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Abstract 

The principal objectives of the study presented in this thesis were to study the changes of 

milk proteomes, peptidomes and metabolomes during the course of bovine mastitis in 

comparison with normal milk samples and to discover new bovine mastitis biomarkers 

using various modern and up-to-date methodologies such as proteomics, peptidomics and 

metabolomics. 

Bovine mastitis caused by bacterial infection of the mammary gland of dairy cows is often 

associated with loss of milk production due to a reduction in milk composition and quality 

which in turns, lead to negative economic impact on dairy industry. 

Two important acute phase proteins (APPs) which serve as valuable biomarkers in bovine 

mastitis were investigated in every chapter using developed and validated enzyme linked 

immunosorbent assay (ELISA) for bovine milk haptoglobin and commercially available 

ELISA for bovine milk serum amyloid A3 (M-SAA3). These APPs were quantified 

alongside somatic cell counts (SCC) and California Mastitis Test (CMT) to confirm the 

disease status of each animal used in this study. 

Proteomic methodologies were applied including 1D gel electrophoresis, 2D gel 

electrophoresis, MALDI-TOF analysis and difference gel electrophoresis to investigate the 

changes of milk proteome in both subclinical and clinical mastitic milk samples in 

comparison with healthy milk samples.  However these investigations did not reveal novel 

biomarkers for mastitis. 

Next, peptidomic methodologies were used to study the changes in milk peptidome and to 

detect the presence of any significant disease biomarkers in the presence of bovine mastitis 

by using CE-MS and LC-MS/MS. A total of 31 and 14 polypeptides can be used to 

discriminate control from infected groups and E. coli from S. aureus infected groups 

respectively. 

Lastly, metabolomic methodology was applied with an intention to study the changes in 

milk metabolome and ultimately to detect the presence of novel biomarkers in bovine 

mastitis. Di- and tri-peptides were found higher in S. aureus than in E. coli infected groups 

and based on metabolic pathways, arachidonic, arginine and galactose metabolites were 

seen increased in mastitic milk samples in comparison to healthy milk samples. 
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Overall, the findings detailed in this thesis indicate that the use of advanced proteomic and 

metabolomic methodologies could deliver on their promise of the discovery of potential 

significant bovine mastitis biomarkers. Further studies are needed for validation of these 

proposed biomarkers and it was hoped that better prevention and treatment methods for 

bovine mastitis can be achieved in the future. 
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GC-MS gas chromatography mass spectrometry 

Gly glycine 

GlyCAM-1 glycosylation-dependent cell adhesion molecule 1 

Glu glutamic acid 

GSH glutathione 

GSHPx glutathione peroxidase 

H histidine 

H2O2 hydrogen peroxide 

Hb haemoglobin 

HbCN cyanmethaemoglobin 

HDL high density lipoprotein 

Hb-Hp haemoglobin-haptoglobin 

HCl acid hydrochloride 

His histidine 

HMW high molecular weight 

HNMR proton nuclear magnetic resonance 

Hp  haptoglobin 

Hp-HbCN haptoglobin-cyanmethaemoglobin 

HPLC high-performance liquid chromatography 

Hp-MMP9 haptoglobin-matrix metalloproteinase 

HSA human serum albumin 

ICAT Isotope-coded affinity tag 

ID identification 

IEF isoelectric focusing 

IEX ion exchange chromatography 

Ig immunoglobulin 
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Ile isoleucine 

IL-1 interleukin-1 

IL-10 interleukin-10 

IL-12 interleukin-12 

IL-19 interleukin-19 

IL-1β interleukin-1 beta 

IL-6 interleukin-6 

IL-8 interleukin-8 

IMI intramammary infection 

Inc. incorporation 

iNOS inducible nitric oxide synthase 

IPG immobilized pH gradient 

IQR inter-quarter ratio 

IRT infrared thermography 

iTRAQ isobaric tags for relative and absolute quantitation 

K lysine 

K
+
 potassium ion 

kDa kilo Dalton 

KEGG Kyoto Encyclopaedia of Genes and Genomes 

kV kilo volt 

LAB lactic acid bacteria 

lb pound 

LBP lipopolysaccharide binding protein 

LC liquid chromatography 

LC MS liquid chromatography mass spectrometry 

LC-HSRM-MS liquid chromatography-high-resolution selected reaction monitoring- mass 

spectrometry 

LC-MRM-MS/MS liquid chromatography-multiple reaction monitoring-tandem mass 

spectrometry 

LC-MS/MS liquid chromatography tandem mass spectrometry 

LDH lactate dehydrogenase 
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Leu leucine 

Lf lactoferrin 

LKA4 leukotriene A4 

LKB4 leukotriene B4 

LMW low molecular weight 

logSCC logarithmic somatic cell count 

logNAGase log N-acetyl-beta-D-glucosaminidase 

Lp lactoperoxidase 

L-PGDS lipocalin-type prostaglandin D synthase 

LPL lipoprotein lipase 

LPS lipopolysaccharide 

LTA lipotechoic acid 

LTB4 Leukotriene B4 

Lys lysine 

m or M methionine 

M molar 

MALDI matrix-assisted laser desorption ionization 

MALDI TOF MS matrix-assisted laser desorption ionization-time of flight mass spectrometry 

MALDI-TOF 

MS/MS  

matrix-assisted laser desorption ionization-time of flight tandem mass 

spectrometry 

Met methionine 

MFGE8 milk fat globule EGF factor 8 

MFGM milk fat globule membrane 

mg/ml milligram per millilitre 

MH+ protonated mass of peptide 

MHC major histocompatibility complex 

MHp milk haptoglobin 

min minute 

ml millilitre 

mM millimolar 

MPO myeloperoxidase 
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Mr relative molecular mass 

mRNA messenger ribonucleic acid 

MS  mass spectrometry 

MS mass spectrometry 

mS/cm milliSiemens per centimetre 

MS/MS tandem mass spectrometry 

M-SAA3 mammary-associated serum amyloid A3 

Mud-PIT multidimensional protein identification 

MUFA monounsaturated fatty acid 

MWCO molecular weight cut off 

m/z mass to charge ratio 

n total 

Na
+
 sodium ion 

NaCl sodium chloride 

NAD nicotinamide adenine dinucleotide 

NADH reduced nicotinamide adenine dinucleotide 

NAGase N-acetyl-β-D-glucosaminidase 

NaHCO3 sodium bicarbonate 

NaOH sodium hydroxide 

NCBI National Centre for Biotechnology Information 

NEB negative energy balance 

NEFA non-esterified fatty acid 

nESI-MS/MS nanoelectrospray-tandem mass spectrometry 

NET neutrophil killing mechanism 

ng/ml nanogram per millilitre 

NH4 ammonium 

NH4OH ammonium hydroxide 

NH4SO4 ammonium sulphate 

NHS N-hydroxysuccinimidyl 

NHS-PEO4 N-Hydroxysuccinimide polyethylene oxide 4 
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NK-κB nuclear factor kappa-light-chain-enhancer of activated B cells 

nm nanometre 

NMR nuclear magnetic resonance 

NO nitric oxide 

NOS nitric oxide synthase 

NPN non-protein nitrogen 

O2
-
 superoxide anion 

OD optical density 

OH hydroxyl radical 

P or p proline 

P4 progesterone 

PAGE polyacrylamide gel electrophoresis 

para-κ-CN para-kappa casein 

PBS phosphate buffered saline 

PCM milk prostacyclin 

PCR polymerase chain reaction 

PGD2 prostaglandin D2 

PGE2 Prostaglandin E2 

PGF1α prostaglandin F1 alpha 

PGF2α prostaglandin F2 alpha 

PGI2 prostacyclin 

PGJ2 prostaglandin J2 

PGLYRP1 peptidoglycan recognition protein 1 

pH power of hydrogen 

PHA- phytohaemagglutinin 

pI isoelectric point 

Pm probability of misclassifying 

PMF peptide mass fingerprinting 

PMN polymorphonuclear 

PMNL polymorphonuclear leukocyte 
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pmol/μl picomol per microlitre 

ppm parts per million 

PPV positive predictive value 

Pro proline 

PSD post-source decay 

psi pounds per square inch 

PTM post transitional modification 

PUFA polyunsaturated fatty acid 

p-value probability that null hypothesis is true 

Px peroxidase 

Q quadrupole 

Q-TOF MS/MS quadruopole-time of flight tandem mass spectrometry 

r correlation 

R arginine 

RAM restricted access media 

RP reversed phase 

RP-HPLC reversed phase-high performance liquid chromatography 

RSNO S-nitrosothiols 

RT rectal temperature 

RT-PCR reversed transcription polymerase chain reaction 

RBP retinol binding protein 

S. agalactiae Staphylococcus agalactiae 

S. aurues Staphylococcus aureus 

S. epidermidis Staphylococcus epidermidis 

S. uberis Streptococcus uberis 

S. dysgalactiae Streptococcus dysgalactiae 

SAA serum amyloid A 

SCC somatic cell counts 

SCX strong cation resin 

SD Standard deviation 
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SDPP short-day photo period 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 

Se selenium 

SELDI-TOF Surface-enhanced laser desorption ionization-time of flight 

Ser serine 

SFA saturated fatty acid 

SHp serum haptoglobin 

SILAC Stable isotope labelling with amino acids in cell culture 

SNF solid non-fat 

SOD Superoxide dismutase 

spp species 

SPE solid phase extraction 

SPME solid phase microextraction 

SPR surface plasmon resonance 

SRID single radial immunodiffusion 

SST skin surface temperature 

SVM support vector machine 

T trace 

TBS Tris-buffered saline 

TCA citric acid cycle 

TFA trifluoroacetic acid 

TLR toll-like receptor 

TMB Tetra methyl benzidine 

TNF-α tumour necrosis factor-alpha 

TOF time-of-flight 

Tris-HCl Tris-hydrochloride 

TrpRS tryptophanyl-tRNA-synthetase 

TTR transthyretin 

TXA2 thromboxane A2 

TXB2 thromboxane B2 
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UFA unsaturated fatty acid 

UK United Kingdom 

UPLC ultra-high pressure liquid chromatography 

USA United States of America 

utlIEF ultra-thin layer isoelectric focusing 

UV ultra violet 

UV/VIS ultra violet visible 

V voltage 

Val valine 

vs versus 

v/v volume over volume 

w/v weight over volume 

WPC whey protein concentrate 

WST Whiteside test 

X times 

XCorr cross correlation value from the search 

x g centrifugal force in gravity 

Zn zinc 

z-value standard score 

α1-AGP alpha 1 acid glycoprotein 

α1-PI alpha 1-acid proteinase 

α-CN alpha casein 

α-LG alpha lactoglobulin 

αS1-CN alpha S1 casein 

αS2-CN alpha S2 casein 

β-CN beta casein 

β-Gase β-glucuronidase 

β-LA beta lactalbumin 

γ gamma 

 γ1-CN gamma 1 casein 
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γ2-CN gamma 2 casein 

 γ3-CN gamma 3 casein 

 δ-12-PGJ2 delta-12-prostaglandin J2 

δ-CN delta casein 

κ-CN kappa casein 

μg microgram 

μg/ml microgram per litre 

μl microlitre 

 



26 

 

Acknowledgements 

In the name of Allah SWT, the Most Gracious and the Most Merciful, I offer my humble 

thank gratitude You for giving me the strength on completing this PhD thesis. 

This thesis would not have been possible without the guidance and the help of several 

individuals who in one way or another contributed and extended their valuable assistance 

in the preparation and completion of this study. 

My PhD study would not have been started with the sponsorship from the Ministry of 

Higher Education Malaysia and Universiti Putra Malaysia for their support in terms of 

living allowances in the UK. My colleagues and staff in Faculty of Veterinary Medicine, 

Universiti Putra Malaysia, thank you for your constant moral support throughout my 

period of study. 

I offer my utmost gratitude to Professor David Eckersall, my principal supervisor who has 

supported me throughout my thesis with his patience and knowledge whilst allowing me 

the room to work in my own way. I attribute the level of my PhD degree to his 

encouragement and effort and without him this thesis, too, would not have been completed 

or written. One simply could not wish for a better or friendlier supervisor. Alongside 

David, I thank my co-supervisor Professor David Barrett without whose broad knowledge 

in the veterinary field and assistance, this thesis would not have been successful. 

I am also extremely grateful to the dairymen and staff involved at Cochno Farm and Vale 

Veterinary Laboratory, UK for providing me plenty of milk samples throughout my study. 

Without their help, my work would not have been completed. 

Special thanks to Rahul Nelli for offering me his help during my first few weeks of my 

study with several of laboratory works. I also wish to thank Dr. Tim Parkin for his 

expertise in statistical analyses. 

In the various laboratories, I have been aided by many important people and I wish to 

express gratitude to Dr. Laura Bence and Mary Waterston for their help especially with the 

milk acute phase protein assays. Dr. Richard Burchmore, Kamburapola Jayawardena and 

Michael Walsh for their help and knowledge in my proteomic works, Dr Karl Burgess who 

had helped me in my metabolomic work and lastly to Dr William Mullen and Dr Amaya 

Albalat for their continuous help and support in my peptidomic work.  



27 

 

My special thanks to my husband, Mr Mohd Hasan Mohd Saaid for his constant help, 

understanding, support and encouragement. Without you, I could never have completed 

this study. And to our daughter, Nur Adaira Safiyyah thank you for giving me a constant 

inspiration and happiness while writing up this thesis, I am also indebted to my family 

(parents and sister) whose encouragement was never end. 

Finally, I extend my apologies to everyone whom I have neglected in the name of my PhD. 

Many thanks, to my fellow Malaysian for their support and help. I am truly grateful for 

every chance and opportunities that have been given in my life. I look forward to more 

exciting life beyond this PhD. 

 

 

Rozaihan Mansor, February 2012 



28 

 

Author’s Declaration 

The work presented in this thesis was performed solely by the author except where the 

assistance of others has been acknowledged. 

 

 

 

 

 

Rozaihan Mansor, February 2012 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

Dedication 

 

 

 

 

To my daughter, Nur Adaira Safiyyah Mohd Hasan 

 



Chapter 1, 30 

 

Chapter I. Introduction 

1.1  Bovine Mastitis and its Impact on the Dairy Industry 

  

Mastitis is an inflammation of mammary gland parenchyma which is characterized by a 

range of physical and chemical changes of the milk and pathological changes in the udder 

tissues (Radostits et al. 2000). Significant milk changes that can be observed in bovine 

mastitis are the presence of clots in milk, milk discolouration and high numbers of 

leukocytes in affected milk. Furthermore, apparent clinical signs in bovine mastitis 

comprise swelling, heat and pain in the udder. 

Mastitis is usually caused by bacterial pathogens which can be classified into two groups; 

the contagious pathogens which include Streptococcus agalactiae, Staphylococcus aureus 

and Mycoplasma bovis as well as environmental pathogens which include Streptococcus 

species (Streptococcus uberis and Streptococcus dysgalactiae) and environmental 

coliforms (Gram negative bacteria Escherichia coli, Klebsiella spp., Citrobacter spp., 

Enterobacter spp., Enterobacter faecalis and Enterobacter faecium., and other gram 

negative bacteria such as Serratia, Pseudomonas and Proteus (Radostits et al. 2000) 

The bovine mammary gland is protected by innate and specific immune responses 

(Sordillo & Streicher 2002). However, factors such as environmental and physiological 

could compromise the defence mechanism of the mammary gland (Hopster et al. 1998; 

Waller 2000). Milking by using machines can also contribute to teat damage which in turn 

increases the susceptibility of mastitis-causing pathogen colonization. Poor housing 

environment, increased cow densities per unit and low ventilation can also increase the 

susceptibility to bovine mastitis. Nevertheless, the most important factor in contributing to 

increase bovine mastitis susceptibility is the lactation stage of a cow. It is known that 

during the periparturient period, the immunity of the udder is compromised due to 

physiological changes that happen in preparation for lactation (Oliver & Sordillo 1988). 

Mastitis is one of the most prevalent diseases in dairy cows. It is an endemic disease and 

happens to be the most frequent and most costly disease affecting dairy herds worldwide 

(Halasa et al. 2007; Miller et al. 1993). It affects the quality of the milk through changes in 

milk composition and in return, affects the economy of dairy industry. The United 

Kingdom (UK) is the third largest milk producer in the EU after Germany and France and 
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ninth largest producer in the world (Defra, Agriculture in the United Kingdom 2009, April 

2010, Table 9.1). Around one million cases of bovine mastitis occur each year in the UK 

with £200 million of losses in production and treatments every year (Science Daily 2008). 

Various papers have discussed the economic impact of bovine mastitis. To simplify their 

conclusions, economic losses due to mastitis can be caused by milk production losses, use 

of treatments, discarded milk, veterinary services, labour, product quality, materials and 

investments, diagnostics, other diseases and culling (Halasa et al. 2007).  Persistent 

decrease in milk production is the main detrimental effect that contributes to the economic 

impact of mastitis (Seegers et al. 2003). However, it is quite difficult to estimate the 

economic losses caused by bovine mastitis as they are influenced by various factors.  

According to Bhikane & Kawitkar (2000), this most important disease in dairy cattle can 

cause up to 70% of reduced milk production, 9% of milk discard after treatment, 7% of the 

cost of veterinary services and 14% of premature culling.  

Traditionally, the control of mastitis has involved the use of chemical disinfectants, 

antiseptic or herbal teat dips (Maiti et al. 2004) and antibiotic therapy.  Antibiotic therapy 

has been used in mastitis control for about 50 years (Sharma 2007). However, it was 

suggested that antibiotic therapy was not actually helping to reduce the incidence of 

mastitis. In fact, several problems arise from the use of antibiotics for example, developing 

resistance to antibiotic, questionable drug efficacy and presence of antibiotic residues in 

the milk. Thus, Sharma (2003) suggested the use of alternative approaches to control 

mastitis that enhance the immunity of mammary gland by using immunoregulatory 

micronutrients (Vitamin E and selenium), vaccines and cytokines.  

1.1.1 Bovine Milk 

Milk is one of the important biological fluids and contains considerable amounts of 

nutrients. All types of milk contain proteins in colloidal dispersion as micelles, fats in 

emulsified globules coated with a membrane and easily digested, minerals, vitamins and 

other components (Jensen et al. 1991, 1995). Each of these components plays beneficial 

roles to the host.  

Colostrum is another type of milk that is produced by cows during the first several days 

postpartum. It is important for the growth and health of the neonates as it contains antibody 

(immunoglobulins) and complement that provide antimicrobial properties against different 

types of pathogens which can be detrimental to the newborn especially during early age 
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(Korhonen et al. 2000). Thus, colostrum provides nutrients to the newborn as well as 

conferring passive immunity to them. However, in this thesis, we will focus only on milk 

protein of bovine.  

1.1.2 Milk Protein 

Proteins are arguably the most important nutritional factors in the milk. In bovine, six 

major gene products of the mammary epithelial cells have been identified which include 

αS1-, αS2-, β-, κ-caseins, β-lactoglobulin and α-lactalbumin (Swaisgood 1982, 1993). Apart 

from the presence of blood plasmin and plasminogen in the milk, small peptides (e.g; 

proteose-peptone which is largely derive from the N-terminus of β-casein and from fat 

globule membrane glycoproteins) and large peptides (e.g; γ-caseins are derived from the 

C-terminus of β-casein) are also present in milk with varying concentrations (Swaisgood 

1993) as well as a number of low abundance minor proteins and enzymes (plasmin and 

lipoprotein lipase). 

Protein is one of the milk compositions known to affect more of the properties of milk and 

most dairy products than any other constituent, thus considerable amounts of research have 

been performed to investigate their unique properties and technological importance.  

Milk contains acid-precipitated proteins known as casein (CN) which are converted to 

curds by rennin (Kinsella et al. 1984). The liquid left after casein precipitation of skim or 

whole milk is called whey proteins. Another two groups of proteinaceous materials are 

proteose peptones and non-protein nitrogen (NPN) which was discovered by Rowland 

(1938). 

Pedersen and Mellander (McMeekin 1970) successfully resolved isoelectric casein into 

three proteins namely α-, β-, γ- caseins depending on their electrophoretic mobility. Alpha-

casein was further resolved by Waugh and van Hippel (1956) into αs-casein which contains 

two types of proteins αs1- and αs2- caseins as well as κ-casein. According to Fox & 

Brodkorb (2008), α s1-casein, α s2-casein, β-casein and κ -casein represent approximately 

38, 10, 35 and 12% respectively of whole bovine casein. 

As for the whey proteins, they are globular molecules in which the acidic/basic and 

hydrophobic/hydrophilic amino acids are evenly distributed along their polypeptide chains 

(Evans 1982). Whey proteins comprise of β-lactoglobulin (β-LG), α-lactalbumin (α-LA), 

immunoglobulins (Igs), lactoferrin and lactoperoxidase, together with other minor 

components (Madureira et al. 2007). 
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Other proteins that are present in bovine milk comprise metal-binding proteins (glutathione 

peroxidase), β-microglobulin, osteopontin and vitamin-binding proteins, angiogenins, 

kininogen, glycoproteins, proteins in the milk fat globule membrane and growth factors. 

Milk Proteins Examples 

Caseins αS1-casein, αS2-casein, β-casein, κ-casein 

Whey proteins β-lactoglobulin, α-lactalbumin, 

immunoglobulins, lactoperoxidase 

Others metal-binding proteins, β-microglobulin, 

osteopontin, vitamin-binding proteins, 

angiogenins, kininogen, glycoproteins, 

proteins of milk fat globule membrane and 

growth factors 

Table 1-1: Examples of caseins, whey and other proteins present in bovine milk 

composition 

1.2 Diagnostic Methods for Bovine Mastitis 

These traditional diagnostic methods discussed below are the most common ways of 

diagnosing bovine mastitis at the farm level worldwide. They are known to be used widely 

in detecting bovine mastitis. Despite of several major drawbacks in these methods, they 

still are widely used in diagnosing bovine mastitis in dairy herds. 

1.2.1 Somatic Cell Counts 

Somatic cell count (SCC) has proved to be one of the most useful diagnostic techniques to 

detect the presence and occurrence of bovine mastitis and especially for bovine subclinical 

mastitis (Dohoo & Meek 1982; Schukken et al. 2003). According to Shook (1989), 

currently, the dairy industry relies on this method for milk quality payment schemes 

(Viguier et al. 2009) where elevated levels of somatic cells result in low payments. 

Automated devices have been developed recently so that rapid determination of somatic 

cell counts can be performed by using the Coulter Milk Cell Counter; where the particles 

are counted through an electric field and the Fossomatic; where the cells are stained using 

fluorescent dyes before counting the fluorescent particles (Dohoo & Meek 1982). 

Normally, in a non-infected mammary gland, the SCC is low and macrophages are the 

predominant cells in the milk, which account for 60% of the total somatic cells with 12% 
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consisting of neutrophils and 28% of lymphocytes (Burvenich et al. 1995; Napel et al. 

2009). However, following microbial infection, approximately within 6 hours after the 

release of bacterial endotoxin, the somatic cells increase dramatically from fewer than 10
5
 

cells/ml of milk to an excess of 10
6
 cells/ml (Kehrli and Shuster 1994). At this stage, the 

majority of cell populations are neutrophils (>90%), which remain the main cell type up to 

59 hours following infusion (Saad & Ostensson 1990). However, according to Van Werven 

et al. (1997), it may take about 3 weeks for the SCC to return to its normal concentration 

following successful bacterial elimination. Thus, the levels of neutrophils as the percentage 

of the SCC can be used as a mastitis indicator (Hamann and Kromker 1997). Leukocytes, 

primarily neutrophils are recruited from the blood in order to fight against bacterial 

colonization and thus making neutrophils the cells predominant in milk somatic cells 

during mastitis (Leitner et al. 2000). 

 

The presence of increased somatic cell counts can be explained by the pathogenesis of 

bovine mastitis. Following microbial establishment in the mammary gland, the bacteria 

will stimulate both the cellular and humoral defence mechanisms of the udder and will 

further deteriorate its condition by multiplying and liberating toxins. Endotoxin released by 

the bacteria induces leukocytes and epithelial cells to release chemoattractants such as 

cytokines, interleukins (IL-1, IL-8), eicosanoids (PGF2α), oxygen radicals and acute phase 

proteins (APPs). Polymorphonuclear cells (PMNs) are attracted to the site of inflammation 

to engulf and destroy the invading bacteria and in turn, release intracellular granules which 

contain bactericidal peptides, proteins, enzymes, and neutral and acidic proteases. The 

apoptotic PMNs are later engulfed and ingested by macrophages and the dead and 

sloughed off mammary epithelial cells together with dead leukocytes give rise to high 

somatic cell counts in the milk 

 

To correctly interpret the SCC, several factors need to be considered. First, is the infection 

status of the quarter of the mammary gland. The SCC depends on the causal organisms 

(commensal organisms; Corynebacterium bovis or coagulase negative streptococci or 

major pathogens; Streptococci species, Staphylococcus aureus and coliforms) as different 

types of pathogens, result in different ranges of SCC. Second, the number of quarters 

infected is particularly important in composite (cow) SCC as the high cell count milk from 

infected quarters is diluted with low cell count milk from uninfected quarters. Increased 

age of a cow has been reported to be associated with an increase of cellular content of milk 

due to increased prevalence of disease in older cows (Marshall & Edmondson 1962; 



Chapter 1, 35 

 

Reichmuth 1975; Dohoo & Meek 1982). After calving, there is a possibility of the somatic 

cell counts rising in uninfected quarters and then decreasing to the normal level 4-5 days 

postpartum (Dohoo & Meek 1982; Barkema et al. 1999). Some authors have reported that 

the somatic cell counts increase as the lactation progresses (Schultz 1977). Towards the 

end of lactation, SCC is seen to be elevated (Brolund 1985; Miller & Paape 1988) but 

return to a low level if the quarter is uninfected. However, if there is a presence of 

infection, the SCC remains high and this can be used to detect a new intramammary 

infection postpartum (Barkema 1999). Thus, stage of lactation seems to affect the 

interpretation of SCC. 

Milking frequency also seems to affect the SCC. Increasing the frequency of milking (from 

two times a day to three times a day) decreased the SCC of the bulk milk (Hogeveen et al. 

2001).  Cell counts were seen to be elevated in the afternoon rather than in the morning 

(Kukovics 1996) and also they appeared to be highest in the milk strippings. These cell 

count concentrations could persist for up to 4 hours before return to low levels (Smith & 

Schultze 1967).  Other factors that should be considered include season, stress, day to day 

variation, technical aspects and management (Dohoo & Meek 1982). 

The type of sample taken for SCC analysis (quarter, composite or bulk tank) is an 

important factor when interpreting the results. One should remember that there are 

possibilities of having false-positive or false-negative results. Infected cows sometimes 

have low cell counts and vice versa. Second, cell counts are only an indication of the 

presence of infection within the mammary gland, rather than indicating the presence of 

pathogen. Finally, the evaluation of herd averages is better than the evaluation of 

individual quarter, cow or bulk tank level (Dohoo & Meek 1982). 

With quarter milk samples, the threshold of 200 000 cells/ml has been recommended to 

classify the quarter as being infected (with a major pathogen) (Hillerton 1999a). When 

interpreting the composite SCC, the dilution effect of milk from uninfected quarters on the 

elevated counts from infected quarters should be taken into consideration. It has been 

suggested that the logarithmic transformation of the SCC can be done before the average of 

cell count is calculated (Dijkman 1975). Bulk tank SCCs seem to be a good indicator of the 

general state of udder health and levels below 250 000 cells/ml indicate a good state of 

udder health and over 500 000 cells/ml indicate the presence of severe mastitis in a herd 

(Dohoo & Meek 1982). 
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High somatic cell counts affect the milk quality and milk production as well as milk 

composition. Due to high SCC, the quality of milk is altered as it causes deterioration in 

the flavour quality and the shelf life of the milk. These effects result from the breakdown 

of milk protein and fat and an increase in acid degree value (Ma et al. 2000). High levels of 

whey protein and low casein levels lead to lower cheese yields (Sharif & Muhammad 

2008) because an elevation of rennet to cutting time and reduced curd firmness are found. 

In turn, severity of mastitis affects the value of food in terms of low protein and fat 

contents in milk (Ullah et al. 2005). Thus, an increase in SCC is an indicator of losses in 

milk production due to subclinical mastitis.  However, it must be remembered that other 

factors associated with mastitis could also lead to production losses such as discarded milk, 

drug costs, veterinary fees, extra labour, increased cow replacement costs and loss of 

genetic potential (Dijkman 1975). An intramammary infection during mastitis can cause 

considerable impact on the mammary gland of a cow. Permeability of the blood-milk 

barrier is disrupted and results in increased leakage of blood components into milk such as 

serum albumin and immunoglobulins (Haenlein et al. 1973). Furthermore due to infection, 

the synthetic activity of mammary tissue seems to be affected, thus decreasing lactose fat 

and α-lactalbumin level in milk (Harmon 1994). 

1.2.2 California Mastitis Test (CMT) 

A rapid, simple test to detect mastitis called the California Mastitis Test (CMT) was 

developed by Schalm and Noorlander in 1957. In this test, a mixture of the 

reagent/detergent and milk caused precipitation and gel formation which reflected the cell 

count of the milk (Barnum & Newbould 1961). According to Carroll and Schalm (1966), 

deoxyribonucleic acid (DNA) originating from the nuclei of somatic cells constituting the 

inflammatory exudates cause this CMT reaction. Jensen (1957) reported that this CMT 

reaction was due to the formation of a gel of leukocyte proteins and the reaction was 

negative until the level of cell count exceeded 500 000 cells/ml. Thus, CMT is one of the 

popular cow-side mastitis tests to indicate the presence of mastitis based on the leukocyte 

count in the infected milk. 

Detergents used in the CMT decrease the surface tension, change the structure and 

conductivity of cell membranes and the nucleus of the cells. Other than that, it disturbs the 

osmotic balance, blocks oxidizing reactions and stimulates proteolytic enzymes and 

increases milk viscosity, leading to gel formation (Sargeant et al. 2001; Ruegg & 

Reinemann 2002; Middleton et al. 2004). According to Barnum & Newbould (1961), the 

test was performed by pouring the well-mixed milk to a volume of 3ml in one part of a 
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partitioned plastic paddle before adding approximately 3ml of the commercial CMT 

reagent. The paddle can hold 4 samples at one time and is rotated quickly by hand 10 times 

and graded as either negative, trace (T), 1+, 2+ and 3+. The description is as follows: 

 

CMT reactions Description 

Negative No change in consistency. 

T-Trace No visible change in consistency, but when 

paddle is tipped a slime is momentarily seen on 

the bottom. 

1+ A gel or thick slime forms, but when the paddle 

is swirled the solution does not move into the 

centre. 

2+ A thick lumpy gel forms, which, when swirled, 

quickly moves toward the centre 

3+ A distinct gel forms which tends to adhere to 

the paddle, and during swirling a distinct 

central peak forms. 

Table 1-2: Description on the changes of milk after adding the CMT reagent and 

their CMT scores. (Barnum & Newbould 1961) 

 

Although SCC estimation is a reliable tool to be used to screen and identify intramammary 

infection (IMI) (Sargeant et al. 2001), determining SCC requires sample submission to a 

laboratory and is not readily accessible to on-farm use. Thus, CMT serves as an important 

method of diagnosis that is readily accessible to on-farm use and its scores correlate well 

with the SCC (Hogan et al. 1999). The CMT and Modified Whiteside (Murphy 1942; 

Murphy et al. 1941) tests are useful diagnostic tests to identify subclinical mastitis and 

evaluate its severity (Forster et al. 1966). According to Middleton et al. (2004), if CMT is 

a reliable test to identify subclinical infected mammary quarters, then it could be used in 

selecting quarters for cessation of lactation. This therapeutic cessation of lactation in 

infected mammary quarters can help in decreasing individual cow SCC and thereby bulk 

tank SCC (Middleton et al. 2004; Middleton & Fox 2001). 

