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Abstract

We study three distinct coarsening dynamical systems (CDS) and probe the underlying

scaling laws and universal scaling functions. We employ a variety of computational meth-

ods to discover and analyse these intrinsic statistical objects. We consider mean-field type

models, similar in nature to those used in the seminal work of Lifshitz, Slyozov [68] and

Wagner [118] (LSW theory), and statistical information is then derived from these models.

We first consider a simple particle model where each particle possesses a continuous

positive parameter, called mass, which itself determines the particle’s velocity through a

prescribed law of motion. The varying speeds of particles, caused by their differing masses,

causes collisions to take place, in which the colliding particles then merge into a single

particle while conserving mass. We computationally discover the presence of scaling laws

of the characteristic scale (mean mass) and universal scaling functions for the distribution

of particle mass for a family of power-law motion rules. We show that in the limit as the

power-law exponent approaches infinity, this family of models approaches a probabilistic

min-driven model. This min-driven model is then analysed through a mean-field type

model, which yields a prediction of the universal scaling function.

We also consider the conserved Kuramoto-Sivashinsky (CKS) equation and provide, in

particular, a critique of the effective dynamics derived by Politi and ben-Avraham [89].

We consider several different numerical methods for solving the CKS equation, both on

fixed and adaptive grids, before settling on an implicit-explicit hybrid scheme. We then

show, through a series of detailed numerical simulations of both the CKS equation and

the proposed dynamics, that their particular reduction to a length-based CDS does not

capture the effective dynamics of the CKS equation.

Finally, we consider a faceted CDS derived from a one-dimensional geometric partial

differential equation in [120]. Unusually, an obvious one-point mean-field theory for this

CDS is not present. As a result, we consider the two-point distribution of facet lengths.
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We derive a mean-field evolution equation governing the two-point distribution, which

serves as a two-dimensional generalisation of the LSW theory. Through consideration of

the two-point theory, we subsequently derive a non-trivial one-point sub-model which we

analytically solve. Our predicted one-point distribution bears a significant resemblance

to the LSW distribution and stands in reasonable agreement with the underlying faceted

CDS.
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Chapter 1

Coarsening Systems

1 Introduction to Concepts and Methods

1.1 Coarsening: An Overview

Coarsening is the emergence of larger scale structures from smaller ones combined with an

overall decrease in the number of objects. Coarsening phenomena are exhibited in a wide

range of contexts including crystalline rocks [70, 74], nano-suspensions and nano-emulsions

(the ‘ouzo’ effect) [85, 104, 115], ice cream [25], quantum dots [37, 94, 112], astrophysics

[81, 100] and a variety of other materials science contexts [91, 117]. With such a wide

range of areas which exhibit coarsening in one way or another it is perhaps understandable

that such processes have become an important topic of discussion. Understanding these

processes allows for physical processes to be controlled [69] to counter certain negative

aspects, such as coarsening of medicine in a nano-suspension, or promote the positive

aspects, such as controlling quantum dot size. This thesis will primarily deal with so-called

coarsening dynamical systems [48, 68, 118, 122] and so we begin by briefly introducing

some of the common concepts and ideas that will be encountered throughout, together

with an overview of some classical coarsening problems.

A well studied coarsening process is Ostwald Ripening, which dates back to the work of

Wilhelm Ostwald in 1896 [82]. The study of Ostwald ripening received increased attention

some sixty or more years later [68, 118] as it was shown to have important implications

in a wide variety of areas, including many of those listed earlier. To demonstrate the

ideas, concepts and theory that underlies much of the research into coarsening systems,

an abbreviated version of the history of Ostwald ripening is informative. In particular,

12
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since it is known to be representative of the coarsening process in many physical systems;

e.g. ice cream, the ‘ouzo’ effect and quantum dots, as mentioned earlier. Ostwald ripening

involves the increase in average size of regions of one phase (component) of a two-phase

mixture suspended in the other with the loss of smaller regions as they are depleted by

larger ones. More specifically, Ostwald ripening occurs where the quantity of one of the

components is small compared to the other. The quantity of one component per unit of

total volume is known as the phase fraction, k (0 6 k 6 1), and so, in particular, Ostwald

ripening in a binary mixture generally concerns the case where the phase fraction of the

minority component is very small compared to the other component, i.e. k � 1/2; note

that k = 1/2 in a binary mixture would simply mean that we have an equal quantity

of both components. As time progresses it is energetically favourable for some of these

regions of the minority phase to grow, at the expense of other regions which shrink and

disappear, and eventually the mixture will consist of fewer larger regions of the second

phase. The mechanism by which regions grow is known to be by material, in the form

of individual atoms, detaching from relatively high-curvature regions of their respective

components and then reattaching, upon diffusing through the other phase, to its relatively

low-curvature components. More specifically, the energy in the system is associated to the

total perimeter of the regions with an energetic tendency to reduce this total perimeter

in the system [117]. Considering the much simplified 2D case of a set of circles, one can

immediately see that the larger the circle the smaller the curvature and hence larger circles

tend to be more favourable. Note also that in a full physical system regions may grow

to such an extent that they touch one or more other regions. In such a circumstance the

system will coalesce these regions into one single region, reducing the overall perimeter,

and thus furthering the coarsening process.

To illustrate these ideas in an everyday context we consider ice crystals in ice cream,

which are known to display Ostwald ripening behaviour [25]. When the ice cream leaves

the factory the ice crystals present are small and distributed evenly throughout the system.

Water molecules diffuse through the ice cream from ice crystal to ice crystal and, in exactly

the manner of Ostwald ripening, it is thermodynamically favourable for the ice to form

relatively large crystals on average as opposed to leaving many relatively small ones. The

Ostwald ripening process is ultimately the reason why ice cream becomes ‘crunchy’ when

left in the freezer too long.

Another well studied class of problems that exhibit a type of coarsening process are
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thermodynamically unstable mixtures that undergo spinodal decomposition. Spinodal de-

composition is in effect the separation into distinct phases (regions) of a mixture of two

or more components; see, for example, [7, 17, 18, 29, 65, 92, 129]. Driven purely by

the diffusion of the material in the system, spinodal decomposition occurs throughout the

material and is not localised to any specific points. In much the same way as Ostwald

ripening, the system forms distinct regions composed of one of the components of the mix-

ture. Over time these regions, which generally will start small and numerous, combine and

form larger intertwined regions of material [19, 65, 66]. Cahn and Hilliard [19] provided

the first insight into these types of problems, ultimately proposing what is now known

as the Cahn-Hilliard equation as a candidate for understanding and further probing the

chemical processes seen experimentally. The Cahn-Hilliard equation models the evolution

of a mixture from a homogeneous initial state right through to the final coarsening regime.

One can clearly see the coarsening of such systems; a large number of small regions com-

bine into fewer larger regions, e.g. [3, 129]. A typical numerical simulation from [129] is

shown in Figure 1.1 displaying spinodal decomposition where the phase fraction is k = 1/2.

During spinodal decomposition of a mixture with phase fraction around k = 1/2 we see the

emergence of a labyrinthine structure, whereas in the small phase fraction regime, k � 1,

we see localised regions of the minority phase shrinking or growing in the matrix of the

majority phase.

There are two key features which are frequently reported in the literature, the concept

of a growth law, or scaling law, and dynamic scaling. In coarsening systems the growth

in time t of an associated characteristic length scale (a length which is representative

of the scale of the system such as the mean size) is often deduced or derived. Simple

arguments based on the fundamental properties of the individual system often predict

power law type behaviour [62]. For example, in the case of Ostwald ripening under the

assumption that regions never meet and coalesce, more specifically in the limit of small

phase fraction, k → 0+, it is known that the mean radius of clusters, R̄(t), obeys the scaling

law R̄(t) = Kt1/3, where K is some constant [68, 118]. Characterising and understanding

scaling laws and in particular finding bounds on the constant K, or similar constants

in other systems, is a central topic of research into coarsening systems, see for example

[14, 27, 60–62, 83].

Another key property of many coarsening systems is a dynamic scaling effect, alterna-

tively called statistical self-similarity [75], which essentially means that statistics of the
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mobility (1!aC2) into A and (1!aC2)!A , where A is a
suitable constant, and treat them separately. More precisely,
we add the term A!k4C̃n"1(k,t) to the left-hand side of Eq.
"16# and A!k4C̃n(k,t) to the right-hand side of Eq. "16# to
obtain

"1"A$t!k4#C̃n"1"k,t ##"1"A$t!k4#C̃n"k,t #

"$tik•ˆ"1!aC2#

$% ik!„&!C"C3'k!
n

"!k!2C̃n"k!,t #…(r‰k . "18#

If we choose A# 1
2 %max(1!aC2)"min(1!aC2)(, then we

have

!"1!aC2#!A!)A .

Therefore, we can expect that the time-step constraint of the
form "17# is no longer necessary. In practice, it is found that
A# 1

2 is a good approximation to 1
2 %max(1!aC2)"min(1

!aC2)(. Hence, the scheme "18# is only slightly more expen-
sive than Eq. "16#, while the time-step constraint is greatly
alleviated. A second-order variant of Eq. "18# can also be
constructed accordingly.
Our numerical study showed that such semi-implicit treat-

ment of the variable mobility Cahn-Hilliard equation made it
possible to use large time steps without losing stability and

accuracy. Consequently, we can perform long-time simula-
tions with large system sizes using the Cahn-Hilliard equa-
tion with a variable mobility.

IV. COMPUTER SIMULATION

Our simulations were performed on a square domain dis-
cretized using a lattice of 1024$1024 grid points. Periodic
boundary conditions were employed. The overall scaled
composition variable is zero "which corresponds to a real
composition of 0.5 or critical composition#. The system was
initially prepared in a homogeneous state by assigning a ran-
dom number to each lattice site. The random numbers were
uniformly distributed between 0.1 and !0.1 as the initial
condition, corresponding to a high-temperature initial state
where the composition deviation from the average value is
only caused by fluctuations. The structure function, the scal-
ing function, the pair correlation function, and the typical
length scale, which were often used to characterize the dy-
namical system, were calculated after selected time steps.
Averages were performed over four simulation runs using a
different set of random numbers for each initial state. The
discretizing grid size is chosen to be 1.0 and the time step $t
is 1.0. For the same parameters for the local free energy and
spatial grid size, an explicit scheme will require a time-step
size which is more than two orders of magnitude smaller
than 1.0, and much smaller than the dynamic time scale of
the Cahn-Hilliard equation. The Cahn-Hilliard equation with
a variable mobility was computationally a factor of about 2.7
slower than Cahn-Hilliard equation with a constant mobility
because extra computation time is needed to do the extra
Fourier transforms in Eq. "18#. Furthermore, since the
growth rate is much slower when the coarsening process is
interface diffusion controlled, longer times were needed to
reach the scaling regime.

FIG. 1. Morphological patterns during spin-
odal decomposition and subsequent coarsening
for bulk-diffusion-controlled dynamics: "a# t
#100, "b# t#2000, "c# t#10 000, "d# t
#30 000.

PRE 60 3567COARSENING KINETICS FROM A VARIABLE- . . .

Figure 1.1 – A typical example of a numerical simulation of a binary mixture undergoing spinodal

decomposition. Images captured at various time points: (a) t=100, (b) t=2000, (c) t=10000, (d)

t=30000, [129].

system remain the same when suitably scaled by the characteristic length scale. The pre-

cise circumstances under which a system will display dynamic scaling are not well under-

stood, its frequent appearance being a mystery which invokes many interesting questions

on coarsening systems and other systems alike [6, 14, 26, 35, 41, 110, 114]. As an exam-

ple of this behaviour, if we take a system where each object has an associated mass, mi(t),

we may suppose that at time t the one-point distribution of mass is given by ρ(m, t). If

we then take the characteristic length scale of the system, 〈m〉(t) say, we may find that

the one-point distribution of mass satisfies the following relationship,

ρ(m, t) =
1

〈m〉(t)P
(

m

〈m〉(t)

)
,
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where P is a universal one-point scaling function for the system. Note that the function P
is constant in time and so this function is an invariant of the evolution. The consideration

and formulation of the function P in appropriate contexts forms a cornerstone of much

of the research into these types of systems, since knowledge of relatively little statistical

information would allow us to understand much of the overall evolution of the set of

objects [11, 21, 22, 26, 30, 45, 48, 68, 72, 80, 86, 110, 118]. In fact, this property can

be roughly discerned in Figure 1.1, taken from [129], by considering the later two images,

wherein the system has settled into the scaling regime, following the transient evolution

away from the homogeneous initial data. If one imagines ‘zooming in’ on the earlier time

stage it is not hard to imagine that qualitatively they would both look the same, that

is, under suitable spatial re-scalings, the size and shape of regions as well as the overall

pattern would appear similar. This neatly illustrates the definition of dynamic scaling.

The key questions which arise in coarsening models are frequently related to under-

standing these scaling laws and universal scaling functions and so let us now consider the

types of approach commonly used in studying these coarsening systems. One can take

a purely analytical approach to try and understand the evolution. This type of analysis

often discovers various bounds on the characteristic length scale and growth laws within

the system, an excellent overview of which can be found in [14], and similarly in [62]. This

type of approach can be very informative, although since they focus only on the charac-

teristic length scale of the system they tell us little about the statistics of the ensemble,

e.g. [60, 61, 83].

Conversely, so-called coarsening dynamical systems (CDS) [122] allow us to understand

both the associated scaling laws and statistical information about the system. Many

coarsening systems are derived from multi-scale partial differential equations [48, 120,

122] which due to their multi-scale nature are often complex to simulate and understand.

By considering the effective dynamics of these systems it is possible to reduce them to

a derived coarsening system which maintains the essential coarsening structure of the

overall system; this is what we term a CDS. This derived dynamical system contains both

derived dynamics and derived coarsening laws which can then be analysed independently

from the original problem in order to understand the underlying scaling laws and the

statistical structure of the scaling functions. By adopting this method it is hoped that we

can discover statistical information which is meaningful in the context of the full governing

system. It is this approach which will primarily be adopted in this thesis. Note, however,
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that a CDS need not have a physical context to make it worthy of study. Indeed, the

system encountered in Chapter 2 is developed free from physical context, purely as means

to further understand coarsening systems in general.

1.2 Mean-Field Theories

In the seminal theory of Lifshitz, Slyozov [68] and Wagner [118] (LSW theory) a mean-

field theory is developed to approximate the statistics of the radial-distribution of droplets

which arise in the very low minority phase Ostwald ripening regime, k → 0+. The theory

assumes that each radial cluster of the minority phase evolves in relation to a mean-field,

which reflects the mean cluster size, and isn’t fundamentally influenced by its immediate

neighbours. Ultimately, the growth rate of any individual cluster is effectively determined

by a relation between its size relative to the mean.

Many coarsening systems, including Ostwald ripening and spinodal decomposition,

are shown experimentally and computationally to exhibit ensemble type behaviour, that

is, objects such as a universal scaling function exist [11, 12, 14, 21, 22, 34, 36, 58,

68, 72, 81, 86, 117, 118, 130]. We would like to better understand and explain this

type of behaviour. In particular, we would like to be able to take a given CDS and

extract information on the associated scaling laws and universal scaling functions. Mean-

field theories are one approach developed to achieve this. In a typical CDS the entire

ensemble of objects will evolve together. More specifically, each object is not free to evolve

entirely on its own. Objects might, for example, evolve in a different manner depending

on the ‘size’ of its neighbouring objects, e.g. [30, 80]. Mean-field theories are then derived

models which introduce the concept of a mean-field which captures information about

the entire ensemble, such as the characteristic length scale, but retains no information

on the specifics of any of the individual objects. This system-wide mean-field is then

used to simplify object evolution by comparing an object’s individual information to the

information contained within the mean-field, before evolving accordingly. In LSW theory

[68, 118], for example, the mean-field contains information on the mean radii of all the

clusters and evolution proceeds by those smaller than this size shrinking and those larger

growing. By considering a mean-field model of our CDS we hope to be able to use the

simplified structure to predict and understand statistical information such as the scaling

laws and universal scaling functions.

So, the general principle of a mean-field theory is to take an individual object or
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possibly objects and assume that instead of being surrounded by the rest of the system

it only ‘feels’ the mean-field effect, which approximates the rest of the system. As an

example consider a water droplet as part of a ‘breath figure’ [30], seen for example on

cold window panes, but instead of having each droplet surrounded by others of all shapes

and sizes, as in the physical system, we can consider what effect the surroundings have on

each particle on average, the mean-field effect. In this case the mean-field simply contains

information on the mean droplet size and as a result we have reduced the full system

evolution to essentially a discussion about individual droplet size relative to the current

mean.

One of the key merits of mean-field theories is their ability to predict self-similarity

for a given system. Ostwald ripening, for example, displays this scaling behaviour [68,

117, 118]. The LSW theory famously predicted the form of the scaling distribution of

cluster radii for Ostwald ripening, together with its associated scaling law. As already

mentioned, the origins of self-similarity, or dynamic scaling, remain mysterious and so it

is interesting to note that mean-field theories, such as the LSW theory, can provide some

insight into this interesting property. Self-similarity itself should allow for the full complex

system to be better understood by consideration of relatively few statistics [62, 80, 121].

Use of a mean-field type theory to simplify a complex system often allows us to probe

the specific nature of the single scaling distribution, predicted by self-similarity, as well

as the associated scaling law. Further to this, the mean-field theory often allows us the

opportunity to predict this single distribution directly.

Contained within many mean-field theories are assumptions on the interactions and

relationships within the system. Often it is assumed that neighbouring objects are uncorre-

lated, sometimes referred to as a ‘random order approximation’ [21, 76]. In some systems,

an object’s evolution might depend on the immediate surroundings and so statistically we

require information on the joint probability of finding various pairs, triples etc. of objects

that lie next to each other. To perhaps clarify this idea further, consider the probability

distribution of ordered pairs ρ(x, y), the probability of finding two neighbouring objects

with respective attributes x and y. A simple consequence of probability theory then says

that if x and y are independent then the joint distribution is the product of the single

one-point distributions, that is ρ(x, y) = ρ(x)ρ(y). Note that this wouldn’t be the case if

they weren’t independent but the approximation is then to assume that they are, in fact,

independent and so we can then make use of this kind of factorisation. Such factorisations
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are frequently employed when developing mean-field theories [11, 21, 22, 30, 72, 80, 86]

and often prove fruitful in situations where objects are not truly independent but the

correlation between them is weak.

Ultimately mean-field models serve as a tool to gain information on the statistics

of a CDS by a reduction to a simpler closed model on n-point statistics (for some n).

Developing these types of theory for a given coarsening system offers the possibility to

predict characteristics, such as dynamic scaling, and statistical information, such as the

scaling distribution and scaling law.

1.3 System Types

1.3.1 Coarsening Dynamical Systems

Coarsening dynamical systems (CDS) entitles systems which evolve via some prescribed

deterministic dynamics together with some rule to govern coarsening events e.g. anni-

hilation or coalescence. Here we have a set of objects which evolves via a prescribed

dynamics, which generally makes direct reference to neighbouring objects and/or the sys-

tem as a whole. The Ostwald ripening models within the LSW theory [68, 118] are a

paradigm example. This thesis is primarily concerned with the study of CDS. A frequent

source of CDS are multiple-scale partial differential equations, from which effective dy-

namics are derived and it is these dynamics which form the CDS [19, 46, 48, 120, 122].

A paradigm example of this approach, and of key significance for our future studies, is the

CDS derived from the convective Cahn-Hilliard equation via a novel matched-asymptotic

analysis, appearing in [122].

In any general coarsening system we want to understand and theoretically predict the

scaling laws and universal scaling functions. Studying CDS is useful because their rela-

tively simple closed dynamics is generally more amenable to analysis than considering the

original multiple-scale partial differential equation alone. More specifically, we can often

more easily simulate and gather data from the CDS than the original partial differential

equation. Since the CDS is derived from the original problem we expect the statistics

of both to closely match and so considering the CDS allows us to better understand the

statistics of the original problem. Developing predictions of the universal scaling functions

and scaling laws using the CDS can then be translated back into an understanding of

the original problem, thus informing us in ways which may not be directly accessible by

considering the original problem alone.
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1.3.2 Probabilistic Coarsening Systems

Probabilistic coarsening systems essentially have the same overall setup as previously men-

tioned; a set of objects and generally some neighbour relations or perhaps an ordering

within the system [1, 123]. The coarsening in these systems is different from the dynamic

type of system and comes from use of a prescribed probabilistic rule which updates the

system in some particular way, e.g. [22, 86]. A neat example of this kind of system is

given by so-called min-driven systems where events occur sequentially and at each stage

we find the smallest object(s) (assume, for example, that each object has mass) and then

combine this with one or more other objects in the system, chosen by use of the probabilis-

tic rule [21, 30, 43, 72]. We then have several possible options such as; do we combine

to a neighbouring object or any object in the system, is the object combined as a whole

or split into smaller parts, etc. [86]? This leads to a wealth of possible systems, each of

which displays coarsening as expected since, by definition, we continually remove small

objects and create larger ones. Interestingly, in some circumstances it is useful to identify

a coarsening dynamical system with a probabilistic counterpart.

1.4 Mean-Field Evolution Equations

A common outcome of research within coarsening systems is the derivation of an equation

governing the evolution of the associated probability distribution which can hopefully be

solved to predict this distribution [11, 30, 48, 80]. A prediction of the dynamical system

scaling distribution together with the associated scaling law form the key phenomena

to understand. As already mentioned, this is one of the main outcomes of the LSW

theory; under dynamic scaling a prediction of the scaling distribution for Ostwald ripening.

Consideration of these evolution equations often shows that they support a scaling ansatz

solution which in turn allows for a time dependent evolution to be reduced to a time

independent equation for the single universal scaling function, e.g. [11]. In a general

system we want to understand and theoretically predict the distribution of some aspect

of the system, e.g. mass or length, but interactions or correlations within the system

may make this a particularly difficult task. LSW theory was the first example which

used a mean-field to predict dynamic scaling and find the scaling laws and one-point

scaling distribution, in this case, of cluster radii. Since then, similar methods have proved

fruitful in a range of coarsening systems, e.g. [1, 11, 14, 21, 22, 30, 48, 72]. For a given

coarsening system, one writes down an evolution equation based on the specific dynamics
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of the system. Where the dynamics of the system are complex but with limited correlations

between objects, one can make use of an appropriate mean-field model to attempt to make

some headway.

Smoluchowski’s coagulation equation [116] and the Fokker-Planck equation [50] are

two equations which are frequently used as the basis for mean-field evolution equation

discovery, with the former used primarily in probabilistic systems where there is little

or no dynamics and the latter in deterministic dynamical systems. These two equations

essentially capture the same information but the model equations are modified to take

account of the specific nature of the system involved. We refrain from exploring these

in detail here and instead prefer to simply discuss their use and general outcome. See

the introductory material presented in Chapter 2 for more information on Smoluchowski’s

equation and Chapter 4 for the Fokker-Planck equation.

In both cases these equations provide a general framework for writing down an evo-

lution equation for the probability distribution of a given system. By considering how

the objects in the system change in time, either by a probabilistic rule or driven by some

velocity, we hope to be able to characterise all the ways in which objects can disappear

(sinks) and all the ways in which objects can be created (sources) during the system evo-

lution so that as time evolves we know how many objects of a particular size remain. In

both the probabilistic and the dynamic case the equations effectively contain terms which

directly capture the rate of these events and whether we gain objects of a particular size,

or indeed lose them, and/or characterise the deterministic flow governed by the dynamics.

Often we can make direct use of these equations if we know the relative probabilities,

rates of events or velocity laws as appropriate, e.g. [11, 80]. Characterising these sinks

and sources is equivalent to understanding the boundary conditions on the domain on

which the distributions are defined.

Interestingly, despite there being many systems which evolve in different manners and

by entirely different means, often one finds that qualitatively the distribution of objects

predicted by some mean-field theories are the same, for example the one-point distributions

found in [11] versus [68, 118] (LSW theory). This leads us to believe that there are so-

called universality classes of coarsening systems, a name used to indicate that despite

the separate problems being fundamentally different, their underlying statistical structure

is very similar. This is evidently useful since it allows us to tie together systems which

otherwise might be considered unique and develop a theory which is, in fact, common
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to both. Later we will discuss how the distributions from Chapter 3, Chapter 4 and the

prediction made in the LSW theory can be considered to be, in some sense, within the

same universality class.

2 Objectives and Approach

We begin, in Chapter 2, by considering a simple model which displays coarsening be-

haviour, an aggregating, ballistic particle (ABP) model. In this model we have a set of

point objects, or particles, each with some initial scalar attribute which we call mass, mi.

We locate the particles on a periodic line and subject them to a prescribed velocity law

which is based on a particle’s individual mass namely, V(mi) = 1/mp
i , where p is a fixed

positive integer. Each particle’s differing speed causes them to collide and merge with one

another, conserving mass.

This ABP model exhibits dynamic scaling with a scaling law of the form 〈m〉(t) ∼
t1/(p+1), where p is from the velocity law and 〈m〉(t) is the mean mass. We derive this result

using a simple scaling argument and find further agreement by conducting an extensive

numerical study. In this case, we are able to show two features of the dynamic scaling; that

the system reaches a unique scaled distribution and that the system displays the stated

power-law exponent. Confirmation and discussion of the resulting distributions and law is

made with use of further numerical simulations. Following this, we probe perhaps the most

interesting aspect of this type of model by varying the velocity exponent p. Modification

of this exponent causes significant change in both the distribution and the scaling law.

Both of these aspects are probed further by use of a series of numerical simulations.

We continue by showing that in the special limit p → +∞ the system behaves like

a min-driven system in that the smallest mass combines ‘instantly’ at each step. There-

fore, this system, which for finite p values was a coarsening dynamical system, can be

considered to be of probabilistic type. We then apply a mean-field theory to this system

which predicts the structure of the scaling mass distribution. This predicted distribution

is then compared to various finite p value distributions providing strong evidence that this

is indeed the limiting distribution. These simulations and analysis confirm and extend the

outcomes of [53].

In Chapter 3 we study the coarsening dynamics of the conserved Kuramoto-Sivashinsky
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(CKS) equation, focusing in particular on a CDS claimed to represent the leading order

behaviour [89]. We begin, for completeness, with a detailed numerical study of the CKS

equation using a variety of numerical schema, including adaptive grid methods, and dis-

cuss the output therein. The multiple-scale nature of the CKS equation requires careful

consideration to resolve the boundary layers. Ultimately we settle upon use of an implicit-

explicit hybrid numerical schema. We then compare CKS simulation data from our chosen

code to data gathered by directly simulating the proposed dynamical system, ultimately

finding that the suggested dynamics do not contain a sufficient amount of information

to properly capture the full system evolution. Evidence of this is presented by making a

direct comparison of numerical data.

In the final chapter, Chapter 4, we consider Watson’s coarsening dynamical system

derived from a 1D geometric partial differential equation in [120]. It involves a sequence

of facet lengths li which evolve via the dynamics,

V(li) = (−1)i
(

1

li+1
− 1

li−1

)
;

see also [122] where the same dynamics is derived from the convective Cahn-Hilliard

equation, and [119] for the link to an underlying geometric PDE. It further involves a

novel ternionic coarsening event deduced from the underlying partial differential equation

[119, 120, 122].

We present extensive numerical simulations which not only confirm the dynamic scaling

of one-point statistics already observed in [120], but go further to identify dynamic scaling

of a variety of n-point statistics where n = 2 or n = 3. Reflecting the dichotomy in the

dynamics between even and odd lengths, we demonstrate the existence of two distinct

two-point distributions. Namely, one for even-odd ordered pairs (l2i, l2i+1), and one for

odd-even ordered pairs (l2i−1, l2i).

A novel feature of Watson’s CDS is that it does not admit any obvious one-point

mean-field treatment. As a result of this breakdown we therefore seek to develop a higher-

order mean-field theory focusing in particular on formulating a two-point theory. Unlike

in the one-point case we succeed in deriving a Fokker-Planck equation for the two-point

distribution of odd-even pairs. We exploit an interesting symmetry property in this two-

point model to extract an effective one-point theory. We are able to explicitly calculate

the associated scaling state’s one-point distribution, which compares reasonably, though

not exactly, with our numerical data on the original CDS.
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2.1 Summary

In summary we present analysis of three distinct coarsening dynamical systems. In all

three of the following chapters we present a wide range of numerical data to both support

and guide further analytical efforts. In Chapter 2 we present a simple ballistic particle

model, and numerically demonstrate that in a special limit the system behaves like a min-

driven probabilistic system. Chapter 3 provides a critique of dynamics already derived

from a specific PDE context, and in particular we numerically demonstrate a significant

disparity which invalidates the claimed dynamics. In the final Chapter 4 we develop a novel

two-point mean-field theory for Watson’s material-science inspired CDS, and succeed in

the explicit prediction of a one-point distribution which compares reasonably with direct

simulation of the CDS.



Chapter 2

Aggregating, Ballistic Particle

(ABP) Models

1 Introduction and Background

Aggregation models, sometimes called coagulation models, of the type we consider here

have been studied since at least the beginning of the twentieth century and have maintained

the same essential structure since then, e.g [116]. The basic set up involves a set of objects

(particles, clusters, lengths etc.) which generally evolve in some manner together with a

rule which governs the process of object aggregation, that is the joining of two or more

objects. Unlike other processes such as Ostwald ripening where an individual object might

slowly decrease in size over time, due to loss of individual atoms for example, here we are

concerned with the case where an object is redistributed as a whole onto one object or

perhaps in parts onto several objects.

As a simple example, consider a set of sticks of various lengths, pick one by some

means, random or otherwise, and glue it to the end of one of the other sticks, again chosen

by some means. Thus we have removed a stick from the set and made another stick longer.

In this example each object has no intrinsic evolution, the only possible events are these

joining events, and the aggregation procedure takes an entire stick without splitting. This

simple example demonstrates the essential aspects of an aggregation model; a set of objects

(sticks) and a rule for aggregation (gluing). Many such examples can be constructed or

derived in various contexts such as physical chemistry, astronomy and biological systems.

More specifically aggregation models have been used in aerosols, clouds and fog [38, 96,

98], schools of fish [77], deep ocean particles [59, 71] and even the development of structure

25
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in the universe [2, 100]. In each case the objects and rules vary but all follow the same

simple pattern of aggregation. Frequently there is no intrinsic evolution of the objects

in these models, only these discrete events (although they may move around between

events), and so in the wider context of coarsening systems we consider them to be of

the probabilistic coarsening type. In fact these types of system could be viewed as the

prototypical probabilistic coarsening system. Note that, as might be expected, they do

satisfy the essential features of a coarsening system; a reduction in the number of objects

combined with an overall increase in the ‘size’ of the remaining objects.

The first significant contribution to the theory came from the seminal work of Smolu-

chowski [116] who showed interest in aggregation models. The lasting outcome of his re-

search was a means to predict statistical information, such as the particle size distribution,

and effectively described what is now known as the Smoluchowski coagulation equation,

a general framework for predicting statistical properties of a system. The Smoluchowski

coagulation equation allows for the calculation of a predicted evolution of a number den-

sity distribution by taking the rate at which events happen, or are predicted to happen,

together with information on the current distribution and then calculating the rate of

change by considering appropriate gains and losses of objects, for example; are particles of

a particular size created and at what rate does this happen and equally are they removed

or involved in an aggregation, and at what rate? There are two equations which fall under

the Smoluchowski name, one which involves discrete valued objects (think objects with

integer mass) and a second which has continuous valued objects (think real valued stick

lengths). Fundamentally they have the same aim but slightly modified statement to cover

the different distributions of the individual objects. Each equation governs the number

density n(x, t), where the number of objects with parameter in [x, x+dx] is then n(x, t)dx

and where x represents the ‘size’ of the object and t time. In the case of discretely valued

objects the equation then reads,

∂

∂t
n(x, t) =

1

2

x−1∑
y=1

K(y, x− y)n(y, t)n(x− y, t)− n(x, t)

∞∑
y=1

K(x, y)n(y, t),

where n(x, t) is then defined continuously in time and at discrete spatial values. In the

continuously valued case the equation has a slightly different form,

∂

∂t
n(x, t) =

1

2

∫ x

0
K(y, x− y)n(y, t)n(x− y, t) dy − n(x, t)

∫ ∞
0
K(x, y)n(y, t) dy,

where in this circumstance n(x, t) is defined continuously both temporally and spatially.

Note that in each case time is truly continuous. In both casesK is known as the coagulation
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kernel and can take the same form regardless of which equation is used. The coagulation

kernel in effect describes the rate and likelihood at which particular events happen. The

first term on the right hand side of these equations governs the creation of an object with

size x from one of size x− y and one of size y and is dependent on the rate this happens,

K(y, x−y), and the number of those components present, n(y, t) and n(x−y, t). The half

present in these terms is just to ensure we don’t double count each aggregation event, this

is the source term. The second term in each equation, which is the sink term, describes

the loss of objects of size x by collision with smaller objects, that is an object of size x is

no longer of that size if it is involved in an aggregation event. Again this term is simply

dependent on the number of such objects already present and the associated aggregation

rates. Varying the formulation of these kernels allows for various types of process to be

explored, some typical examples include,

K(x, y) = 1, K(x, y) = x+ y and K(x, y) = xy,

where the first constant kernel is a process which has a fixed rate regardless of object size

and for the remaining two the chance of events depends on the size of the objects. Many

others such kernels exist and have been studied, for further detail and background see, for

example, [1, 123]. Following this general pattern of characterising sinks and sources al-

lows many such systems to be analysed. Dynamic scaling is often exhibited in aggregation

models and this can aid the process of understanding the size distribution and ultimately

gaining a better view of the system as a whole.

Mean-field type arguments like those discussed in Chapter 1 are often employed in

these type of coarsening systems. Primarily this is achieved in the typical manner by

assuming that the objects surrounding the chosen aggregating object are, in some sense,

mean or uncorrelated. Another way of looking at this is to reconsider the stick example

from earlier and suppose that the sticks are in some random order. Then, once we select a

stick to join to another, instead of picking another at random we pick a neighbouring stick.

Assuming there is no correlation to the neighbouring sticks seems consistent with them

being placed randomly, that is, since they are in random order there isn’t any connection

between a stick and its neighbour. If, however, instead of being placed randomly the

sticks were, in fact, placed in a particular order we might expect the neighbouring sticks

to have some relationship to the chosen stick e.g. the sticks could be in ‘large-small-large’

order. The simplest mean-field idea is then to assume that these correlations do not exist,
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sometimes called a ‘random order approximation’ [21, 76]. Often in this context this

type of argument is not necessarily explicitly outlined but hidden in a general statement

about choosing the second stick, which the first is joined to, at random. Of course, if we

are simulating a physical system this might not be completely accurate as the objects we

are considering might have some ordering or correlations between them. Examining these

correlations in the system by gathering simulation data allows us to consider their impact

on the system as a whole. A system which exhibits little or no correlations between objects

would be a good candidate for the simplest mean-field approach.

Several attempts have been made to characterise and predict scaled distributions for

a wide range of similar systems with varying levels of success [12, 21, 22, 34, 36, 58, 72,

81, 130] and we hoped to be able to achieve this here. In these similar systems, however,

much like the example of sticks mentioned earlier, there is no dynamics between events and

so the whole procedure is essentially probabilistic in nature. Further to that these entirely

probabilistic type models often have some very simple procedure for selecting which object

is to be aggregated next, in many cases this is the minimum sized object. These min-driven

systems [21, 22, 30, 43, 72] take the minimum sized object and combine it to another

before repeating. In the context of the earlier stick example this means the first method

of selection is simply to find the shortest stick. Where no such method of selecting the

next object to collide exists there is increased difficulty in understanding the probabilities

associated to coarsening events.

1.1 Objectives and Approach

This chapter is concerned with a class of aggregating, ballistic particle models and in

particular considers the probability distributions and features therein. Our model con-

sists of a set of N particles located on a periodic line, each with individual mass mi,

i ∈ {1, 2, . . . ,N}. Each particle is then subject to the velocity law, V(mi) = 1/mp
i , for

some fixed, common, positive value of p. As different particles have different mass there

will be a variety of velocities and ultimately this will lead to the collision of two or more

particles. When particles collide we see the justification of the ‘aggregating’ part of the

model name as the particles simply merge into one, conserving mass. We make no consid-

eration of a particle’s shape or physical size but simply assume the mass is contained at

a single point location on the line. Thus two (or more) particles which find themselves at

the same location simply add mass together and become one particle. The system then
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continues from here with the current particle mass always dictating the velocity of the

remaining particles. With the system and velocity law now known we can investigate the

dynamic scaling properties of the system. A simple heuristic argument leads to the scaling

〈m〉(t) ∼ t1/(p+1) for the mean mass, 〈m〉(t), in the system. We then take these predicted

values for various p and check their consistency against numerical simulations.

Now that we have our base system set we proceed by first fixing p = 1 and probing the

scaled distribution of mass in the system. A simple check of the distribution at various

times confirms the dynamic scaling property and allows us to talk about the distribution

associated with each value of p. By this we mean the unique scaled distribution which is

considered to be the distribution associated to the full system ensemble if instead of being

on a finite, periodic line it were on the infinite line. We detail the method of gathering and

averaging statistics across a large number of independent finite simulations which allows

us to probe the makeup of the associated infinite system. We then consider several of the

features displayed in this distribution. Of particular interest is the emergence of a vacuum

interval near the origin. In a small region close to the origin we see that there are no

particles present of these small sizes. In practise this means that below a certain size,

relative to the mean, there are no particles of this size. This appears to be as a direct

result of the particular velocity law applied since small mass moves faster than larger mass

and so the smallest mass in the system is most likely to quickly hit a neighbouring particle

thus removing it from the system. As the mean grows and in general particles have grown

in size we still see the same behaviour since if there are any small masses remaining they

quickly catch their neighbours and are removed.

