas with similar soil types that were typical of the region: slightly acidic 

138 loamy and clayey soils with impeded drainage (Endoleptic Stagnic Cambisols or Clayic 

139 Eutric Stagnosols; WRB, 2006). Fourteen farms were selected based on soil type, 

140 management types and the opportunity to access. Twelve were in the Tamar Catchment in 

141 Devon and Cornwall, one was near Truro in Cornwall and two plots were at Rothamsted 

142 Research North Wyke near Okehampton, Devon (Rowden Moor, 50°46'13"N, 3°53'55"W, 

143 50°46'14"N, 3°53'51"W; North Wyke Farm, 50°46'29"N, 3°55'38"W, 50°46'28"N, 

144 3°55'49"W) (Figure S1). The coordinates of the commercial farms are withheld to maintain 

145 anonymity. Fields under different management were selected in collaboration with each 

146 farmer. In addition to detailed management history for the past five years, farmers were asked 

147 to provide general management type history from the present up to a maximum of 100 years 

148 ago where possible, which allowed the calculation or estimation of time since last tillage 

149 (TST) for each field. The number of fields sampled on each farm ranged from two to seven, 

150 and 40 fields were sampled in total.

151

152 2.2 Soil sampling
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153 Site visits and soil sampling were conducted between 8 October and 23 November 2015. One 

154 sampling site (1 m2) was selected per field based on predetermined topographic criteria (soil 

155 type and shallow slope angle or midslope) and guidance from farmers about in-field soil 

156 characteristics and representativeness. The method for the quantification of SOC 

157 concentration in soils used loss-on-ignition (LOI), and then the calculation of SOC stocks (t 

158 C ha-1) using the bulk density of the same soil. At each sampling site, a screw auger (up to 60 

159 cm depth) was used to measure topsoil depth and confirm soil type. Three soil cores were 

160 taken with a root auger (8 cm diameter, 15 cm depth; Van Walt Root Auger, Surrey, UK) in a 

161 triangle at 50 cm radius around the central screw auger hole. After sampling, the top 2 cm of 

162 each core was removed to aid comparison between soils under different vegetation types, 

163 providing an effective sampling depth of 2-15 cm. The cores were processed and analysed 

164 individually. Additional samples (~500 g) were collected along the edge of each root auger 

165 hole (2-15 cm) using a trowel for use in the assessment of aggregate stability. All samples 

166 were stored at 4 °C until analysis.

167

168 2.3 Soil analysis

169 In the laboratory, each soil core was crumbled and dried at 105 °C to constant weight in a 

170 fan-assisted oven, and the dry weight recorded. The samples were ground to pass a 2 mm 

171 sieve, and the weight and volume of debris (i.e. plant leaf and root litter and stones) 

172 remaining on the sieve (> 2 mm) were recorded. Bulk density (BD, g cm3) for each core (n = 

173 3 per field) was calculated as:

174

175 Equation 1𝐵𝐷 =  
(𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 ― 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑒𝑏𝑟𝑖𝑠)

(𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑜𝑖𝑙 𝑐𝑜𝑟𝑒 ― 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑑𝑒𝑏𝑟𝑖𝑠)

176
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177 Soil pH was determined in a 1:1 deionised water:soil suspension using an electronic pH probe 

178 calibrated with standard pH 4 and 7 buffer solutions. Total carbon (TC) and nitrogen (TN) 

179 contents were determined on finely ground subsamples by combustion using a Carlo Erba 

180 NA2000 analyser (CE Instruments, Wigan, UK). Particle size distribution (% sand:silt:clay) 

181 was determined using the Bouyoucos hydrometer method (Gee and Baulder, 1986). 

182

183 Soil organic matter (SOM) content (% dry matter) of three replicate 30 g subsamples each 

184 from each core soil was determined using loss-on-ignition (LOI) by heating at 400 °C for 16h 

185 (Davies, 1974; Schulte et al., 1991). %SOM was calculated as the difference between the 

186 initial dry soil weight and the ashed soil weight. The influence of clay on %SOM was 

187 determined using the calculation used by the Soil Survey of England and Wales published in 

188 Harrod & Hogan (2008) to allow direct comparison with previous data pertinent to the study 

189 area. Thus, SOC stocks (t C ha-1) for the sampling depth were calculated without adjustment 

190 for clay content

191 Equation 2𝑆𝑂𝐶 𝑠𝑡𝑜𝑐𝑘 =  (%𝑆𝑂𝑀)
1.72 ) × 𝐵𝐷 × 𝑑𝑒𝑝𝑡ℎ × 100

192 or adjusted for clay content

193 Equation 3𝑆𝑂𝐶 𝑠𝑡𝑜𝑐𝑘 =  (%𝑆𝑂𝑀 ― (%𝑐𝑙𝑎𝑦 × 0.1)
1.72 ) × 𝐵𝐷 × 𝑑𝑒𝑝𝑡ℎ × 100

194

195 2.4 Soil aggregate stability in water

196 Soil aggregate stability in water was assessed using a semi-quantitative method adapted from 

197 the USDA-ARS Soil Slake test method (Herrick et al., 2001) to assign a value based on the 

198 stability of soil aggregates in water (WSA). Nine aggregates of approximately 1 cm diameter 

199 were selected from trowel-sampled soil and air-dried at room temperature. The aggregates 

200 were arranged on a 2 mm sieve and gently immersed in deionized water. The aggregates were 

201 observed for five minutes, then the sieve was raised up and down five times, with 
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202 approximately 1 second transit time up and 1 second down, allowing surface tension at the 

203 zenith to slightly disrupt the aggregates. A score of 0-8 was determined by observing the 

204 behaviour of the aggregates in water using the criteria described in Table 1.

205

206 2.5 Statistical analysis

207 All statistical analysis was completed using XLSTAT 2019 3.1 for Microsoft Excel 2016 

208 (Addinsoft, New York, USA). One-way ANOVA was used to assess the significant 

209 differences between management types in relation to SOC, TN, WSA, BD, topsoil depth and 

210 sand and clay content. ANOVA assumptions were verified and the data transformed (Box-

211 Cox) where necessary to satisfy the normality criterion. Where p ≤ 0.05, Tukey’s HSD 

212 (honest significant difference) test was used to identify which management types were 

213 significantly different from each other. TST and WSA failed the normality criterion even 

214 after transformation, so a Kruskal-Wallis test was applied and the means comparison was 

215 evaluated using Dunn’s (1964) test.