Because the CMT reaction is an indication of leukocyte counts, various studies have been 

performed to correlate the relationship between CMT and leukocyte content of milk. 
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Barnum & Newbould (1961) reported that CMT showed close association with the 

leukocyte count as 71.7% of samples with positive CMT were from quarters classified as 

infected mammary quarters. More samples with less than 500 000 cells/ml gave a trace 

reaction of CMT. Furthermore, only 2.7% of samples showed a false positive result but 

indicated that the paddle method of CMT needed experience in both the method of testing 

and interpretation of the reactions to achieve uniformity and accuracy of the results. 

The understanding on the effects of milk composition and yield caused by the varying 

levels of subclinical mastitis is important in dairy industry. Thus a study by Daniel et al. 

(1966) determined the effects of subclinical mastitis (as determined by CMT on samples of 

24-hour milk production) on milk composition and yield. This study indicated that by one 

unit of difference in CMT value, the average changes were a decrease in lactose 

concentration by 0.1%, increased protein level by 0.042%, reduced solid non-fat (SNF) 

levels by 0.046% and most importantly, reduced milk production by 4.9lb per cow. 

One study on the relationship between CMT reaction and milk production and composition 

of milk from opposite quarters were done by Forster et al. (1966). Before CMT became 

available, the opposite-quarter comparisons of milk production was established by 

Crossman et al. (1950) based on that subclinical mastitis was actually associated with 

decreased milk production.  Based on comparisons made from 1258 opposite-quarter 

milkings from 763 cows, average decreases in milk production were seen according to the 

CMT reactions (on total quarter milk). The biggest changes of milk production were seen 

at test reaction of 3 with 43.4% decrease in milk production. 

The relationship between CMT reaction and bacteriological analyses has also been studied 

by Wesen et al. (1967) as it seems probable that both the type of pathogens involved and 

leukocyte numbers should be considered in diagnosing mastitis. It appeared that there was 

a relationship between CMT and the type of pathogens identified in a particular quarter as 

there was at least one type of pathogen found in quarters with different type of CMT 

reactions. The non-pathogenic pathogens were identified more frequently in quarters with 

low mastitis test reactions (negative, trace and 1) than in quarters with high mastitis test 

reactions (2 and 3). 

Miller & Kearns (1966) studied the effectiveness of CMT to measure the leukocyte content 

of quarter milk samples and found that the CMT was reliable for the low leukocyte count 

milk when the CMT score is 0 with the percent of correct was 90.7. They concluded that as 

the CMT score increased, the leukocyte content can be expected to increase materially and 
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that CMT was a reliable tool to estimate leukocyte content from a herd of cows under 

normal management practices. 

To determine the effectiveness of CMT in identifying subclinical mastitis, Middleton et al. 

(2004) found that the sensitivity of the CMT with a trace result as the cut off for a positive 

result, was low (<0.61) which indicated CMT was not useful as a screening test as only 

50% of infected mammary quarters would yield a positive test result. An ideal screening 

test should have maximal sensitivity to minimize the false-negative results. Differences on 

specificity and sensitivity between this study and previous studies are due to the 

characteristics of the individual pathogens and the prevalence of these pathogens in the 

herds studied. Staphylococcus aureus for example has different pathogenicity from other 

bacterial infection which lead to variation in the severity of mastitis they induced 

(Brookbanks 1966). 

Dingwell et al. (2003) indicated that early detection of IMI during early lactation may have 

significant economic benefits. This author agreed on the idea that a screening test with a 

high sensitivity (no false-negative CMT reactions) would be ideal to discriminate between 

non-infected and infected quarters. Although the highest calculated sensitivity and positive 

predictive value (PPV) were on days in milk (DIM) 4 at a cut-off point of >0, it cannot be 

concluded that DIM 4 is the best day to perform the CMT because samples were not taken 

from every cow on every day in this study. Nevertheless, CMT can still be a rapid, 

accurate and economically feasible test for fresh cows to identify specific pathogens. 

Reports by Sharma et al. (2010) were in accordance with other previous studies (Reddy et 

al. 1998; Tanwar et al. 2001; Goswani et al. 2003) that SCC was the most accurate test to 

diagnose subclinical mastitis followed by the modified CMT and the modified Whiteside 

Test (WST) based on the sensitivity and specificity values. They suggest that CMT could 

be useful as a regular mastitis screening test in dairy herd monitoring programmes even by 

less trained dairymen as supported by Sargeant et al. (2001). 

1.2.3 Enzyme levels  

 

One enzyme that is known to be a reliable and sensitive mastitis indicator is N-acetyl-β-D-

glucosaminidase (NAGase) (Kitchen 1976) which has been shown to originate from the 

cytosol of mammary gland secretory cells (Kitchen et al. 1978). It was first reported by 

Mellor (1968) that bovine NAGase is derived wholly from leucocytes and its concentration 

might be convenient to indicate the presence of bovine mastitis. During mastitis, an 
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increase in cytoplasmic material being shed into milk happens as a result of permeability 

change in the plasma membranes of the secretory cells together with extensive tissue 

damage (Chandler et al. 1974).  

 

It has been found that the level of NAGase in milk can be used to estimate the SCC in milk 

using spectrophotometric measurement (Kitchen & Middleton 1976; Kitchen 1976). 

However, an improved assay procedure using a fluorimetric substrate has been proposed to 

facilitate automation of the method (Kitchen et al. 1978). NAGase is one of the indigenous 

enzymes which found was to be increased in milk during inflammation which originates 

from phagocytes (Pyorala 2003). 

 

According to Kitchen et al. (1978), the fluorimetric procedure used to analyse NAGase is 

superior to the previously spectrophotometric assay due to greater sample throughput and 

ability to get an absolute measure of the level of the product released without problem of 

sample turbidity problem. Besides, this procedure is suitable for an automated method. 

They also found good correlation coefficient value between the SCC of 243 quarter 

foremilk samples determined by the Fossomatic instrument and the fluorimetric assay 

(r=0.86). This study also concluded that the level of NAGase in milk is significantly 

influenced by the integrity of the mammary gland secretory cells as the level of NAGase 

from the mammary gland tissue was the highest compared with other sources listed. Thus, 

NAGase level in milk could serve as a sensitive indicator of pathological and physiological 

changes in the mammary gland. 

 

Fitz-Gerald et al. (1981) reported that both NAGase and SCC increased markedly in the 

milk of first milking after infusion of endotoxin (9-hour interval) in line with a similar 

increase in the blood component blood serum albumin (BSA) and in Na
+
/K

+
. Furthermore, 

NAGase levels took longer to return to normal than did SCC and BSA and this can be 

explained due to a healing of injured tissue is a slower process compared with the reversal 

of other changes.  

 

However, Obara and Komatsu (1984) found that NAGase activity in milk is a better 

indicator to grade the severity of inflammation than estimating the level of SCC based on 

the higher correlation between NAGase and chloride (r=.88) and lactose (r = -.80) than 

correlation between NAGase and SCC (r=.72). In the healthy udders, low levels of 

NAGase are secreted from the cytosol of secretory cells but during IMI, NAGase is 
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released from the cells into milk according to intensity of the inflammation. Thus, NAGase 

provides a useful indicator of the severity of udder inflammation and the injury implicated 

on the mammary gland.  They also found close correlation (r=.91) between NAGase and 

lactoferrin which is also known to increase in milk from injured epithelial cells after 

initiation of udder inflammation. 

 

Although the range of NAGase activities were found to be low in bulk milk samples 

compared with the composite and quarter milk samples (Kitchen et al. 1984a), there was a 

significant variation of NAGase activities in the bulk milk samples. The NAGase test is 

more versatile than other alternative mastitis diagnostic methods (BSA, conductivity) as it 

can be applied to all levels of milk sampling (quarter, composite and bulk), it is rapid and 

has a simple procedure. The combined use of SCC and NAGase provides a promising and 

meaningful interpretation of mastitis diagnosis so that herds could be classify according to 

their level and extent of infection (Pyörälä & Pyörälä 1997). 

 

Previous studies have observed the significance relationship between NAGase and its 

reference test SCC to assess the inflammatory responses in the mammary gland. However 

further research work by Kitchen et al. (1984b) has observed the relationship between 

NAGase and the presence of isolated pathogenic bacteria causing mastitis as the growth of 

bacterial pathogen in the udder caused secretory disturbances as a results from tissue 

damage (Schalm et al. 1971; Giesecki 1975). The presence of udder pathogens during 

mastitis was seen to have a definite relationship with NAGase activities in the infected 

quarters (Kitchen et al. 1984b). Udders that were infected with minor pathogens had only a 

slight increased in NAGase activity compared to major pathogens causing mastitis which 

caused marked increased in NAGase activity. Furthermore, little variation in NAGase 

activity in the infected milk made it more meaningful in assessing the infection severity 

than SCC. NAGase levels are also useful in diagnosing bovine subclinical mastitis by 

applying the composite NAGase analyses on regular monthly basis. However, as 

previously mentioned, the combination between NAGase and SCC provide a more 

definitive interpretation on secretory disorders in affected quarters.  

 

Nagahata et al. (1987) have studied the activities of two different enzymes in severe 

mastitic milk samples NAGase and β-glucuronidase (β-Gase). Beta-glucuronidase was also 

derived from leukocytes and seems to be a further useful marker in bovine mastitis 

(Kiermeier & Güll 1966). From their study (Nagahata et al. 1987), they have found 
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remarkable increases in both NAGase and β-Gase levels in milk samples from acute 

clinical mastitis cases but only a slight increase in these enzyme levels was observed in 

milk samples from chronic mastitis. They also assumed that most of NAGase and β-Gase 

activities found in mastitic milk derived from blood serum, neutrophils and macrophages 

associated with inflammatory process apart from mammary secretory cells.  

 

Sandholm et al. (1984) proposed the use of milk antitrypsin as a sensitive indicator of 

bovine mastitis because its activity has shown to be rapidly increased during mastitis. 

Matilla et al. (1986) indicated that NAGase level was superior to any other tests (BSA, 

antitrypsin, SCC) when single threshold values were applied. However, when inter-quarter 

evaluation was applied to avoid background „noises‟, the differentiating abilities of 

antitrypsin were improved equalling that of NAGase. NAGase also showed highest 

deflection which is important in monitoring composite and bulk milk samples to minimize 

the dilution factor in mastitic quarters. The authors concluded that the use of combination 

between NAGase and antitrypsin to achieve optimal diagnostic potential as mastitis 

involves in different types of inflammatory reactions (increased leakage of plasma proteins 

such as antitrypsin and BSA and cell destruction as shown by NAGase).  

 

Teat canal infections can predispose the mammary gland to mastitis as the mammary gland 

infection is thought to be ascending infections started through the teat canals (Forbes & 

Herbert 1968). To differentiate between the teat canal infections and mastitic infections, 

analyses of both cultures of swabs of teat canals and milk samples drawn from lactiferous 

sinus by teat puncture were done (Murphy & Stuart 1954; Forbes & Hebert 1968; Giesecke 

& Viljoen 1974). However, Kaartinen & Jensen (1988) claimed that release of NAGase 

into teat canal secretions could be an indicator of teat canal infections. They found that in 

S. uberis infected quarter of mammary gland, the NAGase levels in teat sample fractions 

were significantly lower than in respective milk samples showing that the invasion of S. 

uberis through teat canal did not cause inflammation or colonization. However, if the 

quarters were infected with either S. aureus or Micrococcus, NAGase levels in teat sample 

and in the respective milk samples were at the same level. Thus, these pathogens initially 

colonize the teat canal before attacking the upper part of milk compartment with the 

constant bacterial irritation within the streak canal. Analysing the NAGase gradients 

between teat canals and milk showed a promising evaluation on the inflammatory 

condition of the teat canal. 
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Chagunda et al. (2006) found an increased activity of NAGase in clinically mastitic cows 

as compared with healthy cows but that other factors should be taken into consideration 

before interpreting the level of this enzyme. The origins of NAGase have been discussed as 

some authors claimed that the contribution of NAGase from plasma into milk was not 

important (Timms & Schultz 1985). However, there has been a report on the increased of 

NAGase level during dry period in the mammary gland compared with plasma indicating 

that the enzymes originated from mammary gland (Timms & Schultz 1985). 

 

The presence of PMN leucocytes and macrophages in the mammary gland during 

subclinical and clinical mastitis induced the phagocytic process with secretion of 

hydrolytic enzymes and as the consequence, tissue degradation occurred. Among the 

enzymes found are both nonlysosomals (lactate dehydrogenase and 2-naphthylamilase) and 

lysosomals (NAGase, β-Gase, β-galactosidase and α-manosidase) (Perdigon et al. 1985). 

However, β-Gase proved to be the most significant selectively released enzyme in the 

inflammatory process (Schnyder, & Bagglioni. 1978; Schorlemrner 1977). Studies 

performed by Perdigon et al. (1985) indicated a high correlation between the SCC and the 

presence of enzymes β-Gase (76%). This enzyme was also related to the presence of both 

major pathogens such as S. agalactiae, E. coli, Klebsiella pneumonia, S. aureus as well as 

minor pathogens (e.g; S. epidermidis). The reaction of β-Gase is very sensitive and because 

of its high specificity and simplicity, the detection of this enzyme could be applied for 

mastitis detection.   

 

L-lactate dehydrogenase (LDH) is another type of enzyme that can be used as mastitis 

indicator. It is involved in the glycolytic pathway and found in the cytoplasm of all cells 

and tissues in the body (Chagunda et al. 2006). It has 5 isotypes (LDH1 to LDH5) and in 

milk is known to increase in quantity with mastitis (Bogin et al 1977; Harmon 1994). 

Chagunda et al. (2006) found that the activity of LDH increased in milk during clinical 

mastitis compared with healthy cows.  However, the enzyme level was influenced by 

parity, stage of lactation and month of production. Thus, it is important to take these 

factors into consideration before classifying cows as sick. The association between LDH 

levels and SCC was stronger in clinically mastitic cows than in healthy cows. It was 

thought that the origin of elevated LDH was from leukocytes (Bogin 1977) but Kato et al. 

(1989) found that granulocytes and lymphocytes in mastitic milk might partly contribute to 

the displacement of LDH isoenzymes into milk. However, Chagunda et al. (2006) 

indicated that the somatic cells (neutrophils) might contribute to the presence of this 
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enzyme. When comparing between NAGase and LDH, LDH seem to be better in 

classifying mastitic cows than NAGase as LDH is a more sensitive indicator in predicting 

the clinical mastitis. 

 

Another type of enzymes that can be used to detect bovine mastitis is myeloperoxidase 

(MPO). This enzyme is a lysosomal enzyme which is found in the primary granules of 

neutrophils (Cooray 1994). Due to its important role in the oxygen-dependent 

antimicrobial system of neutrophils (Nauseef et al. 1988; Klebanoff, 1991and Cooray et al. 

1993), it can be used to estimate neutrophil number as one of the indirect estimator in 

bovine mastitis. Cooray (1994) found a high correlation between MPO levels in elevated 

numbers of neutrophils with SCC (r=0.91). Due to its presence in high quantities in 

mastitic milk, this enzyme has the potential to be an important indicator of bovine mastitis. 

 

1.2.4 Electrical Conductivity 

 

Electrical conductivity (EC) is a measure of the resistance of a particular material to an 

electric current (Nielen et al. 1992). Normally, milk has a resistance of between 4.0 and 5.5 

mS/cm at 22ºC (Wong 1988) and is measured in log normal (Knudsen & Jensen 1990). 

The concentration of sodium chloride (NaCl) is often expressed as milk electrical 

conductivity (Kitchen et al. 1980; Linzell & Peaker 1972; Linzell et al. 1974; Peaker 

1978).  

 

Conductivity is thus used in diagnosing bovine mastitis, and cow-side tests and on-line 

measurements have been developed (Nielen et al. 1992). As for on-line measurements, the 

EC was measured using an electrical cell placed in the milking equipment (Maatje et al. 

1983; Puckett et al. 1984). Another system has been developed without electrodes being in 

contact with the milk but using two toroidal ferromagnetic cores and a milk loop in the 

system (Onyango et al. 1988).  

 

During mastitis, the destruction of blood capillary permeability, the destruction of tight 

junctions as well as the failure of the active ion-pumping system causes changes in ion 

composition in milk. Na
+
 and Cl

-
 which have high concentrations in extracellular fluid 

pour into the lumen of mammary gland. In contrast, lactose and K
+ 

leaked into the 

extracellular fluid and blood (Kitchen 1981; Oshima 1977). These changes caused an 

increased of EC in mastitic milk (Kitchen 1981). However, several other factors also 
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influenced the ionic content of milk such as temperature, fat concentration, milk solids and 

milk fraction (Woolford et al. 1998). These are important factors that should be taken into 

consideration when interpreting the EC in the diagnosis of bovine mastitis as 

intramammary infection induces a 15-50% of elevation in EC (Greatrix et al. 1968; Wolfe 

et al. 1972; Linzell et al. 1974; Fernando et al. 1982). 

 

Electrical conductivity was once assumed to be a difficult method as there was no 

established value for normal milk making it impossible to interpret the results directly 

(Little et al. 1968). However, this problem can be overcome if simultaneous comparison 

was made for all 4 quarters (Greatrix et al. 1968; Wolfe et al.1972) as first proposed by 

Davis in 1949. 

 

It is thought to be less sensitive than the measurement of sodium (Linzell & Parker 1971, 

1972), through daily measurement of foremilk conductivities. Furthermore, it is more 

practical to automate reading than milk sodium concentrations (Linzell et al. 1974) and it 

was hoped that daily monitoring of milk conductivity, would allow  subclinical mastitis to 

be detected using this method. 

 

A study by Linzell et al. (1974) indeed indicated that under normal herd management, the 

use of electrical conductivity can be used as indicator in subclinical mastitis. This study 

also made it possible to distinguish a value of milk conductivity (56.5mM) above which it 

referred to severely infected quarters.  

 

Fernando et al. (1982) found that in mastitis caused by major pathogens (S. aureus, 

coliforms), the conductivity of stripping milk was higher than foremilk conductivity. 

Furthermore, conductivity of post-milking strippings was more sensitive indicator in 

intramammary infection than those of foremilks with 3.8% false negative value. In 

identifying infected and uninfected quarters, a combination of both differential and 

absolute conductivity provides the most accurate methods. Electrical conductivity (EC) 

with an in-line system in milking parlour is known to be a rapid and easily obtained 

measurement. 

 

Further study by Fernando et al. (1985) confirmed that increases of EC, Cl
-
, Na

+
, BSA and 

logSCC were related to intramammary infection. Marked changes were more pronounced 

in infection caused by major pathogens. It was also confirmed that the EC were higher in 
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strippings milk than in foremilks. Furthermore, the accuracy of EC was found to be higher 

in strippings milk than in foremilks. Their results however were in contrast with results of 

Linzell et al. (1974) as they found accurate results from foremilks. This difference was 

thought to be due to variation in sampling techniques. Tests for EC, Na
+
 and Cl

-
 contents 

were more accurate in detection of infection variables than other predictors. However, their 

results were in accordance with Woolford & Williamson (1982) and Yamamoto (1982) 

who found increased sensitivity of strippings to udder infection. Due to increased 

intramammary pressure from accumulation of milk, there is a possibility of higher 

concentration of ions in the mastitic milk. Thus it was suggested that EC has the potential 

as a screening test in bovine mastitis as its accuracy to detect mastitis compared favourably 

with other indirect mastitis tests (SCC, BSA, Na
+
, Cl

-
, etc) 

 

However, EC also showed to be influenced by herd variation. Sheldrake et al. (1981) 

claimed that the accuracy of EC varied considerably between herds. Because SCC in this 

study showed similar sensitivity and specificity between herds, SCC appeared to be a more 

accurate method at detecting infected quarters than EC. It was then suggested that overall, 

EC is unsuitable cow-side test to detect the presence of intramammary infection.  

 

EC was also influenced by stage of lactation as well as the number of lactations (Sheldrake 

et al. 1983a) as the concentration of chloride increased during lactation (Caufield & 

Riddell 1935) and changes in EC were seen due to physiological factors in all four 

quarters. However, in mastitis, changes of EC occurred only in infected gland (Linzell et 

al. 1974). Sheldrake et al. (1983a) observed that as lactation advanced, there was little 

effect of EC seen in uninfected mammary quarters whereas gradual increase of EC was 

seen in quarters infected with minor or major pathogens.  

 

Sheldrake et al. (1983b) found that the probability of misclassifying (Pm) quarters for EC 

ranged between 22 to 32%. Pm reduced the apparent distortion of percentages caused by 

unequal numbers of infected and uninfected quarters as it is the point at which false 

negative and false positive diagnoses are equal. However, this study was in conflict with 

Davis (1947) in which the comparison within cow by differences and ratios from different 

quarters yielded little advantage over absolute estimations. However, the finding was in 

accordance with studies by Linzell et al. (1974) and Fernando et al. (1982). 
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EC has been proposed to detect the presence of clinical mastitis earlier than by inspection 

by herdsmen to detect the physical changes of the milk (Milner et al. 1996). In 55% of 

cases, the diagnosis of mastitis by EC can be made at an average 2 milkings before any 

visible clinical changes occurred. In about 34% of cases, diagnosis was made at the same 

time as clots appeared in the milk. Thus, changes in EC as detected using automated 

sensors could be applied as early as or earlier than visible changes in milk detection to 

diagnose clinical mastitis. 

 

Differences in the EC values between milk fractions in infected quarters have been studied 

by Woolford et al. (1998). In infected quarters, decreased EC values (p<0.05) were seen 

from first foremilk to main flow milk fractions. Meanwhile, in quarters infected with S. 

aureus, conductivity was increased (p<0.05) from main flow milk to stripping milk 

fraction. In contrast, in uninfected quarters, the conductivity decreased with successive 

milk fractions due to elevated fat levels. However, variation in electrical conductivity 

values in infected quarters was not due to fat levels but may be the result from the mixing 

of milk from infected to uninfected areas of the gland. Localized infection and differential 

drainage from the infected area of secretory cells were the factors which caused the 

variation change in EC from first foremilk to stripping milk fraction. The authors 

suggested that using the foremilk fraction provided the highest sensitivity when EC was 

used to diagnose subclinical intramammary infection. 

 

Various EC traits have been used to study its association with the udder health (Norberg et 

al. 2003). Four EC traits defined as the inter-quarter ratio (IQR) between the highest and 

lowest quarter EC values, the maximum EC level for a cow, IQR between the highest and 

lowest quarter EC variation, and the maximum EC variation for a cow were calculated for 

every milking throughout lactation. All EC traits were increased markedly (P<0.05) in 

subclinical and clinical mastitis. The IQR performed best in classifying cows correctly 

with 80.6% of clinical and 45% of subclinical cases were classified correctly. About 74.8% 

were correctly classified as healthy. This is due to the fact that this trait reflected the level 

of EC rather than variation of EC. 

 

Biggadike et al. (2002) suggested that an assessment of changes in EC should be made on 

an individual quarter basis to minimise other factors such as stage in lactation that 

influenced the changes in a whole udder. However, the authors found that the conductivity 

of individual quarter milk samples is not as suitable to be used as a reliable early mastitis 
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predictor due to low sensitivity (54%) and positive predictor value (55%). It was suggested 

that cows with high EC values in their individual quarters, additional evidences are needed 

before initiating any treatment such as NAGase test or ATPase test. 

 

1.2.5 Infrared Thermography (IRT) 

 

Infrared thermography (IRT) has been employed as a diagnostic method in bovine mastitis 

based on heat detection generated from the udder. The thermal camera used in this method 

absorbs infrared radiation and based on the amount of heat generated, the images are 

produced and generated (Eddy et al. 2001; Mazur & Eugeniusz-Herbut 2006). The ability 

of IRT in detecting increased body temperature has made it possible to assess many aspects 

in animal industry. In animal production, it has been used to assess meat quality (Schaefer 

et al. 1989) and detecting oestrus in animals (Hurnik et al. 1984). Furthermore, it also can 

be used to assess animal welfare (Stewart et al. 2005) that is associated with stress 

(climate, managerial practices) (Kimmel et al. 1992; Eicher et al. 2006). Lastly, it has 

shown to have an advantage over other methods of  diagnosis in diseases such as bovine 

viral diarrhoea in calves (Schaefer et al. 2004, 2007) and bovine lameness in dairy cows 

(Head & Dyson 2001; Nikkhah et al. 2005). 

 

In bovine mastitis, inflammation induced by the pathogens increased the temperature of the 

animal. Hurnik et al. (1984) identified 4 out of 6 cases of mastitis using IRT. Endotoxin 

infusion into the mammary gland caused an increase of 2.3ºC of temperature as measured 

by the IRT (Scott et al. 2000). 

 

Colak et al. (2008) studied the relationship between CMT score and skin surface 

temperature (SST) of the udder as well as the rectal temperature (RT). During mastitis, 

increased vascularisation at the infected site and tissue metabolism increased the SST 

(Berry et al. 2003) which can be detected by IRT. At cow average, strong correlation 

(r=0.93; P<0.0001) was seen between CMT score and udder SST but weak correlations 

between CMT score and RT (r=0.27; P<0.01) and between udder SST and RT (r=0.24; 

P<0.02). Nevertheless, IRT has shown that it was sensitive enough to detect an increase in 

udder temperature. 
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Although Barth (2000) claimed that IRT was not suitable to detect early stage of mastitis, 

Berry et al. (2003) developed a predictive model for the temperature of the udder surfaces 

and suggested that IRT has the potential to diagnose early stage of mastitis.  

 

Furthermore, Hovinen et al. (2008) found an increase in udder temperature of both 

experimental and control quarters 4 hours post-inoculation which was in line with a rise in 

rectal temperature. In contrast, mild physical changes in udder and milk which occurred 2 

hours post-inoculation were not detected by IRT. Swelling of the udder caused by the 

plasma leakage into the interstitium (McGavin & Zachary 2007) may result in undetected 

increases in udder surface temperature. The equal temperatures seen in both experimental 

and control quarters were caused by the systemic effects of LPS (Hovinen et al. 2008). 

Although this method might bring additional value in detecting mastitis with continuous 

monitoring of a herd, the authors concluded that more studies should be conducted in 

naturally occurring mastitis in field conditions where the systemic inflammatory reactions 

might be less pronounced. 

 

Polat et al. (2010) however successfully found high predictive diagnostic ability (positive 

predictive value of 95.0) of IRT similar to CMT (positive predictive value of 99.2) thus 

making it a sensitive tool in detecting early onset of subclinical mastitis. However, several 

cow factors such as parity, milk production and time relative to feeding and milking cows 

under different environmental conditions (air temperature, humidity and velocity) should 

be taken into account before analysing the reliability of IRT in diagnosing early onset of 

subclinical mastitis. 

1.3  Biomarkers in bovine mastitis 

The discovery of disease biomarkers has become a major research interest in recent years 

especially with the development of new technologies. Biomarkers are indicators of 

biological processes and pathological state that can reveal a variety of health and disease 

traits (Biomarkers Definitions Working Group, 2001). They are important analytes that can 

be used to predict the progress and outcome of a disease. In bovine mastitis, the search for 

biomarkers has been underway since the late 1990‟s. Traditional methods that are still used 

to diagnose bovine mastitis may have their technical drawbacks that affect their efficiency 

(Chagunda et al. 2006). For example, somatic cell counts (SCC) as described above 

appears to be a less sensitive and less specific indicator when assessing milk quality in the 

bulk tank milk level (Le Roux et al. 2003) than for individual cows. In contrast, 
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bacteriology using culturing techniques to detect the micro-organisms that cause mastitis 

has disadvantages of lacking in speed, is very labour-intensive and expensive (Labohm et 

al. 1998; Hillerton 2000; Viguier et al. 2009). Detection of mastitis using electrical 

conductivity or pH is inexpensive and easy to monitor but has been shown to be relatively 

insensitive (Nielen et al. 1995; De Mol & Ouweltjes, 2001, Viguier et al. 2009). 

Furthermore, results from California Mastitis Test (CMT) can often be mis-interpreted 

especially when diagnosing a subclinical mastitis case that can lead to false positive or 

negative (Chagunda et al. 2006; Viguier et al. 2009). Thus, the discovery on specific 

mastitis biomarkers is needed for an early diagnosis of bovine mastitis so an early 

therapeutic intervention can be applied to reduce the severity of the disease. 

 

Following mammary gland infection, various chemoattractants are released which are 

induced by liberation of toxins from the bacteria. These mediators include various types of 

cytokines attract circulating immune effector cells mainly PMN on the site of infection. 

The proteins of PMN have been studied for biomarker potential. The PMN cells are 

involved in destroying invading bacteria by releasing their intracellular granules which 

contain bactericidal peptides, proteins, enzymes and neutral and acidic proteases such as 

elastase, cathepsin G, cathepsin B and cathepsin D.  

 

A reliable indicator has become an important interest and several criteria have been set so 

that a serious and prolonged period of subclinical and clinical mastitis can be avoided. A 

mastitic biomarker should have a fast response to infection so that the treatment course can 

be initiated as soon as possible. The response towards infection should also be 

distinguishable from the basic milk values as it is an important factor in early warning 

procedure. The presence of indicator only in the infected quarters and not spreading in 

other neighbouring quarters is essential if the intended mastitis parameter is adapted to be 

used at the single quarter level or composite milk level (Larsen et al. 2010).  

 

An alteration in the permeability of the microvasculature due to inflammatory responses 

has led to the identification of blood proteins leaking from the intravascular compartments 

into milk through the separated tight junctions between endothelial and epithelium cells 

and have been examined as potential mastitis biomarkers. One of the better indicators is 

bovine serum albumin (BSA) which is one of the smaller molecular weight of protein of 

plasma (Giesecke & Viljoen 1974). However the determination of BSA concentrations in 
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milk requires immunochemical procedures, it is difficult to automate and thus has not 

gained popularity.  

 

Barta et al. (1990) investigating blastogenesis inhibitory factors suggested that mastitis 

might be also associated with the presence of these inhibitory factors in milk whey. Bovine 

lymphocyte cultures were used to detect DNA synthesis inhibitory factors in whey and 

showed that these factors may be released from somatic cells or other tissue cells during 

inflammation. In this study, clinical mastitis was associated with inhibition of 

Concanavalin A (ConA-) and phytohaemagglutinin P (PHA-) mitogen induced DNA 

synthesis by more than 95 and 86%, respectively. A positive correlation was shown 

between such inhibitory activity, SCC and with electrical conductivity in samples from 

quarters with mastitis indicating that inhibitory factors in whey may be used as a novel 

indicator of subclinical mastitis.  However, this is relatively complicated and cannot be 

applied in daily practice although it can be simplified by isolation of the molecules 

responsible for DNA synthesis inhibition. 

 

A study by Baeker et al. (2002) using a proteomic approach revealed the upregulation of 

lipocalin-type prostaglandin D synthase (L-PGDS) in quarters affected with subclinical 

mastitis which could be used as a marker in bovine mastitis. Prostanoids are known to have 

a role as inflammatory mediators via anti-inflammatory effects of this enzyme and its 

metabolites. Pro-inflammatory mediators which are induced by bacteria or their cell wall 

compartments as well as lipopolysaccharide (LPS) can activate several signalling pathways 

that leads to an expression of cyclooxygenase-2 (COX-2) and finally results in increased 

production of prostanoids. Mammary gland and mammary epithelial cells are able to 

produce prostanoids and leukotrienes. The upregulation of L-PGDS suggested that there is 

a probability of coupling of this enzyme to COX-2 induction. As a result, increases in 

production of prostaglandin D2 (PGD2) and its metabolites such as PGJ2, δ-12-PGJ2 and 

15d-PGJ2 could be seen in the subclinically mastitic cows on this study. 

