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Abstract

We study certain non-symmetric wavefunctions associated to the quantum nonlinear Schro-
dinger (QNLS) model, introduced by Komori and Hikami using representations of the degenerate
affine Hecke algebra. In particular, they can be generated using a vertex operator formalism
analogous to the recursion that defines the symmetric QNLS wavefunction in the quantum
inverse scattering method. Furthermore, some of the commutation relations encoded in the

Yang-Baxter equation are generalized to the non-symmetric case.
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Chapter 1

Introduction

The quantum nonlinear Schréodinger (QNLS) model for a 1-dimensional bosonic gas was intro-
duced by Lieb and Liniger [40] in 1963 and has been studied extensively since, e.g. [12,15, 16,
18-21,23,24,26,29,31,34,35,54,61]. It describes a system of N particles moving along a circle
or an infinite line with pairwise contact interaction whose strength is determined by a constant

~v € R. Most of the theory deals with the repulsive case (v > 0).

The QNLS model was introduced [40] as the first example of a parameter-dependent boson gas
for which eigenstates and eigenvalues of the quantum Hamiltonian can be calculated exactly.
Earlier, Girardeau [22] studied a related system which does not contain a (nontrivial) parameter
but which can be obtained from the Lieb-Liniger system in the limit v — co. We also remark
that a free system of bosons is obtained in the limit v — 0, which is an important test case for

results on the QNLS model.

Assume the particle coordinates are given by « = (z1,...,2y) € JN for some closed interval
J C R. In units where Planck’s constant & equals 1 and the mass of each particle %, the

Hamiltonian H., for the QNLS model is formally given by
Hy=-A+2y S o — ), (1.1)
1<j<k<N

with associated eigenvalue problem

H,V = EV,

for some E € R, where ¥ is an element of a yet-to-be-determined function space. We have

written A = Zjvzl BJZ for the Laplacian, where 9; = a%j. We emphasize that the definition Eqn.

1



2 CHAPTER 1. INTRODUCTION

(1.1) is entirely formal, i.e. we have not specified the domain of H,. We will address this in due

course.

Despite having been studied for a long time, the QNLS model still has open questions attached
to it. Dealing with these issues is all the more important since the QNLS model is in many ways
a prototypical integrable model; it is often chosen as a test case for (new) methods. With this

thesis we hope to make some advances in the theoretical understanding of the QNLS model.

1.1 Function spaces and the symmetric group

To place the Hamiltonian Eqn. (1.1) on a more rigorous footing, we introduce the following
standard terminology for function spaces. Given U a subset of RY or C which has a nonempty
interior, let F(U) denote the vector space of complex-valued functions on U and consider its

subspace

CU)={feFU): fis continuous }.

If U is open, we have the further subspaces

ckU

{feFU

(U) (U) : f has derivatives up to order k which are continuous }, k € Z~y,
C*WU)={feFU): fissmooth},

C*(U)={feFQU): fis real-analytic },
v) ) f

PU)={feFU is polynomial } .

Given that each particle’s location is restricted to be in the closed interval J C R, note that the
term in (1.1) proportional to v is linked to an arrangement of hyperplanes
ij:{acEJN::cj:xk}, for j < k.

The corresponding set of regular vectors is given by

Jr](\elg:JN\ U ij:{a:GJij#xklf]#k}
1<j<k<N

The alcoves are the connected components of Jrjgg. The fundamental alcove is given by

Jf:{xEJN:x1>...>xN}.
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We recall some basic facts and definitions related to the symmetric group Sy. The transposition
of two elements j, k € {1,..., N}, i # j is denoted s;j;. For ease of notation we will sometimes
write 1 € Sy as s;; for some j = 1,...,N. For j = 1,...,N — 1 the transposition s; ;41 is
written s; and called simple. Sy is generated by the simple transpositions {s;: 1 <j < N —1}

and has the corresponding presentation

SN = <81, ceey SN_1’8? = 1, Sij.HSj = Sj+18j8j+1, SjSk = Sij if ’j — k’ > 1> .
Sy has an obvious (left) action on JV defined by w(zy,...,2n) = (Twi,...,TwN), Where
(x1,...,zN) € JN and w € Sy. In fact Sy acts as a Weyl group associated to the collec-

tion of hyperplanes Vjj, i.e. the transpositions s;jj act as reflections in the hyperplane Vjy,

which are isometries with respect to the standard Euclidean inner product defined by
N
(x,y) = ZZL‘ij’ for x,y € JV,
j=1

in other words (wx,y) = <x,w_1y> for all w € Sy and all z,y € JV. Furthermore, Jﬁgg is an

invariant subset under the above action, and Sy also acts on the collection of hyperplanes and
on the collection of alcoves. The latter action is transitive, so that Jgg =U inV . Also,

there is a left action of Sy on F(JV), defined by

wWESN

(wf)(@) = fw™'z),

forw € Sy, f € F(JV) — C, and x € JV. The vector space C(JV) is an invariant subset under
this action, and in the case J = R, so are C*(RY), C>®*(RY), ¢*(RY) and P(RY). We note that
Sy acts on the sets obtained from the above by replacing JV by Jgg or CN. Given z € C,

we denote by Z its complex conjugate. The corresponding complex Euclidean inner product is

defined by

N
(z,2) = E 2 Z; for z,z' € CV,
=1

and satisfies (wz, 2') = <z,w*1z’> for all w € Sy and z,2’ € CN. If X is a set acted upon by

Sn, then X5V denotes the subset of elements of X that are left fixed by Sy.
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1.2 The QNLS problem revisited; the coordinate Bethe ansatz

It is well-known [12, 26, 40] that the eigenvalue problem of the Hamiltonian (1.1) should be

interpreted as the system of equations

_A\IJLT{Xg :E\I}|J£g’ (11)
(8j — 8k;) \I]|Vj+k — (83 — 8k) \If|V;k = 27‘1"{/].,9, for1<j<k<N, (1.2)

for a U € C(JV)SN whose restriction to Jrjgg is twice continuously differentiable. Here we have

used the notation

flys = Jim f (1.3)

Tj2T)

for f € C(JV). The equations (1.2) are called the derivative jump conditions.

Furthermore, if J is bounded without loss of generality we may assume that J = [-L/2, L/2],
for some L € R+g. In this case for the Hamiltonian to be (formally) self-adjoint it is necessary

to apply the following boundary conditions to ¥ and its derivative:

U(x)|z,=—1/2 = ¥(®)|2;=1/25

0V (x) ;=12 = 059 ()]0~ /2,

forj=1,...,N. (1.4)

Because V¥ is Sy-invariant, it is sufficient to impose the conditions

_A‘I]L]_‘]Y - E‘I’|Jiv7 (1.5)

(aj—ﬁk)\II\VJE_H =Yy, s forj=1,...,N—1, (1.6)

where we may now take ¥ € C (ﬁ) with twice continuously differentiable restriction to J J]rv .
The conditions (1.4) can also be simplified:

\P(L/2,x1, ces ,IIJN_l) = \I/(flfl, e s TN-1, —L/2),
(1.7)

ax‘ll(a:,:cl, cee ,a:N_l)\x:L/Q = 895\11(561, cee ,xN_l,x)]I:,L/Q.
Lieb and Liniger [40] solved this system by modifying an approach which Bethe used to analyse
the one-dimensional Heisenberg model [6]. This method is now known as the (coordinate) Bethe
ansatz. Write e'* € C¥(JN) for the plane wave with wavenumbers given by A = (A,..., An) €

CV, i.e. the function defined by

eix(a;) — oilA®) — eiZf{:l AjTj (1.8)
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This Bethe ansatz results in the statement that the Bethe wavefunction Wy, .\, € C(JN) given

by

1 Awi — Ak — 1 ; .

Vs () = 5 3 11 w; '_wi U XA e e Y, (1.9)
: ; wj wk

weSy \1<j<k<N

solves the QNLS problem, i.e. it satisfies Eqns. (1.1-1.2) with E = ZN A2, Furthermore, if

=175
A1, ..., An are distinct real numbers satisfying the Bethe ansatz equations (BAEs), viz.
Aj— A iy .
f =1,...,N 1.10
)\ N )\k _ 1’)/7 or .7 ) ) ) ( )
k#]

then in addition Wy satisfies Eqns. (1.4).

Example 1.2.1 (N = 2). We present the explicit expression of the Bethe wavefunction for N =
2 and J = [—-L/2,L/2] for some L > 0. On the fundamental alcove { (z1,22) € J*: 21 > x2 }

we have

At—Ap—iy oA A A=A +iy
I 171+ 2:£2) (A2x1+>\1z2) .
Mda(@1,2) = 5 ( A — A2 M2 ’

the reader may verify that this leads to the following expressions for arbitrary (z1,x2) € J2:

A — Ao —sgn(z1—z2) i
\I//\l )\2(33175132) 2( ! 2 )qg—(/\gl 2) 2l (>\13€1+/\2x2)+
A=Az F Sgn(wl_w2) 1y (>\2$1+)\1z2)
+ .
A1— A9

This function satisfies the system Eqns. (1.1-1.2), which in this case reads:

—(812 + 822)\11)\1,)\2(.T1,.T2) = ()\% + )\%)\I/)\l,)q(.rhxg), if — L/2 < x1 75 T < L/Q,

Am (01 = 92) Ui, (21, 29) — lim (91 — 02) Wy, 1, (21, 22) = 29Wx, 0, (21, 21),
if —L/2<x <L/2.

x1>T9 x1<x9

Furthermore, if % ML = e=1%L then we have
\Il)\1,>\2 (L/27 .%') - \I/A17)\2(_L/2ﬂ .%') \I}Al,/\Q (:C, L/2) \II/\I )\2 L/2)

(61\11/\1,)\2)(1//27 ‘T) = (81\11)\1)\2)(_[//27 1’) (82\1])\1,)\2)(377 L/2) = (82\11)\1,)\2)(‘7;7 _L/2)'

We will keep returning to the N = 2 case throughout the thesis.
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1.3 Quantum inverse scattering method

An important solution technique for the QNLS model, and an example of a method using
the QNLS model as a test case, has been the quantum inverse scattering method (QISM). The
QISM is a quantized version of the classical inverse scattering method, a technique used for solv-
ing certain nonlinear partial differential equations, and was developed by the Faddeev school
[17,36,52,56,57] after Baxter’s pioneering work on exactly solvable models in statistical me-
chanics and his method of commuting transfer matrices; see [2] for a text book account and

references therein.

The application of the QISM to the QNLS model will be reviewed in Chapter 2. We make
some general remarks here. The QISM revolves around the so-called monodromy matrixz Ty =
(’2 7;:), a parameter-dependent 2x2-matrix whose entries are operators on the relevant state
space (in the case of the QNLS model, the Fock space, which is the direct sum of all spaces
L2(JN)9 of symmetrized square-integrable functions on the finite box JV). T satisfies the
Yang-Baxter equation related to the Yangian of gl, whence commutation relations are obtained
for its entries. The algebra generated by Ay, By, Ch, D, is called the Yang-Bazter algebra. The
relevance of the monodromy matrix to physical models lies in the fact that the transfer matrices
T\ = Ay + D) form a self-adjoint commuting family and commute with (in fact are generating

functions for) the integrals of motion, including the Hamiltonian. It can be shown that under

certain conditions on the \; (also called Bethe ansatz equations), the functions

are eigenfunctions of the transfer matrix, and hence of the Hamiltonian, where ¥y is a reference

state (in the QNLS case it is 1 € L2(JY) = C).

1.4 Root systems and affine Hecke algebras

An important contribution by Gaudin [20] was the realization that the Lieb-Liniger system can
be naturally generalized in terms of (classical) crystallographic root systems. These general-
izations can also be solved by the Bethe ansatz approach and have been the subject of further
study [15,16,23,27,29]. It has been highlighted by Heckman and Opdam [29] that represen-
tations of certain degenerations of affine Hecke algebras play an essential role, providing the

second method for solving the QNLS problem.
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In particular, a non-symmetric function 1y, . can be constructed that solves the QNLS
eigenvalue problem Eqns. (1.1-1.2). Upon symmetrization one recovers the Bethe wavefunction
Uy, ..ay; hence we will refer to ¥y, . x

as the pre-wavefunction. This function ¥y, ., was

N N

introduced into the theoretical picture of the QNLS model by Komori and Hikami [31,34] in
analogy to the non-symmetric Jack polynomials in the Calogero-Sutherland-Moser model [4, 30,
49]. Furthermore, Hikami [31] has made clear the connection with Gutkin’s propagation operator
or intertwiner [16,23], which intertwines two representations of the relevant degeneration of the

affine Hecke algebra. We will review this approach in Chapter 3 in more detail.

1.5 Norm formulae, completeness and integrability

In general, the norms of quantum-mechanical wavefunctions are important for the calculation
of probabilities because of the following reason. If ¥ is a wavefunction of a quantum-mechanical
system whose L2-norm ||¥|| equals 1, then |¥(x)|? can be interpreted as the probability den-
sity of finding the quantum system at location x. If ¥ is an arbitrary wavefunction, then
¥ = /|| ¥|| is normalized and the aforementioned notion of probability density can be assigned

to [W(@)]* = W () /[ W]

As for the Bethe wavefunctions, their norms were conjectured by Gaudin [21] to be given by
so-called determinantal formulae. This was proven by Korepin [35] using QISM techniques.
Emsiz [15] has conjectured similar formulae for the norms of the eigenfunctions associated with

more general crystallographic root systems which have been verified for systems of small rank [7].

An important and difficult problem has been to determine the completeness of the Bethe wave-
functions. The spectrum of the Hamiltonian changes drastically depending on the type of
interaction (repulsive or interactive) and the geometry (line or circle). In the attractive case,
where v < 0, bound states occur (due to multi-particle binding), leading to a mixed spectrum.
For the system on the line, completeness of the Bethe eigenstates was shown by Oxford [47].

For the corresponding system on the circle this question is still an open problem.

For the repulsive case, the completeness of the Bethe wavefunctions in LQ(RN )SN , where the

Hamiltonian has a purely continuous spectrum, was proven by Gaudin [18,19,21]. For the cor-
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responding problem on a bounded interval J (i.e. the system of quantum particles on a circle),
completeness (in L2(JV)~) and orthogonality of the set of eigenfunctions of the QNLS Hamil-
tonian, viz. { ¥y : A satisfies the BAEs (1.10) }, were proven by Dorlas [12] using completeness
of the plane waves, a continuity argument at v = 0 and QISM techniques. To do this, it is
crucial to specify the right domain of H., so that it becomes essentially self-adjoint (i.e. its

closure is self-adjoint).

The QNLS model is a quantum integrable system, by which we mean that infinitely many in-
tegrals of motion (conserved charges) exist: operators on L2(JV)%¥ which are simultaneously
diagonalized by the solutions of Eqns. (1.1-1.2), i.e. the Bethe wavefunctions. Because of

completeness of the Bethe wavefunctions, these operators mutually commute.

1.6 Experimental construction of the QNLS model

So far we have discussed the rich mathematical structures of the QNLS model. Its physical
significance has been demonstrated by recent experiments [59,60] where systems described by
the QNLS model, consisting of magnetically confined ultra-cold rubidium atoms, have been
manufactured. These atoms are trapped using the magnetic field generated by electrical currents
on a microchip; because of the low temperature, the movement of the atoms is reduced and an
effectively one-dimensional system is created. Theoretical advances in the QNLS model may be
of importance to such experiments and any new technology that arises out of them: by virtue

of integrability it may be possible to obtain exact data which can help to calibrate equipment.

1.7 Present work

The general problem that this thesis aims to address is the disparateness of the QISM and the
Hecke algebra approach. Each has their own advantages; the QISM yields recursive relations
for the Bethe wavefunctions whereas the degenerate affine Hecke algebra can be immediately
generalized to other reflection groups. However, since both methods solve the QNLS problem
there should be connections, and we will highlight some of them.

In particular, we will focus on the pre-wavefunctions 1y, ., and demonstrate that they are

N

more important to the theory of the QNLS model than previously thought. In Thm. 5.2.2 we

will prove that the pre-wavefunctions can be generated by operators bf : C(RN) — C(RN+Y)
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(for which we will give explicit formulae) as follows:

Uarey = by, by, To = b .01 W,

where (A1,...,Ay) € CN. In particular, we remark that the pre-wavefunctions are defined using
the affine Hecke algebra method, but satisfy a QISM-type relation (cf. Eqn. (1.1)); this ties
these two solution methods for the QNLS model more closely together. Furthermore, we obtain

the relation

BySW) = sWHyE,

where S(V) = % > wesy W, leading to a new proof that By ... By, ¥y indeed is the Bethe wave-
function. These operators bff can also be seen as operators densely defined on non-symmetric!
Fock space, the direct sum of all the spaces L2(JN ) for a bounded interval J, on which we
can define further operators au,cljf,du. These, together with S(NH)bi, restrict to the QISM
operators A, B,,C),, D, and we will highlight similar commutation relations that they satisfy,

prompting the concept of a non-symmetric Yang-Baxter algebra.

1.8 Outline of thesis

In Chapters 2 and 3 we will review the main theories in existence that solve the QNLS model.
In both chapters we present some original work. Chapter 4 is a short chapter highlighting some
connections between these two solution methods, which is largely original work. The main body

dy, is found in Chapter 5. Fi-

of original work, the theory surrounding the operators a,, bi, cff,

nally, in Chapter 6 we provide some concluding remarks.

There are two appendices with detailed calculations, to which will be referred in Chapters 3, 4
and 5 where needed. This is followed by a list of symbols on page 132 and a list of references

on page 137.

LOr rather, “not-necessarily-symmetric”.
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Chapter 2

The quantum inverse scattering

method (QISM)

In this chapter we recall that the QNLS system of N spinless quantum particles on a line, a
line segment or a circle formally corresponds to the N-particle sector of a bosonic nonrelativis-
tic quantum field theory which can be studied with the aid of the quantum inverse scattering
method (QISM), also known as the algebraic Bethe ansatz (ABA). This is a quantum version
of the (classical) inverse scattering methods and was introduced and developed by the (then)
Leningrad school led by Faddeev [17,36,52,56,57], which was preceded by Baxter’s seminal work
[2] on exactly solvable models in statistical mechanics. It also contributed to the development
of quantum groups. Besides the work of the Faddeev school specific to the QNLS model [35,54]
we should also mention Gutkin’s exposition [26]. For a mathematical background, we refer the

reader to [50,51].

We will start off by defining various Hilbert spaces and then briefly review the quantum field-
theoretic context of the QNLS Hamiltonian and the quantum inverse scattering method, centred
around the so-called monodromy matrix, Its entries are the generators of a spectrum generating
algebra (Yang-Baxter algebra) of the Hamiltonian and their commutation relations are encoded
in the famous Yang-Baxter equation. We will discuss the use of the Yang-Baxter algebra in
constructing eigenfunctions of the QNLS Hamiltonian and highlight some further properties of
the Yang-Baxter algebra, providing a connection to Yangians. Having reviewed the existing
theory, we present new integral formulae for the entries of the monodromy matrix which we

believe have computational advantages.

11
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2.1 Hilbert spaces

We will consider systems of quantum particles whose movement is restricted to a one-dimensional
set (an infinite line, a finite line segment or a circle). In quantum mechanics, the possible states
of these systems are described by wavefunctions, which are elements of a Hilbert space. Let
J C R be a closed interval. The reader should keep in mind two cases: R itself and an interval

of some finite length L > 0. In any event, for NV a nonnegative integer, consider
L2(JN) = {f:JN—>(C:/ dVz|f(x)|? <oo},
JN

the set of square-integrable functions on JV, which is a Hilbert space with respect to the inner

product!
(Foy = [ | e s(@)t@). (211

for f,g € L2(J"). The corresponding norm is denoted by || - || -

Definition 2.1.1. Let N be a nonnegative integer and J C R a closed interval. The (non-

symmetric) N-particle sector and the symmetric N-particle sector are the two Hilbert spaces
bv(J) =L2(IY),  Hn () = bn (D) C oy (),

respectively. Note that ho(J) = Ho(J) = C, which is spanned by the constant 1 € ho(J) = Ho(J),
i.e. the constant function: J° — C with value 1, which we will denote by ¥y and refer to as the

pseudo-vacuum.

Remark 2.1.2. The established QISM for the QNLS is formulated in terms of the symmetric
N-particle sectors defined above. However, since the non-symmetric N -particle sectors can be
seen as an intermediate step in the construction of the N -particle sectors, we discuss them here

as well. In Chapter 5 they will play a more central role.

Notation (Symmetric and non-symmetric objects). In the rest of this thesis, whenever there
is a pair of objects (i.e. sets, functions on those sets, operators acting on such functions)
of which one is the symmetrized counterpart of the other, we will write the symmetric object

with a capital letter and the more general, not necessarily symmetric, object with a lower-case

letter, as we have done already for hn(J) and Hy(J).

'For Hn(J) it is also common to use the inner product defined by - [~ dVa f(x)g(x). However, by not

including the 1/N! factor we may express certain adjointness relations more easily.
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Remark 2.1.3. The N-particle sectors are state spaces for several particles moving along J.
In particular, the symmetric N-particle sector Hy(J) is the state space of a system of indis-
tinguishable particles or bosons, i.e. quantum particles whose wavefunction is invariant under
exchange of coordinates (or more generally, invariant under exchange of “quantum numbers”,
i.e. eigenvalues of “observables”, certain formally self-adjoint operators on the state space).

This concept is the reason for the use of the symmetric group in the definition of Hy(J).

Let w € Sy. Note that (wf,g)y = (fawflg)N, for all f,g € hn(J). Hence, the inner product
on Hy(J) satisfies
(F,G)y = N!/ dVx F(x)G(x),

N
J+

where we recall the fundamental alcove Jiv = { xeJV: iz >.. . >N }

Consider the direct sum of all non-symmetric N-particle sectors € N>0D ~(J). Formally define

an inner product on this space as follows

(fo@ i f2®.. 900001 Dg2®...) = (fo,90)9 + (f1,91); + (f2,92)5 + -+,

where for each N € Z>q, fn,gn € hn(J). We emphasize that this does not properly define an
inner product as the infinite sum may not converge. As usual we may also (formally) define
the associated norm ||f| = \/(f, f) for f € @ ~n>0 v (J); we will also formally consider the
inner product given by this formula and the corresponding norm on the direct sum of symmetric
N-particle sectors, which is a subspace. Finally, we note that the restriction of the formal inner
product (,) to any N-particle sector yields the existing inner product (,),, so that we may

denote all these inner products simply by (,) if convenient. We are now ready for

Definition 2.1.4. The (non-symmetric) Fock space and the symmetric Fock space are given by
h(J)=q Fe@Pon):Ifll <oy,  HI) = Fe@HN):|IF|| <o 3 ChJ),
N>0 N>0

respectively. These are Hilbert spaces with respect to the inner product (,) defined above and

they contain the dense subspaces of finite vectors (cf. [26, Prop. 6.2.2])

M
bein(J) = {f €bh(J):IM € Zo: f € P bn(J) } Hen(J) = ban(J) N H.

N=0

Remark 2.1.5. The Fock spaces allows for linear combinations of elements from different N -

particle sectors (i.e. superpositions of states containing a different number of particles).
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We note that the N-particle sectors by (J) and Hy(J), and also the Fock spaces h(J) and H(J)

are separable Hilbert spaces, i.e. admit countable orthonormal bases.

Remark 2.1.6. Essentially all Hilbert spaces used in physical theories are separable.

2.1.1 Test functions

In our case, the N-particle sectors hy(J) and Hy(J) contain dense subspaces
() =C(IY), D (J) =Co(TN)N =on(]) Ny,

respectively, consisting of test functions on JV, i.e. smooth functions from J to C with compact

support. We form the spaces

o(J) = Pov(), D) =P Dn(J) =0()) NH(I),

N>0 N>0

which are dense proper subsets of h(J) and H(J), respectively.

Remark 2.1.7. These dense subspaces are used to define (possibly unbounded) operators on b
and H. In physics one is interested in Hamiltonians, certain (formally) self-adjoint operators
with real unbounded spectrum, as the eigenvalues are interpreted as “energy”. Operators defined
everywhere on an infinite-dimensional Hilbert space are necessarily bounded by virtue of the
Hellinger-Toeplitz theorem (see e.g. [50]). Hence, we must allow for operators that are only

defined on dense subsets.

Densely defined operators 7" on h(J) have a uniquely defined formal adjoint T*, which is an
operator on h(J) satisfying (f,T*g) = (T'f,g) for all f,g € 9(J). Note that this formal adjoint
may not be densely defined (it may even have trivial domain). Similarly we may consider formal

adjoints of operators densely defined on H(.J).

For all aforementioned Hilbert spaces X = hn, Hn, b, H,0n, Dy, 0, D we will use the shorthand

notation X = X (J) if J is clear from the context.

2.1.2 Periodicity and boundary conditions

The N-particle sector of the Fock space associated to the system on a circle of circumference L
is obtained by imposing L-periodicity on the elements of the N-particle sector hy(R) and hence

given by L? ((R/ LZ)N ), i.e. the Hilbert space of (symmetrized) L-periodic square-integrable
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functions: RV — C. Alternatively, we may define these N-particle sectors in terms of the

N-particle sectors for the bounded interval J = [—L/2, L/2] and use the Hilbert space

{febn Vo eI Vi f@)lymrp = f@)eorso |

note that this does not depend on our particular choice? of J. The same discussion applies to

the subspaces of symmetric functions.

Because of the physical interpretation of elements of a Hilbert space H as probability amplitudes
in quantum mechanics (i.e. their squared absolute values are probability densities for quantum
particles; this is also the reason why L? functions are used), we are only interested in the
subspace {F €M : Flopom(r) =0 }, i.e. the set of functions which vanish at the boundary of

their domain. This is a closed linear subspace, and hence a Hilbert space in its own right.

e For J =R, F € Hy(J) = L*(R") implies lim,, o F(x) = 0 and hence all elements of

the Hilbert space are physically meaningful.
e However, in the Hilbert space Hy([—L/2, L/2]) with L € R0, this subspace is
{F € Hn([~L/2,L/2]): Fly—spjo=0forall j=1,... ,N} :

a subspace of the Hilbert space of L-periodic functions. It turns out that in this case it is

often more natural to study the subspace of H(.J) of L-periodic functions.

2.2 Quantum field theory

In the standard setup of the QISM [17,36] the Hamiltonian and the monodromy matrix for the
QNLS model are introduced as expressions in terms of quantum field operators. We will briefly
highlight some basic notions of non-relativistic quantum field theory (the formalism known as

“second quantization”).

2Another common choice is J = [0,L]. The choice J = [~L/2,L/2] has the benefit that, again, certain
adjointness relations can be expressed more conveniently and that at least formally the system with J = R is

recovered in the limit L — oo.
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Notation (Deleting and appending single variables). Let N be a nonnegative integer.

o Let x = (z1,...,2n5) € JN andy € J. Then (x,y) = (21,...,2xn,y) € JVT! and

(va) = (yaxla"'axN) S JN+1'

o Letx=(v1,...,on41) € JN and j=1,...,N+ 1. Then

T; = (xl,...,.%j,...,x]v+1) = (x1,...,:Ej_l,xj+1,...,1:N+1) S JN.

For each y € R two quantum fields ®(y), ®*(y) are introduced as End(D)-valued distributions,
given by ®(y)(Dy) = 0 and

(®(y)F) (x) = VN + 1F(x,y), for F € Dyi1,x € JV,

L N . (2.2.1)
= 0(y —x;)F(x;), for F€Dy,xe J T,
VN +1 “ O
J=1

(®*(y)F) ()

for any positive integer N. These definitions can be made rigorous using so-called smeared fields,
for which we refer the reader to [51]. The key properties of the quantum fields is that they are

formally adjoint and satisfy the canonical commutation relations:

[@(z), 2" (y)] = d(x —y), [®(x),(y)]=[P"(x), ®*(¥)] =0  (z,y€J).

The quantum fields can be differentiated (in a distributional sense):

(0,@(y)F) () = VN + 19,F(z,y), for F € Dyy1,x € RY,
1 N+1
(9,0*(y)F) (z) = T ; & (y — ) F(x;), for F € Dy,x € RNTL.

Note that ¢, the distributional derivative of the Dirac delta, is characterized by (¢, F) =
— (6, F") = —F'(0) for all F € D;.

2.2.1 The Hamiltonian

We can (formally) express the QNLS Hamiltonian (1.1) from the Introduction as follows

H, = /J Az ((0,9%)(2)(0:B)(x) + vP* (2)2®(x)2) . (2.2.2)

In fact, H, is an operator-valued distribution densely defined on End(D). From Eqn. (2.2.2)
it follows that H., is formally self-adjoint®>. The derivation of Eqn. (2.2.2) uses that, for all

3We recall that H., with a suitable choice of domain is essentially self-adjoint [12]; in the case of bounded J we
recall the statement from Subsect. 2.1.2 that one needs to consider the subspace of H(J) of functions satisfying

L-periodic boundary conditions
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FeD¥ and x € JV,

| e @.9°(@) @0 = —A.
(®*(1)*@(y)*F) (&) = > 6y — 2;)0(y — 2x) F(; 1, v, )
J#k
Remark 2.2.1. The convention to write ®*(x) (and any of its derivatives) to the left of ®(x)
(and any of its derivatives) is called normal ordering. Physically this is required so that the
system reproduces the correct ground-state energy. Note that Eqn. (2.2.2) is what one would
obtain by quantizing the Hamiltonian of the classical non-linear Schréodinger (CNLS) model using

normal ordering:
HE () = /R d (|0:0(x)]? + Y|o(x)[*) .

This explains the name “quantum nonlinear Schrédinger model”. We also note that the CNLS

model can be solved by the classical inverse scattering method.

2.2.2 The monodromy matrix and the transfer matrix

In the introductory remarks at the start of this chapter we touched upon an object called the
monodromy matrix as an important tool to study the QNLS model. Here we will make this
more precise. We will first define the monodromy matrix and then show that it is an important
tool in solving the eigenvalue problem of the QNLS Hamiltonian. Define the (local) £-matrix

for the QNLS as
—iA/2 ¥ (x
La(z) = /2 2@ (2.2.3)
O(z) iN/2
Using the time-ordered exponential [36,52,54] we can (formally) construct the (non-local) mon-

odromy matriz T, an operator on End(C? ® H) densely defined on End(C? ® D):

T = :exp+/ dzly(z): = Z/ d"x : Lx(zp) ... Lx(z1) (2.2.4)
J n>0" 7%
where : ... : indicates that normal ordering of the quantum fields ®*(x), ®(z) is applied. That

is, when expanding the product of matrices £y(x,) ... Lx(x1), in the resulting expressions any

®*(z) is moved to the left of any ®(y).

The monodromy matrix is a 2x2-matrix with entries given by:

7;\11 7;\12 A>\ ,YB)\

T2U 722 Cx Dy

T
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We will see in Prop. 2.4.2 (iv) that the matrix entries of 7, are bounded on the dense subspace

Hgn, which implies that 7, can be viewed as an element of End(C? @ H).

The transfer matriz is obtained by taking the partial trace over C? of the monodromy matrix:
Ty = Tre2 Ty = Ay + Dy (2.2.5)

We will see in Section 2.4 that Ay and D) have the same dense domain D so that T) is also
densely defined. From Cor. 2.4.3 we know that for J bounded and A € R, T} is self-adjoint.
Furthermore, in Thm. 2.4.8 we will see that for all \,u € C, [T),T,] = 0, and in Thm. 2.5.7
that Wy := By ... By, ¥y is an eigenfunction of T},, assuming that X satisfies certain conditions.

Dorlas [12] has shown that the ¥y are a complete set in Hy.