216

217 Non-linear curve estimation and Akaike Information Criterion (AIC) was used to determine 

218 the best model relationship between SOC stocks (unadjusted and adjusted for clay) and TST. 

219 Multiple linear regression (Best Model) was used to determine the significantly contributing 

220 variables (entry: p ≤ 0.05, removal: p ≤ 0.1) and corrected Akaike Information Criterion 

221 (AICc) to compare models for SOC (stock, unadjusted and adjusted for clay) and WSA. 

222 Variables were considered as three groups: management variables (log10(TST)), dependent 

223 soil variables (SOC, TN and WSA) and independent soil variables (topsoil depth, and % sand 

224 and clay). SOC was analysed as stocks except when considered as a predictor of WSA, while 

225 TN was analysed as concentration only. All variables were first analysed for correlation with 

226 SOC and with WSA using a correlation matrix to determine their suitability for inclusion 

Page 10 of 43



For Peer Review

227 (Table S1). Topsoil depth, %clay and %sand were excluded at this stage from further 

228 analysis. Per ANOVA, the assumptions for multiple linear regression were validated. 

229 Wilcoxon matched-pairs test was used to assess the SOC clay correction differences. 

230

231 3. Results

232

233 3.1 Soil properties by management type

234 All of the fields included in the study had been under their current management system for at 

235 least eight years. Of the 40 fields sampled, four were under arable management and were 

236 ploughed every year; 11 were in ley-arable rotation, having been ploughed at least once in the 

237 past three years; 20 were in permanent pasture, having last been tilled from between three and 

238 75 years ago; and five were woodlands last known or estimated to have been tilled from 15 to 

239 over 100 years ago (Tables 2). Topsoil depth ranged from 17 to 59 cm (mean 33, median 32), 

240 with no significant differences between management types (Table 2: F = 2.215, p = 0.103). 

241 Soils had mean sand and clay contents of 46% (range 28 to 60%) and 23% (range 10 to 36%), 

242 respectively (Table S2) and represented loam, clay loam and sandy clay loam textural classes. 

243 Mean bulk densities were not significantly different between management types (Table 2: F = 

244 2.324, p = 0.091). Soil pH values were moderately to strongly acidic and were significantly 

245 different between management types in the order: ley-arable (6.1) = arable (5.8) > permanent 

246 pasture (5.2) = woodland (4.6) (Table 2: F = 14.68; p < 0.0001). %TN was significantly 

247 different between land uses in the order: permanent pasture (0.5%) = woodland (0.5%) > ley-

248 arable (0.4%) > arable (0.4%) (Table 2: F = 4.097; p = 0.013). %SOM was significantly 

249 different between land uses in the order woodland (11.1%) = permanent pasture (9.5%) > ley-

250 arable (7.7%) = arable (7.3%) (Figure 1a; Table 2: F = 7.016; p = 0.001).

251
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252 Correcting for clay content made a significant difference to the calculation of %SOC from 

253 %SOM estimates for all management types (Figure 1a; p < 0.0001; Figure 1a), with clay-

254 corrected SOC concentration values (SOCadj) on average 28% lower than those without clay 

255 correction (SOCunadj). Mean SOCadj concentrations were similar to those determined using 

256 elemental analysis (%TC) for all management types: 2.9% for arable, 3.2% for ley-arable, 

257 4.0% for permanent pasture and 4.4% for woodland (Figure 1a). Regardless of correction for 

258 clay content, significant differences in %SOC were observed (Table 2: SOCadj. F = 8.08, p= < 

259 0.0001; SOCunadj. F = 7.016, p = 0.001) between fields that had been tilled recently (arable 

260 and ley-arable) compared with fields that had not been tilled recently (permanent pasture and 

261 woodland) (Table 2).

262

263 Correction for clay content also significantly affected calculated SOC stocks for all 

264 management types (p < 0.0001; Figure 1b). Where %SOC had not been corrected for clay 

265 content, the mean SOC stock values were 55.6 t C ha-1 for arable, 58.2 t C ha-1 for ley-arable 

266 rotation, 71.5 t C ha-1 for permanent pasture and 72.1 t C ha-1 for woodland management 

267 types. After correction for clay, the mean SOC stock values were 35.0 t C ha-1 for arable, 41.5 

268 t C ha-1 for ley-arable rotation, 55.3 t C ha-1 for permanent pasture and 54.4 t C ha-1 for 

269 woodland management types. The values for SOC stocks that had been corrected for clay 

270 were comparable (p = 0.115) to those determined using elemental analysis for the different 

271 management types: 38.3 t C ha-1 for arable, 41.8 t C ha-1 for ley-arable rotation, 51.6 t C ha-1 

272 for permanent pasture and 49.8 t C ha-1. Regardless of correction for clay, the stocks of SOC 

273 in the topsoil (2-15 cm depth) were significantly greater in fields under permanent pasture 

274 and woodland compared to those under arable or ley-arable rotation (SOCadj. F =8.500, p < 

275 0.0001; SOCunadj. F = 8.516, p < 0.0001; Figure 1, Table 2).

276
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277 Scores for WSA were greater under permanent pasture (mean 7.3, mode 7) and woodland 

278 (mean 7.5, mode 7) than under ley-arable rotation (mean 5.7, mode 6) and arable (mean 5.3, 

279 mode 5) (Table 2) (p = 0.001). WSA scores were strongly correlated with SOC content 

280 (SOCadj. R2 =0.571, p < 0.0001; SOCunadj. R2 = 0.490, p = 0.002; Figure 3).

281

282 3.2 Effect of time since tillage (TST) on SOC and WSA

283 Across all fields sampled, TST ranged from 0.25 to (at least) 100 years, with significant 

284 differences present between arable and ley-arable rotation vs. permanent pasture and 

285 woodland management types (Table 2). %SOM correlated strongly with time since tillage 

286 (Table S1, R2 = 0.70, , p < 0.05). Figures 2a and 2b show the linear-log relationships between 

287 SOCunadj and SOCadj, respectively, and time since tillage (y):

288

289 Equation 4𝑆𝑂𝐶𝑢𝑛𝑎𝑑𝑗 = 56.8 + (4.66 × 𝑙𝑜𝑔𝑒(TST))

290

291 Equation 5𝑆𝑂𝐶𝑎𝑑𝑗 = 39.1 + (5.06 × 𝑙𝑜𝑔𝑒(𝑇𝑆𝑇))

292

293 where SOCunadj. and SOCadj. are in t C ha-1 at a depth of 2–15 cm, and TST is in years.