 

A study by Zeng et al. (2009) involved determining the level of lipopolysaccharide binding 

protein (LBP) in naturally acquired subclinical and clinical mastitic cows in comparison 

with the level of acute phase protein; haptoglobin (Hp) which is becoming accepted as a 

diagnostic marker in bovine mastitis. However, milk and blood concentrations of LBP 

could not be differentiated between subclinical intramammary infection with clinically 

healthy cows. In contrast to LBP, blood and milk concentration of haptoglobin were 
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significantly different between cows with clinical mastitis and subclinically infected as 

well as clinically healthy cows. Thus, LBP was not a suitable candidate in bovine mastitis 

and haptoglobin appeared to be a better biomarker in differentiating healthy and subclinical 

mastitic cows. 

 

Another type of biomarker which has been studied to differentiate between acute and 

chronic inflammatory diseases is Hp-matrix metalloproteinase 9 (Hp-MMP9) complexes. 

Although a study by Bannikov et al. (2010) did not focus specifically on bovine mastitis, it 

showed that this complex which was released from neutrophils upon degranulation might 

serve as an important indicator during acute inflammation. This complex has shown 

significant difference in the serum of cattle with acute septic disease compared to those 

with chronic/metabolic inflammatory disease or healthy animals (Bannikov et al. 2010). 

However, neither individual Hp nor MMP-9 was suitable marker to differentiate between 

acute and chronic inflammatory diseases for example mastitis. Furthermore, it is common 

to find MMP-9 alone in the sera of clinically healthy animals while these proteins might 

have dual roles in inflammatory process either pro-inflammatory or anti-inflammatory 

activity. Thus, the use of Hp-MMP 9 complexes to diagnose acute septic inflammation in 

cattle was more reliable when compared to free Hp or MMP-9. 

1.4  Acute Phase Proteins in Bovine Mastitis 

The measurement of acute phase proteins following infection has been used extensively in 

human patients as a part of monitoring disease progression and to evaluate the successful 

of treatment given. Following infection, a number of systemic events take place which 

include the acute phase response. The release of various inflammatory mediators and 

cytokines stimulates the hepatocytes in the liver to produce and secrete acute phase 

proteins (APP). The released cytokines also able to produce a wide range of host responses 

including pyrexia, leucocytosis, hormone alterations such as an increase in circulating 

cortisol and a reduction in thyroid hormone levels and trace element disturbances with 

reductions in the serum iron and zinc concentrations (Eckersall 1995). This is part of the 

innate immune response in the defence against pathogens prior to full activation of 

immune response. 

In cattle, Hp and serum amyloid A (SAA) are the most sensitive APP during inflammatory 

or infectious conditions (Conner et al. 1986; Eckersall et al. 2001). Thus, evaluation of 

these proteins using specific assays has become one of the most promising methods to 
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detect inflammation. Haptoglobin is known to be one of the most reactive acute phase 

proteins in bovine and exhibits high relative elevated level during acute infection. It has 

been shown to protect the host from oxidative activity of haemoglobin by binding to the 

free haemoglobin. Thus, decreased levels of haptoglobin in any sample indicate the 

presence of haemolysis of red blood cells. Serum amyloid A, another major APP in cattle 

is synthesized by the liver in different isoforms and released into the plasma following 

stimulation of inflammatory mediators such as interleukin-1(IL-1), interleukin-6(IL-6) and 

tumour necrosis factor (TNF-α). 

It has been demonstrated that the concentration of Hp is low and often undetected in 

normal and healthy animals but can increase 50-100 times during inflammation. Although 

SAA is also known to be increased during the acute phase response, it seems to react faster 

during inflammation and produce higher differences between healthy and diseased animals 

compared to Hp. The use of SAA (which is a precursor of amyloid A protein) as a marker 

of tissue injury in cattle was originally limited due to its difficulties in purifying and 

quantifying as it is an apo-lipoprotein complexed in the high density lipoprotein fraction 

(Horadagoda et al. 1999), but commercial assays have been available for several years.  

The value of using Hp and SAA as important markers in detecting inflammation has 

proved to be greater than the use of haematological analyses. Following on the successful 

measurement of the relative concentration of serum amyloid A in cattle using ELISA by 

Boosman et al. (1989) and purification of amyloid A from acute phase bovine serum by 

Horadagoda et al. (1993), the measurement of serum amyloid A (SAA) in the serum can be 

quantified using ELISA. Assessment of acute phase proteins is recommended compared to 

haematological analyses as these proteins are quite stable and the measurement can be 

performed on frozen samples. Haptoglobin for example, has proven to be a sensitive 

inflammatory indicator in both sheep and dogs (Skinner and Roberts 1994; Solter et al. 

1991). These findings were supported by work in cattle by Horadagoda et al. (1999) where 

it was found that acute phase proteins were able to discriminate between acute and chronic 

inflammation. However, due to differences in the release of cytokines following infection, 

variations in the responses of acute phase proteins might occur. For example, the 

concentrations of SAA increased significantly during the early course of disease compared 

to haptoglobin which indicated that SAA is more sensitive to stimulation than haptoglobin. 

Measurements of both proteins helped to determine to which extent the inflammatory 

responses has occurred. 
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Although these two APP are known to be elevated in bovine serum during either  

spontaneous or induced mastitis, studies by Eckersall et al. (2001, 2006) have shown that 

serum amyloid A can be produced locally in the mammary gland making it a more reliable 

indicator of bovine mastitis.  This has suggested that measurement of acute phase proteins 

is more sensitive and less influenced by the physiological state of the cow. In order for the 

SAA to be increased in the milk during mastitis, an intramammary inflammatory stimulus 

is required.  

One study which confirmed the presence of mammary-associated serum amyloid A3 (M-

SAA3) was done by McDonald et al. (2001) in which they found high levels of this 

extrahepatically produced SAA3 isoform in the colostrums of healthy cows. It may have a 

role in providing immunological benefits to the neonates. This is further confirmed by 

Molenaar et al. (2009) in which they found that bovine mammary gland epithelium was 

capable of expressing M-SAA3 and had a role in developing mammary gland immunity.  

Despite showing production of SAA in the mammary gland during mastitis, disruption to 

the permeability of blood-milk barrier is observed which could lead to leakage of serum 

proteins in milk (Eckersall et al. 2006). However, because no correlation was found 

between concentrations of SAA in milk and serum, they suggested that SAA might be 

produced locally in the inflamed mammary gland. It has been be concluded the 

discrepancy that exists in the levels of acute phase proteins found in serum and milk is 

caused by a variation in the duration and severity of the udder infection (Nielsen et al. 

2004)  

In one study of APP in mastitis by Kovac et al. (2007), acute phase proteins were found to 

be more accurately detectable in milk rather in serum and thus may be a useful tool in 

diagnosing mastitis and a useful marker of milk quality. Hp and SAA milk levels were 

significantly higher in cows with the somatic cell counts exceeded 400 000 cells/ml than in 

cows with SCC less than 400 000 cells/ml. Thus, it was concluded that due to high 

correlation of acute phase proteins levels in milk and SCC, the analysis of APP in the milk 

may be useful in monitoring the health of the udder. 

1.4.1 Naturally occurring mastitis 

The dynamics of the acute phase response has been studied in naturally occurring coliform 

mastitis (Ohtsuka et al. 2001; Wenz et al. 2010). The changes in the level of both 

haptoglobin (Hp) and α1-acid glycoprotein (AGP) in serum were different in two groups of 

coliform mastitis; severe and moderate respectively. Serum α1-acid glycoprotein (AGP) 
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was shown to be increased later in the course of disease in severe coliform mastitis cows 

whilst the concentration of Hp levels only peaked at 3 days after the onset of the disease 

(acute inflammatory condition). Thus, the severity of the inflammatory processes can 

affect the regulation of different APP.  

A comparison study on acute phase proteins; haptoglobin, SAA and α1-acid glycoprotein 

(α1-AGP) was done to evaluate the diagnostic potential of these proteins as mastitis 

indicators in both milk and serum (Eckersall et al. 2001). The result of this study revealed 

that there was no significant difference in terms of APP levels in the serum established 

between mild and moderate inflammation. Thus, acute phase proteins in the serum are not 

suitable indicator to discriminate between these groups. However, these APPs in the serum 

are able to differentiate between acute and chronic inflammatory condition in which Hp 

and SAA were both affected by acute conditions while AGP is a better indicator in chronic 

inflammation. AGP was not found in the milk as it is only a moderate acute phase protein 

in cows and that SAA and Hp might have an inherent advantage over AGP as well as α1 

antitrypsin. In this study, the specificity of both SAA and Hp were 100% with no false 

positive results. Only SAA in milk showed significant differences between mild and 

moderate inflammatory responses which suggest the production of SAA in milk was under 

different control mechanisms from that of Hp in the milk or the SAA in serum.  

Grönlund et al. (2004) also studied a naturally occurring chronic subclinical mastitis to 

evaluate the usefulness of acute phase proteins such as haptoglobin, serum amyloid A and 

adenosine triphosphate (ATP) enzyme in milk. The diagnosis of subclinical mastitis has 

always been challenging to diagnose due to an absence of observable clinical signs of 

mastitis. Although cow-side test such as CMT, measuring adenosine triphosphate or 

NAGase as well as electrical conductivity can be used to diagnose subclinical mastitis, 

these analyses are less efficient to detect subclinical mastitis and thus new disease markers 

and its methods of detection are needed. In this study, they found that APP level varied 

markedly in chronic subclinical mastitic cows but there were significant correlations 

between Hp, SAA and ATP. As compared to the previous study by the same author, Hp 

was found to be often detected than SAA. Different amount and/or combination of 

cytokines involved and also variation in host response towards inflammation might 

contribute to this result. The duration and different phases of inflammation also seem to 

affect the type of APP being produced. Lastly, it can be concluded that Hp and SAA 

analysed in udder quarter sample are preferable to evaluate the usefulness of these APP to 

determine the health status of udder. 
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Safi et al. (2009) has proposed that M-SAA3 was the most accurate test for the diagnosis 

of subclinical mastitis followed by CMT, SCC, MHp, SAA and SHp. Tests on APP in milk 

generally were more accurate than tests on serum in the diagnosis of subclinical mastitis 

due to the significantly larger area under curves (AUCs) of the proteins in milk than those 

in serum. 

 

Another study on naturally occurring clinical mastitis (CM) investigated the factors that 

influenced the concentrations of selected acute phase proteins and cytokines on mastitis 

caused by different pathogens (Wenz et al. 2010). They found that the level of Hp, IL-19, 

IL-12, TNF-α and IL-8 were greater in cows with moderate to severe versus mild systemic 

diseases. When analysing the season of the year when CM occurred, it appears that some 

proteins (APP and cytokines) increased during summer and others increased during winter. 

Thus, it possible that season does affect the immune response of the cows during mastitis. 

This result showed that with higher amount of proteins being expressed during winter, it 

was associated with the fact that the immunity is enhanced during short-day photo period 

(SDPP). Lower levels of IL-10, IL-12 and lactate dehydrogenase (LDH) in the first 60 days 

of milking are associated with low immunity in periparturient cows. Cows infected with 

gram-negative bacteria seemed to have higher level of IL-10 and IL-1β as compared to 

cows infected with gram-positive bacteria. Finally, this study provides a comprehensive 

background on the factors affecting the innate immune response of cows with naturally 

occurring clinical mastitis and their influences on proteins associated with infection. 

1.4.2 Experimental Induced Mastitis 

When evaluating the acute phase response in experimental induced mastitis, it was found 

in an early study that serum Hp was a good prognostic indicator based on its higher level in 

severely affected heifers inoculated with Actinomyces pyogenes, Fusobacterium 

necrophorum and Peptostreptococcus indolicus (Hirvonen et al. 1996). Although acid-

soluble glycoproteins (ASG) were associated with severely affected heifers, it was less 

sensitive than Hp as ASG is comprised of several acute phase reactants (e.g: α1-acid 

glycoprotein and some proteinase inhibitors). Meanwhile, the use of fibrinogen as a 

reliable marker was not found to be useful due to the insignificant differences between 

severe and moderately affected animals. As for α1-acid proteinase (α1-PI) activity, it was 

found not to be a suitable marker to predict the severity and outcome of the disease. 

Although the activity level was higher in severely affected animals, the differences are not 
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significant. Fibrinogen and α1-PI however, can be used as markers to detect the presence of 

inflammatory condition (Hirvonen et al. 1996). 

Following the revelation by Eckersall et al. (2001, 2006) on the discovery of APP in milk, 

a number of experimental studies have looked at the responses of the APP in milk.  A 

study by Suojala et al. (2008) used two consecutive experimentally induced mastitis by E. 

coli studies to evaluate the possible carry-over effects of the previous intramammary 

infection. The result showed that the cows had a moderate systemic immune response 

towards E. coli inoculation in the first challenge but the clinical signs were milder and 

disappeared faster in the second challenge. The level of inflammation indicators (Hp and 

SAA) followed the same pattern producing significant difference in both milk and serum. 

Faster response towards infection and milder condition of the disease might be due to 

effective bacterial elimination by neutrophils through LPS recognition. Concentration of 

SAA in milk was higher as compared to the serum and this rapid response is due to local 

immune response in the mammary gland itself. However, the milk Hp concentration was 

only half of those in the serum and the response was less pronounced during the infection. 

As for the LBP, it is involved in the formation of LPS-CD14-complex which is known to 

increase the sensitivity of the host immune response towards gram-negative bacteria.  

One experimental study on Staphylococcal causing mastitis has been performed to describe 

the local and systemic acute phase response during acute and chronic phases of mastitis 

(Grönlund et al. 2003). Staphylococcus aureus is one of major pathogen causing bovine 

mastitis ranging from peracute to chronic form. However, the peracute form is rare but if 

the acute form is not successfully treated, it can progress into chronic, subclinical form. 

Chronically infected cows become source of infection where the bacteria are intermittently 

being shed. During acute clinical mastitis, APP were increased in infected quarters 

suggesting the local production of proteins particularly SAA in the mammary gland. The 

rise of APP was correlated with the increase of SCC and the onset of clinical signs. The 

problem arises when diagnosing subclinical chronic form of mastitis. SAA has shown 

significantly higher level in infected quarters than pre-infection and healthy control 

quarters. Also, the increase of APP in the serum might suggest a non-specific response due 

to other acute inflammatory response but chronic form of mastitis was found to be able to 

initiate the systemic acute phase response. Thus, SAA is an excellent indicator to diagnose 

chronic subclinical mastitis (Grӧnlund et al. 2003). 

One experimentally induced subclinical mastitis study (Eckersall et al. 2006) showed that 

the occurrence of increased APP in milk happened prior to the detection of increased 
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serum concentrations of both of these proteins. This demonstrated that blood was unlikely 

to be the source of the immediate increase in milk. A moderate increase of both APP, 

particularly the Hp indicate that this experimental model was successful to induce 

subclinical mastitis in which only mild or moderate APR was stimulated. The authors also 

suggested that these APP can be use to estimate the severity of the mastitis condition 

because it showed a significant increase in APP level after second infusion of bacteria as 

compared to the first infusion.  Results from immunocytochemistry suggested that the 

origin of M-SAA3 in milk may be synthesis within secretory epithelial cells and cells 

lining the gland cistern of the mammary gland. Although Hp synthesis was not detected by 

immunocytochemistry in the mammary gland following S. aureus infusion, quantitative 

RT-PCR has supported the probability of local production of both M-SAA3 and Hp 

mRNA in the mammary gland. M-SAA3 and Hp were thought to have similar activities as 

serum Hp and SAA and these could be useful to provide resistance to diseases as well as 

passive transfer of innate immunity to neonate and calf.  

 

Another study on cows following inoculation of LPS by Larsen et al. (2010) showed that 

Hp level is more reliable indicator to distinguish between moderate and severe cases of 

mastitis. However, the acute phase reactants (Hp and SAA) have their own drawbacks for 

having prolonged phase of decline and that the declining phase may last for several days. 

The use of ELISA-based principle to analyse the milk Hp is not suitable for in-line system 

but the application of biosensor to determine the Hp level might give a better value on 

practical purposes (Åkerstedt et al. 2006). As for the concentration of enzymes involved in 

mastitis, only LDH, NAGase and AP are known to increase in a faster rate upon LPS 

infusion. They also showed clear distinct between inflamed quarters with those placebo-

treated neighbouring quarters. This study also discussed the possible origin of some of the 

enzymes during mastitis. For example, although acid proteinase (AcP) and alkaline 

phosphatase (AP) are native constituents in bovine milk and the mammary gland is the 

source of these enzymes, enhanced expression of leukocytes lead to upregulation of these 

enzymes which can be seen during mastitis. Furthermore, LDH activity has shown not only 

originate from plasma but also from granulocytes and lymphocytes in mastitic milk. Thus, 

it can be concluded that AP, LDH and NAGase are the sensitive markers in mastitis as they 

were increased significantly as Hp, M-SAA3 and SCC during early phase of inflammation. 
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1.4.3 APP and Milk Quality 

One study that investigated (Åkerstedt et al. 2007) the relationship between APP and SCC 

in all clinically healthy animals found that a large proportion of animals (53%) had 

detectable levels of Hp and/or SAA. Although the presence of both APP was significantly 

more common in milk at higher SCC, SAA was found more frequently in the milk 

regardless of the sample type (quarter, cow composite and bulk tank) and had a significant 

relationship with SCC in quarter and composite milk samples. The reason why there was 

no relationship between Hp and SCC in bulk tank milk might be due to the dilution effect 

from quarter to bulk tank level. However, although the SCC of the cow composite sample 

was normal, SAA seemed to be detected in all four quarters in the cow composite sample. 

During certain physiological conditions (dry-off and oestrus), the permeability of blood-

milk barrier is altered which leads to leakage of blood proteins into milk. Thus, the 

presence of APP in milk suggests the independent relationship between APP and SCC. 

Hp and SAA have been studied on their use to assess milk quality. Several parameters 

concerning milk quality such as total protein, whey protein and casein levels, casein 

number, proteolysis and levels of fat and lactose in cow composite sample were compared 

with the level of both APP (Åkerstedt et al. 2009). Healthy milk samples with detectable 

level of Hp showed lower total protein and casein levels but higher SCC. Healthy milk 

samples with detectable levels of SAA showed lower casein number, lower lactose level 

but also higher SCC. Although total protein level in the milk is commonly used as a milk 

quality parameter, casein level is a more specific quality trait since total protein may 

include less valuable serum proteins that may increase during mastitis. It is said that 

measuring casein instead of total protein level in the milk is more relevant because the 

degree of casein degradation also affects the processing properties of the milk other than 

yield and quality of the dairy products. No relationship was observed between APP and 

proteolysis found in this study might be due to insensitive fluorescamine method to detect 

small differences in proteolysis. Proteolysis might also cause decreased casein levels and 

lower casein numbers as proteases particularly plasmin, bind to casein and hydrolyse the 

proteins to soluble peptides. Lower lactose level with detectable SAA is due to the release 

of specific peptides during hydrolysis of casein by plasmin that may serve as regulators in 

lactose secretion. However, lactose is not sensitive and specific enough to be detected in 

the bulk tank milk and thus, not suitable to be used as milk quality parameter. Furthermore, 

in samples with both APP detected, reduced whey protein level was observed which might 

be due to reduced synthesis of the milk proteins, including the whey proteins. And lastly, 
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no relationship was found between total proteins and casein levels/casein number with 

SCC but high SCC was found together with decreased lactose level and increased whey 

proteins (Åkerstedt et al. 2008). 

The assessment on the composition of bulk tank milk is done to determine the quality of 

raw milk sample (Åkerstedt et al. 2009). Subclinical mastitis often constitutes a problem as 

the absence of macroscopic changes in the milk goes unnoticed and the milk from 

unaffected glands mixes with the milk from infected quarters. Bulk tank milk somatic cell 

count was reported as not a suitable predictor of raw milk quality especially for cheese 

production. Thus, investigation on Hp and SAA and their relationships with various raw 

milk quality parameters in bulk tank milk could be important to determine if the levels of 

APP can be related to the milk quality traits. In bulk tank milk samples with detectable Hp, 

lower casein content as well as lower casein number were found due to higher proteolytic 

activity in these samples. Proteolysis is seen in bulk tank milk but not in cow composite 

milk samples because of different factors. The fact that bulk tank milk consists of 

commingled milk from different milkings as well as milk from non-infected and 

subclinically infected quarters contribute to presence of proteolytic activity in bulk tank 

milk. Furthermore, the longer storage time before collection and freezing allows 

proteolysis to proceed for a longer time. Decreased levels of both APP were related to 

reduce lactose level as damaged epithelial cells contribute to decreased lactose synthesis. 

Proteolysis of β-casein released the peptides with a regulatory effect on lactose secretion 

(Silanikove et al. 2000). Thus, it can be concluded that APP can be serve as potential 

candidates to predict the raw bulk tank milk quality in relation to protein quality because 

the presence of APP in milk is related to disadvantageous changes in milk composition. 

1.5  General Proteomics Application 

Proteomics has become one of the most significant „post-genomic era‟ tools due to 

advances in proteomic technologies which allowed an extended experimental approach to 

investigation of biological systems. Originally, the initial proteomic experiments which 

rely on two-dimensional gel electrophoresis (O‟Farrell 1975) and application of 

chromatography techniques (Neverova & Van Eyk 2002) could not be used for broad 

proteomic application due to difficulty in identifying proteins (Graham et al. 2005). 

However, this problem is overcome by an introduction of mass spectrometry (MS) in 

combination with developing genomics databases (Graham et al. 2005). 
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Proteomics is defined as the study of the proteome; a full complement of expressed 

proteins from the genome of a given tissue, cell or biological fluid in all isoforms, 

polymorphisms and post-translational modifications (PTMs) at a particular point of time. 

(Wilkins et al. 1995; Graham et al. 2005; Manso et al. 2005; Hiendleder et al. 2005; 

Mitton & Kranias 2003). Proteomics provides a holistic and global approach to separate, 

identify, characterize and quantify proteins and their PTMs to provide information on 

protein abundance, location, modification and protein-protein interaction in a proteome of 

a given biological system (He & Chiu 2003; Stoughton & Friend 2005). Principally, 

proteomics offers an inventory of the different proteins and their modifications within a 

defined biological state and comparison of proteomes derived from different biological 

states, e.g. normal in comparison to diseased states or with treatment to non-treatment 

(Hiendleder et al. 2005).  

According to Mitton & Kranias (2003), proteomics has advantages over genomics and 

transcriptomics because cellular protein composition and activity are positively correlated 

with changes in overall cellular function. Furthermore, proteomic methods have the 

potential to generate a bulk of data quickly and they are able to generate high-throughput 

systems which are useful to analyze a complex biological system. Furthermore, proteomics 

is able to determine the time course of protein behaviour and to characterize the presence 

and relevance of PTMs to a given process.  

While its potential usage is outstanding, proteomics faces three major challenges (Mitton 

& Kranias 2003). First, cellular proteomes are highly dynamic with changes in the 

proteome occur at the same time as changes in cellular functions. Thus, great care needs to 

be taken to standardize and interpret the results. Second, proteomics has to deal with a 

variety of proteins in terms of its molecular weights, partition coefficients 

(hydrophobicity/hydrophilicity), electrostatic charges, ion chelation properties and PTMs 

(glycosylation, lipid conjugation and phosphorylation). This also complicates the detection 

of low-abundance proteins (Hiendleder et al. 2005). Finally, technically difficult and time-

consuming proteomics methods have been considered as a major hurdle although vast 

improvements in the last decade have improved its reliability and efficiency. 

1.5.1 Proteomics in Animal Sciences 

The use of proteomic methods in animal sciences can help researchers to identify key 

proteins and their changed expression in response to different experimental conditions. 

Furthermore, it will provide data libraries of the abundant proteins expressed in a single 
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cell, cell compartments, tissues and body fluids (Lippolis & Reinhardt 2005; Cho et al. 

2006; Reinhardt & Lippolis 2006; Radosevich et al. 2007). These proteins derived from 

pathogens or hosts are important to examine the status of disease progression and recovery, 

organ development or host responses to stress. Furthermore, it also helps with the 

intervention of diagnostic tests, development of new therapies or even on a discovery of 

disease biomarkers (Lippolis & Reinhardt 2008).  

With the technologies of proteomics promised to provide the identification of proteins that 

are differentially expressed in normal and disease conditions, naturally occurring animal 

diseases can be studied to improve the health of animals which in turn may lead to 

improvements in the characterization, clinical management and treatment of human 

diseases through comparative medicines (Doherty et al. 2008). 

For example, dilated cardiomyopathy which occurs in the Simmental-Red Holstein 

crossbreed of cattle has been studied to investigate its molecular pathogenesis (Weekes et 

al. 1999). This study revealed that poly-ubiquitination of proteins was increased in this 

disease and may play a role in heart disease. Paratuberculosis or Johne‟s disease has been 

implicated as a possible factor in the development of Crohn‟s disease in humans (Grant 

2005). Ten proteins have been identified as up-regulated proteins in naturally occurring 

Johne‟s disease which provide an important fact for the host-parasite relationship which 

can act as model system for the parallel Crohn‟s disease in human (Hughes et al. 2007). 

Proteomics has been applied to study the innate immunology pathways in stress-induced 

immunosuppression (Lippolis et al. 2006a; Mitchell et al. 2007). One of the bovine innate 

immunity proteins discovered was histone H2A.1 in bovine milk (Lippolis et al. 2006b) 

which involved in neutrophil killing mechanism (NET) (Brinkmann et al. 2004).  

Additionally, proteomic investigation on milk fat globule membrane proteome (MFGM) 

revealed that mammary epithelial cells may be directly involved in signalling the early 

recruitment of innate immune cells due to the presence of innate immune signalling 

molecules, TLR2, TLR4 and CD 14 (Reinhardt & Lippolis 2006). This study on MFGM 

also provides new data on mammary development in early lactation. 

Proteomic analysis on bacterial-causing diseases helps in developing new diagnostic test 

from new protein markers and also development of vaccine from newly identified 

candidate proteins. Examples of animal diseases which used similar proteomic approaches 

are Johne‟s disease (Radosevich et al. 2007), Brucella abortus (Connolly et al. 2006), 
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Pasteurella multocida (Boyce et al. 2006) and Mycobacterium bovis (Mollenkopf et al. 

2004). 

The proteomes from 3 important bacteria used in the production of dairy products; 

Lactobacillus bulgaricus, Lactococcus lactis and Streptococcus thermophiles have been 

studied for any protein changes resulting from growth in laboratory medium or in milk 

(Rechinger et al. 2000; Derzelle et al. 2005; Gitton et al. 2005). This data provides new 

information to food scientists in modifying these bacteria to achieve good food production 

practices. 

Proteomic approaches also been widely used to examine post mortem changes in 

slaughtered beef and pork that affect the quality of the meat (Jia et al. 2006a,b; Sayd et al. 

2006; Laville et al. 2007; Suman et al. 2007). In addition, the variation in types and 

amounts or proteins in seminal fluid of bull has been studied using proteomic methods 

(Kelly et al. 2006). Although it is not known yet if these findings will lead to improvement 

of bull fertility, it is likely that such methods will have a good future in animal production 

profitability. 

Because proteomics is able to screen large numbers of proteins simultaneously, it has 

become an important role at identifying disease biomarkers from the thousands of 

molecules present in a tissue of body fluid (Ilyin et al. 2004; Seo & Ginsberg 2005). In 

order for proteomics to be used effectively in biomarker discovery, a combination of 

efficient and stringent separation technologies and high-resolution mass spectrometry 

(Aebersold & Mann 2003; Rifai et al. 2006) are needed. Cairoli et al. (2006) applied 

proteomics to study the changes in protein expression in pregnant cows and in the 

peripartum periods in cows with or without postpartum uterine infections. They found that 

both haptoglobin and orosomucoid/α1-acid glycoprotein fluctuated at the time of calving. 

Orosomucoid is also known to significantly decrease in cows with endometritis compared 

with healthy cows which hold promise as a prognostic biomarker in cattle health post-

partum. Proteomics has also identified PR-39 in pigs with respiratory disease as a potential 

disease biomarker at day 21 of infection (Hennig-Pauka et al. 2006). 

1.5.2 Milk Proteomics 

Although milk proteins have been studied for well over 50 years, only recently have 

proteomic techniques been widely used to study milk and milk products by separation of 

major milk proteins including caseins (αs1-, αs2-, β- and κ-casein) and whey proteins (α-
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lactalbumin, β-lactoglobulin and bovine serum albumin) (O‟Donnell et al. 2004; Manso et 

al. 2005).  

The milk proteome is an extremely complex entity due to the presence of several molecular 

forms of many of the proteins as a consequence of different genetic variants, changes in the 

level of phosphorylation or glycosylation as well as the localization of PTMs of milk 

proteins (Eigel et al. 1984). Furthermore, there are a number of lower abundance proteins 

such as lactoferrin, immunoglobulins, glycoproteins, hormones and endogenous enzymes 

(Fox & Kelly 2003) present in the milk which may also be studied by means of proteomic 

approaches. 

An early observation on bovine and human milk proteins was first reported by Anderson et 

al. (1982) using high resolution 2 DE. Major milk proteins were demonstrated in this 2D 

mapping study which included α-LA, β2-LG, α- and β-caseins, 4 post-transitionally 

modified κ-chains, para κ-casein, Lf and albumin. Studies by Galvani et al. (2000) 

performed on powdered and fluid milk samples using MALDI analyses revealed the 

electrophoretic position of common high abundance proteins (caseins, β-lactoglobulin, etc) 

that can be found in milk and with modifications such as proteolysis, glycosylation and 

phosphorylation. 

Normally, low-abundance proteins in milk are rarely seen on traditional 2DE maps due to 

high amount of major proteins in milk which obscure the detection of low-abundance 

proteins. Incomplete solubilization during sample preparation can also reduce the detection 

of low abundance proteins (Manso et al. 2005).  However, low-abundance milk proteins 

account for approximately 5% of the total milk proteins and a number of studies have been 

applied on these proteins to aid in the search of their biological role and impacts on animal 

and human health (Lippolis & Reinhardt 2005; Reinhardt & Lippolis 2006; Fong et al. 

2008; Smolenski et al. 2007; Reinhardt & Lippolis 2008). Low abundance proteins are 

frequently thought to have an important role as regulatory proteins, signal transduction 

proteins, receptors and enzymes (Fox & Kelly 2003). 

An early study of low-abundance milk proteins was done using human colostrum and 

mature milk samples (Murakami et al. 1998). In total, 22 low-abundance proteins were 

identified using 2DE followed by microsequencing in both human colostrum and mature 

milk samples. Interestingly, no significant difference was found on 2DE patterns of low-

abundance human milk proteins between colostrum and mature milk samples. 
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Further study on milk proteins was carried out by Yamada et al. (2002) using the same 

proteomic methods (2DE and microsequencing) but with bovine colostrum and mature 

milk. In this study, 29 low-abundance proteins were identified with several proteins being 

present only in bovine colostrum such as gelsolin, chitinase3-like 1, apolipoprotein H, 

complement C3 and fibrinogen β-chain. There may be important in the health and 

development of calves during early lactation. They also observed significant difference in 

2DE patterns of low-abundance proteins between bovine colostrum and mature milk 

samples. 

Another study by Baeker et al. (2002) demonstrated the expression of a group of proteins 

from the whey from inflamed mammary quarters. These proteins were identified by 

MALDI-TOF as isoforms of lipocalin-type prostaglandin D synthase and suggested to be a 

new biomarker of bovine mastitis. 

Low-abundance proteins in human colostrum were studied by Palmer et al. (2006) using 

2D-LC MS/MS, who found around 151 proteins of which 83 proteins were not previously 

reported. In this study, immunoabsorbents were applied to remove the major proteins: 

secretory IgA, lactoferrin, alpha-lactalbumin and human serum albumin (HSA). Most of 

the newly identified proteins exhibited many important functions for the newborn‟s 

immunity, growth and nutrition such as complement C1r-like proteinase, complement 

factor I, calgranulin A, calgranulin B, cysteine-rich secretory protein-3, mucin 5B, 

neutrophil gelatinase-associated lipocalin, and uteroglobinrelated protein 2. 