Following on from this we consider the distributions as p → ∞ and compare the set

of distributions in particular paying attention to the features exhibited. The size of the

vacuum interval is considered across the range of p along with the apparent finite support of

the distribution and the emergence of a bump on the tail of the distribution. Consideration

of these features leads us to believe that for large p values the system approaches some

limiting system and so we aim to explore this possibility. By showing that the behaviour

of the system can essentially be controlled for large enough p we do indeed see that in

this circumstance the system behaves as though it were a so-called min-driven model. We

characterise this model and using a Smoluchowski type approach we are able to predict

the associated distribution for this min-driven model. Subsequent to our analysis it was

found that this model was derived in a much different context, that of coarsening droplets
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on a thin film [30]. We can then draw comparisons to the finite p cases from which we can

see strong evidence to support the claim that this is the limiting distribution as expected.

1.2 Summary

We begin in Section 2 by specifying a class of ballistic particle models which vary via a

parameter p in the associated velocity law. We detail the rules for aggregation and the

reduction of an infinite set of problems to one scaled canonical problem for each value of p.

In the context of these ballistic models we propose a scaling rate for both the mean length

and mean mass, based on a simple heuristic argument, and consider numerical validation

of these scaling rates. These scaling rates are shown to depend on the parameter p in the

velocity specification and we demonstrate good agreement between these predicted values

and those from numerical simulations.

Following on from this, in Sections 3 and 4, we carry out extensive numerical simula-

tions of the system for various p values and in particular we focus on p = 1 to demonstrate

the features of the mass distribution which we will consider across a range of values of p.

Correlations in the system help us understand the statistical makeup of the set of particles

and so we numerically investigate if any such correlations do exist.

As we shall demonstrate the distribution of mass appears to approach some universal

distribution and we conjecture that this is found by taking the limit as p → ∞ in the

velocity law. In Section 5 we then deduce that for large p the system behaves like a so-

called min-driven system in that the particles of smallest mass are strictly those which

collide next whilst the other particles in the system remain essentially fixed. This leads

into Section 6 where we consider a model of coarsening known as the paste-all model

which we analyse and from which we deduce a mean-field type prediction of the mass

distribution. Simulation data from the paste-all model together with various data from

the ballistic particle model are then compared to this predicted distribution in Section 7

showing a increasingly good agreement as p is increased, as expected.
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2 Introduction to the ABP Model

2.1 Overview

The model we study consists of a set of particles on a line such that each particle has some

individual mass mi and location xi, with i an indexing of the particles; i ∈ Z. The particles

are then ballistic in nature in that each particle moves with a velocity prescribed by some

function, F(mi, p), and maintains this velocity until a collision takes place. When particles

collide their masses are combined and one new particle is formed, conserving mass, thus

at each collision there is a net loss of one particle and so the system coarsens. Initially

the system is seeded with a random distribution of particle masses, via use of a uniform

distribution, and with uniformly distributed location.

2.2 Specific Dynamics and Velocity Law

Each particle moves in a prescribed manner based on its mass alone, therefore the velocity,

V(mi), of a particle of mass mi must be specified. The choice of law used for the system

is the following,

V(mi) := F(mi, p) =
dxi
dt

=
1

mp
i

, (2.2.1)

where p is some fixed number common to all particles and we shall generally consider

p ∈ N. We call p the velocity exponent and, as already mentioned, discussion is restricted

to the case where p > 0. We see, therefore, that particles of ‘large’ mass move slower

than ‘small’ ones and, by considering the standard orientation of R, that all particles

drift to the right. Collisions occur when faster particles catch and meet their right hand

neighbour(s)1. When particles collide they form a new particle with mass the sum of

the colliding particles, hence there is no net loss of mass from the system and so mass

is conserved. It is clear that this model is a coarsening dynamical system, derived from

simple ballistic dynamics and aggregation of particles as the coarsening rule.

In principle this model can now be simulated, however, the fact that the system is

still infinite in nature, since the particles live on an infinite line, presents a problem.

To get round this we restrict attention to some finite region and then impose that this

region has periodic boundary conditions with the hope that with enough particles this

will mimic the ‘full’ system. If we take a region of length L which is highly populated

1It is possible but rare for more than two particles to all meet at the same time, depending on the

spatial configuration and the associated masses
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with a finite number of particles, N?, then we expect simulations on this region to mimic

the corresponding infinite system so long as there exists a separation of scales, by this we

require that the average distance between particles, 〈l〉(t), is much less than the length

of the domain, in other words 〈l〉(t) � L. Since in the finite system 〈l〉(t) = L/N?, we

must equivalently have L/N? � L, and hence 1� N?. Thus if we have a large number of

particles on the finite domain we expect the separation of scale condition to hold. Note

that if the total mass in the finite system is given byM, then we can define the following

two quantities,

〈m〉(t) =
M
N (t)

and 〈l〉(t) =
L
N (t)

,

where N (t) is the current number of particles in the system. One further point we note, as

far as simulations are concerned, is that the length of the domain L and the total mass of

the systemM can be any (positive) number, however, by suitable scaling of the equations

it is possible to show that the system can be reduced to the following canonical problem.

2.3 Canonical Problem (Non-dimensionalisation)

In this section we discuss the non-dimensionalisation of the problem. To do this we consider

the following generic scalings of mass, position and time,

mi = MiM, xi = XiL, t = T t̂. (2.3.1)

Inserting these scalings into the velocity law (2.2.1) we have,

MpL
t̂

dXi

dT
=

1

Mp
i

.

Then by taking the free parameter t̂ and setting it equal to MpL we are returned to the

original velocity law, in non-dimensional form, namely

dXi

dT
=

1

Mp
i

.

We also note that these scalings reduce the domain to unit length and the total mass of

the system to 1 and hence we have our canonical problem.

Canonical Problem:

Any problem of this form, with length of domain L and total mass of the N? particles

M, can be reduced to the canonical problem of N? particles with total mass M? = 1 and

length of domain L? = 1 by a suitable scaling of location, mass and time, as in (2.3.1).
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The form of the velocity law remains unchanged.

Therefore, we can reduce a whole class of problems to simply simulating one for each

velocity exponent, i.e. simulating N? particles on a periodic, unit-length domain (L? = 1)

with unit total mass (M? = 1),

dxi
dt

=
1

mp
i

, xi ∈ [0, 1), M? =

N?∑
i=1

mi = 1.

2.4 Adjusting for Convection

We have already mentioned that the particles all drift to the right but we now wish to

adjust for this general convection as follows. Between collisions we can calculate the

average velocity of the particles, namely,

〈V〉(t) :=
1

N (t)

N (t)∑
i=1

V(mi), (2.4.1)

where N (t) is the current number of particles in the system. We then make use of this

average to counter the the fact the system tends to always drift to the right. We do this

by redefining each particle’s velocity by subtracting the average velocity from each, hence,

dxi
dt

= V(mi)− 〈V〉(t) :=
1

mp
i

− 〈V〉(t). (2.4.2)

As a result, particles whose velocity is larger than average will move to the right, smaller

than average to the left and average will remain fixed. It is easy to show that the time to

a collision between two (or more) particles is dependent on the difference in their speeds

and hence the dynamics of the system remains unchanged, since the constant (between

collisions) 〈V〉(t) cancels. This slight modification allows a more straightforward method

of visualisation since we no longer have a situation where particles always drift to the

right. A typical illustration of the evolution of the system can be found in Figure 2.1.

2.5 The Scaling Hypothesis

Here we present an analytical argument for the scale invariance of the model. Loosely

speaking if a system exhibits scaling symmetry then, statistically, the scaled system at a

later stage should be indistinguishable from the unscaled earlier stage. To see if this holds

for this system we consider the following scalings on length, mass and time,

l→ λl m→ λrm t→ λqt.
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Figure 2.1 – Typical evolution diagram showing the particle positions (red lines), aggregation

events (intersection of lines) and the adjustment for convection (particles can move left and right)

with the time axis, t, on a log scale.
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We want to consider the exponents r and q and try to establish fixed values for these.

Since the system coarsens, the average length of the system will increase in time. We want

the later time to be statistically indistinguishable from the earlier time so we need to scale

the length of the system so that the average length remains constant. This, however, will

violate the fact that the mass per unit length is constant (one of the constraints of the

canonical system) and so we are forced to scale mass by the same factor, hence r = 1.2

Secondly, the scaled system needs to evolve on an adjusted time scale to again remain

statistically indistinguishable from the unscaled version. If we consider the above scalings

in the velocity law we have the following,

λp+1

λq
dxi
dt

=
1

mp
i

,

and so to keep this invariant under the scaling we are forced to choose q = p + 1. Hence

we have the following scalings of length, mass and time,

l→ λl m→ λm t→ λp+1t. (2.5.1)

Now, let us suppose that the mean mass, 〈m〉(t), is described by some function of time,

f(t), so that we have,

〈m〉(t) = f(t).

This description must also hold true after scaling the variables, as in (2.5.1), so we must

have,

〈λm〉(t) = f(λp+1t),

which simplifies as following, since λ is just some multiplier inside a mean,

λ〈m〉(t) = f(λp+1t).

This multiplier λ will vary with time as the system evolves so we make a particular choice

of λ to simplify the right hand side. By choosing λ = t
− 1
p+1 we see that the right hand

side reduces to some unknown constant,

t
− 1
p+1 〈m〉(t) = f(t−1t) = f(1).

From this we can easily read off the following dependence,

〈m〉(t) ∼ t
1
p+1 . (2.5.2)

2Consider, for example, that λ = 1/2. Then the length of the scaled system would be 1/2 but the total

mass on that length is still 1, hence we are forced to scale mass by 1/2 to be consistent.
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The same argument holds for the average length, 〈l〉(t), and so we have the same depen-

dence on t. This leads us to the following predicted scaling results,

〈m〉(t) ∼ t
1
p+1 and 〈l〉(t) ∼ t

1
p+1 . (2.5.3)

2.6 Numerically Validating the Scaling Hypothesis

We present numerical data to validate the scaling hypotheses (2.5.3). The system was

simulated once per velocity exponent and the data for number of particles, N (t), and

current time, t, gathered. We simulate the problem is in its canonical form and so the

average mass and length are both equal to 1/N (t). In Figure 2.2 we see strong evidence

that the scaling hypothesis does indeed hold by plotting 1/N (t) ≡ 〈m〉(t) ≡ 〈l〉(t) against

t on a log-log plot

Figure 2.2 also highlights two other points of note. First, the starting number of

particles in each subsequent simulation was ten thousand as this was seen to be sufficient

for the system to relax into the scaling regime (the straight areas which closely match

the slope of the dotted lines). Inputting a higher number of particles simply ‘extends’ the

whole diagram but provides no additional information. We see that two thousand particles

could have been used but nevertheless still found it computationally efficient to use the

larger ten thousand particle initial condition. Second, we see that the scaling regime

has set in at different times depending on the velocity exponent, however, the fraction of

particles remaining in each case appears to be constant. We make use of this fact and

consider the system to be scaling when a tenth of the initial particles remain, based on

starting with ten thousand, and for it to persist until around a fortieth remain, shown as

the shaded area in Figure 2.2.
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Figure 2.2 – 1/N (t) ≡ 〈m〉(t) ≡ 〈l〉(t) plotted against time, t, for various p values on a log-

log scale showing strong evidence to support the scaling hypothesis. Long, straight dotted lines

indicate the predicted scaling results from (2.5.3), 〈l〉(t) ≡ 〈m〉(t) = t
1

p+1 , and the grey shaded area

indicates the region where we believe that consistent scaling is taking place, regardless of velocity

exponent. Numbers in parenthesis indicate the initial number of particles
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3 Large Scale Simulations and Associated Distributions for

p = 1

In this section we summarise the findings for simulations with p = 1. The initial config-

uration in each case was ten thousand particles each with a random mass and a uniform

distribution of locations. The initial configuration of locations was found to have no im-

pact on the long term behaviour so there is no penalty in choosing one fixed configuration.

As mentioned earlier there is no need to start with more particles as ten thousand was

found to be sufficient to allow the system to relax into the scaling state. The problem was

then scaled into the canonical form, i.e. total mass and length normalised.

The same essential procedure is used for each value of p simulated so we give detail of

the update rule and data gathering methods here only.

3.1 Update Rule

The simplicity of the system means that we can easily calculate the time to the next

collision of particles. After each event we simple calculate this collision time, ∆t, update

the whole system by this time ∆t, aggregate the appropriate particles and repeat. There

is no need to take small time steps or use a more accurate integration step since between

collisions each particle has fixed velocity.

3.2 Data Acquisition

Data acquisition was carried out in two distinct ways - a standard histogram method

and the kernel density (KD) method. For both it was found that a more suitable ‘time’

coordinate for collection of data was the fraction of particles lost. So, as already mentioned

earlier, we choose to collect data within the region N?/10 to N?/40, where again N? is

the initial number of particles, as this is where we believe consistent scaling to be taking

place.

3.2.1 Histogram Method

Each mass of the system at the recording time was compared with the average mass at

that time. So for each mass mi we calculate mi where,

mi :=
mi

〈m〉(t) , (3.2.1)
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and we then place ‘one’ into the appropriate bin of the histogram; typically we use two

hundred histogram bins. At this point we have collected N (t) items into the histogram

bins, where N (t) is the number of particles at the recording time. We then scale the height

of each bar by N (t) × bw, where bw is the width of one bin, so that the histogram does

reflect a true probability distribution, i.e. the area covered by the histogram bars is 1.

Since we expect, and can show, that the system scales (see Fig. 2.3) we choose to sample

the system at ten different times within the scaling region per run and first average these

to build one distribution. These individual distributions are then averaged over thousands

of runs to create a system mean.

We believe, and have seen evidence, that the average mass scales with time, so we

expect this scaling to be quite informative. We see in Figure 2.3 that the distribution

function plotted using the histogram method at three separate times do indeed coincide

via this scaling as they are almost indistinguishable. Figure 2.3 was found by performing

thousands of runs and recording at three ‘times’ within the scaling region. The values at

the same times across all the runs were then averaged to find the corresponding curves.

This figure motivates our decision to sample at ten times in the scaling region as mentioned

above. Note that the curves plotted are drawn as the line passing through the midpoints

at the top of each bar in the histogram. This curve plotting method will often be used

when the histogram method is implemented.

3.2.2 Kernel Density (KD) Method

The second method used for data acquisition was the Kernel Density method [13, 101]. For

this method we gather a large list of masses relative to the current average at the recording

time as in (3.2.1) but instead of binning this into a histogram with a finite number of bins

we simply make a note of all these numbers. What we end up with is a massive collection

of points on the m axis. The method then proceeds by placing a ‘small’ kernel function

centred around each of the points on the m axis and summing these functions across

all the points. Essentially if we have N points we place N kernel functions, each with

integral 1/N so that after summing we have an estimate of the probability distribution

function. Therefore if we have a set of points {mi}, we calculate the estimated probability

distribution function, %, as follows,

%(m;mi, h) =
1

Nh

N∑
i=1

K

(
m−mi

h

)
, (3.2.2)
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where K is the chosen kernel function, N is the total number of points used and h is the

bandwidth, which needs to be calculated or estimated. For our purposes we chose to use

the following kernel function,

K(X) =
1√
2π
e−

X2

2 , (3.2.3)

a standard Gaussian curve. We can easily read off that each kernel has integral h and so

the integral over m of the estimated probability distribution function, %, is exactly 1.

Unfortunately methods of finding the optimal bandwidth, h, require knowledge of the

density function we are trying to estimate. To break this loop we made use of the histogram

method as a basis for what we predict the distribution to look like. This allowed us to close

in on a suitable first guess at the bandwidth. Further estimates were then found by building

the distribution with a choice of input bandwidth and then calculating the optimal output

bandwidth based on that distribution until a good match of input and output values was

found. This value was then used to build the single estimated distribution function.

The KD method has two main advantages over the histogram method. First, the

method, with this kernel, returns a smooth probability function by construction. The sim-

ple closed form of the estimator then allows, for example, derivatives of the distribution to

be easily calculated. Second, the method removes any reliance on selection of bin centres

or how many bins to use, which would affect the output of the histogram method.3

A comparison of the methods can be seen in Figure 2.4. Unless stated otherwise, any

distributions shown will either be the result of thousands of runs with 10 pools of data

per run and a histogram created (H) or thousands of runs with one pool of data per run

and a KD estimate created (KD). Which method is being used will be indicated where

appropriate. Note that the underlying simulations are identical and this choice of method

only reflects two ways of visualising the data.

3.3 Errors

With such a wealth of data available we are in an excellent position to present some analysis

of the errors involved. Error calculation depends on which method is being employed.

3For example, if we have very few bins we wouldn’t expect to be able to build up a reasonable distri-

bution.
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Figure 2.3 – (H) Mass distribution for p = 1 at three distinct times within the scaling region,

indicated in Figure 2.2, clearly depicting the dynamic scaling nature of the system.
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Figure 2.4 – Histogram method vs. Kernel Density method for p = 1 showing a very good match.

Note that the KD method has a larger peak but qualitatively they are the same.
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3.3.1 Histogram Method

As data is gathered the program calculates the variance, V arN , and standard error, SEN ,

in the data,

V arN =
1

N

N∑
i=1

(Xi −XN )2 SEN =

√
V arn
N

, (3.3.1)

where Xi indicates each value used in deriving the mean, XN . From this we can indicate

confidence intervals in our mean values, 95% confidence intervals arise by taking 1.96 ×
SEN . Typical confidence intervals are shown in Figure 2.5 where we see strong evidence

that our mean value is accurate.

3.3.2 Kernel Density (KD) Method

To calculate the standard error in the KD method we use the following formula,

SEN (x) =
1√
N

√√√√ 1

N − 1

N∑
i=1

[
1

h
K

(
m−mi

h

)
− %(m;mi, h)

]2

, (3.3.2)

=
1√
N − 1

√√√√1

h

(
1

Nh

N∑
i=1

[
K

(
m−mi

h

)]2
)
− %(m;mi, h)2. (3.3.3)

Computationally we calculate the following two quantities,

%(m;mi, h) =
1

Nh

N∑
i=1

K

(
m−mi

h

)
,

which is simply the estimated value at m, as before, and,

ψ(m;mi, h) =
1

Nh

N∑
i=1

[
K

(
m−mi

h

)]2

.

The standard error is then,

1√
N − 1

√
ψ(m;mi, h)

h
− %(m;mi, h)2. (3.3.4)

We can then find 95% confidence intervals in our expected values by plotting 1.96 ×
SEN (x) above and below the estimated distribution %(m;mi, h). Where appropriate we

will plot the following three curves: the estimated distribution %(m;mi, h) and the error

envelope curves %(m;mi, h) + (1.96× SEN (x)) and %(m;mi, h)− (1.96× SEN (x)).
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Figure 2.5 – (H) Mass distribution in scaling regime for p = 1 with 95% confidence intervals. The

green dots indicate features to be discussed later; on the left the end of the vacuum interval and

on the right the 5% cut-off value.
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3.4 Vacuum Interval

The vacuum interval is the region on the m axis between 0 and the first point where we

have recorded some mass, shown in Figure 2.5. Physically this represents the fact that the

smallest masses move the fastest and so are most likely to be involved in collisions early

on in the simulations. By the time we reach the scaling state the very small masses have

been involved in collisions leading to the emergence of the vacuum interval. The scaling

of the distribution, and in particular the vacuum interval, does lead us to one interesting

conclusion. As the system evolves and collisions take place the average mass increases,

however, the ratio of the smallest mass in the system to the average mass remains constant.

In other words the length of the vacuum interval remains constant. This is interesting

because it confirms the assertion that the smallest particles are the most likely to collide

and therefore be removed from the system. If this weren’t true we’d expect to see some

particles of a small mass remain at later times. We also note that, unlike some other

systems, there is no mechanism by which a small particle can be created. We expect the

smallest masses to be more likely to be involved in collisions and there is no way to create

new small particles, these two facts go some way to understanding the emergence of the

vacuum interval.

One interesting piece of information we will study later is the size of the vacuum

interval as we change the velocity exponent p. As we shall see it does not remain at a

fixed length and, in fact, increases in size as p is increased.

3.5 Support of the Distribution

At a glance the distribution appears to have finite support, reaching a zero value somewhere

in the region of 3. It is, however, difficult to accurately obtain the exact value. Instead

we probe the value which splits the distribution in two, with 95% to the left and 5% to

the right, since numerically this is easier, and more accurate4, to obtain. We will call this

point the 5% cut-off.

As with the vacuum interval this value does not remain fixed as we increase the velocity

exponent p. As we increase p we find that the 5% cut-off decreases in value.

4The estimated distribution function becomes noisy in the tail making it hard to estimate a true value

for finite support, if indeed it does have finite support. This noise may, in fact, be indicative of semi-infinite

support.
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4 Increasing p (p > 1) and Correlations

In this section we present some data and analysis for the distributions associated with

higher p values. As we increase the velocity exponent p several changes in the distribution

become apparent. Two have already been mentioned earlier, namely the increase in the

size of the vacuum interval and the decrease of the 5% cut-off. A third consequence of

increasing p is the emergence of a ‘bump’ on the tail of the distribution, this feature is not

at all apparent in the case p = 1 above.

Data acquisition was carried out using the same two methods from the p = 1 case,

namely the histogram (H) and kernel density (KD) methods. Figures will indicate, where

appropriate, which method is being used.

4.1 Vacuum Interval

In Figure 2.6 we see that the vacuum interval persists as p is increased but that its extent

is not fixed, in fact its size increases as p increases. We can see, however, that as p is

increased the size doesn’t increase indefinitely but appears to converge on some value in

the region of 0.55. Evidence for this can be seen in Figure 2.7 where we have plotted the

size of the vacuum interval against 1/p. Asymptotically we find a value of 0.557397 as

p→∞. The peak of the distribution doesn’t appear to alter its position significantly as p

is increased and as a result the left end of the distribution appears to get closer to a sharp

jump in value. Compare this to the case when p = 1 where the distribution rises steeply

but not in the sharp manner seen for higher p values.

4.2 Support of the Distribution

The tail of the distribution also varies as p increases with more of the distribution shifted

to the left resulting, along with the change in the vacuum interval, in the increase in

the size of the peak. This effect can be clearly seen by the decrease in the value of the

distribution in the tail section. The result is that the 5% cut-off drifts to the left as p

increases, however, as is the case for the vacuum interval, the point appears to converge

in on some value rather than varying indefinitely, see Figure 2.7.
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Figure 2.6 – (H) The distribution function for several values of p. We note three important features

that are apparent as p increases: The increase in size of the vacuum interval, the reduction in the

value of the 5% cut-off and the emergence of a ‘bump’ on the tail of the distribution.
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Figure 2.7 – Vacuum interval and 5% cut-off values for various p values together with the associ-
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tail became noisy for p values higher than 10 and so we found inconsistent results when trying to
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the cut-off value. The black dotted line indicates the asymptotic value at infinity of 0.557397 for

the vacuum interval.
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4.3 ‘Bump’ on Distribution Tail

Perhaps most surprising is the emergence of a ‘bump’ on the tail of the distribution. This

feature is not at all apparent for low p values but becomes quite visible as p is increased.

Beyond p = 10 we see a clear bump at around twice the value of the minimum/peak of

the distribution. This is quite an interesting and unusual feature of the distribution.

One possible explanation is that there is no mechanism in the model by which a particle

of mass less than twice the minimum (relative to the average) can be created. Whilst not

physically realistic, since they would have the same velocity, two particles of minimum size

could combine to form one particle of twice that value. Therefore the ‘bump’ appears to

be related to the difference in dynamics for different sections of the distribution. Above

twice the minimum value there is an ability within the system to create a particle of that

size. Below that value there is no mechanism for creation so it seems reasonable that this

part of the distribution is subject to a different processes during evolution.

4.4 Correlations

We consider the correlations within the system for various values of p. By this we mean

that we look to see if there is any general relationship between the masses, for example,

is a ‘large’ mass generally followed by a much smaller one? To do this we make use of the

standard Pearson product-moment correlation coefficient, rX,Y , defined as

rX,Y =
E(XY )− E(X)E(Y )√

E(X2)− E(X)2
√
E(Y 2)− E(Y )2

,

which allows us to probe any linear relationships between random variables X and Y ;

e.g. rX,Y = 1 indicates a perfect linear relationship. The general form simplifies greatly

here since we will always be considering the correlation of variables which have the same

individual expected value, hence,

rX,Y =
E(XY )− E(X)2

E(X2)− E(X)2
.

In our case we can replace X and Y by appropriate masses and this is then simply written,

rmi,mi+k(k) =
E(mimi+k)− E(mi)

2

E(m2
i )− E(mi)2

,

where, i, as before, is an indexing of the particles, and k is an integer indicating which

mass away from the current particle we are checking the correlation for, e.g. k = 1 are the

right neighbours to the mi. All of the expected values can then be replaced by appropriate
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averages since there is no weighting of a particular outcome and so the calculation of these

values is then straightforward. We then take an average of all these values for each k to

gauge the overall correlations for the full, infinite system. Note that we need only consider

right hand neighbours to each particle since a simple reindexing of terms shows that the

left correlations are identical. Figure 2.8 shows the results of these calculations. Here

we see that there appears to be little or no correlation for even one particle away. This

suggests that there is no ‘ordering’ to the system in the sense mentioned earlier. If we have

a particularly large particle, for example, there is nothing to suggest that its neighbour is

likely to be of any particular size.
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Figure 2.8 – Correlation coefficients for pairs of particles for a range of distances apart for the

ABP model for various values of p. Note that for all values of p the correlation value at 0 is exactly

1, and as such has been omitted from the figure for clarity of the remaining values. Even for one

particle away we see that there is very little correlation between the mass of the particles for all

values of p.
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5 System Dynamics for Large p and ‘p→∞’

We have detailed some of the characteristics associated with an increasing p value. We

now carefully consider what happens to the system as p is increased. We show first that if

p is large enough then the minimum mass particle is the next to collide, regardless of the

distance to its neighbour or the difference in size of the neighbouring particles. Second,

we show that the other particles only move by a very small amount in the time taken for

this collision to take place. Effectively we show that once p is large enough the system

behaves in a particular way regardless of the distances or size differences involved.

In Figure 2.6 we see that even for p > 10 the distributions are very similar. This

provides some evidence that for large enough p we expect the system to behave in a very

similar manner regardless of the exact value of p.

5.1 A ‘Min-Driven’ System

For all values of p we can easily calculate the time taken for a pair of particles to collide,

subject to the fact the the mass to the right is larger than the mass to the left. Suppose

we consider the particle mi and its neighbour mi+1 a distance li away, then the time for

these to collide, ti, can easily be calculated as follows,

ti =
li

V(mi)− V(mi+1)
,

=
li

1

mp
i

− 1

mp
i+1

,

=
lim

p
im

p
i+1

mp
i+1 −mp

i

. (5.1.1)

From this we can clearly see, since we insisted that mi+1 > mi, that ti is some positive

time depending on the masses, mi and mi+1, the distance between the masses, li, and the

velocity exponent p.

Now consider the mass mi+1. Since we have insisted it is larger than mi we must have
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that mi+1 = (1 + λi)mi for some λi > 0. Inserting this in (5.1.1) we have,

ti =
lim

p
i ((1 + λi)mi)

p

((1 + λi)mi)p −mp
i

,

=
lim

2p
i (1 + λi)

p

(1 + λi)pm
p
i −mp

i

,

=
lim

2p
i (1 + λi)

p

((1 + λi)p − 1)mp
i

,

=
lim

p
i (1 + λi)

p

(1 + λi)p − 1
=: lim

p
iΛ(p, λi), (5.1.2)

where Λ(p, λi) := (1 + λi)
p/((1 + λi)

p − 1).

This expression (5.1.2) is valid for all values of p so we consider p = 1 as an illustrative

example of the different effects that the terms on the right hand side can have. For p = 1

we have,

ti =
limi(1 + λi)

λi
.

Now, it is clear that if either of li or mi is very small then the time will correspondingly

tend to be very small. Alternatively, if λi is very small then this will tend to make the

time very large. From this we see that all three factors play a role in determining the time

ti and that none can be disregarded as irrelevant.

We now consider the case for much larger p values (p � 1). First let us consider the

term Λ(p, λi) and examine its behaviour as p gets large. We have (1 + λi) > 1 and it is

also clear that the numerator is always larger than the denominator for all p and so,

Λ(p, λi) > 1, ∀p > 0.

Formally it is easy to see that the limit as p→∞ is equal to 1,

lim
p→∞

Λ(p, λi) = lim
p→∞

(1 + λi)
p

(1 + λi)p − 1
= 1.

Since Λ(p, λi) > 1 and the limit as p→∞ is equal to 1 it seems reasonable that for finite

p we can make Λ(p, λi) arbitrarily close to 1 so long as we choose p large enough. Suppose

that ε1 > 0 and p is fixed, then it is clear that for some ε1 we have,

Λ(p, λi) =
(1 + λi)

p

(1 + λi)p − 1
< 1 + ε1,

or equivalently,

Λ(p, λi)− 1 =
(1 + λi)

p

(1 + λi)p − 1
− 1 =

1

(1 + λi)p − 1
< ε1.
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In other words, since Λ(p, λi) is finite for finite p, we can always choose some ε1 > 0 so

that the inequality holds. Rearranging the inequality as follows yields a restriction on p

that must be satisfied in order for the inequality to hold true for completely arbitrary ε1.

1

(1 + λi)p − 1
< ε1,

1 < ε1((1 + λi)
p − 1),

1 + ε1

ε1
< (1 + λi)

p,

ln

(
1 + ε1

ε1

)
< p ln(1 + λi),

µi(ε1) :=
ln
(

1+ε1
ε1

)
ln(1 + λi)

< p. (5.1.3)

What we have shown, provided p is large enough to satisfy (5.1.3), is that the time for

two particles to collide can be approximated by ti = lim
p
i , to arbitrary precision. This is

achieved by ensuring that the missing factor in the time calculation, namely Λ(p, λi), is

arbitrarily close to 1. If we let µ(ε1) be the maximum of all the µi(ε1) and ensure that

p > µ(ε1) then we can guarantee this arbitrary precision for all the pairwise calculations

in the system.

So far we have shown that the time to collision between two particles can be approx-

imated to arbitrary precision by ti = lim
p
i , however, it remains to be shown that the

minimum particle does indeed collide next. Even with this simplification, if one of the li

is exceptionally small it could result in a smaller collision time for that pair of particles

than the minimum mass collision time.

Let m? be the minimum mass in the system, assumed, for now, to be unique. We call

t? the time for the minimum to collide and l? the distance from the minimum mass to its

right neighbour. We want to guarantee that the collision time for this particle is strictly

smaller than the collision time for any other. We have assumed that there is a unique

minimum mass and so,

m? < mα 6 mβ 6 . . . ,

where the m• 6= m? are the other masses which are smaller than their right neighbour in

the system and hence have valid collision times. As an immediate consequence we have,

(m?)p < mp
α 6 mp

β 6 . . .

and multiplying through by l? we have,

l?(m?)p < l?mp
α 6 l?mp

β 6 . . .
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For each of the other masses in the system we have then one of three possible scenarios

(we use α as an example),

i) l? = lα: Then immediately l?(m?)p < lαm
p
α,

ii) l? < lα: Then l?(m?)p < l?mp
α < lαm

p
α, or

iii) l? > lα.

In the third case the result cannot be immediately read off. In fact, for relatively low p

values, it is this possibility which allows particles other than the minimum mass to collide

next. As already mentioned, if the distance is very small, the size of the mass may be

irrelevant in determining the next collision.

We want the following condition to be true,

l?(m?)p < lαm
p
α,

or equivalently
(m?)p

mp
α

<
lα
l?

(< 1) .

From this inequality we can derive a condition on p which will ensure that the condition

is true,

(m?)p

mp
α

<
lα
l?
,

p ln

(
m?

mα

)
< ln

(
lα
l?

)
,

p >
ln
(
lα
l?

)
ln
(

m?

mα

) =: να. (5.1.4)

As a result as long as p > να we can guarantee that l?(m?)p < lαm
p
α is true, as required.

If we let ν be the maximum of all the ν•, then as long as p > ν we can guarantee that

t? is indeed the minimum time to collision, in other words the minimum mass collides

next. Note that a very similar argument can be made to ensure that all the inequalities

are strict, which in turn guarantees that collisions are binary and not otherwise.

In summary, provided p > max{µ(ε1), ν} we can guarantee that the minimum mass

particle collides next.
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5.2 Minimal movement of particles mi 6= m?

Each of the other particles in the system will move by some distance in the time taken for

the minimum to collide. We show that for sufficiently large p that this distance can be

arbitrarily small.

The distance any other particle will travel, li, will be equal to [V(mi)]t and we know

the amount of time elapsed, namely l?(m?)p, so we have,

li = [V(mi)]l
?(m?)p =

1

mp
i

l?(m?)p = l?
(
m?

mi

)p
.

Note that since m? is the minimum mass m?/mi < 1. Suppose that ε2 > 0 and that the

following holds,

l?
(
m?

mi

)p
< ε2.

Rearranging this condition leads us to the following,

l?
(
m?

mi

)p
< ε2,(

m?

mi

)p
<
ε2

l?
,

p ln

(
m?

mi

)
< ln

(ε2

l?

)
,

p >
ln
(
ε2
l?

)
ln
(
m?

mi

) =: σi(ε2). (5.2.1)

In other words, as long as p > σi(ε2) we can guarantee that the particle mi moves by a

distance less than ε2. The denominator in (5.2.1) is always negative whilst the numerator

depends on the size of ε2/l
?. Consider the situation where ε2 is very small, then the

numerator will be large and negative. We see, however, that this condition also allows us

to guarantee that a particle will move by less than any distance we specify so long as p is

large enough. Let σ(ε2) be the maximum of all the σi(ε2), then if we specify some value

for ε2 we can be assured that all the particles larger than the minimum move less than

the distance ε2 provided p > σ(ε2). Note also that the distance the minimum moves, l, is,

l =
1

(m?)p
d?(m?)p = l?,

for all values of p as expected. In summary, provided p > σ(ε2) the other particles move

by an arbitrarily small amount, namely less than some value ε2, whilst the minimum mass

particle collides.
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Simulations of this system for various values of p suggest that the minimum mass is

almost always unique, however, there is no theoretical underpinning to this, so we need to

make a slight adjustment to our argument for the case when the minimum is not unique.

Suppose that the minimum is not unique and there are, in fact, two masses of minimum

size. This argument can be easily extended to more than two masses. Each has mass m?

but it is likely that the distances will be different. If the distances are also the same then

the collisions will both have the same estimated time, by the argument above, and so there

is no issue in assuming they both hit at the same time. Suppose the distances to collision

are l̂ and l? where l̂ < l?, then the times to collision will satisfy,

l̂(m?)p < l?(m?)p.

If p is large enough so that both times are strictly smaller than all the remaining masses

in the system we can simply evolve the system by the time l̂(m?)p which leaves the other

minimum mass particle, now unique, a distance l?− l̂ away from its neighbour. Since it is

now the unique mass it follows the pattern illustrated earlier and collides next. In this way

we can sequentially move all the minimum particles whilst the others all remain essentially

fixed over this time scale. As a result we can guarantee that all the minimum particles

collide whilst the others barely move at all.

The only other possible special case is when two particles of minimum size are next

to each other. In this case we simply move the right most particle in the sequence of

two or more until it collides, followed by the others in the same fashion until all the min-

imum particles are gone and the process repeats. It should be stressed, however, that

numerical simulations of the system from various initial conditions rarely lead to either

of these outcomes, in other words the minimum mass is, much more often than not, unique.

Combining these two arguments together we reach the following conclusion. If the

following condition on p holds, namely p > max{µ(ε1), ν, σ(ε2)}, then we can guarantee

two things about the evolution of the system. First, the minimum mass particle(s) is

the next to collide and second, during the time to this collision the other particles in the

system move by an arbitrarily small amount.
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6 One Sided ‘Paste-All’ Model

In this section we give some detail of another model, the so-called ‘Paste-All’ model [30],

and in the next section draw comparisons between this model and the aggregating, ballistic

particle, ABP, models above.

6.1 Introduction to the ‘Paste-All’ Model

This model, originally proposed in a different context [30], consists of a random distri-

bution of masses on the line. The evolution of the system proceeds in a straightforward

manner, first we search for the smallest mass and then this mass is ‘pasted’ onto one of its

neighbours, with equal probability, creating a larger particle. The number of particles in

the system thus goes down and the system coarsens. If the minimum mass is not unique

we simply perform the ‘pasting’ procedure on all of the minimum particles and assume

that two minimum size particles are not pasted together or equivalently that two minimum

sized particles are not adjacent.