294

295 When management and soil variables were combined in multiple linear regression analysis 

296 (Table S3), the best predictive model for SOCunadj. stocks accounted for 75.5% of total 

297 variation and included log10(TST) and TN. The equation for the best model was:

298

299 Equation 6𝑆𝑂𝐶𝑢𝑛𝑎𝑑𝑗 = 23.0 + (6.44 × 𝑙𝑜𝑔10(𝑇𝑆𝑇)) + (81.7 × 𝑇𝑁)

300

301 where SOCunadj. is in t C ha-1 at a depth of 2–15 cm, where TST is in years, and TN in %. 
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302 The SOCadj stock best model contained the same independent variables as above, although the 

303 parameter constant values differed as would be expected (Table S4). The best predictive 

304 model for WSA included log10(TST) only, which explained 51.3% of the observed variation 

305 (Table S5):

306 Equation 7𝑊𝑆𝐴 = 5.58 + 1.26 × 𝑙𝑜𝑔10(𝑇𝑆𝑇)

307

308 4. Discussion

309

310 4.1 Land management changes SOC stocks

311 Quantifying the effects of farm management on SOC stocks is critical to realise the potential 

312 of agricultural soils to draw down atmospheric CO2 via plants into the soil (sensu Janzen, 

313 2015) and for some of it to be stored in SOM for the long-term, i.e. carbon sequestration. The 

314 average %SOC recorded for all of the topsoils of the fields of fourteen working farms in 

315 southwest England (Devon and Cornwall) (n = 40; 5.2%) was less than the range for the 

316 whole of England reported in the 2007 Countryside Survey (7.7%) which incorporates the 

317 random, stratified sampling of soils from managed and unmanaged land classes (Reynolds et 

318 al., 2013). The %SOC in unmanaged habitats reported in the Countryside Survey for England 

319 have even larger %SOC, e.g. 25.8% in acid grassland, than managed habitats, e.g. 6.8% in 

320 improved grassland. The %SOC results for improved grassland on Stagni-Vertic Cambisol at 

321 Rothamsted Research North Wyke (Rowden Moor, 4.8%; North Wyke Farm, 5.9%) in this 

322 study are less than the national average, but similar to those reported previously for grassland 

323 soil from Rowden Moor by Bol et al. (2003; 5.1% total carbon by elemental analysis for 4-10 

324 cm depth), Harrod & Hogan (2008); 5.3% (calculated from 9.1 % OM by loss-on-ignition for 

325 5-10 cm depth) and Harris et al. (2018) (6.6% for 2.5-7.5 cm depth, and 3.6% for 7.5-15 cm 

326 depth, using elemental analysis). The similarity of these published results from the long-term 
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327 Rowden plots at North Wyke established in 1987 with those measured using the same 

328 protocols in this study provide confidence in the reliability of the sampling and analysis of 

329 the farm soils herein.

330

331 Within a defined area in southwest England on farms selected based on similar soil type 

332 using available soil survey maps, we observed that the mean %SOC in topsoil on the farms 

333 sampled was largest in woodlands, followed by permanent pasture, then ley-arable rotation, 

334 and finally arable fields. However, there were only significant differences overall between 

335 recently tilled (i.e. ley-arable rotation and arable) and not recently tilled (i.e. permanent 

336 pasture and woodland) management types. We also observed a similar pattern in a subsequent 

337 study in May 2017 using the same approach on eight farms in the South Cotswolds on a 

338 different soil type (shallow, calcareous, stony soils; Smale et al., 2017; Dungait et al., 2019; 

339 Table S6). Our survey, therefore, showed similar patterns related to management type 

340 reported by others based on the Countryside Survey 2007 for Great Britain; for instance, the 

341 mean SOC stock in 0-15cm depth was 63 t C ha-1 and ranged between 43 t C ha-1 in arable 

342 soils to 82 t C ha-1 in acid grassland soils (Norton et al., 2012). Comparison with the most 

343 relevant Broad Habitats from the Countryside Survey 2007 give mean carbon concentrations 

344 of 3.8% ±1.24 for Arable and Horticultural Broad Habitat, 6.8% ±0.95 for Improved 

345 Grassland and 13.0% ±1.89 for Broadleaf, Mixed and Yew Woodland. Subsequently, we 

346 used the GPS coordinates for each field sampled in our research as search criteria for 

347 obtaining comparative data using the UK Soil Observatory (UKSO) Map Viewer 

348 (www.ukso.org/). Not surprisingly, in many cases, the data associated with Broad Habitat 

349 definition did not relate to the management type at the field scale, so the soil data could not 

350 be compared directly with that measured in this study. However, it could be used to provide a 

351 regionally appropriate range of values for comparison: Arable and Horticultural Broad 
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352 Habitat, 2.1-3.5% (49.67 t C ha-1); Improved Grassland, 4.9-6.3% (72.14 t C ha-1); and 

353 Broadleaf, Mixed and Yew Woodland, 8.1% (68.53 t C ha-1). The %SOC and carbon stocks 

354 calculated for our samples were smaller because they excluded the top 0-2 cm which is 

355 generally richer in organic matter derived directly from plant litter and other organic inputs, 

356 e.g. manures (Bol et al., 2003; Dungait et al., 2005; Harris et al., 2018). Again, the similarity 

357 with the published values from the Countryside Survey 2007 that are local to the sample sites 

358 on farms in our survey provides confidence that the similar protocols applied are reliable to 

359 measure SOC stocks in different management types.

360

361 Overall, our study using real farm soils concurs with the outputs of other UK experimental 

362 studies that reported predictable changes in SOC stocks after land-use change in agriculture 

363 (King et al., 2004; Bhogal et al., 2009). It further reinforces the evidence that changes in SOC 

364 can be measured in agricultural soils using widely available technologies established and 

365 proven for topsoils across management types in the national soil surveys in England and 

366 Wales and Scotland, provided they are applied in an informed way with due consideration to 

367 the known sources of error (Henrys et al., 2012; Lilly et al., 2012; Seaton et al., 2020; 

368 Thomas et al., 2020). On that premise, and based on our small surveys of SOC under 

369 different management on real farms in the Tamar Valley and the South Cotswolds, we accept 

370 our overarching hypothesis that variations in SOC stocks in agricultural soils can be 

371 measured and related to land management. 