The whey proteins are the soluble part of protein fractions. Major components of whey 

proteins include Igs, α-LA, β-LG, lactoferrin (Lf), serum albumin and lactoperoxidase (Lp) 

(Severin & Wenshui 2005). According to Casado et al. (2009), whey proteins can be 

further separated using ultrafiltration to concentrate the proteins or generates whey protein 

concentrates (WPC) respectively.  

Proteomic approaches have been used to study whey proteins particularly in relation to the 

beneficial effects of these whey proteins and their bioactive peptides as functional 

ingredients in food (Michaelidou & Steijns 2006; Toba et al. 2000). Furthermore, many 

low-abundance proteins which arise from proteolytic activity from the major milk proteins, 

extrusion or leakage from the plasma or mammary epithelia (Hogarth et al. 2004; Larsen et 

al. 2006) or are products of the somatic cells (Kelly & McSweeney, 2003 ; Paape et al. 

2003) might contribute to the health benefits of whey proteins.  
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Various fractionation methods have been employed to increase the resolution of such low-

abundance proteins in whey fraction such as isoelectric focusing (IEF) (Zuo & Speicher 

2002), affinity tagging (Holland et al. 2006) and immunoabsorption (Yamada et al. 2002). 

In one study by Fong et al. (2008), the use of semi-coupled anion and cation exchange 

chromatography to fractionate whey from late-lactation milk samples into acidic, basic and 

non-bound fractions has revealed a large number of minor whey proteins which have not 

been found previously in bovine milk such as factor XIIa inhibitor, tetranectin, CD5 

antigen-like, complement components C4, C8, C9, factors I and D as well as 

nucleobindins. 

In a recent work by D‟Amato et al. (2009), the use of a combinatorial peptide ligand 

library (CPLL) has been shown to enhance the low-abundance protein species in milk. This 

work which comprised of IEF in gel followed by immunoblotting with unambiguous 

detection of polymorphic IgG revealed 100 unique gene products in milk which were not 

previously mentioned. In total, about 149 proteins were presented in a comprehensive 

whey proteins list under a combination of untreated and treated colostrum and mature milk 

with CPLL1 and CPLL2 (library 1 and 2 respectively). 

However, Le et al. (2011) demonstrated that by using ion exchange to fractionate milk 

proteins, higher sample load was allowed which in turn, allowed more whey proteins to  be 

identified. The total of whey proteins found was double the number of proteins identified 

using CPLL with 293 proteins found in bovine colostrum and mature milk. About 217 

proteins were found in both bovine colostrum and mature milk whilst 36 proteins were 

only found in colostrum and 40 proteins came only from mature milk. Semi-quantitative 

analysis also revealed several lower-abundance proteins being up-regulated in colostrum 

such as CLU (complement system), MFGE8 (antiviral activity), CATHL1 (antibacterial 

activity), SAA3 (acute-phase protein), CD5L (immune system), PGLYRP1 (innate 

immunity and antimicrobial) and CFB (complement system) that function as natural 

defence mechanism. 

A study on human whey proteome was performed by Liao et al. (2011) using LC-MS/MS 

with enrichment methods using Proteominer Protein Enrichment Technology. Major whey 

proteins such as Lf and α-LA or even casein subunits were still detected when using this 

approach but a total of 115 proteins have been identified of which 38 proteins not being 

mentioned before in human milk. These proteins were known to perform a wide variety of 

physiological functions in milk. Relative quantification of these minor proteins also 

showed that α -1-antitrypsin, α –lactalbumin, carbonic anhydrase 6, chordin-like protein 2, 
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galectin-3-binding protein, lactadherin, lactoferrin, prolactin-inducible protein, and 

tenascin were significantly expressed in higher levels in both colostrum and 1-month milk 

whey with immune modulating functions. 

Proteomic studies on milk fat globule membrane (MFGM) provide an understanding on 

lipid synthesis and secretion in the milk. By characterizing its proteins associated with this 

membrane, one may be provided with information on signalling and secretory pathways of 

the mammary gland and eventually the cellular origin of the membrane (Casado et al. 

2009). However, MFGM is known to be highly hydrophobic and thus, solubilization is 

difficult. To overcome such problems, various solubilization strategies (Quaranta et al. 

2001; Cavaletto et al. 2002) have been employed including the use of detergent or 

reducing agent solution as well as by extraction using organic solvent that may help to 

improve the recovery of MFGM proteome (O‟Donnell et al. 2004). 

In early studies, MFGM proteins were identified as mucins, xanthine oxidase and 

butyrophilin) by immunological methods and N-terminal sequencing (Cavaletto et al. 

2004). Mather et al. (2000) also identified MFGM proteins using traditional biochemical 

methods which were slow, laborious and addressed only one protein at one particular time. 

In humans, multiple forms of both butyrophilin and lactadherin were found after 

combining SDS-PAGE with sequence analysis (Cavaletto et al. 1999). Meanwhile, in 

bovine, major proteins associated with MFGM were demonstrated by Mather (2000) which 

includes mucin 1, xanthine oxidase, CD36, butyrophilin, adipophilin, lactadeherin and 

fatty acid binding protein. 

Several studies on human MFGM proteins have been investigated. According to Quaranta 

et al. (2001), about 23 proteins identified by microsequencing and MS analysis confirming 

the presence of lactadherin and butyrophilin as the major glycoproteins in human MFGM. 

Other proteins that have been revealed include adipophilin, disulfide isomerase ER-60, 

apolipoprotein J as well as carbonic anhydrase which were not previously mentioned in 

human milk. 

Charlwood et al. (2002) further demonstrated the presence of previously resolved MFGM 

proteins which were α-LA, Lf, lysozyme precursor, β-CN, clusterin, milk fat globule EGF-

factor 8 protein and polymeric IG receptor precursor. By characterizing the N-linked 

glycans found in MFGM proteins, multiple fucosylation products can be studied which 

give rise to maternal preparation to the infant‟s immune system. 
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The development of 2-DE database for human MFGM proteins has led to the 

characterization and identification of 107 protein spots with multiple PTMs on lactadherin, 

butyrophilin, Lf, adipophilin and carbonic anhydrase. Of these proteins, 46% were known 

previously as MFGM proteins composition, 10% involved in folding and protein 

destination and another 9% involved in intracellular transport and/or receptor activity. 

Also, the discovery has been made of low-abundance proteins in MFGM which involved in 

cell development and differentiation, cell motility and signal transduction. 

Reinhardt & Lippolis (2006) first reported the proteomic study on bovine MFGM which 

aimed to provide a good research foundation on the secretory mechanism of mammary 

gland in this species. They applied an extraction of MFGM using carbonate to enrich the 

intrinsic membrane proteins of MFGM and found 120 proteins from bovine MFGM. Most 

of these proteins were associated with membrane/protein trafficking or cell signalling. The 

most significant findings of this study were the presence of CD14, TLR2, and TLR4 on 

MFGM suggesting a role of protecting the mammary gland against infection. 

Later, Reinhardt & Lippolis (2008) used a more advanced proteomic approach to identify 

and measure the level of protein expression changes in MFGM from colostrum to milk on 

day 7 of lactation. An amine-reactive isobaric tag (iTRAQ) was used to quantify protein 

changes in MFGM between colostrum and day 7 milk and revealed 138 MFGM proteins in 

which 26 proteins were upregulated whilst 19 proteins downregulated in d 7 MFGM 

compared with colostrum MFGM. Amongst proteins that were significantly upregulated 

individually in d 7 MFGM were mucin 1 and 15, the tripartite complex of proteins of 

adipophilin, butyrophilin, and xanthine dehydrogenase as well as proteins involved in lipid 

transport synthesis and secretion (acyl-CoA synthetase, lanosterol synthase, 

lysophosphatidic acid acyltransferase, and fatty acid binding protein). 

Vanderghem et al. (2008) have established a simple and fast method to purify the MFGM 

by using Zwitterionic detergents (4% (w/v) CHAPS). This method proved to remove the 

majority of skim milk proteins as no caseins were found on their 2-DE gel. A total of 230 

proteins spots were excised and analysed by MALDI-TOF/TOF and further characterized 

by PMF and MS/MS. Amongst the proteins identified were butyrophilin, lactadherin, 

adipophilin, xanthine dehydrogenase/oxidase and fatty acid binding proteins as previously 

mentioned. 

Over the past few years, an increasing interest in quantification of proteins in MFGM has 

been seen. This is due to the important bioactivity of MFGM proteins in different health 
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benefits in human such as anti-cancer effects (Spitsberg & Gorewit 2002), anti-bacterial 

effects (Schroten et al. 1992; Wang et al. 2001) and anti-viral effects (Murgiano et al. 

2009). Thus, Fong & Norris (2009) have used the absolute quantification (AQUA) 

technique to quantify the 6 major MFGM proteins in butter milk protein concentrate. The 

released peptides were measured at the same time using liquid chromatography-high-

resolution selected reaction monitoring-mass spectrometry (LC-HSRM-MS). 

 Due to the importance of the MFGM efforts have been made to increase the efficiency of 

sample preparation in the protein extraction and solubilization prior to proteomic analysis 

of MFGM protein, Bianchi  et al. (2009) compared 4 different types of lysis buffers with 

different detergents and chaotropes together with delipidation to maximize the 

visualization of MFG protein expression profile. In conclusion, delipidation, urea/thiourea 

combination and CHAPS/TritonX100 application as surfactants resulted in a proper MFG 

protein pattern visualization. In all, 82 protein spots with 42 different polypeptides were 

identified by MS and a reference 2-D map of cow MFGM was produced in this study. The 

majority of proteins identified were involved in lipid synthesis or in fat globule secretion.  

Affolter et al. (2010) have used 3 different qualitative and quantitative analytical profiling 

on two MFGM enriched milk fractions (whey protein concentrate; WPC and buttermilk 

concentrate; BMC). An LC-MS/MS-based shotgun approach identified 244 proteins in 

WPC and 133 in BMP with 4 main functional categories of proteins (signal transduction, 

proteolysis, immunity and defence and lipid metabolism). A second approach using label-

free profiling gave a rapid and efficient semi-quantitative comparison of the top 34 

proteins present in both fractions. Lastly, the application of stable isotope dilution 

combined with LC-MRM-MS/MS technology to quantify proteins gave a highly flexible 

and adaptable analysis for a large number of proteins in a complex mixture.  

The complexity of milk in its protein heterogeneity arises from significant levels of 

phosphorylation and glycosylation together with genetic variation, proteomic analyses 

have been used for the discovery, detection and characterization of these post translational 

modifications (Baeker et al. 2002; Charlwood et al. 2002). The majority of caseins exist as 

mixture of phosphoproteins. Mamone et al. (2003) identified more than 30 phosphorylated 

caseins using combined polyacrylamide gel electrophoresis with MALDI-TOF and 

nanoelectrospray-tandem mass spectrometry (nESI-MS/MS). Holland et al. (2004) in other 

hand identified 10 forms of κ-casein at different isoelectric point (pI) values as well as two 

phosphorylated and glycosylated forms. 
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Glycosylation also occurs in numerous milk proteins particularly on both N- and O-linked 

glycoproteins. As described by Holland et al. (2004), The O-glycosylation sites were 

identified by tandem MS with 10 different glycoforms of κ-CN were resolved and 

identified. Charlwood et al. (2002) on the other hand studied the N-linked glycosylation on 

four major proteins of the human MFGM namely clusterin, lactotransferrin, polymeric 

immunoglobulin receptor and lactadherin which possess a wide range of different sugar 

motifs. Proteins were separated and identified by MALDI-TOF analysis while Tandem MS 

and nESI source were used to identify the sugar constituents of isolated glycans. 

1.5.3 Proteomics on Bovine Mastitis 

Changes in the milk proteome during bovine mastitis could provide a significant insight on 

variation in protein composition that could lead to the discovery of protein biomarkers for 

bovine mastitis. Furthermore, by applying proteomic analyses, it may be possible to 

identify specific and potential protein target for therapies and immune manipulations 

against bovine mastitis (Yong et al. 2009). 

Hogarth et al. (2004) applied pre-fractionation to remove abundant caseins from milk so 

that proteomic analyses of mastitic whey in comparison with normal whey could be 

investigated. However, despite an attempt to remove caseins, many other higher abundance 

proteins were seen from the results of this study and few low abundance proteins were 

apparent suggesting an alternative approach to remove these high abundance proteins. 

Serum albumin and serotransferrin were among the proteins found to be present or 

increased in mastitic whey. It is interesting to see that normal major whey proteins such as 

β-LG, α-LA and the casein remnants were absent from whey samples from cases of clinical 

mastitis. 

Smolenski et al. (2007) analyzed mastitic milk for the presence of minor milk proteins 

involved in host defence mechanism. By using direct liquid chromatography-tandem mass 

spectrometry (LC-MS/MS), and two-dimensional electrophoresis (2-DE) followed by 

matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass 

spectrometry (MS), several proteins involved in host defence were identified in bovine 

milk such as chaparonins, proteins secreted from neutrophils, lymphocyte proteins, DNA-

binding proteins, enzymes, transport proteins and structural proteins probably present as a 

consequence of the shedding and subsequent lysis of somatic cells in milk. A number of 

host defence proteins were also found in MFGM and there were significant differences in 

the MFGM proteins between mastitic and healthy milk. 
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Furthermore, Boehmer et al. (2008) successfully identified complement factors C3 and C4 

and the apolipoproteins A-IT and C-Ill in mastitic whey samples inoculated with E. coli. It 

has proved that by using 2-DE and MALDI-TOF PSD, the identification of low-abundance 

proteins can be achieved without prior sample clean-up. In addition, a wide range of 

differentially expressed proteins were identified in mastitis whey compared with normal 

whey due to larger sample size which improve the discovery of protein biomarkers in 

coliform mastitis.  

Proteomic approaches have also been applied to study protein expression of the mammary 

gland from both normal and clinical mastitic dairy cows as done by Yang et al. (2009). Six 

differentially expressed proteins were identified by tandem MS such as haemoglobin-beta, 

κ-CN and Tryptophanyl-tRNA-synthetase (TrpRS) which can be found from healthy 

mammary gland tissues as well as cytochrome C oxidase and annexin V which were 

identified from mastitic mammary gland tissues.  

 

Over the years, an interest on quantification of the abundance of proteins exists in a 

complex biological fluid has grown tremendously. In milk, Boehmer et al. (2010) have 

applied an LC-MS/MS label-free approach to quantify relative changes in identified 

proteins over a time course following E. coli infection of the udder. A number of medium- 

to high-abundance proteins such as αS1-, αS2- β-, and κ-caseins and whey proteins serum 

albumin, β-lactoglobulin, and α-lactalbumin were found in all whey samples at all time 

points. In addition to that, lower abundance proteins of potential use as inflammation 

markers were also characterized such as lactoferrin, transferrin, apolipoprotein AI, 

fibrinogen, glycosylation-dependent cell adhesion molecule-1, peptidoglycan recognition 

receptor protein and cyclic dodecapeptide-1. 

Danielsen et al. (2010) have also applied quantitative proteomic approaches to assess the 

protein differential expression in the milk proteome of individual cows before and 

immediately after LPS challenge. In all, 49 proteins were found to be significantly up-

regulated during LPS challenge including apolipoproteins, complement C3 and C4 as well 

as other anti-inflammatory proteins.  

Pathway analysis can be incorporated when studying the enriched proteome that emerged 

during E. coli and S. aureus responses as done by Ibeagha-Awemu et al. (2010). The 

proteomic profiles of whey milk from naturally infected E. coli and S. aureus in 

comparison to whey from healthy cows were revealed by one-dimensional, liquid 

chromatography tandem MS (LC-MS/MS). A total of 73 proteins were found to be 
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differentially expressed between normal and whey from quarters infected with E. coli 

appeared to cause more significant alteration in the concentration of the affected proteins 

than S. aureus itself. The acute phase response signalling pathway was the most significant 

enriched canonical pathway in this study. In addition, more lower abundance proteins were 

identified as compared to other previous studies such as the serpins and proteins with 

binding activities (glucose phosphate isomerizes and PFN1) 

Proteolysis of casein which is known to increase in bovine milk during mastitis has been 

studied by Larsen et al. (2010) after infusion of lipoteichoic acid from S. aureus. 

According to 2-D gel electrophoretograms, hydrolysis of β- and αS1-caseins occurred in 

milk 6 hours after infusion with the toxin. Those peptides were subsequently separated by 

reversed-phase HPLC and C18 columns and further identified by MALDI-TOF MS/MS. 

About 20 different peptides were successfully characterized and confirmed to originate 

from αS1- and β-CN. 

Proteomic study on different pathogens causing bovine mastitis could also provide 

important data on the proteome of bacteria isolated from mastitis cases. This could aid in 

defining specific vaccine and therapeutic targets as suggested by Taverna et al. (2007). 

They produced a (2-DE) reference map of surface associated proteins of isolated S. aureus 

from a case of bovine mastitis with protein identification using MALDI-TOF MS.  

1.6  General Peptidomics 

Peptidomics is regarded as the sequel to the proteomic technologies and is one of the new 

branches of chemical biology based on post-genomic technological platforms. The term 

peptidome refers to the whole set of endogenous peptides present in a given biological 

sample (Ivanov et al. 2009) and peptidomics is a comprehensive study of all natural 

peptides in an organism, a tissue or a body fluid (Clynen et al. 2001; Schrader & Schultz-

Knappe 2001). In the previous discussion on proteomics, 2D-PAGE is often utilized to 

separate and visualize the protein complement present in any cells, tissues and fluids 

followed by identification of expressed proteins by the MS (Baggerman et al. 2004). 

However, due to major limitation of 2D-PAGE in detecting molecules between 10kDa and 

200kDa, these standard proteomics approaches are unsuitable for the analysis of 

peptidomes (Ramström & Bergquist 2004). It is thought that the very important groups of 

peptides and neuropeptides are outside the range of this mass region (Baggerman et al. 

2004). Furthermore, according to Schulte et al. (2005), due to high complexity and 

concentration of other proteins in a sample, 2D-PAGE is not an appropriate method to 
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detect these important endogenous peptides especially as they are often present at very low 

concentrations.  

Peptides are referred to as low-molecular weight polypeptides molecules with the mass of 

<20kDa (Ramström & Bergquist 2004, Hu et al. 2009). They are often the products of 

proteins after proteolytic cleavage of the protein precursor by active proteases that have 

very specific functions as mediators and regulators of many physiological processes in 

nervous, endocrine, immune and other systems (Ivanov et al. 2009, Hu et al. 2009). 

Peptides just like proteins change dynamically according to different physiological and 

pathological conditions and are influenced by metabolism, disease states, stress, drug 

intervention, genetic modifications and other external factors (Ivanov et al. 2009; 

Ramström & Bergquist 2004). Although the circulating peptides in the body fluid or tissue 

may reflect the biological events, the real function of specific peptides is frequently 

unknown and further studies were needed (Petricoin et al. 2006). According to Hu et al. 

(2009), peptides in the peptidomes are divided into two groups; first, the bioactive peptides 

that have important roles in biological processes such as cytokines, hormones, growth 

factors and MHC class 1 peptides; and second, the degraded peptides arising from 

proteolytic cleavage. 

Peptidomics was only introduced at early 2000s after several advances in the development 

of MS techniques coupled with the completion of the genome sequences in majority of 

living species (Ivanov et al. 2009). Subsequently, several fields of studies have 

successfully employed peptidomic approach such as neuroendocrine studies (Baggerman et 

al. 2002; Clynen et al. 2003), biomarker discovery (Yuan & Desiderio 2005; Schrader & 

Salle 2006) and therapeutic development against oncology, neurodegeneration, 

osteoporosis and others (Clynen et al. 2008). 

In earlier years, the study of peptides involved the purification of peptides from tissue 

extracts with the extracted peptides being characterized by Edman sequencing (Ramström 

& Bergquist 2004). As a result of the introduction of MS, hundreds of newly identified 

peptides were discovered and sequenced (Ivanov et al. 2009; Ivanov et al. 2005) and 

termed as peptide profiles (Slemmon et al. 1997) or peptide pools (Karelin et al. 1998). It 

is not an easy task to analyse peptides in a real sample due to their low concentrations, the 

complexity of the sample together with the presence of other components in the sample in 

a wide range of concentration and the availability of the analytes at different chemical 

properties (hydrophobicity, size, pI) (Ramström & Bergquist 2004). Thus, a very sensitive, 

unbiased method should be applied with short running time, and which is easily automated 
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and able to handle a great abundance of data. The different peptidomics approaches will be 

discussed in the final chapter.  

1.6.1 The presence of peptides in bovine milk and dairy 

products 

Milk or dairy products possess an important role in providing the main nitrogenous 

nutrients in human food as it has a high content of proteins. Many breakdown products of 

proteins upon ingestion of milk proteins are called bioactive peptides (Srinivas & Prakash 

2010; Schmelzer et al. 2004). The hydrolytic reactions of digestive enzymes present in the 

gastrointestinal system as well as in vitro proteolysis by proteolytic enzymes such as 

plasmin, (Bastian et al. 1991), cysteine proteases or acid proteases (Wedholm et al. 2008) 

lead to the production of these bioactive peptides. Bioactive peptides in milk or dairy 

products such as cheese and yoghurt provide a health enhancing factor that can be 

incorporated into functional foods and /or used as nutraceuticals (Meisel & Fitzgerald 

2003). Most of the bioactivities of these peptides remain in a latent state within the protein 

sequence and to exert their functions, proteolytic processes must be initiated (Smacchi & 

Gobbetti 2000; Srivinas & Prakash 2010). However, some of bioactive substances in milk 

are fully active as proteins (Smacchi & Gobbetti 2000). These bioactive peptides in dairy 

products serve numerous biological and physiological functions. 

The functions of bioactive peptides in dairy products have been reviewed by Smacchi & 

Gobbetti (2000) which include opioid characteristics, antihypertensive, antimicrobial and 

antithrombotic effects. Examples of these peptides include peptides from αS1- and β-CN 

(Maruyama & Suzuki 1982), β-lactoglobulin (Mullaly et al. 1996), α-lactalbumin (Parker 

et al. 1984), and lactoferricin (Yamauchi et al. 1993). Some of these milk-derived peptides 

exert multi-functional activities such as β-casomorphins and casokinins; both are 

Angiotensin-1 Converting Enzyme (ACE)-inhibitory and immunostimulatory (Grant et al. 

1993; Meisel & Schlimme 1994). 

Smacchi & Gobbetti (2000) have also produced lists of bioactive peptides present in 

different types of dairy products such as milk and milk hydrolysates, fermented milks and 

cheese. Proteolytic bioactivities depended upon the differentiation, functional states as well 

as the intramammary inflammation of mammary gland (Schanbacher et al. 1997). Various 

peptides were also found in fermented milk which influenced by the type of bacteria starter 

used. The production of bioactive and non-bioactive peptides during proteolytic event of 

cheese ripening may inhibit the lactic acid bacteria (LAB) peptidases in many ways. 
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In another study, Srivinas & Prakash (2010) have isolated and characterized the 

multifunctional properties of bioactive peptides from α-CN from bovine milk. To generate 

peptides from α-CN, several proteolytic enzymes were employed such as aminopeptidase, 

carboxypeptidase, fungal and bacterial proteases and chymotrypsin. However, 

chymotrypsin hydrolysates were chosen as they released smaller size of peptides. Peptides 

identified in this study showed multifunctional properties such as ACE inhibition, 

antioxidant activity, propyl endopeptidase inhibitory activities and antimicrobial 

properties. 

In terms of technical determination and characterization of proteolytic products of dairy 

products, numerous methods have been employed. In early years, these include 

polyacrylamide gels with urea (urea-PAGE), denaturing agent (SDS-PAGE) or IEF 

techniques (Molina et al. 2000). With time, the separation and identification of peptides 

has been successfully performed by coupling these previous analytical techniques with the 

MS. Details on the various analytical tools on peptide studies will be discussed in the final 

chapter. 

Most of the studies on bovine milk peptides revolved around proteolytic activities on 

casein, the major milk protein. Plasmin has been regarded as the main indigenous 

proteinase in bovine milk (Bastian et al. 1991; Somma et al. 2008) and it preferentially 

cleaves Lys-X and Arg-X residues (Le Bars & Gripon 1989). This enzyme activity 

increases with the stage of lactation, lactation number and severity of bovine mastitis 

(Politis et al. 1989; Schar & Funke 1986) and it leads to detrimental effects on milk quality 

due to decreased amount of intact CN.  

Recio et al. (1997) have employed capillary electrophoresis (CE) with hydrophilically 

coated capillary and low pH buffer containing urea to separate proteolytic activites of 

plasmin and chymosin on caseins. They identified several casein breakdown products 

which include γ1-CN A1, γ1-CN A2, γ1-CN B, γ1-CN C, γ2- CN A, γ1- CN A3, γ2- CN B, 

γ3- CN A and γ3- CN B including proteose peptones derived from different genetic variants 

of β-CN. Breakdown products of αS1-CN and κ-CN were also found which were produced 

by chymosin proteolysis. 

Molina et al. (2000) employed CE to study the fractions of casein and its breakdown 

products treated with plasmin and chymosin from three different species of animals (cow, 

ewe and goat). It showed that hydrolysis of β-casein by plasmin gives rise to γ1-CN, γ2-CN 

and γ3-CN.  Additionally, they found a decrease in the peaks corresponding to αS2-CN as it 
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was also very susceptible to hydrolyse by plasmin due to its high lysine residues (Le Bars 

& Gripon 1989). Hydrolysis of casein in cheese by chymosin and rennet was also studied 

with its main degradation products include para-κ-CN and αS1-I-CN. 

Another study on peptides derived from bovine β-CN by peptic cleavage was studied by 

Schmelzer et al. (2004). By using two types of MS analysis; MALDI-TOF MS with post-

decay source and LC-MS/MS, they successfully identified 41 peptides with a high 

sequence coverage (75%). The peptides identified had lengths of between 2 and 36 amino 

acids which originated from the C-terminus of the protein. 

Somma et al. (2008) compared two different approaches between capillary isoelectric 

focusing (cIEF) and ultra-thin layer isoelectric focusing (ultIEF) in combination with MS 

to characterize the products of β-CN digestion by plasmin from both bovine and water 

buffalo milk samples. The presence of a novel CN breakdown product was found from the 

hydrolysis of water buffalo β-CN which was not present in hydrolysis of bovine β-CN. 

They concluded that cIEF is faster, requires shorter processing times and does not involve 

staining when compared with ultIEF technique. 

Apart from proteolytic activities, studies of peptides have also been employed to 

investigate the presence of adulteration in milk or other dairy products. The most common 

fraud observed was the addition of cow‟s or sheep‟s milk to goat‟s cheese due to seasonal 

fluctuations, availability and price (Guarino et al. 2010). Thus, the need of rapid, fast and 

reliable control methods to accurately determine the level of adulteration in milk or dairy 

products is increasing. Previously, the use of immunological technique (Levieux & Venien 

1994), PCR-techniques (Bottero et al. 2003) or slab gel electrophoresis (Addeo et al. 1990) 

have been used to detect the presence of bovine milk proteins in dairy products from other 

species. However, all these techniques only provide semi-quantitative results and failed to 

detect small amounts of bovine milk proteins in ovine or caprine products (Muller et al. 

2008). Other techniques include analysis of whey proteins, chromatographic techniques 

(De Frutos et al. 1991) and UV/VIS spectrophotometric detection (Cifuentes 2006) which 

allow quantitative analysis of milk proteins. 

The fraudulent addition of rennet whey solids to dairy products can be determined by the 

detection and quantification of caseinomacropeptide (CMP), the fragment of κ-CN 

released by chymosin during milk clotting. It should be absent in normal milk but certain 

bacterial proteases that degrade κ-CN milk could give rise to the similar degradation 

products as CMP (Recio et al. 1997). Van Riel & Olieman (1995) successfully separated 
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the different forms (non-glycosylated forms) of CMP in their studies. It can be concluded 

that adulterations of dairy products with soya or milk from different species can be 

detected based on CE patterns. 

Muller et al. (2008) demonstrated the use of CE coupled with ESI-MS to determine the 

adulteration of ovine/caprine milk by bovine milk. This technique was chosen due to 

electrophoretic clean-up of the milk samples and subsequent identification and 

quantification of latoglobulins. It was concluded that CE-MS analysis was a rapid, simple 

and accurate technique to determine and quantify amounts of bovine milk in milk of other 

species. 

Another study on adulteration of dairy products was performed by Guarino et al. (2010) in 

which LC-MS/MS has been employed to identify and quantify the percentage of sheep‟s 

milk in cow‟s and goat‟s cheeses. Plasmin was chosen over other proteolytic enzymes for 

proteolysis due to simple chromatographic separation, mass spectra analysis and simple, 

fast and widely used protocol. This method appeared to be suitable to monitor adulteration 

as it allows quantitative detection of the use of sheep‟s milk in goat‟s or cow‟s cheeses. 

1.6.2 Peptidomics in Bovine Milk/Bovine Mastitis 

Due to the importance of peptides in animal physiology, various studies have dealt with 

this approach using a wide range of samples (cells, tissues or body fluids). In total, a very 

limited number of peptidomic studies were done to analyze the direct effect of 

intramammary inflammation on the changes of levels of peptides in bovine milk. However, 

an application of various techniques of protein/peptide separation coupling with MS (as 

described above) can be used to study the proteolytic activity in milk samples as 

proteolysis is increased during mastitis (Verdi et al. 1987). 

Apart from plasmin, a principal milk enzyme which hydrolyses β-CN into γ-CN and 

proteose peptones and to a smaller extent hydrolyses αS1- and αS2-CNs; there are a number 

of native proteinases in milk derived from somatic cells or leaked out through the damaged 

somatic cells which also contributes to proteolytic activity in bovine milk (Larsen et al. 

2006). PMN which are the main cellular immune components that increase during 

infection (Azzara & Dimick 1985) contain several enzymes including serine proteases, 

cathepsin G and elastase (Kirschke & Barrett 1987; Travis 1988; Owen & Campbell 1999). 

The lysosomes of somatic cells are also thought to contain cysteine proteases (cathepsin B, 

H, L and S) as well as acid proteases (cathepsin D) (Owen & Campbell 1999). 
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During mastitis, the increase of somatic cell counts is one of the important disease 

manifestations. With increasing cell counts, it was estimated that the peptide count in milk 

was also increased by a factor of 100 (0.03 to 2.71mg/ml) (Lindmark-Mansson et al. 

2006). It is also thought that in high SCC milk, proteolysis is caused more by proteases 

apart from plasmin (Larsen et al. 2004; Kelly et al. 2006).  In cheese production, higher 

SCC contribute to lower yield and poorer quality of cheese (Grandison & Ford 1986), 

increased moisture content of cheese and the activity of lysosomal enzymes in cheese 

(Marino et al. 2005) and less elastic with soft cheddar cheese due to degradation of αS1-CN 

(Creamer & Olson 1982). 

Wedholm et al. (2008) have studied the presence of peptides produced from proteolytic 

activities of different level of SCC in milk and demonstrated the responsible proteases 

based on their cleavage sites. Using RP-HPLC to separate the peptides and further 

characterized by MALDI-TOF MS/MS, peptides that successfully identified were in the 

range of mass from 1023 to 2000 Da which originated from αS1-, αS2- or β-CN. It was 

concluded that plasmin, cathepsin B, D and leucocyte elastase were responsible for these 

proteolytic activities. 

Larsen et al. (2010) studied the proteolytic cascade in a model system which used the 

bacterial lipotechoic acid (LTA) or gram-positive S. aureus to mimic inflammation of the 

mammary gland. They have also employed RP-HPLC and MALDI-TOF MS/MS in this 

study and concluded that approximately 20 different peptides were identified originating 

from αS1- and β-CN. The responsible proteases were plasmin, cathepsin B and D, elastase 

and amino- and carboxypeptidases.  