It can be easily shown that there are only weak correlations within the system (See

Figure 2.9), and so each time we paste a particle onto its neighbour we are simply making

use of the probability distribution of the masses to find the likelihood of finding a particle

of a particular size. Assuming that neighbours are unrelated and have no correlation in

their size could be considered a type of mean-field assumption, however, since there are no

correlations here we expect any predicted evolution of the distribution to be exact. This

type of model is evidently of the probabilistic type.

We make one slight alteration to the model to fit better with what happens in the

ABP model.

6.1.1 One Sided ‘Paste-All’ Model

The one sided ‘Paste-all’ model is identical to the ‘Paste-all’ model other than the fact we

always choose to paste to the mass to the right of the minimum particle.

Interestingly, since there are no correlations in the system, we expect the one sided

version to have the same distribution as the two sided version. This is because we only

keep track of the distribution of masses, the lack of correlations means there is as much

chance of having a particular mass to the right as there is to the left, and so we alter the

distribution at each stage in exactly the same manner. In other words, since the mass
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Figure 2.9 – Correlation coefficients for pairs of particles a range of distances, k, apart for the

Paste-all model. Note that the correlation value at 0 is exactly 1, and as such has been omitted from

the figure for clarity of the remaining values. We see that generally there is very little correlation

in particle mass for even as little as one particle distance away.
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to the left and right of the minimum are governed by the same distribution it makes no

difference if we paste to the left or right. This likely wouldn’t be the case if there were

correlations and certainly wouldn’t be if there were asymmetric correlations.

6.2 Discretely Distributed Mass - One Sided Paste-All Model

This model is a one sided ‘Paste-all’ model with each mass, mi, taking some integer value,

i.e. mi ∈ N, ∀i. As in the ABP model we have a finite number of particles and i is an

index of the particles. The initial distribution of masses is fixed but we can easily use any

distribution, e.g. uniform, Gaussian. Let j ∈ N be the number of iterations passed and

we also therefore let 0 iterations passed be the initial condition. We can then define the

following quantities,

nj(m) - The number of particles of mass m after j iterations,

Nj - The total number of particles after j iterations,

and hence N0 is the initial number of particles. We choose to consider the fraction of

particles of a particular mass after j iterations rather than use the number directly. We

denote this by ρj(m) and it is defined as follows,

ρj(m) =
nj(m)

Nj
.

If we denote the minimum mass by m?(j) then the system evolves in the manner

described earlier. Take all the particles of minimum mass, m?(j), and join them at random

onto their right neighbours. This is equivalent, because of the lack of correlations, to taking

all the minimum sized particles and picking another sized particle at random, subject to

the distribution of masses, and summing their masses together. We assume this procedure

is not done sequentially but synchronously, i.e. if there are 10 of minimum size we select

10 other particles from the remaining bunch and add the masses at once. Thus, at each

iteration there is only one change in the distribution function.

Making use of the particle fractions it is easy to find the probability of a particular

particle size being hit, denoted ρ̃j(m). This is simply the fraction of particles of a particular

size, ρj(m), modified to take account of the removal of the minimum mass particles, in

other words divided by 1− ρj(m?),

ρ̃j(m) =
ρj(m)

1− ρj(m?(j))
. (6.2.1)
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We also note that since there are no particles of mass less than the minimum that the

following is immediately true,

ρj(m) = 0, m < m?(j).

We now want to build a difference equation for the evolution of the system. This

is achieved by simply considering how many particles of a particular size there are then

adding in any that are created of that size and subtracting any that are lost from that

size, all of which is subject to the probability of such a collision happening. We consider

the fraction of a mass m > m? after one more iteration, ρj+1(m) and relate it back to the

previous iteration as follows,

ρj+1(m) = ρ̃j(m) + ρj(m
?(j))ρ̃j(m−m?(j))− ρj(m?(j))ρ̃j(m). (6.2.2)

The first term on the right hand side is the adjusted fraction since we have removed the

minimum masses. The second term is the creation of a particle of mass m by the collision

of the minimum, m?(j), and another particle of size m−m?(j). The third is the loss of a

particle of mass m by being hit by the minimum mass and thus increasing in size.

Due to the discrete nature of the mass distribution we can see that the minimum mass

obeys the following,

m?(j + 1) = m?(j) + 1.

We can also calculate the mean mass, 〈m〉(j), of the system easily by making use of

the particle fractions ρj(m),

〈m〉(j) =
∞∑
m=1

mρj(m). (6.2.3)

Suppose that we now run simulations of this system and plot ρj(m) against m; we

will see an evolution of the distribution. If, however, we scale the plot by the mean

mass, 〈m〉(j), and instead plot 〈m〉(j)ρj(m) against m/ 〈m〉(j) we see that the distribution

tends to some fixed distribution as the iteration number is increased. A numerically

generated example of this fixed distribution, labelled %, can be seen in Figure 2.10 which

was generated by averaging over five thousand independent simulations.

6.2.1 Self-Similar Solutions and the Delay Differential Equation

We begin by labelling the fixed distribution that emerges by ρ̂(x) where x = m/ 〈m〉(j)
and we can clearly see that

ρ̂(x) = 0, x < x?, (6.2.4)
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where x? = m?/ 〈m〉(j). After we have performed many iterations we expect to be able to

approximate the distribution ρj(m) by this fixed distribution as follows,

ρj(m) =
1

〈m〉(j) ρ̂
(

m

〈m〉(j)

)
. (6.2.5)

We now derive two moment conditions on the fixed distribution ρ̂(x) from the discrete

distribution ρj(m). Consider that the sum of all the particle fractions is, by definition,

equal to 1, we then derive the moment condition as follows,

1 =
∞∑
m=1

ρj(m),

=

∞∑
m=1

1

〈m〉(j) ρ̂
(

m

〈m〉(j)

)
,

=
∞∑
m=1

h(j)ρ̂

(
m

〈m〉(j)

)
, where h(j) =

1

〈m〉(j) .

From numerical simulations we see that 〈m〉(j) ≈ αj, for some constant α, and m?(j) ≈ j
for large j. It is clear that 〈m〉(j) > m?(j) and that as j → ∞, 〈m〉(j) → ∞ and

m?(j) → ∞. It immediately follows that h(j) → 0 as j → ∞ and so we have a Riemann

sum for ρ̂(x). A similar procedure using (6.2.3) produces the second moment condition.

We therefore have the following two moment conditions on ρ̂(x),∫ ∞
0

ρ̂(x) dx = 1 and

∫ ∞
0

xρ̂(x) dx = 1. (6.2.6)

We now reconsider the difference equation (6.2.2), substituting in for ρ̃j(m) and col-

lecting like terms,

ρj+1(m) =
ρj(m)

1− ρj(m?(j))
+
ρj(m

?(j))ρj(m−m?(j))

1− ρj(m?(j))
− ρj(m

?(j))ρj(m)

1− ρj(m?(j))
,

=
ρj(m)[1− ρj(m?(j))]

1− ρj(m?(j))
+
ρj(m

?(j))ρj(m−m?(j))

1− ρj(m?(j))
,

= ρj(m) +
ρj(m

?(j))ρj(m−m?(j))

1− ρj(m?(j))
. (6.2.7)

If we substitute the observations from numerical simulations into the distribution for-

mula we have,

ρj(m) =
1

〈m〉(j) ρ̂
(

m

〈m〉(j)

)
=

1

αj
ρ̂

(
m

αj

)
, (6.2.8)

ρj+1(m) =
1

〈m〉(j + 1)
ρ̂

(
m

〈m〉(j + 1)

)
=

1

α(j + 1)
ρ̂

(
m

α(j + 1)

)
,

=
1

αj
(

1 + 1
j

) ρ̂
 m

αj
(

1 + 1
j

)
 . (6.2.9)
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Now considering the difference ρj+1(m)− ρj(m) and making use of three separate Taylor

expansions we find the following approximation,

ρj+1(m)− ρj(m) =
1

αj
(

1 + 1
j

) ρ̂
 m

αj
(

1 + 1
j

)
− 1

αj
ρ̂

(
m

αj

)
,

≈ 1

αj

(
1− 1

j

)
ρ̂

(
m

αj
− m

αj2

)
− 1

αj
ρ̂

(
m

αj

)
,

≈ 1

αj

(
1− 1

j

)(
ρ̂

(
m

αj

)
− m

αj2
ρ̂′
(
m

αj

))
− 1

αj
ρ̂

(
m

αj

)
,

≈ − 1

αj2
ρ̂(x)− x

αj2
ρ̂′(x), where x =

m

αj
. (6.2.10)

With this in mind we now return to (6.2.7) and substitute in for the difference above and

the numerical approximations in the remaining terms,

− 1

αj2
ρ̂(x)− x

αj2
ρ̂′(x) =

1

α2j2
ρ̂(x?)ρ̂

(
m

αj
− 1

α

)
1− 1

αj
ρ̂

(
1

α

) ,

−ρ̂(x)− xρ̂′(x) =

1

α
ρ̂(x?)ρ̂

(
m

αj
− 1

α

)
1− 1

αj
ρ̂

(
1

α

) ,

−(xρ̂(x))′ =
x?ρ̂(x?)ρ̂(x− x?)

1− 1

αj
ρ̂(x?)

, since x? =
1

α
. (6.2.11)

Since we expect this to only hold for large values of j we can write this to leading order

as the delay differential equation,

(xρ̂(x))′ = −x?ρ̂(x?)ρ̂(x− x?), x > x?, (6.2.12)

ρ̂(x) = 0, 0 6 x < x?,∫ ∞
0

ρ̂(x) dx = 1 and

∫ ∞
0

xρ̂(x) dx = 1.

6.3 Continuously Distributed Mass - One Sided Paste-All Model

This model is identical to the previous in all but one respect, instead of a discrete integer

mass associated to each particle, we now have a continuous distribution of mass. For the

purposes of simulation this simply means each particle has some positive mass distributed

according to some chosen initial distribution, e.g. uniform, Gaussian. The iteration process

is identical, namely, take the particle(s) of minimum size and ‘paste’ their mass(es) onto



CHAPTER 2. AGGREGATING, BALLISTIC PARTICLE (ABP) MODELS 61

a random selection of the remaining particles. Again since there are no correlations in

the model this is equivalent to picking a random particle with probability subject to the

current probability distribution and joining their masses. The scaling distribution for this

model found via numerical simulations, again labelled %, can be seen in Figure 2.11.

First, let n(m, t)dm denote the number of particles with mass in [m,m+ dm) at time

t. We denote the smallest mass at time t by m?(t) and we have that n(m, t) = 0 for

m < m?(t). From this we have that the expected number of events per unit time is,

ṁ?(t)n(m?(t), t), (6.3.1)

which is essentially capturing that the number of events depends on how fast the minimum

mass is increasing and also depends on the number of particles with size that minimum

mass.

The total number of particles at time t, denoted N (t), is given by,

N (t) =

∫ ∞
0

n(m, t) dm. (6.3.2)

We want to find a rate equation to describe the evolution of the profile n(m, t). As

before, we must take account of any loss of particles of a particular mass and similarly

any gain of particles. So, for each mass m > m?(t), loss occurs when the smallest mass

coalesces with this particular larger mass. This has probability of occurring in time dt,

n(m, t)

N (t)
dt, (6.3.3)

in other words, the likelihood of a particle of a particular size being hit depends on the

fraction of those particles compared to the whole. We can similarly find the associated

probability of the gain of a particle of mass m by considering the number of particles of

size m−m?(t), the probability of this occurring in time dt is given by,

n(m−m?(t), t)

N (t)
dt. (6.3.4)

We make use of (6.3.1), (6.3.3) and (6.3.4) to find the rate equation for n(m, t):

∂n(m, t)

∂t
=
ṁ?(t)n(m?(t), t)

N (t)
[n(m−m?(t), t)− n(m, t)]. (6.3.5)

So far we have made use of the number of particles of a particular mass, we instead

prefer to use the density of particles of a particular mass, namely,

ρ(m, t) =
n(m, t)

N (t)
. (6.3.6)
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Inserting this into (6.3.5) we have,

Ṅ (t)ρ(m, t) +N (t)ρt(m, t) =
ṁ?(t)

N (t)
N (t)ρ(m?(t), t)[N (t)(ρ(m−m?(t), t)− ρ(m, t)), ],

= ṁ?(t)N (t)ρ(m?(t), t)ρ(m−m?(t), t)

− ṁ?(t)N (t)ρ(m?(t), t)ρ(m, t).

And so we have the following rate equation,

ρt(m, t) = ṁ?(t)ρ(m?(t), t)ρ(m−m?(t), t)−
[
ṁ?(t)ρ(m?(t), t)ρ(m, t) +

Ṅ (t)ρ(m, t)

N (t)

]
.

(6.3.7)

We can also transform the other conditions attached to n(m, t) and convert them into

conditions on ρ(m, t), first we consider the total number of lengths N (t),

N (t) =

∫ ∞
0

n(m, t) dm,

=

∫ ∞
0
N (t)ρ(m, t) dm,

= N (t)

∫ ∞
0

ρ(m, t) dm,

1 =

∫ ∞
0

ρ(m, t) dm. (6.3.8)

We would rather not consider the number of particles directly, and certainly not the

rate at which it changes, so we consider the term Ṅ (t),

Ṅ (t) =
d

dt

∫ ∞
0

n(m, t) dm,

=
d

dt

∫ ∞
m?(t)

n(m, t) dm,

=

∫ ∞
m?(t)

∂n(m, t)

∂t
dm− ṁ?(t)n(m?(t), t),

=
ṁ?(t)n(m?(t), t)

N (t)

∫ ∞
m?(t)

[n(m−m?(t), t)− n(m, t)] dm− ṁ?(t)n(m?(t), t),

=
ṁ?(t)n(m?(t), t)

N (t)

(∫ ∞
0

n(s, t) ds−
∫ ∞
m?(t)

n(m, t) dm

)
− ṁ?(t)n(m?(t), t),

=
ṁ?(t)n(m?(t), t)

N (t)

(∫ ∞
m?(t)

n(s, t) ds−
∫ ∞
m?(t)

n(m, t) dm

)
− ṁ?(t)n(m?(t), t),

= −ṁ?(t)n(m?(t), t),

= −ṁ?(t)N (t)ρ(m?(t), t). (6.3.9)
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Inserting this in (6.3.7) we see that the terms in the square brackets cancel and we are left

with,

ρt(m, t) = ṁ?(t)ρ(m?(t), t)ρ(m−m?(t), t). (6.3.10)

At this point we note that equation (6.3.10) is invariant under scaling of time, this can

easily be seen by considering the scaling t→ λt. This reflects the fact that there is no ‘real’

time involved in the evolution since at each stage the next event happens instantaneously.

As a result we are free to prescribe any suitable function to govern the evolution of the

free boundary at m?(t). We choose to let m?(t) = t (see for example [43]), in other words

we let ‘time’ evolve in step with the minimum length, which is, as a result of the evolution

laws of the system, an increasing function. This leads to the following simplification,

ρt(m, t) = ρ(t, t)ρ(m− t, t). (6.3.11)

6.3.1 Self-Similar Solutions and the Delay Differential Equation

We aim to find self-similar solutions to (6.3.11) of the form,

ρ(m, t) =
1

〈m〉(t) ρ̂
(

m

〈m〉(t)

)
, (6.3.12)

where 〈m〉(t) is the mean mass at time t, defined by

〈m〉(t) =

∫ ∞
0

mρ(m, t) dm. (6.3.13)

We also define the following,

x =
m

〈m〉(t) and x? =
m?(t)

〈m〉(t) =
t

〈m〉(t) . (6.3.14)

Note that since n(m, t) = 0 for m < m? it follows that ρ̂(x) = 0 for x < x?. We begin by

taking the time derivative of the distribution and relating it to the proposed self-similar

solution,

ρt(m, t) = − 〈m〉
′(t)

〈m〉2(t)
ρ̂(x)− m 〈m〉′(t)

〈m〉3(t)
ρ̂′(x),

= − 〈m〉
′(t)

〈m〉2(t)
[ρ̂(x)− xρ̂′(x)],

= − 〈m〉
′(t)

〈m〉2(t)
(xρ̂(x))′. (6.3.15)

It is also easy to read off the following identities,

ρ(t, t) =
1

〈m〉(t) ρ̂(x?) and ρ(m− t, t) =
1

〈m〉(t) ρ̂(x− x?), (6.3.16)
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which together with (6.3.15) give,

− 〈m〉
′(t)

〈m〉2(t)
(xρ̂(x))′ =

1

〈m〉2(t)
ρ̂(x?)ρ̂(x− x?),

(xρ̂(x))′ = − 1

〈m〉′(t) ρ̂(x?)ρ̂(x− x?), x > x?. (6.3.17)

At this point we note that in order for this equation to be self consistent 〈m〉′(t) must

be a constant, i.e. not a function of time. Further to this, to be consistent with the scaled

co-ordinates given in (6.3.14) we must have that 〈m〉′(t) = 1/x?. Substituting this into

equation (6.3.17) we have,

(xρ̂(x))′ = −x?ρ̂(x?)ρ̂(x− x?), x > x?, (6.3.18)

ρ̂(x) = 0, 0 6 x < x?.

Making use of the conditions (6.3.8) and (6.3.13) we have,∫ ∞
0

ρ(m, t) dm = 1,∫ ∞
0

1

〈m〉(t) ρ̂
(

m

〈m〉(t)

)
dm = 1,∫ ∞

0

1

〈m〉(t) ρ̂ (x) 〈m〉(t)dx = 1,∫ ∞
0

ρ̂(x) dx = 1,

and similarly, ∫ ∞
0

mρ(m, t) dm = 〈m〉(t),∫ ∞
0

m

〈m〉(t) ρ̂
(

m

〈m〉(t)

)
dm = 〈m〉(t),∫ ∞

0
xρ̂ (x) 〈m〉(t)dx = 〈m〉(t),

〈m〉(t)
∫ ∞

0
xρ̂(x) dx = 〈m〉(t),∫ ∞

0
xρ̂(x) dx = 1.

Combining these two integral constraints together with (6.3.18) leads to the following

delay differential equation,

(xρ̂(x))′ = −x?ρ̂(x?)ρ̂(x− x?), x > x?, (6.3.19)

ρ̂(x) = 0, 0 6 x < x?,∫ ∞
0

ρ̂(x) dx = 1 and

∫ ∞
0

xρ̂(x) dx = 1.
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Figure 2.10 – Scaled distribution for the discretely distributed mass - one sided Paste-all model.

Data was gathered from five thousand independent simulations before calculating the mean distri-

bution seen here.
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Figure 2.11 – Scaled distribution for the continuously distributed mass - one sided Paste-all model.

As in the discrete case we again gather data from five thousand simulations and then generate the

mean distribution here.
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6.4 Solution to the Delay Differential Equation

We see that both the discrete and continuous versions lead to the same delay differential

equation, (6.2.12) and (6.3.19) respectively, so it is this which we aim to solve. We proceed

by considering the Laplace transform of ρ̂(x),

R(s) =

∫ ∞
0

e−sxρ̂(x) dx. (6.4.1)

The moment conditions in (6.2.12), or equivalently (6.3.19), are related to limits of the

transform as follows,

lim
s→0+

R(s) =

∫ ∞
0

ρ̂(x) dx = 1, (6.4.2)

lim
s→0+

−dR(s)

ds
=

∫ ∞
0

xρ̂(x) dx = 1. (6.4.3)

If we now take the Laplace transform of the delay differential equation in (6.2.12) or

(6.3.19) we have,∫ ∞
0

e−sx
d(xρ̂(x))

dx
dx = −

∫ ∞
0

e−sxx?ρ̂(x?)ρ̂(x− x?) dx,

which, given our knowledge of ρ̂(x), can be written,∫ ∞
x?

e−sx
d(xρ̂(x))

dx
dx = −

∫ ∞
x?

e−sxx?ρ̂(x?)ρ̂(x− x?) dx,

[e−sxxρ̂(x)]∞x? + s

∫ ∞
x?

e−sxxρ̂(x) dx = −e−sx?x?ρ̂(x?)

∫ ∞
0

e−sX ρ̂(X) dX, X = x− x?,

−e−sx?x?ρ̂(x?) + s

∫ ∞
0

e−sxxρ̂(x) dx = −e−sx?x?ρ̂(x?)

∫ ∞
0

e−sX ρ̂(X) dX,

−e−sx?x?ρ̂(x?)− sdR(s)

ds
= −e−sx?x?ρ̂(x?)R(s).

Hence we have the following transformed equation,

s
dR(s)

ds
= −e−sx?x?ρ̂(x?)(1−R(s)). (6.4.4)

We make the following observation on R(s) that as s → ∞ the Laplace transform is

dominated by the value of ρ̂(x) at 0,5 which we know is well behaved and equal to 0.

5Consider that as s→∞ the Laplace transform tends to 0 everywhere except where the large value of

s is cancelled out in the exponent, which only happens when x is close to or exactly 0.
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Hence, we can solve for R(s) as follows,∫ s

∞

1

1−R
dR

ds̃
ds̃ = −x?ρ̂(x?)

∫ s

∞

e−s̃x
?

s̃
ds̃,∫ R

0

1

1− R̃
dR̃ = −x?ρ̂(x?)

∫ s

∞

e−s̃x
?

s̃
ds̃,

− log(1−R(s)) = −x?ρ̂(x?)

∫ sx?

∞

e−u

u
du,

R(s) = 1− exp

[
x?ρ̂(x?)

∫ sx?

∞

e−u

u
du

]
,

or equivalently, R(s) = 1− exp

[
−x?ρ̂(x?)

∫ ∞
sx?

e−u

u
du

]
. (6.4.5)

We now make use of the moment conditions (6.4.2) and (6.4.3). The integral on the

right hand side blows up as s→ 0+ leaving us with,

lim
s→0+

R(s) = 1,

as expected. Worryingly, perhaps, we gain no information from this limit, however, we

push on regardless and consider the other condition, namely (6.4.3). Taking the derivative

of (6.4.5) gives,

R′(s) = −x?ρ̂(x?)
exp

[
−sx? − x?ρ̂(x?)

∫∞
sx?

e−u

u du
]

s
. (6.4.6)

Our aim is to take the limit as s → 0+. We note that on the right hand side the limit

returns 0/0 and so we could try and proceed with l’Hôpital’s rule. Unfortunately taking

the derivative of the fraction returns the same integral in the numerator and so we enter

a loop. To avoid entering this loop we instead make use of the exponential integral and its

relatives, in particular considering the asymptotic properties of these integrals. We make

use of the fact that, ∫ ∞
x

e−u

u
du = −γ − log x+ . . . , (6.4.7)

as x→ 0+ to leading order and where γ is the Euler-Mascheroni constant,

γ = 0.5772156649015328606065 . . .

Making use of (6.4.7) in (6.4.6) we have, following some rearrangement,

R′(s) = −x?ρ̂(x?)sx
?ρ̂(x?)−1 exp[−sx? + x?ρ̂(x?)(γ + log x?)]. (6.4.8)

Now we consider the limit as s→ 0+, which imposes certain conditions in order for the

limit to match (6.4.3). First, we can’t have any dependence on s or this would force the
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limit to 0 and so the exponent on s must vanish, equivalently x?ρ̂(x?) = 1. With this in

mind, we must have the exponential having 0 as its exponent, which implies γ+log x? = 0

or x? = e−γ . As a result we can write down the final form of the delay equation,

(xρ̂(x))′ = −ρ̂(x− x?), x > x?, (6.4.9)

ρ̂(x) = 0, 0 6 x < x?,

x? = e−γ and ρ̂(x?) =
1

x?
.

We now proceed to find the solution ρ̂(x) to the delay equation. We employ the

standard technique for such equations by building up the solution piece by piece. Since we

know the solution ρ̂(x) = 0 for 0 6 x < x? we begin by considering the region x? 6 x < 2x?.

(xρ̂(x))′ = −ρ̂(x− x?),

xρ̂(x) = −
∫ x

0
ρ̂(X − x?) dX + C.

Making use of the information we already have we can easily find the following,

xρ̂(x) = −
∫ 2x?

0
ρ̂(X − x?) dX + C,

= −
∫ x?

−x?
ρ̂(X̃) dX̃ + C, X̃ = X − x?,

= C.

We know that x?ρ̂(x?) = 1 and so clearly C = 1, hence,

ρ̂(x) =
1

x
, x? 6 x < 2x?.

Continuing this process for subsequent regions yields the following solution,

ρ̂(x) = 0, 0 6 x < x?,

ρ̂1(x) := ˆρ(x) =
1

x
, x? 6 x < 2x?,

ρ̂2(x) := ρ̂(x) =
1− ln(x− x?) + lnx?

x
, 2x? 6 x < 3x?,

ρ̂3(x) := ρ̂(x) =
1− ln

(
x
x? − 1

)
x

+
1

x

[
π2

12
+ dilog

( x
x?
− 1
)

+ ln
( x
x?
− 2
)

ln
( x
x?
− 1
)]
,

3x? 6 x < 4x?,

(6.4.10)

where,

dilog(x) =

∫ x

1

ln t

1− t dt.
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Figure 2.12 – Solution to the delay differential equation, (6.2.12) or equivalently (6.3.19). Different

coloured sections correspond to the different sections of the solution shown in (6.4.10).
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Figure 2.13 – Solution to the delay differential equation together with numerical data from

continuously distributed simulations, shown in Figure 2.11, for comparison. A lack of significant

correlations in the system means our predicted distribution should closely match the data, as we

see here.
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7 Model Comparisons

In the previous sections we have detailed two models, one a continuously evolving par-

ticle model and the other a probabilistic, discrete particle model. Here we draw several

conclusions including discussion of the connections between the two models.

7.0.1 Vacuum Interval

In Figure 2.7 we see that the vacuum interval increases in size as p→∞ and we estimated

that the asymptotic value at infinity was 0.557397. This compares well with the paste-all

model which has a vacuum interval which ends at e−γ ≈ 0.561459. We also mention, as

noted before, that the distribution appears to become more like a jump to the peak at the

end of the vacuum interval, which again matches well with the paste-all model.

7.0.2 Support of the Distribution

If we again return to Figure 2.7 and consider the 5% cut-off value, we estimated there

that the asymptotic value was in the region of 1.65. Calculation of the cut-off value for

the paste-all model distribution returns the value 1.67684, which we again see compares

favourably.

7.0.3 Peak of the Distribution

If we now compare the size of the peak of the distribution as p is increased we see that it

tends to level off at some fixed value. In fact, if we perform the same analysis as we have

for the size of the vacuum interval we find an asymptotic value at infinity of 1.655214.

Whilst this compares reasonably well with the paste-all value of 1.781072 it doesn’t match

quite as closely as the vacuum interval or distribution support values. A possible source

of the discrepancy is found by noting that the simulations we were able to carry out were

unable to move far enough away from low p values to recreate the sharp jump in the

distribution found in the paste-all case. This results in the appearance of several smaller

bars of the histogram to the left of the peak which don’t wash out as we increased p as

far as possible.
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7.0.4 ‘Bump’ on Distribution Tail

We make only a brief note that as p was increased a ‘bump’ on the tail of the distribution

was observed. Its position was seen to be around twice the minimum mass. We see that

the paste-all model has a definite change in the slope, in other words a ‘bump’, at precisely

twice the minimum. This appears to match up well between the models.

7.0.5 System Dynamics

In Section 5 we saw that when p is large enough the system behaves in a very particular

way, namely the minimum mass particle(s) collide next and that in the time to that

collision the others remain essentially fixed. This analysis was of course done with the

paste-all model in mind, since this behaviour for large p is exactly how the paste-all model

behaves.

7.1 Overall Conclusions

We have considered two distinct particle models, one an aggregating, ballistic particle

model and the other a variant of the so-called ‘paste-all’ model [30]. In both cases we

studied the scale invariant distributions and several of the features therein. In the case of

the paste-all model we solved for the exact scale invariant distribution (Figure 2.12) and

in Figure 2.14 we see that the distributions, for p > 10, already match closely to the delay

differential equation solution. In particular we mention the emergence of the ‘bump’ on

the tail of the distribution. The emergence and associated location of this as p is increased

is very interesting, and further to this, the similarity to the paste-all model is remarkable.

We have found asymptotic values for the vacuum interval, the peak and the 5% cut-

off values, all of which agree well with the exact values found in the paste-all case. We

also showed that the dynamics of the ballistic system for large enough p becomes exactly

the dynamics of the paste-all model, in other words despite being a continuously evolving

ballistic model, when p is large enough it behaves like a statistical, min-driven system.

In summary, we have shown that for large enough p the aggregating, ballistic particle

model becomes almost identical to the paste-all model in dynamics and associated distri-

bution. We suspect that in the limit p→∞ that the aggregating, ballistic particle model

becomes exactly the paste-all model. Consideration of the analysis in Section 5 in the

limit also supports this claim.
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Figure 2.14 – Delay differential equation solution, (6.4.10), overlaid onto several ABP distribu-

tions for various p. As expected there is an increasingly better fit as p is increased since the system

behaves more like the paste-all model for large p.



Chapter 3

CKS Equation, Numerics and

Dynamical Systems

1 Introduction and Background

The theory of crystal surfaces below the roughening temperature has seen significant

progress recently [73, 105] and as such has seen a large number of theoretical predictions

emerge [5, 10, 90]. The general overall picture of this research is to take fundamental

knowledge of the atomic structure of the surface and find a continuum prediction of the

complete evolution of the surface. The type of problems which we consider frequently

involve the introduction of new matter, adatoms, to the surface from the surrounding sys-

tem which once on the surface move in several possible manners, which can be predicted

by the structure of the underlying crystal. From these predictions and often in the case

of several assumptions, which we shall discuss later, the hope is that we will discover a

governing equation which predicts the evolution of the surface from a known initial state.

Similar dynamics to those of crystal surfaces appear in other distinct contexts [102,

111], so an understanding of the method and processes in this context could prove to be

insightful in other contexts too. Even within crystal surfaces there are several possible

growth procedures possible, such as moving steps and island nucleation/growth, [10, 67,

94, 107, 108, 125], we limit ourselves here to so-called step meandering and step bunching.

The typical scenario in which these step effects are exhibited is that of a vicinal crystal

surface. A vicinal surface is one which overall has a slight miscut in the angle of the surface

relative to the planar structure which the material sits and as a result the surface must

make a series of jumps by a single atom height (or multiple thereof) as we move across

73
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the entire surface. As already mentioned, it is frequently the case that we then introduce

new material to the system. These new atoms hit the surface and then proceed to diffuse

on the surface before hitting a step and then generally attaching at some location. The

process with which this new material is deposited is often molecular beam epitaxy (MBE),

which is one type of process used when growing crystal structures, although other methods

do exist. Individual atoms can also spontaneously be ejected from the surface back into

the surroundings, this is known as desorption.

The two types of growth we detail are step meandering and step bunching. Step

meandering, put simply, is the ability of the steps on the crystal surface to move around in

a wave like manner. First detailed by Bales and Zangwill in [5] this type of step movement

is found in many circumstances, for example [63, 88, 113]. The second type of growth is

step bunching which is essentially where microscopic processes allow each step to move in

a different manner to the others and as a result the steps can bunch together, rather than

stay apart, e.g. [23, 95, 109]. Generally speaking the types of process which occur at the

atomic level differ and dictate the type of instability present, significant detail on vicinal

crystal surfaces in general can be found in [73].

We give some brief detail on one aspect of step growth since it has relevance to the

specific context we study later, the so-called Ehrlich-Schwoebel (E-S) effect [32, 97]. As

mentioned we deposit individual atoms onto the surface of the crystal. We also noted that

these then move until they attach to one of the existing steps. What wasn’t clear is the

ability for an atom to join either of the two1 steps it sits between, more specifically the up

step or the down step? The E-S effect is then essentially a characterisation of the possible

asymmetry in an adatom’s ability to go up or down a step. Such an asymmetry was shown

to produce a step bunching instability by Shcwoebel [97]. It is often the case that the

extreme case of one-sided processes are assumed, that is individual atoms can only join

onto one of the two possible steps around it or, indeed, that this effect is presumed to be

negligible, that is there is no little or no asymmetry in an adatoms ability to join either

step.

1.1 The Conserved Kuramoto-Sivashinsky Equation

With a wealth of examples of such step effects, for example see [23, 24, 63, 73, 87,

88, 90, 95, 105, 109, 113, 126], we choose to focus our attention on one particular

1Based on a simplified train of steps structure.
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example of step meandering. Taking the growth of a Si(001) vicinal surface under the

assumptions of negligible desorption and Ehrlich-Schwoebel effect, together with a lack of

elastic interaction between steps, Frisch and Verga [39, 40] conclude that the unstable

mode for a wandering step satisfies the following equation,

ut = −[u+ uxx + u2
x]xx. (1.1.1)

This equation is known as the conserved Kuramoto-Sivashinsky (CKS) equation, where

u(x, t) describes the location of the step above some axes and x and t denote the coordinate

along the step and time respectively. A typical example of a step and the notation used

is shown in Figure 3.1.

u(x, t)

x

Figure 3.1 – Typical configuration of a step on the material surface indicating the notation used

throughout, namely, u(x, t) is the step location, x the spatial coordinate and t time.

The assumptions which lead to this conclusion essentially amount to considering the

case when there is no loss from the surface (desorption) and that each step is effectively

isolated in space or, more specifically, has no effect on other steps (no elastic interaction).

Neglecting the E-S effect simply allows for adatoms to join a preexisting step from either

the step above or below with no presumption of favourability to one type of step (up or

down). These assumptions allow us to consider the evolution of one single step alone and

that the height of this step is modelled by the CKS equation, (1.1.1).

For comparison and justification of the conserved characterisation we mention the well
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studied Kuramoto-Sivashinsky (KS) equation,

ut = −[u+ uxx]xx + u2
x,

which was originally studied in the context of reaction-diffusion systems [64] and flame

propagation [102]. Another related equation worth mentioning is identical to the CKS

equation with the addition of a term of the type uxxx, [44], which arose in a similar

context to the CKS equation but for step bunching on the surface of Si(111) and once again

neglecting desorption. The original work in [64, 102] has inspired many streams of research

across a spectrum of different fields, including the materials science context present. It is

not surprising, therefore, to see the conserved Kuramoto-Sivashinsky equation be named

as such, based on this rich history.

Let us return to the CKS equation and consider the solution profile u(x, t). We first

draw our attention to the overall emerging structure. Simulations carried out in [39, 40]

and here (detail in Sections 2 and 3) indicate the emergence of a two scaled solution with

large arced regions separated by small connecting regions. A simple similarity argument

predicts a growth in the typical size of the large structures that behaves like t1/2, [39]. We

note that in the presence of the additional uxxx term the typical size of step bunches also

scales like t1/2 [44]. A typical simulation of the CKS equation can be seen in Figure 3.2

where we can see the evolution of the solution profile and as the number of arcs reduces,

the average size of each increases as expected.

Further analysis of the structure of the solution profile shows that a single stationary

parabola, u(x, t) = a − (x − x̄)2/4, for some a and x̄, is a solution on R and that the

large regions of the solution profile are essentially independent of the fourth derivative

term [39]. Trying a similarity solution in the reduced equation (without the fourth order

term) admits bounded parabolas, u(x, t) = −x2/4 for |x| < x0(t), and zero outside this

range. The small connecting regions between parabolas are shown to be governed by

the separate reduced equation, uxx + u2
x = k2, where k is a constant, and results in an

expected log[cosh k(x− x0(t))] type structure at the edge of the parabola. The parameter

k can be determined by matching the inner solution to the outer parabolas to find that

k = x0(t)/2 ∼
√
t, or roughly quarter the width of the neighbouring parabolas, and as a

consequence it can be shown that the curvature, κ, in these connecting regions behaves

linearly in time, κ ∼ t. From here it is concluded that the solution profile can be thought

of as a series of parabolas of the typical form described earlier connected by small regions
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Figure 3.2 – Typical simulation of the CKS equation where the profile has been shifted vertically

in time for ease of visualisation. Green points indicate the location of the small joining regions

which then give some idea of the scale of each arc, showing a general increase in time.
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with linearly increasing curvature. This is the scenario which leads into the derivation of

a simple dynamical system which, hopefully, effectively captures the entire evolution.

1.2 Proposed Dynamical System

With the emerging profile now somewhat understood, Politi and ben-Avraham discuss a

particle model which they propose captures the essential aspects of the solution profile

evolution [89]. The derivation of this model presumes the solution profile can be thought

of as a series of translations of arcs of the universal parabola p(x) = −x2/4; an assertion

also made in [39]. Letting xi denote the join location between such successive parabolic

arcs, the authors of [89] argue that,

dxi
dt

=
1

(xi+1 − xi)
− 1

(xi − xi−1)
.

Setting li := xi+1 − xi we can write this particle model in equivalent length form as,

dli
dt

=
1

li+1
− 2

li
+

1

li−1
. (1.2.1)

1.3 Objectives and Approach

Our main objective is to provide a critique of the proposed dynamics, (1.2.1), by directly

comparing simulations of the CKS equation with the predicted results of the dynamical

system.

We shall begin our exploration in Section 2 by conducting extensive numerical simu-

lations of the CKS equation. Several methods have been adopted and we detail these and

associated background material where appropriate. Following on from this in Section 3 we

shall benchmark the code against the expected analytical results to check that our code

is accurate and reliable. Finally, in Section 4 we shall consider the coarsening pathways

within the system and carry out our final comparisons between the PDE dynamics and

those predicted in [89], shown in (1.2.1).
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2 Numerical Solution of CKS Equation

We begin by presenting the numerical procedures adopted for solving the CKS equation

(1.1.1). Three such methods were attempted with varying levels of success. We begin by

using a simple finite difference method on a fixed, uniform grid together with an explicit

update of the nodal values. The data gathered here lead us to consider two distinct nu-

merical methods, first adaptive grid methods and second a hybrid implicit-explicit update

rule on a fixed, uniform grid.