372

373 Undoubtedly, soil texture (or ‘physiotope’ sensu Verheijen et al., 2005) is of paramount 

374 importance as our analysis with and without correction for clay has shown (Figure 1). The 

375 search for a dependable correction factor to account for the structural water held by clay 

376 minerals to avoid overestimating SOM content calculated during heating in loss-on-ignition 
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377 has preoccupied soil scientists for decades (e.g. Ball, 1964; Howard & Howard, 1990; Jensen 

378 et al., 2018). However, this study shows that by applying simple parameters for sampling 

379 ‘like with like’ based on the use of soil maps and farmer knowledge to select similar 

380 sampling points, intra- and inter-farm comparisons of soil variables are possible. This result 

381 goes against the apparent misgivings about whether SOC can be measured meaningfully on 

382 farmed soils because in-field variation is too great, and indicates a need for a broader view on 

383 the evidence required for rewarding farmers for carbon sequestration.

384

385 4.2 Time since tillage controls SOC stocks

386 Managing farmed soils to increase and maintain SOC at optimal levels while producing food 

387 is an economically and environmentally virtuous activity (Lal, 2020). Soil sink saturation, i.e. 

388 the time taken for soil carbon to reach a new equilibrium, when there is no net uptake of 

389 carbon from the atmosphere (Smith, 2005), is the ultimate aim for enabling maximum benefit 

390 of CO2 drawdown into soil. However, although cultivated soils are unlikely ever to reach the 

391 limit of their potential to sequester carbon because any form of perturbation through 

392 cultivation will reduce SOC stocks, increasing soil carbon per se has indirect benefits that 

393 reduce the overall carbon footprint of agriculture (Paustian et al., 2019). 

394

395 We determined that time since tillage was a strong predictor of SOC stocks (and of the 

396 stability of soil macroaggregates in water; discussed below), and that conclusion helped to 

397 explain the variation in carbon stock values observed within different broad land-use types on 

398 individual farms. Soil carbon accumulation after a land-use change from arable to grasslands 

399 or woodland is a decadal process (Ostle et al., 2009), and, therefore, requires land 

400 management matched to reward systems that acknowledge this timescale of commitment. 

401 Recognising when the soil has reached sink capacity should rely on data sets that extend to 
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402 these timescales, but these are scarce and especially rare for on-farm studies. Furthermore, 

403 the measurement of SOC/SOM is not a regular part of soil testing and has only recently been 

404 added to extra ‘soil health’ options offered by commercial testing laboratories. Since the 

405 capacity to measure SOC in the same farm soil over decades was not possible, working with 

406 farmers to determine the last tillage event in specific fields in soils of similar soil texture in a 

407 region of southwest England under the same climatic conditions enabled us to develop a 

408 ‘space-for-time’ chronosequence of SOC change.

409

410 Fields tilled within the last 3 years (all under arable and arable-ley rotation) had smaller 

411 carbon stocks than those not tilled for more than 3 years (all under permanent pasture or 

412 woodland management), and continuous tillage maintained SOC at a poorer level. The fields 

413 under ley-arable rotation were either in grass at the time of sampling or had been ploughed 

414 out of grass between 0 and 3 years ago, with most farmers using 3-5-year ley periods before 

415 2-5 years of arable cropping. Regular ploughing even at extended timescales prevented SOC 

416 from reaching its maximum potential storage capacity. This observation is similar to the 

417 outputs of long-term experiments where management type management has been changed 

418 and SOC dynamics monitored over time (Bhogal et al., 2009). It is well known that the 

419 potential to increase SOC depends on soil type (e.g. it is more difficult to increase and 

420 maintain SOC in very sandy soils) and its current SOC content; SOC cannot be increased in 

421 soils that have reached their maximum SOC content or ‘sink saturation’ (Stewart et al., 

422 2007). Experimental 3-year grass or grass-clover periods in 5-year rotations increased the 

423 %SOC of sandy-loam topsoil (0-25 cm) by only 0.25% over 28 years in eastern England 

424 (Johnston et al., 2017). Although the size of our dataset did not allow us to confidently model 

425 the threshold of maximum carbon storage on the farms in this study, we tentatively conclude 

426 that a period of more than 30 years is required without tillage for SOC to build in topsoils 
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427 from the equilibrium maintained by annual, arable tillage to that of permanent pasture and 

428 woodland (Figure 2). Farmers who have land with optimum SOC, for the soil type and 

429 climate conditions, i.e., have reached soil sink saturation, should, therefore, be rewarded for 

430 its maintenance. 

431

432 4.3 Aggregate stability in water can be used as a proxy for SOC

433 Proxies for SOC are increasingly sought to provide tools for farmers to make judgements 

434 about the effect of changes that they have made on their farm to build SOC without the need 

435 for laboratory testing. Those indicating ‘soil health’ must, by definition, explicitly encompass 

436 the role of soil biology because the soil is a living ecosystem. This idea underpins the premise 

437 for soil health indicators that are largely based on biological attributes of soil quality 

438 described by Gregorich et al. (1997) more than 20 years ago. The quality of soil ‘tilth’ and its 

439 relationship with aggregate shape and dry aggregate stability underpins the widely used 

440 VESS method for the assessment of agricultural soils (Guimarães et al., 2011). The 

441 relationship between the stability of aggregates in water (or the ‘slake test’) and SOC is 

442 particularly pertinent in managed soils with large clay contents because the dispersion of 

443 clays is associated with reduced infiltration and run-off, sediment load and crust formation 

444 (Watts & Dexter, 1997). However, the soil-binding qualities of clay also serve to stabilise 

445 aggregates and may, thereby, confound an observable and measurable effect of SOC as both a 

446 direct binding agent (Martens, 2000) and an indirect binding agent because it supports the 

447 function of the soil biological community by providing a large and moist surface area in 

448 water films around clay particles that are often protected within aggregates (Dungait et al., 

449 2018). Indeed, Johannes et al. (2017) recently developed an index of soil structural quality 

450 using the ratio of SOC:clay applied to Swiss arable soils intended to support on-farm decision 

451 making, which has been applied recently by Soinne et al. (2020) and Prout et al. (2020) to 
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452 farmed soils in Finland and the UK, respectively; the latter used the SOC data provided by 

453 the Countryside Survey of England and Wales in 1987.