In summary, by employing various methods of peptidomic analyses, the presence of 

peptides in mastitic bovine milk can be studied and characterized. These biological 

peptides may contribute to the discovery of important and novel mastitis biomarkers. 

Furthermore, identification of these peptides may be applied in the development of 

therapeutic interventions of bovine mastitis. 

1.7  Animal-applied Metabolomics 

Metabolomics is one of the new technologies that has gained interest and can be 

considered as important as other “-omics” studies such as genomics, transcriptomics and 

proteomics.  The metabolome is a set of low-molecular weight metabolites that are present 

in a biological fluid, cell or organisms under different physiological states (Alvarez-
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Sanchez et al. 2010). According to Kell (2006), metabolomic analysis is more promising 

for several reasons. Metabolites appear to be in smaller sizes, thus the sample processing 

can be reduced as compared to genes and proteins. It is also evident that preparation for 

metabolic profiling is less expensive than proteomics and more samples can be analysed to 

provide a good and reliable results and finally metabolomic technology is more generic 

than any other analysis. 

A problem that the metabolomic analysis faced is lack of comprehensive and standardized 

methods. In order to make sure a generalized detection and identification of metabolites, an 

integration of various analytical approaches is being made [e.g., gas chromatography 

combined with mass spectrometry (GC-MS), liquid chromatography combined with mass 

spectrometry (LC-MS) and nuclear magnetic resonance(NMR)]. 

The implementation of metabolomics in milk and investigations of the pathophysiology of 

animal diseases has not been the objective of much research. To date, there is no major 

study on the metabolomics in bovine mastitis but there are relevant publications. 

Metabolomic analysis has been used in milk in order to monitor a whole range of 

metabolic processes. One classical metabolomic measurement approach is by using 

chromatography (Martens et al. 2007) to analyse the fatty acid profile in bovine milk 

sample where it was used to quantify with variation in their chain lengths and unsaturation 

properties.  

Another study by Boudonck et al. (2009) revealed the use of liquid and gas 

chromatography that successfully identified over 223 metabolites between 10 different 

milk varieties.  Metabolic profiling was shown to possibly provide a distinct biochemical 

signature in different types of milk and a specific marker could be assigned which could 

describe specifically for particular milk. 

Apart from examining milk metabolomics, the method has been applied to a few 

investigations of animal models. Metabolomic analyses have been used to study the 

metabolic changes in canine liver disease (Whitfield et al. 2005). Plasma samples were 

analysed using LC-MS and metabolites that were identified to increase significantly with 

liver disease were the taurine conjugates of the bile acids, cholic and chenodeoxycholic 

acids whilst 16:0-, 18:2- and 18:0-lysophosphatidylcholine were decreased in diseased 

animals. This analysis was able to distinguish animals with congenital portovascular 

anomalies from those with acquired syndromes (Moore et al. 2007). 
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Bertram et al. (2004) have studied splanchnic metabolism in cattle using proton nuclear 

magnetic resonance (H NMR) from arterial, portal and hepatic plasma. It was concluded 

that the methyl groups of propionate, 3-β-hydroxybutyrate and lactate were increased in 

spectral intensities in the H NMR portal plasma samples. As for hepatic plasma samples, 

due to hepatic uptake of short fatty acids (n-butyrate, propionate, iso-butyrate, valerate and 

iso-valerate), there was reduced in spectral intensities of these regions. In addition, a 

hepatic excretion of β-hydroxybutyrate and glucose resulted in increased in spectral 

intensities of these regions. These spectral differences can be used to describe changes in 

metabolites which could be supported by biochemical analyses. 

In another study by Bertram et al. (2009), they have used the similar approach to 

investigate propylene glycol toxicosis in a Holstein cow. However, no significant 

metabolite differences could be detected in the biofluids of the cow which developed 

toxicosis. It could be due to the vitality of the metabolites or they might be present below 

the detection limit of NMR. Although there was a decreased in content of 

isopropanol,isobutyrate, β-hydroxybutyrate, acetate, acetone and acetoacetate shortly after 

feeding with propylene glycol, it might be due to reduce in fermentation activity in the 

rumen as well as reduce absorption in ruminal atony. It can be concluded that shallow 

breathing manifested by the affected animal was due to pulmonary vasoconstriction from 

the sulphur-containing compounds produced during fermentation of propylene glycol. 

However, no sulphur-containing compounds were observed in the NMR spectra. 

The influence of different lactation stages on physiological and metabolic variables has 

been studied by Klein et al. (2010) using high resolution nuclear magnetic resonance 

(NMR) and mass spectrometry (MS). They have identified 44 milk metabolites in milk 

samples from individual cows during early and late lactation with an emphasis on 

metabolites related to energy metabolism. There was a large difference in the levels of 

acetone and β-hydroxybutyrate (BHBA) during early lactation. These two compounds are 

important biomarkers for subclinical ketotic conditions. The large discrepancies values 

suggest that different individual animals cope very differently with the metabolic stress 

during this period and it is highly true for high-producing animals. 

In conclusion, the new technology of metabolomics has made it possible for researchers to 

study the effect of disease progression on the metabolome and could provide new, low 

molecular weight biomarkers to assess the health condition of animals. However, due to 

high diversity and variability of metabolome, there are no available analytical platforms 

that can define metabolites simultaneously (Dettmer et al. 2007). Thus, an efficient 



Chapter 1, 81 

 

sampling and separation of metabolites should be achieved so that low-abundance 

metabolites can be detected with the use of small sample volumes. Furthermore, data 

analysis and visualization tools, libraries, and databases for metabolomics need to be 

developed so that standardization in data analysis can be achieved. 

1.7.1 Metabolites found in bovine milk 

A number of studies have been performed to evaluate the presence of metabolites in bovine 

milk with earlier, non-metabolomic methods. Investigations which compared the presence 

of metabolites between mastitic milk samples and healthy milk samples (assuming low 

somatic cell counts and negative microbiological culturing) will be discussed further in 

Chapter 5, Section 5.1.2.  

Amongst many metabolites found in bovine milk, fatty acids are one of the important 

molecules in milk. About 96% of lipid in bovine milk are triacylglycerols and were 

comprised of a molecule of glycerol and 3 esterified fatty acids (Jensen 1995). Fatty acids 

on the other hand are composed of 3 different groups based on the number of double bonds 

present in their chemical structure. They are saturated fatty acids (SFA), monounsaturated 

fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). MUFA and PUFA form the 

unsaturated group of FA (UFA) (Soyeurt et al. 2011). Previously, the level of FA in milk 

was determined by GC after an extraction, followed by saponification and transmethylation 

but this method was expensive and time consuming. Thus, Soyeurt et al. (2011) have 

proposed to use mid-infrared spectrometry to quantify the individual content of FA in 

bovine milk. Ferrand et al. (2011) have also performed a mid-infrared spectrometry to 

estimate the main fatty acids in bovine milk by applying the genetic algorithm method to 

improve the quality of estimation. The variation observed in the milk fatty acid 

composition was determined by several factors such as diet; forage to concentrate ratio 

(Griinari et al. 1998) and intake of unsaturated fatty acids (Dhiman et al. 1999) as well as 

seasonal which consequently affected the dietary intake of the cows (Lock and 

Garnsworthy 2003). 

An earlier study on the metabolite levels and enzyme activities in bovine mammary gland 

has been studied by Waldschimdt and Rilling (1973) at different stages of lactation. 

Previously, studies have been focussed on the mammary gland of laboratory animals for 

example rats (Wang 1960; Baldwin & Cheng 1969). This study however determined the 

level of metabolites in the udders of heifers and cows at peak and near the end of lactation 

as well as during dry period. Pyruvate, lactate and AMP were not significantly different at 
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different stages of lactation but quantities of malate, ATP and ADP were higher in cows 

with high milk yields. Additionally, pyruvate levels showed variations with season whilst 

the NAD: NADH ratios in mammary cytoplasm showed no significant differences between 

different groups of cattle. ATP: AMP ratios in mammary gland tissues were highest in 

lactating animals. 

Hollis et al. (1981) studied the presence of vitamin D and its metabolites which include 25-

hydroxyvitamin D, 24,25-dihydroxyvitamin D, 25,26-dihydroxyvitamin D and 1,25-

dihydroxyvitamin D in both human and bovine milk using chromatographic purification 

method coupled with ligand-binding assay. It is known that these antirachitic sterols in 

milk were the same as those in plasma though the concentration in milk is much lower. 

They are secreted into the milk, bound to plasma and/or cytosol binding proteins (e.g. 

vitamin D binding protein). Eventually these sterols migrate from the aqueous portion to 

the fat portion of the milk. Furthermore the levels of anticharitic sterols appear to be linked 

with dietary intake of these sterols. 

With the use of reverse-phase high-performance liquid chromatography (RP-HPLC) 

Tiemeyer et al. (1984) determined all pyrimidine and purine compounds in milk to relate 

the nucleic acid metabolites to different rates of protein biosynthesis. Biosynthesis of 

proteins in the mammary gland is often accompanied by nucleic acids biosynthesis and 

degradation and consequently a turnover of pyrimidine and purine compounds. In this 

study, it was established that bovine milk contains nucleosides (uridine, cytidine, 

pseudouridine) and free bases (hypoxanthine) as well as ortic and uric acids. There are 

mainly two sources of metabolites in the milk; 1) derived from mammary cell and 

leukocytes or 2) possibilities of 5‟-nucelotidase activity on the cell surface as described for 

blood cells. There are also two groups of metabolites based on the influence of milk 

production; 1) metabolites which are not affected by milk yield (hypoxanthine,uridine, 

cytidine and pseudoridine) and 2) decrease in amounts with increase in the rate of milk 

production (orotic acid, uric acid and allantoin). The close correlation between the milk 

yield and protein secretion showed that high milk production were also accompanied by 

increase rates of nucleic acid turnover which eventually lead to accumulation of nucleic 

acid metabolites in both mammary cells and in milk. This study showed rate-limiting steps 

in the catabolic pathways of pyrimidines and purines with its relationship with protein 

biosynthesis. 
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1.8 Aims of study 

In the past few decades, it has been shown that various studies were employed for protein 

analysis in bovine milk as well as in bovine mastitis. Although clinical mastitis cases have 

been widely studied, it is important to take into account the subclinical cases of mastitis for 

the discovery of important protein biomarkers of mastitis. With the development of new 

and advanced non-gel approaches (peptidomics and metabolomics), a number of lower 

molecular weight molecules such as peptides and metabolites can be discovered which are 

significant in detecting the presence of bovine mastitis. Thus, the overall objective of this 

study is to apply various proteomic and other non-gel methodologies (peptidomics and 

metabolomics) to discover significant disease biomarkers in bovine mastitis. 
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 Chapter II: Acute Phase Proteins in Bovine 

Mastitis 

2.1 Introduction 

2.1.1 Bovine Acute Phase Proteins and Acute Phase 

Reactions  
As described in Chapter 1, Section 1.4, acute phase proteins (APP) are a group of blood 

proteins that are synthesized and change in concentration following various stimuli such as 

infection, inflammation, surgical trauma, stress, neoplastic growth or immunological 

disorders (Gordon & Koy 1985; Gruys et al. 1999, Murata et al. 2004) which initiate the 

acute phase reaction (APR) which is also part of non-specific innate immune responses 

that involves restoration of homeostasis and inhibits the growth of pathogens (Murata et al. 

2004; Eckersall & Conner 1988).  

Following internal or external challenges, the body reacts by the release of pro-

inflammatory cytokines as well as the activation of vascular system and inflammatory cells 

at the site of microorganism invasion (Gruys et al. 2005). The systemic reaction activated 

by cytokines caused an induction of hepatic metabolism which leads to the released of APP 

(Gruys et al.1994). Of the pro-inflammatory cytokines, interleukin-6 (IL-6), interleukin-8 

(IL-8), tumour necrosis factor α (TNFα) and interleukin-1β (IL-1β) are known to mediate 

the synthesis of APP (Nakagawa-Tosa et al. 1995; Alsemgeest et al. 1996; Yoshioka et al. 

2002). Some of the APPs are increased during the APR while others, such as albumin, 

transthyretin (TTR, formerly called prealbumin), retinol binding protein (RBP), cortisol 

binding globulin, transferrin and albumin, which represent the negative APPs, are 

decreased (Eckersall & Conner 1988; Gruys et al. 2005). The positive APPs, which are 

mainly glycoproteins synthesized by hepatocytes, include haptoglobin, C-reactive protein 

(CRP), SAA, ceruloplasmin, fibrinogen and α 1-acid glycoprotein (α1-AGP) (Murata et al. 

2004; Gruys et al. 2005).  

 

Overall, the released of APP during inflammatory condition helps to bind and remove 

harmful substances following tissue damage, to protect host from further damage and lastly 

to eliminate pathogenic organisms (Baumann & Gauldie 1994). 
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2.1.2 Bovine Haptoglobin 
Haptoglobin (Hp) is a major APP in bovine which strongly binds to haemoglobin, has anti-

inflammatory properties and binds to CD11b/CD18 receptor of effector cells (El Ghmati et 

al. 1996). It also reduces the oxidative damage associated with haemolysis (Yang et al. 

2003). Upon binding with haemoglobin (Hb), this stable complex of Hp-Hb is scavenged 

by phagocytes after recognition via CD 163, the specific surface receptor on macrophages 

(Schaer et al. 2002).  

 

Bovine plasma Hp was recognized by Liang (1957) and Neuhaus and Sogoian (1961). 

However, negligible levels of Hp are seen in healthy cows with physiological levels in the 

plasma being less than 0.1mg/ml (Ritcher 1974). Upon immune stimulation, its circulating 

level can increases up to 100-fold (Conner et al. 1988; Conner et al. 1989).  

 

Other than binding to haemoglobin, Hp also has an inhibitory effect on granulocyte 

chemotaxis, phagocytosis and bactericidal activity (Rossbacher et al. 1999). According to 

Xie et al. (2000), Hp is able to prevent spontaneous maturation of epidermal Langerhans 

cells or suppress T-cell proliferation (Baseler and Burrell 1983). 

 

Hp is often associated with inflammatory conditions in cows. Increased Hp levels were 

seen in cattle with mastitis (Spooner & Miller 1971; Conner et al. 1986), liver abscesses 

and other inflammatory diseases including pyometra, reticulitis, traumatic pericarditis 

(Panndorf et al. 1976; Makimura & Suzuki, 1982). Moreover, detection of Hp as a highly 

polymeric complex with Hb was found in cattle with acute inflammation (Morimatsu et al. 

1991). APP was not stimulated by viral diseases for example in inflammation by rinderpest 

virus (Spooner & Miller 1971) or in bovine leukosis (Panndorf et al. 1976). However, 

Eckersall et al. (1988) found smaller Hp response in some viral infections compared with 

bacterial infections. Just like any other APP, Hp concentration can be used to determine the 

severity status of the disease and the extent of tissue damage in affected cows (Murata et 

al. 2004). Thus, Hp has the potential on being a significantly useful parameter to measure 

the occurrence and severity of inflammatory responses. 

 

Apart from infection, the level of Hp is raised in cows with fatty liver syndrome 

(Yamamoto et al. 2000; Katoh 2002), by starvation, from dexamethasone treatment 

(Yoshino et al. 1993), at parturition (Uchida et al. 1993), and in stressed calves associated 
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with travelling (Murata & Miyamoto 1993). However, Skinner et al. (1991) found that in 

cows with normal births, there was no significant increase in Hp indicating that Hp 

elevation at parturition is due to infection rather than trauma.  

2.1.3 Haptoglobin in bovine mastitis 
Bovine Hp has been demonstrated to be a selective indicator for the acute phase responses 

in animals. Skinner et al. (1991) demonstrated that Hp can be used to diagnose early 

bacterial infection, particularly mastitis. The Hp test is also known to be accurate, can be 

performed quickly and has similar sensitivity as other major bovine APP; the SAA 

(Boosman et al 1989).  Skinner et al. (1991) concluded that the concentration of Hp 

between 0.2g/litre-0.4g/litre and above was an indication of infection. 

 

Many studies have demonstrated that bovine Hp is one of the important APPs that could be 

used to diagnose bovine mastitis. It also has been proven that serum Hp levels raised with 

both experimental and naturally occurring diseases (Conners et al. 1986; Salonen et al. 

1996; Hirvonen et al. 1996; Skinners et al. 1991; Hirvonen and Pyorala 1998; Eckersall et 

al. 2001; Ohtsuka et al. 2001).  

 

Previously, serum bovine Hp was used to investigate its potential in diagnosing bovine 

mastitis. This is due to the fact that Hp is liver-derived protein (Koj 1974), synthesized by 

the hepatocytes in the event of acute phase reaction. As described previously, during the 

activation of acute phase reactions, the concentration of Hp can increase up to 100-fold 

from its normal level. Furthermore, its level in the normal serum is negligible and thus, the 

measurement of bovine Hp in serum has been used to analyse the effect of acute phase 

reaction during inflammatory processes. The increase of bovine serum Hp concentrations 

during mastitis is supported by various studies (Conner et al. 1986; Salonen et al. 1996; 

Horadagoda et al. 1999; Ohtsuka et al. 2001). 

 

However it is now known that Hp can be detected in milk during mastitis.  The first study 

that determined the presence of Hp in milk was performed by Eckersall et al. (2001). 

Measuring Hp level in milk to investigate the presence of intramammary inflammation was 

suggested to provide a more readily and accessible indication of infection. According to 

Nielsen et al. (2004), the use of APP in milk to assess the APR following inflammatory 

processes provides a more specific and sensitive diagnostic method than bacteriology and 

it is less influenced by the physiological stage of the cow than SCC or EC (Sheldrake et al. 

1983; Biggadike et al. 2002). According to Grӧnlund et al. (2003), although increase in 
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serum Hp occurred during mastitis, it was not specific as increases in serum APP can be 

due to other acute inflammatory conditions, but measuring Hp in milk provides specificity. 

 

It is first thought that an increased of Hp level in milk during bovine mastitis was due to 

transfer of these serum proteins synthesized largely by the hepatocytes into the mammary 

gland due to increased permeability of blood-milk barrier (Eckersall et al. 2001). This is 

based on the presence of other types of serum proteins such as serum albumin and protease 

inhibitor α-antitrypsin in the infected quarters as reported by Honkanen-Buzalski et al. 

(1981) and Honkanen-Buzalski & Sandholm (1981). Grӧnlund et al. (2003) also stated it 

was not clear whether APP found in the infected milk are locally produced or by an influx 

of these proteins from blood due to the change in the permeability of the blood-milk 

barrier. 

 

However, Nielsen et al. (2004) suggested that higher Hp concentrations in the milk from 

infected quarters could be due to the production of these proteins by the mammary tissues. 

They also suggested that increased serum Hp concentration in the cows with mastitis was 

due to the access of Hp synthesized by the mammary tissues to the blood serum. Hiss et al. 

(2004) confirmed that bovine mammary gland can be considered as another extrahepatical 

source of Hp based on the observed Hp mRNA in mammary gland tissues (the teat, the 

cisternal region, the glandular parenchyma). The authors also suggested that the migrated 

leukocytes might contribute or solely account for the detection of Hp mRNA. Thielen et al. 

(2005) further demonstrated that Hp mRNA was present in bovine peripheral blood 

leukocytes and milk somatic cells and confirmed that leukocytes are another cellular 

source of mammalian Hp mRNA expression.  

 

When comparing the increased level of Hp in milk to that of serum, it was found that the 

former occurred at 15h after experimentally induced mastitis by S. aureus while the earliest 

detection of increased serum Hp was at 24h postinfusion. Blood was therefore unlikely to 

be the source of immediate Hp elevation in milk (Eckersall et al. 2006). The probability of 

local production of Hp in the mammary gland was further supported by quantitative RT-

PCR. 

 

A study by Lai et al. (2009) proposed that Hp levels correlated well with SCC in bovine 

milk due to the fact that SCC >500 000 cells/ml indicated 10-fold increase in milk Hp 

concentrations. Thus, neutrophils which were the predominant cell type in a group with 
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>500 000 cells/ml, are the major source of Hp synthesis. As the conclusion, Lai et al. 

(2009) suggested four combined pathways for the presence of Hp in milk during mastitis 

which were: activation and migration of neutrophils by inflammatory cytokines into the 

infected mammary gland where they secrete cellular Hp; direct entrance of plasma Hp into 

mammary epithelial cells via a receptor-mediated process and secreted into alveolus; 

passive diffusion of plasma Hp into udder; endogenous synthesis and expression of Hp by 

mammary epithelial cells. 

 

Åkerstedt et al. (2007) found the presence of Hp was significantly more common at higher 

SCC in quarter and composite milk samples but not in bulk tank milk samples due to 

dilution that took place from quarter to bulk tank level.  

2.1.4 Quantification of bovine Hp 
The determination of bovine serum Hp was first demonstrated by Bremner (1964) but the 

concentrations were too low to be detected in healthy cattle but local inflammation induced 

by turpentine injection was able to increase the level of Hp in serum. Various types of 

assays have been described to determine Hp levels directly or indirectly. There were 

haemoglobin binding assay (Owen et al. 1960) modified by Jones & Mould (1984) using a 

microtitre plate format while Skinner et al. (1991) used an automated method based on an 

RA500 analyser. Immuno assay has also been described, for instance single radial 

immunodiffusion (Morimatsu et al. 1992). It is known that Hp binds with free Hb with 

high affinity. Measurement of the inherent Hb peroxidase activity which is protected from 

acid inactivation by formation of the Hb-Hp complex was used to determine Hp levels in 

plasma (McNair et al. 1995). Amongst many methods Hb binding assay is the most 

common method used to determine Hp level in cattle. 

 

Makimura & Suzuki (1982) determined the level of Hp by performing the modified 

method of Tarukoski 1966 based on the peroxidase activity of haptoglobin-haemoglobin 

(HpHb) complex. This modified method provided more reliable values even for 

haemolysed serum samples. Polyacrylamide gel disc electrophoresis (PAGE) employed in 

this study only provided a qualitative but simple and reliable method to determine Hp. 

 

However, due to bovine Hp being highly polymerised polymorphic protein (Eckersall & 

Conner 1990; Morimatsu et al. 1991), it can disturb both Hb-binding and immunochemical 

assays (Salonen et al. 1996) due to its large and heterogeneous molecular sizes. 
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Depolymerisation of bovine haptoglobin with 2-mercaptoethanol produced homogenous 

haptoglobin with a high cyanmethaemoglobin (HbCN)-binding capacity.  

 

Hp can also be analysed photometrically based on the principal that cyanomethaemoglobin 

(HbCN) when bound to Hp was protected from denaturation in an acidic medium (formate 

buffer, pH 3-7) as described by Elson (1974). Studies by Salonen et al. (1996), Hirvonen et 

al. (1996) and Hirvonen et al. (1997) used this photometric assay to analyse serum Hp and 

the absorption of the acidified Hp-HbCN complex was measured at 405nm (Harvey 1976) 

and 380nm for the sample blank. The haemoglobin binding capacity was calculated in 

order to determine Hp concentrations. 

 

High performance liquid chromatography (HPLC) can also be used to analyse serum Hp 

by binding of depolymerised Hp by excess HbCN and separating Hp-HbCN complex and 

free HbCN by gel filtration on HPLC (Salonen et al. 1996). This method proved not to be 

influenced by haemolysis in the sample, haemoglobin is converted to HbCN by Drabkin’s 

solution and the excess did not interfere with the assay thus making it more sensitive and 

reproducible than that of photometric assay in detecting bovine serum Hp.  

 

Due to the development of monoclonal antibodies specific for bovine Hp (Sheffield et al. 

1994; McNair et al. 1995; Godson et al. 1996), antibody-based methods promised the 

advantages of direct and specific measurement of Hp (McNair et al. 1997). Indeed, 

Sheffield et al. (1994) used monoclonal antibody against bovine Hp in ELISA to measure 

bovine Hp level in sera.  

 

Morimatsu et al. (1992) developed a single radial immunodiffusion method (SRID) to 

overcome problems of measuring bovine serum Hp using Hb-binding assay. Purified 

bovine Hp from acute phase bovine sera and specific antisera from rabbits were used in 

this method. Hp was treated with 20mM cysteine or glutathione (GSH) to partially reduce 

the Hp to smaller molecules or homogenous form.  

 

McNair et al. (1995) introduced a highly sensitive and specific competitive time resolved 

fluorimetric assay to determine bovine serum Hp. It was shown to enhance the level of 

detection using a solid phase competitive immunoassays in combination with lanthanide 

chelate labelling. This method used mouse monoclonal antibody (1D9) specific for bovine 

Hp which was labelled with lanthanide chelate. It has been shown that this method has a 
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superior sensitivity when compared with Hp binding assay since there was a direct 

measure of Hp by specific antibody while the Hp binding assay peroxidase activity may be 

affected by the presence of haemoglobin, active and inactive forms of Hp (Cerda & Oh 

1990) and other serum peroxidase inhibitors such as cysteine and glutathione. 

 

Young et al. (1995) further developed the immunoassay described by Sheffield (1994) 

using either three formats; (a) a direct binding format; (b) a direct Hb binding format and 

(c) a competitive inhibition Hp immunoassay. These three formats provide simple, rapid 

results but with different reproducibility. Furthermore, the reagents used in these 

immunoassays were inexpensive, non-hazardous and readily available. It was concluded 

that Format b gave a very good correlation with Hp levels determined by the standard 

peroxidase activity method with good precision and reproducibility as compared with other 

two formats. 

 

Immunoassay detected elevated Hp concentrations (62.5%) compared with binding assay 

(19.5%) although a close relationship (r=0.94) was found between the two methods 

(McNair et al. 1997).  

 

However the majority of methods available relate to its measurement in serum and cannot 

be used to measure Hp in milk due to lack of sensitivity of the test and interfering 

substances present in the milk which can overestimated its concentration in milk (Eckersall 

et al. 2001). Milk Hp may be quantified using agarose immunodiffusion plates as 

performed by Eckersall et al. (2001). 

 

Subsequently, several studies have employed the use of ELISA to measure milk Hp 

(Grӧnlund et al. 2003; Nielsen et al. 2004; Eckersall et al. 2006; Safi et al. 2009; Milica et 

al. 2010; Larsen et al. 2010; Haghkhah et al. 2010) but Hiss et al. (2004) claimed that the 

immunodiffusion assay and the sandwich ELISA were not sensitive enough to detect Hp 

level in milk from healthy cows. They eventually established an ELISA for bovine Hp that 

is highly sensitive to detect Hp levels in milk from healthy cows throughout lactation and 

physiologically increased Hp levels (e.g; colostrum) (Hiss et al. 2004). 

 

In contrast, ELISA measurement of bovine milk Hp was said to be unsuitable for routine 

large-scale analysis (Åkerstedt et al. 2006). They developed a biosensor method which 
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appeared to be rapid and sensitive based on the interaction between Hp and Hb using 

surface plasmon resonance (SPR) biosensor technology. 

2.1.5 Bovine Serum Amyloid A (SAA) 

The other major bovine APP is SAA which is an acute phase protein complexed to high 

density lipoprotein (HDL) as an apolipoprotein in serum (Benditt & Eriksen 1977; Skogen 

et al. 1979; Husebekk et al. 1988). In order to form a complex with HDL, it has to compete 

for the binding sites with other apoproteins (Husebekk et al. 1987). However, a study by 

Husebekk et al. (1988) found that no formation occurred of complexed amyloid A (AA) 

protein-HDL which suggested removal of SAA from the HDL complexes before 

degradation to amyloid A in amyloid deposits took place. Serum amyloid A (SAA) is 

thought to be a precursor protein for AA, a major constituent in bovine amyloid fibrils 

(Husebekk et al. 1985).  However, one of the most important features of SAA is that it can 

increase more than one hundred-fold in concentration during inflammatory reactions 

(Horadagoda et al. 1999). 

 

The molecular weight of SAA in its native form is estimated at 18 kDa (Pepys & Baltz 

1983). SAA is involved in the transport of cholesterol from dying cells to hepatocytes 

(Liang & Sipe 1995), has an inhibitory effect on fever (Shainkin-Kestenbaum et al. 1991), 

on the oxidative burst of neutrophilic granulocytes (Linke et al. 1991) and on in vitro 

immune response (Aldo-Benson & Benson 1982; Benson & Aldo-Benson 1979). It has a 

chemotaxic effect on monocyte, polymorphonuclear leukocytes and T cells (Badolato et al. 

1994; Xu et al. 1995), induction of calcium mobilization by monocytes (Badolato et al. 

1995) and inhibition of platelet activation (Zimlichman et al. 1990)  

 

SAA is synthesized predominantly in the liver with an induction of various pro-

inflammatory cytokines such as IL-1, IL-6 and TNF-α (Jensen & Whitehead 1998; Sipe 

2000). It is also known to be produced extra-hepatically; by macrophages, endothelial cells 

and smooth muscle cells (Dibartola & Benson1989), intestinal epithelium (Vreugdenhill et 

al. 1999) as well as mammary epithelial cells (McDonald et al. 2001). 

 

According to Nazifi et al. (2008), several isotypes of SAA are found in bovine; type 1 and 

2 which represent positive acute phase proteins in bovine, while Jacobsen et al. (2004) also 

successfully determined different types of SAA isoforms in plasma/serum of cows with 

mastitis. The acute phase response also caused hepatic expression of SAA1 and SAA2 

which are collectively known as the A-SAA proteins in a study by Jensen & Whitehead 
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(1998). Meanwhile, in a range of human tissues which include breast, pancreas and 

intestine, the mRNA encoding SAA1, SAA2 and SAA 4 proteins has been detected by in-

situ hybridization (Urieli-Shoval et al. 1998).  

 

Amongst many isoforms, SAA3 seems to be the predominant SAA isoform in most 

mammals which expressed the protein extra-hepatically (Ramadori et al. 1985; Meek and 

Benditt 1986; Benditt and Meek 1989). McDonald et al. (2001) discovered the mammary-

associated SAA3 (M-SAA3) isoform with a pI value of 9.6 was present in high levels in 

colostrum of equine, bovine and ovine. Although it is found in high concentrations in 

colostrum, M-SAA3 expression in the mammary gland is part of natural physiological 

process that is not only limited in disease-associated responses. Its presence provides 

beneficial effects for the newborn as well as for the maintenance of mammary gland. 

2.1.6 Serum Amyloid A in Bovine Mastitis 

SAA as discussed previously can be used as a marker of tissue injury in cows (Horadagoda 

et al. 1999) and thus is considered to be a potential diagnostic marker due to its low level 

in normal animals but with a significantly increased concentration during an acute phase 

response and a later decrease in concentration with the resolution of the disease (Gruys et 

al. 1994).  

 

SAA response during inflammation/infection is known to be longer in duration when there 

were co-infections with virus and bacteria rather than in pure viral infections (Ganheim et 

al. 2003). Its magnitude and duration also depended on the severity of the clinical signs 

(Ganheim et al. 2003; Heegaard et al. 2000). 

 

The reliability of SAA in comparing between acute and chronic inflammation has been 

studied by Horadagoda et al. (1999) where it was observed that SAA levels were 

significantly higher in cows with acute inflammation than in cows with chronic 

inflammation. It was proved that SAA was the most reliable indicator in differentiating 

cattle with acute and chronic inflammation and confirmed that the use of APP 

measurement was better than a haematological test, such as neutrophil count for the 

presence of infection. 

 

Many studies have been done in order to investigate the potential of SAA as one of the 

important disease markers in bovine mastitis. Eckersall et al. (2001) first measured the 

SAA in mastitic milk as well as serum of cows with mastitis. It has been shown that the 
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measurement of SAA in milk is able to discriminate between mild and moderate mastitic 

cows compared with SAA in serum. The ability of the SAA in providing sensitive results is 

due to the local synthesis of SAA in the mammary gland or milk which induces a greater 

response in moderate mastitis. The presence of different isoform of SAA in mammary 

gland was confirmed by McDonald et al. (2001) in which M-SAA3was identified in 

healthy bovine colostrum.  There is debate on the naming of the isoform in milk.  While it 

should be named M-SAA3 if it can be definitely identified as this isoform, most assays 

measure all isoforms and here it will be referred to as M-SAA3 depending on the 

publication being cited. 