2.1 Explicit update - Fixed Grid

The first method employed to numerically solve the CKS equation was a standard finite

difference approach on a fixed, uniform grid with an explicit update rule. Formally, we

have our equation together with an initial condition, u(x, 0) := u0(x), and want to solve

on a domain of length L with periodic boundary condition.

First let us choose a integer n > 0 and set h = L/n. This number h will then represent

the size of the grid spacing on our domain and so we have essentially partitioned the

domain into n equal parts. Setting xi = ih for i = 0, 1, . . . , n−1, we now have our discrete

spatial grid for the finite difference scheme which we wish to set up. Note that since we

aim to solve on a periodic domain the point xn := x0, and so on; essentially wherever there

is a spatial index i we are in fact taking i (mod n). This will become important later when

we discuss the finite difference expressions near the boundary. We must also discretise

time and so we select a time step ∆t and set tj = j∆t for j = 0, 1, . . . . Combining these

two we then have a set of grid points in the completely discretised domain, which we shall

denote (xi, tj).

We want to use this grid to numerically solve the CKS equation and so we define

several objects. First we define the function U which takes a spatial node and a time and

defines a real number, or explicitly,

U : {0, 1, . . . , n− 1} × {0, 1, . . . } −→ R.

If we were to fix a choice of grid point and time we could write this as U(i, j), however, we

shall define this to be U ji := U(i, j). From here we then define the vector of U ji values as,

Uj := (U j0 ,U j1 , . . . ,U jn−1)T
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We then proceed to discretise each of the elements of the CKS equation on the nu-

merical grid. First we must approximate the derivatives in the CKS equation by making

use of finite differences. We define four operators on the uniformly spaced numerical grid

values U ji , one finite difference type expression for each spatial derivative present. The

four operators are,

(DU)ji :=
1

2
(U ji+1 − U

j
i−1), (2.1.1)

(D2U)ji := U ji+1 − 2U ji + U ji−1, (2.1.2)

(D3U)ji :=
1

2
(U ji+2 − 2U ji+1 + 2U ji−1 − U

j
i−2), (2.1.3)

(D4U)ji := U ji+2 − 4U ji+1 + 6U ji − 4U ji−1 + U ji−2. (2.1.4)

On a uniform grid, such as we have here, the full finite difference expressions are

calculated using the Taylor series in x and are as follows,

∂u

∂x
(x, t) =

u(x+ h, t)− u(x− h, t)
2h

+O(h2), (2.1.5)

∂2u

∂x2
(x, t) =

u(x+ h, t)− 2u(x, t) + u(x− h, t)
h2

+O(h2), (2.1.6)

∂3u

∂x3
(x, t) =

u(x+ 2h, t)− 2u(x+ h, t) + 2u(x− h, t)− u(x− 2h, t)

2h3
+O(h2), (2.1.7)

∂4u

∂x4
(x, t) =

u(x+ 2h, t)− 4u(x+ h, t) + 6u(x, t)− 4u(x− h, t) + u(x− 2h, t)

h4
+O(h2),

(2.1.8)

where each expression is of second order. If we neglect higher order terms and make use

of our four defined operators on a uniform grid we have,

∂u

∂x
(xi, tj) ≈

1

h
(DU)ji , (2.1.9)

∂2u

∂x2
(xi, tj) ≈

1

h2
(D2U)ji , (2.1.10)

∂3u

∂x3
(xi, tj) ≈

1

h3
(D3U)ji , (2.1.11)

∂4u

∂x4
(xi, tj) ≈

1

h4
(D4U)ji , (2.1.12)

Note that if we make use of the i (mod n) argument these expressions are valid at all the

grid points. In a similar manner we can calculate the appropriate first order expression

for the time derivative from the standard first order finite difference expression,

∂u

∂t
(x, t) =

u(x, t+ ∆t)− u(x, t)

∆t
+O(∆t),
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which expressed using our numerical values and having neglected the error terms is ap-

proximated as,
∂u

∂t
(xi, tj) ≈

1

∆t
(U j+1

i − U ji ).

Collecting all these expressions together and substituting them into the CKS equation,

(1.1.1), we have,

1

∆t
(U j+1

i − U ji ) = − 1

h2
(D2U)ji −

1

h4
(D4U)ji − 2

((
1

h2
(D2U)ji

)2

+
1

h
(DU)ji

1

h3
(D3U)ji

)
.

(2.1.13)

This equation contains only one expression at the updated tj+1 time and so we rearrange

this to solve for U j+1
i ,

U j+1
i = U ji + ∆t

[
− 1

h2
(D2U)ji −

1

h4
(D4U)ji − 2

((
1

h2
(D2U)ji

)2

+
1

h
(DU)ji

1

h3
(D3U)ji

)]
,

= U ji −
∆t

h4

[
h2(D2U)ji + (D4U)ji

]
− 2∆t

h4

((
(D2U)ji

)2
+ (DU)ji (D3U)ji

)
. (2.1.14)

We now have one equation of this form for each of the spatial grid points and can use

this formula to update each nodal value in time. We can rewrite all of these n equations

in one simple matrix form as,

Uj+1 =

(
I − ∆t

h4
A

)
Uj − 2∆t

h4
F(Uj), (2.1.15)

where

A :=



6− 2h2 −4 + h2 1 0 · · · · · · 0 1 −4 + h2

−4 + h2 6− 2h2 −4 + h2 1 0 · · · · · · 0 1

1 −4 + h2 6− 2h2 −4 + h2 1 0 · · · · · · 0

0 1 −4 + h2 6− 2h2 −4 + h2 1 0 · · · 0

...
. . .

. . .
. . . 0

0 · · · · · · 0 1 −4 + h2 6− 2h2 −4 + h2 1

1 0 · · · · · · 0 1 −4 + h2 6− 2h2 −4 + h2

−4 + h2 1 0 · · · · · · 0 1 −4 + h2 6− 2h2


and F defines a nonlinear function on the current state and returns the value of the

nonlinear parts of the equation, explicitly

F : Rn −→ Rn,

and the ith component is given by,(
(D2U)ji

)2
+ (DU)ji (D3U)ji .
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We now have an equation which is valid for all the grid points in both spatial and

temporal dimensions and can be used to update the solution, in terms of the points U ji ,

by a single time step to the updated solution, the points U j+1
i . The initial condition gives

us the value of the discrete solution at the grid points as,

U0
i := u0(xi),

for each of the spatial grid points, i ∈ {0, 1, . . . , n − 1}. From here we can simply march

forward in time making use of (2.1.14) at each step since we know the previous time step

values iteratively starting from the initial condition.

2.1.1 Discussion of Explicit Method

Unfortunately two factors arose during these simulations, both of which hindered the

progress of the method. The first was a time step restriction and second was the need for

large numbers of points to resolve the emerging boundary layers.

Time stepping

Explicit schemes are often hindered by time step issues and this method is no different.

The fourth order nature of the equation in question forced us to consider very small time

steps to ensure stability. In particular, if we consider only the linear parts of equation

(2.1.15) involving the matrix term, (
I − ∆t

h4
A

)
, (2.1.16)

we can find a rough estimate of the type of restriction we must observe. This matrix is

a circulant matrix and so we can easily calculate the eigenvalues as follows. First let us

define six quantities of use to us, where n is the number of grid points used,

ω = e
2πi
n ,

c0 = 1− ∆t

h4
(6− 2h2), c1 =

∆t

h4
(4− h2), c2 = −∆t

h4

cn−1 =
∆t

h4
(4− h2) and cn−2 = −∆t

h4
,

where ω is therefore an nth root of unity and the subscripts on the c quantities represent

the respective location of the term along the first row of the matrix in question, running

from 0 through to n − 1. This is the standard way of indexing a circulant matrix since

each subsequent row is simply a shift of the first. Note that these numbers c? come from
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the entries of the matrix (2.1.16) above. From here we can write down an expression for

the eigenvalues λj , namely,

λj = c0 + cn−1ω
j + cn−2ω

2j + c2ω
−2j + c1ω

−j , j ∈ {0, 1, . . . , n− 1}.

Inserting the appropriate expressions from above we then have,

λj = 1− ∆t

h4
(6− 2h2) +

∆t

h4
(4− h2)(ωj + ω−j)− ∆t

h4
(ω2j + ω−2j),

which can be simplified by collection of terms and use of the identity,

cosx =
eix + e−ix

2
,

to,

λj = 1 +
∆t

h4

[
8 cos

(
2πj

n

)
− 2 cos

(
4πj

n

)
− 6

]
+

∆t

h2

[
2− 2 cos

(
2πj

n

)]
In order to ensure stability, at least as far as the linear terms go, we must ensure

that the spectral radius of the matrix shown in (2.1.16) is less than 1. More specifically

this means the largest eigenvalue in modulus must be less than one, and hence we must

consider under what circumstances can we guarantee the following,∣∣∣∣1 +
∆t

h4

[
8 cos

(
2πj

n

)
− 2 cos

(
4πj

n

)
− 6

]
+

∆t

h2

[
2− 2 cos

(
2πj

n

)]∣∣∣∣ 6 1, ∀j.

We simplify this expression for two related reasons, first, we only expect to find some

rough idea of the kind of restriction necessary for stability and note, again, that we are

only considering the linear parts here so it isn’t guaranteed to be a complete restriction on

the whole equation anyway. Second, since we expect the grid spacing to be much smaller

than one (h� 1) we can assume that the leading order behaviour will be sufficient to gain

reasonable insight into the issue. As a result we consider the simplified case,∣∣∣∣1 +
∆t

h4

[
8 cos

(
2πj

n

)
− 2 cos

(
4πj

n

)
− 6

]∣∣∣∣ 6 1, ∀j.

The expression on the left of the inequality attains a maximum at j = 0 or j = n of 1, so

there is no constraint there. We must therefore consider the case when,

−1 6 1 +
∆t

h4

[
8 cos

(
2πj

n

)
− 2 cos

(
4πj

n

)
− 6

]
.

The term inside the square brackets is minimal when j = n/2 and inserting this gives,

−1 6 1− 16
∆t

h4
,
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which in turn gives,

∆t 6 h4

8
.

This is our rough estimate of the type of restriction we must observe if we are to have any

chance of achieving numerical stability in the method. It is now clear that with small grid

spacings we must use very small time steps to remain stable.

Time steps of this size are therefore already a problem for the efficiency of the system

but this problem is, in fact, only worsened by an increase in domain length. Naively an

increase in domain length whilst maintaining the number of grid points would increase

h, the grid step size, and hence increase ∆t. On larger domains, however, to maintain

enough spatial resolution we must increase the number of points in the system to reflect

the size of the domain, and so we cannot expect any increase in the possible time step

from this point of view. For example, suppose we are now required to double the number

of grid points, as a result of doubling the domain, we must then perform twice as many

calculations per time step. We then see that for large domains where we may require

vast grid point numbers we need to perform significantly more calculations to update the

system.

Further to this, if we suppose we require a doubling in the number of grid points to

maintain numerical accuracy on a fixed domain we see that the time step required is re-

duced by a factor of 16. This means we must perform 16 times more time steps to reach

the same fixed future time T , say. Combined with the fact we need to perform twice as

many calculations per time step and we see a rough 32 times increase in computational

effort to reach the time T . These types of restrictions unfortunately result in a strong

playoff between maintaining accuracy and returning results in a reasonable time frame.

Under resolved boundary layers

The second issue which arose during simulations was an inability to capture the inner

boundary layers. As the solution profile coarsens the number of parabola structures de-

creases and the overall size of those which remain increases. This causes the jump in slope

across the inner layers to increase with time. Similarly the curvature in these regions

grows larger as the number of such boundary layers drops. If we try to simulate with too

few points in our grid there is a chance that the scale of the jump in slope and size of the

curvature will become too much for the grid to handle and lead to numerical instability

or indeed collapse. At first a straightforward method to combat this would be to increase
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the number of points in the grid but sadly, in light of the first time stepping issue, we see

that we are now trying to balance two competing influences on our method. Increasing

the number of grid points to combat the need for precision in the boundary layers results

in huge increases in computational time.

As a result of these issues we have found this method to be unsuitable for providing

robust numerical data and so seek out alternative methods. The inability to accurately

capture the inner solution structure without the system collapsing whilst also outputting

results in a reasonable time frame proved too much for the method to overcome. Our first

attempt at an alternative shall be to try and counter both criticisms of the explicit method

at once. In particular we try to keep the total number of grid points as low as possible

whilst making sure there are a reasonable number of points in the boundary layers. This

is achieved by use of so-called adaptive grid techniques.
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2.2 Adaptive Grid Methods

In the previous section we saw that the explicit method was able to capture the evolution

of the solution profile but in order to properly capture the full solution, including the inner

boundary layers, we require a large number of grid points, which subsequently penalises

us in terms of the size of time step required. This playoff left us with a method that

was capable but incredibly slow. To combat this we realised that the number of grid

points required to capture the outer regions is fairly small, there is no large change in

the solution structure here. We do, however, require resolution in and around the inner

boundary layers, but since these move we cannot simply use a fixed non-uniform grid.

This lead us to consider so-called adaptive grid methods.

We will present a brief overview of adaptive methods first, including types of adaptivity,

equidistribution and MMPDEs, before giving detail of the particular method we have

adopted to solve the CKS equation.

2.2.1 Overview of Adaptive Methods

Adaptive grid methods all share one common theme in that the grid, location or density,

or aspects of it, such as interpolating polynomial (Finite Element Method), are not fixed

throughout the numerical procedure. Instead these aspects are allowed to evolve or change

in some prescribed manner throughout the solution procedure. By doing so, the aim is

that these numerical methods have a better chance of accurately producing a numerical

solution. Typical areas where fixed grid solutions struggle include boundary layers, shocks

and ‘front tracking’, and so many of the methods devised have been developed with one

or more of these types of event in mind. In the case of the CKS equation we have multiple

moving boundary layers which, based on our fixed grid simulations, require an increased

resolution of grid points versus the, respectively, more tame outer regions. In this case, and

in many others, where sharp changes in the solution are present, fixed grid methods often

fail to properly resolve the area unless a very high resolution grid is used. In particular,

if these boundary regions become comparable to the size of the grid spacing there is a

tendency for collapse of the numerical method. Adaptive methods aim to combat these

types of instability by, for example, introducing more grid points in appropriate areas.

There are three main types of adaptivity and so we shall begin by briefly detailing

these together with some common advantages and disadvantages of each before settling

on the preferred method for our purpose.
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2.2.2 Types of adaptivity

There are three main types of adaptive grid method, named h-, p- and r-adaptivity. Each

method takes a different approach to the way in which they adapt to the problem being

solved but in all three cases the number of grid points, the location of the grid points or

the interpolating polynomial degree is not fixed. It should also be noted that combinations

of the three methods can be applied in many cases, for example an hp-adaptive method,

or indeed an hpr-adaptive method, if so required. As we shall see, the likelihood of certain

combinations being used is unlikely or perhaps even unnecessary. We summarise the main

features here for discussion, in all cases we don’t specify the method by which we actually

implement each method but simply give an idea of the approach.

h-adaptivity

Very briefly h-adaptivity can be described as a method which introduces(removes) grid

points where we need more(less) resolution. More precisely, this method involves selecting

an initial, perhaps non-uniform grid to perform the solution procedure on and fixing both

the number of grid points and their locations. We then evolve the system until we feel

that there are not enough(too many) grid points in a particular location, perhaps due to

the emergence of a boundary layer or shock front, and then pause the system evolution.

In the area(s) where we feel there is not enough grid points we insert more, increasing the

total number, and interpolate the solution onto the new grid points. In this way we have

increased the resolution in the affected areas and hope that by doing so we can avoid large

errors in the solution due to grid spacing effects. The system then continues to evolve on

this new grid with possible repeats of the procedure as necessary.

We also note that should an area have ‘too many’ grid points, for example a straight

line section of the solution, we can remove points from the grid in these areas. In this way

the adaptivity of the method comes from the varying number of grid points. The naming

of this method is perhaps clear as we are adapting the grid spacing, commonly denoted h.

Advantages/Disadvantages

The advantages of this particular method lie in its ability to provide resolution to

complex areas but since a rewrite of the grid requires an interpolation step and also for

computational efficiency, we do not want to be updating the grid at every time step. Care-

ful consideration must be made as to when to rewrite the grid. In problems which develop

fixed boundary layers or shocks, for example, this method can be particularly effective
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as it has the ability to start on a coarse grid, which will be efficient, and then add in

points in the appropriate region at a later time. Thus we aren’t required to use a fine

grid for the entire numerical simulation and so can expect a more efficient method in some

cases. There is a play-off between grid rewrite efficiency/accuracy and a fixed fine grid.

Fine grids require more computational time so the intention here is that by making use of

occasional grid rewrites we can improve computational speed.

p-adaptivity

This type of adaptivity is essentially a type of finite element method where the adap-

tivity comes from varying the degree of the basis functions being used. In general one

would select a set of basis functions all of the same order, often linear, and the proceed

with the numerics. The p-adaptive method allows for this degree to vary on each element

and therefore we can, for some desired reason, alter the degree as time evolves.

Advantages/Disadvantages

This method sees much use in various settings, such as electrostatics [84], and can have

a significant improvement over sticking with one type of basis function or indeed fixing

the basis. This method isn’t in keeping with the finite difference method employed earlier

but is included here for completeness.

r-adaptivity

This method can be described as a movement of the grid points to areas that require

higher resolution. The method begins in the same manner as the other types and sets up

an initial grid which may or may not be uniform. The key point here is that the number of

grid points remains fixed throughout so we must ensure that we start with a ‘reasonable’

number of grid points. We now perform a single time step update of the nodal values.

Simultaneously to the solution update we also move the grid points in a prescribed manner;

for now we just assume that they move by some means to areas of interest. So, unlike the

other types, we simply move the grid points into areas which require more resolution and

since the number of points is fixed we have less in areas which require fewer grid points.

The evolution then proceeds in this way by repeating the whole process. Both the

solution values at the grid points and the locations of the grid points themselves are

updated at every time step. In this way we force grid points into areas which require

more resolution and so we are better able to monitor any boundary layers or shocks, for
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example.

Advantages/Disadvantages

This method is particularly useful in dealing with moving boundary layers and shocks.

Since the system can move the grid in step with areas of interest we expect to be able

maintain a high level of accuracy in our solution. The method is also advantageous as

it involves a fixed number of grid points so grid relations are fixed and it is often not

necessary to use any interpolation. This method is generally much more capable at ‘front

tracking’ in that it can continuously adapt the grid to take care of a moving front.

The main disadvantages of the method are a reduction in the computational speed

associated with additional equations to deal with the movement of the grid and, partic-

ularly in higher dimensions, ‘mesh tangling’. As far as speed is concerned it is expected,

however, that in many problems the speed loss from additional equations will be negated

by an overall increase in accuracy, and that since we generally require far fewer grid points

than a fixed fine grid we do make significant computational improvements. Mesh tangling,

whilst always an issue, is a real problem in 2 or more dimensions. We are only ever really

dealing with one-dimension so this isn’t a major drawback in our case.

2.2.3 Selection of r-adaptivity for CKS equation

For the equation we are considering, (1.1.1), and by considering the numerical simulations

carried out using fixed grids detailed earlier, we now make the selection of an r-adaptive

method from the choices listed above as our next approach. Given that the PDE displays

multiple moving boundary layers which also appear and disappear over the course of

evolution it is likely that this will be the most efficient method in our case. The h-adaptive

method would require almost constant grid rewrites in order to track the moving boundary

layers and further rewrites as these then disappear from the system, these additional

overheads would appear to make the h-adaptive method computationally inefficient. Since

we are using a standard finite difference approach the p-adaptive method is not appropriate

and so we won’t consider its use here.

2.2.4 Overview of Pure Equidistribution and Monitor Functions

Now that we have introduced the basic idea of the r-adaptive method we give some detail

on the specific implementation of the method. First we give a brief overview of the

equidistribution principle and the method it induces. This principle underpins much of
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the r-adaptive methodology and so it is worth noting the technique. We will only consider

the theory in one spatial dimension as this is all we require presently, however, it should

be noted that extensions to higher dimensions can be made. The idea of equidistribution

essentially stems from an idea by de Boor for approximating numerical solutions with

splines [28].

To start we must consider the physical domain, Ωp, on which the PDE for u(x, t), say,

is to be solved, for simplicity of the argument we shall assume this domain is simply the

unit interval and hence x ∈ [0, 1] =: Ωp. Suppose now that we introduce a computational

domain, Ωc, with coordinate ξ and suppose, again for simplicity, that this domain is

also the unit interval Ωc := [0, 1]. The idea now is that we define a continuous, strictly

increasing function Ψ(ξ, t) : Ωc× [0,∞)→ Ωp× [0,∞) and that this map in fact describes

the adaptivity of the grid. Assume for now that we know Ψ(ξ, t), then if we uniformly

partition the computational space into grid points ξi and then find the image of these ξi

under Ψ we will have a collection of points xi(t) in the physical domain. These points form

our adaptive grid in the physical domain, in particular we have xi(t) := Ψ(ξi, t). Note that

by insisting the function is strictly increasing we preclude the possibility of mesh tangling,

that is, points cannot switch ordering. What is left to consider is how we derive, interpret

and understand the function Ψ(ξ, t).

0 1 0 1

Physical Domain Computational Domain

ξixi+1xi ξi+1ξi−1

Ψ(ξ, t)

xi−1

Figure 3.3 – Illustrative example of the physical domain, the computational domain and the

associated map Ψ(ξ, t) between the two. Note that the uniform grid in the computational domain

is translated to a non-uniform grid in the physical domain.

As already mentioned we can interpret this mapping Ψ as the map which ‘distorts’ the

domain in such a way so as to push grid points in the computational domain into specific

areas in the physical domain as necessary. It is a time evolving function and this is done

so that we can continuously adapt the grid as we see fit. In the example above, Figure

3.3, we note that the boundaries are fixed and, in general, we would rather not impose a
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‘twist’ of sorts by inverting the boundaries, so we have the following constraints on Ψ,

Ψ(0, t) = 0 and Ψ(1, t) = 1, ∀t ∈ [0,∞).

In Figure 3.4 we see an example of the function Ψ at some time and have also placed

a very coarse grid on the domain to show the effect on the resulting grid positions in the

physical domain. Note that the function has fixed end points and is strictly increasing as

demanded.

1

1
Ψ(ξ, t)

ξ

x
:=

Ψ
(ξ

,t
)

Figure 3.4 – Example of a transformation function Ψ showing the key features, namely, fixed

end points and strictly increasing. Note that the values of the uniform grid in the computational

coordinate, ξ, are transformed into a non-uniform grid in the physical, x, space.

Now that we have some idea of the function Ψ we proceed to the actual method of

calculating the function and how it adapts with time. To achieve this we introduce the so-

called monitor function, M(x, t), on the physical domain. The choice of monitor function

can have dramatic effect on the solution procedure and overall effectiveness of the approach.

An example choice of monitor function could be arc length, i.e. M(x, t) :=
√

1 + ux(x, t),
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although many other choices exist and it is often the case that the monitor must be tailored

to suit the particular problem being solved, [31, 56].

We then have the following definition, which is known as the equidistribution principle,

M(x, t)Ψξ(ξ, t) = C(t), ∀t ∈ [0,∞), (2.2.1)

where C(t) is some constant at each time and, as before, x := Ψ(ξ, t). Essentially we are

insisting that the product of this monitor function at the point x and the ξ-derivative of

the function Ψ(ξ, t) at the inverse image of x is constant. This may seem to be arbitrary

in nature but its use becomes clearer when we approximate the ξ derivative on the same

computational grid as earlier to find the following,

M(x, t)Ψξ(ξ, t) ≈M(x, t)

(
Ψ(ξi+1, t)−Ψ(ξi, t)

∆ξ

)
= M(x, t)

(
xi+1 − xi

∆ξ

)
= C(t).

(2.2.2)

At this point we note that the original definition of the equidistribution principle,

(2.2.1), is defined at every point in the domain, however, now we have discretised the

derivatives we must decide at which point in the subinterval [xi, xi+1] the point x is located.

Various modifications could be made at this stage, such as central differences at each grid

point so that the monitor function would be defined at each grid point, however, we simply

choose Xi := x = (xi + xi+1)/2, i.e. the midpoint of the interval.

Taking the last part of (2.2.2) and defining Ĉ(t) = ∆ξC(t) we have,

M(Xi, t)(xi+1 − xi) = Ĉ(t),

M(Xi, t)∆xi = Ĉ(t), where, (2.2.3)

Xi =
xi + xi+1

2
and ∆xi = xi+1 − xi.

From here we see the immediate impact of the equidistribution principle on the moving

mesh as where we have M(Xi, t) ‘large’ we must have ∆x ‘small’, and vice versa. In this

manner the map Ψ, which is encoded in the statement (2.2.3), together with the associated

monitor function determine the areas which require increased/decreased resolution in the

mesh. This also explains the choice of the name monitor function as, in some sense, this

function monitors the current numerical solution and ‘informs’ the function Ψ that the

mesh needs to be adapted, equivalently the function Ψ needs to evolve.

In many circumstances the output using pure equidistribution can result in the grid

moving in an abrupt manner, which isn’t ideal since this lack of smoothness can lead to
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jumps in the solution itself. Various attempts to smooth or otherwise limit the movement

of the grid have been investigated, some examples include [31, 42, 106, 127].

In practise, the implementation of the equidistribution method is much simpler than

the detail above as we are only required to select a monitor function in advance of the

simulations2 and then ensure that at each time step the mesh is updated in keeping with

the solution so as to maintain the condition in (2.2.3). Thus at each time step we must

solve the original PDE and update the grid in the physical domain at the same time. The

particular method we will adopt involves solving for the updated solution on the existing

grid, then updating the grid and finally interpolating the new solution onto the new grid.

Along the same lines as smoothing the grid are so-called MMPDEs, or explicitly, Mov-

ing Mesh PDEs. These have a strong presence in the area of adaptive methods and so

we give some detail of their origin and use. We also give brief detail on the so-called,

geometric conservation method which is similar in nature to MMPDEs.

2.2.5 Overview of MMPDEs

MMPDEs [55, 56], have their origins in the equidistribution principle, (2.2.1), and are

essentially taking the principle and ‘relaxing’ the evolution of the mesh so as to avoid any

‘jerkiness’ or un-smoothness of the mesh evolution. The idea here is that it is not at all

crucial to the numerical procedure that the mesh is perfectly equidistributed but instead

we would be satisfied that it attempts to be close but also evolves in a smooth manner.

For our purpose we will simply state several well known MMPDEs, Table 3.1, which are

all derived by taking various temporal and spatial derivatives combined with well justified

relaxation of the resulting equations. In doing so, various PDEs can be created each of

which can be shown to increase the smoothness of the grid update whilst also closely

resembling a perfectly equidistributed grid. More detail on these PDEs and significant

analysis can be found in, for example, [8, 9, 15, 16, 51, 54–57, 93, 106, 127, 128].

2.2.6 Geometric Conservation

Another possible approach, which closely resembles an MMPDE, is called geometric con-

servation [4, 20]. This method considers the equidistribution principle, as in (2.2.1), but

2Choice of a monitor function is not always obvious. Fixed grid simulations or some other a priori

information may be used to select an appropriate monitor.
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MMPDE1 ∂2

∂ξ2
(MΨ̇) = − ∂

∂ξ

(
∂M
∂t

∂Ψ
∂ξ

)
MMPDE2 ∂2

∂ξ2
(MΨ̇) = − ∂

∂ξ

(
∂M
∂t

∂Ψ
∂ξ

)
− 1

τ
∂
∂ξ

(
M ∂Ψ

∂ξ

)
MMPDE3 ∂2

∂ξ2
(MΨ̇) = − 1

τ
∂
∂ξ

(
M ∂Ψ

∂ξ

)
MMPDE4 ∂

∂ξ

(
M ∂Ψ̇

∂ξ

)
= − 1

τ
∂
∂ξ

(
M ∂Ψ

∂ξ

)
MMPDE5 Ψ̇ = 1

τ
∂
∂ξ

(
M ∂Ψ

∂ξ

)
MMPDE6 ∂2Ψ̇

∂ξ2
= − 1

τ
∂
∂ξ

(
M ∂Ψ

∂ξ

)
MMPDE7 ∂

∂ξ

(
M ∂Ψ̇

∂ξ

)
− 2 ∂

∂ξ

(
M ∂Ψ

∂ξ

)
∂Ψ̇
∂ξ
/∂Ψ
∂ξ

= − 1
τ
∂
∂ξ

(
M ∂Ψ

∂ξ

)
Table 3.1 – Table of common MMPDEs together with their numbering as in [56]. τ is called the

‘relaxation time’ and its value affects how quickly the mesh approaches equidistribution.

we adjust the definition of the monitor so that it is normalised, in other words the inte-

gral of the monitor over the physical domain is constant and hence C(t) is constant. We

proceed by taking the derivative with respect to time. We then have,

Mt(x, t)Ψξ(ξ, t) +Mx(x, t)Ψt(ξ, t)Ψξ(ξ, t) +M(x, t)Ψξt(ξ, t) = 0

(Mt + (MV )x)Ψξ = 0,

where V = Ψt and we have suppressed arguments in the last line. This expression V is

the velocity of the grid which we aim to find as this will tell us where the points of the

grid need to be at the next time step. Since we know Ψξ > 0, a constraint on the function

as defined, we must have,

Mt + (MV )x = 0, (2.2.4)

which is now the equation solved to find V . Once we have calculated the velocity of the

grid points we can very simply update the grid and then repeat the whole procedure.

We now proceed to discuss the particular method we have chosen to solve the CKS

equation, (1.1.1), and in particular mention slight modifications made to account for peri-

odicity. Further to this we will give detail of the monitor function chosen, which is based

on our understanding from the fixed grid simulations.

2.2.7 Choice of Geometric Conservation

There are several methods which we could have adopted for updating the numerical grid

underlying the numerical solution. For our purposes here we have chosen to employ the
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geometric conservation approach. This approach maintains the same advantage as the

various MMPDE in that it creates a smoother update of the numerical grid but we feel

it has a slight advantage in that we need not specify a relaxation time τ for the grid.

Ultimately finding a satisfactory output is the goal and we feel that this approach has a

good chance of obtaining that. Numerically solving (2.2.4) proceeds as follows; first we

simply rearrange the equation,

(MV )x = −Mt,

before then integrating both sides with respect to the dummy variable x̄ between 0 and x,

M(x, t)V (x, t) = −
∫ x

0
Mt(x̄, t) dx̄+ C,

where C is a constant. If we now divide through by M(x, t) we then have the following

expression for V (x, t),

V (x, t) = −

∫ x

0
Mt(x̄, t) dx̄+ C

M(x, t)
.

This is the basic form of equation which we will solve numerically to find the function

V . In order to characterise the constant C we must understand the effect that having a

periodic domain has on the adaptive grid method.

2.2.8 Accounting for Periodicity

Everything we have discussed so far has assumed that we are on a fixed domain of some

size, L, say. For our purposes we wish to consider a periodic domain since this is more

appropriate for the CKS problem. We still have a domain of some fixed size L but we now

have periodic boundary conditions on the domain and as a result, since we must perform

integrals over the domain during the procedure, we are forced to privilege a point in the

domain, the initial point for the integrals. This is straightforward in the code since we

simply select the point with index 0, x0, as the start of the domain. With this point

selected we see that the function Ψ is defined from this point which corresponds to the

point ξ0 in the fixed computational domain, and so we must be strictly increasing from

this point at all times and then the function would have a discrete jump at the periodicity

point. This presents no issues to the implementation of the method but is more of a subtle

change.

We now proceed to characterise the constant C. One method of figuring out the value

of C is to fix one physical grid point for all times, i.e. to set V0 = 0, and use this to find
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that C = 0. This is not really appropriate since we must select one point to fix, which is

somewhat arbitrary in choice, and so we have placed some unwanted rigidity on the grid.

To remove this rigidity we instead insist that the integral of V over the domain x is 0,∫ L

0
V (x, t) dx = 0,

i.e. the average velocity is zero. This will allow us to deduce a value for C which releases all

the points in the grid to adapt and also, usefully, ensures we don’t have any unnecessary

drift of all the points. Writing the velocity formula in the following manner allows us to

simplify the approach,

V (x, t) = −V̂ (x, t) +
C

M(x, t)
,

where,

V̂ (x, t) =

∫ x

0
Mt(x̄, t) dx̄

M(x, t)
.

Now if we take the integral with respect to x on both sides we have,

0 = −
∫ L

0
V̂ (x, t) dx+ C

∫ L

0

1

M(x, t)
dx,

and hence,

C =

∫ L

0
V̂ (x, t) dx∫ L

0

1

M(x, t)
dx

.

The code can numerically calculate each of these integrals and then set each grid point’s

velocity, Vi. We can then update the grid at each time step using the appropriate velocity.

2.2.9 Monitor Choice

The one remaining ingredient necessary before we start simulations is a monitor function.

Selection of a monitor function could be considered a bit of an art form since there is no

universal choice, instead we must be guided by information on what we expect to happen

from either analysis or perhaps simple fixed grid simulations. It is the latter which we

mainly rely on in our case since we performed a significant number of fixed grid simulations

before settling on using an adaptive grid method. These simulations together with the

analysis earlier and in [39, 89] led us to believe that the solution forms large parabolic

type regions with essentially fixed curvature joined by small areas of high curvature. Since

these small areas are those which caused the fixed grid so much difficulty we choose a
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monitor function which takes the curvature of the solution at each grid point, κi, and then

calculates the following quantity as the monitor value,

M(Xi, t) =
√

1 + κ2
i .

Since the curvature in the parabola type regions is generally fixed this will have a

similar contribution to overall monitor whereas the curvature in the small regions is much

higher and so will contribute more to the monitor. Loosely this means that since the

monitor is higher in these small regions the grid wants to have more points here to reduce

the grid step size there. This is precisely what we would like to happen and so we see the

benefit of this monitor choice.

Note that in order to make use of the geometric conservation method we must make

use of a normalised monitor function. This is easy to implement since we simply calcu-

late these monitor values at each of the points Xi, the mid points of the intervals, then

calculate the integral over the domain, Mtot(t) say, and finally actually make use of value

Mi(x, t)/Mtot(t) as the monitor value at each of the points. Doing so makes sure we are

in an appropriate position to use the geometric conservation method and so are safe to

proceed.

2.2.10 Update procedure

With the monitor now set we give some brief detail of the actual procedure used to update

the solution at each time step. To begin we take the PDE which we aim to solve, in this

case the CKS equation, (1.1.1), and take a single Euler time step of size ∆t on the current

grid. Using this new solution we then calculate the monitor values, Mi := M(Xi, t), and

calculate each of the associated velocities for the grid points Vi. Then using the same time

step we update the underlying grid again using a simple Euler update with the same time

step size, to find the new position of the grid points. We then take the new solution and

use linear interpolation to map the new solution onto the new grid points. We then repeat

this loop for as long as we require.

Since we are no longer on a uniform grid we must redefine the four finite difference

operators from the explicit method. In all four cases we make use of a standard 5-point

stencil, that is, we use the nodal value plus the two values to the left and two to the right.

Hence we have the following standard operator,

(DkU)ji := (Ak)
j
iU

j
i−2 + (Bk)

j
iU

j
i−1 + (Ck)

j
iU

j
i + (Dk)

j
iU

j
i+1 + (Ek)

j
iU

j
i+2.
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We must then define each of the coefficients in the expression for k ∈ {1, 2, 3, 4}.
We make use of the various grid spacings which are indexed based on the distance they

represent, for example h1 is the distance between xi and xi+1, h−1 the distance between

xi and xi−1 and so on. The coefficients of each term are as follows,
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k = 1 : (A1)ji :=
h−1h1h2

h−2(h−2 + h1)(h−2 + h2)(h−2 − h−1),

(B1)ji := − h−2h1h2

h−1(h−1 + h2)(h−1 + h1)(h−2 − h−1)
,

(C1)ji :=
h−1h1h2 + h−2h1h2 − h−2h−1h2 − h−2h−1h1

h−2h−1h1h2
,

(D1)ji :=
h−2h−1h2

h1(h−1 + h1)(h−2 + h1)(h2 − h1)
,

(E1)ji := − h−2h−1h1

h2(h−1 + h2)(h−2 + h2)(h2 − h−1)
,

k = 2 : (A2)ji := − 2(h−1h1 + h−1h2 − h1h2)

h−2(h−2 + h1)(h−2 + h2)(h−2 − h−1)
,

(B2)ji :=
2(h−2h1 + h−2h2 − h1h2)

h−1(h−1 + h2)(h−1 + h1)(h−2 − h−1)
,

(C2)ji :=
2(h−2h−1 − h−2h1 − h−2h2 − h−1h1 − h−1h2 + h1h2)

h−2h−1h1h2
,

(D2)ji := − 2(h−2h−1 − h−2h2 − h−1h2)

h1(h−1 + h1)(h−2 + h1)(h2 − h1)
,

(E2)ji :=
2(h−2h−1 − h−2h1 − h−1h1)

h2(h−1 + h2)(h−2 + h2)(h2 − h−1)
,

k = 3 : (A3)ji :=
6(h−1 − h1 − h2)

h−2(h−2 + h1)(h−2 + h2)(h−2 − h−1)
,

(B3)ji := − 6(h−2 − h1 − h2)

h−1(h−1 + h2)(h−1 + h1)(h−2 − h−1)
,

(C3)ji :=
6(h−2 + h−1 − h1 − h2)

h−2h−1h1h2
,

(D3)ji := − 6(h−2 + h−1 − h2)

h1(h−1 + h1)(h−2 + h1)(h2 − h1)
,

(E3)ji :=
6(h−2 + h−1 − h1)

h2(h−1 + h2)(h−2 + h2)(h2 − h−1)
,

k = 4 : (A4)ji :=
24

h−2(h−2 + h1)(h−2 + h2)(h−2 − h−1)
,

(B4)ji := − 24

h−1(h−1 + h2)(h−1 + h1)(h−2 − h−1)
,

(C4)ji :=
24

h−2h−1h1h2
,

(D4)ji := − 24

h1(h−1 + h1)(h−2 + h1)(h2 − h1)
,

(E4)ji :=
24

h2(h−1 + h2)(h−2 + h2)(h2 − h−1)
.
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As we simply make use of the current grid set up we can simply calculate all of these

values and then update the associated grid point using a modified version of (2.1.13),

namely,

U j+1
i = U ji −∆t

[
(D2U)ji + (D4U)ji + 2

((
(D2U)ji

)2
+ (D1U)ji (D3U)ji

)]
. (2.2.5)

Once we have updated the nodal values we then perform the linear interpolation step

to place the new solution on the new grid.