454

455 The results of linear regression indicated that time since tillage was a strong driver of both 

456 SOC and WSA and that SOC and WSA were closely related. Like SOC stocks, the stability 

457 of soil aggregates in water in arable and arable-ley rotation soils was typically less than in 

458 grassland and woodland (Table 2). The relationship between SOC and improved physical 

459 quality of soil, and subsequent benefits for the quality of farmed soils is widely 

460 acknowledged (Dungait et al., 2012; Paustian et al., 2019). In a long-term experiment in 

461 northern Sweden, Jarvis et al. (2007) observed that treatments with longer ley periods (< 5 

462 years) in a 6-year rotation had soils with smaller bulk densities and larger porosities 

463 coincident with larger organic carbon contents. 

464

465 It is well understood that organic carbon improves soil aggregation resulting in increased soil 

466 porosity, improving mechanical resilience to compression and the rebound or resilience to 

467 compressive stress (Zhang et al., 2005). Soil aggregate stability is partially derived from SOC 

468 because of the cohesive effects of organic molecules, and because SOC sustains soil 

469 organisms which are agents of aggregation; thus, SOC lost by mineralization must be 

470 replaced by new organic carbon to maintain stable aggregates (Dungait et al., 2018). In this 

471 respect, soil aggregates are a good proxy for the combined physical, chemical and biological 

472 functioning of the soil. In this paper, the potential to use an existing test of the stability of soil 

473 aggregates in water, used widely in the USA for many years, was tested and adapted to the 

474 specific conditions of the clay-rich soils of the Tamar Valley. The scoring protocol, with 

475 more time intervals than the existing USDA version, appeared to satisfactorily improve the 

476 sensitivity of the test without compromising the feasibility of its application by land 

Page 20 of 43



For Peer Review

477 managers. The strong relationships between WSA, SOC, land management and time since 

478 tillage suggests that where soil and climate on farms is similar within a defined region, the 

479 rapid assessment of WSA using this approach provides a rapid and inexpensive means of 

480 assessing and providing a numerical score of ‘soil health’, and potentially as a proxy for 

481 direct measurement of SOC used to detect changes imposed by management.

482

483 4.4 Relevance of this study to policy

484 Like most businesses, farming is based on maximising net economic returns and requires 

485 incentivisation to change practice. The direct economic benefits of increasing SOC in 

486 farmland in the UK for the award of rural payments seem clear. The current EU Good 

487 Agricultural and Environmental Conditions (GAEC) standards set cross-compliance baseline 

488 requirements for farmers to safeguard soils, habitats and landscape features. GAEC 6 directly 

489 specifies ‘Maintaining the level of organic matter in soil’ by avoiding practices that reduce 

490 SOM (Defra, 2018a), indirectly ensuring the delivery of GAEC 4 (Providing minimal soil 

491 cover) and GAEC 5 (Minimising soil erosion). Soil policy documents over the past decade 

492 for the UK have emphasised the need to protect and enhance soil carbon stocks (Minasny et 

493 al., 2017). The recent Government 25-Year Environment Plan for England and Wales (Defra, 

494 2018b) placed the promotion of soil health at the heart of its ‘Green Brexit’ strategy to 

495 ‘ensure healthier soils by addressing factors in soil degradation such as erosion, compaction 

496 and the decline in organic matter’ and ‘protecting and improving the quality of soil’. Yet, 

497 despite the central role of managing SOC in these fundamental and enforced requirements, 

498 guidance on the appropriate methods to measure SOC is not explicit. As ‘protecting and 

499 improving the quality of soil’ is now overtly mentioned in the new Agriculture Bill for 

500 England (https://services.parliament.uk/bills/2019-20/agriculture.html), we assume that good 

501 soil management must form the foundation of the anticipated Environmental Land 
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502 Management (ELM) scheme that will pay farmers and land managers for providing 

503 environmental benefits: clean air, clean water, reductions in environmental hazards and 

504 pollution, thriving plants and wildlife, enhanced landscapes and mitigation and adaptation 

505 measures to minimise the impact of climate change (DEFRA, 2019). The findings of this 

506 study suggest that the use of simple and well-established technologies to, directly and 

507 indirectly, quantify SOC as a primary soil health indicator and mechanism for carbpn 

508 sequestration are both possible and deliverable within the UK farming industry. 

509

510 5. Conclusion

511 The dearth of relevant studies of SOC stocks in working agricultural soils, to draw on for 

512 robust data comparison to inspire confidence in farmers and land managers to change 

513 practice, creates a fundamental problem can be only addressed by appropriate research and 

514 investment in partnership with farmers. This study was designed to begin to address the need 

515 for good quality data from working farms related to the measurement of SOC using similar 

516 protocols to those used in the UK Countryside Survey, and its relationship with a recognised 

517 soil health indicator used widely in the USA (the ‘slake test’) by comparing topsoils from 

518 different management on the same soil type. We measured SOC contents in arable, ley-

519 arable, permanent pasture and woodland soils, and these bore close comparison to published 

520 values for similar land-use types in the region. Recently tilled soils (arable and ley-arable) 

521 were significantly poorer in SOC than those cultivated more than 3 years ago, and SOC 

522 tended to increase with time since tillage to equilibrium after at least 30 years. Although the 

523 relationship between TST and raw %SOM data was strong, correcting for clay content and 

524 bulk density improved the relationship further. Our first major conclusion is that SOC can be 

525 reliably measured in farmed soils using accepted protocols and related to land management, 

526 and that the database of on-farm measurements should be rapidly augmented to reward 
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527 farmers for sustainable soil management (and carbon sequestration should a reliable carbon 

528 market emerge).