 

As shown by Grӧnlund et al. (2003), SAA levels in serum elevated dramatically during 

acute mastitis but these results can be due to other acute inflammatory conditions (Conner 

et al. 1988; Heegaard et al. 2000).  Compared with the results from Horadagoda et al. 

(1999), Grӧnlund et al. (2003) found much lower levels in serum APPs during chronic 

phase of mastitis than serum APP levels during acute mastitis. Milk serum amyloid A3(M-

SAA3) however provided a good marker in chronic subclinical mastitis as it was 

significantly higher in infected quarters than in pre-infected and healthy udder quarters 

(Grӧnlund et al. 2003). 

 

To be useful as a mastitis indicator, SAA needs to accumulate in milk during episodes of 

intramammary infection (Nielsen et al. 2004). Its high level in milk was found to coincide 

with the onset of clinical signs of acute mastitis as well as increases in SCC in milk 

(Grӧnlund et al. 2003).  However, in some cases, APPs in milk started to be elevated in 

concentration in milk from clinical mastitic cows even before the SCC started to rise 

(Hogarth et al. 2002). This is in agreement with Pedersen et al. (2003) where the 

concentration of M-SAA3 increased prior to increase in SCC in cows induced with S. 

uberis. 

 

High levels of SAA in infected quarters can be attributed to its local production in 

mammary gland as well as from leakage of serum proteins across the blood-milk barrier 

due to increased permeability during mastitis (Nielsen et al. 2004). According to Petersen 

et al. (2003), it can be assumed that SAA is produced locally in the mammary gland due to 

the lack correlation between SAA in milk and serum (Eckersall et al. 2001), the expression 

of serum amyloid protein homologue in the mammary gland (Molenaar et al. 2002) and the 

discovery of milk specific form of bovine SAA by McDonald et al. (2001). 
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SAA levels were also found to be increased during endotoxin-induced mastitis in both 

serum and milk of the cows (Lehtolainen et al. 2004). However, serum SAA was not 

related to M-SAA3 as SAA seemed to peak earlier in milk than in serum. It was also 

thought in this study that some SAA that was present in serum may originate from milk 

due to changes in permeability of blood-milk barrier. However, Jacobsen et al. (2004) 

disagreed on this by saying that udder-specific SAA was unable to cross the blood-milk 

barrier and thus be present in the plasma.  Lehtolainen et al. (2004) also concluded that M-

SAA3 was less able to assess the severity of mastitis because of the slow rise of M-SAA3 

concentration during intramammary infection.  

 

In the study by Jacobsen et al. (2004) using E. coli-induced mastitis, they found several 

SAA isoforms in both plasma and milk of the cows. However, the presence of alkaline pI, 

tissue-specific SAA3 isoforms in the milk did not appear in any of plasma or serum 

samples examined confirming the synthesis of SAA in the mammary gland. Furthermore, 

M-SAA3 levels in milk started to rise earlier at 12-hour post inoculation than SAA levels 

in plasma (between 12-hour to 24-hour post inoculation). Thus, M-SAA3 became a 

suitable marker for early mastitis detection as well as an indicator of tissue damage 

severity. 

 

Larson et al. (2005) showed that bacterial LPS that caused a severe mammary gland 

infection were able to induce differential expression of M-SAA3 by bovine mammary 

epithelial cells. It was shown that inflammatory cytokines induced by LPS played an 

important role in the upregulation of M-SAA3 expression in the mammary gland and 

initiate a cascade of events during the acute phase response. The A-SAA proteins 

expressed hepatically also present in the mastitic milk as part of leakage of serum proteins 

into the mammary gland from increased permeability of the blood-milk barrier.  

 

SAA levels also known to be increased both in serum and milk with repeated challenges of 

E.coli inoculation in udder quarters. However, serum SAA levels (24-hour post challenge) 

increased later than the levels of M-SAA3 in milk (12-hour post inoculation) but peaked at 

the same time in two challenges. They further confirmed the use of APP as mastitis 

indicator and to assess the severity of inflammation (Soujala et al. 2008). 

  

S. aureus infection often leads to subclinical and chronic mammary gland inflammation 
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and further promotes the spread of disease to other cows (Weber et al. 2005). Lipotechoic 

acid (LTA) from gram-positive bacterial cell wall components mimicked a mastitic 

episode as induced by Gram-positive bacteria (S. aureus) without having the confounding 

factors of bacterial growth as well as epithelial cell invasion. LTA was shown to be able to 

stimulate the differential production of SAA by mammary ductal cells with M-SAA3 (pI 

9.6) being the predominant SAA isoform produced (Weber et al. 2005). 

 

Another experimental study of S. aureus induced mastitis by Eckersall et al. (2006) 

supported the finding that increases in M-SAA3 level in milk occurred earlier than 

increases of SAA in serum. The level of M-SAA3 was also greater in quarters that received 

2 infusions of bacteria compared with quarters that only received single infusion of 

bacteria. Immunocytochemistry results revelead that M-SAA3 is present in the secretory 

epithelium, gland cistern and at significantly lower levels in the teat canal and it was 

concluded that the origin of M-SAA3 in milk was within the secretory epithelial cells and 

cells lining the gland cistern. Less M-SAA3 detected in the teat canal was probably due to 

infusion of bacteria directly into the gland cistern by-passing the teat canal. 

 

Milica et al. (2010) further demonstrated that the magnitude of both local and systemic 

APR in S. aureus mastitis was higher if more than 1 udder quarter were affected. Higher 

magnitude of local tissue response was observed due to different strain of S. aureus 

(Dingwell et al. 2006), number of S. aureus (Eckersall et al. 2006) and additional 

exudation of very high plasma SAA that leads to increased in concentration of MAA in 

milk. 

 

When comparing the reliability of APP measurement in diagnosing bovine mastitis with 

other mastitis diagnostic methods, APP showed significant correlations with ATP as in a 

study by Grӧnlund et al. (2005), about 52% of quarters of negative and positive ATP 

agreed with the results on APP level in udder quarters (ATP-Hp-SAA- group and 

ATP+Hp+SAA+). However, discrepancy in results was observed between APP level and 

SCC in affected udder quarters possibly due to different mechanisms of entry into the 

udder. Leukocytes migrate actively into the mammary gland by means of adhesion 

molecules while APP is presumed to leak passively from blood into milk from altered 

membrane permeability or is produced locally by the mammary gland. 

 

O’Mahony et al. (2006) revealed that there was a good correlation between the 
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concentration of SAA in bovine milk and established cellular indices of mastitis 

particularly the CMT and SCC. CMT in full and SCC have a strong correlation as both 

represent the cell concentrations in milk. However, there were some indications that 

negative correlation happened between the level of milk SAA and SCC in a group of cows 

when the level of SAA was increased. Nevertheless, this study suggested that milk SAA as 

useful in detecting quarters with high SCC as serum SAA did not significantly influence 

the M-SAA3. 

 

Milk APP also showed high correlation with SCC as rise in milk APP concentrations was 

seen with increasing in SCC thresholds (Kovac et al. 2007). Thus, measurement of milk 

APP can be used in monitoring udder health as SCC was not suitable to be used alone as a 

marker to identify infected quarters (Zecconi & Piccini 2002). 

 

Åkerstedt et al. (2007) further confirmed the significant relationships between SAA and 

SCC at quarter, cow composite and bulk tank level of healthy milk samples. SAA was also 

detected more frequently than Hp regardless of the types of milk samples (quarter, cow 

composite and bulk tank) at higher SCC. 

 

The detectable level of M-SAA3 in milk can also be used to predict the protein quality of 

cow composite milk samples in which samples with detectable SAA level had lower casein 

number, lower lactose level and higher SCC. Casein number provided a good and specific 

milk quality parameter especially in cheese-making industry as total protein may include 

less valuable serum proteins that are known to increase in concentrations during mastitis. 

Reduced casein number could be contributed by proteolysis while reduced lactose content 

might be due to the regulation of lactose secretion by specific peptides released during 

casein hydrolysis by plasmin (Silanikove et al. 2000). 

 

Gerardi et al. (2009) revealed that by using milk a SAA ELISA kit to measure the level of 

SAA in milk, a significant correlation was found between SCC and M-SAA3 in lower SCC 

levels from quarter milk samples compared with the level of M-SAA3 in milk determined 

by serum SAA ELISA kit. Thus, M-SAA3 has been suggested as a physiological marker of 

subclinical mastitis as it provided statistically better response in distinguishing subclinical 

from clinical mastitis.  

2.1.7 Quantification of bovine SAA 

In early studies,  a variety of SAA assays have been employed but faced with certain 
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difficulties because most of them require some form of plasma or serum denaturation by 

heat, acid or alkali so that complete dissociation of SAA from the HDL 3 fraction of 

lipoprotein occurred (Marhaug et al. 1983; Sipe et al. 1989). This resulted in considerable 

variation in the reproducibility of the assays. 

 

In one example, Horadagoda et al. (1993) purified amyloid A from acute phase bovine 

serum and quantified the SAA concentration in serum by an indirect ELISA using rabbit 

anti-human SAA and horseradish peroxidase conjugated donkey anti-rabbit IgG. However, 

this type of assay was considered to be laborious, time consuming and depended on the 

commercial availability of antisera to human amyloid A with cross-reactivity to the bovine 

protein (Horadagoda et al. 1999). They suggested that by using immunoturbidimetric or 

latex agglutination immunoassay it was quicker and based on antiserum to bovine SAA. 

Latex agglutination nephelometric immunoassay has been used to measure human SAA on 

an automated analyser in less than 6 minutes (Yamada et al. 1993). 

 

McDonald et al. (2001) then developed a monoclonal antibody sandwich immunoassay for 

SAA that did not require sample denaturation and can be performed in 3 hours. It also has 

other advantages such as the hybridomas producing the monoclonal antibodies are self-

renewing, inexpensive to maintain and yield a highly consistent, easily purified product, 

the microtitre plates can be coated and stored so that the assay is available within 3 hours, 

it provides an accurate and reproducible results and lastly requires equipments and skills 

that normally available in a research or a clinical laboratory.  

 

Later, a commercialized SAA ELISA (Tridelta Development plc, Ireland) was produced 

based on the assay first developed by McDonald et al. (1991). With that, studies of SAA 

measurement whether in serum or milk have been done using commercialized SAA 

ELISA. 

 

In the subsequent chapters in this thesis, measurement of Hp and M-SAA3 in milk has 

been used to confirm the origin of milk samples from udder quarters with mastitis.  The 

immunoassay for bovine Hp used in previous studies (Eckersall et al. 2006) was no longer 

available and a novel ELISA was developed for this purpose.  While attempts were made 

to establish an ELISA for M-SAA3, this was not successful and a commercial assay for 

SAA was used in these investigations. 
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2.1.8 Aims of study 

The aims of this chapter were to develop sandwich bovine Hp assay before validating and 

optimizing this assay to test its reliability to measure Hp. Commercialized SAA assay 

using Tridelta™ kit was used to measure bovine milk SAA. This type of SAA assay was 

used due to several problems encountered in developing an in-house bovine milk SAA 

assay especially in getting a good and acceptable standard SAA curve. After validating and 

optimizing these assays, they were used to measure APP in milk for the next three chapters 

to confirm the disease status of the animals. 

2.2 Materials and Methods 
 

2.2.1 Reagents 

General chemicals and other materials were obtained from Sigma Chem. Co, Poole, UK 

and Bio-Rad Laboratories Inc. for PAGE unless otherwise stated. Double distilled water 

was used throughout. 

2.2.2 Milk samples 

Milk samples were obtained from Cochno Farm, West of Scotland and Vale Veterinary 

Laboratory, Dorset, UK. Samples from subclinical mastitic cases (n=10) were chosen 

based on their previous somatic cell count records, no obvious clinical signs as the time of 

sampling but produced positive California Mastitis Test (CMT) results. Samples from 

clinical mastitic cases (n=40) were chosen based on their clinical signs and further 

confirmed by bacteriological culture results which mainly identified major mastitis 

pathogens such as E. coli, S. aureus and Strep uberis. Samples from healthy animals 

(n=25) (SCC < 100000 cells/ml) were used in comparison with animals with mastitis 

cases. Samples were stored at -20°C until required. 

2.2.3 California Mastitis Test 

The CMT procedure was conducted as discussed in the previous chapter on Section 1.2.2. 

The CMT reagent dissolved or disrupted the outer cell wall and the nuclear cell wall of any 

leukocyte and DNA was released from the nuclei. A stringy mass was developed and the 

amount of gel formation increased with an increase number of leukocytes (Mellenberger 

2001). The result was interpreted as presented in Table 1.1 in Chapter 1.  

2.2.4 Development of Bovine Haptoglobin ELISA 
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2.2.4.1 Biotinylation of antibody 

The biotinylated rabbit anti-bovine Hp was prepared using a biotinylation kit according to 

the manufacturer’s instructions as described below. Bovine anti-haptoglobin was 

purchased from Life Diagnostic
 
Inc., USA. This antibody was stored at the concentration 

of 3.43mg/ml. Different biotinylation of antibody was made up at least for 4 times and the 

reason will be discussed in the discussion part (Section 2.4). 

2.2.4.1.1 Preparation of Elution buffer and Antibody Binding 

Solution 

Elution buffer was prepared by adding 50μl of 4M Imidazole stock solution to 950μl PBS. 

The Antibody Binding Solution (ABS) was prepared by adding 29μl of anti-bovine Hp to 

210μl of PBS. 

2.2.4.1.2 Antibody Binding 

The disc provided was put in the bottom of a 1.5ml microcentrifuge tube. The prepared 

ABS was added to the tube containing the disc. To hydrate the resin, the tube was 

incubated at room temperature for 30 seconds. The tube was inverted several times to 

suspend the resin and further 10 minutes incubation at room temperature with gentle 

rocking motion on a rotating platform was performed (no vortex). It must be noted that the 

resin must remain suspended during binding and the tube was manually inverted every 2-3 

minutes to keep the resin in suspension. The tube was centrifuged at 500 x g for 30 seconds 

to pellet the resin. The liquid was carefully removed with a pipette to discard. 1mL of PBS 

was added to the tube and the tube was inverted several times to wash the resin. The tube 

was centrifuged at 500 x g for 30 seconds to pellet the resin and the liquid was carefully 

removed with a pipette to discard. To complete washing, 1mL of PBS was added to the 

tube as before and step was repeated. 300μl of PBS was then added to the tube containing 

antibody and resin and pipetting the liquid gently up and down to resuspend the resin. A 

Handee Spin Column was placed in a new 1.5ml microcentrifuge tube. The entire volume 

of resin slurry was pipetted into the spin column. The column was centrifuged at 500 x g 

for 30 seconds and the flow-through was discarded before placing the column back into the 

tube. 

2.2.4.1.3 Antibody Biotinylation 

A bottom plug was applied to the separation column. A No-Weigh NHS-PEO4 Biotin 

Microtube was punctured with a pipette tip and the tube contents were dissolved by adding 

200μl of PBS with gentle pipetting. 188μl of PBS was added to 12μl of biotin reagent 
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directly to the separation column. PBS was added to the column first before adding the 

biotinylation reagent. The column was capped with a screw cap and gently mixed by 

flicking. The column was incubated for 1 hour at room temperature with the column being 

flicked occasionally during incubation to keep the resin from settling. The bottom cap of 

the column was removed and it was centrifuged at 500 x g for 30 seconds. The flow-

through was discarded and the column was placed back into the same tube. 400μl of PBS 

was added to the column and further centrifuged at 500 x g for 30 seconds. Again, the 

flow-through was discarded and the column was placed back into the same tube. The PBS 

was added as before and the step was repeated three times to wash the column. 

2.2.4.1.4 Antibody Elution 

The column was capped at the bottom and placed in a new 1.5ml microcentrifuge tube. 

200μl of Elution buffer was added to the column. The tube was incubated at room 

temperature for 10 minutes before centrifugation at 500 g for 30 seconds to elute antibody. 

After elution, some antibody will remain bound to the column. To increase yield of 

biotinylated antibody, 200μl of Elution buffer was added and incubated for 10 minutes at 

room temperature and elution repeated. The resin was discarded after used. The 

biotinylated antibody was stored at 4°C for up to one month. Biotinylated antibodies are 

generally stable when stored in Elution buffer (0.2M Imidazole in PBS) at 4°C. If 

biotinylated antibodies were not used within one month, they were stored in single-use 

aliquots at -20°C. 

2.2.4.2 Newly prepared biotinylated antibody  

To test for the availability of newly prepared biotinylated antibody, serial dilutions of 

standard bovine Hp (3.43mg/ml, Life Diagnostics Inc., USA) were prepared in 1:100, 

1:200, 1:400, 1:800 and 1:1600. Standard bovine Hp at a different dilution was blotted 

onto a nitrocellulose membrane. 10% of Marvel milk in TBS Tween buffer was used to 

block the membrane for 60 minutes. The membrane was rinsed with wash buffer and the 

newly prepared biotinylated antibody at 1:1000 was blotted onto the membrane and further 

incubated at 60 minutes. 1:1000 of streptavidin peroxidise (Tridelta Development Ltd., 

Ireland) was blotted after rinsing and incubated for another 60 minutes. The membrane was 

rinsed and substrate (Opti-4CN
TM

 Substrate Kit, USA) was added to develop bands. 
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2.2.4.3 Assay Procedure 

The assay conditions were optimised as described in section 2.2.4 so that the best 

performance from the assay is achieved. The following protocol described the finalised 

conditions. 

2.2.4.3.1 Coating  

The Life Diagnostic rabbit anti-bovine haptoglobin as described earlier was diluted to a 

final concentration of 1 µg/ml in 0.05M NaHCO3, pH 9.6. 100 µl was dispensed into each 

well of a Nunc-Maxisorp 96 MicroWell™ plate (Nunc International, Rochester, NY) and 

incubated at 4°C overnight. 

2.2.4.3.2 Washing 

Wells were washed using 0.02M Tris-HCl pH 7.4 with 0.05% Tween-20 by adding 250µl 

per well for 4 times. 

2.2.4.3.3 Blocking 

Unoccupied binding sites were blocked by adding 250µl of 10% (w/v) Marvel milk protein 

in wash buffer and incubated at 37ºC for 60 minutes. 

2.2.4.3.4 Washing 

Wells were washed again as above. 

2.2.4.3.5 Dilution and addition of Standard Bovine 

Haptoglobin and milk samples 

Standard bovine haptoglobin (0.845mg//ml, Life Diagnostics Inc., USA) was prepared at 

0.25µg/ml in washing buffer and double diluted until concentration reached 1.95ng/ml. 

Milk samples were also diluted at 1:10000 or 1:1000 in washing buffer. 100µl of each 

standard bovine haptoglobin and milk samples were added into duplicate wells and 

incubated at 37 °C for 60 minutes.  

2.2.4.3.6 Addition of biotinylated antibody 

After washing, diluted biotinylated rabbit anti-bovine haptoglobin at 1:1000 in washing 

buffer was added at 100µl per well and incubated at room temperature for 60 minutes. 

2.2.4.3.7 Addition of secondary antibody 

After washing, diluted Streptavidin-peroxidase at 1:1000 in washing buffer was added at 

100µl per well and further incubated at room temperature for 60 minutes. 
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2.2.4.3.8 Addition of substrate 

After washing, Tetra methyl benzidine (TMB) peroxidise substrate was prepared according 

to manufacturer instruction (KPL, Inc., USA). The substrate was added at 100µl per well 

and developed for 5-10 minutes. The peroxidase-enzyme reaction was stopped by adding 

100µl per well of 1M hydrochloric acid. 

2.2.4.3.9 Absorbance reading 

The absorbance was read at 450 nm using Fluostar OPTIMA platereader (BMG Labtech 

Ltd.) and the results analysed and calculated using the associated FLUOstar OPTIMA 

Software V1.32 R2 using a 4 parameter-fit standard curve plotted on a linear scale. 

2.2.5 Haptoglobin Assay Optimisation 

During assay development a number of parameters were altered to come to the optimised 

assay.  A number of these variations are given below. 

2.2.5.1 Antibody concentrations 

The concentration of primary antibody (anti-rabbit bovine Hp) was varied to achieve the 

highest optical density (OD) value for the maximum standard while producing a steep 

standard curve, with low OD for blanks. Other variables were kept constant with varying 

antibody concentrations of 1µg/ml, 5µg/ml and 25µg/ml.  Though the curve for 1μg/ml of 

antibody gave the lower curve (Fig 2-2) it was chosen for the optimised assay due to its 

lower background reading. 

2.2.5.2 Varying batch of biotinylated antibodies 

With each batch of antibody prepared, different dilutions of antibody were tested so that a 

straight standard curve with low OD values for blanks were achieved.  

2.2.5.3 Biotinylated antibody concentrations 

The concentration of biotinylated antibody (anti-rabbit bovine Hp) was varied to achieve 

aims as previously described. Other variables were kept constant with varying antibody 

concentrations of 1:250 and 1:1000. Figure 2-4 shows the Hp standard curve for the first 

batch of biotinylated anti-bHp at 1:250 and 1:1000, the latter was chosen for the optimised 

assay due to a lower background.  Figure 2-5 shows the comparison between batch 1 and 

batch 2 of the biotinylated antisera at 1:1000.  With batch 3 and batch 4 of the biotinylated 

antibody a dilution of 1:500 was optimal. 
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2.2.5.4 Optimisation of Standard and Sample Dilution 

The standard bovine Hp was diluted at different concentrations and serially diluted to 

achieve standard curves over different ranges, so that a steep standard curve over was 

produced.  Figure 2-6 shows a typical standard curve. Milk samples were diluted at 

different concentrations until their reading were on the linear section (0-1000ng/ml) of the 

standard curve.  It shows that samples of milk with elevated Hp gave parallel dilution 

curves with the standard curve giving an indication that the assay is measuring 

haptoglobin. 

2.2.6 Haptoglobin Assay Validation 

2.2.6.1 Precision 

For intra-assay precision, the coefficient of variance was determined as the mean of 

coefficient of variance (CV) for of duplicate results. Inter-assay precision was determined 

where CVs were calculated from the mean and standard variation of the same milk samples 

(control samples) over 10 times during the use of the assay.   

2.2.6.2 Accuracy 

Linearity of dilution of 3 milk samples with varying Hp concentrations was assessed for 

accuracy of the assay. 

2.2.6.3 Limit of detection 

The limit of detection was determined as the lowest Hp concentration which could be 

distinguished from a zero value, and was taken as the mean +3 standard deviations of 4 

replicates of blank samples. 

2.2.6.4 Specificity 

The specificity of the assay was based on the commercial anti-bovine Hp anti-serum 

assessed by Ouchterlony immunodiffusion in agarose gel. 

 

2.2.7 Serum Amyloid A Assay 

The concentration of SAA in milk samples were quantified using a commercial 

Multispecies SAA ELISA kit (PhaseTM Range, Tridelta Development Limited) according 

to the manufacturer’s instructions. 
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2.2.7.1 Reagents 

General chemicals and other materials were obtained from Sigma Chem. Co., (Poole UK) 

while Tridelta Development Ltd supplied the Phase™ Range SAA ELISA kit. 

2.2.7.2 Reagent Preparation 

All buffers should be prepared beforehand according to the instruction manual. These 

include 1X  diluents buffer, 1X wash buffer, 1X biotinylated anti-SAA conjugate and 1X 

Streptavidin-peroxidase. 

The SAA calibrator provided in the kit was reconstituted by adding distilled water to the 

vial and vortexed vigorously for 3-4 times for 3-5 seconds to dissolve the pellet 

completely. Top calibrator was prepared first before serially diluted. 

Quality controls from both with highest and lowest SAA values were diluted at 1:500 using 

1X diluent buffer. 

All milk samples were diluted in 1X diluents buffer before analysis. 

2.2.7.3 SAA Assay 

50 µl of diluted milk samples, diluted SAA calibrators and quality controls were added to 

duplicate wells. 50µl of 1X biotinylated antibody conjugate were also added to each well 

and incubated at 37ºC for 60 minutes. After incubation, the plate was washed 4 times using 

1X wash buffer before tapping the plate dry on absorbent paper. 100µl of 1X Streptavidin-

peroxidase was added to each of the wells and further incubated at room temperature in the 

dark for 30 minutes. The plate was washed as above. 100 µl of TMB Substrate were added 

before incubated at room temperature in the dark for 30 minutes. Finally, 50µl of Stop 

solution was added and the absorbance was read at 450nm. 

2.2.8 SAA Assay Validation 

The specificity and accuracy of the SAA ELISA was based on the data supplied with the 

commercial ELISA (Tridelta Development Ltd., Ireland). 

2.2.8.1 SAA Assay Precision 

For intra assay precision, the CV was calculated from the mean CV of duplicate samples 

(n=42).  Inter-assay precision was determined where CVs were calculated from the mean 

and standard variation of the same milk samples (control samples) over 10 times during the 

use of the assay 
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2.2.8.2 Limit of Dectection 

The limit of detection was determined as the lowest Hp concentration which could be 

distinguished from a zero value, and was taken as the mean +3 standard deviations of 15 

replicates of blank samples. 

2.2.9 Clinical Validation 

Milk samples were collected from two different locations; the Cochno Farm, University of 

Glasgow, Clydebank, UK and Vale Veterinary Group   Devon, UK. Milk samples acquired 

were grouped into healthy which comprised of 25 milk samples (Cochno Farm), 

subclinical mastitis group which comprised of 10 milk samples (Cochno farm) and clinical 

mastitis group which were comprised of 40 milk samples (Vale Veterinary Group). Both 

healthy and subclinical mastitic milk samples were chosen based on their monthly SCC 

recording data whilst cows with clinical mastitis were chosen based on the general clinical 

signs of mastitis and further confirmed by bacteriological culture.  

2.2.10 Data Analysis 

Statistical analysis was carried out using Predictive Analytics Software (PASW) Statistics 

(SPSS) version 18 (IBM Corporation, NY, US). 

 

2.3 Results 

2.3.1 California Mastitis Test 

All subclinical mastitic milk samples (n=10) were subjected to CMT and all results 

revealed positive CMT reaction (2+ or 3+). 

2.3.2 Immuno dot blot of newly prepared biotinylated 

antibody  

The newly prepared biotinylated antibody was tested for cross reaction as shown in Figure 

2-1. The immuno dots developed with the greatest intensity at lowest dilution (1:100) of 

standard bovine Hp and decreased as the dilution of Hp increased. 

2.3.3 Haptoglobin Assay Optimisation 

2.3.3.1 Coating Antibody concentrations 
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During optimisation, varying concentrations of coating antibodies were assessed as shown 

in Figure 2-2. A final concentration of 1µg/ml of coating antibody was chosen due to its 

reasonably steep curve and covered a wide range of OD values whilst giving lower blank 

readings than other different dilutions. 

2.3.3.2 Biotinylated antibody concentrations 

The biotinylated antibody was optimised as the previous step with different dilutions of 

1:250 and 1:1000 using two different types of antibodies as shown in Figure 2-3. The final 

concentration of 1:1000 of biotinylated antibody was chosen as it resulted in a steep curve, 

provided a good range of OD values with lower blank readings than other different 

dilutions. 

2.3.3.3 Varying batch of biotinylated antibodies 

For the Batch 1 of prepared biotinylated antibodies, several dilutions were tested (1:1000 

and 1:250). The chosen concentration was 1:1000 of as previously mentioned. An example 

of standard curve is shown in Figure 2-4. 

For the Batch 2 of prepared biotinylated antibody using anti-rabbit bovine Hp, the 1:1000 

dilution still give the best standard curve as shown in Figure 2-4. 

But for the Batch 3 and 4 of prepared biotinylated antibody using anti-rabbit bovine Hp, 

the 1:1000 dilution did not produce a very reasonable standard curve thus a range of 

different dilutions were tested (1:250, 1:500 and 1:1000). However, a good standard curve 

was not achieved. 
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Figure 2-1:  Immuno dot blot of biotinylated anti-bovine Hp reacting with bovine Hp 

at dilutions of 1:100, 1:200, 1:400, 1:800 and 1:1600. 
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Figure 2-2: Optimisation of coating antibodies concentrations using different 

concentrations for the developed ELISA. The effect of anti-rabbit bovine Hp 

concentrations at 1µg/ml, 5µg/ml and 25µg/ml on bovine Hp ELISA. The 1µg/ml 

concentration gave lower blanks and a steeper curve than others. 
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Figure 2-3: Optimisation of biotinylated antibody concentrations for the 

developed ELISA. The effect of the biotinylated antibodies at 1250 and 1:1000 on 

bovine Hp ELISA. The biotinylated antibody at 1:1000 provided lower blanks and a 

steeper curve than others. 
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Figure 2-4: Standard curve obtained from the optimised first and second batch of 

biotinylated antibodies (3.43mg/ml) diluted at 1:1000. 
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2.3.3.4 Optimisation of standard and sample 

dilution 

A working standard curve is needed as part of assay optimisation. This was achieved by 

diluting the standard bovine Hp (0.845mg/ml) in assay buffer to 0.25µg/ml and serially 

diluting the standards to achieve concentrations between 1.95-250ng/ml. An example 

of working standard curve is given on Figure 2-5. Milk samples were diluted 

accordingly based on their Hp content until the readings were on the linear portion of 

the standard curve. 

2.3.4 Haptoglobin Assay Validation 

2.3.4.1 Precision 

The intra assay CV for the bovine Hp assay was 2.5% which was calculated as the 

mean CV of duplicate samples (n=36). Table 2-1 showed the values, means and the 

calculated CVs for the Hp ELISA assays which were 29.9% and 47.1% for mean milk 

Hp of 21 and 3.3μg/ml respectively. 

 

2.3.4.2 Accuracy 

Serial dilution of three milk samples as shown in Figure 2-6 was used to assess the 

assay accuracy. The three samples show linearity then plateau out at low dilution and 

are parallel to the standard curve. Diluted sample concentrations were taken from the 

linear portion of the curve as it is the most precise and accurate area of the curve. 

2.3.4.3 Limit of detection 

The minimum detection limit significantly different from the blank samples was taken 

as the Hp concentration at 3 standard deviations (SD) from the mean of blank sample 

(n=4). This resulted in a limit of detection of Hp in milk of 0.37ng/ml. 
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Figure 2-5: Standard curve obtained from optimised standard bovine Hp dilution. 

Standard bovineHp was diluted from 0.845mg/ml to 0.25µg/ml, then by 1:2 dilution. 
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Table 2-1: Inter-assay precision results obtained for ELISA with milk samples. 

The CV for Hp concentration of 21.2μg/ml was 29.9% and the CV for Hp 

concentration of 3.31μg/ml was 47.1%. 

Sample ID Hp Conc. (μg/ml) Plate  Sample ID Hp Conc. (μg/ml) Plate 

92 15.4 1  41 6.5 1 

92 25.2 2  41 5.5 2 

92 15.2 3  41 3.3 3 

92 19.4 4  41 3.9 4 

92 11.8 5  41 2.5 5 

92 21.3 6  41 2 6 

92 32 7  41 2 7 

92 29.3 8  41 2.9 8 

92 20.1 9  41 2.3 9 

      10 

       

Mean 21.16   Mean 3.31  

SD 6.33   SD 1.56  

% CV 29.9   % CV 47.1  
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Figure 2-6: Linearity of 3 bovine milk samples after serial dilution. Example of 

standard curve included for comparison. 
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2.3.4.4 Specificity 

The specificity of the assay was based on the commercial anti-bovine Hp anti-serum 

and was assessed by Ouchterlony immunodiffusion in agarose gel (Figure 2-7). 