The importance of the transfer matrix, and hence the monodromy matrix, to the study of the
QNLS Hamiltonian H,, follows from the following argument (e.g. see [36]). The Hamiltonian
H, is a linear combination of the coefficients obtained by asymptotically expanding 7}, i.e. by
expanding T}, in powers of p in the limit 4 — ico. Then expanding [T, T,] = 0 with respect
to p implies that these expansion coefficients commute with 7. Hence, we obtain [H,,Ty] = 0.
More precisely,

log (ei nL/2 T#) HoRee i/jHLO} + LZ <H§” - i;HLOQ +

3 2
1y . Y _
T3 (HH —iyHM - 3H§01> +O(uY), (2.2.6)

where H,[f} = H,, and we have introduced the number and momentum operators

d
H[Olz/dxcb*xcbx, H[”:i/dm*zqm.
b ; (z)@(z) B . (@), ®(@)

These three operators are part of an infinite family of operators HW, for n = 0,1, ..., which
can be recovered recursively by calculating coefficients for higher powers of x~! in Eqn. (2.2.6).
There exists a formalism [24] for expressing all Hw in terms of the Bose fields ®(z), ®*(x).
Alternatively (again see [36]) the Hlyn] can be rigorously defined by their restrictions to H y; for

this purpose consider the n-th power sum polynomials defined by

N
j=1
Then we have N
H’[yn]"HN :pn(—ial,...,—ia]\]) = Z(—iﬁj)", (228)

=1
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together with the higher-order derivative jump conditions at the hyperplanes:
20+1 20+1 2l
(8j—8k) |V]J;@ —(8j—6k) + ‘ka :27(8j—6k) ‘V]IN for1<2l+1<n-1.

It follows from the above that the Hlyn] all commute with 15 and hence with each other and with

H,. Therefore they can be interpreted as integrals of motion.

2.3 The R-matrix and the Yang-Baxter equation

The monodromy matrix satisfies the (quantum) Yang-Bazter equation (QYBE), which involves

another operator called the (QNLS) R-matriz.

Definition 2.3.1. Let A € C\ {0} and v € R. Then
Ry=1®1- %P € End(C2 ® C2), (2.3.1)
where P € End(C? ® C?) is the permutation operator: P(vi @ va) = vo @ vy for vy, vy € C2.

Remark 2.3.2. This particular R-matriz is relevant not only to the QNLS model, but also
appears in other contexts such as the XXX model [6] and the Toda chain [58]. These models are

therefore algebraically related.

Note that R is invertible unless A = £i~; for these singular values of A\ we see that R, =

1® 1=F P is proportional to a projection. In general, Ry\R_) = )‘2;;72. It can be easily checked

that, for distinct nonzero A, u € C, R satisfies:
(Rk—u)lg (RA)13 (Ru)gg = (Ru)gg (RA)B (R)\—,u)u € End((c2 ® c? ® CQ)' (2'3'2)
The subscript ; ; indicates which embedding End(C? ® C?) — End(C? @ C? ® C?) is used.

Remark 2.3.3. Eqn. (2.5.2) has many solutions, amongst which the R-matriz defined in Defn.

2.8.1 stands out as the simplest nontrivial one.

2.3.1 The Yang-Baxter equation

We will now outline the method used in [26] and [36] to derive the QYBE, an identity involving
the R-matrix and the monodromy matrix 7. Since 7 is defined in terms of the L-matrix, it
makes sense to establish first a more basic identity involving R and £. For notational convenience

we introduce the standard basis of sls:

0 0 0 1 1 0
g_ = 9 U+ - 9 Oy = 9
1 0 0 0 0 -1
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satisfying the slp-relations [0,,04+] = +204, [04,0-] = 0,. It can be checked that
1
P = 5(1®1+0—z®az)/2+0+®07+0'7®0'+.

Lemma 2.3.4. Let A\, u € C be distinct. Then

Ra—p(I+Li(2) ®1+1® Ly(z) +y0- ®0y4) =

=(1+Ly(2)®1+1® Ly(2) + 70+ ®0_)Rx—, € End(C? @ C* @ H). (2.3.3)
Proof. Expanding the identity by powers of «, we see that the statement follows from
[P, La(z) ®14+1® Ly(x)) =i(A—p) (0 Qo_ —0_R04),

which is a consequence of the elementary identities

P(La@) ©1) - (18 L) P = -2 1P (o 01),
P16 L) - (L@ 0 )P =2 (o 51,
(0, ®1),P]|=2(04+®0_—0_R04). O

Theorem 2.3.5. [26,36] Let A\, u € C be distinct. Then T satisfies the quantum Yang-Baxter

equation?:
Rapu (M@l (19 T,)=1&T,) (Th@1)Ryy € End(C* @ C? @ H). (2.3.4)

Proof. We explain the basic idea of the proof, referring to [26, 36] for details. The interval J
is split into subintervals; the monodromy matrix is redefined for each subinterval allowing the
original monodromy matrix to be written as a product of monodromy matrices for subintervals.

The key step is to use the “local” equation Eqn. (2.3.3) and integrate it over each subinterval. [

We will now study the four matrix entries of 7, in more detail; in particular, we will study their

commutation relations which are encoded in the QYBE (2.3.4).

2.4 The Yang-Baxter algebra

Let A € C and J = [-L/2,L/2] with L € R~(. The following expressions for the matrix entries
of T, densely defined on each Dy, are well-known [26, Eqns. (6.1.6)-(6.1.7) and Eqn.(6.1.13)].

N 2n 2n
. : 2n j . *
Ay = e M2 E 7"[}2nd2”ye_lAZj—1(_l)1yﬂ H D*(y;) H O(y;) | : Dn — Hn, (2.4.1)
+ Jj=1

j=1
j odd Jj even

n=0

41t is also known as the ezchange relation or simply the RTT -relation.
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2n+1 2n+1

B)\—Z'Y /Qnﬂdgn—&-l o AT (- 1)y H d*(y;) H P(y;) | : Dnv — Hny1, (2.4.2)
S o
5 +1 2n+1 2n+1
C\ = 27 /J%Hd%—s—lyeu\z PN (=1)dy, H o* (1) H B(y;) | Dvar = Hys  (24.3)
n=0 = i
j even j odd
2n
Dy=e ML/QZV/J%dznyeMZ? v H o () || T] ®wi) | : Dv = Hy.  (2.44)
Jeven J odd

To obtain explicit expressions for these, it is beneficial to introduce unit step functions. The

one-dimensional unit step function 6 : R — {0, 1} is defined by

The multidimensional unit step function 6 : RY — {0,1} is given by 0(x) = Hﬁvzl 0(x;).

Furthermore, 6(z1 > ... > zy) is shorthand for 6(x; — x9, 29 — x3,...,2N_1 — TN).
Example 2.4.1 (N = 2). The definitions in Eqns. (2.4.1-2.4.4) yield the following for the case
N =2:

Axlp, = e M2 (1 +’7/2 dyr dys e 21782) &% (41 ) D (yo ) +

Iy

+v? /
J4

+

Bilp, = /J dye' Y o*(y) +7/3 dyr dys dys e AV 782705) &% (1) D™ (y3) D (yo ) +

T

dyy dys dys dyy e!AW1=v2F¥3=94) @*(y1)¢*(y3)¢(y2)¢)(y4)> ,

+ 7 /J dy1 dya dys dya dys e M1 79218 78445) §* (4) D% (y3) D* (y5) B (y2) P (y4)
Cilp, :/ dye 'V d(y )+7/ dy dys dyz e ATVH8278) O (1) B (11 ) B (y3)+

+72/ dy1 dya dys dys dys e M2 75) §* (45) % (14) D (y1 ) D (y3) D (ys)
3
Djlp, = M2 (1 +7/ dy1 dys @ ATUHY2) 0% (yo) B (yy )+

2

+V2/ dyy dys dys dyy e vty —ustus) é*(yg)é*(y4)@(y1)®(y3)> :
Focusing on the expression for Ay, from Eqn. (2.2.1) we have

(" (y1)@(y2) F) (21, 22) = 6(y1—21) F (22, y2) + 0(y1—22) F (71, y2)

(@*(y1)@" (y3) P (y2) @ (ya) F) (z1, 72) = 6(y1 —21)0(y3 —22) F(y2, ya) + 6(y1 —22)6 (y3 — 1) F'(y2, ya),
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for F € Dy, so that
(ANF) (21, 22) =
= A2 <F($1,$2) + V/JQ dyr dyaf(y1 >ya) AV 782) §(yy — 1) F (o, y2) +
[ b > ) 0 531 =) Plar )+

!

+72 /4 dy1 dys dys dyaf(y1 > yo >yz >ya) € NV V27V 54y —09)§(ys — 1) F (o, y4))
J

4

dyr dya dyz dyaf (y1 > 2 > y3 > ya) € AVIT921Y780) 5y —21)5(y3 —29) F(y2, ya)

<

= IAL/2 <F(;U1, x9) + 'y/ dyb(z1 > 1) e XT17Y) F(zy,y) + fy/ dyb(ze >y) A2 P2y, y)+
J

—1—72/

+’Y2 /2 dy1 dyge a:2>y1>af1>y2) iAz1+z2—y1—y2) F(y1,y2)>
J

Ay dyaf(z1 > 11 > @9 > o) e A EFT2=U=02) Py )

2

<

. xl . CEQ .
— o 1AL/2 (F(a:l,xg) + ’y/ dye”‘(“_y) F(x2,y) + ’y/ dyel)‘(m_y) F(xy,y)+
—L/2 —L/2

1 To )
+42 / dy1 / dy e A@IFT2=01=02) By )
To —L/2

o 1 )
_{_72/ dy1/ dy2 el)\(931+a:2—y1—y2) F(y1,y2)> )
z1 —L/2

We will provide explicit integral formulae such as the one for Ay in Example 2.4.1 shortly. First
we highlight

Proposition 2.4.2 (Properties of Ay, By, Cy, and D)). Let A\ € C.
(i) We have
A\(Dy), DA(DN) C Hn, Bx(Dn) C Hn1, C\(Dn) C Hn-1, Cx(Ho) = 0.
(ii) Ay and Ds are formally adjoint, as are By and C5.
(iii) The actions of Ay, By, Cx, Dy on ¥y are as follows:
ATy =e MO (BaTy) () =M, Ca0p =0, DyUy=e M2y,

(iv) Crucially, the operators Ay, Bx, Cx and Dy are bounded on Hgy, if J is bounded. More
precisely, let \g € R and L € Rsg. Then

HA)\"HNH < e()\0+|’Y|N)L, if —Xp <ImA,
Bl w ||, [Cx x| < NVLePo/ZHNNE = ip _ \g < Tm A < Ao, (2.4.5)

IDA 3 || < ePothINIE, if Tm A < Ag.
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In particular, for A € R we have

1AN 32 11 1A e I < €TV Bl 1, [l | < NVLePNE (2.4.6)

(v) Furthermore, we can express Ay and Dy in terms of By, and Cy in terms of Ay or Dy,
as follows:

1

Ax=[®(—L/2),B)\], Dx=[®(L/2),B,)], C\= 5 [®(L/2), A\ = — [®(—L/2),D,].

=~

Proof. Properties (i)-(iii) follow immediately from Eqns. (2.4.1-2.4.4). To establish property
(iv), we refer to [26, Props. 6.2.1 and 6.2.2] for the details of the proof of the norm bounds for
Ay and C). Hence Ay (on any half-plane Im A > —)\g) and C) (on any “strip” [Im A| < Ag) can
be uniquely extended to bounded operators defined on each Hp. These have bounded adjoints
defined on each Hy, of which Dy and B) must be the restrictions to D, because of property
(ii). Since the adjoint of a bounded operator is bounded, we obtain the norm bounds for D)
(on the half-plane Im A < X\g) and B) as well. For A € R, the norm bounds for Ay, By, C),
and D) follow immediately. For property (v), we remark that since the operators Ay, By, C)
and D) are bounded they can viewed as endomorphisms of H. Then the desired result follows

immediately from Eqns. (2.4.1-2.4.4). O

In view of property (i) we will refer to By as the QNLS (particle) creation operator. Combining

properties (ii) and (iv) we obtain that
Ay = Dy, By = C5. (2.4.7)

Eqn. (2.4.6) yields that T\ = Ax+ D, is bounded on each Hy, and hence its unique extension to
‘Hy is continuous. From property (ii) it follows that T} is formally self-adjoint; by the continuity
of the L? inner product its extension to Hy is also formally self-adjoint, and hence self-adjoint.

‘We have obtained

Corollary 2.4.3. For J bounded and A\ € R, T, is bounded and self-adjoint on Hey.

2.4.1 Integral formulae for the entries of the monodromy matrix

To understand the matrix entries of T better, we study their action on Hy. Let N and n be

nonnegative integers with n < N. Define the following sets of multi-indices

iv={te{l,...,N}" :for l £ m, iy #im }, (2.4.8)

I={ic{l,... ,N}":iy<...<i,}Ci%, (2.4.9)
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of n-tuples consisting of distinct and increasing elements from the index set {1,..., N}, respec-

tively.

Notation (Deleting and appending multiple variables). Let X be a set; let N and n be

nonnegative integers with n < N.

e Givenx = (11,...,2n5) € XY and i € i%. There is a unique element j = (j1,...,jn) €

I NSN(2). We write

Ly = Tiy.dn = (.. (mjn) . ')j2)j1'

In other words, x; is the element of XN~™" obtained by deleting those x; with j = iy,

for some m.

o Also, given x € XY and y = (y1,...,yn) € X" for some positive integer n, then

(:va) = (xla"'uxvalu-‘-ayn) 6XN+n.

Notation (Integral limits). Let N and n be nonnegative integers with n < N and let L €
Rso. Whenever i € i% and & € [—~L/2,L/2]", we will use the conventions that x;, = L/2

and x;,,, = —L/2; this facilitates the notation of certain integrals.

Let J C R be a bounded or unbounded interval. For any set X C JV, denote by yx the
characteristic function of X. Furthermore, we will use the same notation yx to denote the
multiplication operator acting on F(JV) or F(JY,) by sending f to = + xx(x)f(z) (for

reg

x e JVorxe N

reg» Tespectively). To define (possibly unbounded) operators on Hy it is

sufficient to specify the resulting function in the set J f and then symmetrize to Jrjgg by applying
Y e Sy Xw-1JN8 W3 for each x, only the term with wx € J J]rV survives. Moreover, one can extend
the resulting function to the entire hypercube JV such that the extension is continuous at the

hyperplanes Vjj, (the limits x, — x; in both domains x; 2 x), are identical due to symmetry).

Definition 2.4.4 (Elementary integral operators). Let A € C, J = [-L/2,L/2] with L € R5

and n =0,...,N. Define the elementary integral operators,
Eyi=FExiy in: My — Hyy1, forice 37]?;11,
Ei:-i:E;Eil...in: Hy — Hy, forie I, forn=0,...,N (2.4.10)

HN+1 — Hy, foric 3%,



2.4. THE YANG-BAXTER ALGEBRA 25

by the following formulae. For F € Dy, @ € Jf“, 1€ 37\[111 we have

(EM (H/ dym> MERE % =S 9m) F (g, 91, yn)

Im+1

for F € Dy, x € Jiv and © € T we have

(L) o) - (T [
Tipyiq
(EQF> () = M2 (H /xlm1 dym> oA 2ot Wi Um) B (g, 1,y
m=1"%im

and for F' € Dyy1, © € Jiv and © € Iy, we have

xl’m 1 n . N+l
(E)\ 3 - (H / dym> (Emzl Fim Zm 1ym) r (wiv Yi,... 7yn+1) .

From Eqns. (2.4.1-2.4.4) the following expressions can be deduced (see e.g. [26]):

) ei)\Z?nzl(Iimfym) F (ﬂ:i, Yty - - - 7yn) )

Av= ZV PORE Hy — HN, (2.4.11)
= €T
By = NHZV Y Exi: Hy = Hia, (2.4.12)
1637\,111
Cr=WN+1) 27 > B Hyt1 = Hn, (2.4.13)
1€TR;
DA—ZV > B Hy — Hn, (2.4.14)
: zejn

where A € C. We have changed the multiplicative factor of B) from \/Ni to v +1, and similarly
for C'y from /N + 1 to N 4+ 1. This corresponds to conjugating the monodromy matrix by a

w

0
matrix of the form w?* = < ) . Because Ry commutes with (w?* ® 1) (1 ® w?=) the YBE

0 w!

(2.3.4) is preserved and hence this formalism describes the same physical system.

Example 2.4.5 (N = 2, continuation of Example 2.4.1). We present the explicit formulae
for the action of the matriz entries of Ty on suitable functions F restricted to the appropriate
fundamental alcove. For F € Dy and (x1,x2) € J2 (i.e. L/2 > x1 > 29 > —L/2) we have

1

(ANF)(z1,22) = e M2 <F($17 T2) + ’Y/ dy AV F(w,y)+
L2

To )
—i—’y/ dy M@ (21, 9)+
—L)2

1 o )
+ 72/ dyl/ dyp e M@ FT2=01=02) Py 4 |
T2 —L/2
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) L/2 )
(D\F)(x1,22) = el AL/2 (F(azl,xg) + 'y/ dyelA(ml_y) F(x9,y)+

1

e
+ 7/ dy M2 F(zq,y)+

z2

L/2 z1 )
+ 72/ dyl/ dyo el Mz1+T2—y1—Y2) F(y1,y2)) )
T xo

For F € Dy and (x1,z2,23) € J_‘E we have

1 (ei)‘“’”1 F(xg,x3) + ol AT2 F(x1,x3) + el ATs F(z1,m9)+

(BAF) (21,22, 23) = 3

1

ml . .
+ 7/ dy e ME 2= B(gs ) 4 7/ dy e ME =) P(gy y)4-
xT

2 3

T2 )
+ v / dy e M2t oY) gy y)+
T

3

1 T2 )
+ 72/ dyl/ dy2 el)\(zl—i-m-l—rs—yl—yz) F(yl,y2)> ’
To T3

and finally for F € D3 and (x1,x2) € JJQr we have

L/2 .
(C/\F)(l‘l,ftg) =3 (/ dye_”y F($17x27y)+
—L)2

L/2 T .
+7/ dyl/ dys ™1 V7Y2) (29, )+
x —L/2

1

L/2 Z2 )
+7/ dyl/ dyg € @27917Y2) P21 41 y0)+
Z2 —L/2

) L/2 T T2 A1+ —y1—ya—1s)
+ / dyl/ dyz/ dyz ' METERTTRTY) By s, y3) |
z1 z2 —L/2

Because of the above representation of the operators Ay, By, C), D)y as integral operators we

shall also refer to them as the QISM integral operators.

2.4.2 Commutation relations between the QISM integral operators

Having established in Prop. 2.4.2 (iv) that Ay, By, C\, D, are bounded in Hgy,, we consider
the subalgebra of End(#) generated by them and refer to it as the (symmetric) Yang-Baxter
algebra for the QNLS. Immediately from Thm. 2.3.5 we have

Corollary 2.4.6. For all choices of j1, k1, j2, ko € {1,2} and all \,u € C, X\ # p we have

T Teke] = 1 (e _ panie), 2.415)

A—p



2.4. THE YANG-BAXTER ALGEBRA 27
i.e. we have

[A)\)A ] [B)\u ] [C)\,C ] [D)\) ] - 0

[AA,BM] = )\ (B,\A BMAA), (2.4.16)

(A, C,) = 7 (CAA —C,Ay),

[B)\,A#] = —)\ p (A\B, — A,B)), (2.4.17)

[Bx, Dy = /\ — (DaBu — DyuBy), (2.4.18)

i

(O, Ayl = % (A\Ch = A4,Ch), (2.4.19)

[CA,DM] :—)\ M(D/\C - D,Cy),

[D)\v Bu] = A [ (B)\D# - BHD)\) ) (2420)
i

[D)HC,U«] = _)\ ’Y/JJ (C/\DM - C#DA) )
i’y2

[A,\, Du] =75 _ 1 (B)\CH - B,LLC)\) ) (2421)
i’y2

[DA,AM] = _)\ —u (C)\BM - CMBA) )

[B)\, C,LL] == —m (A)\D,LL - A:U'D)‘) 5 (2422)

i
(Cr. Byl = 5= (DrAu = Duihy). (2.4.23)

We will at times refer to these identities by the letters of the operators appearing in the com-

mutator on the left-hand side of the equals sign. For example, the AB-relation is the relation

labelled (2.4.16) and is the relation used to move an A-operator past a B-operator from left to

right. We make the following observations.

e The DD- and C'C-relations are the (formal) adjoints of the AA- and BB-relations, respec-

tively. There is a subtlety in the derivation of these relations from Cor. 2.4.6. For example

for the AA-relation one obtains (A —p+iv)[Ax, Au] = 0, so that an additional assumption

A — p # —i7 seems necessary. However, by swapping A and u this can be overcome.

e The BD-, DB-, CD- and DC-relations are the adjoints of the AC-, CA-, AB- and BA-

relations, respectively.

e The AD-, BC-, CB- and D A-relations are formally self-adjoint.

It is easily checked that the BA-relation is equivalent to the AB-relation; similarly, the BD-

relation to the D B-relation. More generally, we have
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Lemma 2.4.7. Let A\, be distinct complex numbers, and X and Y parametrized elements of

an associative algebra over C satisfying
[XAv Yu] = hAfu (X)\YM - XMY)\)
for some h: C\ {0} — C\ {0} : z — h, satisfying h—, = —h,. Then
Y\, Xy = ha—y NX, - Y, X))
Proof. Note that it follows immediately that [Xy,Y,] = [X,, Y\] We may write
Y\, Xu] = —[Xp, V) = —h, A (X YN — X\Y))

= ha—p (X, O] + X, — [X), Y] - VX)) =hy, MX,-Y,Xy). O

2.4.3 Integrability of the QNNLS model

Referring back to the discussion at the end of Section 2.2, we now formulate the condition from

which the integrability of the QNLS model follows.
Theorem 2.4.8 (Commuting transfer matrices). Let A\, € C. Then [Ty, T,] = 0.

Proof. We may assume A # p. In view of [Ay, A,] = [Dy, D, = 0, it is sufficient to prove that
[A\,D,] = —[Dx, Ayl = [Ay, Dy, ie. that [Ay, D,] is invariant under A <> p. This follows
immediately from Eqn. (2.4.21). O

Let p € R. From Cor. 2.4.3 and Thm. 2.4.8 it follows that we have a commuting family of self-
adjoint operators T},, they have common eigenfunctions, necessarily independent of the spectral

parameter p. We will now construct these eigenfunctions.

2.5 The Bethe wavefunction and the algebraic Bethe ansatz

We start this process by using the operators B) to construct from an element of Hg an element

of Hy, i.e. a wavefunction representing an N-particle state.

2.5.1 The Bethe wavefunction

Introduce the set of complex reqular vectors
Che={AxeCN N #Nifj#k}

and recall the pseudo-vacuum ¥y =1 € Hy = C.
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Definition 2.5.1 (Bethe wavefunction). Let A = (A1,...,\y) € CN

reg”

We define the Bethe

wavefunction as

N
Ux=(]] By | o (2.5.1)
j=1

Remark 2.5.2. Note that the Bethe wavefunction is an N -particle wavefunction since we have
applied the QNLS particle creation operator N times to the pseudovacuum ¥y. By virtue of the
relation [By, B,] = 0, the order of the product of the B-operators does not matter and hence
for any w € Sy, Uy = Wy, so YUy is a wavefunction describing a system of bosons. If J is
bounded, we will see that further conditions need to be imposed on X in order to make ¥y an
etgenfunction of T;,. The wavefunctions Wy will turn out to be nontrivial linear combinations of
plane waves with wavenumbers given by permutations of X; the interaction between the particles

is encoded in the combinatorial nature of the coefficients of the Bethe wavefunction.

Let (A1,...,Any1) € CNFL Immediately from its definition we have the following key property

reg

of the Bethe wavefunction Wy:
\Ij>\17-~-7)\N+1 = B>\N+1\Il)\1 ..... AN (252)

2.5.2 The Bethe ansatz equations

Let L € Rug and v € R. The Bethe ansatz equations (BAEs) for A € CV are

. Aj— A +1
elA]-L:HJiM7 for j=1,...,N. (2.5.3)
- Aj— A — iy
k#j

Let A € CV be a solution of the BAEs (2.5.3). Then it is easily checked that X satisfies the

following conditions.
(i) For any w € Sy, wA is a solution.
(ii) For any integer m, A + 2Xml is also a solution, where 1 = (1,...,1) € CV.
(iii) The quantity Zjvzl Aj is an integer multiple of 27/L.

Remark 2.5.3. The latter statement is physically relevant as it indicates that the total momen-

tum is quantized.

Lemma 2.5.4. [36] Let v > 0. All solutions X of the BAEs (2.5.3) are in RN. The set of

solutions is injectively parametrized by ZN and hence there are infinitely many solutions.
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Outline of proof. We refer to [36] for the detailed proof. The reality of the solutions of the BAEs
can be obtained by a straightforward estimate on the imaginary parts of the \;, where one uses
that - is positive. The existence of solutions, as well as the parametrization, follows by recasting

Eqn. (2.5.3) in logarithmic form; this gives

Aj— A
L) —i—ZQtan*l <’Yk>:27rnj, forj=1,...,N,
k=1

where the n; are integers if NV is odd and half-integers if IV is even. One then makes use of the

fact that these equations also form the extremum condition for the so-called Yang-Yang action

L& 1 A=A
5222 ?—27anj/\ —|—2 Z / dptan™ (:) O

1<j#k<N

Let XA € CY . Introduce the short-hand notation

reg:
N A —uFi
TE(A) = H M; (2.5.4)

note that 7'3: ccv((C\ {u})N) is Sy-invariant.

Lemma 2.5.5. Let L € Rog, v € R and A € CY,. The BAEs (2.5.3) is equivalent to the

reg*
conditions
. E ()
e Nl = Aj( = for j=1,...,N, (2.5.5)
7y, (A7)
T (Ng) = ei*jLT;j(Aj), for j=1,...,N. (2.5.6)

Proof. For the case v = 0 the claims are immediate; suppose now that v # 0. The equivalence
of the BAES with Eqn. (2.5.5) follows immediately from the condition that A € (Cﬁ\ég As for

Eqn. (2.5.6), it is certainly necessary for Eqn. (2.5.5); it is also sufficient since A\j — A\ =i~y

cannot occur for any pair j, k, as we prove now by supposing the opposite. Starting with such

a pair, using Eqn. (2.5.6) one constructs a sequence (j;);>1 where for all I, j; € {1,..., N} and
Aj, — Aj, = i7. From the existence of [ < m with j; = j,, we obtain 0 = \j, = \;,, = (m—1)i~,
in contradiction with v # 0. O

2.5.3 The algebraic Bethe ansatz

The central idea of the ABA is to impose the Bethe ansatz equations on A to obtain an eigen-

function of the transfer matrix [36]. The following result is essential.
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Proposition 2.5.6. Let L € R-q, v € R and (A, u) € CNFL. Then

reg

Au\l’k — 7_/;1—()\) 1#L/2\I, +ZT)\ )\ ljﬂ —iX;L/2 ‘I’)\] s (257)
_ ; i K
D,V =7, (A)e "2y — ZTA /\ ju RIZER 2N (2.5.8)
7j=1

Proof. By induction; for N = 0 the statements are trivially true. We will complete the proof
by showing that the statement for A, holds “as is” if the statement holds with N — N — 1.
Writing A" = (A1,...,An—1), we have that ¥y = By, ¥y . From Eqn. (2.4.16) we have

AN — p—1

1 i
A#\I/)\ = )\N_Iu VBANA#\I/A’+ﬁBuAAN\IIA"

The induction hypothesis yields

N-1
AN —p—iy N o inL/2 —iNL
AUy=""—"_'B N)eminl/2y,, (X)) L2,
HEA AN — A ( Je +]Zl7_)‘ )\—M Now | T
. N-1 .
1y N e IANL/2 Y N2
v T (N)e Py \I//—l—;q pye vl IR
:T+<)\)e INL/Q\IIA‘i‘ (A/) 17y e_i)\NL/2\I/A’H+
K AN — 1 ’
N-1 ) . . .
+ZT+(A4)<AN—M—W iy iy iy )e_wL/a\p» .
o M AN =B A= AN = RN = AN o
Using that
AN —p—1iy iy iy iy :)\N—)\j—iy iy
)\N—u /\j—u )\N—/L)\j—)\]\[ )\N_)\j )\j—,u

we obtain Eqn. (2.5.7). The proof for Eqn. (2.5.8) goes analogously, using the commutation
relation Eqn. (2.4.20) instead of Eqn. (2.4.16). O

Now we can state and prove

Theorem 2.5.7 (Spectrum of the transfer matrix). Let L € Rwg, v € R and (A, pu) € CNHL.

reg

Then Wy is an eigenfunction of the transfer matriz T, with eigenvalue
Tu(A) = e 2R (X) + e 1210 (N) (2.5.9)
precisely if A satisfies the BAEs (2.5.3).

Proof. Prop. 2.5.6 allows us to write down a formula for (A4, + D,)¥y. Consequently the
necessary and sufficient condition for ¥y being an eigenfunction is that for all j = 1,..., N,
T;;(/\j) =T, (A;) el By virtue of Lemma 2.5.5, this is equivalent to the system of BAEs
(2.5.3). 0
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Remark 2.5.8. The restriction A € CN

reg

Section VII.4] and [32]) that a Pauli principle holds for the QNLS model (and, more generally,

in Thm. 2.5.7 is important: it has been shown ([36,

for any one-dimensional interacting quantum system): one can show that eigenfunctions ¥y of

T,, where some of the \j coincide do not exist.

Example 2.5.9 (N = 2; the algebraic Bethe ansatz). We recall from Example 1.2.1 that

LA = 22 =19 Gonataars) L ALZ A2 H 1Y ioge+aim)

v =
)\17>\2‘Ri 2 )\1 _ )\2 Al _ AQ

and the reader should check that this equals By,Bx,Vy. The statement in Prop. 2.5.6 for the

case N = 2 reads

A —p—iyAe—p—iy

AH\II)\L)\Q = AL — W A2 — e_i“L/z \II)\ly)\z"i_
)\1—>\2+i’7 iy —iAL/2 )\1_)\2_17 1y —iXoL
U iAo /2\:[/
* AL — Ao >\1—Me Aot A1 — A2 )\2—,“6 Ak
M —p+ivyr—pu+iy .
Dy g = S BT Z AT /2 gy

A1 —p Ao —
A=A —iy iy g
— 1 \\J
M-d a—p© »

AL A tiy iy

iA2L/2 \j
LS VS VS W M

7/”/'

In order for Wy, x, to be an eigenfunction of T\ = Ay + D) it is clear that it is necessary and

sufficient that

AT Tk S (S DYY /7 A Bl C ek W RPNV 0

Al — A A1 — A2
M= re— iy inrge M =AY g
/\1 — )\2 )\1 - )\2 ’

i.e. that

e Tk 1 R POV AR P WY

)\1 — )\2 — i"}/ ’
since it cannot happen that \y —\y = +1i+ (this would lead to 2 = 0). In this case, the eigenvalue
of T equals

)\1—/L—i’y)\Q—/L—i’Ye_iuL/2+/\1_N+17/\2_N+17eiuL/2

Tu(A1.Ag) =
n(h-A2) AL — Ao — AL — Ao —

2.5.4 The transfer matrix eigenvalue

Here we consider some properties of the function 7,(X). First of all, note that if A € RV (i.e.
in particular if A solves the BAEs (2.5.3)) and p € R, then e~ 1#L/2 7 (A) and etrL/2 7, (A)

are conjugate complex numbers, so that 7,(A) € R, as expected for a self-adjoint operator T),.
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Moreover, we can recover the eigenvalues of the QNLS integrals of motion Zjvzl A’ by expanding

1

Tu(A) in powers of 17+, analogously to Eqn. (2.2.6). Using

N —p—1
% 172( > : 10g(1+$)22(*1)l_1$l/l
i H k>0 I>1
we obtain

log (ei“L/2 TM(A)) pLee log Zlog 1+ 17 Z < > =

k>0
l

DI <”>l > (iZ')k

"
: 2
1 1 1 _
lHoolmL P1— & 7 +* m—lwl—lpo + O(u 4),
% 2 27 3

where p, = pp(A).

Next, we study the analyticity of p+— 7, ().

Proposition 2.5.10. Let L € Ryg, v € R and A € (Creg Assume that A satisfies the BAEs
(2.5.3). Then p — 7,(X) is analytic.