2.2.11 Discussion of Adaptive Method

We comment on two aspects of this method, first the size of time step used and some

reasoning behind this followed by a look at the code’s ability to mimic certain aspects of

the solution structure which we anticipate to be true.

Time stepping

Unlike the previous explicit-fixed grid method it is harder for us to say something conclu-

sive about the size of time step that must be used. We do, however, make one particular

comment on the time step used. As the update mechanism is essentially an explicit rule

we expect it to behave in a similar manner to the fixed grid simulations. Indeed, if the

grid were forced to be static and uniform it would be identical to the explicit method.

With this in mind we expect the adaptive method to have a similar time step restriction

to the explicit method, namely,

∆t 6 h4

8
.

We expect that at the local level spatially, the areas with small grid spacing must be

carefully resolved, since these areas are considered to be areas of interest, and so we

anticipate that the time step must reflect the smallest grid spacing present, hmin. Taking

this into account we expect the time step to be adaptive and restricted in size by the

expression,

∆t 6 h4
min

8
.

Numerically we found this restriction to indeed be applicable and generally chose the

time step ∆t = h4
min/10 for our simulations.

Accuracy

We consider the ability of the code to capture the essential features of the evolution and
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we consider one particular aspect as a check. As mentioned earlier, once the system settles

into the parabolic structures we should see a fixed second derivative value of −1/2 in the

parabolic regions. To check this outcome we take a domain of size L = 10 and seed with

a simple initial condition which should form, in this case, a single parabola. We then plot

the second derivative values once the profile has settled into this shape. We ran three

simulations with 40, 50 and 60 grid points respectively and plot the second derivative

values in the parabolic region, each at the same physical time, shown in Figure 3.5.

Worryingly for this method we see no evidence of a relationship between the number

of points and computational accuracy. Increasing the number of points to 60 appears

to make the outer structures less like the −1/2 structures than we expect and strangely

further from this mark than for 50 points. In all three cases, however, there is quite a

discrepancy between the predicted value and the actual numerical value. This discrepancy

combined with the ever increasing computational disadvantage of increasing the number

of points led us to believe that this method is incapable of providing accurate results in

reasonable time frame. Whilst it may be possible to implement an adaptive method for

solving the CKS equation we have been unable to do so here.
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Figure 3.5 – Adaptive simulation of the CKS equation on a domain of size L = 10 with varying

numbers of grid points. Accuracy varied inconsistently with an increase in the number of points

and additionally computational time is adversely affected as we increase the number of points.
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2.3 Implicit-Explicit Update - Fixed Grid

Following on from the adaptive method and the problems encountered there, we have

chosen to return to a fixed grid system. Since the inner boundary layers translate within

the domain it isn’t particularly feasible to create a non-uniform grid which will always

have an appropriate number of grid points in the right areas, in particular with only one

grid used throughout the simulation we run the risk of over resolving some regions whilst

potentially being deficient in others. As a result we instead make use of another fixed,

uniform grid but aim to improve in other ways on the explicit method shown in Section

2.1. Fundamentally the initial set up is the same as the explicit method, however, it

differs in the method with which we update the nodal values. The main limiting factor

in the explicit scheme was the small time steps which were required for the system to

be numerically stable, such a constraint meant that the method was not efficient for this

particular problem. The discretisation of the derivatives, on the other hand, was perfectly

adequate for our purposes and so these aspects of the method will be left untouched. First

let us return equation (2.1.15) which states,

Uj+1 =

(
I − ∆t

h4
A

)
Uj − 2∆t

h4
F(Uj), (2.3.1)

For purely linear PDEs there are two common types of solution method; explicit and

implicit. Explicit methods are essentially the same as found in Section 2.1 earlier and

update nodal values making exclusive use of the previous nodal values, i.e. use the tj

values to calculate tj+1 values. Such methods can also be readily used for non-linear

PDEs, which is precisely what we performed earlier. Implicit methods are different in that

they express all the spatial finite differences in terms of the updated values which we wish

to find, i.e. express spatial derivatives at the tj+1 level instead of the tj level and then solve

the system of equations to find the nodal values at the new, updated time. If we take the

linear terms in the CKS equation, namely uxx and uxxxx, and use an implicit type scheme

instead, which means expressing the derivatives, contained in A, in terms of the updated

values, we then have a new expression,

Uj+1 = Uj − ∆t

h4
AUj+1 − 2∆t

h4
F(Uj).

Note that the term involving A on the right hand side, which represents the linear terms,

is at the updated tj+1 time. If we now rearrange this equation to place tj+1 values to the
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left and tj values to the right we have,(
I +

∆t

h4
A

)
Uj+1 = Uj − 2∆t

h4
F(Uj). (2.3.2)

This will form the basis for our implicit-explicit method. If we consider the right hand

side of equation (2.3.2) we see that as we proceed to try and update the nodal values the

entire right hand side is made up of explicit contributions due to the non-linear nature of

the terms of the original equation there, hence, they could not be easily treated implicitly.

These values can all be calculated since they only require information at the current time.

Note that this expression captures the crucial point that the right hand side is at

the ‘old’ time and the left hand side the ‘new’, updated time. This matrix equation is

what we use to update the system. The vector of right hand side values is calculated

first using the current nodal values. The matrix (I + (∆t/h4)A) is fixed throughout the

entire simulation and so we are presented with a choice of methods for solving for Uj+1.

The cyclic pentadiagonal structure of the matrix admits efficient inverse procedures to be

carried out. Since the matrix is fixed throughout the simulation we are only required to

calculate this inverse at program start-up and then at each time step simply use matrix

multiplication to find,

Uj+1 =

(
I +

∆t

h4
A

)−1 [
Uj − 2∆t

h4
F(Uj)

]
. (2.3.3)

Another possibility is to use an iterative solver whereby we leave the equation as in

(2.3.2) and solve by repeated use of an iterative algorithm. Many such solvers exist and

often these are very efficient, in this case, however, we generally found it to be just as

efficient to perform one inversion at start-up and use this throughout, as in (2.3.3), so it

is this method which we shall adopt. The method then proceeds much like the explicit

method in that we initialise using the specified initial condition and then march forward

one step at a time.

2.3.1 Discussion of Implicit-Explicit Method

We first show that by consideration of the linear parts of the equation this method has

no restriction on the size of time step used. Following on from this we comment on the

influence of the nonlinear parts and what effect those have on the time stepping. Finally

we give some brief comments on this method in comparison to the others as well as giving

some ideas of possible extensions and improvements.
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Time stepping

We follow a very similar analysis to that which was performed on the explicit method in

Section 2.1.1 but this time note that we need to instead consider the matrix,(
I +

∆t

h4
A

)
.

Note that we don’t immediately consider the inverse but we shall return to this point later.

In a similar manner to before we have the following quantities,

ω = e
2πi
n ,

c0 = 1 +
∆t

h4
(6− 2h2), c1 =

∆t

h4
(h2 − 4), c2 =

∆t

h4

cn−1 =
∆t

h4
(h2 − 4) and cn−2 =

∆t

h4
,

from which we can write down our expression for the eigenvalues,

λj = 1 +
∆t

h4
(6− 2h2) +

∆t

h4
(h2 − 4)(ωj + ω−j) +

∆t

h4
(ω2j + ω−2j), j ∈ {0, 1, . . . , n− 1}.

Simplifying as was done previously we then have,

λj = 1 +
∆t

h4

[
6 + 2 cos

(
4πj

n

)
− 8 cos

(
2πj

n

)]
+

∆t

h2

[
2 cos

(
2πj

n
− 2

)]
.

If we once again consider only the dominant part we are left with the following,

λj ≈ 1 +
∆t

h4

[
6 + 2 cos

(
4πj

n

)
− 8 cos

(
2πj

n

)]
.

This has minimum value 1 when j = 0 or j = n and for all other values of j this is strictly

greater than 1. Therefore all the eigenvalues of this matrix can be considered to be larger

than 1 and so since we actually require the inverse matrix,(
I +

∆t

h4
A

)−1

,

we can easily calculate each of the eigenvalues of the inverse matrix as λ−1
j and since each

λj > 1 we immediately have that λ−1
j 6 1,∀j. Thus the linear parts of the equation

provide no restriction on the time step used, it is unconditionally stable.

Modification of ∆t to account for nonlinear parts

Whilst this analysis of the linear parts provides no restriction on the size of the time step

used our simulations note that we must still take care in the selection of the time step

used. Primarily this is due to the nonlinear parts of the equation. It is harder to exactly
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quantify any such restriction from the nonlinear parts analytically but from our simula-

tions we note that a time step of at most h2/5 together with a small enough grid spacing

seemed to be sufficient to ensure the system does not collapse at some later time. This

is clearly a much less severe restriction compared to the explicit method which forced us

to consider a time step proportional to h4. Nevertheless we must take care to ensure the

code remains consistent for a specified time step. More detail on this aspect can be found

in Section 3.5.

Possible improvements or modifications

This method has been found to be sufficient for our purposes and we shall probe the

code’s ability in Section 3. Here, for completeness, we give some brief detail on possible

improvements that could be made to this method, possibly in conjunction with the previous

methods.

One possible modification would be to take all the terms of the equation and treat

then implicitly. A simple matrix solve would no longer be appropriate but if we had an

equation of the form, (
I +

∆t

h4
A

)
Uj+1 +

2∆t

h4
F(Uj+1)−Uj = 0,

we may be able to then use a fixed point type argument to update the system completely

implicitly.

Perhaps the most interesting improvement would be to construct an implicit adaptive

scheme whereby we have a large system of moving grid points and solution values, much

like the adaptive method earlier, and solve for all the variables simultaneously but this

time implicitly. This type of method appears completely plausible and it seems likely that

it could be both fast and accurate, a best of both worlds approach.
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3 Benchmarking the Code

We now proceed to check the performance of the selected implicit-explicit code against

various aspects of the solution which have been analytically derived from the original

equation. We begin by checking the instability of the zero state by inputting a very small

perturbation to the zero state and considering the growth of the solution profile, i.e. does

it grow into the expected solution structure. Following on from this we check that the code

forms the expected two-scale solution with large outer regions connected by small inner

layers. We then check the predicted structure of both the outer and inner layers against

predicted results before finally commenting on the time step used for simulations.

3.1 Linear stability

We first consider the linear stability of the CKS equation and once calculated we verify

the outcome using the code. First let us take the CKS equation and consider only the

linear parts, this leaves us with the following,

ut = −uxx − uxxxx.

We take the standard ansatz solution,

u(x, t) = eikxeσt,

where k ∈ R+, the positive real line, and σ ∈ C, and plug this into the linearised CKS

equation. The term σ controls the fate of an initial perturbation with wave number k. If

Re(σ) < 0 then these contributions shrink in time. Conversely, if Re(σ) > 0 then these

contributions grow in time. Taking appropriate derivatives of this ansatz we then have,

ut = σeikxeσt,

uxx = −k2eikxeσt,

uxxxx = k4eikxeσt.

If we now insert these into the linearisation of the CKS equation we have,

σeikxeσt = eikxeσt(k2 − k4),

or equivalently,

eikxeσt(σ − k2 + k4) = 0.
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From which we can read off the dispersion relation,

σ = k2(1− k2). (3.1.1)

Note in our case that σ is in fact a real number. We are mainly concerned with which values

of k give growth in time and so recognise that we are restricted to the region k ∈ (0, 1).

With this in mind we can also calculate which wave number will grow fastest in time, given

by the maximum value of σ, which can easily be calculated as being at kmax = 1/
√

2. We

can now consider the wavelength which will grow the most rapidly in time by considering

the trigonometric expansion and focussing on the sine wave. The wavelength will be of size

L = 2π/kmax, which in this case means the most excited wavelength is of size, L = 2
√

2π.

It is clear that the fully non-linear problem will not exactly satisfy this condition, however,

we expect there to be a bias towards structures of this size at least initially and as a result

we expect to see roughly one parabola for every nine to ten spatial units emerge.

We can easily test this stability condition in our code by initialising several simulations

on different domain lengths with very small perturbations to the zero state and considering

the output in time. We show one such example here and note that in the next section

where we discuss more on the emergence of solution structure that, in fact, both examples

there also provide good insight into the codes ability to mimic this instability.

The example which we shall use here is a simple linear sum of sine waves as an initial

condition on a domain of size L = 20. We select forty numbers, ak, at random from a

uniform distribution on [0, 1] and then multiply each by 10−12. Our initial condition is

then,

u(x, 0) =

40∑
k=1

ak sin

(
2πkx

L

)
. (3.1.2)

In Figure 3.6 we have plotted the solution profile on both a fixed and variable vertical

scale and have selected a few snapshots during the time period t ∈ [0, 120] as representative

of the initial growth. As expected the initial data rapidly grows until around the end of

the selected time period where we see the solution has settled into the expected profile of

large scale sections separated by small connecting regions. Note that, as we anticipated,

the size of the structures is around ten, a good agreement with the analysis presented

earlier. We consider the evolution after initial instability in the next section.
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Figure 3.6 – Selected output of solution profile depicting linear instability of the CKS equation.

The initial condition is a simple combination of sine waves with varying small amplitude, (3.1.2).

Inset diagrams show same profile but on a fixed vertical scale showing the massive growth of the

solution. (Continued over page.)
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Figure 3.6 Continued – Continuation from previous page showing further into the same simu-

lation.
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3.2 Emergence of Two-Scale Solution and Coarsening

The early-time profiles generated by the code have a length scale that agrees with the

linear stability analysis. At later times we expect to see the emergence of a two-scale

solution with larger outer regions, which should be parabolic in nature, connected by

small inner regions which connect the larger structures. Once the solution profile settles

into this regime we then expect to see the profile coarsen in time, that is, the number

of parabolas should decrease in time and those which are left will grow to compensate.

Larger parabolas will appear to eat neighbouring smaller parabolas until ultimately the

system is reduced to one large parabolic structure and one inner boundary layer. We again

highlight two simulations, from the many carried out, to illustrate the ability of the code

to match this expected result, one on a small domain and one on a larger domain.

First we take a domain of size L = 40 together with the initial condition,

u(x, 0) = 0.0001

(
1.0 + e−

(x−0.75L)2

2

)
sin
(πx
L

)
sin

(
2πx

L

)
. (3.2.1)

In Figure 3.7 we can see snapshots of the evolution and can clearly see the emergence of a

two-scaled solution, large parabola like regions connected by small inner matching regions.

This simulation is also another good example of the linear instability of the zero state from

the previous section. The initial condition has very small initial minimum and maximum

but these grow rapidly until the solution forms the expected two-scale structure as seen

at later times.

Once the solution has settled into the two-scaled regime we then see the appearance

of the other aspect of the system which we expect to observe, system coarsening. At

around t = 60 the solution has formed four parabolic type structures, predicted by the

linear stability analysis, and we then start to see the smaller two of these begin to shrink

whilst the other two grow. In this simulation there are two parabolas which, whilst not

identical in size, are smaller in comparison to others and then proceed to shrink and

disappear. Following on from this, in the latter half of Figure 3.7, the larger of the two

remaining parabolas grows whilst the other shrinks until ultimately we are left with one

large structure as we’d expect. This simple example seems to confirm the accuracy of the

code, certainly at least in this respect.

The second simulation we have to illustrate the growth into a two-scaled solution is on

the larger domain of size L = 100 using the initial condition,

u(x, 0) = 0.0001 sin
(πx
L

)
sin

(
2πx

L

)
. (3.2.2)
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Figure 3.7 – Early evolution of CKS solution on domain of size L = 40 using the initial condition

shown in (3.2.1), u(x, 0) = 0.0001
(

1.0 + e−
(x−0.75L)2

2

)
sin
(
πx
L

)
sin
(
2πx
L

)
, showing emergence of

two-scale structure and then the coarsening of the solution profile. (Continued over page.)
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Figure 3.7 Continued – Continuation from above where we have increased the amount of time

between snapshots as the profile takes longer to coarsen at later times. We have also reset the inset

diagram axes to better reflect the final stages.
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Here, much like before, we again see the emergence of several parabolas which then coarsen

over time, reducing the number of such structures as we proceed. In Figure 3.8 we have

plotted some representative times and see, in much the same way as the previous simula-

tion, the growth of the solution from a very small initial condition into multiple parabolas

which then begin to coarsen. In Figure 3.9 we have also plotted the trajectories of the

inner locations in time; the paths marked out by the locations of the local minima of the

profile, that is, the set of points {xi(t)} where ux(xi, t) = 0 and uxx(xi, t) > 0. Finally

in Figure 3.10 we have plotted the profile, which has been shifted in height by 4t to dis-

play the evolution of the surface profile. Overlaid on this is the associated plot of the

inner trajectories which effectively shows the same information as Figure 3.9 but with the

additional detail of seeing the profile at the same time.

3.3 Outer Parabolic Structure

Now that we are satisfied that the code can produce the expected two-scale solutions we

proceed to check the structure of the separate regions. In the outer regions at times which

are relatively distant from coarsening events we expect the solution to resemble an arc of

the parabola p(x) := a−(x− x̄)2/4, where a and x̄ simply affect the translation and height

of the parabola. We propose two methods of checking the consistency of the code, first,

a simple plot of a solution profile together with an appropriate parabola(s) superimposed

for comparison. Second, we note that the second derivative of each parabola would be

fixed, pxx = −1/2, so we numerically calculate the second derivative for the entire profile

and check to see if this is the case in the regions which we believe to be parabolas. We

highlight two simulations on different domain sizes along with distinct initial conditions

to compare the solution profile to the expected parabolic structure.

Our first example for comparison comes from a simulation on a domain of size L = 10.

This simple example, whilst not particularly interesting, is a good judge of the consistency

of our code. With relatively few points the system can quickly reach a single stable

parabola which we can then easily check the second derivative of and plot the solution

with a parabola for comparison. In Figure 3.11(a) we see the final solution profile together

with the expected parabola with a = 2.035 and x̄ = 2.45847, which was fitted to the data,

showing a very good match. In Figure 3.11(b) we see a plot of the second derivative of the

solution profile at the final steady state. As expected we have reached the −1/2 mark, a

good indicator of consistency in the code. This example certainly supports the consistency
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Figure 3.8 – Simulation on larger domain of size L = 100 using the initial condition shown

in (3.2.2), u(x, 0) = 0.0001 sin
(
πx
L

)
sin
(
2πx
L

)
, showing growth and then coarsening of parabolic

structures. (Continued over page.)
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Figure 3.8 Continued – Continuation from previous page showing further into simulation. Note

that we take larger time jumps between frames and the inset diagram scale has been altered from

the previous page.
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Figure 3.9 – Plot of inner location trajectories from L = 100 simulation, shown in Figure 3.8,

showing the coarsening events (collision of trajectories) and growth in size of outer structures (gap

between trajectories). Inner locations are points {xi(t)} such that ux(xi, t) = 0 and uxx(xi, t) > 0

in the full solution profile.
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(a) L = 40 shifted profile and inner trajectories.
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(b) L = 100 shifted profile and inner trajectories.

Figure 3.10 – Plot of solution profile, u(x, t), shifted in height by 4t, to aid visualisation, together

with the associated inner region trajectories. Note the coarsening events and the overall increase

in the mean size of the parabolic regions.
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of the code in simulating the CKS equation.

As a further check of the consistency, we look at a simulation on a larger domain and

consider a time point which is far from the final, single-parabola state and also try to ensure

that the profile is not in the midst of a coarsening event. We do this because we expect the

complete dynamics of the system to distort the expected parabolic structure particularly

around coarsening events, however, whilst the solution is ‘far’ from any events we expect

the parabolic structure to be relevant. In Figure 3.12 we see two plots from a simulation

on a domain of size L = 60; the solution profile together with parabolas fit to the surface

and the second derivative of the profile showing the neighbourhood of the expected value

−1/2. On the whole the resemblance at this time point is reasonable, however, there

is some discrepancy in the second derivative values. At the later time shown in Figure

3.13 we see the profile is far from the expected steady regime and is, in fact, approaching

an event of some type. This appears to cause a significant change in the structure of

the outer regions and in particular they appear to lose their parabolic shape. Since a

good portion of the evolution time is spent coarsening and hence events are taking place,

this simulation leads us to believe that the outer regions are only roughly parabolic and,

in fact, coarsening events cause massive deviations from −1/2 in the second derivative.

Nevertheless we feel the close resemblance to the expected structures whilst away from

events is a good indicator of the code performing the evolution process effectively.

3.4 Inner Boundary Layer Structure

We mentioned earlier that the inner regions of the solution profile are expected to have a

log[cosh(k(x− x0))] type structure and so we investigate how well the code captures this

by considering a few examples of inner regions from the simulations carried out. In the

same vain as the outer structure, events will likely distort the expected behaviour, so we

do our best to be ‘far’ from any coarsening events.

First let us briefly describe the derivation of the expected structure. As mentioned

earlier, the inner regions were shown to be governed by the reduced equation uxx+u2
x = k2,

where k is a constant [39]. Suppose now, for illustration, that the neighbouring parabolas

to the inner region are of the same size, of width L. The inner locations essentially match

to the slope of the parabola in the outer regions. Assuming the parabola has equation

u = a− (x− x̄)2/4 the first derivative is then,

ux = −(x− x̄)

2
,
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(a) Final solution on domain of length L = 10 together with fitting

parabola.

-0.60

-0.58

-0.56

-0.54

-0.52

-0.50

-0.48

-0.46

-0.44

-0.42

-0.40

0 2 4 6 8 10

u
x
x

x

Simulation Data

(b) Second derivative, uxx, of final steady state.

Figure 3.11 – Final steady state solution, u(x, t), of CKS equation on domain of size L = 10

showing resemblance to a parabola at the top and good match in expected second derivative value

below. Both plots make use of only a fifth of the total number of data points (n = 300) for clarity.
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(a) Profile, u(x, t), and fit parabolas at time t = 150.
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(b) Second derivative, uxx, of solution profile at time t = 150.

Figure 3.12 – Simulation data and overlay fit parabolas on a domain of size L = 60. At this stage

we are ‘far’ from any coarsening events so we see a reasonable agreement with the fit parabolas

though the second derivative plot shows there can be a discrepancy, even at such times. Only a

tenth the total number of data points (n = 3200) have been plotted for clarity.
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(a) Profile, u(x, t), and fit parabolas at time t = 200.
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(b) Second derivative, uxx, of solution profile at time t = 200.

Figure 3.13 – Plots from same simulation as Figure 3.12 above but at a later time. As we approach

a coarsening event we see a much larger deviation from the parabolic structure, clearly indicated

by the large deviation from −1/2 in the uxx plot.
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and so the slope at the edge of the parabola, where the inner location is, is simply ux =

±L/4, with sign depending on which side of the parabola we are considering. Since the

inner region matches to a straight line slope condition, the second derivative is simply zero,

uxx ≡ 0, and so considering the reduced equation we therefore have u2
x = k2 = (L/4)2.

We must, therefore, find a solution to the problem,

uxx + u2
x =

(L
4

)2

.

Setting q = ux we then have,

qx + q2 =

(L
4

)2

,

which can be rearranged into the following form,

qx(L
4

)2 − q2
= 1.

Integrating both sides with respect to x we then have,∫
qx(L

4

)2 − q2
dx =

∫
1(L

4

)2 − q2
dq = x− x̂,

for some constant x̂, and by following this by use of the substitution q = (L/4) tanh θ we

have, ∫
1
L
4

dθ = x− x̂,

from which we can see that θ = L(x− x̂)/4 and q = (L/4) tanh[L(x− x̂)/4]. Since q = ux

we must integrate once more with respect to x in order to find the solution u. In doing so

we have,

u = û+ log cosh

[L
4

(x− x̂)

]
,

= û+ log cosh [k(x− x̂)] ,

as expected where the constants û and x̂ simply set the location and height of the appro-

priate inner region. The main point to note is that the quantity k = L/4 is related to the

size of the neighbouring parabolas and isn’t constant throughout the system.

We now consider this inner structure more closely by considering specific simulations to

discover the code’s ability to capture this feature. Our first example will be to reconsider

the L = 10 example from the previous section since this reaches a stable state with one

well defined inner region and is therefore not featuring in any kind of coarsening event. In
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Figure 3.14 we see the solution profile plotted together with the predicted fit curve. The

parameter k was selected based on the extent of the parabola which is believed to take up

the majority of the domain with the exception of the inner region and thus has size L ∼ 9,

therefore k = 9/4. Overall the shape of the fit curve is good and the selection of k seems

consistent with the data.
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Figure 3.14 – Solution profile from L = 10 simulation plotted in inner region together with

fitting log(cosh(kx)) curve where k = 9/4, a value predicted by the extent of the parabola which is

believed to take up almost the whole domain and thus have size L ∼ 9. (Every second data point

plotted for clarity.)

For our second example we consider two of the inner regions from the L = 60 simulation

at t = 150 from the previous section. Again we have plotted the appropriate fitting curve

where this time based on the rough size of a parabolas either side of the corresponding

inner region. In 3.15(a) we have considered that the total extent of the neighbouring

parabolas, from Figure 3.12, is approximately 28. Accommodating for the space the inner

regions take up we assume the extent of the parabolas to be around 13 each and thus

k = 13/4. In 3.15(b) the total extent is, as a result of L = 60, found to be around 32

giving two parabolas of size approximately 15 plus room for the inner regions, and hence

here k = 15/4. As before we see overall there is a good agreement in the shape for these

predicted values of k.
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(a) Profile and fit curve for one inner region at time t = 150 on domain L = 60 with k = 13/4.
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(b) Profile and fit curve for a second inner region at time t = 150 on domain L = 60 with k = 15/4.

Figure 3.15 – Two inner regions from the L = 60 simulation in the previous section showing the

comparison to the predicted log(cosh(kx)) type structure. In (a) we have used k = 13/4 to reflect

the fact the parabolas either side of this inner region are less than a quarter of the total domain

size. In (b) we have used k = 15/4 since the parabolas here are larger in size than in (a). In both

cases we see a very good fit of the data and theory. (Every second data point plotted for clarity.)
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3.5 Size of Time Step and Grid Spacing

One final area of interest is to consider the size of time step used and check that we are

performing suitably accurate time steps. In order to check the consistency of the update

for a particular time step we propose a set of simulations, each with identical parameters

except the size of the time step, grid spacing or both. In each case we shall use various sizes

of time step together with various sizes of grid spacing. Whilst not a rigorous conclusion

this does at least give us faith in the output of data from the code. For comparison we

shall simply consider the trajectories of the inner regions as our gauge of accuracy.

In Figure 3.16 we see the expected paths for our chosen simulation on a domain of

size L = 30 with grid spacing h = 1/25 and ∆t = h2/10. This will be our benchmark

simulation as we can readily reproduce these results with smaller grid spacings and smaller

time steps, so we consider this to be representative of the correct paths.

In Figure 3.17 we see the paths which emerge by changing only one of the control

parameters, either increasing the grid spacing or increasing the time step. In both cases

we see the collapse of the system at later times. In each case, however, the paths agree

at early times, whilst the system has no small inner regions, but begin to disagree as the

size of the inner regions reduce. This leads us to believe that care must be take to ensure

stability in the system. If we perform one final simulation with h = 1/25 as before but

this time with ∆t = h2/5 we see the same paths as the original case, shown in Figure

3.18 together with the ‘correct’ paths. This is what lead us to using ∆t = h2/5 in our

simulations.

We fix this time step size and ensure stability on different sized domains by modifying

the number of grid points used. Whilst often able to undercut this number, we found

n = L2 to be approximately the right number of grid points necessary for each domain.

At the very least this number gave a good starting point for fine tuning the number required

for both efficiency and accuracy. It should be noted that instability tended to occur when

the parabolas became larger in size. Larger parabolas force large jumps in the slope to

occur across the inner boundary layers, which need to be properly resolved. As a result it

is perfectly sufficient to undercut the L2 number if we only required early evolution data

but more care is needed if we hope to coarsen all the way to a single parabola on a large

domain.
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Figure 3.16 – Typical plot showing the correct, stable inner region trajectories from a general

simulation on a domain of size L = 30. Here we have chosen h = 1/25 and ∆t = h2/10.
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Figure 3.17 – Inner region trajectories for both increased ∆t (∆t = h2) and increased h (h =

3/40). Note that the system breaks down in both cases as signified by the sudden increase in

inner regions at later times (the solution develops a wave like structure with multiple peaks and

troughs.) In the case of the increased ∆t the system completely collapses and doesn’t reach the

desired final time. In the increased h case the trajectories do seem to match well at early stages

but break down occurs as the size of the inner regions is reduced to or approaches the size of the

grid. In both cases the code copes well in the initial stages but loses accuracy as the inner region

becomes narrower at later times.
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Figure 3.18 – Inner region trajectories for the time step ∆t = h2/5, which became our regularly

chosen time step, showing the match to the correct paths from Figure 3.16. Inset diagram shows

the event in the red box enlarged with the green h2/10 data barely visible, showing essentially no

discrepancy.
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4 Coarsening Pathway and the Dynamical System

In this section we aim to characterise the dynamics of the system by first considering the

types of event that can take place before comparing these circumstances to that predicted

by the dynamical system proposed by Politi et al. in [89], and shown in (1.2.1). We shall

see that there is some similarity in the outcome but significant reason to believe that this

dynamical system is incapable of capturing the true dynamics of the solution profile.

4.1 Types of event

From our simulations we believe there to be two types of event which can take place

during coarsening of the solution profile. One is much more prevalent than the other and

corresponds to the shrinking and removal of a single parabola over time. The second is

more rare and corresponds to the merging of two parabolas into one, or equivalently the

sudden loss of an inner region from the solution profile.

4.1.1 Prevalence of the 2→ 1 event

If we consider Figures 3.7 and 3.8 we can clearly see the system coarsening as it reduces

the number of parabolic type structures, ultimately ending up with one large structure

spanning the whole of the domain. During this process several smaller parabolas must

vanish in order for this to happen. The first type of disappearance examined is what we

would consider to be the ‘standard’ method of loss. This involves a parabola shrinking in

size until it disappears and has effectively been consumed by the two larger neighbouring

parabolas. Several of these types of event can be seen in the figures. On the larger domain

shown in Figure 3.8 alone we can see nine such events have taken place. These types of

events are very common as the solution coarsens on its way to the final state.

If we consider the trajectories of the inner regions shown, for example, in Figure 3.9

we see the typical signature of this type of event. As a parabola shrinks in size the two

inner regions to the left and right become closer and closer before eventually the parabola

is removed and the inner regions merge to form one region separating the two remaining

parabolas. These events can clearly be seen as the collision of two inner paths and one

single inner remaining. As this type of event corresponds to the loss of one inner region

from two, we shall call this type of event a 2→ 1 event.
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4.1.2 The exceptional 1→ 0 event

The second type of event we have encountered appears only in very few circumstances, in

particular it appears from our simulations that a great deal of symmetry must be present

in the solution profile for this type of event to take place. Nevertheless it is possible under

certain circumstances for the solution profile to form several parabolas and then for two

to shrink simultaneously and in fact merge before they disappear. This type of event can

clearly be seen in Figure 3.19 where we see a merging of parabolas at x = 20 and t between

87.5 and 100.0.

The signature of this type of event in the inner locations can clearly be seen in Figure

3.20. In terms of purely these inner locations we see that this corresponds to a sudden

removal of an inner region and so we shall call this a 1 → 0 type event. This is in stark

contrast to the more typical type of event in the previous section where we saw two inner

regions come together and one remain. An example of this first type of event can also be

clearly seen at the later time of approx. t = 125 in Figure 3.20 where once the two small

parabolas have merged to become one, the size of this parabola is still small in comparison

to its neighbours and so it is consumed in the ‘standard’ 2→ 1 manner.

4.2 Comparison with the Dynamical System

To compare the proposed dynamical system (1.2.1), to the evolution of the PDE solution

profile we propose three distinct methods. Each of these methods will focus on the particle

locations from the dynamical system, which as mentioned earlier correspond to the x

location of the inner regions in the PDE solution. If the dynamical system is to truly

capture the PDE evolution then it must succeed in capturing these basic events. The first

such comparison we shall make is to consider the 1 → 0 events and their appearance,

or more specifically lack of, in the dynamical system. Following on from this we will

consider the particle trajectories and finally we shall explore the possibility of multiple

PDE solutions existing with the same locations of the inner regions.

4.2.1 No signature for the 1→ 0 event

In Section 4.1.2 we drew attention to the possibility of two parabolas merging to form

one larger parabola (See Figure 3.19), and although we remarked that this situation was

generally quite rare it is still a feature of the evolution of the PDE which we would expect

the dynamical system to capture.
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Figure 3.19 – Evolution of solution showing the, comparatively rare, 1 → 0 event whereby two

parabola type structures merge into one larger parabola. This type of event is unique in that

it corresponds to the sudden disappearance of an inner location, shown here somewhere between

t = 87.5 and t = 100.0. (Continued over page.)
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Figure 3.19 Continued – Continuation from previous page.
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Figure 3.20 – Trajectories of inner points from Figure 3.19 showing the disappearance of the inner

region at x = 20 shortly before t = 100.0. This is quickly followed by the more common 2 → 1

event where the newly formed parabola shrinks and vanishes somewhere around t = 125.0.
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Unfortunately such a situation was not considered in the derivation of the dynamical

system. In order to proceed through the analysis in [89] the authors makes use of a 2-

parabola set-up and consider the case when one parabola grows and the other shrinks.

This situation captures the more general type event but does not contain the ability for a

particle to essentially vanish as we would see in this circumstance. The dynamical system

would need to contain some mechanism by which two lengths join together under particular

circumstances and this type of mechanism is certainly not present. A typical example of

a fading particle trajectory together with the trajectories the dynamical system predicts

can be seen in Figure 3.21.
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Figure 3.21 – Comparison of PDE inner locations and dynamical system showing the dynamical

system’s inability to capture the vanishing inner region at around x = 20, t = 100. This discrepancy

results in a dramatically different outcome.
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4.2.2 Other Discrepancies

The next method of comparison we shall consider will be to check the trajectories of

the inner locations from both the PDE simulations and the dynamical system. This is

a very straightforward method of comparison since we simply take a PDE simulation,

which ideally contains a reasonable number of parabolas, and consider the inner region

trajectories. Since we have already been gathering data on the inner locations we can

simply pause time, read off the locations, feed these to the dynamical system and then

continue the PDE evolution. In this way we can guarantee that the initial conditions of

the two systems are identical and so represent a fair comparison of the inner trajectories.

Two examples of the pairs of trajectories can be seen in Figure 3.22.

In these two examples, and many others not shown, we can clearly see discrepancies

between the two sets of trajectories. Particular mention should be made of the different

order of events shown in Figure 3.22(a). This would seem to suggest that the distance

between inner regions is not the only governing factor in the evolution of the system and

that other system characteristics play an important role. Figure 3.22(b) does seem to

show a relatively good agreement between the two methods suggesting that in some cir-

cumstances the dynamical system captures the evolution of the solution well.

Our final comparison comes from considering the possible outcomes from one initial

condition. The dynamical system is as stated and so from a given initial condition is only

capable of one particular outcome. The PDE on the other hand is capable of supporting

multiple profiles whilst maintaining the same location of the inner regions. This is pri-

marily due to our ability to vary the height at which each inner region is on the vertical

axes, a degree of freedom which is projected out when transforming the system into a

particle model, and still maintain a valid continuous profile. Removing this information

could have dramatic consequences on the evolution of the solution profile, in particular

possibly leading to a difference of outcome from a given initial condition.