529

530 The soils selected by this study had large clay contents, and the tendency for clay minerals to 

531 form soil aggregates may have reduced the sensitivity of the ‘slake test’. The stability of 

532 aggregates in water scored using a slightly adapted version of the USDA protocol with more 

533 time intervals was used satisfactorily to separate aggregates from different management 

534 types. Furthermore, the WSA scores were directly related to SOC content and TST indicating 

535 that the stability of aggregates from topsoil in water could be used as a simple test by farmers 

536 to monitor changes in their soils after management changes, and to tentatively assess SOC 

537 and soil health, because maintaining SOC is necessary for the stability of aggregates since it 

538 supports the biological agents of soil aggregation. Therefore, our second conclusion is that 

539 WSA scores can be rapidly measured in clay soils and related to SOC stocks and soil 

540 management by land managers and should be included in the development of soil health 

541 toolkits for farmers currently under discussion by policymakers and industry.

542
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801 Table 1 Criteria for scoring soil aggregate stability in water (adapted from Herrick et al., 

802 2001)

Score Aggregate behaviour
0 Soil too unstable to isolate aggregates
1 50% structural integrity is lost within 5 seconds of immersion    

AND < 10% remains after agitation
2 50% structural integrity is lost within 5 – 30 seconds of immersion 

AND < 10% remains after agitation
3 50% structural integrity is lost within 30 – 300 seconds of immersion 

OR < 10% remains after agitation
4 10 – 25% remains after agitation
5 25 – 50% remains after agitation
6 50 – 75% remains after agitation
7 75 – 90% remains after agitation
8 >90% remains after agitation

803

804

Page 30 of 43



For Peer Review

805 Table 2: Mean management and soil variable values by management type and results of analysis of variance (ANOVA), Kruskal-Wallis test and 

806 post-hoc comparison

Manageme
nt type

TST* pHwater Topsoi
l depth

BD %Cla
y

%San
d

%T
N

TN 
stock

%SO
M

%SOCuna

dj

SOCuna

dj stock
%SOCa

dj

SOCadj 
stock

SOCTC 
stock 

WSA
*

Arable 1.0 b 5.8 a 32.8 a 1.0 a 27.2 a 44.2 a 0.4 a 5.3 b 7.3 b 4.3 b 55.6 b 2.7 b 35.0 b 38.3 b 5.3 b
Ley-arable 1.4 b 6.1 a 29.3 a 1.0 a 22.0 a 46.3 a 0.4 a 5.4 b 7.7 b 4.5 b 58.2 b 3.2 b 41.5 b 41.8 b 5.7 b
Permanent 
pasture

27.0 a 5.2 b 35.9 a 1.0 a 21.3 a 48.1 a 0.5 a 
a

6.4 a 9.5 a 5.5 a 71.5 a 4.3 a 55.3 a 51.6 a 7.3 a

Woodland 37.0 a 4.6 c 27.6 a 0.9 a 26.3 a 40.2 a 0.5 a 5.2 b 11.1 a 6.5 a 72.1 a 5.0 a 54.4 a 49.8 a 7.5 a

n 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40
df 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
R² N/A* 0.550 0.156 0.16

2
0.171 0.093 0.25

5
0.407 0.369 0.369 0.415 0.402 0.434 0.415 N/A *

F N/A * 14.680 2.215 2.32
4

2.473 1.226 4.09
7

8.252 7.016 7.016 8.516 8.080 9.211 8.500 N/A *

p-value <0.000
1

<0.000
1

0.103 0.09
1

0.077 0.314 0.01
3

<0.000
1

0.001 0.001 <0.000
1

<0.0001 <0.000
1

<0.000
1

0.001

807 Definitions: TST, time since tillage (y); Topsoil depth, depth of A horizon (cm); BD, soil bulk density (g cm-3);%SOM, percentage soil organic matter by loss-on-ignition (% 
808 dry matter); %SOC, percentage soil organic carbon (derived from Equation 1); unadj/adj, uncorrected or corrected for clay content (derived from Equation 2); TC, total 
809 carbon by combustion using elemental analyser; stock (Mg C or N ha-1

); WSA, stability of aggregates in water, score (Table 1); *Kruskal-Wallis test; values with differing 
810 connecting letters in the same column are significantly different at the α  = 0.05 level (Tukey’s HSD / Dunn’s mean comparison).
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811 Figure captions

812

813 Figure 1

814 Comparison of calculations of %SOC. Mean values (±s.e.) for (a) %SOM (by loss-on-

815 ignition); %SOCunadj. (uncorrected for clay content, using equation 2 

816 [%SOC=(%SOM/1.72)*100]); %SOCadj. corrected (corrected for clay content, using 

817 Equation 3 [%SOC=(%SOM-(%clay*0.1)/1.72)*100]; and %TC (by combustion by 

818 elemental analyser).

819

820 Figure 2

821 Relationship between soil organic carbon (t C ha-1) (a) uncorrected for clay content: SOCunadj. 

822 and (b) corrected for clay content: SOCadj. and time since tillage (years). The four 

823 management types are identified as follows: arable (), ley-arable (), permanent pasture () 

824 and woodland ().

825

826 Figure 3

827 Box and Whisker plot of mean (n = 3) SOCadj stocks (t C ha-1, 2-15 cm depth) versus mean (n 

828 = 9) aggregate stability of soil macroaggregates (~1 cm diameter) in water (WSA) using 

829 scoring system (0-8) adapted from Herrick et al. (2001). 

830
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831 Figure 1

832

833
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835
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837 Figure 2 

838

839
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841
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843 Figure 3 
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849 Table S1 Spearman’s Rank Correlation matrix. R2 values, bold depicts p < 0.05.