Proof. As for the meromorphic function p — Tj()x), its singularities are simple poles at A\;. The

residue at A; is given by

Resy s, Ti()\) = ulg&l (=) () = il’y lim i o ) = iy, (Ag)-

Any singularities of the meromorphic function p + 7, () would be simple poles at ;. We have
Resyonn, 7u(A) = lim (= A)7u(X) = i7e™ M52 (5 () =75, () 9 E) =0,
H—Aj
by virtue of the BAEs (2.5.3). Riemann’s theorem on removable singularities implies that this
function is holomorphically extendable over A;; since this holds for each j, this function can be

extended to a function that is holomorphic, and hence analytic, on CV. O

We will still write p +— 7,(X) for this extended function. In other words, the BAEs guarantee
not only that Wy is an eigenfunction of 7}, but that the corresponding eigenvalue also depends

analytically on p € C.

There is a useful partial fraction expansion for p +— 7, (), reminiscent to equation (2.10) in [42].
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Lemma 2.5.11. Let v € R and (A, ) € CNXL. Then

reg

+ iy 4
A)=1F T (A
) ;Aj_m )

Proof. We only prove the case £ = —; the case &+ = + follows by replacing «v by —~. Consider

the following polynomial function in p:

N N

N
pp) =[] —n+iv) = [ [Ty = +iv D TN —Ak“V);;j__,(l

j=1 j=1 k=1 j#k

Because the coefficient of (A; — )V vanishes, p(i) has degree at most N — 1 in g. On the other

hand, we may evaluate, for [ =1,..., N,
N N N A
(Aj—A — (Aj—A (A=A =0.
H (Hiy) =iy ;]Hl ;Hrw)A _A]chJH1 1 +17)
J#l k#l j#k £l

Since p(p) is a polynomial function of degree less than N but with N distinct zeros \g, we

conclude that p(u) is zero for all u € C. It follows that for all u € C\ {A\1,...,An}

N
W/ TTG —m) =70 () -
j=1

Corollary 2.5.12. Let y € R, L € Ry and (A, u) € Cfr\ég'l Assume that X satisfies the BAEs
(2.5.3). Then

T;] ()‘j) . OJ

iuL/2 iuL/2 L2 1>\ L _ 1,uL
Tu(A) = e  1HE2 4 el# e 1rl/2 T -

g Z N v
Proof. Using Lemma 2.5.11 we obtain

Tu(X) = 7F(A) em 2 p () el
N A\ o—ipnl/2 =y \aipl/2
_ e—ipL/Q +ei/.1,L/2 _1’72 T)\j ()\j)E H T/\j (Aj) el#
e Aj— H

The BAEs (2.5.3) allow us to change the product T;\’; (A;) into ™ (A;) el and consequently

we obtain the desired expression. O

This form of the Bethe Ansatz eigenvalue allows for a nice application; we know that p — 7,(X)

is analytic at \;, and using Thm. 2.5.12 we can calculate 7',\.()\). We have, for I =1,..., N,

) ) el Al _ oipl
T\, (A) = lim 7,(A) = e INL/2 4 QiAL/2 iye N L/2 lim T Ai)
7 Sy M—M Ak —
) ) ) el/\jL _el)\kL .
:eflAjL/2+elAjL/2_i,yefl)\jL/Q 7_)\— (Afg) _’_,yLefl)\jL/QT)\—.(Aj)’
i Aj = Ak !
k#j

using De I'Hoépital’s rule.
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2.5.5 The action of ), on the Bethe wavefunction

To complete this section, we compute C,¥. In physics one is interested in inner products of
the form (¥, ¥y) and for this purpose having expressions for C,, ¥y as linear combinations of

certain Wy is helpful [35].
Lemma 2.5.13. Let v € R, L € Rog and (N, p,v) € CI[f'. Then

(DyAy — DyA) Uy =
= (T;(A')TJ(X) L2 2 ()T E(N) e*iW*V)W) W+

N—-1 .
=3 T (e (N () IR s () () e )y
j=1 A= !

=

_|_

el \ i(Aj— - il —
)\j—]/ (T)\j (A;A)le_()\,) e (>\J N)L/Q _|_7_M (A/)T;; (}\;A) e ()\] M)L/Q) \I’AQA’V—F

1M

=

Nj—v—ivy iy iy ANj—p—iy iy iy AVt (3 (A= AR)L/2
— A5 ) e\ Ak
<< )\j—V )\j—,u/\k—u )\j—,u )‘j_V)\k_M T)‘J’( J)T)‘k( k)e -

1

<.

i\

AT
i

J

k—v—iy iy iy Ag—p—iy iy iy - i —
+ — )T)\k()\;;)T;;()\})e i(\ )\k)L/2> “I/A;,%,%V'

)\k—V )\k—,u/\j—u )\k—,u )\k—l//\j—u

Y
>

Proof. By virtue of Prop. 2.5.6 we have
DAYy =

=7, (N)7f (X)) /2y

N-1 . . .
- 1Y - - 1y 1Y -
- <7')\j()\3)7'j(/\')e(”\f WP g (Nt (W) ———— e 1 >L/2> Uiyt

= Aj— ANj—v pu—v
N-1 .
1 o=
+ Y T N N e T gy
j=1 !
N-1 . .
I A e O VA B T A A RLZER SV
— Aj 3k Ak k )‘j_u )\k_y j,l%"u"l’
7k

Now subtract from this the corresponding expression for D, A, ¥y,. After collecting like terms,

we obtain the lemma. O

Proposition 2.5.14. Let y € R, L € Ry and (A, u) € ngﬂ. Then vC, ¥y =

N
8 _ (O — B iOu—
= =2 5 (T Q) T )t ) TR )
j=1""

J

N . .
iv iy O — _ i
-y (75, Q)i (g ) OB rt (N7 (8 ) e 12wy

Js
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If X satisfies the BAEs (2.5.3) this simplifies to
N o iMNL/2
iyel

YOI =~ Z s
=1 TH

7 ) (7 (g) 72— () ) Wy

N . .
1y VY i+ L/2 -
-2 —— TR (X )T (A ) WA e
o )\]—ILL Ak—u )\.7 Jvk )\k ]7k 7.k H
i<k
Proof. Note that the second statement follows immediately from the first statement, which we
prove by induction. Note that for N = 0 we indeed recover C},¥y = 0. For the induction step,

write X' = (A1,...,An_1) € (Cﬁgg 1. Now by Eqn. (2.4.23) we obtain
i
’YCM\IJA = B)\N’YCM\IJ}\’ — ﬁ (_D)\NA ‘DNAAN) Wy,
The induction hypothesis yields

B/\N’)/C \I/X =

:_Z iy ( (X)) ()\/) i(Aj—p)L/2 _ 7 (X)) (X) (A~ “)L/2>\I/)\j+
j=1

iy iy / 1N AN —Ag) L2 / I\ a—i(G—=AR)L/2
o Z Nj— A — u( (A)T,\k()‘,) elh 2w/ +7y, ()‘) ()‘ ) Qo) /)\IJ)‘J",I%“L“

whereas from Lemma 2.5.13 we obtain the much-aligned expression

i
1 (D/\NA# - DI»LAAN) Uy =

B yor
:_17’7 - Nt (N i AN—)L/2 / N —i(An—p)L/2 ,
o (P mE e T (), (V) e ) wxt
. N— .
1y 1y — iy N elN—mL/2 | ’ I\ a—i(Aj—p)L/2
A A ik A WA J Uy,
i o (e T W7 () ) U+

. N— .
1y Z )\%’Y (T,\_j(x) ~(N)e (/\jf)\N)L/2+T/\—N()\/)T)-\&;(>‘3)efi()\jf)\N)L/2) Was it

1y Aj—p—iy iy 1y Aj—Av—iy iy 1y ) — (WY (X al(A—AR)L/2
+ — Ty (AT (AL) et Tk +
AN—H j;1 (( )\j—,u )\j_)\N A — )\j—)\N )\j—,u)\k—)\]v )‘J( ‘7) )‘k( k)

i<k

Ap—p—iy iy iy Ak—AN—i7 17 iy NN 16 I\
—~ AT (N e IR TAIE2 ) gy
+< Ak—1 Ak—AN Aj—p A—=AN A= Aj—AN T AT, (g€ Asok

It follows that the coefficient of ¥, (1 <j < N —1) in vC, ¥y equals

1y 1y / / 1y / 1) /2 |
(e A V) = o () () ) €0

1y / / 1y iy / / i(\j—p)L/2
+ A A A A i
(5 I, )+ e O (X))

= ;17 —(NN~F (N Dl Nj—p)L/2  _—y N =i =) L/2) .
Aj—H <T)‘j(>‘3)7—“ (A5) €™ T (AJ)TAJ- (Aj) e ) ;
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the corresponding terms together with the term proportional to ¥y, combine to the desired sum

over j =1,...,N. Furthermore, the coefficient of \I’Aj,;,u (1 <j<k<N)equals

(_ iy iy N iy ()\j—,u—i’y iy iv A Av—iv iy iy )>
A= A= AN—H N\ A A AN Ap—p Aj=AN  Aj—HAE—AN
Ty, (T (X)) @R AE2
+<_ iy iy i <>\k—u—iv iy iy N—Av—iy iy iy ))
Nj—HAE—H  AN—RH N\ A= A= AN A —p Ae=AN A= A= AN

) TA_;C()‘;;)T;;()‘}) e 1A —=Ak)L/2

_ —iy iy et xS AIL/2 L iy by ) i —AR)L/2) .
_)\j_,u/\k—,u (T’\j<'\3)7>\k()‘i,k)e s +T>\k('\k)7>\j()‘ivk)e o >’

the corresponding terms together with the term proportional to Wy, , = W A, o give the desired
J’ NV

expression for the sum over j and k. O

2.6 The limiting case J =R

Naively one could expect that as L — oo in the ABA for the bounded interval, we obtain that
Wy describes the system of N bosonic particles moving along R. However, as made clear in
[26, Section 8], this limit is very subtle. In particular, the QNLS creation operators limz,_,o, B)
when seen as operators on H(R) have a trivial domain for A € R. Although the operator By does
not explicitly depend on L, cf. Eqn. (2.4.12), simply letting B act on an element of Hy(R)

does not produce an element of Hy;(R).

In particular, the Bethe wavefunctions Wy are not square-integrable. This is not surprising;
the solutions for the non-interacting case, i.e. symmetrized plane waves Sy e'* are not square-

integrable either, because the non-symmetric plane waves el*

are not. However, there is a weaker
sense of completeness of the plane waves in hy = LQ(RN ), and hence for the symmetrized plane
waves in Hy(R), afforded by the Fourier transform on L?(R¥), which is a unitary operator as

per the Plancherel theorem (see, e.g. [50]). For all f € hy

f@) = [ ANAF e

for some f € by, which can be seen as a linear combination of (possibly uncountably infinitely

many) plane waves e!*. It is not difficult to see that an analogous result holds for all F' € Hy:

F(z) = /R CdVAR() (SN ei)‘) (z),
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which is what is sometimes referred to in the literature as the “completeness (or closure) of the
free eigenstates in LQ(RN )”, despite the fact that the symmetrized plane waves are not square-
integrable ([18], [26, Section 2]). The result by Gaudin [18,19] shows that the ¥ play a similar

role in Hy; for all F' € Hx we have

Fla)= [ AR (@)

for some “deformed Fourier coefficients” F,, € Hy.

2.6.1 Action of the QISM integral operators on U, defined on the line

The operation B) defined by the formulae in Eqn. (2.4.12) is well-defined as an operator:
C(RN)SN — C(RNF1)SN¥+1 (the limits of integration are all bounded in Eqn. (2.4.12)). The
operators Ay, Dy explicitly depend on L, cf. Eqn. (2.4.11) and Eqn. (2.4.14).

Proposition 2.6.1. [26, Section 8] Let L € Rso, v € R, A € R, and p € C\ {A1,..., An}.

Then
B,Uy =", , € C(RY)

and, for x € RV,

Lh_r)réo L2 (A, Ty) (x) = T (A)Ua(z), if Imp > 0,
Jim. e L2 (D, Wy) (2) = 7, (A)Ua(2), if Tm pu < 0.
Furthermore
Jim. LI (T, W) (2) = 7F(A) WA (), if Tm p1 > 0,
Jim. e M2 (T, W) (2) = 7, (A)Ua(x), if Tm p1 < 0.

Using these expressions and the aforementioned deformed Fourier formalism one can define
limy o el HL/2 Ay, limy oo e~ 1nL/2 D, and limy_ etinl/2 T, as operators on Hy(R) for suit-

able non-real values of u; this defines bounded operators on Hy(R).

Proof. The expression for B, ¥y in the limit L — oo is proven in [26, Thm. 8.2.3]. We refer
to [26, Eqns. (8.3.1) and (8.3.2)] for the first expressions for el#//2 A, ¥y and e~ '#£/2 D, ¥, in
the limit L — oo and [26, Eqn. (8.3.3)] for the boundedness of A and D. The statement about
the transfer matrices follows by noting that for Im g > 0, ' #L/2 D,, is exponentially damped as

L — o0, and likewise for the case Im u < 0. O
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2.7 The quantum determinant and the Yangian

Using the commutation relations from Eqn. (2.4.15) we may construct an element of H which

commutes with A, B, C' and D, i.e. it is in the centre of the Yang-Baxter algebra.

Definition 2.7.1. Let v € R and A € C. Write Ay = A Fiv/2. The quantum determinant of

the monodromy matriz of the QNLS model is the operator

qdet Ty :A)\+D)\7 —’YB>\+C)\7. (2.7.1)

Note that qdet 7, € End(Hy) and it satisfies
qdet 7y = qdet 5. (2.7.2)

Proposition 2.7.2. [7;\jk,qdet Tu) =0 forall j,k =1,2 and all A\, p € C with A # p+. That is,

qdet T, is in the centre of the Yang-Baxter algebra.

Proof. Inlight of Eqn. (2.4.7) and Eqn. (2.7.2) it suffices to prove [A), qdet 7,,| = [Bx,qdet 7,,] =
0. Note that

[Ax, adet Ty] = [Ax, Ay, Dy | = [Ax, By Gy -

Dealing with the first commutator, we have
iy?
[A)\’AlH-DM—] = Ay, [AMDM—] = _HAIH- (B/\Cu— - BM—CA) )
by virtue of Eqn. (2.4.21). It follows that for [Ay, qdet 7,] = 0 it suffices to prove
i
(A3, Bu.C, | = —ﬁAM (BAC,. — B, _C). (2.7.3)

Eqn. (2.4.19) yields

717,“ A, Chy. (2.7.4)

A—p— iy
B, A= AyB, +—A, B. 2.7.5
M+ N — Ly K+ )\ — Lt Kt ( )
In particular it follows that
By, Ay = A By_. (2.7.6)
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Combining Eqns. (2.7.4-2.7.6) we find that

A — i
BM+C#_A/\ = ﬁB#+A>\C/’L_ — ﬁBﬂ-ﬁ-Aﬂ—C)‘
A=y (A —po iy iy
= A\B — A, B |C, ———A, B, C
N — p_ <)\—M+ A “++)\—u+ By DA K A — py Pp_ A

1
= A\B,,C\_+ ﬁAM (BxC\. — By Cy),

which is equivalent to Eqn. (2.7.3).

To show that By and qdet 7, commute, we note that
[Bx, adet 7] = [B/\vAMDm] — 7By, [BA’ Cuf] :
We have from Eqn. (2.4.20)

Ay iy

D, B),= B\D, - B, D, 2.7.7
pn—DOX >\_M— A )\_N— pn—4IX ( )
and from Eqn. (2.4.17)
)\—M++i’y i’y
B\A,, =———A, B\————A,B,.. 2.7.
Ay \— iy A X — s APug ( 78)

From Eqns. (2.7.7-2.7.8) we obtain

A — +1i i
[Bx, Ay, Dy ] = (MAIH-B)\ - 7AABM+) Dy +

A= fig A=
A — piy iy
Kt ()\ 7B/\Duf N _ 7BM7D)\
iy iy iy iy
=— —A, B\D — A, B, Dy——A\B,. D
X— -\ — g u+>\u7+)\_,u_ ptrPu_ X )\_M+/\u+u

On the other hand, we have by virtue of Eqn. (2.4.22) and Eqns. (2.7.5-2.7.6),

iy
VB, [B,\,C#_] = _WBIH— (A/\Du— - AM—D/\)
iy A—p— iy
=— AB,, ——A,,B\|D, —A, B, D
A= <<>\—M+ AT N A) S A)
ivy iy ivy ivy
=——A, B, D\——A\B, D, ——————A, B\D,_,
)\*Mf HA-= )\7/“’L+ Pt = )\fu,)\f,qu M+ H
and indeed we see that [B,\,AMDM_] = [BA, BMCM_}. O

Remark 2.7.3. This result means that qdet 7, plays the role of the Casimir element in the
Yang-Bazxter algebra.
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Corollary 2.7.4. Let A € CY
Then

Also, let p € C such that both pi+ are unequal to any of the A;.

reg”

qdet T, ¥ = TVE2 gy (2.7.9)

Proof. Using Lemma 2.7.2, we have

qdet T, ¥ = qdet T, HBA Uy = HBA qdet 7, ¥y,

and

qdet 7,¥y = A, D, Uy = e I/ L2 ItV L2 5 — o=V E/2 . ]

Lemma 2.7.4 tells us that the Bethe wavefunction Wy is an eigenfunction of the quantum de-
terminant, with the corresponding eigenvalue independent of A. We note that this is without
imposing the BAEs Eqn. (2.5.3) on A. Since the ¥y are a complete set in H, it follows that

qdet 7, acts as multiplication by the constant e /2 throughout H.

The quantum determinant provides a connection with the Yangian [8,13,14,44]. The Yangian
of gly is a Hopf algebra, more precisely a deformation of the current algebra of gl, [8, Chapter
12]. More precisely, it is defined to be the algebra Y (gl,) generated by the elements 75)’“ where
J.k € {1,2} and | € Z>¢ subject to

|:7-j1 k1 7-]2 kzg} [7-91 k1 7-;2 ko } _ (762 lejl ke i legl)ka) ’

l1+1)° (Ia+1 (I2) (l2)

which is what one would obtain from Cor. 2.4.6 by writing 7;] k= lefl 78')]6/\*“rl and defining

’7'(3_ kl) = 0, where we have introduced the Kronecker delta

1, z=y9
0: X xX —={0,1}: (z,y) = 0zy =

0, otherwise,

for any set X. Owing to the exchange relation (2.3.4) Y (gl;) becomes a (quasitriangular) Hopf

algebra with comultiplication A, counit € and antipode s given by
(ARID)Ty = (T0)12 ()13, (®id)Th=1, (s®id)Th=T,"

The quantum determinant gdet 7, generates the centre of Y (gly).
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2.8 Alternative formulae for the QISM integral operators

We return to the explicit integral formulae for the operators A, B,,, C,,, D,, as presented in Eqns.
(2.4.11-2.4.14). There is a practical disadvantage to these formulae, which we will explain now.
Functions f € Hy are generally defined on the fundamental alcove J iv (or its closure) and then
extended to JV by ordering the entries of the argument « in decreasing order, i.e. by applying
Y weSn WX N (only that term with w™lx € Jf remains). This means that in order to calculate
(Axf)(x), say, for each i € T3 we need to arrange (z1,...,Ti,--.,Tip,---, N, Yl,---,Yn) €
JY in a decreasing order so that we can use the formula for F(z) for x € JY. Because ym,
runs from z;,, down to z;,_,, it can assume any position among the intermediate coordinates
Tip—1 > Tip—2 > ... > Tj, ., +1. In other words, in general we have no control over the order of

the arguments of F', which leads to computational issues; this we will now address.

Example 2.8.1. Consider the action of Ay on a function F € Hy. Specifically, concentrate on
the terms in the summand with n = 2. The set 3% contains the tuples (1,2), (1,3), (1,4), (2,3),
(2,4), (3,4). Taking © = (3,4) gives

— 3 Z4 .
(E/\+;34F) (w1, 22,23, 74) 2/ dyl/L/ dys e MTHTI=NI=02) B (3 a0 1, 1) -
T4 —L/2

Note that x1 > x2 > y1 > y2 So the arguments of F for this term can be unconditionally

rearranged to be in the alcove Ji. However, taking i = (1,4) gives

(E/\+;14F) (z1, 22,23, 74) 2/ dyl/L/ dys e MEHTITNI02) B (35 2a, 1, 10)
T4 —L/2

We do have o > x3 > yo but for y1 we have three possibilities: y1 > xo, To > y1 > T3,
and x3 > Yy > x4, so we need to do some work before we can rearrange the arguments of

F for this term. The idea is simply to split up the integral over [x4,x1] in three integrals:

ff: = ;21 +f;32 +f;;3. Hence
_ r1 T4 .
(E/J\F;MF) (@1, @2, 23, T4) = / dyl/ dyp e MOVTTITYIZ) B (41 o w3, 0) +
x2 —L/2
) x4 .
+/ dy1/ dyp @ NTITEATIIT) P (g 1, g, 0) +
T3 —L/2
T3 T4 )
+ / dy1 / dyg ol Mz1+ra—y1—y2) F (x27 3, Y1, y2) .
T4 —L/2
Now note that in each of the three sets of arguments of f, we have the correct ordering.

We will now formalize this in generality. Given nonnegative integers n < N and ¢ € JY%,
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introduce the following sets:

3 ={3=01, s dn) €Ty tim < jm <imi1, form=1,...,n},

(2

j;“ ;:{j:(]‘h__.,jn_l)ej’;vill:imgjm<im+1, formzl,...,n—l},

3;::{j

3, ={7=01 - jn) €TN tim-1 < Jm < im, form=1,...,n}.

(1 - dnt1) € TR, o1 < jm <im, form=1,...,n+1},

We recall that if j € J% we use the notation z;, = L/2 and z;,,, = —L/2.

Lemma 2.8.2. Let A€ Candn=0,...,N. For F € Hy, x € Jf“,'iéjnﬂ we have

N+1
(E/\;iF) (x) =) (ﬁ /xjm dym> M ERE Bim =21 Ym)
x

jeif \m=1 gm +1
— n —
‘F(xlw"7($im7"‘7xjm7yM7$jm+1)m:17"‘7$in+17"'7IN) )
for F € Hy, © € Jiv,i € J% we have
n T \
(EIZF) (m) = Z H / dym elAZmzl(a"im_ym) .
jeaf \m=1 Tjmt+1
— n
'F(1317‘--7(ximr--uxjmuymvxjm-‘rl)m:l7‘--axN)7
_ n xjm_l IS
(E):’LF) (:U) = H / dym el Zm:l(zlm _y’m) .
jer \m=17%jm
k3
—\N
- F (ml, oy (T =1 Y T o+ s T g5 s J:N) :
and for FF € Hy41, ¢ € Jfrv,i € J% we have
n Tjm, IA(Zn s 72»@ 1 )
(E)\ ’LF) (w) — § H dym e m=1"tm m=1Ym
——\7N
-F (51:13 B (xjmfhyma U 7m’im)m:1 yer s L1 =1 Yn+15 Ljpqqs - - - ,I‘N) .

43

Proof. These formulae are obtained by splitting each integration interval into a union of intervals

between adjacent z;, e.g. for ELF

Tip, =l gy
/ dym = Y / Ay
x . ;

im41 Jm=im ¥ Tim+1
Taking all summations over j,, together as a summation over j = (ji,...,Jn), we obtain j € 3:.“.
Now for each m = 1,...,n we have z;,, > ... > x;,, > ym > xj,,4+1 so that we can write the

argument of F' as indicated. The other formulae follow analogously.

O
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Lemma 2.8.2 essentially solves the problem alluded to at the start of this section. Wishing to

treat all arguments of F' in these formulae in the same manner, we introduce unit step functions.

Example 2.8.3 (Continuation of Example 2.8.1). We obtain

(E;14F> (z1, 22,3, 24) :/del/J dyg e Mo ATy —y2).
(F (y1, w2, w3,y2) 0(x1 > y1 > x2)0(x4 > y2 > —L/2)+
+ F (22,91, %3, y2) O(x2 > y1 > x3)0(x4 > y2 > —L/2)+

+F (z2,23,91,Y2) 0(x3 > y1 > x4)0(x4 > y2 > —L/2)).

We can simplify matters further by introducing Dirac deltas for those arguments of F' over which

we do not integrate; writing y = (y1, Y2, Y3, y4) this gives the terms

L <E/J\r;14F) (w1, 22,23, 14) = /J4 dy e AT s By gy ys yy)-
+

(0(z1 > y1 > x2)0(y2 — 22)0(y3 — x3)0(xg4 > yo > —L/2)+
+0(y1 — 22)0(w2 > y2 > 23)0(y3 — 3)0(va > ya > —L/2)+

+<5(y1 - .%'2)(5(3/2 — $3)9(x3 > Yz > $4)9(1‘4 > Yyq > —L/Q)) .

To generalize this, given n = 0,..., N and ¢ € J%;, consider ¢ = (if,...,i%_,) = (1,...,N); €
J%*". It is the unique element of TJ%*” which has no entries in common with 4. For example,
for N =5, n =2, and ¢ = (1,4), we have ¢ = (2,3,5). For ¢ € J%;, note that if j € ’J;.L then
js, € {i¢, — 1,i%,}, and if j € J; then j§, € {iS,,iS, + 1}. Also, for i € Iyt 5 € 37 C I so

m

that both 4, and j;, are in 3%;’1‘ and indeed j¢, € {35, — 1,i$,}. We can now state and prove

Lemma 2.8.4. Let A€ C andn=0,...,N. For F € Hy, ¢ € JiV'H,i € 37](;:11 we have

(EA;iF) (z) = /JN ANy o NEa mm T ) py).
+

n N—n
> <H 0(j, > Yjr > xjm+1)> (H 8 (yje, — xz‘%)) ;

4 ~+ :1
JeIT \m

for F € Hy, :cEJiV,iGTJ(, we have

(BLF) @) = [ a¥y e py),
+

n N—n
> (H 0(j,, > Yj, > ivjm+1)> (H 5(ngl—fvzgn)> :
m=1

> + :1
JEI, N\
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(E)TzF) (z) = / ANy ol A Rl (k=) F(y)-
k) Jf

n N—n
> <H 0251 > Yj,, > fﬁjm)> <H 5(yj$n—$i$n)> ;
m=1

JeT; m=1

and for '€ Hyi1, © € Jiv,’i € J% we have

(EA;iF) () = /JN aVy AT w2 ) F(y)-
+

n+1 N—n—1
) Z (H 0(zi,, , >ym>azim)) ( H O (Yntmt1 — ngn)> )

Jejz— m=1 m=1
Proof. Again we focus on the expression for ELF . Starting from Lemma 2.8.2 we relabel the
integration variables y,, to ¥, ; we like to think of the integrations as being over R and hence
introduce a step function 6(z;,, > ;. > «j,+1). Also, we introduce integrations over vari-
ables yjc for m =1,..., N —n with Dirac deltas 6(y;c — x;c ). We multiply the integrand by

i . —_ . . 1 N p—
! A@is, =vis.) — 1, producing an overall factor el > k=1(#k—vk)

We claim that the arguments of F' in decreasing order are now given by y1,...,yn; it suffices to
show that under the restrictions z;,, > v;,, > j,,+1, and yjc = 4 , we have y; > yy, if [ <m,
for all I,m = 1,...,N. Taking the restrictions given by the step functions and Dirac deltas
into account, it is clear that the (y;,,...,y;,) satisfy y;, > ... >y;, and (yjs, ...,y _ ) satisfy
Yjo > ... >yje . Also, if jj < ji,, then j;+1 < ji, and we have y;, > xj, 11 > xje, > Tic, = Yje
because j, < iy,. Finally, if j7, < ji, then j5, +1 < j; and hence yje = @i, > wje 11 > 35 > Y5,
because i, < j¢ + 1. This produces the desired formula for E;\FZF The other formulae can be

dealt with in the same way. O

By summing over 7 and including the appropriate factors, we obtain

Theorem 2.8.5. Let A€ C. For FF € Hy and x € Jf we have

(ArF)(z) = / ANy GNENH - ) p(y).

N
J+

N n N—n
n=014€Ty jegt \m=1 m=1
(Dy\F)(x) = / dNy RPXOIMPETED DAY F(y)-
7

N n N—n
>3 (H VO(Zj—1 > Yj > %)) (H 5(2/;‘;”—%5,)) ;

n=04€T}; Jea; m=1
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for Fe Hy and x € Jf“ we have

1
N+1

N n N—n
DD (H V02, > Yj > %‘mﬂ)) (H 5(3/3‘5,1—%1)) ;
m=1

n= 0163"+1 JETr m=1

(BAF)(x) = /J ANy AR e =i ) F(y).

and for F' € Hy41 and ¢ € JJ]FV we have

N+1

7 (CAF) (@) = (N +1) / o ANy A ) ().
Jy

n+l N—-n—1
Yy Y (Hve ) ( 0 a<>)

n=014€T%_, jed;

Furthermore, the domains of integration Jf, Jf“ may be replaced by RN, RNTL respectively,

because of the unit step functions in the integrands.

These alternative expressions for the generators of the Yang-Baxter algebra appear to be new.



Chapter 3

The degenerate affine Hecke algebra
(dAHA)

In this chapter we will review another established method for solving the QNLS eigenvalue prob-
lem Eqns. (1.1-1.2), which involves a deformation of the group algebra of the symmetric group
S, called the degenerate affine Hecke algebra, or also the graded Hecke algebra of type An—1. Its
main advantage compared to the QISM is that it can be naturally generalized to different reflec-
tion groups, both finite and affine. Most of these, the classical Weyl groups, allow for meaningful
interpretations in physical systems; they are the symmetry groups of one-dimensional systems
of quantum particles with certain boundary conditions. The systematic study of these systems

was begun by Gaudin [20], and Gutkin and Sutherland [23,27].

Affine Hecke algebras were introduced and studied initially by Lusztig and Kazhdan [33,41], and
Drinfel’d [14]. Their relevance to the QNLS problem was highlighted by Heckman and Opdam
[28,29] who used an infinitesimal version of them, the graded Hecke algebra. A generalization of
the affine Hecke algebra, the double affine Hecke algebra, has been used by Cherednik [10] to

prove Macdonald’s constant term conjecture for Macdonald polynomials.

In this thesis we will restrict ourselves to the case of the Weyl group Sy. We will review some
theory of the symmetric group and its group algebra; subsequently the degenerate affine Hecke
algebra (dAHA)! is introduced, which is a deformation of the group algebra of the symmetric

group with the coupling constant v functioning as a deformation parameter. We will highlight

'The abbreviation DAHA is usually reserved for the aforementioned double affine Hecke algebra.

47
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three of its representations that play a role in finding the QNLS wavefunction:

e The regular representation in momentum space, generated by deformed transpositions §;

and multiplication operators );, acting on analytic functions in A.

e The integral representation in position space, generated by deformed transpositions s; .
(the term proportional to «y in these are integral operators) and partial differential operators
—1i0;, acting on smooth functions on RY. This can be viewed as the Fourier transform of

the first representation.

e The Dunkl-type representation in position space, generated by transpositions and de-
formed partial differential operators —id; ,, acting on continuous functions on RY whose

restrictions to the set of regular vectors is smooth.

The crucial propagation operator [16,23,31] is constructed, which intertwines the integral and

Xx) for

Dunkl-type representations and maps plane waves, i.e. functions of the form a — e
some A € CV, to non-symmetric functions 1y that solve the QNLS eigenvalue problem Eqns.
(1.1-1.2). For the QNLS model these non-symmetric functions were first considered by Komori
and Hikami [34]. We will call these solutions pre-wavefunctions, since upon symmetrizing them

one recovers the QNLS wavefunction ¥y. They will return to our attention in Chapter 5.

3.1 The symmetric group

In this section we review some facts involving the symmetric group. There is a natural way of

embedding Sy in Sy4q which is useful for recursive constructions.
Lemma 3.1.1. We have
Sn+1 =SSN {smny1:m=1,.... N+1}={spnt1:m=1,...,.N+1}-Sny.

Proof. Since each w € Sy permutes the set { s, y+1:m=1,..., N+ 1}, the second equality
follows and it suffices to prove the first, which can be done by noting that the following mapping

is a one-to-one correspondence:
p:SNt1 = Sy x{l,...,N+1}:w+— (wsw_l(N+1)N+1,w_1(N+ 1)).