5 Overall Conclusions

We have probed the CKS equation and gone to length to find a suitable, accurate numerical

method of solving the equation. The information gathered here allowed us to explore the

dynamics predicted and we have shown that this dynamical system is incapable of fully
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(a) L = 50 simulation inner trajectories.
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Figure 3.22 – Plot of trajectories showing comparison between inner regions directly from PDE

simulation and proposed dynamical system for two different sized systems. Both the PDE and

dynamical system used identical initial data. In (b) overall we see a reasonable agreement between

the two types of data. In (a), however, we see significant discrepancies including a change in the

order of events.
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capturing the evolution of the surface profile. In particular there are a number of events,

as detailed here, which are not or indeed cannot be captured by the dynamical system as

stated. We believe the cause for this is that the dimension of the dynamical system, namely

the number of inner regions, is too low to fully contain all the necessary information to

build up a solution profile. Even if parabolas are assumed to have fixed curvature in the

outer regions we see that by assuming parabolas only join in a one-dimensional line, i.e. the

x-axis, we have projected out information about relative heights of individual parabolas.

We believe this loss of information is what leads to the discrepancy. By possibly increasing

the n inner region degrees of freedom to 2n (position and height) we believe there is a

better chance of being faithful to the original problem. Such a scenario can be visualised by

considering that each inner location also has some associated ‘mass’ and that the dynamics

reflects both spatial locations, as currently, and some relation to this new mass.



Chapter 4

Hill-Valley Facet Model

1 Introduction and Background

Faceted surfaces are present in a wide variety of systems and have been subject to a

wide array of theoretical and numerical research. Examples include the evolution of phase

boundaries between two elastic solids [49], evaporation or condensation during thermal

annealing [121] and many other solidification systems, e.g. [33, 52, 78, 79, 99, 103,

122, 124]. Such systems can display a range of dynamics dependent on the system in

question and as a result exhibit a wide variety of evolutionary structure. A general faceted

system consists of a large, finite or perhaps infinite, set of individual facets which are

commonly constrained in some way, for example in one-dimension the facets may be limited

in their choice of slope. Facets are connected together in such a way so as to form a

continuous surface in space, in one spatial dimension this simply means the facets form

a long, continuous chain. The system of facets then evolve subject to some velocity law

which is generally based on geometric properties of the individual facets, e.g. length, slope,

area, or perhaps configurational quantities such as height. This facet velocity law then

governs the entire evolution of the system and so these models are deterministic in nature,

that is, from a given initial condition and with a specified velocity law the dynamics

is completely determined. The origins of many faceted models are found to be PDEs

which govern physical systems such as [19, 46, 120, 122]. Analysis of these PDEs then

leads to both the faceted surface, which may be an approximation of some kind, and an

effective velocity law which determines facet evolution. Once a perhaps highly complex

system is reduced to a faceted model with associated facet velocity, large scale simulations

become much more amenable, by reduction of a general surface evolution to that of a

139
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set of ODEs, and can often lead to a deeper understanding of the original problem by

probing the simplified faceted model. These large scale simulations allow us to consider

the underlying statistics and probability distributions with the aim to predict information

that matches and informs the original problem and in turn gives insight into the general

surface statistics.

Many such faceted systems display a general loss of facets from the system in finite

time, facets either shrink and disappear from the system or merge with one-another,

e.g. [79, 122, 124]. The faceted surface, however, will still occupy all of the specified

initial space and so we see an increase in the mean size of the remaining facets with a

reduction of the overall number of facets, the typical signature of a coarsening system.

The exact mechanism of loss will be highly dependent on the particular velocity law

applied and other factors within the faceted system, such as the constraints on individual

facets. Note, however, that these constraints are often determined by the analysis of

the underlying PDE problem so, in fact, the appearance of and structure in and around

coarsening events is purely determined by the original problem. Further to this overall

concept of coarsening we see the emergence of dynamic scaling, that is, statistics of the

surface remain constant when scaled by the characteristic length scale, often the mean

size. This scaling parameter is also frequently shown to obey some form of power law

scaling in time, again something consistent with general coarsening systems. As we have

already mentioned we aim to understand and predict the system statistics so the presence

of dynamic scaling is a property which is frequently exploited to further our understanding.

1.1 Faceted Systems: A Coarsening Dynamical System

We now see that facet dynamics models provide another context for coarsening systems

and in particular we note that in place of a probabilistic evolution of the system seen in

other examples the evolution here is completely deterministic with the dynamics governing

the evolution and eventual coarsening. With the dynamics set and a coarsening law

obtained from the underlying problem we see in this context that we have a coarsening

dynamical system (CDS) [122] which signifies that the system combines both dynamics

and coarsening.

These faceted CDS are amenable to the kind of dynamic-scaling analysis which has

proved successful in other coarsening contexts such as Ostwald ripening [68, 91, 117, 118]

and thin film dynamics [45, 47, 48, 83, 92]. In very much the same way as discussed
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earlier, and in many of the listed facet examples, we can probe the overall system by

exploring the dynamic scaling properties, scaling laws and indeed consider the associated

distributions which arise, in particular making note of the presence of dynamic scaling.

The importance of understanding the probability distributions for physical problems leads

us naturally to the goal of their prediction.

1.2 Theoretical Predictions and Mean-Field Models

Predicting the evolution of the statistics within a facet dynamics model can be performed

in much the same way as other dynamical systems and in this broader context is the subject

of much research in the field [11, 30, 47, 48]. As already mentioned, understanding this

evolution can provide us with a greater insight into the underlying physical problem. These

types of predictions closely follow the overarching ideas presented in the seminal papers

by Lifshitz & Slyozov [68] and Wagner [118] (LSW theory) who carried out independent

analyses of Ostwald ripening. LSW theory assumed that there we no collision of objects,

however, care must be taken in a general facet model to ensure that all sinks and sources of

facets are properly accounted for in any theory or predictions made. For example, certain

dynamics allow for the loss of one facet and the merging of its neighbouring facets and so

care must be taken to ensure any prediction of the distribution evolution takes account of

such events [80]. Characterisation of these events is perhaps more akin to the sink-source

characterisation found in Smoluchowski’s coagulation equation [116]. Dynamic scaling

permits the use of distributions as representative of the system at any relevant time.

Given a faceted system and an associated velocity law it is then the aim to predict

the evolution of distributional quantities from some given distribution, which is simply

representing the initial data. Of course, an initial condition which has a finite number of

facets is amenable to simulation but the outcome would only be valid for that particular

initial data, we want something more general than that and so try to predict the distribu-

tional makeup of the surface theoretically. Whilst this wouldn’t tell us exactly what the

surface would look like at some later time for any given data it would give us a good idea

of the general structure of the surface. For instance, if we can predict the growth rate of

the average size of a facet and know the distribution which the surface satisfies then we

have something which is far more general than could be obtained by just running a finite

simulation.

In many similar coarsening systems theoretical predictions on the growth rate of the
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system are often found and frequently have a power law type form [60, 62, 83]. For

multi-scale continuum partial differential equations, such power laws emerge from spatio-

temporal scale separation resulting in an effective defect dynamics. For a physics review on

such dissipative PDE and their resulting CDS, see Bray [14], and for a unifying analytical

framework, utilising the Principle of Maximum Dissipation, see Watson [121]. The scaling

laws then follow from simple scaling properties of these effective dynamics. We note that

a soft-analysis, and so-called ansatz-free, version of this approach, which achieves only

upper-bounds on the scaling laws, and provides no details on defect dynamics was initiated

by [60], with other subsequent work appearing in [27, 61, 83].

The prediction of the scaling functions which govern the scale invariant distributions

of a dynamically scaling CDS is a key theoretical challenge. The Fokker-Planck equation

[50] governing an evolving distribution ρ(l, t) is designed to do exactly this. It takes

account of deterministic components of the flow but also takes into account any random

perturbations that might be present such as noise or general fluctuations in object size.

The one-dimensional Fokker-Planck equation for a distribution ρ(l, t) is then,

∂

∂t
ρ(l, t) = − ∂

∂l
[D1(l)ρ(l, t)] +

∂2

∂l2
[D2(l)ρ(l, t)],

where D1(l) characterises the drift or equivalently the deterministic part and D2(l) char-

acterises a diffusional or ‘noise’ component. In our model each facet is driven in a purely

deterministic manner and so in this circumstance we shall set the coefficient D2(l) ≡ 0.

All that would appear to remain is to characterise the coefficient D1(l). Unfortunately a

problem with this very simple approach arises. Implicit in the equation as defined is that

the evolution of the distribution of a particular length l, say, depends only on the current

distribution of length and a coefficient, D1(l), which itself only depends on the individual

length. Since the function D1(l) is only dependent on one length it cannot possibly take

account of any neighbour relations or effects that surroundings have on the evolution of

lengths, this function must capture what happens to all lengths of size l regardless of sur-

roundings. One can interpret this as the function D1(l) containing information on what

happens to a object of size l ‘on average’.

All is not lost, however, as modifications of this basic form of the equation can be made

which introduce coefficients depending on the wider surroundings as well as considering

higher order distributions, ρ(l1, l2, t) for example. This can however lead to an infinite

hierarchy of such equations, namely the one-dimensional depends on the two-dimensional,

two on three and so on [11, 47]. In order to ‘close’ the system, in other words cut off this
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hierarchy at some point, it is generally necessary to make some form of mean-field type

assumption.

In this context a mean-field assumption generally follows the same pattern as previously

mentioned in Chapter 1, that is, we assume that neighbouring objects are independent

or in some sense average. If we take a Fokker-Planck type equation for the one-point

distribution, ρ(l, t), and in the infinite hierarchy it depends on the two-point, ρ(l1, l2, t),

we might assume that the lengths within the two-point distribution are independent, and

as a direct result of independence we then have ρ(l1, l2, t) = ρ(l1, t)ρ(l2, t). Further to this,

if due to the velocity law we require information about the surroundings to understand

the evolution of an object but we want to have a closed system, then it may be necessary

to assume that neighbours are in fact average in size to allow us to proceed with deriving

predicted distributions. This kind of idea is quite common in many systems [11, 47]

including faceted ones [80] and fits neatly into the general concept of a mean-field model.

As a somewhat more concrete example, consider a system where a facet’s evolution

depends on the length of its immediate neighbours. If we want to develop a one-point

theory that governs the distribution evolution then we need to understand how a facet

moves on average and since we cannot make direct reference to the size of the neighbours

for a closed theory we can then assume that the neighbours are, in an appropriate way,

average in size.

Mean-field models in this sense provide exactly the kind of outcome we’d expect from

the general concept. By assuming neighbours or indeed the surroundings are independent

and/or mean in size we remove any dependence or correlation between the objects in the

system and hope the reduced system following these assumptions is more amenable to

prediction. It may well be, and often is the case, that without some sort of assumption

we are left with the infinite hierarchy of equations or no sensible equations at all and so

progress could be severely limited without some form of assumption. Of course in making

such assumptions we may well be filtering out important information about the system

and so we must take care that we don’t impose too strict an assumption on the system,

otherwise we risk generating a transport equation predicting the probability distribution

evolution which bares no resemblance to the distribution we are trying to predict.

In some circumstances it may be inappropriate to perform the kind of independence

assumption seen earlier. Such a situation may arise where the correlation between neigh-

bours is high and as a result this approximation is going to be too strict, possibly limiting
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the usefulness of the prediction. Calculation of correlation coefficients is an efficient way to

probe the relationships between objects and their surroundings. Mean-field type assump-

tions tend to be useful or appropriate when correlations are small or zero (zero would seem

to indicate true independence) and so care must be taken to not be too quick to assume

objects are independent. Later when we consider a particular facet model we will see

exactly the situation where imposing ‘full’ independence on objects would severely limit

the usefulness of the output.

1.3 Objectives and Approach

Our aim is to take a particular facet dynamics, which has its roots in a geometric PDE

[120], and to predict the evolution of the system probability distributions, in particular

we will focus on the two-point distribution of pairs of lengths. We begin by detailing the

system in question which will essentially entail a system of facets with slope alternating

between 1 and−1 which will create a saw-tooth like structure of hills and valleys. Following

on from this we discuss the exact form of the facet velocity law where we see that the rate

of growth of a facet is determined by the lengths of immediate neighbours with no reference

to a facets own length. The particular form of the velocity law is shown, via both large

scale simulation and heuristic argument, to exhibit coarsening. These coarsening events

are not entirely random so we explore the precise detail of this loss from the system, and

confirm that loss occurs in specific pairs, namely valleys [120].

We find that there exist two distinct two-point distributions, a ‘hill’ distribution and

a ‘valley’ one. Arguing directly from the velocity law we assume dynamic scaling, and

thereby confirm the scaling law of the average length to be 〈l〉(t) ∼ t1/2. Large scale

numerical simulations of the system are then carried out which further reveal the shape

and structure of the two-point probability distributions and confirms their dynamic scaling

properties. We give detail on the method of simulation together with presentation and

analysis of the data acquired. Probing the two-point distributions further we see that

in both the hill and valley cases an assumption of independence of the side lengths is

inconsistent with the numerical data; neither bares any resemblance to the product of the

one-point distribution. Consideration of the correlation coefficients shows that pairs of

adjacent lengths are highly correlated, which is reflected in the distributions found and

helps explain the lack of resemblance.

Following on from our exploration of the model and associated data we proceed to our
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main aim, the prediction of the evolution of the probability distributions or, equivalently,

the prediction of the universal scaling function. We show that, based on typical techniques,

in our context a one-point theory becomes degenerate. Primarily this is because evolution

proceeds by direct reference to neighbouring lengths. If both neighbours are deemed to

be of average length then, in fact, there is no dynamics at all. Each and every length will

remain the same in any prediction given which ultimately leads to spurious results. This

outcome forces us to consider higher order distributions, in particular we focus on the

two-point distributions. Here, unlike in one-dimension, there is hope of a general theory

since the aforementioned degeneracy isn’t apparent. We focus our attention on the valley

distribution and by assuming that adjacent valleys are independent, our chosen mean-

field assumption, we are able to derive the following equation for the scaled distribution

ρ̂(z1, z2),

3λρ̂(z1, z2) +

(
λz1 +

1

z2
− α̂

)
∂ρ̂(z1, z2)

∂z1
+

(
λz2 +

1

z1
− α̂

)
∂ρ̂(z1, z2)

∂z2
= 0,

where λ is related to the scaling rate, α̂ is a constant and zi are the scaled lengths on

either side of a valley. Numerically we see that the only sink from the system is at the

origin, as we expected since we know valleys disappear as a whole.

Our mean-field assumption has one additional effect, it enforces a condition on the hill

distribution namely that the sides of a hill are independent. Therefore by making this one

assumption on the valleys we can predict both the hill and valley distributions, although

the hill distribution has no separate equation to solve for, it is simply a consequence of

the valley derivation. We note at this stage that the sole coarsening mechanism being the

disappearance of valleys [120] results in a single sink in the system. This parallels the

classic LSW theory where the one-dimensional radial distribution also has a single sink at

the origin as small clusters disappear. Our system may thus be naturally viewed as a 2D

generalisation of the LSW theory.

1.4 Summary

We begin in Section 2 where we discuss the dynamics of the system in question along with

the particular coarsening rule. With this in mind we discuss our numerical simulations

and confirm the scaling law of the average length in the system [120] before validating

this numerically. In Section 2.9 we discuss the distribution and correlation data gathered

and look at what conclusions can be drawn therein. Finally in Section 3 we consider our
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Fokker-Planck type models to try and predict the two-point valley distribution. We then

discuss a particular one-point reduction of the two-point model for which an associated

evolution equation can be solved exactly.
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2 The Hill-Valley Facet Model

2.1 Overview

The Hill-Valley facet model, derived in [120], consists of a series of initially random (pos-

itive) facets, li, where i is an indexing of the facets, i ∈ Z, and such that each facet has

a prescribed alternating slope. In particular, each facet has either slope 1 or −1 and the

slope alternates as we go from length to length. Thus we have two types of vertex, a hill

and a valley. The system then evolves in a deterministic manner, with each facet evolving

subject to a fixed velocity law, V(li) := F(li−1, li, li+1), which is prescribed. Depending on

the form of the velocity law there may be coarsening events where the system loses one or

more of the facets before continuing on as before. As we shall see the particular velocity

law used here does exhibit this coarsening behaviour.

The surface generated is therefore a piecewise linear function, u(x), and could equally

be described by indicating the points xi on the x axis where facet joins occur and whether

this indicates a hill or a valley.

2.2 Specific Dynamics and Velocity Law

As mentioned, each facet moves subject to a fixed velocity law. The particular velocity

law we focus on here is as follows,

V(li) := F(li−1, li, li+1) =
dli
dt

= K(−1)i
(

1

li+1
− 1

li−1

)
, (2.2.1)

where i is even for up slopes and odd for down slopes, and is hence equivalent to multipli-

cation by the slope of the particular facet, li, and the pre-factor K has units length2/time

([L]2/[T ]). We see immediately the dichotomy between up and down slopes, due to the

(−1)i term. This leads to interesting dynamics and in particular leads to the coarsening

of the system.

2.2.1 Dynamics: The Dichotomy Effect

Consider the following two configurations, first a valley with symmetric side lengths, l,

say, and the neighbouring lengths to the left and right of the valley are of length L, say,

where L > l. Now let us consider the fate of this valley and, for now, assume the outer

lengths are fixed. The velocity of the left and right lengths in the valley at this instance
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in time are,

−K
(

1

l
− 1

L

)
and K

(
1

L
− 1

l

)
,

respectively. The main point to note here is that these are both negative, as a consequence

of L > l, and so the valley shrinks in size. Since we have assumed that the outer lengths

remain fixed it is clear to see that the valley will shrink with ever increasing speed.

Now consider a similar scenario but with a hill with lengths l < L, where L is the size

of the outer lengths. By a similar argument the velocity of the hill facets are,

K
(

1

l
− 1

L

)
and −K

(
1

L
− 1

l

)
,

respectively. Here we then see that these are both positive and so the hill grows.

Now we note that the assumption that the outer lengths were fixed was not consistent

with the evolution of the system in which every length has some velocity and therefore

evolves in time. We also note that in general a valley (hill) will not necessarily have equal

side lengths. These assumptions aside we can see that, loosely speaking, small valleys will

shrink and disappear whilst small hills are not favourable as the smaller they are in size

relative to their neighbours the faster they will want to grow.

2.2.2 System Symmetries

The particular velocity law present here leads to interesting dynamics but further to this

we note that the system displays a useful symmetry property which we will encounter

frequently throughout the chapter. First we note that the system is not symmetric under

a reflection in the horizontal x axes. Simply put this would swap valleys and hills around

and cause a swap in the coarsening mechanism, namely hills would disappear.

The system does, however, display symmetry in any vertical line, i.e. any line parallel

to the vertical solution axes, u(x). Such a reflection wouldn’t change the fate of any

facet, since left and right lengths would swap but there would be an additional minus

sign introduced through the swap in slope. As such the distribution of objects which we

consider will reflect this symmetry property. As a direct consequence of this, for example,

we see that there will only exist one one-point distribution regardless of orientation.

2.3 Finite Simulations

Eventually we would like to probe the statistics of this system as time proceeds. As a result

we would like to simulate the system to acquire some data, however, the system lives on
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the infinite line and so isn’t immediately amenable to simulation. In order to overcome this

we propose a finite number of facets on the line and impose periodic boundary conditions

on the system. As a result of this we are imposing that the system has the same total

up length as down length. This is physically realistic to the full infinite system since

any discrepancy would essentially mean the system gradually increases/decreases non-

monotonically in one direction, which is not consistent with the system we are currently

trying to describe. This shall be known as the zero cut case.

Introduction of a cut to the system means that the system tends to drift upwards or

downwards. The case with some form of cut, e.g. more up length than down, can similarly

be modelled but understandably the statistics of such a system may be altered from the

zero cut case. We won’t pursue the variation of cut any further here and will concentrate

solely on the zero cut case.

In order for this finite system assumption to be accurate we must ensure that a separa-

tion of scales argument holds. In this context we assume that 〈l〉(t), the average length in

the system, is much less than the total length of the system, i.e. 〈l〉(t)� L. In the finite

system we have 〈l〉(t) = L/N? where N? is the number of facets in the system and so we

must have L/N? � L and hence 1� N?. Thus as long as we have a sufficient number of

lengths in the system we expect this separation of scale condition to hold and the system

to mimic the behaviour of the infinite case.

2.4 Coarsening Events and Update

We have already mentioned that small valleys tend to shrink but we must now take care

to characterise and understand the coarsening events which take place within the system.

As a valley shrinks it will eventually shrink to zero and be removed, although this is only

from a heuristic viewpoint. If we consider the analysis and proof of Theorems 8 and 9

presented by Watson et al. [122] we see similar dynamics there and that the argument

carries over directly to the situation here. As a result we can conclusively say that the loss

of a single length from the system is impossible and that the loss of a valley is the only

method for which two adjacent lengths can shrink to zero, i.e. a hill cannot shrink to zero.

These proofs are based on the assumption that we are in a fairly generic setup, that is,

other lengths surrounding the shrinking valley remain large and so the valley in question

is isolated from any other events. It is possible in a highly symmetric situation for there

to be a loss of two or more consecutive valleys however this situation is unlikely in all but
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the most symmetric of situations.

Consideration of the structure of the problem leads us to the conclusion that when an

event takes place the neighbouring facets still exist as separate entities which are joined

at the point of extinction of the previously situated valley. Thus we have developed our

general coarsening rule; valleys shrink to zero and are annihilated, whilst the neighbouring

facets remain and are joined at the point of extinction.

2.5 Conservation of Total Length

We show that within this finite framework the total length of the system in preserved

under the evolution described above in (2.2.1). We want to see if there is any change in

the total length L as time proceeds, where,

L =

N?∑
i=1

li,

and N? is some even number of facets so as to be consistent with periodicity. We assume

that the first length in the system is a down to keep our indexing consistent, then we see

the following is true,

dL
dt

=

N?∑
i=1

dli
dt

=

N?∑
i=1

(−1)iK
(

1

li+1
− 1

li−1

)
,

= K

(N?−1)∑
i=2

(−1)i
(

1

li+1
− 1

li−1

)
+

(
1

lN?
− 1

l2

)
+

(
1

l1
− 1

l(N?−1)

) ,
= K

 N?∑
i=3

(−1)i−1

li
−

(N?−2)∑
i=1

(−1)i+1

li
+

(
1

lN?
− 1

l2

)
+

(
1

l1
− 1

l(N?−1)

) ,
= K

[(
1

l(N?−1)
− 1

lN?

)
−
(

1

l1
− 1

l2

)
+

(
1

lN?
− 1

l2

)
+

(
1

l1
− 1

l(N?−1)

)]
,

= 0.

And so we have shown that the total length of the system is conserved under this evolution.

At this stage we could simulate the system for any total length L, however we now

show that we can non-dimensionalise the system to a canonical one.
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2.6 Canonical Problem (Non-dimensionalisation)

In this section we discuss the non-dimensionalisation of the system as described above. To

do this consider the following scalings of length and time,

li = LiL, t = T t̂ (2.6.1)

Inserting these scalings into the velocity law (2.2.1) we have,

L
t̂

dLi
dT

=
K
L (−1)i

(
1

Li+1
− 1

Li−1

)
,

L2

K
1

t̂

dLi
dT

= (−1)i
(

1

Li+1
− 1

Li−1

)
.

By taking the free parameter t̂, which is our scaling of time, and setting it equal to L2/K
we are returned to the original velocity law, in non-dimensional form, namely,

dLi
dT

= (−1)i
(

1

Li+1
− 1

Li−1

)
. (2.6.2)

Note that this scaling reduces the total length of the domain to L? = 1 and gives us

our canonical problem.

Canonical Problem:

Any problem of this form with total length of domain L and N? (even) facets can be

reduced to the canonical problem of N? facets with unit total length, L? = 1, via the scal-

ings in (2.6.1). The form of the velocity law remains unchanged.

Therefore we have reduced a whole class of problems with varying length to just one

problem, namely N? facets with total length L? = 1,

dli
dt

= (−1)i
(

1

li+1
− 1

li−1

)
, L? =

N?∑
i=1

li = 1. (2.6.3)

2.7 The Scaling Hypothesis

In this section we present an analytical argument for the scale invariance of the system.

To see if the system is indeed scale invariant consider the following scalings on length and

time,

l→ λl, t→ λqt.

What remains is to try and fix the value of q. We want to ensure that the system at a later

time is statistically indistinguishable from the earlier time, so, in particular, we can think
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of λ scaling the lengths within the system so that the mean length is fixed. Consider these

scalings in the velocity law (2.2.1) since we must consider how the system would evolve if

the lengths were scaled to retain the statistical self-similarity property, hence,

λ2

λq
dli
dt

= (−1)i
(

1

li+1
− 1

li−1

)
, (2.7.1)

from which we can clearly see that to keep this invariant under these scalings that q = 2.

Hence we have the following scalings of length and time,

l→ λl, t→ λ2t.

Now, let us suppose that the mean length, 〈l〉(t), is described by some function of time,

f(t), so that we have,

〈l〉(t) = f(t).

This description must hold true after scaling the variables so the following must also be

true,

〈λl〉(t) = f(λ2t),

which simplifies, since λ is just a number multiplying inside a mean, to

λ〈l〉(t) = f(λ2t).

Now the number λ will vary depending on the state of the system, but we note that

a particular choice of the value of λ simplifies the right hand side of the equation. By

choosing λ = t−
1
2 we see that the right hand side reduces to some unknown constant,

t−
1
2 〈l〉(t) = f(t−1t) = f(1).

From this we can easily read off our predicted scaling rate,

〈l〉(t) ∼ t 12 . (2.7.2)

2.8 Numerically Validating the Scaling Hypothesis

We present numerical data to validate our scaling rate (2.7.2). The system was simulated

using N? = 2000, 5000 or 10000 facets and two different choices of initial condition as

discussed later in Section 2.9.1. Data for the current number of facets, N (t), and time, t,

were gathered. We simulated the problem in its canonical form and so the mean length of

the system is simply 1/N (t). In Figure 4.1 we see strong evidence to support the scaling

hypothesis by plotting 1/N (t) ≡ 〈l〉(t) against t on a log-log plot.
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Figure 4.1 – 1/N (t) ≡ 〈l〉(t) plotted against time, t, on a log-log scale for a selection of simulations.

Data from two different initialisation methods, rejection sampling (RS) and Uniform (Un), is

presented for comparison; more detail on these methods follows in Section 2.9.1. The dashed blue

line is the predicted scaling rate 〈l〉(t) = t
1
2 , showing a very good agreement to all the simulations

after the initial transient phase. For computational efficiency we subsequently start individual

simulations with two thousand facets and the black dotted line is then the time around which

statistical data on the system is recorded; more detail on this can be found in Section 2.9.4.



CHAPTER 4. HILL-VALLEY FACET MODEL 154

2.9 Data Acquisition and Simulations

A significant amount of data was generated to both explore the system’s intrinsic properties

and also inform our theoretical predictions. We give detail on the precise nature of the

simulations carried out before looking at the data itself and what information this reveals.

2.9.1 Initial Conditions

In order to initially seed the system we must select a set of lengths to be used. A set

of equal lengths is an unstable steady state so we must, at the very least, perturb this

situation in order to induce dynamics.

To begin with we chose to take a random number generator1 with a uniform distribu-

tion of output on the interval [0, 1], which we call U(x). Repeatedly calling this number

generator produces our list of lengths and we chose to add 1 to each length to ensure there

were no very small lengths initially, hence we have a list of lengths each in the interval

[1, 2]. We then scaled the problem into canonical form and in the process ensure that the

total ‘up’ length is the same as the total ‘down’ length to keep the cut zero. This process

produces a random initial condition each time a simulation starts and so we have a good

degree of independence between each simulation.

From this initial condition we ran forty thousand simulations and took a mean of the

distributions initially as well at at the later scaling recording time. It became clear that the

initial condition we had chosen was far from the scaling distribution and so the program

had to go through a large transient stage at the start of each simulation before arriving

at the scaling regime, more detail on this together with associated figures can be found in

Section 2.10.2. In order to try and reduce the time spent in this transient stage and get

into the scaling regime as quickly as possible we chose to reconfigure the initial condition

to make use of the rejection sampling method, using the late time distribution we had

already found as the basis.

Rejection sampling works in the following way. We require three ingredients, the

distribution we would like to match, r(x), say, a simple distribution which is comparatively

easy to sample from, in our case we take the uniform distribution as before, U(x), and

finally a constant M such that r(x) 6MU(x). Now we enter the following loop,

1. Select a point Y ∈ [0, 3] by using U(x) and then multiplying the output by 3.

1We made use of a freely available C++ random number generator based on the ‘Keep It Simple Stupid’

(KISS) method suggested by George Marsaglia in a Usenet posting from 1999.
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2. Select a point U ∈ [0, 1] using U(x).

3. Accept the value Y if U 6 r(Y )
Mg(Y ) ; else return to Step 1.

The basic principle of the method can perhaps be clarified by considering three separate

cases. First, suppose that r(Y ) = MU(Y ), then every choice of U will result in the

condition in 3 being satisfied and the point being selected. This is clearly desirable since

this must be a peak of the distribution from the condition r(x) 6 MU(x). Next consider

the case when r(Y ) = 0. In this circumstance only an output of U = 0 from the uniform

distribution will result in the point being selected, or, more loosely speaking, not very

often at all, which is good since the probability distribution we are trying to sample is

zero there. Finally suppose that r(Y ) = 0.5×MU(Y ). We see that around half the time

the condition in 3 is satisfied and half the time not. Thus this point is sometimes accepted

and other times rejected. Generalisation of these examples helps understand how this

method works.

We in fact take this procedure in two spatial dimensions and build up the profile

one valley at a time. We make use of the final valley distribution as our initialisation

distribution and repeat the loop until we have as many valleys as required. In doing

so we ensure that our initial condition, at least for valleys, is much closer to the ‘final’

distribution we aim to find and so are reducing the amount of time spent in the transient

phase. We will return to this point later in Section 2.10.2 where we will discuss the

two-point distributions in more detail.

2.9.2 Update rule

The system of equations we wish to simulate, shown in (2.6.3), are highly coupled and so

we simultaneously solve for the whole system using a standard fourth order Runge-Kutta

method. The time step used is adaptive in nature and changes to reflect the size of the

smallest length at that time, lmin(t). In particular we found,

∆t = min

{
0.01,

(lmin(t))2

5

}
,

to be a good selection of adaptive time step to be used next at time t. The inclusion of

‘0.01’ is to ensure that when there are only a few lengths left the time step is not too large,

although in practise the second term in the minimum will generally control the size of ∆t.

We perform a check on the system after taking the time step ∆t to ensure that no length
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has become negative, a sign of the time step being too large, and if necessary half the time

step taken from the old values until we are satisfied a valid time step has taken place.

2.9.3 Annihilation tolerance

Motivated by our understanding that small valleys disappear we have chosen a tolerance,

δ = 5× 10−6, and we then check after each time step to see if any valley has total extent

less than δ. Should this be the case we pause the evolution and enter a system rewrite

function which appropriately removes this valley from the system. In order to maintain

the correct total length and cut we make sure that the left length in the valley, the down

slope, is added to the length to the right of the valley, another down slope and similarly

for the corresponding right length, an up slope. A typical example of this procedure can

be seen in Figure 4.2.

Annihilation

lβ

L 1
L
2

lα + lβ ! δ

l α

L 1
+

l α
L
2 +

lβ

Figure 4.2 – Typical example of the annihilation procedure showing a small valley with total

extent less that δ being removed and the corresponding lengths being appropriately added to the

neighbouring lengths to create one large hill.

2.9.4 Data Collection and Scaled Variables

Data is gathered from simulations using a simple histogram type method. We collect data

from the system when there are approximately only a tenth of the initial number of lengths

remaining, ∼ N?/10. Justification of this choice can be seen in Figure (4.1) where we see

that at this stage of the evolution it appears consistent scaling is taking place. There

is a level of ambiguity with collecting data when exactly a tenth remains, for example,

do we collect at the first time a tenth remains or when we are just about to drop below

that value? To overcome this difficulty we instead make use of the predicted scaling law

〈l〉(t) ∼ t 12 , which we know closely matches the ‘real’ evolution, and the current clock time

when two-fifths of the initial number remain, tcurr, say. From this time we then calculate
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the predicted time that we would have only a tenth remaining based on the scaling law

and set this as the recording time trec, specifically,

trec = tcurr +


 1(N?

10

)


2

−

 1(
2N?

5

)


2 .

At the recording time specified we can simply calculate the mean length as 〈l〉(trec) =

1/N (trec), since we are on a unit domain and so we have the following,

〈l〉(trec) =
1

N (trec)
.

We expect, and can check numerically, that the system displays dynamic scaling of the

distributions and so it is appropriate here, since we gather data at varying times throughout

a simulation, that we scale the data against the average length at the recording time. Once

the system has reached the appropriate time point, we take each length in the system and

calculate the following value,

zi :=
li

〈l〉(trec)
= liN (trec),

and so we are taking each length and seeing how it compares to the mean length of the

system at the recording time. Thus regardless of the exact time of data collection the

data we gather is scaled appropriately so that all the data across the many simulations we

carry out can be taken and combined into one average data set.

To actually record the data we take a domain of size three, chosen from experience and

simulation of the system, and subdivide into sixty equal pieces forming the base locations

of histogram bars. We have chosen sixty as computationally we were limited when going

to higher dimensional statistics, to be discussed later, and so felt for consistency it was

sensible to use sixty ‘bins’ per axis regardless of the statistic being gathered. In summary,

for the one point distribution we could have gone for a much higher number of data bins

but, as we shall see in the subsequent figures, sixty is sufficient. As we calculate the values

zi we place ‘one’ into the appropriate bin of the histogram before scaling the total height

of each bar by dividing by N (trec)× bw, where bw = 3/60 is the width of one bin, so that

the histogram appropriately represents a probability distribution, i.e. the integral over z

is 1. Once this procedure has been carried out we restart with a new initial condition and

repeat. After each simulation a running average of the distributions is calculated and so

we build up a picture of the ensemble statistics.
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2.9.5 Higher order statistics

Unlike may other systems where concern is only placed on the one-point distribution of

length/mass [11, 30, 48, 80], we find in our case that the dichotomy in the velocity law

leads to the emergence of interesting higher order statistics. By this we mean considering

the probability of finding ordered pairs of lengths (l1, l2) and so on. We managed to

collect data on the distributions as high as fourth order by extension of the method above,

although only up to second order statistics are easily visualised and so discussion will be

restricted therein. As noted earlier the computational extent of this procedure forced us

to consider sixty bins per axis, but nevertheless the data is precise enough to draw various

conclusions. In the next section we shall see, for example, that the two-point statistics for

a valley are completely different from that of hills. We put forward some explanation of

this and other characteristics of the distributions.

2.10 Data Analysis

As has been mentioned we ran a significant number of simulations, up to forty thousand

in some circumstances, in order to build up the mean distributions we detail below. We

will go into some detail of the output from these simulations and consider not only the

distributions but also take a look at correlation data, which gives us some idea of how a

facets evolution is governed by more than just its immediate neighbours.

We begin by considering the single point distributions for both ‘up’ lengths and ‘down’

lengths and comparisons between the two. Following on from this we will look at the two

point distributions for ‘hills’ and ‘valleys’ and finally we will consider the correlation data.

2.10.1 One-point Distributions

The one-point distributions give us information on the spread of lengths within the system.

The method of gathering data, detailed above, allows us to easily read off information such

as the probability of finding a length which is smaller/larger than average. We initially

consider the distribution of up lengths, %u(z), calculated using the mean up length, 〈lu〉(t),
and similarly for the down lengths, %d(z). Note, however, that since we have zero cut the

mean up length is equal to the mean down length, 〈lu〉(t) = 〈ld〉(t).
In Figure 4.3 we see the mean one-point distributions for single lengths gathered from

simulations. Earlier we mentioned the choice of 3 as the largest size compared to the mean
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we would consider in our distributions, the figure also demonstrates the reasoning behind

that choice.
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Figure 4.3 – The up and down distributions, %u(z) and %d(z) calculated from averaging the data

from forty thousand independent simulations initialised using the rejection sampling method.

If we now consider the overlay of these two distributions, shown in Figure 4.4, we

find that, in fact, there is only really one one-point distribution for the system. This is

not surprising given our understanding of the evolution of the system and the symme-

try properties mentioned earlier but these simulations nevertheless serve as a check that

our program reflects this property. We therefore only have one one-point distribution to

consider and from now on we will simply refer to this distribution as the one-point dis-

tribution, %(z). Repeating the simulations and gathering data for this single one-point

distribution results in the final mean distribution, Figure 4.5.

2.10.2 Two-point Distributions

We now consider the possible two-point distributions which arise in the system. The

two that we will consider are the hill distribution, %h(z1, z2), which is the distribution of

ordered lengths (z1, z2) such that z1 is an up length and z2 is a down length, and similarly

we have the valley distribution %v(z1, z2) where z1 is an down length and z2 is a up length.