 

2.3.5 SAA Assay Validation 

The specificity and accuracy of the SAA ELISA was based on the data supplied with 

the commercial ELISA (Tridelta Development Ltd., Ireland). In use the precision and 

limit of detection of the SAA ELISA for assessment of the protein in milk were as 

follows. 

2.3.5.1 Precision 

The intra assay CV for the SAA assay was 6.8% calculated from the mean CV of 

duplicate samples (n=42).  Results were from too few assays to calculate the inter assay 

just for this investigation but when included in a series of ELISAs run in the laboratory 

(n=35) the CVs were 46% at a concentration of 7.2 + 3.3 ng/ml and 30% at a 

concentration of 40.6 + 12.1 ng/ml. These values are for post dilution of samples and 

are equivalent to 1.44μg/ml and 8.12μg/ml in the undiluted milk samples respectively. 

While the CVs were high, they were deemed to be satisfactory in view of the large 

increased being measured between healthy and diseased samples. 

 

2.3.5.2 Limit of detection 

The limit of detection of the SAA was 4ng/ml being the value determined as 3 SD from 

the mean of replicate blank samples (n=15). 

 

2.3.6 Clinical Validation 

The descriptive statistics of all variables in each group are presented in Table 2-2 while 

the distribution of SAA, Hp concentrations and SCC measurement in all samples are 

presented in Figure 2-8, 2-9 and 2-10. For healthy group, the range of SAA 

concentration was between 0.03-2.96μg/ml with a median of 0.36μg/ml, mean of 

0.54μg/ml and standard deviation of 0.61μg/ml. The range of Hp concentration fell 
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between 0.07-31.95μg/ml with the average of 9.17μg/ml with a median of 3.52μg/ml 

and standard deviation of 9.88μg/ml. The range of SCC measurement was between 12 

x 10
3
 to 81 x 10

3 
cells./ml with a median of 43 x 10

3
 cells/ml, mean of 43 x 10

3
 cells/ml 

and standard deviation of 19 x 10
3 

cells/ml on at least one SCC recording one month 

before the sampling took place. 

For subclinical mastitic group, the range of SAA concentration was between 0.18-

14.05μg/ml with a median of 1.44μg/ml, mean of 3.19μg/ml and standard deviation of 

4.27μg/ml. The range of Hp concentration fell between 0.31-14.91μg/ml with a median 

of 7.41μg/ml, average of 7.49μg/ml and standard deviation of 5.13μg/ml. The range of 

SCC measurement was between 67 x 10
3
 to 1224 x 10

3
 cells/ml with a median of 268 c 

10
3
 cells/ml with the average of 486 x 10

3
 cells/ml and standard deviation of 447 x 10

3
 

cells/ml on the SCC recording one month before the sampling took place. 

For clinical mastitic group, the range of SAA concentration was between 1.78-

1780.5μg/ml with a median of 63.55μg/ml, average of 422.14μg/ml and standard 

deviation of 649.08μg/ml. The range of Hp concentration fell between 1.95-

413.85μg/ml with a median of 86.52μg/ml, average of 99.36μg/ml and standard 

deviation of 90.16μg/ml. The cultured bacterial pathogens were amongst the common 

causal of bovine mastitis such as E. coli, S. aureus, S. uberis and S. dysgalactiae (Table 

2-3) 

As the data was not normally distributed, the Spearman’s correlation was performed to 

analyze the correlation between these variables (Table 2-4). The Spearman’s 

correlation between SAA and Hp concentration in all groups of milk samples was 

0.653. The Spearman’s correlation between SAA and SCC in all groups of milk 

samples was 0.438 whilst the Spearman’s correlation between Hp and SCC in all 

groups of milk samples was 0.08. 

Mann-Whitney’s test was used to analyze for significant differences between diseased 

groups on SAA, Hp and SCC measurements (Table 2-5). Healthy and clinical mastitic 

groups showed significantly difference in the SAA concentration (p<0.05) with the z 

value of -6.737and healthy and subclinical mastitic groups also showed significant 

difference in SAA concentration (p<0.05) with the z value of -2.41. Clinical mastitic 

and subclinical mastitic groups had significant differences in SAA concentration 

(p<0.05) with the z value of -4.573. 
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Healthy and clinical mastitic groups showed significantly difference in the Hp 

concentration (p<0.05) with the z value of -5.437 whilst the Hp concentration between 

healthy and subclinical mastitic groups was not significantly different (p>0.05) with the 

z value of -0.087. Clinical mastitic and subclinical mastitic groups however had 

significant difference in Hp concentration (p<0.05) with the z value of -4.131. 

Finally, healthy and clinical mastitic groups showed significantly difference in the SCC 

measurements (p<0.05) with the z value of -4.439. 
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Figure 2-7: Ouchterlony immunodiffusion gel of anti-bovine Hp. The centred well 

was anti-bovine Hp, well 1 was purified bovine Hp, well 2 was low Hp bovine serum, 

well 3 was low Hp bovine serum, well 4 was high Hp bovine serum, well 5 was high 

Hp bovine serum and well 6 was high Hp bovine serum. A single line of 

immunoprecipitate was observed showing that the antiserum was specific for bovine 

Hp and that there were no non-specific reactions with other proteins in the serum 

samples. 
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Group 

N Minimum Maximum Mean 

 

Median 

Std. 

Deviation Variance 

Healthy SAA 25 .03 2.96 .5435 .3600 .60944 .371 

Hp 22 .07 31.95 9.1665 3.5150 9.88022 97.619 

SCC 25 12000 80500 42800.00 43000.00 19812.664 3.925E8 

Valid 

N 

22 
   

 
  

Subclinical SAA 10 .18 14.05 3.1870 1.4350 4.27359 18.264 

Hp 9 .31 14.91 7.4848 7.4120 5.13332 26.351 

SCC 10 67000 1224000 485900.00 286000.00 446707.573 1.995E11 

Valid 

N 

9 
   

 
  

Clinical SAA 40 1.78 1780.50 422.1374 63.5480 649.08256 421308.170 

Hp 40 1.95 413.85 99.3570 86.5200 90.16136 8129.070 

SCC 0       

Valid 

N 

0 
   

 
  

 

Table 2-2: The descriptive statistics for the Hp concentration (μg/ml), SAA 

concentration (μg/ml) and SCC of milk samples taken from healthy, subclinical 

mastitic and clinical mastitic cows. The values for mean, maximum and minimum 

values, median, standard deviation and variance of each Hp, SAA and SCC for each 

group of milk samples were presented. 
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Sample IDs Bacteriological culture 

475 E. coli 

76 E. coli 

1111 E. coli 

Star Strep. uberis 

1510 Strep. dysgalactiae 

814 E. coli 

438 S. aureus 

940 Coryne. bovis 

74 NA 

669 Strep. uberis 

544 Strep. uberis 

708 Strep. uberis 

200 Strep. uberis 

185 Strep. uberis 

14 S. aureus 

692 E. coli 

1061 NA 

697 E. coli 

519 E. coli 

31 Strep. uberis 

980 S. aureus 

453 E. coli 

496 E. coli 

1222 E. coli 

828 NA 

49 Strep. dysgalactiae 

4493 Strep .uberis 

669 Strep. uberis 

708 S. aureus 

474 E. coli 

346 S .aureus 

7 Strep. uberis 

230 Strep. uberis 

1512 Strep. dysgalactiae 

715 S. aureus 

452 E. coli 

932 E. coli 

770 Strep. uberis 

656 Strep. uberis 

339 Strep. uberis 

Table 2-3: The bacteria causing mastitis cultured from the clinical mastitic milk 

samples. NA stands for not available. 
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Figure 2-8: The box-plot showed the distribution of SAA levels in bovine milk 

samples between healthy, subclinical mastitis and clinical mastitis groups. The 

median of SAA concentration in healthy group was 0.36μg/ml whilst the maximum and 

minimum values were 2.96 and 0.03μg/ml respectively. The median of SAA 

concentration in subclinical mastitic group was 1.435μg/ml whilst the maximum and 

minimum values were 14.05 and 0.18μg/ml respectively. The median of SAA 

concentration in clinical mastitic group was 63.55μgml whilst the maximum and 

minimum values were 1781 and 1.78μg/ml respectively. 
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Figure 2-9: The box-plot showed the distribution of Hp levels in bovine milk 

samples between healthy, subclinical mastitis and clinical mastitis groups. The 

median of Hp concentration in healthy group was 3.52μg/ml whilst the maximum and 

minimum values were 31.95 and 0.07μg/ml respectively. The median of Hp 

concentration in subclinical mastitic group was 7.41μg/ml whilst the maximum and 

minimum values were 14.91 and 0.31μg/ml respectively. The median of Hp 

concentration in clinical mastitic group was 86.52μg/ml whilst the maximum and 

minimum values were 413.85 and 1.95μg/ml respectively. 
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Figure 2-10: The box-plot showed the distribution of SCC values in bovine milk 

samples between healthy and subclinical mastitis groups. The median of SCC 

measurement in healthy group was 43 x 10
3
cells/ml whilst the maximum and minimum 

values were 80.5 x 10
3
 and 12 x 10

3
 cells/ml respectively. The SCC measurement in 

subclinical mastitic group was 286 x 10
3
 cells/ml whilst the maximum and minimum 

values were 1224 x 10
3
 and 67 x 10

3
 cells/ml respectively 
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Correlations 

 SAA Hp 

Spearman's rho SAA Correlation 

Coefficient 

1.000 .653
**

 

Sig. (2-tailed) . .000 

N 75 71 

Hp Correlation 

Coefficient 

.653
**

 1.000 

Sig. (2-tailed) .000 . 

N 71 71 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

Correlations 

 SAA SCC 

Spearman's rho SAA Correlation 

Coefficient 

1.000 .438
**

 

Sig. (2-tailed) . .008 

N 75 35 

SCC Correlation 

Coefficient 

.438
**

 1.000 

Sig. (2-tailed) .008 . 

N 35 35 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

Correlations 

 SCC Hp 

Spearman's rho SCC Correlation 

Coefficient 

1.000 .080 

Sig. (2-tailed) . .670 

N 35 31 

Hp Correlation 

Coefficient 

.080 1.000 

Sig. (2-tailed) .670 . 

N 31 71 

 

Table 2-4: Spearman’s correlation between SAA concentration, Hp concentration 

and SCC measurements in milk samples. The Spearman’s correlation between SAA 

and Hp was 0.653 whilst the Spearman’s correlation between SAA and SCC was 0.438. 

The Spearman’s correlation between SCC and Hp was 0.08.  
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 Healthy vs. 

Clinical mastitis 

Healthy vs. 

Subclinical 

mastitis 

Clinical mastitis 

vs. Subclinical 

mastitis 

SAA Conc. 

(μg/ml) 

z= -6.737 

p=0.00 

z= -2.41 

p= 0.00 

z= -4.573 

p= 0.00 

Hp Conc. (μg/ml) z= -5.437 

p= 0.00 

z= -0.087 

p= 0.931 

z= -4.131 

p= 0.00 

SCC (x 10
-3

/cells) NA z= -4.439 

p= 0.00  

NA 

Table 2-5: Mann-Whitney’s Test was performed to test for differences in SAA 

concentration and Hp concentration as well as SCC measurements between 

healthy, subclinical mastitic and clinical mastitic group. 
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2.4 Discussion 

Hp and SAA have been studied in this chapter to evaluate their effectiveness in 

diagnosing bovine mastitis prior to use their use to confirm the status of samples used 

in the following chapters. After optimising and validating the developed assays for Hp 

and SAA, their concentrations in different groups of milk samples were then compared 

statistically. Correlation between SCC values and APP concentrations were also 

analysed statistically. 

For the development of bovine Hp ELISA, several stages were optimised to make sure 

the assays were reproducible. A final concentration of 1μg/ml of 3.43mg/ml rabbit anti-

bovine Hp was chosen whilst 1:1000 or 1:500 (depending on batch) of biotinylated 

antibody was used to achieve an optimised assay. Both gave a reasonably steep 

standard curve and covered a wide range of OD values with acceptable low 

background. Each time a new biotinylated antibody was prepared, a series of 

optimisation on the varying batch of biotinylated antibodies were done. Different batch 

of biotinylated antibodies at different dilutions (1:1000 or 1:500) were used due to the 

large number of milk samples assayed throughout this project. The amount of 

biotinylated antibody was often less than 0.5ml after its preparation. 

The Hp assay was validated by determining the intra-assay CVs of 36 duplicates milk 

samples and inter-assay CVs of the internal controls. Inter-assay CVs were within the 

range of 29.9-47.1% with the highest value occurring for a control with lowest level of 

Hp in milk. In general, CV values for biochemical tests should be lower than 10%, but 

in the case of immunoassays, the value of 20-30% are generally acceptable, especially 

if the concentrations of the analyte are low (FDA, 2001). In this study, even though the 

CV value was above 20%, the large changes in Hp concentration meant that the assay 

could be used to identify samples with high concentrations of this APP in milk samples. 

The PhaseTM Range SAA Assay developed by Tridelta Development Limited, was 

used to detect the M-SAA3 in the milk samples. It had acceptable precision with an 

intra assay CV of 6.8% in 42 duplicate samples and a limit of detection adequate to 

measure M-SAA3 in the healthy milk samples.   
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2.4.1 Clinical Validation: Assessment of APP level in 

healthy, subclinical and clinical mastitic milk samples 
The final stage of validation of the Hp assay and demonstration of the SAA assay was 

by clinical validation on assays of the APPs in different groups of milk samples. Some 

of these samples were used in the following chapters. Hp and SAA assays as described 

in previous section were performed to assess any differences and correlations between 

these APP levels in three different groups of milk samples. 

2.4.2 Hp level in three different groups of milk samples 

Based on the quantification of Hp levels in this study, Hp was detected in milk samples 

regardless of its disease status. Statistically, it was found that the Hp concentration in 

healthy milk samples (n=22) was significantly different (p<0.05) from clinical mastitic 

milk samples. This was in agreement with many publications (Eckersall et al. 2001; 

Gronlund et al. 2003) on the ability of Hp as a disease marker in bovine mastitis. Hp 

level also showed significantly higher in concentrations (p<0.05) in clinical mastitic 

milk samples in comparison with subclinical mastitic milk samples. Thus, Hp may be 

able to discriminate between clinical and subclinical mastitic animals as reported by 

others (Gronlund et al. 2003; Ohtsuka et al. 2001). However, Hp levels in the milk 

examined here produced no significant difference between healthy and subclinical 

mastitic milk samples (p>0.05). This is in an agreement with Gronlund et al. (2003) in 

which they only observed significantly higher level of SAA in infected quarters than 

pre-infection and healthy quarters but not Hp. The reason might be due to different 

types of cytokines produced which lead to variation in the secretion and synthesis of 

APP (Horadagoda et al 1999) in milk samples with different disease status. 

Furthermore, during subclinical mastitis, Hp production might not be as great as that 

produced during clinical mastitis. The other possible reason is might be due to the 

immunoassay which is not sensitive enough to detect a slight elevation of Hp 

concentrations in sublinical mastitic group. Other factors such as pathogen virulence 

and host response of the cows can play a role in the production of APP in infected 

quarters (Gronlund et al 2004). Nevertheless the Hp ELISA developed in the project 

was able to identify milk samples from cows with clinical mastitis and its use will be 

demonstrated in subsequent chapters. 
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2.4.3 SAA level in three different groups of milk samples 

With the commercial ELISA to measure SAA levels in this study, this APP was 

detected in all milk samples regardless of its disease status. This ELISA was sensitive 

enough to detect a low amount of SAA in healthy animals.    

Statistically, SAA levels were found to be significantly different (p<0.05) between 

healthy and clinical mastitic milk samples. The high concentration of SAA found in all 

clinically infected milk samples further confirmed the role of SAA as a biomarker in 

bovine mastitis.  SAA levels also showed significantly higher concentrations in clinical 

mastitic milk samples compared with subclinically infected milk samples (p<0.05). 

Furthermore, SAA can also be employed to discriminate between clinical and 

subclinical mastitis and milk SAA concentrations  can also be used to differentiate 

between healthy and subclinical mastitis as it showed statistically significant difference 

in milk SAA levels between those two groups (p<0.05). These results are in agreement 

with several studies which have shown that SAA (or M-SAA3) are elevated in milk 

during mastitis (Eckersall et al 2001; Grönlund et al 2003; Nielsen et al 2004) and in 

particular those that show that milk-SAA3 is able to differentiate healthy from 

subclinical mastitis samples (Grönlund et al 2003; Grönlund et al 2005).  Thus use of 

the SAA ELISA was validated to monitor the concentration of this APP in milk for the 

investigations in the following chapters. 

2.4.4 Correlation between SAA and Hp levels in milk 

samples 

As the APP and SCC had been measured in multiple samples it was of interest to 

determine the correlations between the analytes.   In general, SAA level showed a 

strong and positive correlation (r= 0.653) with the level of Hp in clinical mastitic 

group. This finding confirmed that SAA and Hp can be used as good mastitis indicators 

in which they both present in a very low amount in healthy milk samples but can 

increase significantly after induction of acute phase response. This finding also 

supported the fact that the measurement of APP during intramammary infection can be 

done by using milk samples rather than serum/plasma due to the ease of sampling and 

sample preparation. It also showed that the ELISA used to measure these major bovine 

APP is reliable and sensitive enough to detect its concentration in milk samples. 
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2.4.5 Correlation between SCC and APP levels in milk 

samples 
Milk samples of healthy and subclinically infected cows were chosen on the basis of 

SCC measurement. Thus, it is also important to assess the relationship observed 

between SCC values and APP measurements. SCC has been a common method for 

mastitis diagnosis and is still being widely used in most of commercial dairy farms as 

part of disease monitoring system.  

According to Hillerton (1999), the limit of SCC for a healthy quarter should be around 

100 000 cells/ml and the SCC for composite milk should not exceed 100 000 cells/ml 

(Laevens et al 1997). In this current study, the average of SCC in the healthy group is 

43 x 10
3 

cells/ml. Statistiscally, the SCC measured between healthy and subclinical 

mastitic milk samples were significantly different (p<0.05). It proved that SCC is still 

reliably trusted to diagnose subclinical mastitis as changes of milk composition 

microscopically are the only signs of subclinical mastitis (Radostits et al 1994).  The 

SCC was not measured in the clinical group as measurement can be misleading in 

clinical mastitis due to the interference of milk protein clots distorting the cell counting 

results. 

The correlation between SCC and APP in was done and showed a positive but not very 

strong relationship. The correlation between SCC and SAA (r=0.438) gave a medium 

relationship whilst the correlation between SCC and Hp (r=0.08) gave a very small 

relationship. The interpretation was based on Cohen (1988).  

Previous studies showed a strong and positive relationship between SCC and Hp 

(Thielen et al 2005; Lai et al 2009). They claimed that leukocytes of milk somatic cell 

act as one of the cellular source of mammary Hp mRNA expression and also that these 

circulating bovine leukocytes might be able to synthesize the Hp and contribute 

towards the measurement of Hp in milk (Thielen et al 2005). It was also supported by 

Lai et al (2009) that somatic cells were responsible for the increase of milk Hp as Hp 

levels measured using ELISA were positively correlated with the SCC and also Hp 

mRNA levels in cells of high SCC groups were significantly elevated than in cells from 

normal group. 

Although the relationship between Hp and SCC was very low, it should be noted that 

this correlation was calculated based on all milk samples regardless of the type of milk 

samples (control or infected). Furthermore, various cut-off values for SCC have been 
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suggested depending on the conventions used, countries, breed and type of milk 

samples (Mattila et al 1986; Holdaway et al 1996). 

As a summary, the ELISA developed for quantification of Hp in milk samples was a 

reliable and sensitive enough assay to investigate the Hp levels in milk samples of 

different groups being able to differentiate clinical mastitic samples from subclinical 

and healthy samples. Commercial SAA ELISA also proved to be able to analyse SAA 

concentration in all milk samples studied. The measurement of APP levels in 

diagnosing bovine mastitis appears to be a useful tool in monitoring udder health for its 

ability to discriminate the healthy milk samples from infected milk samples.  However, 

at present SCC should also be used in detecting the presence of subclinical mastitis in a 

herd of cows, although various factors should be evaluated (e.g; stages of lactation, 

milk production level, stress, breed) before any decision-making, especially on 

therapeutic measures. Furthermore, SCC and APP measurements should be used 

together as part of udder health inspection in a herd of dairy cows.  For the 

investigations in subsequent chapters, the ELISAs for M-SAA3 and milk Hp along with 

SCC and bacteriology were used to provide definitive characterisation of milk samples 

as being from healthy dairy cows or from udder quarters with subclinical or clinical 

mastitis 
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Chapter III: Proteomics in Bovine Mastitis 

3.1  Introduction 

Proteomics has come forward as a rapidly maturing essential tool in the omics age 

following the huge success of genomic studies. As mentioned previously, proteomics is a 

study that involved in separation and identification of a set of proteins existing in a cell, 

organ or organism (Wang et al. 2007).  Studying proteins has been a subject of interest for 

many researchers as any cell responses to stimuli or stress are manifested by the alteration 

of protein expression levels (Lippolis & Reinhardt 2010). Protein information is also 

valuable as protein acts as structural building blocks, conveys information, controlling 

many chemical reactions as well as being involved in antimicrobial defence mechanisms. 

Proteomics can also be defined as a large-scale study of protein expression, protein-protein 

interactions or post-translational modifications (Cravatt et al. 2007; Lippolis & Reinhardt 

2010). Unlike other methodologies, proteomics is able to analyze thousands of proteins in 

a single study and thus one can demonstrate how cells dynamically change upon 

stimulation or changes in the environment. In particular, proteomics stands out in its ability 

for a high resolution and simultaneous analysis of the composition of milk. (O’Donnell et 

al. 2004). 

Previous studies on the milk proteome have utilized many different approaches of 

proteomic analyses. Details on each study have been discussed earlier in chapter 1. By 

using various proteomic methods such as 2D gel electrophoresis and MALDI analyses 

(Anderson et al. 1982; Galvani et al. 2000,2001; Baeker et al. 2002), 2D and 

microsequencing (Murakami et al. 1998; Yamada et al. 2002) as well as LC-MS/MS 

(Palmer et al. 2006), a complete milk proteome which also included low abundance milk 

proteins has been achieved. In this section, the technical aspects of proteomic analyses will 

be discussed further. 

3.1.1 Sample Collection and Preparation 

The protein level in any biological fluid is influenced by many factors such as normal 

metabolism, circadian rhythms of protein production, degradation and environmental 

conditions (Hale et al. 2003). Upon sampling, protein modifications may also occur which 

include proteolysis, protein aggregation and chemical modifications. Thus, to minimize 

variation, sample collection and storage must be standardized. 
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However, most biological fluids are dominated by relatively few proteins for example in 

blood, albumin and the immunoglobulins (Igs) predominate (Anderson & Anderson 2002). 

Thus, removal of these proteins is advantageous to retrieve other lower abundance proteins 

and to reduce sample complexity. For example, the use of columns containing Cibacron 

blue (Hale et al. 2003) and anti-albumin antibodies (Steel et al. 2003) or albumin-specific 

peptides (Pingali et al. 1996) can be applied to remove albumin. 

Despite the sensitivity of the mass spectrometers used in proteomics study, several factors 

concerning the complexity of the sample must be analyzed. These include the number of 

protein in a proteome, the diversity of protein expression, the degree of protein solubility 

and the copy number of protein classes to assess the changes (Reinhardt & Lippolis 2008; 

Graham et al. 2005).  

Thus, various fractionation protocols were introduced to reduce the complexity of the 

mixtures for a more complete identification of proteins. This can be achieved via 

subcellular fractionation, enrichment strategies, chromatography or gel electrophoresis 

(Stasyk & Huber 2004). The subcellular fractionation provides important information on 

the nuclear membrane proteome; for example the isolation of MFGM from bovine milk. 

With enrichment methods, antibodies or metal ions can be used to isolate the protein of 

interest from the cell or pathogens. Size exclusion filtration may be applied to separate 

peptides subsequently sequenced by mass spectrometry (Hunt et al. 1992; Lippolis et al. 

2002). Chromatography and gel electrophoresis will be discussed next in this section. 

 

3.1.2 Protein separation 

Protein separation is the first main technology in proteomic study and two most popular 

methods are two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) (O’Farrell 

1975; Görg et al. 1998; Rabilloud 2002) and the gel-free procedure; liquid phase 

separation (Isaaq 2001; Isaaq et al. 2002). 

2D-PAGE has been utilized for many years and was first established in the mid 70’s 

(O’Farrell 1975; Klose 1975). It is able to resolve thousands of proteins and the procedure 

consists of two steps; separation of proteins based on their isoelectric points (pI) and 

finally separation based on their molecular weight (Mr). Basically, this method combines 

isoelectric focusing (IEF) and sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) (O’Donnell et al. 2004; Hiendleder et al. 2005). The IEF gels are available 
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in broad or narrow pH ranges to achieve different levels of resolution (Lippolis & 

Reinhardt 2008). 

Following gel electrophoresis, a spot pattern on a gel is generated and each spot represents 

a different protein or its modification form (Heindleder et al. 2005). These protein spots 

can be cut out and further analyzed by mass spectrometry (Lippolis & Reinhardt 2008). 

According to O’Donnell et al. (2004) the advantage of using 2D-PAGE includes higher 

resolution and ability to separate proteins of similar relative molecular mass (Mr) and pI. 

However, major drawbacks of this method limit its usage such as an inability to separate 

single polypeptide chains of masses greater than 150 kDa or less than 8 kDa, limited 

dynamic range and loading capacity of the immobilized pH gradient (IPG) strip while it is 

unable to resolve proteins with an extremely basic (pI >12) or acidic (pI < 3) in nature. 

To overcome the irreproducibility problem of 2DE, difference gel electrophoresis (DiGE) 

was developed to minimize the effects of gel-to-gel variation by labelling two samples 

with two different fluorescent dyes before running them on the same gel (Unlu et al. 1997). 

DiGE is extremely sensitive as it is able to detect over a >10 000-fold protein abundance 

range (Viswanathan et al. 2006; Lilley et al. 2002).  

In DiGE, equal amount of protein samples are differentially labelled using synthetic N-

hydroxysuccinimidyl (NHS) ester derivatives of the cyanine dyes Cy3 and Cy5 before 

being subjected to 2DE separation and finally scanned to produce two super-imposable 

images (Timms & Cramer 2008). In order to increase the accuracy of the results, standard 

can be included and labelled with a third fluorophore through internal standardization 

(Hiendleder et al. 2005). 

Other protein separation methods are based on liquid phase separation such as capillary 

electrophoresis (CE) and liquid chromatography (LC). They are known to have greater 

sensitivity, provide a wide dynamic range, are easily automated and can be faster than 2D-

PAGE (O’Donnell et al. 2004). A number of separation mechanisms can be applied such 

as size exclusion, reversed-phase (RP) and ion exchange so that strongly acidic/basic 

proteins can be analysed. Peptides are separated into fractions based on their 

hydrophobicity (RP-HPLC) or based on their charge state (strong cation exchange 

chromatography) (Lippolis & Reinhardt 2008). 

A rather new approach to provide better separation is multidimensional protein 

identification (Mud-PIT) where two or more LC techniques (e.g. ion exchange 

chromatography and RP HPLC) are used with on-line MS (Washburn et al. 2001). 



Chapter 3, 134 
 

 

3.1.3 Protein characterization 

Protein characterization is mainly accomplished by mass spectrometers. Basically, all 

current mass spectrometers can detect and identify peptides in the femtomole (10
-15

) to 

attomole (10
-18

) range (Moyer et al. 2003). After initial protein digestion with trypsin, 

peptides must be ionized upon entering the mass spectrometer. The two most frequently 

used ionization methods are electrospray ionization (ESI) (Fenn et al. 1989) and MALDI 

(Tanaka et al. 1988; Karas & Hillenkamp 1988).  

ESI allows direct connection between LC and MS due to the volatility of the HPLC 

solutions. MALDI requires mixing of the digested peptides with a UV-absorbing molecule 

to form a crystalline structure. A laser will strike this structure for sublimation of the 

matrix and ionization before releasing the associated peptides (Lippolis & Reinhardt 

2008). 

After ionization, the peptide mass is determined by mass analyser. Peptide mass is usually 

expressed as a ratio of mass divided by the charge of the peptide (m/z). Mass 

spectrometers are completed by detectors which can range from simpler quadrupole (Q), 

time-of-flight (TOF) to more complex Fourier transform ion-cyclotron resonance (FTICR) 

analysers (O’Donnell et al. 2004). 

Information gained from mass spectrometers includes mass and sequence of the proteins. 

MALDI-TOF is used primarily for detecting only protein masses while quadruopole-time 

of flight tandem mass spectrometry (Q-TOF MS/MS) can be used to provide sequence 

information (Roepstorff & Fohlman 1984). Post-source decay (PSD) is another technique 

used to sequence proteins (Spengler et al. 1992). 

The next step is protein identification by matching the masses of digested tryptic petides 

with known masses from a non-redundant protein database (Beavis & Fenyo 2000). This 

technique is simply achieved by peptide mass fingerprinting (PMF). Peptide fingerprinting 

is often associated with 2D-PAGE and protein identification is based on the measurement 

of multiple peptides from one particular protein (Lippolis & Reinhardt 2008). The second 

method to identify proteins is by using tandem mass spectrometers when PMF data are 

inconclusive (O’Donnell et al. 2004; Lippolis & Reinhardt 2008). 

Generally, proteomics experiments can be either direct identification or characterization of 

a certain known proteins of interest or indirect/shotgun approach. The ultimate goal of 
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shotgun approach is to identify all proteins present in a sample. It can be divided into 

survey or expression proteomics (Lippolis & Reinhardt 2010). In survey proteomics, it 

gives an overview of types of proteins and grouped them based on their biological process, 

cellular compartment or molecular function (Lippolis & Reinhardt 2010) while expression 

proteomics involved with relative quantification where two or more samples are compared 

with one served as a reference (Bantscheff et al. 2007; Lippolis & Reinhardt 2008; Ong & 

Mann 2005). 

3.1.4 Quantitative proteomics 

The next stage of proteomics is quantification for estimates of differential protein 

expression. DiGE is one of the techniques which represent a real advance in protein 

quantification by 2DE electrophoresis as described above. Fluorescence characteristics of 

the CyDyes are used to determine the relative abundance of proteins from two different 

samples (Wu et al. 2009).  

The other two commonly used quantitative techniques use molecular tags to label peptides 

via an interaction with a free thiol or amine group. The first molecular tags is called 

isotope-coded affinity tags (ICAT) that uses isotopic labelling of cysteine residues by light 

or heavy tag containing biotinylated reagents (Lippolis & Reinhardt 2008; Gygi et al. 

1999). One sample is labelled with the light tag and the other is labelled with the heavy 

tag. They are combined and enzymatically cleaved before further analyzed by LC-MS/MS. 

A newer tag approach called iTRAQ has been commercially available since 2004 and uses 

a set of 4 tags that possess the same molecular weight but different fragmentation points. It 

permits relative quantification of many samples (up to 8 samples) at one time (Choe et al. 

2007). 

Other less commonly used methods to obtain metabolic information on bacterial growth 

are stable isotope from amino acids in cell culture (SILAC) (Ong et al. 2002; Couté et al. 

2007) and surface-enhanced laser desorption ionization-time of flight (SELDI-TOF) to 

identify enzymes that change expression in response to the presence of substrates such as 

lactose, glucose and galactose (Gagnaire et al. 2009). 

3.1.5 Aims of study 

The aims of this study were to determine the changes of milk proteome during the presence 

of intramammary inflammation (subclinical and clinical bovine mastitis). For comparison, 

the milk proteome of normal milk samples as controls were also studied using 1DE, 2DE, 
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DiGE and MALDI-MS analyses. The discovery of new biomarkers especially in 

subclinical mastitis was also an important objective of this study. 