Note that for w € Sy, wsy-1(y41) N1 (N+1) = w(w ' (N+1)) = N+1, so that WS4y~ (N41) N+1
can be thought of as an element of Sy, and indeed p maps into Sy x {1,...,N + 1}. Since

Sn+1 and Sy x {1,...,N + 1} are finite sets of the same cardinality it suffices to show p is
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injective. This follows from the fact that p has a left-inverse: Sy x {1,..., N+1} — Syy1 given

by (W', ) — w's;j N1. O

3.1.1 The group algebra of the symmetric group

The group algebra of the symmetric group is the unital associative algebra of all linear combi-

nations of elements of Sy,

CSy = chw:cweC ,

wWESN

where the multiplication in Sy is extended linearly. The symmetrizer is given by

1
SW) = i > weCSy. (3.1.1)

’ wESN

It satisfies wSW) = SMw = SWV) for all w € Sy and hence is a projection: (S(N))2 =S,

The symmetrizer can be constructed recursively:

Lemma 3.1.2. Let N > 1 be an integer. We have

L N N+1
SN+ — g(N)_ = m
N+1z:18 N+l = N+1ZN
N+1 N+1

(N)
N+1ZS’”N“S N+1ZS’” sNE

Proof. The expressions & (V) L Nil SmN+1 and A Nil SmN+1S () follow directly from
N+1 m=1 + N+1 m=1 +

Lemma 3.1.1. To obtain the expression S(V) foﬂ SN ...Sm Dote that

SmMN —Sm.--SN_-1SNSN—-1---Sm-

Since Sy, ...SN_1 € Sy, it can be absorbed into S®) and hence we find

N+1 N+1
SWN) Z Sm N+1 =sW) Z SN ...Sm
m=1 m=1
In the same fashion we obtain
N+1 N+1
ZsmN+1S(N):ZSm...sNS(N). [l
m=1 m=1

The group algebra CSy acts on the polynomial algebra C[X7,..., Xx] (the normal symmet-

ric group action can be extended linearly). The indeterminates X; themselves also act on
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C[X1,...,Xn] by multiplication. The combined algebra, written $”, is isomorphic to CSy ®

C[X1,...,Xn] as a vector space, and is generated by si,...,sy-1, X1, ..., Xy with relations:
85854185 = Sj4+155554+1, for j = 1, .. .,N — 2,
[s5,5K] =0, for jjk=1,....N—1:]j—k|>1,
s3 =1, forj=1,...,N —1,
Sij—ij(k)SjZO, fOl”j:1,...,N—1,/€:1,...,N,
[Xj,Xk]:O, fOI‘j,k’Zl,...,N.

3.1.2 The length function
For w € Sy, consider
Yw)={U,k)e{l,....N}:j <k, w(j) >wk)}, (3.1.2)
i.e. the set of ordered pairs whose order is inverted by w. The length of w is defined to be
l(w) = [X(w)]. (3.1.3)

We note that such a characterization fits in the context of the definition of the length of an
element of a general Weyl group in terms of the (positive) root system. Hence the results in

[43, §2.2] can be used. Here we review some of these results applied to the case of Sy.

Evidently we have [(w) = 0 if and only if w = 1. Since X(s;) = {(j,7 + 1)} it follows
that I(s;) = 1 for j = 1,...,N — 1. Also, {(w™!) = I(w) follows from the observation
Sw ) =w{(,k) e{l,....N}?: (k,j) € B(w) }.

For all wy,wy € Sy, l(wiwsz) < l(w1) + l(wz) and the following conditions are equivalent:

l(wl?UQ) = l(wl) -+ l(’u}g); (3.1.4)
Y(wiws) = wy X (wy) U X (ws); (3.1.5)
(G, k) € wy ' B(wy) = j <k. (3.1.6)

Let j=1,...,N —1and w € Sy. Using the equivalence of Eqn. (3.1.4) and Eqn. (3.1.6), once

with w; = w, we = s;, and once with wy = ws;, we = s, we obtain

lws;) = l(w) +sgn(w(j + 1) —w(y)). (3.1.7)
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A simple induction argument may be used to obtain that for all w € Sy

l(w)=min I,
W=S8;; ...,

i.e. the length of a permutation w is simply the minimum number of simple transpositions in a

decomposition for w. Such a decomposition is called reduced.

The set 3 (w) will be used several times during this chapter; the following lemma is useful for

inductions on the length of w.

Lemma 3.1.3. Let w € Sy with a reduced expression w = s;, ...s;,. Then

{wsjk:(j,k;)EE(w)}:{sil...éim...sil :mzl,...,l},

where the hat placed over s;, indicates that this particular transposition is removed from the
product. In particular, the length of each ws;y, where (j,k) € X(w), is strictly less than the
length of w.

Proof. By induction on I. The statement for [ = 0 is vacuously true. To see that the statement

for [ + 1 follows from the statement for [, given a reduced composition w = s;, ...s;_,, write
w' = ws;,,, = si, ...5; and note that the induction hypothesis implies
{w'sj-,; (G, k) €5y (W)} ={si o Sip o8 m=1,...,1},
where for j =1,..., N, 7= s;_,(j). Right-multiplying by s;, we obtain
{wsjr: (k) €5, 2w} ={si ... 8, .. S im=1,...,1}.
Now make use of the equivalence of Eqns. (3.1.5-3.1.6). O

3.1.3 Duality of Sy-actions

We will be considering functions of two N-tuples A € CV, & € RY (or subsets thereof), and we
wish to study the two distinct Sy-actions on such functions. An example of such a function is

the plane wave: CN x RN — C: (X, x) — e™®) . We will denote these two actions as follows.
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Notation (Distinction of Sy-actions). Let w € Sy and f: CN x RN — C. Then we may

define two functions wf,wf : CN x RN — C as follows:

(whHxz) = fAw'x)
(@f) (A z) = flw A ).

For functions f : CN — C whose argument is denoted A we will sometimes denote the

action of w € Sy on such a function by w, as well.

In the context of root systems, this notation is reminiscent to the duality of the action of

the Weyl group on the Fuclidean space, spanned by the co-roots, and the action on its dual,

spanned by the roots.

Let XA € CV and note that the plane wave e'* satisfies
(w eiA)(m) _ eik(w—lx) _ ei<)\,w—1m> _ ei(wk,w) _ eiwk(m) _ <’(ZJ_1 ei)\) (w)7

for all x € RV, ie. wel* =w e

3.2 The degenerate affine Hecke algebra

We will now introduce a deformation of the symmetric group algebra which is the central object

in this chapter. It was introduced independently by Lusztig [41] and Drinfel’d [14].

Definition 3.2.1. Let v € R. The degenerate affine Hecke algebra (dAHA), denoted Y, is the

5
algebra with generators s1,...,8N—1,X1,...,Xn and relations

5j8j415] = 5j415j5j41, forj=1,...,N —2, (dAHA 1)

[s,5%) = 0, for jk=1,....N—1:]j—k|>1, (dAHA 2)

s3 =1, forj=1,...,N—1, (dAHA 3)

stk—ij(k)sj:—i’y((Sjk—(SjJrlk), forj=1,....N—1,k=1,..., N, (dAHA 4)

(X, Xk] =0, for j,k=1,...,N. (dAHA 5)

ﬁjvv can be viewed as a deformation of ¥ = ${', controlled by 7. We will identify C[X] and
CSy as subalgebras of 5317\[ . There are some well-known properties of 517\/ [9,41,46] that can be

directly obtained from Eqns. (1AHA 1-dAHA 5). For all j =1,..., N, w € Sy we have

wXj = Xyw —iyw Z Sjk — Z sik | € .6,]7\7. (3.2.1)
k:(j.k) €S (w) k:(k.j) €S (w)
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This can be proven by induction on [(w). Also, for all j =1,..., N — 1 and p € C[X],
$ip(X1, - XN) = p(Xg,1), -5 X)) 55 = —iv(Ayp) (X1, ..., Xn) € 9T, (3.2.2)
where we have introduced the divided difference operator? A; € End(C[X])
(X XN) = p(X s Xy (v)

Aip)(X1,...,Xn) = ! . 3.2.3

Since the polynomial p(Xy,..., Xn) — P(ij(l)a e 7ij(N)) is alternating in X;, X1 it is di-
visible by X; — Xj11, and hence indeed Ajp € C[X]. Eqn. (3.2.2) can be demonstrated by
induction on the degree of p. Finally, combining Eqns. (3.2.1-3.2.2) we obtain that the centre

of ﬁf/V is the subalgebra of symmetric polynomials:

Z(H)) = C[x)5~. (3.2.4)

3.3 The regular representation in momentum space

This representation is also known as the Bernstein-Gelfand-Gelfand representation, as well as
the Demazure representation [5,11]. For this representation we will consider the vector space of
polynomial functions P(CV) 2 C[\y,..., A\y]. In particular, we will identify a copy of ﬁfyv as a

subalgebra of End(P(CV)).

The divided difference operator A; introduced in Eqn. (3.2.2) can be “dualized” as follows.

Definition 3.3.1. [15,25] Let 1 < j #k < N and vy € R. Then A, = 345 € End(P(CY)) is

pYEV
defined by
_ p()‘laa)‘N) _p()‘sjkla"'a)\sjkN)

(Bjkp) (- Aw) = T , (3.3.1)

where p € P(CN) and A € CN. Note that p — 5jkp ts a polynomial alternating in X\j, \g, so

that it is divisible by \j — \g; in other words A;y is a bona fide operators on End(P(CN)). For

j=1,...,N —1 we write Aj = Ajo and introduce the deformed simple transposition

5j, =58 —iyA; € End(P(CY)). (3.3.2)
Lemma 3.3.2. We list some useful properties of the divided difference operators that follow
immediately from the definition. Let 1 < j # k < N.

(i) For1<1l+# m < N, we have §jkAlm = Asjk(l)sjk(m)gjk-

2 Alternatively, it is known as the Bernstein-Gelfand-Gelfand operator or Lusztig-Demazure operator.
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(ZZ) gjkAjk = Akjgjk = _Ajkgjk = Ajk and hence A?k =0.
(111) For a,b € Z>o we have:

— § AIAE, ifa<b
B b a<A,B<b—1
o ya _ A+B=a+b—1
AjpXIN, =

S A, ifaxb.

b<A,B<a—1
A+B=a+b—1

Proof. Property (i) follows from A;,, being a linear combination of 1 and 3;,, whose coefficients
only depend on \; and \,,,. Next, property (ii) is an immediate consequence of property (i), and

property (iii) is a straightforward calculation. O

A representation of an associative algebra can be defined by fixing the images of its generators.
Because the underlying vector space structure can be preserved by linearly extending these
assignments one only needs to check that the relations used in the definition of the associative

algebra are also preserved.

Proposition 3.3.3. [15,25] The following assignments define a representation py® of fjév on

P(CN) = C[\y, ..., AN
PYE(s5) = 58j,  PYE(XG) = A (3.3.3)

Proof. We will repeatedly refer to Appendix A.1. We only need to show that with definitions
Eqn. (3.3.3), the axioms Eqns. (d{AHA 1-dAHA 5) hold, with (s;, X) = (5, Ak)-

(dAHA 1) This involves the most work; we have

Sy SitySiny = S8y S,y =
= 8j8j118) — S 8jS+
—1i7 <§j§j+1Aj + ngj_ng + Ajgj_ﬂgj — §j+1§jAj+1 - g}'HAjgﬁl — Aﬁlgjgj_ﬂ) +
— 72 <§jAj+1Aj + Aj§j+1Aj + AjAj+1§j — §j+1AjAj+1 + Aj+1§jAj+1 + Aj+1Aj§j+1) +
+ i’)/3 <AjAj+1Aj - A]'_HAJ‘A]‘_H> = 0.
This follows from applying, for the term proportional to 7, Eqn. (A.1.3) with (j, k,1) —
(j,7 + 1,7+ 2) and Eqn. (A.1.4) twice, once with (j,k,1) — (4,7 + 1,7 + 2) and once
with (4, k,1) — (j +2,j + 1, 7); for the term proportional to v2, Eqn. (A.1.5) (again, once
with (4,k,1) — (4,7 + 1,7 + 2) and once with (j,k,1) — (j + 2,7 4+ 1,5)); for the term
proportional to v3, Eqn. (A.1.6) with (j,k,1) — (4,7 + 1,5 +2).
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(dAHA 2) We write, for [j — k| > 1,
(55000 5] = 55 58] — 17 (155 A = 50 Ay] ) = 214y, A,
These commutators vanish because of Lemma A.1.2.

(dAHA 3) We simply have, by virtue of Lemma 3.3.2, Property (ii),

2= (5 —i7A) (5 —ivA) = 8 —iv(5,A; + Aj5;) —2A2 = 1.

(dAHA 4) This follows from Lemma A.1.1 with k = j + 1:

i Mk = As; (08 = (8 — 17A) Ak = Ag; ) (85 — 17A))
= —liy (Aj)\k - As,j(k)Aj) = =17 (0K — 0j+1k);

(dAHA 5) This is trivial. O

Because the polynomial functions form a dense subspace of the analytic functions, we immedi-

ately get a representation of ﬁfyv on this larger vector space.

Corollary 3.3.4. The assignments given by Eqn. (3.5.3) define a representation of Sﬁfyv on
Ce(CN).

For any w € Sy with decomposition w = s;, ...s;, for some iy,...,5 € {1,...,N — 1}, we will
write
Wy = Siy - - - Siy vy (3.3.4)

because of Prop. 3.3.3 this does not depend on the choice of the decomposition and hence is
a well-defined map: Sy — C¥(CY). We extend this notation linearly to any element ¢ of the
group algebra CSy, writing ¢, for p5®(t). In particular, we may consider

5 1

N N ~
S—(y ) :pgeg(g( )) = i Z . (3.3.5)
’ wWESN

If w = s;y, then for @, = (5;1), we may also write 5; .

Notation (Comparing operators in function spaces with different particle numbers). When
it is important to highlight in which F(JV) we consider the action of an operator, we will
indicate this by adding a superscript (N) to the operator in question, such as ng) for the
transposition acting on F(J?) by (SgQ)f)(.Z‘l,.ﬁz) = f(x2,21) and sg?’) for the transposition

acting on f(JS) by (853)f)($1,332,933) = f(xo, 1, x3).
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We now introduce G, = G,(yN) € C¥(CX,) by

reg

A W VA

7,k=1
i<k
Recalling the notation lec()\) from Eqn. (2.5.4), we have the obvious property that
GV ) = if NG, G () = 7, (MVE X, (3.3.7)

for (A, p) € CIL. Denote by the same symbol G () = GE,N)(A) the corresponding multiplica-

reg

tion operator in End(C¥(CZ%,)). Then we have

reg

Proposition 3.3.5. The following identity holds in End(C¥(CM)):
S(N) _ &(N) (N
S = SMGM(x). (3.3.8)

Proof. By induction on N; the case N = 1 is trivial. To complete the proof, for A € CV¥ and

XN =(A1,...,Av_1) € CN71 and note that
- 1 N -
SMGM(x) = v > Gm SN ()G

N
1 - - S(N— _
_ N 2: A SN—IT)_\FN ()\/)S(N 1)G'(yN 1) (A/)

where we have used Lemma 3.1.2 and Eqn. (3.3.7), as well as the fact that 7,7 (X’) is symmetric
in the A;. Now by virtue of Lemma A.1.6, we obtain that

Simpy - SN STTUGINTD (N,

m=1

and now the induction hypothesis, together with Lemma 3.1.2 once more, yields

Sy - SNo1, ST = SV, O

3.4 The integral representation

We now turn to a second representation of the dAHA, introduced as a tool to study the QNLS
problem in [23,27]. Consider the space C(RY) of continuous complex-valued functions on R¥.

For 1 < j # k < N, we introduce the integral operator I;; € End (C(R”)) defined by

(L rf)(x) = /ij‘wk dyf(x —y(e; — ex)) (3.4.1)
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for f € C(RY) and « € RY. Note that, for f € C(RY) and z € Vj, = {x e RN : z; =z }, we
have (I f)(x) = 0. Also, I, restricts to an operator on C*°(RY) and indeed to C*(R"). For

j=1,...,N -1, we write I; = I; ;41 and introduce
sjy =sj+vI; € End (COO(RN)) , (3.4.2)
We remark that also s, restricts to an operator on C*(RY).

Proposition 3.4.1. [29] The following assignments define a representation pivnt of 53]7\[ on
COO(RN)‘.
p;nt(sj) = 5, pivnt(Xj) = —10;. (3.4.3)

In other words, C*(RY) is an ﬁfy\f—module; furthermore, C¥(RYN) is a submodule.

The proof given by Heckman and Opdam in [29] refers to [23] for the Coxeter relation s;~s;41.5;~
= 8j41,,5j,v5j+1,7, Which is the trickiest relation to prove. Here, we will present a different proof,

relying on the representation ps®.

Proof of Prop. 3.4.1. Consider the Fourier expansion of an arbitrary f € C>(RM),

f=]  dAfn)e?,
RN
for certain Fourier coefficients f (A) € C. We can use this and Lemma A.2.1 to turn the axioms

(dAHA 1-dAHA 5) that we need to prove into the axioms of the regular representation, which
we already know to hold by virtue of Prop. 3.3.3.

For example, to prove that [s;.,sk] = 0 for |j — k| > 1 we can write

siosialf = [ AN lsjo ).

Lemma A.2.1 yields (Sj~Sky — SkySjy) el = (8j,48k~y — SkySjy) ¢ A because sj and 3p ., act
' . _ VWA (2 o = i
on different spaces they commute so that (s;ySk, — Sk~Sjy) €™ = (3k4Sjy — 5jySky) € and

we can use Lemma A.2.1 once more. This gives

vl == [ AN e

which is zero by virtue of Prop. 3.3.3, so that indeed [s; -, si ] = 0 for |j — k| > 1. All axioms

can be dealt with in this way. O
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Similar to the notation for the regular representation py®, for any w € Sy with w = s;, ... s,

for some 41,...,4; € {1,..., N — 1}, we will write
Wy = Siyy - Siy s (3.4.4)

because of Prop. 3.4.1 this does not depend on the choice of the s;, . Similarly to the notation for
the regular representation, we extend this linearly to the whole group algebra CSy; in particular

we have

in 1 00
SN = pint(SN)) — i > wy € End(C™(RY)). (3.4.5)

’ wWESN

Again, if w = sjy, then for w, = (s;1), we may also write s; .

3.5 The Dunkl-type representation

Recall the notation ¥(w) introduced in Eqn. (3.1.2). For j = 1,..., N we introduce A; €

End(C>®(RY,)) defined by specifying its action on each alcove:

reg

Aj|w—1Rﬂ = Z Sik — Z Sk, for w € Sy. (3.5.1)
k:(k,j)eX(w) k:(j,k)eX(w)

Definition 3.5.1. [34,45,46] Let j = 1,..., N and v € R. The Dunkl-type operator is given by
Djnluw-1my = 05 — 7A; € End(C®(RY,)), (3.5.2)

i.e. for f € C®*(RY

reg), x € w 'RY

reg and w € Sy we have

(057 f) () = (0;f) () —~ oo flspm) = D f(sira)
k:(k.j)eX(w) k:(j,k)€X(w)
In particular, we have 8j,w|R$ = 0;.

Alternatively, we may provide a single formula for A;, and hence 0;,, on the entire Rﬁ\ég as

follows. Given ¢ = (i1,...4,) € {1,..., N}", introduce the notation

0; = 0;, s (3.5.3)

N
reg

for the multiplication operator on F(R.:,) determined by

(O f) () = 0(ziy > iy > ... > 23,) f (),
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for f € F (Rﬁ\ég) and x € }Ri\efg. We remark that 6; restricts to an endomorphism of C*°(RY,,).

reg

Also note that if ¢ ¢ i}, (i.e. if some of the i,, are the same) then 6; = 0. It then follows that
Aj=) Oirsjr— ) Okjsjk € End(C®(Rl,)). (3.5.4)
k<j k>j

Hence, for f € C(RY,) and x € ngg we have

reg
Ojf(x)=0,f(x) — WZ O(x; — xx) f(sjk) + Z O(xr, — x5) f(s51).
k<j k>j

Proposition 3.5.2. [45,46] The following assignments define a representation p?unkl of.VJf/V on

N
c= (Rreg)'
p’]?unkl(sj) = Sy, p,]?unkl(Xj) = —iam. (355)
Proof. This follows immediately from Cor. A.3.2 and Lemma A.3.5. O

Lemma 3.5.3. Let F € C[\y,...,An]°N. Then

[w, F(D14,--.,0Nn~)] =0 € End(C*(RY,)),  w € Sy, (3.5.6)
F(O1y,...,On~) = F(01,...,0N) € End(C™®(RyY,,))- (3.5.7)
Proof. Eqn. (3.5.6) follows immediately from Eqn. (3.2.4) applied to the image of .6]7\[ under

pl?unkl. To obtain Eqn. (3.5.7), let f € Coo(Rﬁ\efg), z € RY and w € Sy. It suffices to prove that

(F(O1pys--,0ny)f) (wle) = (F(01,...,0n)f) (wz). From (%MRQ = 8j|Rf it follows that
(F(B1s--sOn)f) (wE) = (WF (D19, ..., ONA) ) (&) = (F(O11yy--.,Onq)wS) ()
= (F(al, N ,8N)wf) (:13) = (wF(al, e ,8N)f) (a:)
= (F(01,...,0n)f) (w™ ). O
Example 3.5.4 (Dunkl-type operators for N = 2). From Defn. 3.5.1 it follows that
01,y = 01 + 7021512, Oy = 02 — 021512,
1.e.

(17 f) (@1, 22) = (O1f) (21, 2) + ¥0(22 — 21) f (22, 1),
(G2 f) (1, 22) = (O2f) (21, T2) — V0(22 — 1) f (T2, 71)

for [ e C¥(RZ,) and (x1,22) € R}

reg”

The reader should check that these satisfy the dAHA
azrioms, viz.

5181,7 - 52,781 =7, [al,w 82,’7] = 0.
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3.5.1 Common eigenfunctions of the Dunkl-type operators

In order to connect the Dunkl-type operators J; , to the study of the QNLS eigenvalue problem,
it is important to allow the study of Eqns. (1.1-1.2) for non-symmetric functions. Consider the

following subspaces of C(R), which were introduced in [16,23].

CB'(RY) = {f €C(RY) : Vw f]wa has a C! extension to some open
neighbourhood of wRY } ; (3.5.8)
CB=(RN) = { f€CRY): flay € CORY,) } ; (3.5.9)

CL(RN)

{7 €CB ®Y): (0= ) flyy, — 0 =00 fly, = 2flvy, for 1<j<h<N}.
(3.5.10)
Note that CB>*(RY) c CB'(RY). Furthermore, it has been observed [16, Prop. 2.2] that, due

to the hypoellipticity of the Laplacian,
fe Ci(RN) and Af\R%g = —Ef\R%g as distributions = f € CB®(RY).

Lemma 3.5.5. Let j = 1,...,N and f € CB>®(RY); suppose that 8j77(f]R£\erg) € COO(Rgg) is a
constant multiple of f|R%g. Then 8j,'y(f|R£\e’g) can be continuously extended to RY. Hence, ;. f

may be viewed as an element of CB=(RY).

Proof. There exists m € C such that 8j77(f]R%g) = mf|R£veg. Forany 1 < k <l < N we
simply define 0; f|v,, to be mfly,,; since f is continuous this ensures that this extension is

continuous. O
For A = (\1,...,A\n) € CV, we consider the following eigenvalue problem for f € CB=(R™):
ajﬂle)‘va fOI‘jZ 17'-'aN- (3511)

Lemma 3.5.6 (Uniqueness of solutions). Let A € CV and v € R. Suppose that f € CB®(RN)
satisfies the system (3.5.11). Then f is uniquely defined up to an overall scalar factor, i.e. the
subspace of CB®(RN) consisting of solutions of (3.5.11) is 1-dimensional.

Proof. Suppose that f,g € CB>®(RY) both satisfy Eqn. (3.5.11). We may assume that both
f and g are nonzero, and after multiplying one of them by a nonzero complex number, that
f(0) = g(0). Note that h = f — g € CB®(RY) satisfies the same system Eqn. (3.5.11), and
h(0) = 0. It is sufficient to prove that h = 0.
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Claim: Given w € Sy, if h|(w’)—1Rf =0 for all w’ € Sy with I(w') < l(w), then h|w—1Rﬁ =0.

It is clear that from the claim the lemma follows; in particular it follows that h|R§ = 0 and by
induction on I(w) we obtain h|R%g = 0; finally by continuity we have h = 0. To prove the claim,

by virtue of Eqn. (3.5.2) we have for z € w™'RY,

d;h(x) =i \jh(x)+~ > h(sjrz)— Y. h(sjppx) |, forj=1,...,N, (35.12)
k:(k,j)eX(w) k:(4,k)eX(w)

where sjpx € (ws;) 'RY with {(ws;x) < [(w) as follows from Lemma 3.1.3. Hence Eqn.

(3.5.12) reduces to djhl, gy = iAjh, j = 1,...,N, i.e. h|, 1gy = cyel> for some ¢, € C.

Continuity at @ = 0 yields that ¢,, = 0, i.e. h|,1zgny = 0. O

The relevance of system (3.5.11) to the QNLS Hamiltonian is expressed in

Proposition 3.5.7 (The Dunkl-type operators and the QNLS eigenvalue problem). Suppose
that f € CB™®(RY) satisfies the system (3.5.11) for some A € CN. Then f € C%(RN) and
—Athggg = Z;Vﬂ )\?f\R%g, i.e. f solves the QNLS eigenvalue problem Eqns. (1.1-1.2) with

_ N 2 . .
E = ijl Aj except for Sn-invariance.

Proof. That f is an eigenfunction of —A on the regular vectors with eigenvalue pa(X) follows
from A = p2(0i,...,0Nn,), which in itself is a consequence of Lemma 3.5.3, Eqn. (3.5.7)
applied to F' = po. As for the claim that f satisfies the derivative jump conditions, note that
from Eqn. (3.5.4) it follows that

8]' :8j,7+720j13ﬂ —’7291]‘8]’[

I<j >j

and therefore

0 = Ok = Ojoy = Oy + 7 D015t =7 Y Ouysji = 0kjsin —7 ) Ojisjit

1<j j<i<k I>k
=Y Okiski = VOkjsik = Y Okiski+v Y Oikski
1<j j<i<k 1>k
= Djoy = Oy — 290k 555 +7 ) (051551 — Oiskr)
1<j

v > (—Ouisji— Oisk) 7 Y (=018 + Oiksii) -
J<I<k k<l
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Applying this to f € CB>®(RY) satisfying the system (3.5.11) we have

(05 = ) flys = 1A = M) flys + Y (051851 = Oxiskr) Flys+

1<j
+9 ) (<0580 — Orisid) fly+ + ¥ (=0ijs50+ Oisr) Fly+
j<i<k ! k<l !
=i = M)l =7 D sitflve
j<i<k
and
(95 — ak)ﬂvj—k =i(A; — )‘k:)f|vj—k - 2’75jkf|v;—k + 'VZ (050851 — Ok1sk1) f‘vj—kjL
1<j
+9 D (=0ii850— skl fly= + YO (=01;851 + Oisii) v~
j<I<k ! k<l !
=1y = Al =20 v =7 D siuflve
j<i<k
We conclude that (9; — k) f’vﬁ — (05 — Ok) f‘ka =2vflv;,- O

3.6 The propagation operator and the pre-wavefunction

There exists a special element of Hom(C>(RY),CB>(RY)) that allows us to construct solutions

of the system (3.5.11).

Definition 3.6.1. [31] Let v € R. The propagation operator or intertwiner is the following
element of End(C(R%g)):

P, = Z wilfou}V = Z Xw_lRwalw,y, (3.6.1)

wESN wWESN
where Xo—1RY is the multiplication operator associated to the characteristic function of the set

wRY . In other words, P, is the element of End(C(RﬁXg)) determined by
Pyl gy =w lwy,  forw e Sy. (3.6.2)

Note that Py is the identity operator on C (Rﬁ\efg). The propagation operator was introduced by
Gutkin [23]. Some of its properties in the case of the Weyl group Sy were elucidated by Hikami

[31]. A vector-valued analogue was considered by Emsiz [15].

Example 3.6.2 (The propagation operator for N = 2). For N = 2 we have

Py =xg2 + Xsir2 51515 = 1+ Xgr2 (51519 — 1) = 1 —x,r2 11,
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7.€e.
To—T1
(Pyf) (w1, 22) = f(a1, 22) +8(x2 — 1) / dyf (a1 +y, 2 — y).
0

The reader is invited to check that the following identities hold formally, and consider the proper

domain for each identity (i.e. on which function space it acts):
s1Py = Pys1 4, Oy Py = P01, 02~ Py = P,0s.
The statements of the next two lemmas are (at least implicitly) already present in [15,23,31].

Lemma 3.6.3. Let vy € R. For f € C(RY), P%fh@ég can be continuously extended to RY. As a

consequence, P, restricts to an element of End(C(RY)).

Proof. Let w € Sy. The neighbouring alcoves ofuflRf are (sjw)*lRf, wherej =1,...,N—1,
and the shared boundary ofw_le\_f and (sjw)_lRf is a subset of the hyperplane Vi,—1 () w-1(j41)-

It is sufficient to prove that, for j =1,..., N — 1, we have

lim P.f)(x) = lim P, f)(x).
zw—l(ﬂl)%w—l(j)( (@) “”w—1<j+1>ﬂw—1(j>( 2/)(@)
mGwilRf mG(Sjw)*lJRf

Using Eqn. (3.6.2) this is equivalent to

lim (wtw, f) (x) = lim (w™tsjsj wyf) (). (3.6.3)

Fuw=1(+1) T Pw=1() Tw=1+1) 7 Pw 1)
For the right-hand side of Eqn. (3.6.3) we note that
wlsjsiqwy =w (1 — I j11)w, = (1 — ’waq(j)wﬂ(jH))w*lwv.
Now using that limg; 4, I, = 0 establishes Eqn. (3.6.3). O

Lemma 3.6.4. Let v € R. For f € C®(RY), P,f € COO(]RI{\efg). As a consequence, P, restricts
to an element of Hom(C®(RY),C®(RY,)).

reg

Proof. Let w € Sy. Then Pvf|w—11Rf = w_lwyf\wqu, which is a linear combination of
products of reflection operators s;; and integral operators I, both of which send smooth

functions to smooth functions. O
By combining Lemmas 3.6.3 and 3.6.4 we obtain
Corollary 3.6.5. Let v € R. P, restricts to an element of Hom(C>®(RY),CB>(RY)).

The crucial property of P, is that it intertwines the integral and Dunkl-type representations of

the dAHA.
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Theorem 3.6.6 (Intertwining property, [31]). Let v € R. We have

wP, = Pyw, € Hom(C®(RY),cB>(RY)), w € Sy, (3.6.4)

sy (Pylry,) = (Py0))lpy, € Hom(C®(RY),C™(Ryy,)), j=1...,N. (3.6.5)

reg reg

Proof. For Eqn. (3.6.4) we simply have

—1 -1
u;f),7 = E W XRfU'Y = Z v X]Rf (UU)),Y = P,ywv.
vESN vESN

To prove Eqn. (3.6.5) it is sufficient to show that 9;, P, = P,0; on each alcove w 1RY (w € Sy).

Indeed, on wilRf we have

iy Py — Py0; = [0, Py] + Z Sjk — Z Sik | Py
E:(j,k) €S (w) k:(k,j)€X(w)

= 10;, Py] + 7Py > Sikn— D, Siky
k:(j,k) €S (w) k:(k,j)eX(w)

by virtue of Eqn. (3.5.2) and Eqn. (3.6.4). Next, Eqn. (3.6.2) yields

0j Py — P,0; = wt 8w(j)w7 — wy0j + ywy Z Siky — Z Sikyy . (3.6.6)
k:(j,k)eX(w) k:(k,j)eX(w)

Since (w, X;) — (wy,—10;) defines a representation of the dAHA, we can use Eqn. (3.2.1),

which for this representation reads

Wy 05 = Dy(j)wy + YWy Z Sjky — Z Sjky | >
k:(j,k)eX(w) k:(k,j)eX(w)

so that the right-hand side in Eqn. (3.6.6) vanishes. O
We note that the above proof is different from the one given in [31], although the key ingredient
Eqn. (3.2.1) is the same.