Note that under the noted symmetry condition a valley still remains a valley so we don’t

expect to see a single two-point distribution but indeed two distinct objects. They should,

and indeed do, have a symmetry across the line z1 = z2, again as a result of the symmetry

condition. We will comment further on these characteristics shortly but for now we simply

refer to Figure 4.9 where we see the final result of these simulations.
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Figure 4.4 – The up and down distributions from Figure 4.3 overlaid showing the expected

coincidence due to internal symmetries of the system.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

%
(z
)

z

One-point
Up

Down

Figure 4.5 – The one-point distribution, %(z), together with the individual data from the separate

up and down distributions plotted as points to emphasise the agreement.
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At this stage we can clearly see the significant difference in the distributions for hills

and valleys. The hill distribution is zero at the origin, which is consistent with our model

analysis which told us that small hills want to grow as opposed to vanish, and so in general

we don’t find any small hills once the system has reached the scaling regime. We also note

that the distribution approaches both axes at around 1.5 unlike the valley distribution

which tends to be far from the axes other than near the origin. We interpret these regions

close to the axes to be where there is a possibility of finding a hill with one large length

and one corresponding small length, and further to this we see that this is indicative of

the size of a hill when one of the neighbours is part of a vanishing valley. To put this

another way, we infer from the distribution data that the size of the neighbouring lengths

to a disappearing valley tend to be larger than average.

For the valley distribution we see a significantly different structure. The distribution

shape is much narrower and has non-zero value all the way into the origin. This was to be

expected since we know small valleys disappear and so on the whole we expect there to be

small valleys in the system which are on the way to extinction. Perhaps surprisingly the

narrow structure also suggests that valleys tend to be more ‘even’ in size, by this we mean

both lengths are comparable in size. There is certainly not the same kind of spread in

lengths when compared to the hill distribution. If we consider the hill distribution closely

we see, as already mentioned, that we can have very asymmetric hills, in particular when

a hill is losing one of its lengths during the coarsening process.

Of interest is a consideration of the ratio of lengths in a valley as they approach zero.

It is not clear from the distribution whether ‘most’ valleys disappear in an even manner

i.e. along the z1 = z2 line? Later we will consider these distributions in polar coordinates

and we will return to this question at that stage. The distribution does certainly suggest

that valleys disappear only via the origin and that there isn’t any procedure in which a

valley can disappear in any other manner.

Return to Initial Conditions

We now briefly return to the initial conditions for the simulations and consider the dis-

tributions at this time with knowledge of the final state seen in Figure 4.9. As already

mentioned we first ran the simulations with a random generation of the surface from a

uniform distribution. The hill and valley distributions after forty thousand runs can be

seen in Figure 4.6 where we see the expected square shape of the initial distribution. This
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is as we would expect but we note that it is quite distinct from the final distribution which

we are trying to capture, seen in Figure 4.9. Whilst we require a lack of sensitivity to

initial conditions to have a true scaling state it is the belief that this initial condition is

computationally inefficient which lead to the use of rejection sampling instead.
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Figure 4.6 – The initial hill and valley distribution after forty thousand runs using the uni-

form initialisation method. As expected there is no difference in the initial distributions since

at initialisation all lengths are independently drawn from a uniform one-point distribution and

so immediately the two-point hill and valley distributions are simply the product of the uniform

one-point distribution appropriately scaled.

In Figure 4.7 we see the same type of diagram but this time making use of the rejection

sampling method of initialisation. The valley distribution obtained from forty thousand

uniform initialisation simulations is the distribution which we now use to initialise. By

using this information we expect that the valley distribution will remain very close to its

initial form after the simulations have taken place, however, we have not referenced the hill

distribution at all and so it is unclear, perhaps, what output to expect for the initial hill

distribution? All we know is that our initialisation step creates valleys subject to the valley

distribution but independently of each other. Since a hill is at the join of two valleys we are

imposing that the sides of a hill are independent and this independence would suggest that

the initial hill distribution, %ih(z1, z2), can be factorized into the product of two one-point

distributions, %ih(z1, z2) = %(z1)%(z2). This product distribution can be seen in Figure 4.8.

If we now reconsider Figure 4.7 we see that the valley distribution does indeed remain

very close to the initial distribution and that the hill distribution is very close to the prod-
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uct distribution, which can be seen in Figure 4.8.

With the two-point distributions now fairly well understood we now take a closer look

at the valley distribution. The narrow region close to the origin is where valleys are as

they disappear from the system but the resolution of the plot is insufficient to really un-

derstand the underlying structure here. Visually it is difficult to tell what kind of events

are taking place. As already mentioned, are ‘most’ annihilation events along the symmetry

line z1 = z2? To probe this question and others further we choose to not only bin data

in cartesian co-ordinates, the scaled l1, l2-plane, but we also consider the distributions in

polar co-ordinates r and θ, where r =
√
z2

1 + z2
2 and θ = tan−1(z2/z1). We could sim-

ply map the current distribution into the polar space, but this would lead to very little

resolution in the area close to the origin (Consider that in the region [0, 0.25] × [0, 0.25]

that there are only 5 × 5 = 25 bins.) If, instead, we re-run the simulations with a mod-

ification for polar co-ordinates we can insist on a much higher resolution around the origin.

Polar Co-ordinates

To collect data in polar co-ordinates we perform a similar procedure to the previous one

but instead break the two polar axes into 60 bins and then calculate the polar length and

angle of a valley/hill. The range of values used for collection of data are θ ∈ [0, π/2] and

r ∈ [0, 3
√

2], these were selected in order to cover at least the same area as the cartesian

method. Since the lengths must be scaled, as performed earlier, the radial component

must also be compared to the mean length of the system. The angle however does not

require any scaling as this is invariant under the scaling of length. Performing this method

of data collection we now have >180 bins in the quarter ball of radius 0.25 around the

origin, a significant increase of resolution in the area of interest. In Figure 4.9 we see the

hill and valley distributions in both cartesian and polar co-ordinates, where we have drawn

the polar version with fixed axes.

We can now clearly see the benefit of polar co-ordinates by looking at the region close

to the r = 0 line, as this is equivalent to the area around the origin in the previous plots.

By gathering data in this manner we have managed to ‘spread out’ the information here,

allowing for a better insight into the distribution of smaller valleys. We also note from this

data that the distribution doesn’t drop down significantly very close to the origin, which

appears to be the case in the cartesian plot, in fact, the distribution maintains a larger
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Figure 4.7 – The initial hill and valley distribution after forty thousand runs using the rejection

sampling method of initialisation. Since we used existing valley distribution data, and didn’t

reference any hill data, we expect the valley distribution to more closely match the final distribution,

as it does. Hills are created at the join of independent valleys and so we expect the initial hill

distribution to resemble the product of the one-point distribution. See Figure 4.8
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Figure 4.8 – The distribution found from the product of the one-point distribution %(z) with itself

shown on the left and the initial hill distribution using rejection sampling redrawn from Figure

4.7 for comparison on the right. This agreement was to be expected since we seed individual

valleys independently and consequentially hills are assumed to have independent side lengths. This

independence then implies that the two-point is the product of the one-point marginal distribution

as we see above.
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value all the way into the origin and the cartesian method of data collection is perhaps

slightly misleading here.

The polar plot of the valley distribution also highlights the possible variation in the

ratio z2/z1, which is related to the angle θ through the relation θ = tan−1(z2/z1). This

ratio gives us some idea of whether or not valleys disappear symmetrically and, in fact,

the distribution seems to suggest that close to annihilation a valley can have quite a wide

range of angle. In other words a valley can disappear with asymmetric side lengths, z1 6= z2.

Functional form at r = 0

We have already mentioned the non-zero nature of the area close to the origin but

would like to better understand this region and what particular form the distribution

takes there. In order to achieve this we take the first, third and seventh closest histogram

bins to the r = 0 line and from these extrapolate the value the distribution takes at

precisely r = 0, we will call this function Φ(θ). The data in the region close to the origin

is quite rough since there aren’t many small valleys at a given time and so we have made

use of the symmetry line z1 = z2 to improve the resolution somewhat, this is evident by

the symmetry of the curve around the π/4 mark. For comparison we have found the curve

f(θ) = 0.08 sin8(2θ) to be a very good fit and show this and the data curve together in

Figure 4.10.

2.10.3 Conclusions From Distribution Data

The data gathered can be seen to confirm several aspects of the distributions which could

have been anticipated by considering the specific dynamics. In particular, since there is

an intrinsic symmetry in switching up facets and down facets, alternatively by mirroring

the surface in any vertical line, we expect to find only one one-point distribution and this

is confirmed by the numerical simulations, Figure 4.5. This same symmetry leads us to

believe that the two-point distributions will be symmetric along the line z1 = z2 which is

again confirmed by the simulations. Finally we note that the two-point distributions are

significantly different, as we would expect due to the dichotomy in the velocity law, but

further to this we note that neither of the distributions match the product of the one-point

distribution seen in Figure 4.8. This implies that the lengths involved in both a hill or a

valley are not independent of each other and are in fact correlated in some way. We test

this correlation in the next section to confirm this assertion.
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Figure 4.9 – The valley distribution in both polar (top) and cartesian (bottom) coordinates where

the polar axes has been set to be the symmetry line z1 = z2 in the cartesian plot. Attached to

each axes we have plotted the one-point marginal distributions found by integrating the data as

appropriate. Contours on the two-point distribution are every 0.1 units of height. (Continued over

page.)
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Figure 4.9 Continued – Corresponding hill distributions again in both polar and cartesian

coordinates.
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Figure 4.10 – The function Φ(θ) found by numerically taking the limit r → 0+ in the polar

distribution together with the fit curve 0.08 sin8(2θ).

2.10.4 Correlations

Correlations allow us to probe the independence of random variables and possibly allows us

to infer an understanding of the relationships within the system. In our case we actually

have several variables which we can consider the correlations of, such as an individual

length to its neighbours, length of a valley/hill to its neighbours etc. We have already

seen that the hill, and indeed the valley, distribution is not identical to the product of the

one-point distribution. This leads us to suspect that the lengths within the system are

highly correlated to each other, in particular we can clearly see from the distributions that

the lengths of a valley and a hill are not independent. To investigate this further we again

consider the Pearson product-moment correlation coefficient, rX,Y , defined as,

rX,Y =
E(XY )− E(X)2

E(X2)− E(X)2
.

All the expected values can then simply be replaced by appropriate averages, since there

is no weighting of particular outcomes, and so we can very easily expect the simulations to

calculate this value as is proceeds. At the same time as we record data for the distribution

we gather data on various correlations and calculate the correlation coefficient for that
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run. As we complete each run of the system we take an appropriate average of the same

coefficient from multiple runs to build up a better picture of the correlations in the ‘full’

system and by doing so we generate one graph depicting the correlations in question.

First we consider the correlation between an individual length of particular type, e.g.

downs, and its neighbouring lengths. We consider the correlation of a length with itself,

which is equal to 1 since they are in perfect correlation, and then we also compare a length

to immediate neighbours and then two, three away etc. We index the number of lengths

away to the right, from the current length, by j. The specific formulation is as follows

where N̂ is the number of lengths being considered (e.g. in the case of downs we’d have

N̂ = N(trec)/2 since half of all lengths are down),

rLi,Li+j (j) =

1

N̂

N̂∑
i=0

LiLi+j −
1

N̂2

 N̂∑
i=0

Li

2

1

N̂

N̂∑
i=0

L2
i −

1

N̂2

 N̂∑
i=0

Li

2 ,

which will return a number for each j which is interpreted as the correlation coefficient

between a length and its neighbour j away. Note that as expected if j = 0 we are

simply calculating the correlation of a length to itself and since these lengths are always

equal the are completely dependent, or perfectly correlated. We choose to perform the

same procedure with up lengths and down lengths only and consider the results side by

side. In Figure 4.11 we see the output after five thousand simulations and the correlation

coefficients averaged over the runs.

The correlation data provides several interesting pieces of information about the rela-

tionships within the system. First let us consider the j = 1 data which is considering the

immediate right neighbour to a corresponding facet. The down data suggests a very strong

correlation between a down facet and its neighbour, which forms a valley. This is perhaps

not surprising since we can see at a glance from the two-point valley distribution that most

valleys are quite close to the symmetry line and so tend to have quite similar side lengths.

The hill distribution, on the other hand, is quite spread out suggesting that individual

hills tend not to be as symmetric which is reflected in the correlation data which suggests

a much weaker relationship between an up slope and its corresponding right neighbour.

At the j = 2 level we see that both up and down correlation coefficients are very similar

but quite weak in size. This would suggest that for any length the neighbour two away is

generally correlated in some way though this effect is relatively weak but not negligible.
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The fact that the coefficients are the same is likely just a consequence of the symmetry

conditions displayed by the system i.e. a down facet to the next down facet should be

linked in the same way as up to up.

For j > 3 we see that the coefficients become much smaller and almost zero in size.

This suggests that for neighbours three or more away there is little correlation between

the lengths. A zero correlation is indicative of independence though this condition alone

is not sufficient to prove independence.

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10

r L
i
,L

i
+

j
(j
)

j

Down
Up

Figure 4.11 – Correlation coefficients for 0 6 j 6 10 where j is the number of lengths away for both

up and down lengths found by averaging data over five thousand independent simulations. Note

the large correlation between a down length and its right neighbour (forming a valley), small but

significant correlations otherwise up to two lengths away for either up or down, and relatively small

correlations further away. Identical correlations two lengths away is as a result of the symmetries

of the system.
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3 The Fokker-Planck Equation and Mean-Field Models

The Fokker-Planck equation is a general framework for the evolution of a probability

distribution. Our system is purely deterministic in nature and so we neglect any noise

or diffusion terms in the full, general equation. What remains to be determined is what

velocity the distribution evolves under. Generally this is related to the dynamical system

velocity but in our case we have a velocity law that is not self contained, that is, a

valley does not evolve based on information about itself alone but requires information

about the surroundings. This forces us to consider higher order statistics than just the

two-point valley distribution and thus we no longer have a ‘closed’ system. This type of

infinite hierarchy, where the equation requires information on higher order statistics, is

often found in the literature [11, 30]. As is generally the case we must make some sort

of mean-field type assumption to close the system and make it amenable to solution. We

will follow this typical pattern and derive a two-point Fokker-Planck type equation for the

scaled valley distribution.

3.1 The One-point Degeneracy

We first give some brief detail on the outcome of trying to find a prediction of the one-point

distribution. Since there is only one one-point distribution we choose to consider a down

length for illustration. We suppress a significant portion of the detail of the derivation since

it is more informative to follow this through for the two-point distribution. Essentially

here we only need to consider the velocity of a typical down length,

dl

dt
=

(
1

l′
− 1

l′′

)
,

where l′ is the length to the left of our down length and l′′ to the right. Now, since the

Fokker-Planck equation requires a self contained velocity law we must remove any reference

to the neighbouring lengths by some means. The usual approach in this circumstance is

to effectively assume that the neighbouring lengths are of average length, but therein lies

the problem. By taking this approach here we force the velocity of a typical length of any

size to be zero and thus under this assumption there are no dynamics at all.

The particular form of our velocity law is such that taking the typical mean-field type

approach here results in a degenerate theory of evolution and so we refrain from pursuing

this avenue any further. Later we consider a significantly different one-point theory as

a reduction of the full two-point theory but for now we simply consider the traditional
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one-point approach to be unfruitful with regards to our particular dynamics.

We now pursue a Fokker-Planck type equation for the two-point valley distribution

which doesn’t appear at a glance to degenerately reduce as in the one-point case.

3.2 The Fokker-Planck Equation for Valleys - Traditional Method

We develop an evolution equation governing the two-point valley distribution following the

‘traditional’ Fokker-Planck type derivation as comparable to methods seen in, for example,

[11, 48]. We take the standard Fokker-Planck equation and modify it to take account of

the particular dynamics present in our model. We begin with the number density, n, since

it is more straightforward to account for any sinks or sources by a simple accountancy

argument. In our case we know that valleys disappear as a whole which corresponds to a

sink at the origin. No particular additional terms are required in the equation since this

is simply a flux out of the region of interest and is captured automatically.

We begin by considering the number density of valleys with left length between l1 and

l1 + dl1 and corresponding right length between l2 and l2 + dl2 at time t, we denote this

by nV2 (l1, l2, t)dl1dl2. From this we can derive that the total number of valleys at time t,

N (t), in the system is,

N (t) =

∫ ∞
0

∫ ∞
0

nV2 (l1, l2, t) dl1dl2. (3.2.1)

In a similar manner we can also define the single length number density, n(l, t)dl, and

the number of single lengths between l and l + dl, noting that there is only one density

of this type by the symmetry condition mentioned earlier. Finally there are two triple

length number densities defined as nu3(l1, l2, l3, t)dl1dl2dl3 and nd3(l1, l2, l3, t)dl1dl2dl3 with

appropriate intervals of lengths given by the dli and the superscript u or d indicating the

orientation of the first length reading left to right. By the same symmetry argument we can

see that there is, in fact, only one type of triple length number density since reading one

type from right to left simply gives us information on the other. The symmetry condition

is therefore given by,

nu3(l1, l2, l3, t)dl1dl2dl3 = nd3(l3, l2, l1, t)dl1dl2dl3,

that is, the number of triples can be, in a number density sense, interpreted as the same

whether read left to right or vice-versa. There is then only really one triple-point density

to consider though care must be taken to ensure we are consistent in our calculations, as
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a result we will maintain the two triple-point notation for clarity.

We draw statistical data from a finite system though our aim is to replicate the statistics

of an infinite system. As such these densities should be interpreted on a density per length

basis. For consistency we choose this length to be the same as used in numerical simulations

denoted by L. From this we can easily write down another way of interpreting the total

number of valleys as,

N (t) =
L

2 〈l〉(t) , (3.2.2)

where 〈l〉(t) is the average length in the system, regardless of orientation, and the factor 2

accounts for the fact a valley contains 2 lengths. With these definitions in mind we write

down the standard Fokker-Planck type equation, assuming only a deterministic part, for

the evolution of this number profile, namely,

∂

∂t
nV2 (l1, l2, t) = − ∂

∂l1

[∫ ∞
0
V(l1)nu3(l′, l1, l2, t) dl

′
]
− ∂

∂l2

[∫ ∞
0
V(l2)nd3(l1, l2, l

′′, t) dl′′
]
,

(3.2.3)

where,

V(l1) =
1

l′
− 1

l2
and V(l2) =

1

l′′
− 1

l1
,

are derived directly from the CDS velocity law and we see that the n3 are such that the

lengths l1 and l2 form the valley and the additional lengths are then attached appropriately.

At this point we note that due to the dynamics of the system it is not sufficient to only

know about the lengths l1 and l2 but we also require information about the neighbouring

lengths, which are probabilistically captured by the use of the n3. By taking the integral

over all possible lengths l′ or l′′ together with the appropriate n3 triple we are effectively

calculating a mean of all the possible velocities.

In particular, consider a valley which has lengths l1 and l2. We do not know with this

information alone how this valley will evolve, indeed its evolution is entirely dependent

on the surrounding system. To overcome this and to reduce the system to one which can

be considered as deterministic (a prerequisite of this form of the Fokker-Planck equation)

we must make some form of assumption on the surroundings. By integrating the corre-

sponding velocity and appropriate n3 against the unknown length l′, for example, we can

consider the unknown lengths as being average in size. This is an important point to note,

however, since this type of derivation and Fokker-Planck type approach therefore makes

use of a mean-field approximation to ensure that we can proceed to flow the distributions.
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3.2.1 Scaling Variables

We now propose a scaling solution to equation (3.2.3) and find our scaling solution formally

by scaling the unknown nV2 (l1, l2, t). Similar scalings will also be performed on the one and

three-point distributions where necessary. First we scale with respect to the total number

of valleys in order that our predicted solution represents a true probability distribution,

namely,

nV2 (l1, l2, t) = N (t)ρV2 (l1, l2, t).

It is easy to see the probability nature of the object ρV2 (l1, l2, t) by integrating both

sides with respect to l1 and l2 since in doing so the left hand side becomes N (t) and

the right hand side becomes N (t) times the integral of ρ. Next we anticipate, and have

seen evidence numerically, that a scaling solution to the problem does exist. Scaling the

individual lengths by the mean length and introducing an appropriate factor of 1/ 〈l〉2(t)

in front of the distribution ensures we are still dealing with a probability distribution,

integral 1, but we have removed any dependence on time. Performing this scaling we

have,

nV2 (l1, l2, t) = N (t)ρV2 (l1, l2, t) =
N (t)

〈l〉2(t)
ρ̂V2 (z1, z2), zi :=

li
〈l〉(t) .

Explicitly calculating the integral of both sides with respect to l1 and l2 ensures that

ρ̂V2 (z1, z2) does represent a probability distribution,∫ ∞
0

∫ ∞
0

nV2 (l1, l2, t) dl1dl2 =

∫ ∞
0

∫ ∞
0

N (t)

〈l〉2(t)
ρ̂V2 (z1, z2) dl1dl2,

N (t) = N (t)

∫ ∞
0

∫ ∞
0

1

〈l〉2(t)
ρ̂V2 (z1, z2) 〈l〉2(t)dz1dz2,

1 =

∫ ∞
0

∫ ∞
0

ρ̂V2 (z1, z2) dz1dz2.

Note that if we were to explicitly calculate the integral with respect to one or the other

variables on the right hand side we would get the marginal one-point distribution which

we shall denote ρ̂(z). As a direct consequence of the above equation it is clear to see the

following,

1 =

∫ ∞
0

∫ ∞
0

ρ̂V2 (z1, z2) dz1dz2,

=

∫ ∞
0

ρ̂(z1) dz1 =

∫ ∞
0

ρ̂(z) dz. (3.2.4)

Finally, returning to our scaling and inserting the form of N (t) from (3.2.2) we have,

nV2 (l1, l2, t) =
L

2 〈l〉3(t)
ρ̂V2 (z1, z2), zi :=

li
〈l〉(t) . (3.2.5)
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We must also scale the functions nu3 and nd3 appropriately. In order to do this we note

that, from an accountancy perspective, the number of valleys in the system is equal to the

number of triples of either type. To see this consider running through the system from

left to right counting the down lengths one by one, it is clear this gives N (t) since there is

one down per valley, but then noting that the addition of a further length to the right of

a valley doesn’t change the number of objects being counted we see the result. Applying

an only slightly modified procedure to the one above to the n3 gives,

nu3(l1, l2, l3, t) =
L

2 〈l〉4(t)
ρ̂u3(z1, z2, z3), and nd3(l1, l2, l3, t) =

L
2 〈l〉4(t)

ρ̂d3(z1, z2, z3).

(3.2.6)

3.2.2 Scaled Fokker-Planck equation

We now consider these scaled quantities in the Fokker-Planck equation (3.2.3). We will

insert the scaling form one term at a time for clarity starting with the left hand side of

the equation and substitute using the scaling form (3.2.5),

∂

∂t
nV2 (l1, l2, t) =

∂

∂t

( L
2 〈l〉3(t)

ρ̂V2 (z1, z2)

)
,

=
∂

∂t

( L
2 〈l〉3(t)

)
ρ̂V2 (z1, z2) +

L
2 〈l〉3(t)

∂

∂t
ρ̂V2 (z1, z2),

= −3L 〈l〉′(t)
2 〈l〉4(t)

ρ̂V2 (z1, z2)− L
2 〈l〉3(t)

[
l1 〈l〉′(t)
〈l〉2(t)

∂

∂z1
ρ̂V2 (z1, z2)

+
l2 〈l〉′(t)
〈l〉2(t)

∂

∂z2
ρ̂V2 (z1, z2)

]
,

= −L〈l〉
′(t)

2 〈l〉4(t)

[
3ρ̂V2 (z1, z2) + z1

∂

∂z1
ρ̂V2 (z1, z2) + z2

∂

∂z2
ρ̂V2 (z1, z2)

]
.

If we now consider the right hand side of equation (3.2.3) and this time substitute using

(3.2.6) we have,

− ∂

∂l1

[∫ ∞
0

(
1

l′
− 1

l2

)
nu3(l′, l1, l2, t) dl

′
]
− ∂

∂l2

[∫ ∞
0

(
1

l′′
− 1

l1

)
nd3(l1, l2, l

′′, t) dl′′
]

=− 1

〈l〉(t)
∂

∂z1

(∫ ∞
0

1

〈l〉(t)

(
1

z′
− 1

z2

) L
2 〈l〉4(t)

ρ̂u3(z′, z1, z2) 〈l〉(t)dz′
)

− 1

〈l〉(t)
∂

∂z2

(∫ ∞
0

1

〈l〉(t)

(
1

z′′
− 1

z1

) L
2 〈l〉4(t)

ρ̂d3(z1, z2, z
′′) 〈l〉(t)dz′′

)
,

=− L
2 〈l〉5(t)

[
∂

∂z1

(∫ ∞
0

(
1

z′
− 1

z2

)
ρ̂u3(z′, z1, z2) dz′

)
+

∂

∂z2

(∫ ∞
0

(
1

z′′
− 1

z1

)
ρ̂d3(z1, z2, z

′′) dz′′
)]

.
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Equating left and right hand sides we have,

−L〈l〉
′(t)

2 〈l〉4(t)

[
3ρ̂V2 (z1, z2) + z1

∂

∂z1
ρ̂V2 (z1, z2) + z2

∂

∂z2
ρ̂V2 (z1, z2)

]
= − L

2 〈l〉5(t)

[
∂

∂z1

(∫ ∞
0

(
1

z′
− 1

z2

)
ρ̂u3(z′, z1, z2) dz′

)
+

∂

∂z2

(∫ ∞
0

(
1

z′′
− 1

z1

)
ρ̂d3(z1, z2, z

′′) dz′′
)]

, (3.2.7)

and a simple rearrangement of which gives,

〈l〉′(t)〈l〉(t)
[
3ρ̂V2 (z1, z2) + z1

∂

∂z1
ρ̂V2 (z1, z2) + z2

∂

∂z2
ρ̂V2 (z1, z2)

]
=

∂

∂z1

(∫ ∞
0

(
1

z′
− 1

z2

)
ρ̂u3(z′, z1, z2) dz′

)
+

∂

∂z2

(∫ ∞
0

(
1

z′′
− 1

z1

)
ρ̂d3(z1, z2, z

′′) dz′′
)
.

(3.2.8)

From equation (3.2.8) we can clearly see the only explicit dependence on time is in

the form of the term 〈l〉′(t)〈l〉(t). Since we are assuming that a self similar solution exists

we must have no dependence on time in the equation, and therefore by necessity we must

have,

〈l〉′(t)〈l〉(t) = λ,

where λ is a constant. We can easily derive, based on this assumption, the form of 〈l〉(t),

〈l〉(t) = At 12 ,

where A is a constant and we note that this is consistent with the scaling argument

shown in (2.7.2) but is derived from a different perspective, that of necessity. From here

onwards we simply set 〈l〉′(t)〈l〉(t) = λ and substitute into (3.2.8) to find the following

Fokker-Planck type equation,

λ

[
3ρ̂V2 (z1, z2) + z1

∂

∂z1
ρ̂V2 (z1, z2) + z2

∂

∂z2
ρ̂V2 (z1, z2)

]
=

∂

∂z1

(∫ ∞
0

(
1

z′
− 1

z2

)
ρ̂u3(z′, z1, z2) dz′

)
+

∂

∂z2

(∫ ∞
0

(
1

z′′
− 1

z1

)
ρ̂d3(z1, z2, z

′′) dz′′
)
.

(3.2.9)

3.2.3 Mean-Field and Closure Condition

Equation (3.2.9) is seen to depend on the higher order statistics ρ̂3 and is therefore not a

closed system for the desired object ρ̂V2 . In fact, if we were to perform a similar procedure

on the three-point distributions we would find dependence on the four-point distribution
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and so on. This is a common occurrence in these types of derivation, seeking an equation for

one statistic requires information about higher order statistics and thus forms an infinite

hierarchy. To circumvent this problem we ‘close’ the system by making what could be

considered a typical mean-field assumption. In this circumstance we choose to assume

that each of the valleys is independent of one another and thus the additional length, z′ or

z′′, in the two three-point distributions present in (3.2.9) are assumed to be independent

of the valley lengths z1, z2. This results in the following factorisation of the ρ̂3,

ρ̂u3(z′, z1, z2) = ρ̂(z′)ρ̂V2 (z1, z2) and ρ̂d3(z1, z2, z
′′) = ρ̂V2 (z1, z2)ρ̂(z′′). (3.2.10)

Note that the various ρ̂ distributions still satisfy the symmetry properties explained

earlier since the scalings performed are identical for all lengths and these do nothing to

break this symmetry. As a result we can immediately see the following holds,

ρ̂V2 (z1, z2) = ρ̂V2 (z2, z1).

Similarly we note that the three-point distributions still satisfy the same reversal of

arguments symmetry as before,

ρ̂u3(z′, z1, z2) = ρ̂d3(z2, z1, z
′),

and that our chosen mean field assumption doesn’t invalidate this symmetry condition,

ρ̂u3(z′, z1, z2) = ρ̂(z′)ρ̂V2 (z1, z2) = ρ̂V2 (z2, z1)ρ̂(z′) = ρ̂d3(z2, z1, z
′).

We now continue by taking our mean field closure condition (3.2.10) and inserting it

into (3.2.9) and aim to simplify the equation as much as possible,

λ

[
3ρ̂V2 (z1, z2) + z1

∂

∂z1
ρ̂V2 (z1, z2) + z2

∂

∂z2
ρ̂V2 (z1, z2)

]
=

∂

∂z1

(∫ ∞
0

(
1

z′
− 1

z2

)
ρ̂(z′)ρ̂V2 (z1, z2) dz′

)
+

∂

∂z2

(∫ ∞
0

(
1

z′′
− 1

z1

)
ρ̂V2 (z1, z2)ρ̂(z′′) dz′′

)
,

=
∂

∂z1

(
ρ̂V2 (z1, z2)

∫ ∞
0

ρ̂(z′)

z′
dz′
)
− 1

z2

∂

∂z1

(
ρ̂V2 (z1, z2)

∫ ∞
0

ρ̂(z′) dz′
)

+
∂

∂z2

(
ρ̂V2 (z1, z2)

∫ ∞
0

ρ̂(z′′)

z′′
dz′′
)
− 1

z1

∂

∂z2

(
ρ̂V2 (z1, z2)

∫ ∞
0

ρ̂(z′′) dz′′
)
. (3.2.11)

In light of (3.2.4) if we consider the remaining integrals in (3.2.11) we see that there

remains only one unknown, namely, ∫ ∞
0

ρ̂(z)

z
dz.
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If we are to have any hope of finding a solution to the equation we must have that this

integral is finite, and as such we will therefore use the following definition,

α̂ :=

∫ ∞
0

ρ̂(z)

z
dz <∞. (3.2.12)

Making use of (3.2.12) and (3.2.4) in (3.2.11) we now have the following equation,

λ

[
3ρ̂V2 (z1, z2) + z1

∂

∂z1
ρ̂V2 (z1, z2) + z2

∂

∂z2
ρ̂V2 (z1, z2)

]
=

∂

∂z1

(
α̂ρ̂V2 (z1, z2)

)
− 1

z2

∂

∂z1

(
ρ̂V2 (z1, z2)

)
+

∂

∂z2

(
α̂ρ̂V2 (z1, z2)

)
− 1

z1

∂

∂z2

(
ρ̂V2 (z1, z2)

)
.

(3.2.13)

Collecting terms from both sides and simplifying this can then be written as our final

mean-field Fokker-Planck type equation for the scaling state,

3λρ̂V2 (z1, z2) +

(
λz1 +

1

z2
− α̂

)
∂

∂z1
ρ̂V2 (z1, z2) +

(
λz2 +

1

z1
− α̂

)
∂

∂z2
ρ̂V2 (z1, z2) = 0.

(3.2.14)

3.3 Implications for the Hill Distribution

Whilst we will place most of our focus on the two-point valley distribution it is worth noting

what we can say about the related two-point hill distribution, ρ̂H2 (z1, z2). This distribution

could be found by use of a separate Fokker-Planck equation taking account of all the events

that a hill experiences but since we have chosen to focus on the valley distribution we won’t

pursue this avenue any further. We know from our numerical simulations that the hill and

valley distributions are quite different in character so we don’t expect this equation to be

identical to the valley equation. We note here, however, one interesting consequence of

our previous mean-field assumption that valleys are independent. Taking the first part of

(3.2.10) which states,

ρ̂u3(z′, z1, z2) = ρ̂(z′)ρ̂V2 (z1, z2), (3.3.1)

we can then take the integral over z2 on both sides of the equation which gives,∫ ∞
0

ρ̂u3(z′, z1, z2) dz2 =

∫ ∞
0

ρ̂(z′)ρ̂V2 (z1, z2) dz2,

ρ̂H2 (z′, z1) = ρ̂(z′)ρ̂(z1). (3.3.2)

As a result we see that our assumption that valleys are independent imposes the assump-

tion that the lengths that make up a hill are independent and that the two-point distri-

bution is simply the product of the one-point marginal distributions. We can see from
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our numerical simulations that this certainly isn’t the case but nevertheless we continue

to pursue our valley equation derived based on this independence assumption.

3.4 The Transport Equation for Valleys - A Different Approach

Here we present a different method of derivation of a Fokker-Planck type equation for

valleys. The previous derivation built the governing equation as an hierarchy of equations

which needed a mean-field type condition to close the equation. Ultimately though, the use

of higher order statistics is only in order to understand what the neighbours to a valley are

‘on average’ and through this procedure we find an effective velocity for a valley based on

this mean-field. Since we neglect any noise component in the full Fokker-Planck equation

the end result is a transport equation with some velocity defined. Instead of building the

equation from the Fokker-Planck equation, we assume we have an object which we know

exists, the probability distribution of lengths, and write down the transport equation with

an appropriately chosen velocity. This velocity will still contain a mean-field assumption

since a generic valley needs external information to know about its individual velocity.

We believe this method is cleaner in the sense that all assumptions from the dynamical

system side are stated in advance which sets the velocity. Once the velocity is established

we simply insert this into the generic transport equation framework and make no reference

to the dynamical system thereafter. In doing so we make clear the distinction between

the actual distribution, which we call %(l1, l2, t), and our predicted distribution, ρ(l1, l2, t),

and simply aim to have a self contained PDE problem.

3.4.1 Dynamical System versus PDE

In the previous derivation the dynamical system and the PDE which we are trying to derive

are influenced by each other at various stages throughout the derivation, for example

influencing the mean-field assumptions and use of higher order statistics. We wish to

untangle this and simply state the information and assumptions which we will use from

the dynamical system up front and then, in the PDE regime, make no further mention

of the dynamical system which we are trying to model. In this way we must observe the

following pairs of information, shown in Figure 4.12, and ensure we maintain a distinction

at all times.

By ‘closure’ in Figure 4.12 we mean that in the PDE regime we do not want any

reference to dynamical system quantities, such as higher order statistics for triples or
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Dynamical System PDE

Closure
!, V ρ, v̄

Figure 4.12 – Diagram of dynamical system quantities, % and V, and their PDE counterparts,

ρ and v̄. By closure we are indicating that to find a self consistent PDE model from the full

dynamical system we may be forced to make some kind of mean-field type assumption.

quadruples, but instead want all the information in the PDE setting to be self-consistent.

In doing so we aim to have a self contained PDE problem which contains no mention of

and requires no information from the dynamical system which it is derived. As a valley in

the dynamical system setting must have information about its neighbours in order for the

dynamics to proceed, we must ‘close’ the system in an appropriate way so that a valley

moves in some typical manner with no specific information about the neighbouring valleys.

This will essentially be a type of mean-field closure in that we will assume the surroundings

are mean in length thus reducing any requirement to know their exact lengths.

On the left hand side of Figure 4.12 we have a distribution of lengths, %, which rep-

resents the dynamical system and can be obtained approximately via numerically simula-

tions. The dynamical system evolves via the velocity law V which is simply the velocity

law stated earlier in (2.6.3), namely,

V(li) :=
dli
dt

= (−1)i
(

1

li+1
− 1

li−1

)
.

On the right hand side of Figure 4.12 we have the predicted distribution, ρ, which

we are trying to write a governing equation for, together with the velocity field, v̄, that

the distribution will be subject to. As noted this must be self-consistent and we must

make suitable modifications to the velocity law (2.6.3) to remove reference to the right

and left neighbours to the valley in question. We have a valley with lengths (l1, l2) and

corresponding velocities from the dynamical system,

V(l1) =

(
1

lL
− 1

l2

)
and V(l2) =

(
1

lR
− 1

l1

)
,

where lL and lR are the left and right neighbouring lengths to our valley respectively.