Variables TST %SOM %SOCunadj
SOCunadj 
stock WSA BD %Clay %Sand %TN TN 

stock pHwater %SOCadj
SOCadj 
stock

SOCTC 
stock 

Topsoil 
depth

TST 1.00 0.70 0.70 0.74 0.64 -0.29 -0.02 0.00 0.56 0.44 -0.65 0.71 0.71 0.64 0.25

%SOM 0.70 1.00 1.00 0.93 0.49 -0.67 0.10 -0.05 0.82 0.49 -0.41 0.94 0.87 0.73 0.04

%SOCunadj 0.70 1.00 1.00 0.93 0.49 -0.67 0.10 -0.05 0.82 0.49 -0.41 0.94 0.87 0.73 0.04

SOCunadj stock 0.74 0.93 0.93 1.00 0.55 -0.37 0.02 0.03 0.77 0.63 -0.40 0.92 0.94 0.82 0.04

WSA 0.64 0.49 0.49 0.55 1.00 -0.13 -0.21 -0.05 0.47 0.40 -0.63 0.57 0.60 0.71 0.23

BD -0.29 -0.67 -0.67 -0.37 -0.13 1.00 -0.21 0.17 -0.53 0.02 0.25 -0.56 -0.33 -0.20 -0.02

%Clay -0.02 0.10 0.10 0.02 -0.21 -0.21 1.00 -0.31 0.02 -0.16 -0.04 -0.19 -0.28 -0.03 -0.41

%Sand 0.00 -0.05 -0.05 0.03 -0.05 0.17 -0.31 1.00 0.10 0.30 0.11 0.09 0.15 0.11 0.01

%TN 0.56 0.82 0.82 0.77 0.47 -0.53 0.02 0.10 1.00 0.78 -0.31 0.79 0.73 0.70 0.16

TN stock 0.44 0.49 0.49 0.63 0.40 0.02 -0.16 0.30 0.78 1.00 -0.17 0.54 0.62 0.68 0.12

pHwater -0.65 -0.41 -0.41 -0.40 -0.63 0.25 -0.04 0.11 -0.31 -0.17 1.00 -0.42 -0.37 -0.41 -0.07

%SOCadj 0.71 0.94 0.94 0.92 0.57 -0.56 -0.19 0.09 0.79 0.54 -0.42 1.00 0.96 0.76 0.17

SOCadj stock 0.71 0.87 0.87 0.94 0.60 -0.33 -0.28 0.15 0.73 0.62 -0.37 0.96 1.00 0.78 0.16

SOCTC stock 0.64 0.73 0.73 0.82 0.71 -0.20 -0.03 0.11 0.70 0.68 -0.41 0.76 0.78 1.00 0.01

Topsoil depth 0.25 0.04 0.04 0.04 0.23 -0.02 -0.41 0.01 0.16 0.12 -0.07 0.17 0.16 0.01 1.00

850 Definitions: TST, time since tillage (y); %SOM, percentage soil organic matter by loss-on-ignition (% dry matter); SOC, percentage soil organic carbon (derived from 
851 Equation 1); unadj/adj, uncorrected or corrected for clay content (derived from Equation 2); WSA, stability of aggregates in water, score (Table 1); BD, soil bulk density (g 
852 cm-3%); stock (Mg C or N ha-1

); TC, total carbon by combustion using elemental analyser; Topsoil depth, depth of A horizon (cm).
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853 Table S2 Management characteristics and soil properties of sample sites.
854

Farm no. Management type Topsoil 
depth

Soil texture BD pH TN (%)

cm sand:silt:clay g cm3 %
1 Permanent pasture 26 31:41:28 1.05 (0.035) 4.36 (0.114) 0.402
1 Woodland 18 34:39:27 0.94 (0.100) 3.83 (0.142) 0.448
2 Permanent pasture 26 52:23:25 0.98 (0.016) 4.45 (0.115) 0.525
2 Woodland 33 37:31:31 0.91 (0.032) 4.34 (0.385) 0.427
3 Permanent pasture 34 36:43:20 1.00 (0.028) 4.17 (0.162) 0.479
3 Permanent pasture 40 48:36:16 1.10 (0.070) 4.50 (0.095) 0.375
4 Arable 39 56:19:26 1.01 (0.062) 6.01 (0.056) 0.418
4 Permanent pasture 36 56:24:21 1.09 (0.013) 4.52 (0.215) 0.531
4 Permanent pasture 56 53:27:20 0.95 (0.065) 4.37 (0.127) 0.505
5 Permanent pasture 40 51:37:12 0.98 (0.028) 4.13 (0.087) 0.447
5 Ley-arable rotation 38 48:32:20 0.95 (0.062) 5.01 (0.223) 0.455
5 Woodland 35 49:29:22 0.90 (0.042) 3.57 (0.221) 0.504
6 Permanent pasture 22 51:21:28 0.92 (0.047) 4.56 (0.044) 0.643
6 Ley-arable rotation 28 53:25:21 0.97 (0.048) 5.18 (0.066) 0.402
7 Permanent pasture 30 57:33:10 1.14 (0.017) 4.85 (0.050) 0.428
7 Ley-arable rotation 25 44:40:15 1.09 (0.082) 4.97 (0.075) 0.414
8 Permanent pasture 33 53:29:18 0.94 (0.069) 4.62 (0.307) 0.524
8 Ley-arable rotation 30 35:36:29 0.81 (0.202) 5.49 (0.012) 0.448
9 Permanent pasture 42 47:29:24 1.05 (0.027) 4.06 (0.194) 0.460
9 Arable 32 50:30:20 1.05 (0.081) 4.33 (0.068) 0.349
10 Ley-arable rotation 21 60:17:22 1.08 (0.014) 4.78 (0.104) 0.440
10 Ley-arable rotation 20 55:19:26 0.99 (0.082) 5.22 (0.021) 0.405
10 Permanent pasture 30 59:16:25 0.99 (0.052) 4.42 (0.104) 0.522
10 Woodland 17 50:24:26 1.00 (0.039) 4.91 (0.332) 0.386
10 Ley-arable rotation 35 45:31:25 1.13 (0.019) 6.91 (0.012) 0.377
10 Ley-arable rotation 28 56:24:20 0.92 (0.083) 5.77 (0.160) 0.411
10 Permanent pasture 25 49:23:28 1.06 (0.029) 4.62 (0.104) 0.416
11 Ley-arable rotation 33 36:43:21 0.94 (0.148) 4.87 (0.119) 0.532
11 Permanent pasture 34 49:35:16 0.89 (0.102) 4.74 (0.106) 0.735
12 Permanent pasture 35 50:28:22 1.02 (0.071) 5.00 (0.053) 0.618
12 Ley-arable rotation 32 36:43:21 1.11 (0.013) 5.91 (0.180) 0.367
12 Ley-arable rotation 32 42:37:21 1.09 (0.016) 6.21 (0.080) 0.330
13 Permanent pasture 59 40:42:18 0.91 (0.021) 4.86 (0.233) 0.471
13 Permanent pasture 53 53:23:23 1.00 (0.038) 4.75 (0.093) 0.476
13 Woodland 35 32:44:25 0.66 (0.057) 3.34 (0.116) 0.506
14 Permanent pasture 34 45:37:18 1.07 (0.086) 4.66 (0.123) 0.388
14 Permanent pasture 32 43:34:22 1.02 (0.025) 4.76 (0.168) 0.506
15 Permanent pasture 30 39:29:32 0.96 (0.045) 4.17 (0.078) 0.475
15 Arable 35 43:30:28 1.04 (0.082) 4.95 (0.095) 0.387
15 Arable 25 28:36:36 0.94 (0.093) 4.83 (0.112) 0.480