3.6.1 The action of the propagation operator on analytic functions

We will review further established properties of the propagation operator which are relevant to

the study of the QNLS model involving the following subspaces of C(R™):
CBY(RYN) = { feC®RY):vuw f‘wa has a real-analytic extension to R } , (3.6.7)
Cy(RY) = {f € CB*®Y): (9; = O0) flys — 0 = ) fly =
(L= (=1))7 (0 = 0) " fly, for 1<j<k<Nandr€Zsof. (368)

Note that C;‘J(RN ) C C#(RN ). Firstly, by considering power series expansions, one obtains
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Lemma 3.6.7 (Action of P, on analytic functions). Let v € R. Py restricts to an injective

element of Hom(C*(RY),CB*(RY)).
The following further statements are due to [16] to which we refer for the detailed proofs.

Proposition 3.6.8 (Invertibility of the propagation operator [16, Thm. 5.3(ii)]). Let v € R.
Then P, defines a bijection between C¥(RY) and C;’(RN).

Proof. Given f € CY (R™) one considers the unique analytic function g that coincides with f on
the fundamental alcove. Then it can be shown by continuity, the derivative jump conditions,

and an induction argument that f = P,g everywhere. O

Since C¥(RY) is a $,-submodule of C>°(RY) (in terms of the piy-action) from Prop. 3.6.8 we

obtain

Corollary 3.6.9. Let v € R. The operators 0j, — Op~ (1 < j < k < N) preserve the space
N Ny N : N N
CZ(RY). Hence, C¥(RY) is a 9 -module. Furthermore, in Hom(C*(R™),C5(R™)) we have

wP, = Pyw.,, w € S, (3.6.9)

(0jy = Oky) Py = Py (9 — Ok) 1<j<k<N, (3.6.10)

3.6.2 The pre-wavefunction

Since for all A € CV, ei* € C¥(RY), from Prop. 3.6.8 we infer that P,el* € C;J(RN) which
shows the relevance of this function to the QNLS model. However, we will be able to arrive at
this statement in a different way. For now, we will merely use the analyticity of '* and Lemma
3.6.7 to conclude that P, el* € CB*(RY). First, since this function will be the central object of

study for the rest of this thesis, we have

Definition 3.6.10. Let v € R and A € C. The pre-wavefunction is the function

Py = P, et € CBY(RMY). (3.6.11)

Remark 3.6.11. The pre-wavefunction will turn out to provide an intermediate step in the
construction of the symmetric wavefunction, but in Chapter 5 it will play a more central role.
The reader should think of 1 as a deformation of the plane wave e'*; indeed, for v = 0 the
propagation operator is the identity operator. The next lemma highlights this further.

The action of the regular representation in momentum space and the Dunkl-type representation

on the pre-wavefunction are intimately related.
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Lemma 3.6.12. Let v € R and X € CV. Then

Dj~Ux =1 AjUa, for j=1,...,N, (3.6.12)

wipx =W Y, for w € Sy. (3.6.13)

Proof. This follows rather straightforwardly by virtue of the intertwining property of the prop-

agation operator. More precisely, from Eqn. (3.6.5) we have
i (¢A‘R%g) = Ojy (Pw e ’Rz\e’g> = <Pw8j e”‘) |R§Veg =i (Pv e”‘) ‘Rﬁ\gg = i)‘ﬂﬂ)\’Rgg,
and following Lemma 3.5.5 we obtain (3.6.12). Also, from Eqn. (3.6.4) we have
wpy = wh, el = P,w, oA = P«,’UNJ,;l oA = 1]),71]37 A = u?v_lzﬂ)\,

where we have used Eqn. (A.2.5). We note that if A € CV \ CY

reg’

Eqn. (3.6.13) may have to
be interpreted in accordance with the proof of Lemma A.2.1, Eqn. (A.2.2) for the irregular case

(xj = xy), i.e. as the result of an appropriate limit in momentum space. ]

Let A € CV. We recall that the plane wave e¢'* € C®(RY) is the unique solution (up to a
1,...,NN.
From Eqn. (3.6.12) it follows that ¢y for A € CV solves the “deformed” system (3.5.11) in

constant factor) of the system of partial differential equatons 9;f = i\;f for j =

CB>(RY). Hence, from Lemma 3.5.6 we obtain the following result which will be important in

Chapter 5:

Corollary 3.6.13. Let v € R and A € CN. Then the solution set of the system (3.5.11) in

CB>®(RY) is one-dimensional, and it is spanned by y.
Moreover, by virtue of Prop. 3.5.7 we obtain that 1 satisfies the QNLS eigenvalue problem:

Corollary 3.6.14. Let v € R and X € CN. Then 1 satisfies the derivative jump conditions
and —Apalzy, = S A2l

reg

Remark 3.6.15. We have remarked on the fact that vy satisfies the derivative jump conditions
simply by virtue of being the image of a real-analytic function under P,, cf. Prop. 35.6.8.
However, we wish to highlight the point that the pre-wavefunction satisfies these conditions by

virtue of being a common eigenfunction of the Dunkl-type operators.

Lemma 3.6.16. Let v € R and A € CV. We have

_ =1~ QA
YA = E Xop— 1R Wry W e
wESN
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Proof. We have, for each w € Sy,

wlwy e = wla el = @
by virtue of Cor. A.2.2. Now multiply by Xuw—1RY and sum over all w € Sy. O
Example 3.6.17 (The pre-wavefunction for N = 2). From Lemma 3.6.16 we obtain that

1/;/\17)\2 — (XR?# + Xisigla’Ygl) ei(A1,)\2) = <1 + i’yxisiAl) ei()\h/\z)

TGO ¥ N O A (i(Al,xz)_ i<A2,A1>)
e +>\1 W 21 (€ e )

i.€e.

g (21, ) = el M1T1FA272) +7)\11_7>\29(x2 — 1) (ei(Alml“Qm) — ei(Mml““’?)) .

It follows from Cor. 3.6.6 that we have

81,7¢)\1,A2 — i)‘1¢>\1,)\2) 82,7¢>\1,)\2 - i)‘Qw)q,)\Qa

and hence

—(0F + 03)¥x, o (21, 22) = (AT 4 A3)hag 0, (21, 22), if 21 # 22

lim (81 - 62)¢A1,)\2 (.’L’l,.’L'Q) - x%lira%l (81 - 82)¢A1,)\2 (xlaxQ) = 2'7¢>\1,>\2 (xlaxl)-

T —Tq
T1>T z <T9

3.7 The Bethe wavefunction

Note that for any X\ € (Cfr\ég the pre-wavefunction ¢y € CB>®(R") solves the QNLS eigenvalue
problem - except that it is not Sy-invariant (either in momentum or position space). This can

be rectified by symmetrizing v in position space.

Definition 3.7.1. Let v € R and A € CN. The Bethe wavefunction is given by
1
Uy =SWMyy = i > wipx € CBP(RN)V,
wWESN
Remark 3.7.2. This Wy is the same function as Wy defined in Chapter 2 (Defn. 2.5.1) using

the quantum inverse scattering method. We will discuss this equality further in Chapter 4 and

we will give a (new) proof of it in Chapter 5 (Cor. 5.2.4).

Theorem 3.7.3. [16,25,31] Let v € R and XA € CN. Uy, is an eigenfunction of F(01,...,0n~)
with eigenvalue F(iX), for any F € CINJ°N. Furthermore, Uy solves the QNLS eigenvalue
problem: it satisfies Eqn. (1.1) with E = ||A||?> and the derivative jump conditions Eqn. (1.2).
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Proof. Using Lemma 3.5.3 we have

F(1ry- s ONA)UN=F(D1,...,0n,) SNy = SME14, ..., 0N )0

=SMF>E ) = F(iA)Uy,

proving the first statement. Hence, by virtue of Cor. 3.6.14, Uy is an eigenfunction of —A. As
for the derivative jump conditions Eqn. (1.2), it can be easily checked that if f € CB>(RY)
satisfies it, so does wf, for any w € Sy. Taking f = v, using Prop. 3.5.7, summing over all w

and dividing out a factor N! we obtain that Wy also satisfies Eqn. (1.2). O

Remark 3.7.4. By virtue of Thm. 3.7.3, we see that the QNLS integrals of motion arise
as symmetric expressions F(01,,...,0n,) in the Dunkl-type operators 0;., which mutually
commute and act on Bethe wavefunctions as multiplication by F(iX). Recall the power sum
polynomials py, defined by pn(X) = Zévzl A7 It is well-known [42] that symmetric polynomials
in X are themselves polynomial expressions in the py(N), where n = 1,...,N. There are other
sets that generate CIN]°N in this way, but the p, allow for a useful physical interpretation. More

precisely, the p,(—i01y,...,—10N,) reproduce the integrals of motion discussed in Subsect.

2.2.2. In particular,

po(—i@lﬁ,...,—ia]vﬁ) :]\[7
pl(—i(‘?m,...,—iﬁNﬁ) = —1(81 +...+8N),
pa(—i01q,y. .., —i0n,) = —A.

The Bethe wavefunction Wy can also be obtained from 1 through a symmetrization in mo-
mentum space; in particular this demonstrates that ¥y is Sy-invariant not only in the particle

coordinates, but also in the particle momenta.

Proposition 3.7.5. Let v € R and A € CV. Then

Uy = SMGEM (N)pa. (3.7.1)
Proof. We have
S(N)GgyN)(A)l/})\ :SN,(YN)P,sN) ei}\ :P,gN)S,(YN) ei)\ _ 'sN)'S'(yN) ei}\
= SN PN giA =Sy = Uy,

where we have used Prop. 3.3.5, Eqn. (A.2.5) and Eqn. (3.6.4). O
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This approach leads us to the following well-known statement expressing the Bethe wavefunction

in terms of plane waves. This particular proof of it does not appear to be in the literature.

Proposition 3.7.6. [16,25,31] Let v € R and A € CV. Then

Uy = Z Xw—lRﬁs(N)G,(YN)('UJA) et (3.7.2)
wWESN
In particular,
Ualpy = SMGIM (X)e*. (3.7.3)

Proof. First, Eqn. (3.7.3) is established by restricting Eqn. (3.7.1) to the fundamental alcove
and using that v >\|R$ = el*. Eqn. (3.7.2) follows from the principle that a symmetric continuous

function is completely determined by its values in the fundamental alcove. More precisely,

Ua(@) = 3 vpy (wa)Ux(wa) = 3 Xy (wz)SMEN () A
wWESN wWESN
= Y Ny @SMEM ) MR = Sy (@) SMEM (wA) e @),
weSN weSN
since SMp = SOV for all w € SW), O

3.7.1 Periodicity

In order to solve the QNLS problem on a interval of length L € Ry, we need to impose L-
periodicity on Wy and 0;¥y in the j-th argument for j = 1,...,N. We will recover the Bethe
ansatz equations as conditions on the A that ensure periodicity. Denotet_ = sy_1...5251 € Sn,

so that t_(j) = j — 1 (mod N).
Lemma 3.7.7. Let y € R, L € Rug and A € CN. Assume X\ satisfies the BAEs (2.5.3). Then

MWEGME_X) =GP (N).

Proof. This follows from Eqn. (3.3.7) and Eqn. (2.5.6) with j = N, writing X' = (A1, ..., An_1):

ML GIN(E_A) = M GV (A, X) = W GINTD (N7 (V)
= GO\ (N) =GV, -

Proposition 3.7.8. [16,25] Let v € R, L € Rsg and XA € CV. Assume X satisfies the BAEs
(2.5.3). Then WUy and 0;¥y, for j=1,...,N, are L-periodic in each argument.
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Proof. Because of the Sy-invariance of Wy it suffices to prove that

Ua(z1,...,en—1,—L/2) =VUx(L/2,x1,...,2N_1),
ONUA(@1, -y ZN)|ay=—1/2 = ONOUA(TN, T1, - -, TN -1)|en=L/2)
where (z1,...,xNn-1) € ﬁ, with J = [-L/2, L/2]. Because of continuity of ¥ we may relax

this to (x1,...,2N-1) € Jiv, ie. L/2> x> ...>xNny_1 > —L/2. Note that A € RY because

of the BAEs. We have
UA(L/2,21, . an 1) = S(N)G(WN)()\) G ML/2 (w1 A AN TN 1)
_ S(N)EiGgN)(}\) G ML/2 izt A ATy 1)
_ S(N)GSN)(E,)\) oA L/2 GO @@t AN ey 1)

— S(N)G,(YN)('EfA) ei)\NL/Q ei()\lml-l-...-l—)\N,la:N,l) )
On the other hand
Ua(z1,...,eNy-1,—L/2) = S‘(N)GEYN)(/\) e IANL/2 gihazit AN 1EN 1)

so that it is sufficient to prove

S(N)G,(YN) (EfA) ei)\NL/Q ei(}\la,’l—i-...—f—)\N,l:CN,l) — S(N)G,(YN) (A) e—iANL/Q ei(>\1$1+...+>\1\771$1\],1) .

Similarly, for the condition on the derivative, we obtain that it is sufficient to prove

S(N)G,(YN) (tN_A))\N ei/\NL/2 ei(/\1:E1+...+)\N_1xN_1) —

S(N)G,(YN) (M) AN e~ IANL/2 ji(zit AN 12N 1)

Applying Lemma 3.7.7 completes the proof for both Wy and its derivative. O
We draw the reader’s attention to the fact that if v # 0 the pre-wavefunction 1y (A € CV)

cannot be made periodic by imposing a condition on A. We will illustrate this for the case

N =2.

Example 3.7.9 (N = 2). From Ezample 3.6.17 we will show that imposing L-periodicity on

Y, N 0 either argument leads to a contradiction. We have

()\1:E1+>\2{E2) 4 17 9(:172 o xl) <ei()\11'1+)\2x2) o ei(}\2$1+>\11'2)> .
Al — A2

L-periodicity in the first argument, viz. Y, x,(—L/2,2) = x, r,(L/2,2) for —L/2 < x < L/2,

¢)\1,)\2 (xly 332) - ei

translates as

Al — A Fiy o iNL/2 gidor iy o= iMaL/2 il _ (iMEL/2 jidow
A1 — A2 A1 — A2 ’
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i.e. for allz e (—L/2,L/2)

i)z _ M A1y gz AL T A2 ouaan/e

iy iy

It follows that A1 = Ao, which leads to a contradiction as follows. By De I’Hopital’s rule we have

(1, z2) == Azlilln—m Yag o (21, T9) = AT (14 09 — 21) (22 — 71)) .

Hence Yy \(—L/2,x) = Yy (L/2,x) for allz € (—L/2,L/2) implies that for all such x, 14+~y(z+
%) = oM Substituting x = +L/2 leads to vL = 0, contradictory to assumptions. L-periodicity

in the second argument can be ruled out by applying Lemma 3.6.12.



72

CHAPTER 3. THE DEGENERATE AFFINE HECKE ALGEBRA



Chapter 4

Interplay between the quantum
inverse scattering method and the

degenerate affine Hecke algebra

The purpose of this chapter is to highlight connections between the two discussed methods for
solving the QNLS eigenvalue problem, some of which may be known to experts in the field, but
which are not discussed in the literature. This interplay can be seen as something reminiscent
of Schur-Weyl duality; the Yangian of gl,, the algebraic object underlying the QYBE, is a
deformation of the current algebra of gl, and its representation theory should be related to that

of the degenerate affine Hecke algebra, which is a deformation of the group algebra of Sy.

4.1 Equality of the wavefunctions and dimension of the solution

spaces

In chapters 2 and 3 we have reviewed the construction of the Bethe wavefunctions ¥y using two
different methods. To distinguish them, for now we refer to them as \I!?SM = By ...Bx, ¥y and
IAHA — S(N)hy . Tn order to prove that WM = wdAHA it would be helpful if the solution
space of the set of equations they solve were one-dimensional. Unfortunately, the solution space
of the system Eqns. (1.1-1.2) is not one-dimensional; We illustrate this by the case N = 1. Let
A € C. The most general eigenfunction of —9? with eigenvalue A? is given by

_ w : _Cio >‘+:u iz )\_lu’ —iAz
U(z) = co <cos()\x)+ 5y sm()\x)> =3 ()\ e +7)\ e ),

73
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with ¢, i € C. For L-periodicity we need the Bethe ansatz condition e!** = 1, but no additional
condition on u. Thus we have a 2-dimensional space parametrized by the constants ¢y and pu. If

we choose ;1 = £, ¥ is also an eigenfunction of —i0, with eigenvalue ;1 and we recover ¥, o el

However in [16] a useful result is obtained for the generalization of the eigenvalue problem to

affine Weyl groups. In the case of the symmetric group, and using the present notation, we have

Theorem 4.1.1. [16, Thm. 2.6] Write J = [—L/2,L/2] for some L € Rsg. Let v € R and
X € CN. Then the vector space of functions U € CB>®(RN )N satisfying the derivative jump
conditions Eqn. (1.2) and

P(=101, .o, = 10N W]y, = PY|yx,  for P e C[X]™ (4.1.1)

has dimension at most 1; the dimension equals 1 if and only if A is a solution of the Bethe

ansatz equations Eqn. (2.5.3) and A € RY

reg*
It is important to impose Eqn. (4.1.1), which is a stronger condition than Eqn. (1.1), and can
be seen as defining a particular self-adjoint extension of —A. Fortunately, both the QISM and
the dAHA approach take this into account; both yield that Wy satisfies (4.1.1), so we obtain

from Thm. 4.1.1 that \IJ?SM and \IJC}\AHA are proportional.

Having discussed the dimensionality of the solution space of the QNLS eigenvalue problem, we

can use this to demonstrate that ‘P?ISM = \IfdAAHA.

Theorem 4.1.2. Let A € CY

No. Then UM = pgArA,

Proof. In view of Thm. 4.1.1 it is sufficient to establish that WgISM(O) = U{AHA(0); we will
in fact show that evaluating both expressions for the Bethe wavefunction at & = 0 yields 1.
For the QISM wavefunction, we use induction. The case N = 0 is obvious. To go from N to
N+1,let i € 3?,111 and note that limg_.q E, = 0 unless n = 0. Hence for A € CNH1 write

reg

AN = (A1,...,A\n) and note that

gM )= i (B \I,Q/ISM)
A (u) xl,...,:gNmH%O AN41E A (x)
N+1
1 N
= 1 - i)\N+1$j ‘IJQ,ISM . — 1
T s P BL SM@) = 1,
J:

by virtue of the induction hypothesis, and the fact that By F is continuous at the hyperplanes
Vi for all F' € H. To prove the statement for \IId)\AHA, simply let Eqn. (3.3.8) act on 1 € C*(CV,)

reg

and use that w, (1) =1 for all w € Sy. O
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We will give a new proof in Chapter 5 that \IlgISM = PYAHA,

Remark 4.1.3. Having fized ¥»(0) = 1, we have chosen a normalization of the wavefunction.
This does not make ¥y a probability amplitude, i.e. |¥x|| # 1. By obtaining formulae for the

norm ||U || one finds the corresponding probability amplitude HTl,\H\P

4.2 Recursive constructions using the dAHA

As mentioned earlier, an advantage of the QISM is the appearance of a recursive formula Eqn.
(2.5.1) immediately from the definition of ¥y. In the dAHA method these recursive relations
can be obtained from the embedding of Sy into Sy4+1 in Lemma 3.1.1. We will do this for the
pre-wavefunction v as well as the Bethe wavefunction Wy. The regular representation of the

dAHA in momentum space plays a key role here.

For A € C, denote by &) the element of End(F(RY), F(RVT!)) determined by

(é)_\f) (1, ZN41) = el AN +1 flz1,...,xN),

for f € F(RY) and (z1,...,2y51) € RVFL

Proposition 4.2.1 (Recursion for the pre-wavefunction). Let A = (\1,..., An11) € CVFL and
@ = (z1,...,on41) € REST. Writing X = (A1,...,An) € CV, we have

N+1
YA = Z SmN+1,ySm N+1 (H 91<;N+1> e (AN+1)YN-

k=1

Proof. Applying Lemma 3.1.1 and Lemma 3.6.16 we obtain

N+1
_ 1~/= i
= X ,1RN+1’UJ L el A X5mN+1 (w')~ 1RN+1SmN+1,’Y( ) W SmN+1€
’LUGSN+1 m=1w'eSy
N+1
_ rN—1,~1 i
= E Sm]\H—l"/ E XSmN+1 1]RN+1 (wv) W Sy N+1 €
w'eSN
N+1
1~/ )\
= § SmNJrl ASm N+1 E X (w') 1RN+1( ) 1
m=1 w' €SN
Write ' = (z1,...,2N) € Rﬁgg. Now, X(w')*lRf“(m) = 1 precisely if x,(1) > ... > Ty (ns1)s

but w'(N 4+ 1) = N + 1, so the condition X(w/)_1RN+1($) =1 is equivalent to X(w/)qu(az') =1
+

and @ x) > Ty forall k=1,..., N, ie xx >zy4q forall k=1,..., N. This yields

N
X(wry- 1+ () = (H 0y, — $N+1)> X(w)-1ry (@)

k=1
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and hence
N+1
N =1~ A,
Ua( Z Sm N+1,75m N+1 H9 T — TN41) Z Xw,Rf(:c)(ww) ' ™)
m=1 k=1 w'eSN

. . i i WU\ !
Finally, using e/{*®) = el Av+12541 o2 e have

N+1 N
T/’A@) = Z gmN—i—l,’ySmN—i-l <H Q(CCk - xN—&-l)) e ANHIZN 41,

m=1 k=1

Y Xy (@) (@) T X,

w' €SN

where we recognize the summation over w’ as 1y (2’), as per Lemma 3.6.16. O

Proposition 4.2.2 (Recursion for the Bethe wavefunction). Let A = (A1,...,Any1) € CN*H

and © = (z1,...,2n11) € RV Write X = (M1, ..., A\y). We have
| N | N+l
‘I’A = mm:1 §mN+1T;N(>\/)é7()\N+1)\IJ)\/ = mm:1 §mN+1,’yé7(>\N+l)\I’)\/.

Proof. Using Prop. 3.7.5, one of the identities from Lemma 3.1.2 and Prop. 3.3.3, we obtain

N+1
g H 1 ~ jod ~— i /
=St = o7 > Gmvn), SV O e
m=1
| N ;| N
S(N) N . -
ZSmN—‘rl'ye An+1) SV e = 7ZSmN+1;\/€ (AN+1) P
T N1 N1

establishing the first expression for Wy. The second expression is equivalent to the first by virtue

of Lemma A.1.6 and the identity s, ...sySW) = smN+1S(N) in Syy1. O

4.3 The Yang-Baxter algebra and the regular representation of
the dAHA

In this section we note that the regular representation of the dAHA occurs in a natural way
in the Yang-Baxter commutation relations as presented in Cor. 2.4.6. This does not appear to
have been documented in the literature on the subject. However, it is another indicator of the

close relationship between the dAHA and the QISM.

Lemma 4.3.1. Let A\j, A\j11 € C. Then

kily gkala) _ ko l1 k1 l2 koli kil _ ko l1 k1 l2
(T Thete) = )\—/\]H(TJ Tl — Tihil) = iy (ATihTil).
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In particular, Eqn. (2.4.16), Eqn. (2.4.20) and Eqn. (2.4.28) can be written as

A By = (gj,va/\jﬂA/\j) ’ (4.3.1)
D>\j+1B)\j - (gj,’YB/\jHD/\j) ) (4.3.2)
Cry By, = (i AjDAjHAAj) . (4.3.3)

Proof. This follows immediately from Eqn. (2.4.15). We have used §;, = §; — i'ij and

5j5j~ = 8j—~3; in the derivation of Eqns. (4.3.1-4.3.2). O

Notation (Delimiting the action of divided difference operators and deformed permuta-
tions). The parentheses in (Ajﬂ]?llﬁ]ilf) delimit the action of the divided difference oper-
ator Aj it only acts on the A\; and \j11 appearing inside the parentheses. The same holds
for expressions such as (§jﬁB,\j+1D>\j) involving the deformed permutations. We emphasize
that typically the integral operators ’7;’” act on functions that do not depend on u, in which

case the parentheses are unnecessary.

From Eqns. (4.3.1-4.3.2) we can derive various expressions for the action of A, and D, on the

wavefunction Wy:

Proposition 4.3.2. Let v € R, L € Ryg and (X, Any1) € CV*L. Denote by wo the longest
element in Sy (sending j to N+1—j, for j=1,...,N). Then

A/\NH‘I’A = SN,—~y.--81,-451...8N e~ IAN+1L/2 Uy
_ (1 . i'yANN_H) (1 - ifyAlN+1> oA L/2
=i (1= 17A1n1) o (1= iyAn g ) e Veb2 gy,
Dy Wa =8Ny ... 81581 ... 3y eV l/2 gy
_ (1 + iyANNH) . (1 v wAlNH) GANIL/2 g
= Wy (1 + i’yAlNH) . (1 + i’YANNH) e AN H1L/2
Proof. We will derive the expressions for D), Y from Eqn. (4.3.2). We have
Dy 1%a=Dxy, Bry--- By ¥y

= N By DoanBayy - BnUp = oo =8N .81, By, - By Dy Uy

= SN,y -- .§1,7§1 .. ‘§NB>\N .. -B)\lD)\N+1\I’U)'

We have moved the D operator to the right as far as possible; now we use D) ¥y = el AL/2 Wy
and we obtain

= o = iAng1L/2
Dy Yx=38Nn~...51451...5y€ "N / By, ... By Yy,
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leading to the first expression for Dy, ., ¥5. Lemma A.1.7 provides us with the second expres-
sion. From Aj N4l = wOANH,]- N+1Wo and wg € Sy we obtain the third expression. The

expressions for Ay,,, W are found in the same way, starting from Eqn. (4.3.1). O

We can now easily recover more properties of Ay, Wx and Dy,  ¥x.

e Since Wy is Sy-invariant in position space, so are A)\N+1\Il)\ and Dy, ¥x (any permuta-
tion w commutes with the operators 5;, acting in momentum space and with the factor
el MW+1L) - Because { Uy : A satisfies the BAEs (2.5.3) } form a complete set in Hy, we

obtain that A, and D, are operators on Hy.
o Ay ¥a and Dy, , ¥, can be obtained from each other by v — —v, L — —L.

In fact, using this formalism we can provide an alternative proof for Prop. 2.5.6.

Proposition 4.3.3. Let v # 0, L € Rwg and (A, p) € CN*L. Then

N .
AuUx = (A e 20y 1+ 3 () e V2

R A"H“"
j=1 Al J
N .
_ - _ i Oy
D,y = T (A) olHL/2 U — Z Y (’\j))\,% oL/ q”\j,ﬂ‘
j=1 J 1%
Proof. Write Ax11 = p. It is sufficient to prove
SN~ 8181 .. By e AN HL/2 SN —
N .
i — i) — 1y ~ ~ 5
=|e >\N+1L/27-)\N+1()\) - Ze AL/2 T,\j()‘j)msj“-sN S(N); (4.3.4)
j=1

this would concern the formula for D,V y; to obtain the equivalent statement for A,V apply
v — —v, L - —L. Eqn. (4.3.4) can be proven by induction; the case N = 0 is trivial. To

establish the induction step, we first observe that

iy

oy S =
VY . . . i
:< NNty 1Y ) SO S LAY
AN — AN41 AN —AN+1/ Aj— AN
_AN AN tiy iy S iy Iy A
= W N 7)\N+13] ..SN_25NSN_1SNS W= A 7)\NS]...SNS
AN —Anpi iy iy o sy iy e )
= Si...SNSN_1SVY — 5;...5NS
AN —AN41 A= Angr NoN=L AN —AN41 Aj — Ay 7 N
A — ) . . . . )
:< NZANp Y 1Y 1T al >§j...§NS<N>
AN —AN+1 Aj— AN+ AN — ANt A — AN
Aj— AN —1iv ivy 5 - &)
— S;...8 S .
N— AN A=Ay N
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Now write X' = (A1,...,An_1) € CV~! and note that SV"DSW) = S(N) 5o that, by virtue of

the induction hypothesis, we have

SN~ 8181 By el SN — gy s 5 Ey o e WL s S =
N-1
= in. el,\NL/szN(X) Zel)\]L/Q T/\Z()‘}))\ 1_7)\N§] Sn_1 3(N-1)§N§(N)
j=1
N-1 :
= | sy el)‘NL/QT_N(XﬁN— elAﬂL/QTA (AE)SN"/)\.I_V/\ Sj...5N S
j=1 TN
iAnNi1L/2, _— iIANL/2 _— (y/ ° ~
<e o N“(A) e T)\N()\))\N—)\N+1SN+
N-1
A — Ay —1i i ~
iNL/2 = 31\ N N 1Y g = (N)
e VLT (D) SN | S
s A )\j — /\N /\j — )‘N-‘rl
N .
— | eidN1L/2 = (}\) _Zei)\jL/Q _()\A) 17y 3 3 SV
= TANH TAj ]7/\-—)\]\[4_1 j---SN R
j=1
which establishes the induction step. O

Remark 4.3.4. As the statements made in this section are a direct consequence of the QYBE
(2.3.4), it follows that the dAHA plays a role, through its reqular representation, in the theory
of any physical system with an R-matriz given by Defn. 2.3.1.

4.4 The ()-operator

For the QNLS model we can follow a method from statistical mechanics, initially formulated
by Baxter for the eight-vertex model [1,2], which has been deployed for other solvable lattice
models and spin chains (see, e.g. [3,37-39,48,55]). In this method one constructs an operator
Qx, known as “Baxter’s QQ-operator”, which is in involution with the transfer matrix 7}, and
typically used to find the spectrum of 7}, as a substitute for the Bethe ansatz. Its application
to the QNLS model is particularly interesting since it affords a connection to the Dunkl-type

operators from Chapter 3.

Theorem 4.4.1. Let v € R and L € Rsg. There exists a family of operators {Q, : p € C},
densely defined on Hy = Hn([—L/2,L/2]), satisfying the following conditions.

(i) For all A\, € C,
[T, Qu] = [@x, Qu] = 0. (4.4.1)
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(i1) The TQ-equation holds for all € C:
T,Qu= e inb/2 Qu+yivy + etnl/? Qu—i~- (4.4.2)

(iii) If X € CN_ satisfies the BAEs (2.5.3) then Qx; YA =0 forallj=1,...,N.

reg

Proof. First we assume that (X, u) € CN+! and A satisfies the BAEs (2.5.3). Then from Thm.

reg

2.5.7 we know that the Bethe wavefunction W is an eigenfunction of the transfer matrix 7},
T, = (72 1) + o2 7 (0))

Multiplying by Hé\f:l()\j — p) we arrive at

N N N
T | TIOG =) | Oa= e 2T — p—iv) + 22Ty = n+iy) | Ua. (4.4.3)
j=1 j=1 j=1
Using the completeness of { Uy : A satisfies the BAEs } in Hy, we may define the operator @,
on a dense subset of Hy by specifying its action on Bethe wavefunctions as follows,

N

QuUx = [ [T —m | ©a, (4.4.4)
j=1

and extending this linearly. Property (iii) follows immediately. Eqn. (4.4.3) now reads
T,Qu¥ N\ = (e_i“L/Q Qutiy + etnl/? Qﬂ—m) V.

Eqns. (4.4.1-4.4.2) follow by applying them on Wy, where A satisfies the BAEs (2.5.3), again by

using completeness. O

We recall the Dunkl-type operators 9, j = 1,..., N, which act as 9; in the fundamental alcove

Rf . With this in mind, we now present the main result of this section.

Theorem 4.4.2. Let A € CY, be a solution of the BAEs (2.5.3). Also, let i € C. Then

reg
N
Qu¥x = H(—i&m — ) | Ua
j=1
and we have the identity
N N
Qu=T1(=100 — 1) = ()Y Y 1" en(=101,. ., — 10N, )"
j=1 n=0

on a dense subspace of Hy, where the elementary symmetric polynomial e, is given by

en(N) =) ﬂ A, = S A, (4.4.5)

i€JN m=1 1<i1<...<in <N
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Proof. Since Hj.vzl(— i0j, — p) is a symmetric polynomial in 0y , ..., 0Ny, we may use the first

part of Thm. 3.7.3. Together with Eqn. (4.4.4) this implies that

N
[1(=i055 — 1) | ¥a = Qu¥a.

j=1
As { Uy : A satisfies the BAEs (2.5.3) } is complete in x and both @, and symmetric expres-

sions in the 0, are defined on a dense subspace, the second result follows. O

Remark 4.4.3. Referring back to Eqn. (2.2.8) and Eqn. (3.5.7), we have seen the power sum
symmetric polynomials in the Dunkl-type operators appearing as expansion coefficients with re-
spect to p in the transfer matriz T),. The expansion of Baxter’s QQ-operator yields the elementary
symmetric polynomials in the Dunkl-type operators. We remark that both sets of polynomials
generate the algebra of symmetric polynomials in N indeterminates. From a physical perspective,
T and Q are generating functions for alternative sets of integrals of motion. T is the natural
object in the QISM and Q is the natural object in the dAHA method. The TQ-equation (4.4.2)

connects these two approaches.