In order to close the system we simply make the typical mean-field assumption that the
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neighbouring lengths are both ‘mean’ and so we must calculate the following expected

value which we will define as α(t),

α(t) :=

〈
1

l

〉
=

∫ ∞
0

∫ ∞
0

ρ(ll, lr, t)

lr
dlldlr =

∫ ∞
0

ρm(lr, t)

lr
dlr, (3.4.1)

where ρm is the marginal distribution obtained by integration over one of the spatial

coordinates. Hence we have our velocity vector v̄, which is the self consistent velocity

which the distribution ρ evolves under,

v̄ :=

 dl1
dt

dl2
dt

 =

 〈
1
l

〉
− 1

l2〈
1
l

〉
− 1

l1

 . (3.4.2)

3.4.2 The Distribution, Derived Objects and Flow

We have already introduced the distribution ρ(l1, l2, t), which is the distribution we actu-

ally seek as our estimate of the ‘real’ distribution, %, on the dynamical system side. For

now, however, we assume that it is a given object and can deduce other objects from this

single starting point. First we take the distribution and derive the expected value of the

total length of a valley as follows,

〈Lv〉(t) =

∫ ∞
0

∫ ∞
0

(l1 + l2)ρ(l1, l2, t) dl1dl2. (3.4.3)

Note that by splitting this integral into two components we can easily show that the

mean valley length is simply twice the mean individual length size,

〈Lv〉(t) =

∫ ∞
0

∫ ∞
0

(l1 + l2)ρ(l1, l2, t) dl1dl2,

=

∫ ∞
0

∫ ∞
0

l1ρ(l1, l2, t) dl1dl2 +

∫ ∞
0

∫ ∞
0

l2ρ(l1, l2, t) dl1dl2,

=

∫ ∞
0

l1ρm(l1, t) dl1 +

∫ ∞
0

l2ρm(l2, t) dl2,

=: 〈l〉(t) + 〈l〉(t),

= 2〈l〉(t), (3.4.4)

where 〈l〉(t) then denotes the mean individual length. We now make use of this mean

valley size, 〈Lv〉(t), and define the following object,

n(l1, l2, t) =
ρ(l1, l2, t)

〈Lv〉(t)
. (3.4.5)

We can interpret n as the number density of valleys per unit length, that is, we know

the probability distribution of valleys and so by dividing by the mean length of a valley
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we are effectively considering the number of valleys of a particular size which will exist,

probabilistically speaking, on a unit interval. Another way of looking at this definition

is to suppose that each unit interval is populated with, on average, NV (t) valleys. Since

we are considering a unit interval it is clear that NV (t) = 1/ 〈Lv〉(t) and so to find the

probability of finding a valley of a particular length in the unit interval we simply divide

the number of valleys of that length by the total number of valleys in the interval to get

a probability,

ρ(l1, l2, t) =
n(l1, l2, t)

NV (t)
= 〈Lv〉(t)n(l1, l2, t).

A simple rearrangement returns to our original definition (3.4.5). We now consider

our proposed model in which this probability density function flows via the velocity field,

defined in (3.4.2), and so proceed initially by considering the standard transport equation.

Instead of considering the flow for the probability ρ directly, we instead make use of the

number density definition and write down the transport equation for n,

∂n

∂t
+∇ · (nv̄) = 0, (3.4.6)

where we have suppressed the arguments of n for simplicity. Note that since there are no

terms on the right hand side we are in a situation where there is no creation of valleys,

only transport via the velocity field, v̄. By doing this we are able, in general, to make

adjustments to the equation to account for any sinks and sources that may be present in

the system. This is much more appropriate in the n regime since it amounts to a simple

counting argument whereas in the ρ regime this is somewhat harder to picture. In the case

we are considering here the only place where valleys can disappear is at the origin, we have

previously shown that this is the case. This loss from the system can easily be justified for

now by considering that n gives some idea of the numbers of valleys of a particular size.

Since some valleys disappear from the system and there is no mechanism for creation we

see that it is reasonable to expect that there is flow out of the area of interest but that it

is already accounted for in the equation as stated. As a result of this and the lack of any

other sinks or sources we can now treat (3.4.6), together with the velocity field (3.4.2), as

our governing equation for flow.

3.4.3 Integration of Governing Equation

We now wish to take the integral of the whole governing equation, (3.4.6), and consider

what this can tell us about the population density, n. First let us consider our definition
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of population density, (3.4.5), and integrate over all of positive space,∫ +∞

0+

∫ +∞

0+
n(l1, l2, t) dl1dl2 =

∫ +∞

0+

∫ +∞

0+

ρ(l1, l2, t)

〈Lv〉(t)
dl1dl2,

=
1

〈Lv〉(t)

∫ +∞

0+

∫ +∞

0+
ρ(l1, l2, t) dl1dl2,

=
1

〈Lv〉(t)
,

where we have written 0+ to indicate that strictly speaking we are taking the integral over

a finite area in the positive domain and then taking the limit as the lower bounds tend to

zero from above and simultaneously as the upper bound goes to infinity.

If we consider the velocity field (3.4.2) we see that the axes present singularities in the

velocity field and, for this reason, we must take great care here. This is the justification

for taking a positive area and then considering the limit to zero. In Figure 4.13 we see the

area, Ωε,δ, which we are initially taking the integral over.

Performing integration over the area shown against the whole of the governing equation

(3.4.6) and taking account of the divergence theorem we now have the following equation,

∂

∂t

∫
Ωε,δ

n dA+

∫
∂Ωε,δ

nv̄ · m̄ ds = 0,

where dA is an area element in the domain, ∂Ωε,δ is the boundary of the domain Ωε,δ, m̄

is an outward unit vector, normal to the boundary ∂Ωε,δ and ds is a line segment on the

oriented boundary.

Let us consider the first term on the left hand side. Eventually we would like to take

the limit as both ε and δ go to zero from above and hence we are taking the integral over

the whole positive domain. Taking this limit immediately in this circumstance we see that

we have already defined this quantity as equal to 1/ 〈Lv〉(t),

lim
ε→0+, δ→0+

(
∂

∂t

∫
Ωε,δ

n dA

)
=

∂

∂t

∫ +∞

0+

∫ +∞

0+
n dl1dl2 =

∂

∂t

(
1

〈Lv〉(t)

)
.

Now let us consider the remaining term on the left hand side, the boundary term. The

boundary of the area Ωε,δ has three distinct regions, the two straight sections parallel to the

axes and the quarter ball area around the origin. We will treat each separately, although

we shall see that both of the straight segments essentially have the same structure. We

have to compute the following,∫
∂Ωε,δ

nv̄ · m̄ ds =

∫
∂Ω1

ε,δ

nv̄ · m̄1 ds+

∫
∂Ω2

ε,δ

nv̄ · m̄2 ds+

∫
∂Ωcε,δ

nv̄ · m̄c ds,
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δ

∂Ω1
ε,δ

∂
Ω

2ε,δ

∂Ω c
ε,δ

Ωε,δ
m̄2

l2

l1m̄1

δ

m̄c

ε

ε

Figure 4.13 – Illustration of area over which we take the integral of the governing equation. Note

that the area avoids the l1 and l2 axes where we have singularities in the velocity field and similarly

the origin.

where we have indexed the three separate regions. Consider region 1, the straight line

segment parallel to the l1 axis. Here the normal vector to the boundary is the vector

m̄1 = (0,−1) and by taking the dot product with the velocity vector v̄ we have the

following, ∫
∂Ω1

ε,δ

nv̄ · m̄1 ds =

∫ +∞

ε∼
n(l1, δ, t)

(
1

l1
− α(t)

)
dl1,

where we have written ε∼ to indicate that the intersection of the arc, labelled section c,

and the line in section 1 would not occur at precisely ε but it would be very close to that

value. Since we anticipate taking limits later it is sufficient to just consider it small and

close to ε in size, in particular, once the δ-limit is taken this will go to ε as we expect.
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Proceeding to take the limit as δ goes to 0 from above we have,

lim
δ→0+

(∫ +∞

ε∼
n(l1, δ, t)

(
1

l1
− α(t)

)
dl1

)
=

∫ +∞

ε
n(l1, 0

+, t)

(
1

l1
− α(t)

)
dl1.

If we now consider region 2, the straight line segment parallel to the l2 axis, together

with the unit vector m̄2 = (−1, 0) we can then follow a very similar derivation to the one

above to find,

lim
δ→0+

(∫
∂Ω2

ε,δ

nv̄ · m̄2 ds

)
= − lim

δ→0+

(∫ ε∼

+∞
n(δ, l2, t)

(
1

l2
− α(t)

)
dl2

)
,

=

∫ +∞

ε
n(0+, l2, t)

(
1

l2
− α(t)

)
dl2,

where the main alteration comes from considering that orienting the line means we in-

troduce a further minus from the line segment dl2. For the remaining region, labelled c,

we consider a polar type representation of the arc. In this representation we have simply

that the unit vector is m̄c = (− cos θ,− sin θ) and we replace l1 and l2 in the velocity law

by the polar values r cos θ and r sin θ respectively. We also make the transformation that

s = π/2− θ and so ds is transformed to −dθ. Hence we have,∫ 0∼

π
2
∼
n(ε cos θ, ε sin θ, t)

(
α(t)− 1

ε sin θ
, α(t)− 1

ε cos θ

)
· (− cos θ,− sin θ) (−εdθ),

=

∫ π
2
∼

0∼
n(ε cos θ, ε sin θ, t)

(
−α(t)ε(cos θ + sin θ) +

cos θ

sin θ
+

sin θ

cos θ

)
dθ,

=−
∫ π

2
∼

0∼
n(ε cos θ, ε sin θ, t)

(
α(t)ε(cos θ + sin θ)− 2

sin 2θ

)
dθ.

We now consider taking the limit as ε → 0+ and note the following; if the product of

the first term inside the bracket and the n term tends to a constant value C 6= 0, say, then

this would imply that n must behave like 1/ε as it approaches the origin. This, however,

would imply that the product of n and the second term in the brackets would blow up in

the limit. Thus to ensure we have a finite limit of the complete term we must have that

the first term product vanishes and we are left with,

lim
ε→0+

(
−
∫ π

2
∼

0∼
n(ε cos θ, ε sin θ, t)

(
− 2

sin 2θ

)
dθ

)
,

= lim
ε→0+

(
2

∫ π
2
∼

0∼

n(ε cos θ, ε sin θ, t)

sin 2θ
dθ

)
,

=2

∫ π
2

0

n?(θ, t)

sin 2θ
dθ,
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where we have used the following definition,

n?(θ, t) = lim
ε→0+

n(ε cos θ, ε sin θ, t).

Taking the limit ε→ 0+ in the regions 1 and 2 and combining all these results together

we have the following,

∂

∂t

(
1

〈Lv〉(t)

)
=−

[∫ +∞

0+
n(l1, 0

+, t)

(
1

l1
− α(t)

)
dl1 ,

+

∫ +∞

0+
n(0+, l2, t)

(
1

l2
− α(t)

)
dl2 + 2

∫ π
2

0

n?(θ, t)

sin 2θ
dθ

]
.

Labelling the right hand side as −R(t) we have the following relationship,

∂

∂t

(
1

〈Lv〉(t)

)
= −R(t),

R(t) =

∫ +∞

0+
n(l1, 0

+, t)

(
1

l1
− α(t)

)
dl1 +

∫ +∞

0+
n(0+, l2, t)

(
1

l2
− α(t)

)
dl2

+ 2

∫ π
2

0

n?(θ, t)

sin 2θ
dθ.

In the next section we want to consider the original distribution ρ, rather than the

number density n, so we will substitute into the expression above for n to get,∫ +∞

0+

ρ(l1, 0
+, t)

〈Lv〉(t)

(
1

l1
− α(t)

)
dl1 +

∫ +∞

0+

ρ(0+, l2, t)

〈Lv〉(t)

(
1

l2
− α(t)

)
dl2

+ 2

∫ π
2

0

ρ?(θ, t)

〈Lv〉(t) sin 2θ
dθ,

=
1

〈Lv〉(t)

[∫ +∞

0+
ρ(l1, 0

+, t)

(
1

l1
− α(t)

)
dl1 +

∫ +∞

0+
ρ(0+, l2, t)

(
1

l2
− α(t)

)
dl2

+2

∫ π
2

0

ρ?(θ, t)

sin 2θ
dθ

]
,

=
1

〈Lv〉(t)
Rρ(t) = R(t), (3.4.7)

where,

ρ?(θ, t) = lim
ε→0+

ρ(ε cos θ, ε sin θ, t).

3.4.4 Return to the Governing Equation

If we now return to the governing equation (3.4.6) and substitute in for n using (3.4.5) we

have,

∂

∂t

(
ρ

〈Lv〉(t)

)
+

1

〈Lv〉(t)
∇ · (ρv̄) = 0,

∂

∂t

(
1

〈Lv〉(t)

)
ρ+

1

〈Lv〉(t)
∂ρ

∂t
+

1

〈Lv〉(t)
∇ · (ρv̄) = 0.
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Making note of (3.4.7) at this stage and multiplying through by 〈Lv〉(t) we have,

∂ρ

∂t
+∇ · (ρv̄) = Rρ(t)ρ. (3.4.8)

This is our governing equation for the probability distribution, ρ. Almost identical in form

to the original equation for n we see the addition of a source term on the right hand side.

This can easily be understood by remembering that valleys flow out of the system but in

order to maintain the properties of a probability distribution (integral 1, for example) we

must not lose any ‘mass’ from the probability distribution, thus the source term.

3.4.5 Scaling Solution

We now proceed to consider if scaling solutions to (3.4.8) exist and propose the following

scaling of the spatial coordinates,

li(t)→
2li(t)

〈Lv〉(t)
=: zi. (3.4.9)

Accordingly we therefore have the following scaling on the distribution ρ in order to main-

tain its probability structure,

ρ(l1, l2, t) :=
4

〈Lv〉2(t)
ρ̂(z1, z2). (3.4.10)

We note the following simplification in order to reduce the occurrence of the factor 2. We

found earlier that 〈l〉(t) = 〈Lv〉(t)/2, (3.4.4), and so we simply have the following scalings,

zi =
li(t)

〈l〉(t) and ρ(l1, l2, t) :=
ρ̂(z1, z2)

〈l〉2(t)
.

We will now consider equation (3.4.8) term by term and substitute in for the proposed

scaling form above. We begin with the first term on the left hand side,

∂ρ(l1, l2, t)

∂t
=

∂

∂t

(
1

〈l〉2(t)

)
ρ̂(z1, z2) +

1

〈l〉(t)
∂ρ̂(z1, z2)

∂t
,

= −2
〈l〉′(t)
〈l〉3(t)

ρ̂(z1, z2) +
1

〈l〉(t)

[
∂ρ̂(z1, z2)

∂z1
l1
∂

∂t

(
1

〈l〉(t)

)
+
∂ρ̂(z1, z2)

∂z2
l2
∂

∂t

(
1

〈l〉(t)

)]
,

= −2
〈l〉′(t)
〈l〉3(t)

ρ̂(z1, z2)− 〈l〉
′(t)

〈l〉3(t)

[
∂ρ̂(z1, z2)

∂z1

l1
〈l〉(t) +

∂ρ̂(z1, z2)

∂z2

l2
〈l〉(t)

]
,

= −2
〈l〉′(t)
〈l〉3(t)

ρ̂(z1, z2)− 〈l〉
′(t)

〈l〉3(t)

[
z1
∂ρ̂(z1, z2)

∂z1
+ z2

∂ρ̂(z1, z2)

∂z2

]
. (3.4.11)
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Now let us consider the second term on the left hand side,

∇ · (ρv̄) =
∂

∂l1

[(
α(t)− 1

l2

)
ρ(l1, l2, t)

]
+

∂

∂l2

[(
α(t)− 1

l1

)
ρ(l1, l2, t)

]
,

=
1

〈l〉(t)

(
∂

∂z1

[(
α̂

〈l〉(t) −
1

z2 〈l〉(t)

)
ρ̂(z1, z2)

〈l〉2(t)

]
+

∂

∂z2

[(
α̂

〈l〉(t) −
1

z1 〈l〉(t)

)
ρ̂(z1, z2)

〈l〉2(t)

])
,

=
1

〈l〉4(t)

(
∂

∂z1

[(
α̂− 1

z2

)
ρ̂(z1, z2)

]
+

∂

∂z2

[(
α̂− 1

z1

)
ρ̂(z1, z2)

])
, (3.4.12)

where we have made use of the following,

α(t) =

∫ ∞
0

∫ ∞
0

ρ(l1, l2, t)

l2
dl1dl2,

=
1

〈l〉2(t)

∫ ∞
0

∫ ∞
0

ρ̂(z1, z2)

z2 〈l〉(t)
〈l〉2(t)dz1dz2,

=
1

〈l〉(t)

∫ ∞
0

∫ ∞
0

ρ̂(z1, z2)

z2
dz1dz2 =

1

〈l〉(t)

∫ ∞
0

ρ̂(z2)

z2
dz2 =:

α̂

〈l〉(t) .

The term on the right hand side of (3.4.8) is simple to treat requiring only a trivial

substitution, namely,

Rρ(t)ρ(l1, l2, t) =
Rρ(t)
〈l〉2(t)

ρ̂(z1, z2) =
Rρ(t)
〈Lv〉(t)

2

〈l〉(t) ρ̂(z1, z2) =
2R(t)

〈l〉(t) ρ̂(z1, z2).

We now want to combine these three parts back together as one equation but before

we do so we consider the following relationship between 〈l〉(t) and R(t),

R(t) = − ∂

∂t

(
1

〈Lv〉(t)

)
= − ∂

∂t

(
1

2 〈l〉(t)

)
=

1

2

〈l〉′(t)
〈l〉2(t)

.

Making note of this relationship we now have,

−4
R(t)

〈l〉(t) ρ̂(z1, z2)− 2
R(t)

〈l〉(t)

[
z1
∂ρ̂(z1, z2)

∂z1
+ z2

∂ρ̂(z1, z2)

∂z2

]
+

1

〈l〉4(t)

(
∂

∂z1

[(
α̂− 1

z2

)
ρ̂(z1, z2)

]
+

∂

∂z2

[(
α̂− 1

z1

)
ρ̂(z1, z2)

])
=

2R(t)

〈l〉(t) ρ̂(z1, z2). (3.4.13)

Multiplying through by 〈l〉4(t) and then rearranging we have,

6R(t) 〈l〉3(t)ρ̂(z1, z2) +

[(
2R(t) 〈l〉3(t)z1 +

1

z2
− α̂

)
∂ρ̂(z1, z2)

∂z1

]
+

[(
2R(t) 〈l〉3(t)z2 +

1

z1
− α̂

)
∂ρ̂(z1, z2)

∂z2

]
= 0. (3.4.14)
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Now if we let λ := 〈l〉′(t) 〈l〉(t) = 2R(t) 〈l〉3(t) be a constant, an assertion that is necessary

to remove the time dependence in the equation and is consistent with the scaling behaviour

predicted earlier in (2.7.2), we have,

3λρ̂(z1, z2) +

(
λz1 +

1

z2
− α̂

)
∂

∂z1
ρ̂(z1, z2) +

(
λz2 +

1

z1
− α̂

)
∂

∂z2
ρ̂(z1, z2) = 0. (3.4.15)

Using the same scaling procedure we also have the following conditions on the distri-

bution,

α̂ =

∫ ∞
0

∫ ∞
0

ρ̂(z1, z2)

z2
dz1dz2, 1 =

∫ ∞
0

∫ ∞
0

ρ̂(z1, z2) dz1dz2

and 1 =

∫ ∞
0

∫ ∞
0

z1ρ̂(z1, z2) dz1dz2.

We see that equation (3.4.15) matches (3.2.14) from earlier but as was stated we feel

that the second method is more transparent in its derivation. This equation is of hyperbolic

type and so we proceed to consider the characteristic curves of the equation.

3.4.6 Characteristics of Scaled Hyperbolic Equation

The characteristics of the equation are found by plotting the solution curves to the follow-

ing equations,

dz1(ξ)

dξ
= λz1(ξ) +

1

z2(ξ)
− α̂,

dz2(ξ)

dξ
= λz2(ξ) +

1

z1(ξ)
− α̂,

where ξ is just a dummy variable which represents time elapsed along the curve. For

illustration purposes we set λ = α̂2/4, a condition which will be derived in the one-point

model which follows but is used here for illustration, and therefore numerically solve the

equations,

dz1(ξ)

dξ
=
α̂2

4
z1(ξ) +

1

z2(ξ)
− α̂, (3.4.16)

dz2(ξ)

dξ
=
α̂2

4
z2(ξ) +

1

z1(ξ)
− α̂. (3.4.17)

Note that the characteristics now have a singularity at zi = 2/α̂, i ∈ {1, 2} and any

characteristic which directly approaches this point must terminate there. The numerical

procedure is a simple RK4 integration step from a set of starting points in the z1, z2-plane

which builds up the profile. Note that these equations are symmetric in z1 and z2 so we

need only calculate the characteristics in one half of the plane separated by the symmetry
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Figure 4.14 – Characteristic curves found by numerically solving equations (3.4.16) and (3.4.17)

by setting λ = α̂2/4, a condition derived during the one-point model reduction which follows,

and then choosing α̂ = 1. The blue point indicates the point (2, 2), a saddle-node point that

trajectories cannot pass for this choice of λ and α̂. The region to the top right of the diagram with

no characteristic curves roughly illustrates the region which has ρ̂ = 0, and is the 2D counterpart

to region z > 1/
√
λ derived in the 1D theory that follows.
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line z1 = z2. In Figure (4.14) we see a selection of the characteristic curves found by using

the numerical procedure above.

Note that the curves all appear to come from the origin and that there is a charac-

teristic curve along the symmetry line z1 = z2 which as predicted terminates at the point

(2/α̂, 2/α̂). This is interesting because this tells us that the data which is on this line, a

symmetric valley, will stay symmetric for all time. We know that this likely wouldn’t be

the case in the full dynamical system, nevertheless we exploit this feature in the next sec-

tion where we attempt to find a one-point theory for the system. Note that this property

would be true of any characteristic curve but the symmetry line is simple to deal with and

can be understood more clearly than another randomly chosen characteristic.

As an additional consequence of the information in the characteristic profile we can

see that there are no characteristics along the axes since these are essentially singularities

in the velocity. This implies that there is no information transported along these lines

and so it seems reasonable to expect that these are zero. This is consistent with our belief

that valleys disappear through the origin and only through the origin. Returning to our

definition of R(t) (3.4.7) we see that the terms along the axes can be assumed to be zero

and we are left with,

R(t) =
2

〈Lv〉(t)

∫ π
2

0

ρ?(θ, t)

sin 2θ
dθ =

1

〈l〉(t)

∫ π
2

0

ρ?(θ, t)

sin 2θ
dθ.

Performing the appropriate scaling on the right hand side and considering our definition

of λ we see the following,

λ = 2R(t) 〈l〉3(t) =
2

〈l〉(t)

[∫ π
2

0

1

〈l〉2(t)

ρ̂?(θ)

sin 2θ
dθ

]
〈l〉3(t) = 2

∫ π
2

0

ρ̂?(θ)

sin 2θ
dθ. (3.4.18)

Condition (3.4.18) represents the boundary condition that is required to solve the the

hyperbolic system. The other conditions can be thought of as constraints on the solution

rather than boundary or initial information. As a result we must understand the function

ρ̂?(θ). Unfortunately there could be an infinite number of possibilities that would satisfy

the condition in (3.4.18). The inability to characterise the form of ρ̂?(θ) which is necessary

to find the scaling solution to either (3.4.15) or (3.2.14) prevents us from pursuing this

further.

We recognise from the characteristic profile that the two-point equation predicts dy-

namics that remains on a given characteristic for all times, by definition, and so we probe
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this possibility further by looking at a particular choice of characteristic and hoping to

build a one-point theory instead.

3.5 Simplified Model and Associated One-point Theory

We present a particular one-point reduction of the full two-point model as a means of

probing the possible solution structure. In Figure 4.14 we see the characteristic profile

and in particular note that there is a curve along the symmetry line which suggests that,

based on all the previous assumptions, a valley which is symmetric in side lengths will

remain this way under the predicted scaled flow and associated equation. Of course the

hyperbolic structure of the equation means that this is true of any characteristic curve but

the symmetry line is particularly nice to probe further so we choose this one.

Since in the full 2D model a valley will remain symmetric as it evolves under the

hyperbolic equation we choose to assume that all valleys are symmetric and live on this

line. Thus the full problem is reduced to a one-dimensional problem where each valley is

characterised by a single length l. By reducing the full two-dimensional velocity to a one

dimensional scalar along the line in question we can probe the dynamics of this reduced

problem and hope to find clues to the dynamics of the full problem.

3.5.1 Derivation

In our restricted model we consider the distribution of valleys with equal length sides and

assume they remain in this set for all times, that is valleys always remain symmetric.

Each valley is then characterised by the associated length of either side and we denote the

distribution of such valleys ρ̃(l, t). In the full two-dimensional model this corresponds to

the symmetry line l1 = l2. Along this line the velocity of a valley with equal side lengths

in the l1, l2-space is given by the vector,

v̄ :=

 〈
1
l

〉
− 1

l〈
1
l

〉
− 1

l

 .

Note that in the full 2D model a valley which has symmetric side lengths will remain

in the set of symmetric valleys based on this reduced mean-field velocity, so our reduced

1D model is, in at least this sense, consistent with the full model. We choose, therefore,

to consider the effective velocity, ṽ, of this valley in the symmetric line direction, which is

found by combining the contributions from the two-dimensional vector into a single scalar
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quantity ṽ,

ṽ(l) =
√

2

(〈
1

l

〉
− 1

l

)
.

This is the effective velocity under which a symmetric valley flows. We define the following

two quantities for simplicity,

α(t) =

∫ ∞
0

ρ̃(l, t)

l
dl and 〈̃l〉(t) =

∫ ∞
0

lρ̃(l, t) dl.

Note that α(t) is actually the same quantity as found in the previous derivations of the

2D model, e.g. (3.4.1), but simply using the single coordinate l which is really the distance

from the origin along the symmetry line l1 = l2 in the full 2D model. We once again

consider the number density and write the transport equation in ñ(l, t) first before using

the transformation ñ(l, t) = ρ̃(l, t)/〈̃l〉(t) to change the equation into one which governs ρ̃.

Our starting equation is then,

∂ñ(l, t)

∂t
+
∂

∂l
[ṽ(l)ñ(l, t)] = 0,

where we note, as was the case before, that the right hand side being zero indicates

there are no additional sinks or sources to be accounted for. Inserting the scaling to the

probability density we have,

∂

∂t

(
1

〈̃l〉(t)

)
ρ̃+

1

〈̃l〉(t)
∂ρ̃

∂t
+

1

〈̃l〉(t)
∂

∂l
[ṽρ̃] = 0,

∂ρ̃

∂t
+
∂

∂l
[ṽρ̃] = −〈̃l〉(t) ∂

∂t

(
1

〈̃l〉(t)

)
ρ̃ =
〈̃l〉′(t)
〈̃l〉(t)

ρ̃, (3.5.1)

where we have suppressed arguments for simplicity. Returning to the original equation in

ñ and integrating with respect to l we have,

∂

∂t

(
1

〈̃l〉(t)

)
− lim
l→0+

(ṽñ) = 0,

where the second term on the left hand side is simply accounting for the boundaries of the

line, namely at zero and infinity, and we have assumed that ñ(l, t) decays faster than 1/l

at infinity and so has no contribution there. Continuing the calculation and substituting

for ñ we have,

− 〈̃l〉
′
(t)

〈̃l〉2(t)
− lim
l→0+

(
ṽ

ρ̃

〈̃l〉(t)

)
= 0,

〈̃l〉′(t)
〈̃l〉(t)

= − lim
l→0+

(ṽρ̃). (3.5.2)
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Upon considering that ρ̃ must overcome the singularity in the velocity at the origin,

we see that ρ̃(0+, t) = 0, by contradiction. Making use of this we can then derive the

following relationship,

〈̃l〉′(t)
〈̃l〉(t)

= − lim
l→0+

(ṽρ̃) ,

= − lim
l→0+

√
2

(〈
1

l

〉
− 1

l

)
[ρ̃(l, t)− ρ̃(0, t)],

=
√

2
∂ρ̃

∂l

∣∣∣∣
l=0+

(3.5.3)

3.5.2 Scaling Solution

We try a scaling solution of the following form,

ρ̃(l, t) =
1

〈̃l〉(t)
ρ̌ (z) , where z :=

l

〈̃l〉(t)
,

and as a consequence we can derive the following on α(t),

α(t) =

∫ ∞
0

ρ̃(l, t)

l
dl =

1

〈̃l〉2(t)

∫ ∞
0

ρ̌(z)

z
dz =:

α̌

〈̃l〉2(t)
.

Scaling each term in equation (3.5.1) in turn and substituting using (3.5.2) and (3.5.3)

we have,

∂ρ̃

∂t
= − 〈̃l〉

′
(t)

〈̃l〉2(t)
ρ̌− l 〈̃l〉′(t)

〈̃l〉3(t)

∂ρ̌

∂z
= − 〈̃l〉

′
(t)

〈̃l〉2(t)

(
ρ̌+ z

∂ρ̌

∂z

)
,

∂

∂l
[ṽρ̃] =

√
2

〈̃l〉(t)
∂

∂z

[(
α(t)− 1

z〈̃l〉(t)

)
ρ̌

〈̃l〉(t)

]
=

√
2

〈̃l〉3(t)

∂

∂z

[(
α̌− 1

z

)
ρ̌

]
,

〈̃l〉′(t)
〈̃l〉(t)

ρ̃ =

√
2

〈̃l〉3(t)
ρ̌
∂ρ̌

∂z

∣∣∣∣
z=0+

.

Combining these results together and simplifying we have,

− 〈̃l〉′(t)〈̃l〉(t) ∂
∂z

(zρ̌) +
√

2
∂

∂z

[(
α̌− 1

z

)
ρ̌

]
=
√

2ρ̌
∂ρ̌

∂z

∣∣∣∣
z=0+

. (3.5.4)

A simple substitution of the scaling form into (3.5.3) shows the following,

〈̃l〉′(t)
〈̃l〉(t)

=
√

2
∂ρ̃

∂l

∣∣∣∣
l=0+

=

√
2

〈̃l〉2(t)

∂ρ̌

∂z

∣∣∣∣
z=0+

,

〈̃l〉′(t)〈̃l〉(t) =
√

2
∂ρ̌

∂z

∣∣∣∣
z=0+

=:
√

2λ̌.

Taking this definition of λ̌ in (3.5.4) we have,

∂

∂z

[(
λ̌z − α̌+

1

z

)
ρ̌

]
= −λ̌ρ̌.
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Finally, performing the differentiation on the left hand side and collecting terms we have,[
λ̌z − α̌+

1

z

]
ρ̌′ +

[
λ̌− 1

z2

]
ρ̌ = −λ̌ρ̌,[

λ̌z − α̌+
1

z

]
ρ̌′ =

[
1

z2
− 2λ̌

]
ρ̌.

Thus our final problem and associated conditions are,[
λ̌z − α̌+

1

z

]
ρ̌′ =

[
1

z2
− 2λ̌

]
ρ̌, (3.5.5)

λ̌ =
∂ρ̌

∂z

∣∣∣∣
z=0+

, α̌ =

∫ ∞
0

ρ̌(z)

z
dz

∫ ∞
0
zρ̌(z) dz = 1 and

∫ ∞
0

ρ̌(z) dz = 1.

Rearranging (3.5.5) further to place this in a form where we can consider solution

behaviour we have,

ρ̌′

ρ̌
=

[
1
z2
− 2λ

][
λ̌z − α̌+ 1

z

] ,
=

[
1− 2λ̌z2

]
z
[
λ̌z2 − α̌z + 1

] . (3.5.6)

3.5.3 Condition on λ̌ and α̌ and Associated Solution

We now consider the right hand side of equation (3.5.6) and in particular want to consider

the behaviour for various values of λ̌ and α̌. A naive inspection of the right hand side

would suggest it behaves like −1/z for large z but we then see that there is an issue with

this outcome since we subsequently want to take the integral of the equation which gives

ρ̌ ∼ 1/z and so the solution, ρ̌, does not have finite integral and thus can’t be a probability

distribution.

Next we consider the case where the quadratic in the denominator on the right hand

side has distinct roots and consider the region close to one of the roots z? say. Near the

root the right hand side will behave like −1/(z? − z) which upon integrating we have

ρ̌ ∼ z?/(z? − z) which clearly blows up as we approach the root and thus again does not

have finite integral.

Finally we consider the case where the quadratic has a repeated root at z?. In this

circumstance we have that the right hand side will behave like −1/(z?− z)2 near the root

which upon integration gives us ρ̌ ∼ exp{−1/(z?−z)} which does not suffer from the same

issues as previous attempts. As a result to get a solution with satisfies the properties of a

probability distribution we must have a repeated root in the quadratic in the denominator

on the right hand side of (3.5.6) or equivalently,

λ̌ =
1

4
α̌2.
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Under this condition the solution will have compact support on [0, z?] with z? = 1/
√
λ̌

and will decay exponentially fast to the point z?. Note then that our distribution will

be supported on [0, z?] and zero elsewhere and so when we write the various integral

conditions we could safely interchange ∞ with z?. With this condition on λ̌ and α̌ we

simplify (3.5.6) to the following,

ρ̌′

ρ̌
=

2
(
2− α̌2z2

)
z(α̌z − 2)2

.

We perform a second scaling of the solution to simplify this equation. We use the

following,

ρ̌(z) = α̌R(α̌z) =: α̌R(s), where s := α̌z.

As a result the four conditions attached to equation (3.5.5) become,

R′(s)

∣∣∣∣
s=0+

=
1

4
,

∫ ∞
0

R(s)

s
ds = 1,

∫ ∞
0

sR(s) ds = α̌ and

∫ ∞
0

R(s) ds = 1.

Inserting the scaling form we then have,

R′(s)

R(s)
=

2(2− s2)

s(s− 2)2
,

which we can integrate and then subsequently take the exponential of both sides to give,

R(s) =
As

(s− 2)3
exp

(
2

s− 2

)
, (3.5.7)

where A is a constant. Making use of these two statements we can easily calculate the

derivative at the origin,

R′(s)

∣∣∣∣
s=0+

=
1

4
=
Ae−1

(−2)3
,

and as a result we have A = −2e. Thus our final solution is as follows,

R(s) =
−2s

(s− 2)3
exp

(
1 +

2

s− 2

)
=
−2s

(s− 2)3
exp

(
s

s− 2

)
. (3.5.8)

We can then calculate α̌ by use of the condition,∫ ∞
0

sR(s) ds = α̌,

where we find α̌ = −2eEi(−1) ≈ 1.19269472, where Ei is the exponential integral.
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3.5.4 Comparison of One-point Theory and Numerics

The one-point theory developed here is a very specific sub-model of the full two dimen-

sional model but nevertheless has given us an equation which we can solve to find a

one-dimensional distribution. Even though this model was derived in the physically un-

realistic symmetric valley situation it is still worth considering how closely the predicted

distribution matches the one-point distribution found during numerical simulations. We

note that various scalings were made in the derivation above so must take care to undo

this back to the distribution ρ̌(z) initially and further to this we must scale by a factor of
√

2 since this distribution is really on the diagonal line in the z1, z2-plane so is stretched

by this geometric factor.

In Figure 4.15 we see the distribution from the data %(z) plotted together with the

appropriately scaled ρ̌(z). Perhaps unsurprisingly these are quite distinct in character with

widely differing peak locations and approach to the origin. The derivation of the one-point

prediction is really completely distinct from considering the true one-point distribution and

so on this basis wouldn’t expect to see a neat match in the output.

An interesting point to note comes from considering the dynamical system proposed in

[89] as a means of studying the CKS equation, which we have detailed in Chapter 3. In a

subsequent paper, [11], the authors analysed the dynamical system proposed and predicted

the one-point distribution from a similar Fokker-Planck type derivation to our model here.

Despite coming from a fundamentally different problem and indeed an entirely different

derivation it is perhaps surprising to see that the results found are qualitatively the same.

In fact, by setting λ̌ = 1 in (3.5.6) and recalling the definition of α̌ we have exactly the

same result as found in [11]. We therefore consider these two problems to be of the same

universality class as each other. Further to this we note that the distributions predicted

here and in [11] also qualitatively match the one-point prediction made in the LSW theory,

[68, 118], and so interestingly this too is considered to be of the same universality class.

We note here once again that our one-point derivation, whilst well justified, is not

completely faithful to the original problem and so we may have inadvertently pushed our

hill-valley model into a different regime. It is interesting, however, to note that this reduc-

tion to a one-point model ties this hill-valley model to a completely different dynamical

system. Further to this we perhaps see evidence that care must be taken in the models

and approaches used to analyse coarsening dynamical systems, since there is always the

possibility of removing important information when taking the various mean-field approx-
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imations or indeed model simplifications as seen here.

4 Overall Conclusions

We have taken a faceted system together with an associated dynamics which displays

coarsening behaviour. Significant numerical data on the system was generated which,

in particular, showed the one and two-point distributions exhibiting the dynamic scaling

property. Exploring this further we tried to predict the statistical information within the

system by considering the effective behaviour and developing evolution equations for the

distributions. Consideration of the behaviour displayed led us to believe that this model

could be considered a kind of two-dimensional LSW problem.

In the two-point case we were able to derive an evolution equation but we were unable

to fully understand the behaviour at the origin which represents the single sink within the

system. The difficulty in finding the angular profile ρ̂?(θ) and associated numbers λ and

α̂ such that the two-point distribution predicted by (3.4.15) satisfied the corresponding

constraints, and where the function ρ̂?(θ) had been rationally derived means that for the

time-being predictions of the two-point distribution are incomplete. The problem has,

however, generated a wealth of interesting analytical questions worthy of further study.

We were able to reduce the full two-point problem to a simple one-point one which

we were able to solve for. A direct calculation of a one-point evolution equation seemed

impractical at first but through exploring the two-point model we were able to find a

well justified prediction of a one-point distribution. This one-point problem forced us to

constrain the parameters in the equation, λ̌ = α̌2/4, and a similar restriction in the two-

point case appears to lead to a saddle-node point and a vacuum region, see Figure 4.14,

analogous to the compact support seen in the one-point case.

Further analysis of the two-point problem may lead to an understanding of both any

constraints on the parameters in the equation and the origin behaviour. With these better

understood it is possible that a solution to the two-point evolution equation that we have

derived could be found.
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%(z). Note the significantly different approach to the origin and the peak location.
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