855
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856 Table S3: Multiple Linear Regression: SOCunadj stock (Mg SOC ha-1)
857

No. of 
variables

Variables MSE R² Adjusted 
R²

Akaike's 
AIC

1 Total N (%) 45.778 0.623 0.613 154.901
2 Log10TST (y) / Total N 30.523 0.755 0.742 139.621
3 WSA / Log10TST (y) / Total N (%) 30.852 0.759 0.739 140.954

858
Source DF Sum of 

squares
Mean 
squares

F p-value

Model 2 3479.048 1739.524 56.990 < 0.0001
Error 37 1129.355 30.523
Corrected 
Total

39 4608.403

859
860 Model parameters:

Source Value Standard 
error

T p-value Lower bound (95%) Upper bound (95%)

Intercept 23.045 5.257 4.383 < 0.0001 12.393 33.697
Log10TST (y) 6.438 1.440 4.471 < 0.0001 3.520 9.355
Total N (%) 81.660 12.219 6.683 < 0.0001 56.901 106.418

861
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862 Table S4: Multiple Linear Regression: SOCadj stock (Mg SOC ha-1)
863

No. variables Variables MSE R² Adjusted 
R²

Akaike's 
AIC

1 Total N (%) 58.773 0.600 0.590 164.896
2 Log10TST (y) / Total N (%) 40.708 0.730 0.716 151.138
3 WSA* / Log10TST (y) / Total N (%) 38.291 0.753 0.733 149.594

864 * Based on the Type III sum of squares, WSA does not bring significant information to explain the variability the dependent variable SOCadj stock.
865
866 Analysis of variance (SOC stock clay):

Source DF Sum of 
squares

Mean 
squares

F p-value

Model 3 4207.407 1402.469 36.627 < 0.0001
Error 36 1378.477 38.291  
Corrected Total 39 5585.884

867
868 Model parameters:

Source Value Standard error t p-value Lower bound (95%) Upper bound 
(95%)

Intercept -7.444 8.084 -0.921 0.363 -23.839 8.952
WSA 2.187 1.197 1.826 0.076 -0.242 4.615
Log10TST (y) 4.531 2.114 2.143 0.039 0.243 8.819
Total N (%) 83.004 13.959 5.946 < 0.0001 54.694 111.313

869
870
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871 Table S5: Multiple Linear Regression: WSA
872

No. 
variables

Variables MSE R² Adjusted 
R²

Akaike's 
AIC

1 Log10TST (y) 0.731 0.513 0.500 -10.578
2 Log10TST (y) / Total N (%) 0.722 0.532 0.507 -10.155
3 SOCunadj (%) / Log10TST (y) / Total N (%) 0.742 0.532 0.493 -8.160

873
Source DF Sum of 

squares
Mean 
squares

F p-value

Model 1 29.283 29.283 40.052 < 0.0001
Error 38 27.783 0.731
Corrected Total 39 57.067

874
875 Model parameters (WSA):

Source Value Standard error t p-value Lower bound (95%) Upper bound (95%)
Intercept 5.575 0.222 25.122 < 0.0001 5.126 6.024
SOCunadj (%) 0.000 0.000
Log10TST (y) 1.262 0.199 6.329 < 0.0001 0.858 1.666
Total N (%) 0.000 0.000     

876
877
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878 Table S6: Mean (± 1 s.d.) values of soil properties (pH, bulk density, BD; soil organic 

879 matter, %SOM, WSA) and management type and time since tillage (TST) for each field in 

880 the South Cotswolds from Smale et al., 2017.

881
Farm Management type TST (y) BD

(g cm3)
SOM
(%)

WSA 
(score)

1 Ley-Arable rotation (pigs) 5 0.96 (0.347) 10.08 (0.132) 7
1 Arable 6 1.41 (0.082)   6.00 (0.160) 7
1 Woodland 70 1.16 (0.038)   9.31 (0.847) 8
2 Ley-arable rotation 1 1.10 (0.053)   8.11 (0.136) 5
2 Permanent pasture (sheep) 30 1.00 (0.163)   9.06 (1.8) 8
2 Woodland 100+ 1.08 (0.155)   7.95 (2.217) 6
3 Arable 1 1.34 (0.094)   6.18 (0.179) 6
3 Arable 1 1.34 (0.040)   6.29 (0.090) 4
4 Ley-arable rotation 3 1.07 (0.230)   8.49 (0.225) 6
4 Ley-arable rotation 7 1.17 (0.106)   9.81 (0.356) 7
4 Permanent pasture (cattle/horses) 100+ 0.95 (0.71) 14.03 (1.112) 7
4 Woodland 100+ 0.86 (0.080) 13.34 (0.638) 7
5 Arable 4 1.04 (0.061) 10.62 (0.124) 6
5 Ley-arable rotation 7 0.96 (0.033) 11.37 (0.328) 4
6 Permanent pasture 40 0.83 (0.023) 15.26 (0.273) 8
7 Permanent pasture (sheep/cattle) 30 1.10 (0.018)   9.13 (0.504) 8
7 Woodland 100+ 0.80 (0.088) 12.49 (2.127) 7
7 Ley-arable rotation (sheep/cattle) 3 1.04 (0.055)   8.38 (0.424) 6
7 Ley-arable rotation 1 1.07 (0.058)   8.52 (0.222) 5
8 Arable 1 1.15 (0.053)   9.75 (0.093) 5
8 Ley-arable rotation 1 1.00 (0.123) 10.44 (0.370) 7
8 Permanent pasture 10 1.22 (0.056)   9.87 (0.336) 7
8 Permanent pasture 100+ 0.87 (0.050) 14.47 (0.809) 8
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883 Figure S1: Map showing location of the 15 sample sites on farms in southwest England.
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