82

CHAPTER 4. INTERPLAY BETWEEN THE QISM AND THE DAHA



Chapter 5

The non-symmetric Yang-Baxter

algebra

In this section we set out the main body of original work in this thesis. We will describe operators

ay, bff, cff, d,, that are extensions of the operators A,, B, C,,, D,, € End(H([-L/2, L/2])) from

Chapter 2 to a dense subspace of h = h([—L/2, L/2]). These operators generate a subalgebra of
End(h) which we will call the non-symmetric Yang-Baxter algebra. For example, we will discuss

operators bff € Hom(hn, hnyy1) that generate the pre-wavefunctions recursively, i.e.

_ _ 1t
dulwwAN+1“bAN+1¢“1wwAN _'bA1¢A2wwAN+17 (51l1)

in correspondence with Eqn. (2.5.2):

note that since 1y, . is not Sy4i-invariant (in position or momentum space), it is natural

AN

that there should be two ways of recursively expressing it as in Eqn. (5.0.1). We will prove

this recursive property based on Cor. 3.6.13 and identities 8j’7b;N+1 by, = A0

ot +
G

[N by, and
= )\]’l):\~'1 .. .bi‘NH for all j =1,..., N 4+ 1. Using the definition of ¥y in terms
of the 1y, which are in turn defined in terms of representations of the dAHA, and the above

recursion Eqn. (5.0.1), we are able to give a new proof (Cor. 5.2.4) for the QISM recursion

Uy = Hj.Vzl B, Uy.

Also, in Section 5.3 we will obtain commutation relations for the non-symmetric Yang-Baxter
algebra on a subspace of h by expressing the operators a,, d,, and cljf in terms of the bff and

using Eqn. (5.0.1).

83
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5.1 The non-symmetric integral operators

5.1.1 Definitions and basic properties
For N € Z>p, n=10,..., N we recall
N ={(,....0n) €{1,...,N}" iy F iy for l #m}.

We also recall that given ¢ € i}, and = € J N unless otherwise specified, x;, denotes L/2, and
%, ., denotes —L/2.
Let N be a nonnegative integer and f € F(JV). We can act on such functions by “deletion”,
“insertion”, and “replacement” of variables, as follows:
Deletion. Let # € J¥N*t and j=1,...,N + 1. Then

(@i f)(x) = f(x;) = fx1,.- -, Tjy .-, TNF1)- (5.1.1)

Note that ¢; € Hom(F(JN), F(JN+1)).

Insertion. Let y € J. We consider ¢*(y) € Hom(F(JN*1), F(JN)) given by

(¢+(y)f)(w):f(y,l’l,...,l']\[), (éi(y)f)(a:) :f(xlv"meay)' (512)

Also note that
(6% (y), 0~ (2)] = 0. (5.1.3)

The operators ¢ (y) are non-symmetric versions of the quantum field ®(y) (up to a scalar

factor).
Replacement. For j =1,...,N and y € J, we have
(¢]~>yf)(x) = f(l'b s Li—1, Y, Tj41, - - - 7xN)a

and, for ¢ € iy, y € J",
n
Gisy = H i —sym - (5.1.4)
m=1

We note that ¢; ., € End(F(JV)); furthermore, for all w € Sy we have

w¢,,;%y = (bwiﬂy’w. (5.1.5)
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Given i = (i1, ...,i,) € iR, write ¢4 = (i1 +1,...,i, + 1) € ik, ;. Recall the notation ¢; for the
multiplication operator in End(]—"(Rﬁ\efg)) defined by (6;f)(x) = 0(xs, > ziy, > ... > z;,) f(x),
for f € F(RY,), z € RY,

reg*

Definition 5.1.1. Let L € Ry, A € C and n = 0,...,N. Given ¢ € iy, the associated

elementary (non-symmetric) integral operators,

At ~t
6A1_6A11 in hN_>hN+1

—+ _ _+ .
€>\'i = 6)\.2‘1“.% by — b,

~+ -+
€xii = it in tbNg1 = b,

are densely defined on 0(|[—L/2,L/2]) by means of:

Tigm+1
~+ _ 1)\11 iz o
eM|aN = 01 (H / dym € ATy +1—Ym > ¢l+_>y¢1, where z;,., 11 = 71,

Z'm+l'~'1

Ti,

A— 1)\:p me iA(x;

€. 1,|DN = Nt ON 14 < I | / dyme A@im ~ym ) ¢'L~>y¢N+17 where Tip = TN+1,
Tip,

—+ —1)\L 2 xzm m .
eA;i|aN = / (H / dym v ) Di—sy,s
Lim41

Erilon = elA/2 g (H/ dym ei”“m‘”’”) Gisy,
é;i‘bwﬂ =0; (H / dym e Ao i ) ¢i%yéi(y0)

m=0" Timi1

TL+1 Iim—l . -
é;;i‘DNH =0; <H / dym el)\(ximym)> (biﬁy(fr(yn‘f'l)'

m=1

For the latter four operators, the standard conventions x;, ., = —L/2, x;, = L/2 apply.

Note that for n = 0 the above definitions éf = éf\?w simplify to

()@, .. ang1) =M f(za,. .., 2N41)

(x P (@1,. o ongr) = AN f(zy, L ay).
We have already encountered the operator €, in Section 4.2. Note that

A/-i- 61)\ — el(u,)\)7 é; el)\ _ el()\,u)7

which can be seen as the v = 0 case for the intended recursions Eqn. (5.0.1).

Example 5.1.2. Let A € C. The statement

3

o N .
€xalo, =€ 931/ dy M@ 7Y) ¢y o
X

1



86 CHAPTER 5. THE NON-SYMMETRIC YANG-BAXTER ALGEBRA

means that for all f € 09, (v1,22,23) € J3 the function éj\,zf 1s defined by
) 3 .
(éIQf) (:Clv €2, .733) = el)\xl 0($3 - xl)/ dy el)\(m?)iy) f(y7 x?)‘

1

Useful properties of these maps are listed and proven in Appendix B.

Definition 5.1.3 (Non-symmetric integral operators). Let L € R-g, v € R and \ € C.

define the operators ay, bf, cf, dy on by by specifying their action on 0:

— n _ —+
a) = E Y Axn, where aA;n‘DN = § x>
n>0 iein,

+ nyt + _ At
by = E Y0y where b,\;n|0N = g Exis
n>0 el
+ n + + _ ~+
cy = g V" s where ¢y fony, = €
n>0 1€,

n J—
dy = g Y dain, where danloy = g €y
n>0 icin,

(5.1.6)

(5.1.7)

(5.1.8)

(5.1.9)

We

Proposition 5.1.4 (Properties of the non-symmetric integral operators). Let L € Ryg, v € R

and X\ € C. The operators ay, bf\E, ci:, dy have the following properties.

(i) We have

ax(0n),dx(dn) C b, by (On) C b1, cx(On) C b1, s (ho) = 0.

(i1) bf is the formal adjoint of c;\;, and ay s the formal adjoint of ds.

(iii) The actions of ay, bf, cf, dy on Uy are as follows:

a Uy = e A2, (bEWy) () = €2, Fy =0,  dyy = e M2 0y,

(iv) The operators ay, b)i\, cf, dy are bounded on the dense subset bhg,. Hence, they can be seen

as endomorphisms of b and can be composed with other elements of End(h).
(v) For w € Sy, we have
[w7a>\”hzv = [wvb)_\”hz\f = [w7c;\i-”hN+1 = [wvd)\”hzv =0.

Furthermore,

[S™ ax]lgy = [SM, b5 1lox = [SY), X Tlonsy =[S, da]gy = 0.
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Proof. We prove each property separately.
(i) This follows from the definition of the elementary integral operators.

(ii) Using Lemma B.1.1 we see that

CTNED SR oI CHRINED 92D ol () NEY (209 N

in
'LElN ZElN

where f € hy_1 and g € hy. The other adjointness relations are demonstrated in the

same fashion.

(iii) This follows immediately by using the definition of these operators in terms of the elemen-

tary integral operators.

(iv) This follows from the triangle inequality for the operator norm and the fact that the ay,

bf, ci:, dy are all finite linear combinations of the elementary integral operators.

(v) This is obtained by summing the statements in Lemma B.1.3 over the appropriate multi-

indices 1. O

In light of Prop. 5.1.4, Property (i), the operators bi[ will be referred to as the non-symmetric

creation operators.

Example 5.1.5 (N = 2). We will present here expressions for the action of the non-symmetric
integral operators ax,bf,c)i\,d,\ on suitable functions f. The reader should compare this with

Example 2.4.5. For f € 03 and (x1,22) € J? we have

1 T2

dy €A £y, xa) + / dy ) f(ay,y)+
—L)2

z1 T2 )
+7%0(x1 > xg)/ dy1/ dyp e AE T TITY2) £y )4
To —L/2

(axf)(ay, w2) = ™M/ <f(x1,:n2) + /

—L/2

z2 z1 )
+ 720(zg > xl)/ dy1/ dyg e M@ Fe2yi—2) f(yz,y1)) ;
2 —L)2
L2

) L/2 . .
(drf) (w1, x0) = e A/2 (f(ﬂfhl‘z) +’Y/ dy e M) £y, 2,) +7/ dy @) (2, y)+

Tl T2

L/2 .
+720(z1 > 22) / dy / dyp e NPTV (4 o) 4
1 T2

L/2 .
+ v20(zg > xl)/ dy1/ dyg e Mo 2=y =) f(y%yl)> :
T2 Tl
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For f € 09 and (x1,x2,23) € J> we have

. xs .
(b3 f)(z1, 32, 73) = €773 (f(l‘lamz) +790(z3 > 3?1)/ dy e M@=V £y, 9)+

z1
3

+0(z5 > x2)/ dy e MT27Y) f 2y )+

2

xr3 X1 .
+7%0(z3 > 21 > :rz)/ dyl/ dy ! N@1FE2=I=Y2) £y go)
X X
24 2 _
+7%0(x3 > 29 > 1'1)/ dyl/ dyg el A @1 +e2=y1—y2) f(y%yl)) )
xr2 1

. x2 .
(bj\rf)($1,$2,933) = ¢!AT (f(952,903) + ’79(5U2 > 931)/ dy el Me2=y) fly,x3)+

1
z3

+ ~0(x3 > Il)/ dyei’\(z?’*y) flxa,y)+

1

x2 x3 )
+720(x2 > x5 > xl)/ d?/l/ dyg e AF2H T v =02) £y o )4
x3 1

x3 X9 )
+v%0(x3 > 29 > a:1)/ dy1/ dyg e T2t Ta—y1—y2) f(y2,y1)> .
X2 x1

Finally, for f € 03 and (v1,22) € J? we have

1

L/2 L/2 .
(cx f)(z1,22) —/ dyf(y,:vl,xQ)Jr'y/ dyl/ dyp e MELTIT2) f(yo 4y a0)+
—L/2 1 —L/2

L/2 To )
+fy/ dyl/ dyg ! A@27V1782) (4o 2y gy )4
x9 —L/2
L/2 1 T2 R
+9%0(z1 >$2)/ dyl/ dy2/ / dyz e A@TIFE2V1=02=08) f (g 4 yo) 4
x1 ) —L/2

L/2 T2 1 )

+7%0(x > x1) / dy1 / dy2 / dys e ATIFT2TYImv270) f (g gy ),
To 1 —L/2

L2

(e Dlarvaz) = [

~L/)2

L/2 To )
+’Y/ dyo/ dyy e A@27078) f (g gy yo)+
x9 —L/2

L/2 1 )
dyf(xl,xQ,y)Jr’Y/ dyo/ / dyy e M@0 f gy o yo)+
x1 —L/2

L/2 x1 T2 .
+~7%0(x1 > :L'g)/ dyo/ dyl/ dyp e AEFE2M0TIITY) f () gy )+
z1 x2 —L/2

L2 @2 1 .
+ 920 (x> 1) / dyo / d?/l/ / dyp e MEFE =) f (4 ) yyg).
T2 T —L/2

5.1.2 Connections with the QNLS symmetric integral operators

We now highlight why the operators a), bf, cf, dy are relevant to the study of the QNLS model.

First of all, we have
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Lemma 5.1.6. Let J = [—L/2,L/2] with L € Ryg, vy € R, A€ C and F € Hy. Then
a\Flyy = A\F| SUV+Ubf}WJf+1:aBAPWIf+1
C;\‘:F|J_]~_V*1 :CAF‘Jf*1 d)\F‘JJIrV :D)\F’ler\f.
Proof. By summing over all suitable 4 in Lemma B.1.5; we remark that in the definition of b*

there is an extra condition on % (involving the labels 1 and N + 1, respectively), so that we need

to symmetrize to get a sum of all ¢ € ’J’}thl. O

Proposition 5.1.7 (Symmetric integral operators as restrictions of non-symmetric integral

operators). Let L € Ryg, v € R and A € C. Then
auy = Ay, SV, =By, gy =C, daluy = Da
Proof. We make the following observations.
e From Prop. 5.1.4 (v) we may conclude that ay and d) map Sy-invariant functions to

Sn-invariant functions.

N+1)b;\t

e The two operators S evidently map to Sy4i-invariant functions and by virtue

of Lemma 5.1.6 their actions on an element of Hpy coincide on the alcove and hence

everywhere.

° ci maps Sy 41-invariant functions to Sy-invariant functions due to Prop. 5.1.4 (v); more

precisely,
cjg(NH)f — C;\"S(N)S(N-H)f _ S(N)C;\FS(]\H_U]C,

for an arbitrary f € hyy1. Also, by summing over all suitable ¢ in Lemma B.1.4 we obtain

that c;\r|7.¢N = ¢) |1y 50 that ¢ has the same property.

Since Sy-invariant functions are determined by their behaviour on the fundamental alcove J J]rV ,

application of Lemma 5.1.6 completes the proof. O

An important consequence of Prop. 5.1.7 is the following
Corollary 5.1.8. Let L € Ryg, v € R and A € C.
BySW™) = SNty € Hom (b, Hy+1)-

Proof. From Prop. 5.1.7 we obtain that BySN) = S(N“)b;S(N). Applying Prop. 5.1.4 (v)

gives the desired result. O

Cor. 5.1.8 can be neatly conveyed as a commuting diagram (Figure 5.1.1).
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by
by —————— by

S(N) S(N+1)
B
Hy ————— My
Figure 5.1.1: Diagrammatic presentation of Cor. 5.1.8

5.1.3 Relations among the non-symmetric integral operators

The following proposition will be used to reduce statements involving the operators aj, cf and

dy to statements about bf\c.
Proposition 5.1.9. Let L € Ry and v € R.
(i) For A € C, in End(hy) we have
by o (=L/2) = ¢*(=L/2)s1b, by (L/2) = ¢ (L/2)snby,
i.e. for f €on and (x1,...,zN) € JN we have

(bigzvﬁ'(—L/Q)f) (1,...,zN) = (b;\rf) (x1,—L/2,29,...,2N),
(b;J)_(L/2)f) (1,...,zN) = (b;f) (x1,...,oN-1,L/2,zN).

(i) For A € C, in End(hy) we have
ay = ¢ (—L/2)b, dy = ¢~ (L/2)b},
i.e. for f €0n and (z1,...,2x5) € JV we have

(axf) (z1,...,xn) = (b5 f) (=L/2,21,...,2N),

(drf) (z1,...,2N) = (b;f) (z1,...,2N,L/2).
(iii) Let A\, € C. Then in Hom(by, hni1)
bia, = ¢t (—L/2)s1b5b7, bydy = ¢ (L/2)sn41byb;,,
i.e. for f €0n and (z1,...,2n11) € JV we have

(b;\i_auf) (xla s ,.TN+1) = (bi_b: ) (‘rlv _L/27x27 s 7‘TN+1)7

(b;duf) (T1,...,ZN41) = (b;b;f) (x1,..., 2N, L/2,2N41).
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(iv) Let A € C. In Hom(hn1,bhn) we have

vex = 107(L/2),an] = ¥ (=L/2)[¢ (L/2),03],
vey = 01 (=L/2),d)] = 67 (L/2)[¢* (~L/2), by .

Proof. The properties are proven separately.

(i) This follows from the definitions of é)i\. For the product ¢*(—L/2)s1b] note that those
terms in the underlying summation over ¢ € i}, with ¢; = 1 vanish, because of z1 € J:
either (... > —L/2 > x1) = 0 will occur or there will be an integral with upper and lower

limit equal to #1 = —L/2. A similar argument can be made for the product ¢~ (L/2)s nby -
(ii) This follows straightforwardly from the definitions of &*.
(iii) This is established by combining Properties (i)-(ii).

(iv) In (b5 f)(L/2,2,—L/2) (x € RY) split the summation over ¢ € i, into those terms with
i1 = N, corresponding to the terms appearing in (cj\rf)(:n), and those with i1 # N,
corresponding to the terms appearing in (ayf)(L/2,x). Then use ¢*(—L/2)¢~(L/2)b} =

¢~ (L/2)ay by virtue of Property (ii). A similar argument for b is used. O

Remark 5.1.10. Properties (ii)-(iv) in Prop. 5.1.9 may in fact be used to define a)\,d,\,cf\c.
These identities are generalizations of Prop. 2.4.2 (v), the corresponding identities for the

symmetric operators Ay, By, Cx, Dy € End(H).

5.2 Recursive construction of the pre-wavefunction

In order to prove the important recursive property Eqn. (5.0.1), we will present commutation
relations between bf and 0;, which are backed up by lemmas from Appendix B.2. Crucially,

this will also rely on Cor. 3.6.13.

First we need to address the difference in domains between the Dunkl-type operators (acting on

N
reg

integrable functions on the bounded interval [—L/2,L/2]). Note that the formulae defining

smooth functions on the regular vectors R::,) and the creation operators bf (acting on square-
the bi[ can be seen as defining linear maps, denoted by the same symbols, from C(R”) to
C(RN*1), for any nonnegative integer N; the reader should compare this to the interpretation

of By as an element of Hom(C(RN)%¥, C(RN+1)S¥+1) in Section 2.6. Furthermore, both bf
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restrict to elements of Hom(CB> (RY),CB>(RN*1)), as they clearly preserve smoothness on the

N

(open) alcoves of RY. By restricting the functions upon which the bf act to Rigg,

finally we

may view by as elements of Hom(C*(RNY,),C>*(RYF1)). Therefore, compositions of the form
(N+1)

am

COO(]RN ) —>COO(]RN+1).

reg reg

bf for j =1,...,N +1 and bf(?](g) for 5 = 1,..., N make sense as linear operators:

Proposition 5.2.1. Let v € R and A € C. Then in Hom(COO(Rgg),COO(RNH)) we have

reg

O by = iAby, N et =i, (5.2.1)
(N+1);— 31— q(N) (N+1) - (V) .
9,7 by =639, i1 bi = bjam , j=1,...,N. (5.2.2)

Proof. We write GJ(-N) for the partial derivative 0; acting on functions defined on (an open set

in) RY. For Eqn. (5.2.1), by collecting powers of v we see that it suffices to prove

O —iNbre =0, @™ —inpf, =0, (5.2.3)
NH) sy NAL), —
(O = A01 = AN forn=0,...,N—1 (5.2.4)
R PY D el
NA+1); — N+
AGT iy =0, AMeE =0 (5.2.5)
Eqn. (5.2.3) follows from (by., f)(z1,...,2n41) = e NN+ f(zy,... zy) and (bi_;of)(xl’ ce y TN41)

=M1 f(zg,...,2n41). Eqn. (5.2.4) is established in Lemma B.2.9, and Eqn. (5.2.5) in Lemma
B.2.10.

Again by collecting powers of v, for Eqn. (5.2.2) we see that it is sufficient to prove

N+1); — — N N+1 N
Rl R s N KA I N L (5.2.6)
PNV A= s (N) ez (V)
’(NH) At zNH) Am AL J(N) A ZN) forn=0,...,N -1, (5.2.7)
aj—&—l bi_;n—&—l_Aj—l—l bin = b;n+laj _b;\i_;nAj ’
NA+L), — — N N+1 N
AN =t AN AR = b A, (5.2.8)

We note that Eqn. (5.2.6) is trivial since (byof)(z1,...,2n41) = AN+ f(21,...,2y) and
(Of o) (@1, ang1) = €A f(zg, ... zn41). Eqn. (5.2.7) follows from Lemmas B.2.11 and

B.2.12 and Eqn. (5.2.8) is established in Lemma B.2.13. O

We can now prove one of the main results of this thesis.
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Theorem 5.2.2 (Recursive construction for the pre-wavefunction). Lety € R and (A1,...,An) €

CN. We have

Unprody = by -0y W = b . b Wy € CBX(RY), (5.2.9)

Hence, we have the recursion

Uairdy = Uxy Prrnodyos = b4 Ura,ny € CB(RY). (5.2.10)

Since the functions ¥y and the operators bff do not depend on L, we may interpret Eqns. (5.2.9-
5.2.10) as identities in hn([—L/2,L/2]), where we have denoted the restriction of ¥x to the
bounded interval [—L/2,L/2] by the same symbol.

Proof. First of all, we note that by ...by ¥y and b;\rl e bj\rN\IJ@ are both elements of CB>(R")
since ¥y € CB¥(RY) = C. In light of Cor. 3.6.13, showing that byy by, ‘I/@,bjl . .bi‘N\I/@ €
CB>(RY) are solutions of the system (3.5.11) would imply that they are at least proportional
to ¥x,,..an- Let j=1,...,N. Then

M= = —p= b= 9Dy e
O3, by, = by by, 0005 by

j+1 1Y
by repeated application of Eqn. (5.2.2) in Prop. 5.2.1. We invoke Eqn. (5.2.1) and obtain

(N), - - -y e oy g - -
O3 br by = by by, Ay by = EAby by by by

an identity in Hom(C*®(RY,,),C>®(RY,)), with C>*(R%,) = C. We obtain that byy -0y, o €

reg reg reg

CB>(RY) is an eigenfunction of 0](-7],\;) with eigenvalue i), for all j = 1,..., N, as required.

Similarly, we see that b;\rl .. .ij Uy is an eigenfunction of 0;, with eigenvalue \;:

(N)7+ + 3+ a(N=1) 4 + _ gt + (4) 3+ +
8m bA1 .. .b/\N = b/\laj_L7 b/\2 . ..bAN = ... = bA1 . ..b/\jilﬁmbM .. 'b,\N

_ ot + iyt o it + ot +
=bf b ANbELbE = A B b b

It follows that b;N...b;1W@ and b:{1 .. .b;\rN\If@ are multiples of vy, . \,. To see that they
are in fact equal, it suffices to show that the functions coincide on the fundamental alcove
Rf = {w eRN x> ... >an } Eqn. (3.6.2) yields wA17.,,,>\N|R$ = ¢lA1AN) | To see that
by -+ by, ol RY = e!A1:5AN) we need a simple inductive argument; in the fundamental alcove for
allj =1,...,N—1, we have zy < x;, so that for all fy_; € CB®(R""!) and (z1,...,zy5) € RY

we have

(b;NfN—l)(xl, ce,IN) = e ANTN fvo1(ze, .o eN—q).
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Now (z1,...,xN-1) € Rffl and if fy_1 =by _ fy—2 for some fy_o € CB>(RN~2) then again
we see that fy_1(z1,...,2n_1) = € WN-1EN=1 fir o(xq, ..., xN_2) so that
Oy Ory_ [N=2)(z1,. . 2N) = AN1ENIFANEN) o (2, wNog).

Continuing thus, we obtain that (by ...by ¥g)(21,...,2Nn) = 125 % Wy for
(z1,...,2x) € RY; hence byy - by, \If@h]w = el(MAN) a5 required. A similar argument shows

+ + (AL
that by, ...0{ Tplpy = e, O

Remark 5.2.3. Eqn. (5.2.10) can be seen as a Fourier transform of the statement in Prop.

4.2.1, and as a generalization of Eqn. (2.5.2) to non-symmetric wavefunctions.

We have demonstrated how the pre-wavefunction can be generated by the successive application
of operators b, . We are now able to give an alternative proof that the W defined using the
QISM (i.e. by repeated application of the operators BA].) is in fact equal to the Wy defined using
the dAHA (i.e. by symmetrizing the pre-wavefunction):

Corollary 5.2.4. Let L € Rug, vy €R and A = (\1,...,Ax) € CVN. Then

U =By Va0

N—-1"°
Hence, ¥y = By, ...B\Yy. These may be viewed as identities in both CB®(RM)SN and
Hn([-L/2,L/2]).

Proof. Straightforwardly we have, by virtue of Eqn. (5.2.10) and Cor. 5.1.8,

Uapay = S(N)whw-,)w = S(N)b)_\Nw/\17-~-7/\N—1 = BANS(N_l)w/\17~~-,)\N—1 =By VUai,an - U

Proposition 5.2.5 (Relation with the non-symmetric propagation operator). Let L € Ry,

vyeR and p e C. We have

PN er = b, PN € Hom(CB>(RY),cB>(RVT).

Proof. Note that the e (A € CV) form a complete set in hx(RY) (in the sense discussed in

Section 2.6). Hence the proposition follows from the observations

P§N+1)é; oA — P§N+1) elom) — Y

and

b, PN X = by = ¥ . O

The commuting diagram in Figure 5.2.1 conveys Prop. 5.2.5 succinctly. Furthermore, we can

summarize the contents of Thm. 5.2.2 and Prop. 5.2.5 in Figure 5.2.2.
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ey
by ————— by iy
P-\(/N) P,\(/N+1>
.

A
by ————— by

Figure 5.2.1: Diagrammatic presentation of Prop. 5.2.5 which conveys the notion that first

applying the propagation operator P§N) and then the y-dependent particle creation operator by

gives the same result as first applying the free particle (y = 0) creation operator e, and then
(N+1)
Py .

e . e . e €\ . e A
1 M ek 22 ainde) 8 o N1 gl A1) AN G AN)
0 1 2 N-1 N
PP=1 PM=1 P pNY PN
2% bxo oW ban-1 O
1 wkl wh,)@ ¢>\17 AN-1 w>\17 AN
S0)—1 SsM—1 S S(N-1) SV)
By, B, B, Ban_1 Ban
1 (W LSYPY Wriedvos — Yo

Figure 5.2.2: Scheme for recursive constructions of the wavefunction Wy. In the three rows we
have the non-symmetric plane waves, the non-symmetric pre-wavefunctions (highlighting the
new formulae from Thm. 5.2.2), and the symmetric Bethe wavefunctions. Note that the three
operators €, , by, By coincide when acting on hg or h;. The plane waves can be obtained from
the pre-wavefunctions by setting v = 0. This also works on the level of the creation operators;

when setting v = 0 in b, one obtains €, .

5.3 Commutation relations

Let J = [-L/2,L/2] be bounded. We will now prove commutation relations of the non-
symmetric integral operators ay, bf, cf\t, dy, which we will refer to as the non-symmetric Yang-
Baater relations. These operators are defined on a dense subset of hy = hy(J); however, we

will only prove these relations here on the subset
3]\]:(1/})\:)\6@]\[), (531)

i.e. the completion of the subspace of hy spanned by the pre-wavefunctions ).
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Proposition 5.3.1. Let L € Ry, v € R and u,v € C. Then

(b, b1 =0 € Hom(3n, jn+2)-

Proof. This follows from the fact that b, bf¢x and bjb, ¥x both equal ¥, 5, for X € CV, as
per Thm. 5.2.2. O

The next theorem generalizes the connection of the Yang-Baxter algebra with the regular rep-

resentation of the dAHA in momentum space studied in Section 4.3 to the non-symmetric case.

Theorem 5.3.2. Let L € Ry, v € R and A\, Mo An+1, An+2 € C. Then we have

SN+1b)‘N+2b>\N+1 = <§N+1,75;N+2b;N+1> € Hom(3n,3n+2)

Slbilb;\; = (§1ﬁb;\rlb;2) € Hom(gN,5N+2).

Moreover, we have

b;N+2d/\N+1 = (gNH"Yd’\NHb;NH) € Hom(3n, 38+1)s
by ax, = (51,7%\1 b};) € Hom(3n,3n+1),
or, alternatively,
dan oy, = (§N+1,'Yb;N+2d)\N+1) € Hom(3n,3n+1) (5.3.2)
a)\lb;; = (5177133\’—1@)\2) € Hom(gN,gNH). (533)

Proof. From Lemma 3.6.12, Eqn. (3.6.13) we have, for arbitrary (Ar,..., Ay42) € CV+2

SN+1UAL, Ant2 = SNALAYAL, Anao-

Using Eqn. (5.2.10) this is equivalent to

¢>\17 SA :§N+1,’yb_ ¢A1, HA

sN+10y, AN+2 >\N+1

AN+2 )\N+1

which yields the desired identity for compositions of b~. A similar argument applies for compo-

sitions of b, using s19x, . Ay.s = 514N Ay s A0A VN an i = Y DX Urg.Ax o

The statements connecting the operators b~ and d, and b and a, respectively, are obtained
by sending the appropriate x; to its minimum or maximum value (i.e., £L/2) in Thm. 5.3.2,
relabelling the remaining ; and using Lemma 5.1.9 (ii)-(iii). The alternative formulations Eqns.

(5.3.2-5.3.3) follow from Lemma 2.4.7. O
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“Unpacking” the notation involving the operators 5;, in Thm. 5.3.2 we obtain

sn41by b, — b, by = /\lju (b3, b, ] € Hom(3n,3n42),
S — b = 1 _”H (b5, b; € Hom(3x, 33 +2),
[0y, dy] = )\w,u (dxby, — dyby) € Hom(3n,3n+1),

by, a,] = )\__lfL (a,\b;r —auby) € Hom(3n, 38+1)-

Lemma 5.3.3. Let L € Rog, v € R and (A, Any1) € CVNTL. Then

. = = iANaL/2
a,\NH?/J)\ZSN,_A/...Sl’,,ySl...sNe IAN1L/ P

- (1 —iyAyn N+1) . (1 —ivA N+1) e AL/ 2 g (5.3.4)

d)\N+11/J)‘ = §N,’y . 517751 e <§N el)‘N'HL/2 w)\

= (1+ivAnng) o (T ivAiyg ) @ Menbi2 gy (5.3.5)

Proof. Using Eqn. (5.3.2) we can move the operator d to the right, as follows:

d,\N_Hw)\ = d)\N+1b;N R b;l‘llq) = §N+1’7b;N+1d)‘Nb)_\N71 e b;l\If@

= SN+1705 5, SN by Dy 1 by

)\Nfz"'bAl\I/@ = ... = SNy’Y"'SLWb

AN+1

by d, Py,

AN+1

From d, ¥y = € #L/2 gy we obtain
3 3 iA1L/2 3 303 3 iA L/2
d>\N+117Z})‘ = SN77 v Sl,'Y el ! / ’l/)>\2=---7>\N+1 = SNy'Y te 81778177 ce SNi’Y el N / ¢A’

as required. Using Lemma A.1.7 we also find the other expression for dy,_  ¥x. The expressions

for ayy,,®¥a are obtained analogously. O
Corollary 5.3.4. Let L € Ry, v € R and A\, p € C. Then [dy,d,] =0 € End(3n).

Proof. It suffices to show that dy ,dx_,%¥x is invariant under Ay ;1 <> Any2, for (A, Any1, Any2)
€ CN*2, Applying Eqn. (5.3.5) we note that
AaysoDy i Va = (L +HivANNy1) - (T +i7A1 Ny ) € day 2N
= (1 + i’yANN+1> ... (1 + i"yAlN_H) .
: (1 + i'YANN+2> e (1 +ivA, N+2> elAv1+An+2)L/2 4y
= (1 +i'7ANN+1> (1 +i’yANN+2> celt

T (1 +ivA N+1> (1 +iyA; N+2> AN HANL2)L/2 4,
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Writing

YN+1,N+2(j) == (1 + i’ij N+1> (1 + i’ij N+2> =1+ i’Y(Aj N+1+ Aj N+42) — ’VQA]‘ N+lAj N+2
for j=1,...,N, it follows that

Dy 2@y ¥ = UNp1N2(N) oy vz (1) @OV TANE) /2y,

Note that the expression elAN+1+AN+2)L/2 1y is invariant under Ay41 <> An42, i.e. under the

action of the symmetrizer (1 + §y.1), so that it is sufficient to show that
yn+1N+2(N) - cynvri N2 (D) (14 3n11) = yvranv+1(N) - YN v 1 (1) (1 + Sng).
This in turn follows from repeatedly applying
yn+1,N+2(0) (1 + 58 41) = ynve v 1 () (1 + Sn11),
which is a consequence of
Aj N1 npa(1+ 8n41) = Aj v N (1 + Snga)
a restatement of Lemma A.1.8. O

Write 360 = ban N UNzo 3n. Using Prop. 5.1.4 (ii) we may take adjoints of the statements in
Prop. 5.3.1, Thm. 5.3.2 and Cor. 5.3.4 and obtain

Theorem 5.3.5 (Non-symmetric Yang-Baxter algebra). Let L € Rsg, v € R and A\, € C.

Then we have the following relations in End(3gy):

[akaau] [b)\,b:] = [C,\a N] [d/\7d ]=0
[ax b+] 1y (bia —b+a,\) b, a,] = — el (axb) — a,by)
) A — 4 1 X0 Qp A= m wOx )
d ” byd, —byd b dy] = — (dyb — dyby
[A’u ( Iz /\) [A’#]_)\ (Au u,\)’
17 i7
[ax, ¢t u (c a, —c a>\) [c;\r,au] = m (a>\c;r — auc:\F)
1’y _ iy _ _
[dr, ¢, = Ao (exdu —cydy), ey du] = e (dre, —ducy) -

It can also be checked that [b, bff] # 0 (as expected) by applying both bfbff and bibf to Uy.
This is equivalent to saying that v ,, # 1, 1, as can be immediately checked from the expression

for 1y, », in Example 3.6.17. By taking adjoints it follows that [c/\, £ £ 0.

We actually claim that a stronger result holds:
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Conjecture 5.3.6. The relations listed in Thm. 5.3.5 hold in End(bgy,), and hence in End(h).

This could be proven by showing that the set of all 1y, where X runs through C%, is complete
in h e.g. by establishing invertibility of the propagation operator PASN) on a dense subset of
h containing the pre-wavefunctions and using the completeness of the plane waves €' in hy.
Alternatively, it may be possible to establish commutation relations among the bin € End(bn)
and use the expansions b} = don W”bin to establish Prop. 5.3.1 and the first two statements in

Thm. 5.3.2 as identities in Hom(by, hni2).

Remark 5.3.7. Note that all presented relations in Thm. 5.8.5 can be “symmetrized” to estab-
lished relations for the symmetric integral operators as presented in Cor. 2.4.6. For example,

from

[a%b;ﬂ T M (bx ap — b:ja,\)

one obtains

S [a)u b:] "HN =

—1
%S(NH) (0¥ aplry — bl arlry)

N\ —
which yields
—1i
[, SVHBH gy, = ﬁ (S(N“)bjaul?m _ S(N“)b,faAIHN)
by virtue of Prop. 5.1.4 (v). Then applying Prop. 5.1.7 gives Eqn. (2.4.16). This way all
relations in Cor. 2.4.6 are obtained, except the AD-, BC-, CB- and DA-relations.

Another set of commutation relations can be obtained from Lemma 5.1.9 (iv). These cannot be

symmetrized to relations in Cor. 2.4.6.
Lemma 5.3.8. Let L € Rog, v € R and A\, u € C such that X\ # p. Then
lax,du] =~ (C;b;\r - cj\rb;) € End(3n); (5.3.6)
[dx, au] =7 (c;rb; — c;b:f) € End(3n). (5.3.7)
In particular, [ay,d,] is not invariant under X < p, in contrast to [Ax, D,] cf. Eqn. (2.4.21).
Proof. Focusing on the right-hand side, we have
v (e by —cfby,) = ¢ (=L/2)dubl — dudt (—=L/2)bf — &~ (L/2)axb,, + axd™ (L/2)b,,

by virtue of Lemma 5.1.9 (iv). Now applying Lemma 5.1.9 (ii) and subsequently Prop. 5.3.1
and Eqn. (5.1.3) we obtain that

7 (epby — b)) = 67 (=L/2)¢™(L/2)b, by — ¢~ (L/2)¢T (—=L/2)b by + ardy — duax = [ax, d].

This establishes Eqn. (5.3.6); Eqn. (5.3.7) follows by applying A <> p. O
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Remark 5.3.9 (Integrability in the non-symmetric case). We claim that the only eigenfunctions
of t, = ay, +d, are the Wy where X satisfies the BAEs (2.5.8). In connection with this, we
recall that ¥y cannot be made L-periodic by imposing conditions on A as has been demonstrated
for N = 2 in Subsection 3.7.1. The claim that Vy is indeed an eigenfunction of t, follows
immediately from the remark that a, and d, restrict to A, and D,, on the domain of symmetric
functions. Hence t, restricts to T, on that domain, as well, and we have [t,,t,]|x, = 0.

However, in general, [t,,t,] # 0, since [a,,d,] # |ay,d,].

5.4 The limiting case J =R

This section generalizes Section 2.6 to the non-symmetric case. Analogously to the behaviour

of A, and D, for L — oo as discussed in Lemma 2.6.1, we present

Proposition 5.4.1. Let y € R, A€ RY, and u € C\ {\1,...,An}. Then

reg

b hx =P, € C(RY), boa = € C(RY)

and, for x € RY,

Jim M52 (,03) (2) = 7, (N)ga(), if Tm g1, > 0,
Jim e 2 (d,953) (@) = 7 (Awa (@), if Tm 1 < 0.

Proof. Write Ay41 = p. The expressions for (1im L—oo bff) 1 are obtained by induction, noting

that ¢ does not depend on L and hence
lim by by Uy =by 0y T = s

and similarly for b/j'.

. . _; . X Ai—A i i ~
With respect to (th_mo e~ inL/2 du) ¥z, note that 1+iyAj n11 = ]/\j—NAjvljl 7 >\j—1>\7N+1 S5 N+41-
Expanding the product (1 + ivAN N+1> ... (1 + i'yA1 N+1) in Eqn. (5.3.5) yields linear combi-

nations of products of 5; y+1. The only term proportional to 1 € Sy is obtained by choosing the

AN—ptiy Ai—ptiy Ti(A).

term with 1 in each factor 1 + i'ij ~N+1. This produces a term v—p Ta—p "

We see that e~ 1#L/2 d, 1 will be a linear combination of T/;()\)@ZJALM,)\N and terms proportional

to elhi—m)L/2 Va1, Ay 1A 41,y (With coefficients independent of L). Note that the exponent

in el —mL/2 a8 negative real part, provided Im p < 0, causing all terms but 7'/;(/\)1/1&,.“7)\1\, to

inL/2

vanish in the limit L — 0. The expression e ayYy is analysed in a similar manner. O
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If we can prove a completeness theorem of the ¥ in hy (in the sense alluded to in Section

N
2.6), we would obtain from Prop. 5.4.1 and the estimate |7ff()\)| < (1 + |II|Z|H|) the following

statement.

Conjecture 5.4.2. We can extend limy,_, el nL/2 a, and limy,_ o e~ 1nL/2 d, to operators on

bhn. Furthermore, they are bounded on b provided that Im p # 0.
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Chapter 6

Conclusions and some open problems

We have highlighted the important theoretical role the pre-wavefunction plays for the QNLS
model, in particular for the connection between the dAHA approach and the QISM. The key
points of this thesis are best summarized by comparing some important properties of the pre-
wavefunction ¥ and the Bethe wavefunction Wy. This will also allow us to pinpoint some

possible future avenues of research.

Relation to the symmetric group
Although the pre-wavefunction is not Sy-invariant, its definition by means of the non-
symmetric propagation operator involves the symmetric group in an essential way: ¥y =

1w7 e'*. For instance, antisymmetrizing ¥x will not result in a fermionic

2 weSy Xu-1RN W™
wavefunction, i.e. one that transforms as W, = sgn(w)W¥y for w € Sy. This leaves us
with a question whether a similar propagation operator formalism can be set up for a

one-dimensional fermionic system with pairwise contact interaction.

Periodicity
We have seen in Subsection 3.7.1 that the Bethe wavefunctions ¥y can be made periodic
by imposing the Bethe ansatz equations (2.5.3) on the A but that this is not possible for
the pre-wavefunctions 5. Equivalently, on a bounded interval, the ¥y become eigenfunc-
tions of the transfer matrix (Thm. 2.5.7), but not the ¥y (Rem. 5.3.9). When taking the
limit L — oo however, both ¥y and 1) are eigenfunctions of efinL/2 T, and etinL/2 t,
respectively, if Im p 2 0, as per Prop. 2.6.1 and Prop. 5.4.1. A natural problem to consider
would be the variant where the periodicity condition is replaced with an open or reflecting
boundary condition and to investigate in how far the pre-wavefunction formalism carries

through in those cases.
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Physical interpretation
Both vy (by virtue of Cor. 3.6.14) and Wy solve the QNLS eigenvalue problem Eqns.
(1.1-1.2), although, of course, ¥ is not a physically acceptable solution, as it is not Sn-
invariant and hence does not represent a bosonic state. A priori it is conceivable that the
pre-wavefunction represents a state of N non-identical particles of the same mass and with
the same pairwise contact interaction. However, as discussed at the end of Subsection 2.1.2,
physically we are only interested in the subspace of L? functions which vanish at the bound-
ary of their domain. This leads to periodicity conditions Yx|y;=—r/2 = ¥alz;=1/2 (= 0),

which we know cannot be satisfied already in the case N = 2, ¢f. Example 3.7.9.

Completeness, orthogonality and norm formulae
As alluded to in the Introduction, the set { Wy : X € RY satisfies the BAEs (2.5.3) } is
complete in Hy([—L/2,L/2]), as follows from the work of Dorlas [12, Thm. 3.1]; in fact,
it is an orthogonal basis for a dense subspace. As highlighted in the discussion follow-
ing Conj. 5.3.6, it would be helpful if we could establish a similar property for the
set {¢A A E Rf satisfies the BAEs (2.5.3) } or even the larger set {¢>\ A E (CN} in
bn([—L/2,L/2]). Tt would also be worthwhile to obtain formulae for the L2-norms ||
and L2-inner products (¢x,1,,). Initial calculations for the case N = 2 would seem to sug-

gest that if both A and p satisfy the BAEs (2.5.3) then (¢x, ) = 0 only if ||| = [|p]].

Recursive construction
Both the Bethe wavefunction (Defn. 2.5.1) and the pre-wave-function (Thm. 5.2.2) can be
generated by a product of operators B, and bljf acting on the reference state ¥y, respec-
tively, although for the pre-wavefunction care must be taken with the ordering of the bf.
An interesting question is whether there are such recursions in terms of (explicit) integral
formulae for Bethe wavefunctions and pre-wavefunctions corresponding to other boundary

conditions, which ties in with Sklyanin’s work [53] on the boundary Yang-Baxter equation.

Yang-Baxter algebra
There is the notion of a Yang-Baxter algebra in both the symmetric and the non-symmetric
context, and we have similar expressions for a,¥x and A,¥, and d ¥ and D, ¥y, using
the regular representation of the dAHA. However, the AD-, BC-, CB- and DA-relations
from Cor. 2.4.6 cannot be directly generalized to relations for the non-symmetric integral
operators a, b, ct,d. Instead, we have the relations Eqns. (5.3.6-5.3.7). An open problem

is the precise relation of the operators a, b+, ¢*,d to the Yangian.



Appendix A

The degenerate affine Hecke algebra:

calculations

A.1 The regular representation

A.1.1 Properties of the divided difference operators Ajk

Here we present several technical lemmas involving the operators Ajk which are used to give
a proof of Prop. 3.3.3, i.e. to demonstrate that the regular representation of the dAHA in
momentum space is indeed a representation. We believe it is important that this thesis is

self-contained and therefore that these technical steps are included.

Lemma A.1.1. Let 1 < j# k<N andletl=1,...,N. Writing | = sjkl, we have
Aj BN — )\[Ajk = 5jl — 01 € End(C“’((CN)).
Proof. This follows from
AN = A8k — AT+ NSk A= Af

A — NA G = = =01 — Ok O
J kANl 125k >\j_)\k )\j_>\k: 5l kl

Lemma A.1.2. If j,k,l,m € {1,..., N} are distinct, then [gjkaAlm} = [Ajk,Alm} =0.
Proof. This follows directly. OJ
Lemma A.1.3. Let 7, k.l e {1, . ,N} be distinct. Then [Ajkv Akl} = §MA]‘ kAklgjk-

Proof. First note that

1_§jk 1— 38k 1 <1—§kl gjkgkl_gjk>

Ajphg = -
IRk e — A A — A

= Al
PVEED VIS VRS ¥ R VI W (A-L11)
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By swapping j and [ and using Akj = —Aj &, we have

L X 1 1 =38k  SkiSjk — Ski
AN = J J .
RISGE= 3T, <Aj—Ak+ NN )

(A.1.2)

When subtracting Eqn. (A.1.2) from Eqn. (A.1.1) we notice that the terms proportional to

1 € CSy cancel. In particular, we find the following expression for the commutator:

~ ~ ()\k — )\1)71 — ()\j — )\1)71 - gklgjk
Ajr, Ayi] = ik =
[Bg ks Bl Aj— Ak T e Ay =)
8 kSk1 A=)t = =)t
+ J + Sk1.
O — A — ) Ak — N .

Making use of the fact that a=! — b~ = (b — a)a~'b~! we see that

A Agy] = = M) Gk = Ski8ik) + (N — M) (BjkBki — k)
ik =

Aj =N
_ (- M) 8k (BriS ke — Sk) + (A — M) Ski(8 k81858 — 1)
Aj— N
_; e = M) 7H = 81) + (A = M) (Bjkdrt — 8jn)
= Skl N — )\ Sjk-
g k

By comparing with Eqn. (A.1.1), we see that this equals §szj kAklféj k-

O]

For the following lemma we no longer need to write out Ajk as a divided difference. We can

simply make use of the previous lemmas and properties of the 5;.

Lemma A.1.4. Let j,k,l € {1,...,N} be distinct. Then
8 kK151 = 811D KBk,
5 k8k1A & = Aridjrdkr,
AklgjkAkl = AjkAklgjk: + gjkAklAj k>

AjkAklAjk = AklAjkAkl-

Proof. Eqn. (A.1.3) follows immediately by moving the leftmost transposition through the di-

vided difference operator (both the left- and right-hand side equal A;;). Eqn. (A.1.4) is obtained

from Eqn. (A.1.3) by left-multiplying by 5;; and right-multiplying by 3;;.
Note that from Eqn. (A.1.3) and Lemma A.1.3 we obtain
8 kK18 kAR5 1 = 811D k81 AR5k = [Aj g, Al

Now conjugate this by 5, to establish Eqn. (A.1.5).
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Finally, we use Lemma A.1.3 to obtain that the left-hand side of Eqn. (A.1.6) produces poly-

nomials invariant in k£ <> [ and maps polynomials invariant in k <> [ to 0:

AjkAklAjk = [AjkyAkl]Ajk“‘AklA?k :gklAjkAklgjkAjk = §klAjkAklAjk’5

Aj KARIA ) = Ajk[Akla Aji]+ A?kAkl = Aj kS kAklAj kSkl = _Aj kAklAj kSki-
We obtain Aj k;AklAjk = —§;€1A]~ kAklAj kSk1 and Aklﬁj WA = —5; k;AklAj kAklgjlm by swap-

ping j and [. Hence in order to prove Eqn. (A.1.6) it suffices to show §klAjkAklAjk§kl =

5; kAklAj kAkl§j k- This is done by repeatedly applying Eqn. (A.1.3):
5110 kAR 1A 18k = —8110 k51 AR 1881A k5 = 5 AR5 kAR5 kAR5
= —gjk:AklgklAjkgklAklgjk = §jk:AklAj kAklgjk:- O
A.1.2 Recursive relations involving the deformed permutations

We present two lemmas that establish recursive relations involving the regular representation

used in Prop. 3.3.5 and Prop. 4.2.2.

Lemma A.1.5. Lety € R, A€ CN and p € C\ {\1,..., \n}. We have

N .
_ _ i - .

> Sy SN,M%SUV) = (1-7rA) 8™ ¢ End(c?(CNy)).

m=1 N ®
Proof. By induction; the N = 1 case follows from )\lizu =1- /\1)\_1 ‘:LW. To establish the induction
step we first remark that

. 1Y sy _ ( —iy iy AN —An41 +iy iy §N> S(N+1)
TANL — H AN = AN41ANT1T — 1 AN —AN41 AN — 4

_ iy >\N+1—M—173(N+1)
AN — B AN41 — p

Using this we see that

N+1 .
_ 3 i <

2 :sm,'y ‘ HSNN)\%S(N—H) —

= N+1 — p

- - 1y 1y S(N+1)
Sy ... 8 + S
" MIANtL =1 Angl — M)

_ . 1y ANy —p—1iy iy S(N+1)
= S~ ---SN— + S
( " YIAN B ANt — AN+1 — M)

Sm77 e 5]\[,177

- iy S(N))\NH*M*WJr 1y S+
AN — AN41 — AN+1 — p
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By virtue of the induction hypothesis this yields

N+1 : :
I 0 R N S(N)AN+1 — f— 17 1y S(N+1)
Z Smay oSy S <( THN)S w1 ow )8

AN41 — e —17 1y >~N1
=((1-7F(x + SWV+1)
<( w () AN+1 — 1 ANt1—

= (1= 75 (A Angr)) SV, O

Lemma A.1.6. Let v € R, (A\,A\y41) € CNFL In End(C¥(CNTY)) we have

N+1 N+1

§ :~ 3 § : N
Sm---SNT;_N+1 Sm7 3N7 ( )

m=1

Proof. We proceed by induction; note that in End(C%(C")) we have

N . iy . iy A~ Aj — iy
$iy—=8;——-——(1—-5;)=— + 3, , Al7
Y J )\j _ )\j+1( ) )\j _ )\j+1 J )\] _ AjJrl ( )
so that
S A= A =iy .
145) 22710y
( +81) Al—)\Q +$1,’}/7

which proves the case N = 1. For the induction step write X = (A1,...,Ay_1). We have

N+1 ) N )
Z Sm - SNT)\N+1()\)S(N) = ((Z Sm ... > SN+ 1) TAN+1(>\)S(N)
m=1

N
i AN — Anagr — i i
- (Z S BTy (N)ay SN AN +TA+NH(>\)> S,

AN — AN+1

. ~ A 7A 3 ~
Focusing on the first term we have Z%:l Sm ... 8N_ 173\ (N3 WS(N) —

I
M=
CrJl

N S(N-1) iy S(N)
N (XS5 <SN +)\N—/\N+1>$

3
I

I
WE

. _ s(N-1) [ ~ 1 <
Sm’»}/...SN_L/YS(N 1) <8N7/y+ )\_1) S(N)
1 N N+1

3
I

I
M) =

- - - i =
Smy - SN—1y (SN,7 + 7) S(N)7

A AN — AN+1

3
[

where we have used Eqn. (A.1.7) and Lemma 3.1.2, as well as the induction hypothesis. Assume

for now that An41 # Aj for j =1,..., N It follows that

N+1 N N .
~ ~ 5 ~ - - - 17y =
E Sm .- - SNT;_N+1 (A)S(N) = ( E Sm’»\/ e SN,’y + T;_NJA ()\) + E Sm77 e SN_L,YA]V_)\]V—H) S(N)
m=1 m=1 m=1

N+1

N
= (Z Sy - N~ 1> SN =N "5y in,SWY,
m=1

m=1
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by virtue of Lemma A.1.5 with ;1 = An41, as required. To obtain this statement for Ax41 = Aj,
take the limit Ax41 — Aj, apply the De I'Hopital’s rule and use that differentiation preserves

the space C*(CV). O

A.1.3 The regular representation and the Yang-Baxter algebra

The following two lemmas are used in Sections 4.3 and 5.3.

Lemma A.1.7. We have

(198N ns1) o (14BN ) = Sn 51081
Proof. By induction on IV; the case N =1 is trivially true. For the induction step we find
(1 + i'YANNJrl) (1 +ivA, N+1) = (1 + i'YAN) SNSN (1 +ivAn_1 N+1) (1 +ivA, N+1) ;
— (55 — i7AN) (1 n i'yAN_lN) (1 n i'yAlN) 5N,
= SNAEN_1y .- 81481 .. EN_15N,
where we have used Lemma 3.3.2 (i)-(ii), the definition of 3; ., and the induction hypothesis. [
Lemma A.1.8. Let j,k,l € {1,...,N} be distinct. Then [Ajk,Ajl} (14 551) = 0.

Proof. Note that
1 1

1—Gi)—— (1—5;)(1+3
)\j _)\k( Sjk) )\j _)\l( S]l)( +8kl)
1 1 1

= 1_~. - (3., — g 1 3
Aj = A (Aj—xl( 50 = R Bk sﬂ)>( =

_ 1 1 1 1 . #~4 (1+~ )
B Aj— A Aj— A A=A /\j—)\ksjk )\j_)\lsal Skl),

which is clearly invariant under the swap k <> [. O

AjpA (1 +5) =

A.2 Plane waves and the degenerate affine Hecke algebra

Here we will show that the regular and integral representations are intimately related.

Lemma A.2.1. Let A = (\1,..., \n) € CN. Then we have, for 1 <j #k < N,

sjk.eiA:§jkei)‘, (A.2.1)
Iipe* = —iAje. (A.2.2)
Furthermore, for j =1,..., N — 1 we have

sjyeir =5, et (A.2.3)



110 APPENDIX A. THE DAHA: CALCULATIONS

Proof. Eqn. (A.2.1) follows immediately. Let 2 € R be arbitrary. For Eqn. (A.2.2), note that
for A € CV such that \; # A,

<Ijkel)\) (z) = /O /0 T dyem i = y _lAk (el<x,w> _el<x,wf(xrzk><erek)>)
—j iA A& EA
_ 1 ine) _ i(aspe)) € () — e'%i M () AL A
Aj — Ak (e © ’ > ! Aj— Ak iAjpe " (z),

as required. In the case that \; = A\, we have

. . Tj—Tk .
(Ijk elk) (2) = ') / dy = (a; — xx) &3,
0

on the other hand, (—iA;e'*)(z) is to be interpreted as

ei<A+//'(ejfek)7z> — ei<}‘7'u'(ej 7ek)7w>

lim —i Ajk olAtulej—er)®) — 4§ 1im
u—0 =0 2'u
g ST T
p=0 2u
= ,{il)r%)(mj — a) el @j—ar) JiAz) _ (xj — 1) ei<>\,m>7

by virtue of De ’'Hépital’s rule, whence we obtain Eqn. (A.2.2) for all A € CV. Finally, Eqn.
(A.2.3) follows from combining Eqn. (A.2.1) and Eqn. (A.2.2) with k = j + 1. O

As a result, we have

Corollary A.2.2. Let A= (\1,...,Ax) € CV and w € Sy. Then

-1 el)\

we't =w , (A.2.4)

Leih, (A.2.5)

Proof. We decompose w as a product of [, say, simple reflections: w = s;, ...s;,. Using Eqn.

(A.2.1) we find that

iA _ iA_ S A o iA
we = S8j;---84 € = Sj; ---84;_15, € = 84Siy ---Siy_1 €,

since [3;, si] = 0 for all 4, j. Continuing this way, we obtain Eqn. (A.2.4):

wel = Si, ... 50, A =l

The proof of Eqn. (A.2.5) is entirely analogous, relying on Eqn. (A.2.3). O
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A.3 The Dunkl-type representation

Similar to Subsection A.1.1, we provide technical results needed to settle Prop. 3.5.2, i.e. to

show that the Dunkl-type representation of the dAHA is in fact a representation.

Lemma A.3.1. Let j=1,...,N—1landk=1,...,N. Write k = sjk. Then
silk — Agsj = = (055 = j41k) -

Proof. We have

$ihksj — Mg = Opspr— Y Oiesei— D Oust+ D O1isi-
1<k 1<k 1<k Ik

The terms with [ # 7,7 + 1,k, k have [ = [ and all cancel out. In the case that j +1 < k = k

the remaining terms cancel each other as well:

Ok j+15k j+1 + O jSkj — Ok Sk — Ok j+15k j+1 = 0,

and similarly in the case that k = k < j. Hence, only in the case k = j,7 + 1 is there any
contribution; this is easily seen to equal —0;11;5;,11 —0j 115541 = —s; in the case that k = j;

in the case k = j + 1 it equals 041541 + 05,415 j41 = 5. O
From Lemma A.3.1 we immediately obtain
Corollary A.3.2. Letj=1,...,N=landk =1,...,N. Then s;0k—0s;k~5j =7 (0jk — dj11k)-
Lemma A.3.3. Let j=1,....N—1and k,l €1,...,N. Then
55 [Oky, O1n] = [331-(1@),7,8%(1),7} S
Proof. For all k=1,...,N denote k := s;j(k). Repeatedly using Cor. A.3.2, we have
80k Oy = (O 55 + (0416 — 0jk) 17) Oy

= afm (al’,ysj + (0411 — 651) 17) + (0416 — 65k) 1701~

= 05,0155 + 17 (G410 — 05k) Oy + (85410 — 051) O54) -
By reversing the role of £ and [ we obtain
Sjc‘)mam = 8[,78,;778]' + iy ((5j+1l — 5jl) am + (5j+1k — 5j k) 81-’7) ,

so that

8§10k, Or] = (05 Op4 )85 + 1Yk s
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where

Vs = (05410 = 01) (O = Okiy) = (Ojrk = 0jk) (91 — Oy -
It suffices to show that Yj.;; = 0. We can assume without loss of generality that & < [. Hence
we must be in either of three cases: k # j,j+1,orl#j,j+1,ork=j41l=j4+1. Ifk#£j,j+1,
Op~ = Ok and dj = dj41% = 0, so that Yj; = 0. The argument for [ # j,j + 1 is identical.
Finally, if £ = j,l = j + 1 we have

Vg = (1 =0)(0j115 = 0j4) = (0=1)(8j5 = 0j114) = Ojt1y — Ojy + 05 = 0j114 = 0. [
Lemma A.3.4. Let w € Sy and k,l=1,...,N. Then
W[k 75 Oy = [Ou(ie) 75 Ouw) 0
Proof. Write w = s;, ... s;, for some positive integer [. We have by induction
WOk O1y) = Siy -+ 54, [Okys Oy = sil...silil[ﬁsil(km,(‘95”([)77]81-1 = ... =
= [851.1”_8” (k) 7> 851.1._.5” (l),’y]sil S8, = [Ow(km, 8w(l)77]w. O
Lemma A.3.5. Let k,l=1,...,N. Then [0y, 0] = 0.

Proof. Let w € Sy. It is sufficient to prove that ([0, 014]f) () =0 for all f € C"O(Rﬁ\ég) and
all z € w’lRﬂY. By virtue of Lemma A.3.4 and Eqn. (3.5.2)

([8k,’77 al,’}’]f) (iB) = (wil[aw(k)’,y, 8w(l),fy}wf) (iIZ)

([Ouwk) v+ Oy A f) (wez)
0. 0



Appendix B

The non-symmetric Yang-Baxter

algebra: calculations

This part of the appendix lists useful properties of the non-symmetric integral operators ay,

bf, cf and dy. Throughout it, we assume that v € R and L € Ryg. As usual we denote
J=[-L/2,L/2].

B.1 Properties of the elementary integral operators

Lemma B.1.1. Letn=0,...,N, i € iy and A € C. Then éfi 18 the formal adjoint of é;\fi and

é)ti is the formal adjoint of é;\;i'

Proof. These statements are proven by changing the order of integration in (-,-). For example,

to show that é;\r,i is the formal adjoint of éy . it is sufficient to prove, for arbitrary f € by,
ge hN+17
/ dV g (é";if) (x)g(x) —/ AV f(x) <é/—;.g> (). (B.1.1)
JN+1 ’ JN 3T

Write 4,41 = 1. The left-hand side of Eqn. (B.1.1) is given by

n Tip, +1
/ dN+1m9($il+1 > 0> T4l > $1) <H / dym> .
JN+1 m—1 Y i

im41+1

. eiA(y1+-~-+yn_xi1+1_---_IinJrl_CUl)(¢i+4>y¢21f)(w>m

N+1 n n+1
-| I [ (H/dym> <H/dzm>e<zl>y1>...>zn>yn>znﬂ>.
j=2 J m=1"J m=1"+
VYm j#im+1

e AW Ay — 21— 2 —2n 1) (¢i+—>y¢31f) (x) (¢1—>zn+1,i+—>zg) (x),

113



114 APPENDIX B. THE NON-SYMMETRIC YBA: CALCULATIONS

where we have relabelled z;,41,...,%i,+1 as 21,...,2, and x1 as zp4+1. We will now relabel
Yls---sYn &S Tiy+1,---,Li,+1 t0o obtain the expression
N+1 _ L/2 n Ty, _1+1 Tip 41
H / d.%'j (¢1f)(a:)9(m“+1 >0 > xin+1)/ dz H / dzm / dzn+1~
j=27J Ty 41 m=2 " Tim+1 -L/2
e M@ AT —R eI ) (GG (201, T2, TN
N n+1 z;
— tm—1
= H/dxj f(CUl,---,CUN)@(%l>-.->$in)(H/ dzm)-
j=1"7 m=1"Tim
i eiﬂ(xil+...+x¢n7z1f‘..fzn72n+1)(¢i_>z(5jn+lg>($1, TN,
where we have relabelled (zo,...,2n4+1) — (z1,...,25). This equals the right-hand side of Eqn.

(B.1.1). The other statements are proven in a similar way (without the last relabelling of the

.%'j). O

Lemma B.1.2. Letn =0,...,N, 2 € i}y and A € C. Then éfz-, éf

" and é;ﬂ- are all bounded

on hﬁn-

Proof. We prove the statement for ¢, .; the other proofs are along the same lines (and by virtue
of Lemma B.1.1 only proofs for three out of the six operators need to be given). Let € JV+L,

For y € J™ we have the estimate

2

ei A($N+1+an:1 (zip, 7ym)) _ e*Im A($N+1+Z%:1 (@i, *ym))

< QMmN (jan 1+ 5y (i D) < 20+ DIMALL | (B.1.2)

Using this for f € hy we obtain

(e0f) @)

/ dry A @i vm) Gy > g > @y > >y > @0 (pisy f) (@)

< </ d"y
: (/Jn A"y |(piy f) (w’)\2>

n m Ln n 2
< clmnimat 2 [ vy (e, ) @)

2

. n 2
el)\(l‘N+1+Zm:1($im_ym))‘ 0($N+1 >y > T > > Yy > 33%)) .

where ' = (x1,...,zy) and we have used standard inequalities for absolute values of integrals

and integrals of products with Lebesgue-integrable integrand.



B.1. PROPERTIES OF THE ELEMENTARY INTEGRAL OPERATORS 115

For the norm of €, , f we have
A= 2 N+1 -
lesaflhen = [ 0| (65) @)

L™ nyn)jmaL ntl N 2 _ LM iy g2
< e d"y dVz|f(x)]” = ——e £,
Jn+1 JN

‘2
n! n!

l.e.
L+

1exsflln+1 < el DI AL £

&

It follows that € , is bounded. O
Given w € Sy, denote by w4 the element of Sy determined by
wi(l) =1, we(j+1)=w()+1forj=1,...,N. (B.1.3)

Lemma B.1.3. Letn=0,...,N,i1€iy, A€ C and w € Sy. Then

Wey ;= €y W € Hom(bn, bnt1) (B.1.4)
w+éir;i = éj\;wiw € Hom(bn, bny1) (B.1.5)
WE; = it € Hom(bn+1,bn) (B.1.6)
W = Exui Wt € Hom(hn+1,bw) (B.1.7)
WEy; = By € End(hy). (B.1.8)

Proof. Let = € JN*1. By virtue of Eqn. (5.1.5) we have

)
Ty

o i m—1 N — - ~
wey ;= e N w | | 0(w;,,_, — xz‘m)/ Ay, ! A Fim =Y )> Pisy ON+1

m=1 m

n Lawi 1
iz | | me i AN Towi,, — 2 6
=e T ( O(Twin_y xwim)/ dym e (@wim =ym) Puwi-syPN+IW = Exwi
m=1

Lwimm,
where z;, = n4+1, which proves Eqn. (B.1.4). Eqn. (B.1.6) can be proven by taking adjoints;

indeed, from

(f’ éj\:iw_lg)zv - (éiif’w_lg) N+1 - (wéiJ,g) N+1
- (éiwiwf’g>zv+1 - (wf,é;wig)N - (f,w_lé;wig)N,
where f € by, g € hy11, we infer that éj\rn.w_1 = w_lé;wi, ie. wé;i = éj{;wiw. The other
equations are proven analogously. O

Lemma B.1.4. Letn=0,...,N—1,1¢€i}_; and A € C. We have

é;\r;i‘HN - é;;i’HN'



116 APPENDIX B. THE NON-SYMMETRIC YBA: CALCULATIONS

Proof. The desired statement follows from the observation that for F' € Hy and € RV~! both
(éf,iF) (x) are equal to

- n+1 Ty .
el)\z’":11 Fim (H G(I'im_l - l’zm)/ ' dym e_lAym> F(mivy)' O

m=1 Tim

Lemma B.1.5. Letn=0,...,N, 1 €iy and A € C. Then

E)\;iF|JN+1, 1€ 37]{/,
eAzF’JNJA = + fOI“FE’HN,

0, otherwise,

EX Fl;n, ie€d?

_+ A LAY ’

eA;iF‘JiV = * for F' € Hn,
0, otherwise,

v:t o ) +
e)\n.F|J1+v = for ' € Hyy1-
0, otherwise,

Proof. Concerning the statement for éf ;» note that for x € J J]rv ,

1, ifip <...<in,

n n
H a(xlm - xim+l H 9 xlm 1 $Z'm) =
m=1

m=1 0, otherwise;

this yields that éf\_iF restricted to the alcove vanishes unless ¢; > ... > i,, in which case one
obtains the equality with the Ei. by applying Defn. 5.1.1 and Defn. 2.4.4 straightforwardly.

The statements for e/\ and & i follow in a similar manner. O

B.2 The non-symmetric particle creation operators and the

Dunkl-type operators

Here we aim to provide auxiliary results from which Thm. 5.2.1 can be proven. It is apparent

that we need to study commutation relations of the operators éfi (which can be seen as lin-

ear operators: C®(RY,) — C>®(RN1)) with the partial differential operators 9; and the step

reg reg

functions ;. Before we look at these commutators, we establish some useful results.

Lemma B.2.1. Let h : R — C be integrable; let xo,x € R and let A € C. We have

o) 3 .
[81’/ dyy XTI 6 Th(1) = — N h(ao).

1

Proof. Apply the Leibniz integral rule and integrate by parts. O
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Lemma B.2.2. Let h: R? — C be integrable; let xo,z1, 22 € R and let A € C. We have

zo T )
[81’/ dyl/ dyp e Mootartez—n=v2) g, 1h(zq, o)
1 2

X x

—/ 0 dyy AT by ) —/ 1 dyp e MEFE27Y2) (30 45).
1 T2

Proof. The desired expression equals

z0 ) x1 .
/ dyy e Meormi=m) g / dyz X270 Ry, o)+

1 z2

x1 . Zo .
+/ dy2 el)\($2—y2) |:6:E17/ dyl el/\(dfo-f—l’l—yl) ¢1—)y1 h(x17y2)‘

2 1

By virtue of Lemma B.2.1 and the Leibniz integral rule once more we obtain the result. OJ

B.2.1 The operators éii

In the rest of this section, we assume that A € C and we suppress it in the notation: é;t = éfi

and bf\?n = bt. We will make statements for both é:r and €; ; in general we will provide detailed

proofs for €;” and indicate how the proof is modified for éj.

Lemma B.2.3. Leti € i, and j =1,..., N such that none of the i, equals j. Then

o er =gyl o\NMer = ef ol
Proof. This follows immediately from the definitions of é;t. O

Conversely, if one of the i,, equals 7, the commutators GJ(NH)éi_ — é;a](.N) and 0%+1)éj — é;r8j(N)

are nonzero. First of all, we deal with the case that n = 1.

Lemma B.2.4. Let j=1,...,N. Then

(NHL) s— s a(N) _ (N+L) (NAL) A— (N+L) o At a(N) _ p(NH) (NHL) .
8]- e — € 8]- ——9N+1jst+1e , ajﬂ ej—ejaj =01151 1 ér.
Proof. This follows immediately upon applying Lemma B.2.1. O

The following lemmas deal with the case n > 1.
Lemma B.2.5. Letn=1,...,N.

o Let (j,1) €iy. Then

(NH) A— o a(N)  p(NH) oo p(N) (N)  p(NH1) (NHL) A
0 ey — 0, =05 e 0; sy — 0N s N6
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o Let (i,7) €i};. Then

G ot gN) L _g(NH) o g(N) () (V) () o

RN R P 115G Y50 1S, 15 T V17514076 -

Proof. We prove the statement for é~. The proof for é* goes completely analogously. Let
x = (r1,...,o541) € RNFL Write ' = (21,...,28), ¥ = (Y1,.--,Yn_1), and ip = j. assume

reg

TN41 > Tj > T > ... > x, ;. Using Lemma B.2.2 we obtain

(N4L) s— 4= (V) _
8]. eji—ejiaj =

TN+ T . ol . N
= laj,/ dY/ dyy e MENvnteFen =Y —y1) ¢j—>Y] (H / Ay, 1A @im _y’")> GisyPNp
T Tiy m=2" Tim

-1 )
_ N dy iNzyt1tzi, =Y) k Fim—1 d iANTip, —Ym) n
- € ! H Ym € m ¢i—>(xj,y2,...,yn,1)¢N+1+
$] m=2 X,

m

. -1 )
Ty n Ligm—1 . A~
N2t — Az —
= [ ameeteen (T dg oo ) gy v
Tiq m=2" Ti

m

T L S

— A dyq e A EN+1+Ti —y1) " Qv A @i —ym) | g )

= yre Ym € Siy jP(siz,msin_1)—yPN+1+
Zj m=2"Tim

—1 )
_ TN+1 . n Tipy_q ) N
iz iXxzi, — iz, —
—sj N1 NN / dyy M) (T / dypm 2o =0m) ) b | -
Ty m=2 Loy,

i1
We can re-write the second term as —s; ny41€; ; hence it suffices to show
TN+1 . )\( + ) n—l xim—l . )\( ) ~
~— . 1 T Ti, — 1 Xy —
€; 0irjsinj = / S R W | | / dypm & m TINS5
Tj m=2 Lipm

This can be established by writing f;”jN“ dyr = [N dyi6(y — ;). O
1

x;
Lemma B.2.6. Letn=1,...,N.

o Let (i,5) €ify and ¢ = (i1,...,in—2). Then

(N+1) s— A(N)  _(N)
=05, € 9501 Sin s

N+1) A— P N
o ey, — e 00

o Let (j,1) €y and i’ = (i2,...,in—1). Then

(NH1) 4+ s+ a(N) _ p(NH) s+ p(N) (N)
O €5 — €505 = 051y 11650t s -

Proof. Again, we note that the proof for the statement for é™ is analogous to the following proof

for é=. Let @ = (x1,...,oN41) € Rggl. Write y = (y1,...,yn—1) and ig = N + 1, and assume
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that oy 41 > 2 > ... >z, , > xj. Note that [@»,éi_j} =

n—1 . T
. tm—1 . tn—1 . ~
= el AN+ ( | | / dym el’\(’”imym)> laja/ Ay A @i=Y) Gjy | PisyPN+1
m=1"%im Tj

n—1 i
. m—1 . . o ~
= — v ( [ / dym el’\(mimym)> M) Gy gy sy N1, g,
m=1"%im

by virtue of Lemma B.2.1. Using f;"nj dy,_1 = f;’;"n* dyn—10(yn—1 — i, _,) and 6 we obtain

the result. O

Lemma B.2.7. Letn=1,...,N,l=2,...,n—1 and (3,5, k) €% such that i € i’;".

o Write i’ = (i1,...,41—2). Then

(NH1L) 5— a—  o(N) _ p(NH) s— f(N) _(N) (NHL) s—  p(N) (V)
O ik et = Ok i i85k — Oy s G kbl S

o Write k' = (ka,...,kn—;). Then

8(N+1) 5+ eF 8(N) _ _Q(N‘H) et H(N) (N) +9(N+1) et Q(N)S(N)

o Cijk T %KY i1+ % kY0 S 5 T Vi ke Gk Yh S ke

Proof. Let @ = (x1,...,2N4+1) € Rﬁggl. Write y = (y1,..-,y-1), ¥ = (y1,.-.,y1-2), 2 =
(21,..+,2n) and 2/ = (z2,...,2,). Also write igp = N +1, kg = j, i = (i1,...,9_2),
k' = (ka,...,kn—;) and assume that zyy1 > @y > ... > @, > T > Ty, > ... > T, . We

apply Lemma B.2.2 to obtain

1 ajimfl .
[aj’é;j k} = oo <H / dym elA(zim_ym)) (
m=1"%im

Tip_q Tj i\(z;4 y ) ~
1 TiTX —Y —z
- 8]'7/ dY/ dzy e TR Yoy | Gisyk—szON+1
T Th,

J

-1 Z; n—l z,
. -1 . - .
— o AT N1 I I / m dym el)\(xim —Ym) ]I / m—1 Az, el)\(ka —zm) | .
m=1"%im Tkm

m=2

n—l Tp
H/ m—1 dZm ei)\(:ltkm—zm)> .
X

m=2" Tkm

Tip_1 . R
iA(xp, —2
. (/ dzy el M —21) Gisy, j—21, k1 —aj, K —z' PN+1H
X

J

o
J d i)\(m]-—l-:pkl —xilil_zl) 2
- z1e Pisy, j—ai,_| k—szPN+1
Thy
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. =1 "Eirnfl . n—l wkm—l .
— el AZN+1 H / Ay el)‘(mim —Ym) H / dzm el/\(kafzm) .
m=1" Tim Thkm

m=2

T4 . .
iAxp, —2
/ dzp €A @ 1)¢z‘—>y,k—>z¢N+1Sjk1+
X

J
-2 . n=l .z,
Tm—1 . m—1 :
_ <H / dymew%m—ym)) (H / dzmelx(zkm—zm).
m=1"Tim T

m=1 km
Tip_o . A
iA(x;—
/ dy; '@ yl)¢i’—>y’,j—>yl_1,k—>z¢N+13il_1j)-
z;

i

For the first term in square brackets, write [7-1 dz; = ff}:lfl dz10(z1 — z;), and for the second,
J 1

write fi;:? dy;_1 = f;ik? dy;—10(y; — x;,). This gives the desired result for é~; the proof for

€T is along the same lines. ]
Lemma B.2.8. Let n = 0,...,N and ¢ € iy,. For distinct positive integers j,k not exceeding
N we have
(NH) 51— = p(N) _ p(NHL) 5— (V)
O €65 — €05 =05 "¢ 0, (B.2.1)
(NH) 4 s+ 9(N) _ g(NHL) 5+ 5(N)
Oannéi — €05 =0 nei Oy (B.2.2)
In particular QJ(.JZH)é; —é; ](]Z) = G(fﬁizléj — é:.rHJ(.ZZ) =0 if no i equals j or k, or if iy = j and

im = k for some l,m.

Proof. We prove the statements for €; ; the proof for the statements for é;r goes entirely analo-

gously.

In the case that j # i; # k for all I, we immediately have 9§]Z+1)éi_ = éi_Hj(.]Z) . Also, if
j = i1,k = imy, say, then both HJ(.JZH)éi_ and é;@éj,\j) vanish if [ > m and are equal to é; if
I < m. This is obvious for 0%} e;, and for &; 6%} it follows from the definition of ¢; where
Y1 < Ym precisely if x;, < z;,,. In particular, we have 0§]Z+1)éi_ = é;@j(.]p in this case, as well.

In the remaining case, j # i, for all m and k = i;, say. The situation with j and k swapped goes

analogously. Eqn. (B.2.1) is equivalent to e\ = gV o= gV o= g(N) _ (NH) (V)

K] Jju % Jju IR Jju T g0

which is true since none of the i,, equals j and z; > x;, is implied by z; > y; in the integration

in the definition of é; - O
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B.2.2 The operators bin

The next step in building the operators bf are the bfn, and we list some useful results about

these operators here. For N € Z>p, j =1,...,N,and n =0,..., N we introduce the notation

() ={i € :Vmim#j}. (B.2.3)

Lemma B.2.9. Letn=0,...,N —1. Then

N+ _ N+1), —

(081 =1 NbGe0y = AN by (B.2.4)
N1 . N+

@™ =iy = A (B.2.5)

Proof. Let i € 1”'H x=(r1,...,on41) € R¥F and y = (y1,...,Yns1). To prove Eqn. (B.2.4),

reg

write ¢/ = (ig,...,int1), © = (21,...,2n) and ¥’ = (y2,...,Yn+1) and note that

z;

(N+1) A iz, o(NHL) (NA41) m—1 iN@iy, —Ym)

Oni1 € =iAe; +e 7 6N+11 11N+1 | | dym e ity ON 11
Tipm

P (V1) -

=iAé; + 0N, 8, Nr16ar-

Summing over ¢ gives

(N+1) (N+1) (NH1) = (N41) (N+1) (N+1)
(aN—i—l o (n+1 Z 9N+111 i1 N+1 i ZQN-‘dj ]N+1 Z - AN—H b(n)’
icint? i€iR (4)
(N41) (N+1)

where we have used that QNHJSJ N416; = 0 if one of the i, equals j. As for Eqn. (B.2.5),
a similar argument applies, where we write ¢/ = (i1,...,4,), @ = (22,...,2N41) and ¢y’ =

(yla e 7yn) We Obtain

(NH) s+ sy 5+ (N1 (NH) 44,
OF e =ixey =0, sy, 6

hence summing over ¢ yields, as required,

(NH) s (N+1) (N+1) s+ AN+
(IR PY Z 0 dooa=a7E O
1€i% ()
Lemma B.2.10. We have A%V_:_i)b(N) = AgN—H)b?rN) =0.
Proof. Writing © = (z1,...,2N4+1), we note that
biny = D= €w(1)..w(N)"
ieily wESN

Note that €, is nonzero only if xn1 > @y, for all m =1,..., N. Therefore, for any 7 € iy and
any j = 1,..., N we have 0](\][?112 gjﬁi)lé; 0. Summing over j and ¢ then proves the lemma.
A similar argument may be made for A(Nﬂ)bJr O

(N)”
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Lemma B.2.11. Letn=0,....N—1and j=1,...,N. Then

(N+41), C (N () (NH) () 5 g(N) ((N) _ (N+1) (N+1) 5 p(N)
0 bnrr) ~bmind; = TNt N b +Z > (0121 € O j Sui ~Sag Y5 zem)
=1 i€} (4)
(N+1) (N) _ (N+1) N+1 (N+L) A+ (N) (N) (N+L) f(N+L) 4 o(N)
a]Jrl b?;%H) B b?;1+1)8 - Qﬁll 14+ n Z Z (011+1]+1 :_0] 1 zlj SqulfHequlﬁl :_9] i ) :
=1 icig, (j)

Proof. Let j =1,...,N. First we deal with the case n = 0. Lemmas B.2.3-B.2.4 give us

N
(N41) (N) (N+1) 5 _A(N) AN a— A A(N)
OV, — b0 Ej(a ¢ 0! ) = e — e o
k=1

N+1) (NH Nl) (N4, —
_0§v+1)] §N+)1€ = 01(V+1)j §N+)1b( 0)

and similarly

(N+1), + + gW) _ gVt o+ s+ g(N) _ p(NH1) (N+1)p+
O by~ b(l)aj =0 '€ — €707 =051 815 b(oy-

Since the summations over [/ in the equations in the lemma vanish for n = 0 the results follow.

For n > 0 we have

(N+1), — _ (N) _ PN = _smgM) (N+1)A7 s
aj b(n+1) _b(n+1)8j - Z ( - (‘) ) - Z (81 - 8 )
161?]"'1 ieiﬁf"l
Jl:ip=j
_ 9Nt 5~ - (N)
- Z Z( Citoi_1 jip.. in_eh...ilqjiln-inaj )
iciR (j) =1
Let ¢ € i}(j). Using Lemmas B.2.5-B.2.7 we have
R (), ()
H A_
Z (aj 611 A—1J 8- in _ei1mil—1jiz~-inaj )Z
=1
(N41) (NH1) A— (N+1) (N) ( )
0N+1]SJN+1 i +9m € ‘9113 Sing T
(NH) 5—g(N) ((N) (NH) 5~ (N) (V) (NHL) 5— (N) (V)
+Z( jio €05 Sig ~ Vila g G g, znejizflsizq» “0ini Cirine13 i Sin g
(N+) (M) (V) (V) (V) _ = () ™) ()
+) (V) 5= H) A 1) A
- —GN-HJ jN+1% Zeﬂl € ZzJ Sig — eil—lj ieii2 i ein Vg i1 S0 g

=2
Note that by virtue of Eqn. (B.1.4) the second summation over [ can be written as

n n

B (N+1) A o) Z (N+1) p(NH) 5~ (V)
Zeilj 61'1---1‘1—1jiz+1 in JZz Zl] - S 9]” € 911] :
=1 =1
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Combining this, we obtain that

n+1

S (96 . (V)Y _
<8 Citiy1 jigin ei1~~-il—1jil~-~in6j -

=1

_ (D) (V) o PV 5= p(V) (N) _ (NH1) g(N+41) 5— ()
= —ON115 N8 +Z< i €O Suj — sy Y5 & 9”])

Summing over all ¢ € i%(j) we find that

(N+L) - (N) _  p(N+D) (N+1) 5—
8] b(n-i-l) b(n-i—l)aj _9N+1] jN+1 Z € +
1€i% (4)
N+1)Af N) (N) (N+1) (NA+L) 5— (V)
+Z Z <]Zl € lz] Sij T Sy 9]11 zezl])

I=14€i (y

Now finally note that for 2 € i}; such that i,, = j for some m, we have

(NH) - (N o= p(NH) (N o
ONt1imSiN+16 = 00 i1151 301 & =0, (B.2.6)

since Hj(vj\fll )Z.m sgﬁlleﬁf )Z = 02(;2[111) lsgﬁzlﬁwﬂ) = (0. This means that

NH) (N4, — NH) (N4 A
9§V+1)] §N+)1b(n) 9§v+1)j'9§' N+)1 Z i
i€ik ()
which completes the proof for n > 0 for the formula for é~. The proof for the formula for é,

follows the same arguments:

(N4, + + (N) _ (V+1) 5 At (N)
O iy =V = D Z(a Eriir ditein ~ Circiizs Gigein )
i€if (j) I=1
N N+1
= Z 95%11) S1jm € +
1€i%(4)
(N-H1) N+1) et (N) (N+1) et (N) (N)
Z Z( SirH Zz+lj+1 ) 0]” _011+lj+1 % 0]” ¥ ) .
icif (j) =1

For j =1,..., N denote

( >(N+1 JE:G(NH) (NH1) Z 9(N+1) N+1

k=jH

: (B.2.7)
(N+1) ! (N+1) (N+1) al (NH1) (N+1)
t = 0 0
( J) S ke T Z NERISL I AEE
k=1 k=j+
so that

N1 _\ (V) N) (N N+ (V+) N1) (N
A§- )= (Aj> - 9](V+12'8§N+)17 A§+1 )= (A;r> +9§+11) g;+1)-
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Lemma B.2.12. Let j=1,...,N andn=0,...,N. Then

NV N (NH) 5= g(V) ((N) _ ((NH1) g(N+1) 5 — (V)
<Aj ) b(n) Z Z ( ji G 21] Sig ~ S 03 i G 0%] )
I=14ci} (5
<A+>(N+”b . AN Z 3 (9(N+1 s (V) (N41) p(NHD) g (N ))
J (n) 'Ll+1y+1 [ zl] i L zl+1j+1 i 71 :

=1 i€i% (j)

PTOOf Let 1 < j 7& k < N. Note that e- = el ATN+1 ¢N+1 and hence 0(N+1) §]Z+1) _
é*6§k) (k) = H(NH) §.ZZ+1)é* —é- 0,2 )5(]1\? =0, so that the statements for n = 0 follow..

Now suppose n > 1,1 < j # k < N and let ¢ € i;;. Then

(N+1) SN+ (V) (V) _ (NH) 5= _ =N (V)

9 ik b(n) b( )ejk Jk _Z(e_] €; 203k> Sik o

iciy,
because of Eqn. (B.1.4). Similarly we obtain
(N+) (N+) (N) ((N) _ (NH) 5= _ =N (V) _ (NH) 5= _ 5= (V)
—ij jk (n)+b(n)6kj ik _Z<9k] € - 9 )‘Sjk: _Z(ejk‘ € — Zejk) ]k:’
iciy iciy,

by virtue of 6; + 6 ; = 1. It follows that

(D MR AIVEED S S Uit D 99 DM o

k#j i€} k#j 1€i;

NAL) a— H(N NAL) a— H(N N
=2 | X any + X o) | sk
k#j \ i€ij () i€l (k)

i =k Jl:ig=j

(VD) _

where we have applied Lemma B.2.8. Lemma B.2.8 and 0;, + 0, = 1 yield 6, ."’¢é; ik

9(N+1) G(N) so that this equals

(Aj—)(N-i-l) b(_n) _b(:z)A§N) _ Z Z 9 N+1 A_G(N) o ) 4 Z N+1 N+1 e We](i)

k#j lE'N(J) zet
iy =k EI 7‘l 7
(NAL) A— N NAL) H(NA4L) ~
=30 X (e + AT erol))
k#j i€if (4)
39y =k
(NAL) A— N N+ N+1 A
S S ()
k#j i€i (4)
4=k

3

— > <9(.N+1)é.—9(N>S(N) - S(N“)e(.N“)é.—a(N)) _

Ju T oug o ulj W) Ju T U
I=14€i?, ()

Again, the statement for bz;) is proved in a similar way. O
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Lemma B.2.13. Let j=1,...,N. Then

0(N+1) S(N+1) b _9(N+1)S(N+1)b+

S\ () + T C)
N+15%j N+1 (N):<Aj> by =bany A L P14 (N):<Aj biny=b(myA;

(N+1)
) (V) (N)d

Proof. Both left- and right-hand sides vanish; the left-hand sides because of Eqn. (B.2.6), and
the right-hand sides because of Lemma B.2.12 for n = N (in which case i}, is the Sy-orbit of

(1,2,...,N)). O
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List of symbols

See below for the list of symbols used in this thesis and the page where they are first defined.

We also refer the reader to the various boxes headed “Notation” on pages 12, 16, 24, 52, 55 and

7.

Greek letters

-
A=Yy 02
Aj

Aj, Aji

3(x)

Say

0(z), ()

0; =05y ...iy
N

Ay =AM

(A;t)(N—i-l)

A:(Al')"w)\]\f)

Coupling constant .......... ..o Page 1
Laplacian operator ............c.ouueieeiiiiii i Page 1
Divided difference operator acting on C[X] .......... Eqn. (3.2.3), Page 53

Divided difference operator appearing in regular representation of

dAHA Eqn. (3.3.1), Page 53
Dirac delta .....oo Page 1
Kronecker delta ........ . i Page 41
Unit step function ...........oo i Page 21

Shorthand for 6(x1 — x9,x9 — 3, ...

Multiplication operator corresponding to step

function ... Eqn. (3.5.3), Page 58

Auxiliary function used in definition of Dunkl-type operator

Oy v Eqn. (3.5.1), Page 58
Shifted version of AE-NH) .......................... Eqn. (B.2.7), Page 123
Vector of wavenumbers ....... ... ... i Page 4
Shorthand for A Fiy/2 ..o Page 39



Uy =1¢€ho(J)
P

Roman letters

C
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Dunkl-type representation ................... ..., Eqn. (3.5.5), Page 59
Integral representation of AAHA .................... Eqn. (3.4.3), Page 57
Regular representation in momentum space of dAHA Eqn. (3.3.3), Page 54
Set of ordered pairs in {1,..., N} whose order is inverted by

W E SN ettt Eqn. (3.1.2), Page 50
Basis elements of slo ... Page 20
Eigenvalue of T), .......... .. ... Eqn. (2.5.9), Page 31
Shorthand for H;VZI )‘j)\_j’f;w ........................ Eqn. (2.5.4), Page 30
Quantum fields ........... ... Eqn. (2.2.1), Page 16
Insertion operator ...............ciiiiiiiiiiiiiaa.. Eqn. (5.1.2), Page 84
Deletion operator ............c.coiiiiiiiiiiiii Eqn. (5.1.1), Page 84
Replacement operator ............ ... ... i Eqn. (5.1.4), Page 84
Characteristic function of the set X ........ .. ... .. ..o ... Page 24
Bethe wavefunction ................ ... .. ool Eqn. (1.9), Page 5
Pseudo-vacuum ............ . Page 12
Pre-wavefunction ........... ... ... ... oL Eqn. (3.6.11), Page 65
Generator of symmetric Yang-Baxter algebra ........ Eqn. (2.4.1), Page 21
Generator of non-symmetric Yang-Baxter algebra ... Eqn. (5.1.6), Page 86
Generator of symmetric Yang-Baxter algebra; particle creation

OPETALOT .+ ettt et e et et e e e et e e Eqn. (2.4.2), Page 21
Generator of non-symmetric Yang-Baxter algebra;

non-symmetric particle creation operators ........... Eqn. (5.1.7), Page 86
Generator of symmetric Yang-Baxter algebra ........ Eqn. (2.4.3), Page 21
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N
(Creg

C(U)

CH(U)

c=(U)
cv(U)

CBL(RN)

CB>(RY)

CB*(RV)

Set of complex regular vectors ........... ... i Page 28

Vector space of continuous functions: U - C ....................... Page 2

Vector space of k-times continuously differentiable

functions: U — € ..o Page 2
Vector space of smooth functions: U - C .......................... Page 2
Vector space of real-analytic functions: U - C ..................... Page 2

Set of continuous functions with C! restriction to regular

VECEOTS .+ vt e ettt e e et e e e e e Eqn. (3.5.8), Page 60

Set of continuous functions with smooth restriction to regular

VECTOTS .ttt Eqn. (3.5.9), Page 60

Set of continuous functions with real-analytic restriction to regular

VECEOTS '+ ettt et e et et e e e e Eqn. (3.6.6), Page 64

Set of functions in CB*(RY) satisfying the derivative jump
conditions ......... ... .o i Eqn. (3.5.10), Page 60

Set of functions in CB*(R™) satisfying the higher-order boundary jump
conditions .......... ... Eqn. (3.6.8), Page 64

Generator of non-symmetric Yang-Baxter algebra ... Eqn. (5.1.8), Page 86

Generator of symmetric Yang-Baxter algebra ........ Eqn. (2.4.4), Page 21
Vector space of symmetric test functions @y~ DPnN(J) - ooovnnntn. Page 14
Vector space of symmetric test functions CZ5 (JV PIN . Page 14

Generator of non-symmetric Yang-Baxter algebra ... Eqn. (5.1.9), Page 86

J-th partial derivative ........ . ... Page 1
Dunkl-type operator ...............c.oiiiiiiiiii... Eqn. (3.5.2), Page 58
Vector space of non-symmetric test functions @n~on(J) ... Page 14
Vector space of non-symmetric test functions Cop(J Ny Page 14
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Elementary symmetric integral operators .......................... Page 25
Eigenvalue of Hamiltonian ......... ... ... ..o i Page 1
Plane wave with wavenumbers given by XA .............. Eqn. (1.8), Page 5
Shorthand for éi@ ................................................ Page 85
Elementary non-symmetric integral operators ..................... Page 85
n-th elementary symmetric polynomial .............. Eqn. (4.4.5), Page 80
Vector space of functions: U — C ...... ... ..o i, Page 2
Coeflicient in Bethe wavefunction ................... Eqn. (3.3.6), Page 56
Hamiltonian for the QNLS model ...................... Eqn. (1.1), Page 1
Higher QNLS integrals of motion .................... Eqn. (2.2.8), Page 19
Combined algebra isomorphic to CSy ® C[X71,..., Xn] as

VECEOT SPACE .« ottt ittt Page 50
Degenerate affine Hecke algebra ........ .. ... oL Page 52
Symmetric Fock space @n>oHN(J) «ooovniiiiii Page 13
Dense subspace of H(J) of finite vectors ........................... Page 13
Symmetric N-particle sector L2(JN)S~ ... .. Page 12
Non-symmetric Fock space @n>ohn(J) oot Page 13
Dense subspace of h(.J) of finite vectors .......................... Page 13
Non-symmetric N-particle sector L2(JN) ..., Page 12
Integral operator appearing in integral

representation of dAHA .......... ... .. ... ... ... Eqn. (3.4.1), Page 57

Set of n-tuples with increasing entries in {1,..., N}..Eqn. (2.4.9), Page 24
Shorthand for (i1 4+ 1,... 0, + 1) coueii Page 85

Set of n-tuples with distinct entries in {1,..., N} .... Eqn. (2.4.8), Page 23
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ix(7)
J

JN

reg

qdet T,

Sj = Sjj+1

Sjk

Shorthand for {2 € i} : Vmiy, #Jj} ..o Eqn. (B.2.3), Page 121
Closed interval containing permitted particle locations .............. Page 1
Set of regular vectors .......... Page 2
Fundamental alcove ............ . Page 2
Length of bounded interval J ........ .. .. .. i Page 4
Hilbert space of square-integrable functions: J¥ — C ............. Page 12
QNLS (local) L-matrix ..........coooiiiiiiiii..... Eqn. (2.2.3), Page 17
Lengthofwe ™ ... oo Eqn. (3.1.3), Page 50
Number of particles ... Page 1
Propagation operator .............. .. ... ... Eqn. (3.6.1), Page 62
Permutation operator of C2@ C? ................cooiiiiiiiiiiaii. Page 19
Vector space of polynomial functions: U - C ...................... Page 2
n-th power sum symmetric polynomial .............. Eqn. (2.2.7), Page 18
QNLS Q-0perator ..........c.cooiiiiiiiiiiiiaaa... Eqn. (4.4.4), Page 80
Quantum determinant of the monodromy matrix ....Eqn. (2.7.1), Page 39
QNLS R-matrix .....coovriiiiiiiii .. Eqn. (2.3.1), Page 19
SYMMELTIC GUOUD ...ttt ettt e e Page 3
SYMMEtTIZEr . ...ttt e Eqn. (3.1.1), Page 49

Image of symmetrizer under integral representation of

dAHA o Eqn. (3.4.5), Page 58

Image of symmetrizer under regular representation of dAHA in momentum

SPACE et ettt e e Eqn. (3.3.5), Page 55
Simple transposition swapping j and j+1 ........... ... Page 3
Transposition swapping jand k ...........oo i Page 3
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Deformed simple transposition appearing in integral representation of

dAHA Eqn. (3.4.2), Page 57

Deformed simple transposition appearing in regular representation of AAHA

in MOMENtUM SPACE ..ttt eeie e Eqn. (3.3.2), Page 53
Transfer matrix .......... ... ... Eqn. (2.2.5), Page 18
QNLS monodromy matrix .............ccviiiiann... Eqn. (2.2.4), Page 17
Shorthand for ay +dx ... Page 100
Hyperplane {a: e JN: Tj = Tk } ................................... Page 2
Indicates a limit x; — x; is taken with z; 2 xp ......... Eqn. (1.3), Page 4
Arbitrary element of Sy ..o Page 3
Shifted permutation ................ ... ..o Eqn. (B.1.3), Page 115
Longest element in Sy ..o Page 77
Deformed permutation acting in position space ...... Eqn. (3.4.4), Page 58

Deformed permutation acting in momentum space ...Eqn. (3.3.4), Page 55
Particle locations ............c.oiiiiiiit e Page 1

Completion of span of all ¥ in hy. ...t Eqn. (5.3.1), Page 95
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