3.2   Materials and Methods 

3.2.1 Reagents 

General chemicals and other materials were obtained from Bio-Rad Laboratories Inc. 

unless otherwise stated. Double distilled water was used throughout. 

3.2.2 Milk samples 

Milk samples used in this study were of subclinical mastitic cases from Cochno Farm of 

School of Veterinary Medicine, University of Glasgow, UK (n=5) and clinical mastitis 

cases from Vale Veterinary Laboratory, Devon, UK (n=12). Bacteriological culture was 

performed for clinical mastitic milk samples in the Bacteriology Laboratory of Vale 

Veterinary Laboratory to determine the bacterial cause of bovine mastitis. Meanwhile, 

control milk samples (n=12) came from healthy cows from the Cochno Farm of School of 

Veterinary Medicine, University of Glasgow. The healthy milk samples were confirmed by 

somatic cell counts (<100 000 cells/ml) (Kromker et al. 2001) obtained from the Cochno 

Farm of School of Veterinary Medicine, University of Glasgow, UK. Prior to proteomic 

analyses, SAA and Hp assays (Chapter 2) were performed to determine the concentration 

of both acute phase proteins in each milk sample as confirmation of the health status. 

Samples were stored at -20°C prior to analysis. California Mastitis Test (CMT) was carried 

out on the subclinical mastitic milk samples at the Cochno Farm. 

3.2.3  California Mastitis Test 

The California Mastitis Test (CMT) was performed as described in the previous chapter on 

Section 2.2.3. 

3.2.4 Removal of high abundance milk proteins 

3.2.4.1 Rennet Coagulation 

Casein, the most abundant milk protein can be coagulated with the enzyme rennin found in 

rennet (an extract from the stomach of calves) to split a specific bond in the amino acid 

chain of the κ-casein macromolecule and form para-κ-casein and a glycol-macropeptide 

(Leonil & Molle 1991). Thus, the removal of casein from milk can be performed by rennet 

coagulation to allow the investigation of low abundance proteins. A total of 10μl of 15% 

(w/v) of calcium chloride was added into 1ml of milk sample in order to improve 

coagulation before adding the rennet. The sample was incubated at room temperature for 1 
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hour before pre-heated at 30ºC using a water bath for 20 minutes. An aliquot of 5 µl of 

7.5mg/ml rennet (Sigma-Aldrich, Dorset, UK) was added into 1ml milk sample and 

incubated at 30ºC for 30 minutes. Finally, the sample was centrifuged at 21 000 x g for 10 

minutes and supernatant/whey was kept frozen until further analysis. 

3.2.4.2 Acid Precipitation 

 Acid precipitation was used to remove major milk proteins such as caseins as another 

approach to investigate the properties of noncasein milk proteins (Murakami et al. 1998; 

Baeker et al. 2002, Yamada et al. 2004). A 0.5ml aliquot of milk sample was used and its 

pH was altered to pH4 using 1M acid hydrochloric (HCl). After pH adjustment, milk 

sample was centrifuged at 21 000 g for 10 minutes to remove precipitates. 

Supernatant/whey was kept frozen until further analysis. 

3.2.4.3 Ammonium sulphate (NH4SO4) Fractionation 

Ammonium sulphate fractionation was employed as another method to remove major milk 

proteins such as caseins. It was thought that this method was able to reduce any potential 

for acid induced protein hydrolysis (Hogarth et al. 2004). Saturated NH4SO4 was prepared 

by dissolving NH4SO4 in ice cold distilled water till no more dissolved. NH4SO4 (100%) 

was added into milk sample to make up 35% of NH4SO4. The sample was incubated for 1 

hour in an ice bath before being centrifuged at 21 000 g for 10 minutes. Supernatant/whey 

was kept frozen until further analysis. 

3.2.5 One-dimensional gel electrophoresis 

Milk samples used for 1D GE were 5 from individual subclinical mastitic and another 6 

from individual healthy cases obtained from Cochno Farm, Glasgow, UK.  

3.2.5.1 Reagent Preparation and Stock Solutions 

All stock solutions and buffers were prepared according to Mini-PROTEAN® 3 Cell 

Instruction Manual. 12% PAGE gels were also prepared according to the manual (see 

method in Appendix 1, Chapter 3). 

3.2.5.2 Sample Preparation 

Prior to 1DE analysis, the protein content was measured using a BioRad Bradford Assay 

(see Appendix 2, Chapter 3). Milk samples were diluted to give a sample at 2-3mg/ml and 

mixed with SDS Reducing Buffer (10% (w/v) SDS containing 0.5M Tris-HCl, pH 6.8, 

2.5ml glycerol and 0.05% (v/v) bromophenol blue; Bio-Rad Laboratories, Inc. USA) at a 

ratio of 1:1 and heated at 95°C for 4 minutes.  
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3.2.5.3 Running the gel electrophoresis 

After the assembly of the electrophoresis module, the sample was loaded into wells with a 

pipette using gel loading tips. Power was applied to the Mini-Protean® 3 cell and 

electrophoresis was run at 200 volts for 40 minutes. 

3.2.5.4 Gel staining and Image Acquisition 

After electrophoresis, the gels were stained using colloidal Coomassie blue G dye 

according to manufacturers’ instructions (Sigma-Aldrich, Dorset, UK) and de-stained  in 

10% (w/v) acetic acid in 25% (v/v) methanol overnight. Gel images were acquired using 

Umax Power Look III. 

3.2.5.5 In-gel trypsin digestion of Coomassie-stained proteins  

Chosen gel bands from 1D gel electrophoresis were excised and placed in 1.5ml Eppendorf 

tubes. These bands were then cut into several pieces using pipette tips. Gel pieces were 

washed for 45 minutes in 500µl of 100mM ammonium bicarbonate and the wash was 

discarded. Gel pieces were further washed in 50% acetonitrile/100mM ammonium 

bicarbonate for another 45 minutes. The wash was again discarded. For reduction, 150µl of 

100mM ammonium bicarbonate and 10µl of 45mM DTT were added and incubated at 

60ºC for 30 minutes. For alkylation, 10µl of 100mM iodoacetamide was added and 

incubated in the dark for 30 minutes. Solvent was discarded and gel pieces were washed in 

500µl 0f 50% (v/v) acetonitrile/100mM ammonium bicarbonate with shaking for 1 hour. 

The wash was discarded and 50µl of 100% (v/v) acetonitrile was added to shrink the gel 

pieces. After 10 minutes, solvent was removed and gel pieces were dried completely in a 

vacuum centrifuge for 30 minutes. The dried gel pieces were left at 4ºC for 15 minutes 

before adding 0.2µg/µl sequencing grade modified Porcine Trypsin (Promega #V111) in 

25mM ammonium bicarbonate to rehydrate each gel piece. Additional trypsin solution was 

added if trypsin was completely absorbed so that the gel band became fully rehydrated. 

Finally about 20µl of 25mM ammonium bicarbonate was added over the gel pieces which 

were incubated overnight to allow protein digestion at 37ºC. 30µl of 100% acetonitrile was 

then added to the gel pieces and incubated for 20 minutes. Each solution in each tube was 

transferred to separate wells in a 96-well plate and dried in the Speed Vac. About 20 μl of 

1% (v/v) formic acid was added into each Eppendorf tubes containing gel pieces and 

incubate for another 20 minutes. Each solution was transferred to the corresponding wells. 

These two steps were repeated for better recovery. About 40µl of acetonitrile was added 

and further incubated for 10 minutes before the solution was transferred to the 

corresponding wells. This step was also repeated for one time. The plate was checked at 

least after 90 minutes to make sure the sample had been dried up. 



Chapter 3, 139 
 

3.2.5.6 Sample Plating 

The MALDI plate should be cleaned and rinsed before use. A saturated solution of cyano-

4-hydroxy cinnamic acid (CHCA) in 50% (v/v) acetonitrile and 0.1% (v/v) trifluoroacetic 

acid (TFA) was prepared in 1.5ml Eppendorf tube and covered with aluminium foil. The 

tube was vortexed for 5 minutes before being centrifuged for 5 minutes. The saturated 

solution of CHCA was diluted at 1:10 in 50% acetonitrile and 0.1% TFA. 10µl of 50% 

acetonitrile and 0.1% TFA was loaded into the plate and 1µl of dried peptide was dissolved 

into the same spot. 1µl of 90% (v/v) CHCA solution (matrix solution) was added to the 

peptide on the plate and was mixed well by pipetting up and down for 5-7 times. After 

sample loading, the plate was left to dry before being analysed by the MS which was 

supervised by Kamburapola Jayawardena of the Sir Henry Wellcome, Functional Genomic 

Facilities, University of Glasgow, UK. 

3.2.6 Two-dimensional gel electrophoresis 

Milk samples used for 2D GE were pooled together from six of subclinical mastitic milk 

samples to make up pooled subclinical mastitic sample and another six from healthy cases 

were pooled together to make up pooled healthy samples.  

3.2.6.1 Sample preparation 

Each supernatant/whey sample from rennet coagulation was precipitated with acetone 

overnight for 500μg protein. To a sample volume containing 500 μg, a 10 times volume of 

ice cold acetone was added and incubated at -20°C overnight. The protein solution was 

then centrifuged at 14 000 x g for 10 minutes. Supernatant was removed after 

centrifugation. 1ml of 80% acetone was used for washing before suspending the pellet in 

80% acetone. The dissolved pellet was centrifuged at 14 000 x g for another 10 minutes. 

Supernatant was discarded before dissolving the pellet in 1ml of lysis buffer (see Appendix 

3, Chapter 3). To make sure the pellet did not stick to the centrifuge tube’s wall, another 

brief centrifugation was performed. For the pellet to fully dissolve, the tube was put on the 

vibrating platform. 

3.2.6.2 Isoelectric Focusing 

A protein concentration assay was run on each sample so that an equal amount (100μg) 

was present before adding 3-10 IPG buffer (0.5% v/v), DTT 0.001 g/μl (0.02% w/v) and 

rehydration buffer (6M urea, 2M thiourea, 4% CHAPS and 0.02% (w/v) bromophenol 

blue) for 100μg. Sample was centrifuged at maximum speed for 5 minutes. About 450 μl 

of prepared sample was applied on pH3-10, 24cm IPG strip. Isoelectric focusing was run 

on the IPGphor system using this protocol: 
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50μA per strip at 20°C 

S1: Step-and-hold 30V 12 hours 

S2: Step-and-hold 300V 1 hour 

S3: Gradient 1000V 2 hours 

S4: Gradient 8000V 2 hours 

S5: Step-and-hold 8000V 8 hours 

S6: Step-and-hold 1000V 24 hours 

S7: Step-and-hold 1000V 24 hours 

 

After the focusing finished, the strip was put in a plastic tube with the gel part facing 

upward and stored at -20°C before running the SDS-PAGE gel electrophoresis.  

3.2.6.3 SDS-PAGE Gel Electrophoresis 

Both IEF Equilibration Buffers (EB) I and II (see Appendix 4 and 5, Chapter 3) were 

prepared prior to gel electrophoresis. 10ml of EB I was added onto the strip and mixed for 

15 minutes. The strip was then washed with running buffer and then 10ml of EB II was 

added onto the strip and mixed for another 15 minutes. The strip was washed once again 

before 1ml of running buffer was added on top of the gel (large format SDS PAGE gel). 

The strip was placed horizontally on top of the precast Ettan DALT® gels (26 x 20cm) and 

added 1ml of 0.5% agarose (heated at 105°C at least 5 hours prior to gel electrophoresis) 

was placed on top of the gel. The prepared gel was placed in the tank and the remaining 

running buffer was added in the tank. The electrophoresis was run overnight at higher and 

constant power. 

3.2.6.4 Gel staining and Image Acquisition 

After electrophoresis, the gel was fixed for 1-2 hours using 10% methanol and 7.5% acetic 

acid. Gel was then stained with freshly prepared Colloidal dye solution and put on the 

rocker overnight. Gel images were acquired using a Typhoon™75 multicolour 

fluorescence and phosphor image scanner.  

3.2.7 Difference Gel Electrophoresis 

Milk samples used for DiGE comprised 12 clinical mastitic and 12 healthy milk samples 

which were then pooled together to make up a pooled clinical mastitic milk samples and 
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pooled healthy milk samples. Concentration of Hp and M-SAA3 were determined as in 

Section 2.2.3 and 2.2.6. 

3.2.7.1 Sample Preparation 

Cold acetone (-20ºC) at four times sample volumes was added to protein (i.e: 250µl of 

each sample into 1000µl of cold acetone). This mixture was incubated overnight and it was 

then centrifuged for 10 minutes at 13 000 x g. The supernatant was decanted and the pellet 

was washed with 4 times volume of 80% acetone. Centrifugation was performed again and 

supernatant was decanted. Brief centrifugation was done and residual supernatant was 

removed with pipette tip. The dry pellet was air dried for approximately 5 minutes at room 

temperature but was not overdried the pellet. The pellet was resuspended in 10µl of DiGE 

lysis buffer (see Appendix 6, Chapter 3) with protease inhibitor cocktail with brief 

spinning. The milk samples were solubilised by probe sonification for 3 times brief cycles 

(1-2 second each cycle). Between sonification, the sample was cooled on ice for 1 minute. 

Foaming and heating during sonifcation was avoided. After sonification, the samples were 

incubated for 10 minutes at room temperature with gentle mixing. Lastly, to remove 

insoluble material, the samples were centrifuged for 10 minutes at 13 000 x g. The 

supernatant was transferred to a fresh microcentrifuge tube. 

3.2.7.2 CyDye Labelling 

1µl of CyDye was added into 10µl of sample and incubated in the dark for 30 minutes. To 

stop the reaction, 1µl of 10mM lysine was added and further incubated in the dark for 10 

minutes. The pooled milk samples from healthy cows were labelled with Cy3 and the 

pooled milk samples from cows with clinical mastitis were labelled with Cy5. 

3.2.7.3 Isoelectric focussing 

The samples (1 labelled Cy3 and 1 labelled Cy5; ~24μl of each) were mixed together and 

500µl of rehydration buffer was added into the sample mixture. Before centrifugation, the 

sample mixture was left at room temperature for 10 minutes.  450µl of sample mixed in 

rehydration buffer was pipetted along the length of the strip holder, avoiding any formation 

of bubbles. The IPG strip was put onto the strip holder before layering mineral oil over the 

top of the strip, just enough to cover the strip. The lid was placed on the strips which were 

placed on the IPGphor system (GE Healthcare UK) and isoelectric focussing was run for 

between 70-80000V hours on the IPGphor as described in Section 3.2.6.2 

3.2.7.4 SDS-PAGE 

After isoelectric focussing, the strips were taken out of the holders and put into the plastic 

tubes. 10ml of SDS Equilibration Buffer I (see Appendix 4, Chapter 3) were placed onto 
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the strips and the plastic tubes was put on a large flat rocker desk for 15 minutes. The 

buffer was poured off and SDS Equilibration Buffer II (see Appendix 5, Chapter 3) was 

added and was rocked gently for another 15 minutes. The buffer was poured off and the 

strip was placed on the gel.1ml of 0.5% agarose was added on top of the gel (precast Ettan 

DALT® gels; 26 x 20cm) before putting the gel in the tank. Electrophoresis was run 

overnight at 1-2V/gel in the running buffer. 

3.2.7.5 Gel Scanning 

DiGE gels were fixed before scanning on a 3 Laser Typhoon 9400 scanner. A preliminary 

scan was performed with one DiGE gel at a low resolution (1000 microns). Spot saturation 

was checked on each of the resulting images, and the photomultiplier tube voltage adjusted 

so that the most intense protein spots were not saturated (see DiGE manual GE 

Healthcare). Gels can be scanned in pairs. Each high resolution (100 microns) scan takes > 

1 hr to complete but it was found that DiGE gels can be stored wrapped in the fridge 

overnight without noticeable loss of resolution. Once satisfactory images were obtained, 

gels were discarded and plates cleaned. After staining and scanning, the gel was wrapped 

and stored at 4°C until spot picking. 

3.2.7.6 Image manipulation 

DiGE images were cropped using Imagequant software on the Typhoon scanner. The 

cropping removed all edges of the gel image (gel spacers, IPG strip and dye front). Images 

were then loaded into DeCyder for processing.  

3.3  Results 

3.3.1 SCC measurement and acute phase proteins 

concentration 

In order to confirm the disease status of milk samples used in this study, SCC 

measurement and acute phase proteins (SAA and Hp) concentrations were determined. 

Table 3-1 showed the SCC measurement and CMT scores in all control (n=6) and 

subclinical mastitic (n=5) milk samples used in this study for 1D and 2D gel 

electrophoresis. In control milk samples, the range of SCC measurement in control milk 

samples (n=6) was between 6 and 27 x 10
3
 cells/ml with an average of 18 x 10

3
 cells/ml 

and median of 19 x 10
3
cells/ml.  The range of SCC measurement for subclinical mastitic 

milk samples (n=5) was between 211 and 4472 x 10
3
 cells/ml with an average of 1355 x 

10
3
 cells/ml and median of 389 x 10

3
 cells/ml. The CMT scores for all subclinical mastitic 
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milk samples were 2+ and all control milk samples gave negative results on CMT score. 

Table 3-2 showed the SCC measurement concentrations in all control milk samples (n=12) 

and APP concentrations as well as bacteriological culture results in clinically infected milk 

samples used in this study for DiGE. In control milk samples, the range of SCC 

measurement in control milk samples (n=6) was between 6 and 105 x 10
3
 cells/ml with an 

average of 40 x 10
3
 cells/ml and median of 27 x 10

3
 cells/ml.  The range of Hp 

concentration was between 560 and 16803.62 μg/ml with an average of 5532μg/ml and 

median of 40234μg/ml. The range of SAA concentrations in clinically infected milk 

samples was between 16.57 and 10635μg/ml with an average of 1041μg/ml and median of 

107.7μg/ml. From the results of bacteriological culture of clinical mastitic milk samples, 

bacteria that had been successfully identified include S. uberis and E. coli although in 

some milk samples, no growth of bacteria was identified.  

 

3.3.2 Comparison between rennet coagulation, acid 

precipitation and salt precipitation (ammonium sulphate) 

to remove casein 

After each of casein precipitation methods, whey samples from normal milk were run on 

1D gel electrophoresis for protein separation. For comparison, whole milk without any 

casein precipitation was run on the 1D gel electrophoresis as a control. Based on Figure 3-

1, Lane 2, protein bands of casein were found between 25-37 kDa by comparing to Mr 

standard (Lane 1) showing the presence of major milk protein in the whole bovine milk. 

As for Lane 3, 4 and 5 where various methods of casein precipitation were applied, protein 

bands of casein were completely absent from the 1D gel. Furthermore, both rennet 

coagulation (Lane 3) and acid precipitation (Lane 4) showed increased intensity of protein 

bands between 10-15 kDa of molecular weight. These protein bands are likely to be β-

lactoglobulin (15 kDa) and α-lactalbumin (10 kDa). However, more low intensity of higher 

molecular weight protein bands were seen between 50-250 kDa on both rennet 

precipitation (Lane 3) and acid precipitation (Lane 4).The intensity of those high Mr 

protein bands was higher with rennet precipitation as compared with acid precipitation. 

The rennet coagulation do had a very big Mr protein band at Mr 250kDa. Ammonium 

sulphate precipitation gave a low yield of whey protein (Lane 5). 
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Healthy milk samples   

ID SCC (x 10
3
 cells/ml) CMT Score 

31 24 Negative 

5 6 Negative 

4 27 Negative 

16 13 Negative 

73 27 Negative 

110 9 Negative 

Min 6  

Max 27  

Mean 17.67  

Median 18.5  

Subclinical mastitic milk samples   

ID SCC CMT Score 

78 4472 2+ 

75 211 2+ 

80 482 2+ 

27 255 2+ 

97 NA 2+ 

Min 211   

Max 4472  

Mean 1355  

Median 368.5  

 

Table 3-1: The SCC measurement in all control (n=6) and subclinical mastitic milk 

samples (n=5) and CMT scores in subclinical mastitic milk samples used in this study 

for 1D and 2D gel electrophoresis. The range of SCC measurement for healthy milk 

samples was between 6 and 27 x 10
3
 cells/ml with an average of 18 x 10

3
 cells/ml and 

median of 19 x 10
3 

cells/ml.  The range of SCC measurement for subclinical mastitic milk 
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samples was between 211 and 4472 x 10
3
 cells/ml with an average of 1355 x 10

3
 cells/ml 

and median of 369 x 10
3
 cells/ml. The CMT scores for all subclinical mastitic milk 

samples were 2+ and all control milk samples gave negative results on CMT score. NA 

means not available. 
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Control milk samples    

ID 

SCC (x 10
3
 

cells/ml)   

31 24   

5 6   

4 27   

16 13   

73 27   

110 9   

43 19   

60 80   

49 105   

110 46   

71 43   

95 75   

Min 6   

Max 105   

Mean 39.5   

Median 27   
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Clinical mastitic milk 

samples 

ID Hp (μg/ml) 

SAA 

(μg/ml) 

Bacteriological 

culture 

24 16803.62 20.52 Strep. uberis 

9 11277.6 19.92 Strep. uberis 

17 559.5 10635.28 No growth 

18 6296.3 99.5 No growth 

3 2905.1 559.5 E. coli 

7 7980.4 115.81 Strep. uberis 

78 4419.15 16.57 No growth 

47 2815.77 131.34 No growth 

A94 1517.24 17.11 No growth 

2 4772.38 502.07 E. coli 

4 3411.28 42.47 Strep. uberis 

6 3628.2 336.46 No growth 

Min 559.5 16.57 

Max 16803.62 10635.28 

Mean 5532.211667 1041.37917 

Median 4023.675 107.655  

 

Table 3-2: The SCC measurement in all control (n=12) milk samples and APP 

concentration in clinically infected milk samples (n=12) used in this study for DiGE. 

The range of SCC measurement for healthy milk samples was between 6 and 105 x 10
3
 

cells/ml with an average of 40 x 10
3
 cells/ml and median of 27 x 10

3 
cells/ml.  The range of 

Hp concentration was between 559.5 and 16803.62 μg/ml with an average of 

5532.21μg/ml and median of 4023.68μg/ml. The range of SAA concentrations in clinically 

infected milk samples was between 16.57 and 10635.28μg/ml with an average of 

1041.38μg/ml and median of 107.66μg/ml. From the results of bacteriological culture of 
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clinical mastitic milk samples, bacteria that had been successfully identified include S. 

uberis and E. coli although in some milk samples, no growth of bacteria was identified.  
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Figure 3-1: 1D gel electrophoresis whey samples after various methods of casein 

precipitation in co3mparison with whole milk sample without any treatment. Mr 

standard on Lane 1, whole milk on Lane 2, whey sample after rennet coagulation method 

on Lane 3, whey sample after acid precipitation method on Lane 4 and whey sample after 

ammonium sulphate fractionation method on Lane 5. 
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3.3.3 1D gel electrophoresis on individual subclinical 

mastitic and healthy milk samples 

Rennet precipitation was subsequently used to remove major casein protein to allow 

analysis of lower abundant protein in whey. At the concentration used, rennet did not give 

a protein band stainable with Coomassie blue (not shown). The separation of proteins from 

individual subclinical mastitic and healthy milk samples on 1D gel electrophoresis is 

shown in Figure 3-2a, 3-2b, 3-2c. In comparison of mastitic to healthy milk, no clear 

difference in terms of presence or absence of protein bands observed (Fig 3-2a). However, 

despite having no significant difference of protein bands, visualized protein bands in one 

individual sample of each group (subclinical mastitis in Lane 3; healthy in Lane 10) was 

digested with trypsin and identified by MALDI-MS. Upon, protein identification searched 

against Mascot database, only major milk proteins and some serum-derived proteins were 

successfully identified such as α-lactalbumin, β-lactoglobulin, albumin, lactoferrin and 

immunoglobulins (Fig 3-2b and Fig 3-2c). These results were similar between subclinical 

mastitic and healthy milk samples. No protein was successfully identified from the 

database for high molecular protein bands such as band 1, 2, 11 and 12 or for low Mr 

protein bands such as 10, 21, 22 (Fig 3-2b). The whole list of successful protein 

identification by Mascot database is presented on Table 3-3. 

3.3.4 2D gel electrophoresis on pooled subclinical mastitic 

and healthy milk samples 

The second dimension protein separation on both pooled subclinical mastitic and healthy 

milk samples after casein removal by rennet precipitation is shown in Figure 3-3a and 3-

3b. The IPG strip used was between pH 3 and pH 10. Upon colloidal Coomassie staining 

of the gel, there was no clear difference in terms of presence, absence, increase or decrease 

intensity of protein spots observed between these two pooled milk samples. There was 

only increased in the intensity of albumin protein spot (Spot 1) seen on 2D gel of pooled 

subclinical mastitic milk sample in comparison with pooled healthy milk sample. Based on 

previous study by Hogarth et al. (2004), it was concluded that protein spot 2 and 3 were 

the major whey proteins; β-lactoglobulin and α-lactalbumin respectively. Thus, no further 

mass spectrometry analysis was done on this 2D gel. 

 

 



Chapter 3, 151 
 

 

Figure 3-2a: 1D gel electrophoresis of 5 individual subclinical mastitic and 6 

individual healthy milk samples. Showing protein bands for each of milk samples and 

the Mr standard was on Lane 1. 
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Figure 3-2b: 1D gel electrophoresis of a subclinical mastitic and a healthy milk 

sample. Showing protein bands used for MS analysis. 
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Figure 3-2c: 1D gel electrophoresis of a subclinical mastitic and a healthy milk 

sample. Showing all the proteins identified by the MS based on the Mascot database. 
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Table 3-3: Proteins identified after in-gel trypsin digestion of protein bands on 1D gel 

electrophoresis. Mascot peptide database was used to identify the proteins. Mr and pI data 

were from Mascot database result. 
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Figure 3-3a: 2D gel electrophoresis of pooled subclinical mastitic whey sample. Showing 

major milk proteins such as albumin on Spot 1, β-lactoglobulin on Spot 2 and α-lactalbumin 

on Spot 3 (Hogarth et al. 2004). 

Spot 1 

Spot 2 

Spot 3 

pH 3 

250 kDa 

10 kDa 

pH 10 



Chapter 3, 156 
 

 

Figure 3-3b: 2D gel electrophoresis of pooled healthy whey sample.  Showing major milk 

proteins such as β-lactoglobulin on Spot 4 and α-lactalbumin on Spot 5 (Hogarth et al 2004). 

 

Spot 4 
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3.3.5 Difference gel electrophoresis (DiGE) on pooled 

clinical mastitic and healthy milk samples 

Difference gel electrophoresis was performed on clinical mastitic samples in comparison 

with healthy samples to increase the likelihood of identifiable difference and after casein 

removal by rennet precipitation to increase the sensitivity of lower-abundance proteins 

detection. The scanned gel of the overlay image where both samples labeled with Cy3 and 

Cy5 fluorescent dyes can be analyzed on the same image as shown in Fig 3-4a. The gel 

stained with Cy5 dye for the mastitic milk is shown in Fig 3-4b and with Cy3 dye for 

normal milk is shown in Fig 3-4c. No clear difference was observed in terms of presence, 

absence, increase or decrease intensity of protein spots between the pooled two milk 

samples except for increase in the intensity of protein spot of albumin and reduced 

intensity of the protein spot of whey proteins in mastitic milk sample as compared with 

healthy milk sample. Otherwise, no other significant protein spot was detected on these 

gels.
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Figure 3-4a: Difference gel electrophoresis on clinical mastitic and healthy milk 

samples.  Showing clinical mastitic milk sample was labeled with Cy5/red fluorescent dye 

and healthy milk sample was labeled with Cy3/green fluorescent dye.
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Figure 3-4b: Difference gel electrophoresis on pooled clinical mastitic milk sample on 

Cye5 fluorescent dye. Increased in albumin and decreased in whey proteins spot intensities 

are shown by the arrows as compared with pooled healthy milk sample in Figure 3-4c. 

Albumin 

Whey proteins 
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Figure 3-4c: Difference gel electrophoresis on pooled healthy milk samples on Cye3 

fluorescent dye. Increased in whey proteins spot intensity is shown by the arrow as 

compared with pooled healthy milk sample in Figure 3-4b. 

Whey 

proteins 
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3.4 Discussion 

The clinical mastitic milk samples chosen in this study had high concentrations of acute 

phase proteins for both SAA and Hp. The mean values for APP concentrations in clinically 

infected milk samples were 5532μg/ml and 1041μg/ml for Hp and SAA respectively. The 

range in values for APP concentrations in clinically infected milk samples were 560 to 

16804μg/ml and 16.6 to 10635μg/ml for Hp and SAA respectively. As the distribution of 

these data was not normally distributed, the median values for each parameter were 

obtained. The median values for APP concentrations in clinically infected milk samples 

were 4024μg/ml and 107.7μg/ml for Hp and SAA respectively. Because no APP 

concentration was obtained for either the healthy or the subclinical mastitic milk samples 

as these analyses were carried out retrospectively after development of the Hp ELISA 

assay and the specific samples were no longer available, no significance test was 

performed. However, the Spearman’s correlation test was performed which revealed a 

negative and low relationship between SAA and Hp concentrations (r= -0.364). It was 

surprising and interesting and may reflect different origins of Hp and SAA in milk, notable 

that recent evidence suggests that Hp in milk may be derived from neutrophils (ie somatic 

cells) as well as epithelial tissue (Cooray et al. 2007). The SCC measurement for all 

healthy milk samples was less than 100 000 cells/ml (average was 40 000 cells/ml) which 

confirmed the healthy status of the cows. The Mann Whitney’s test revealed significant 

difference (p<0.05) in the SCC measurement of control and subclinical mastitic milk 

samples with a significance level (p) of p=0.001. 

The objective of this study was to characterize the milk proteome associated with bovine 

mastitis on gel-based proteomic techniques and to characterize and identify low abundance 

protein in the milk proteome using mass spectrometry. Previous studies as described in 

chapter one clearly demonstrated that proteomic analyses have successfully characterized 

and identified several important milk proteins which might be served as protein biomarker 

of bovine mastitis (Yamada et al. 2002; Smolenski et al. 2007). Furthermore proteomics 

has also helped to study the physiological functions of those identified proteins in the 

maintenance of mammary gland in terms of providing nutrients immunity and 

development to the newborns.  

To examine changes in low abundance proteins, rennet coagulation was chosen over acid 

precipitation or ammonium sulphate fractionation. Based on 1D gel electrophoresis, rennet 

coagulation successfully removed the majority of milk casein. Furthermore, the intensity of 
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lower abundance proteins at 50kDa to 250kDa of molecular weight was increased when 

rennet coagulation was used. However, other major milk proteins such as α-lactalbumin 

and β-lactoglobulin were still present in the milk samples. Potential interference in protein 

pattern for the protein of the rennet enzyme was discounted. A rennet precipitation of a 

similar concentration to that used for casein precipitation was run on 1D SDS PAGE and 

gave no Coomassie blue stained band. 

For a preliminary analysis, 1D gel electrophoresis of individual milk samples was 

performed on subclinical mastitis in comparison with healthy cases. However, there was no 

distinctive difference in terms of protein bands between subclinical mastitic and healthy 

milk samples (Figure 3.2a, b, and c). Furthermore, no lower abundance protein bands were 

seen in milk samples after casein removal in the healthy or mastitic sample. Unfortunately, 

the high molecular weight protein bands but with lower intensity were not successfully 

identified by the MALDI-MS. 

Colloidal Coomassie blue staining might not be sensitive enough to detect all lower 

abundance proteins which may still include an important protein biomarker in bovine 

mastitis. However, there was no significant difference in terms of protein levels that could 

differentiate subclinical mastitic from healthy milk sample in this study. Another possible 

reason was due to the limited usage of 1D gel electrophoresis as it only separates milk 

proteins based on their molecular weight so that 2DE may be more effective. Low intensity 

but high molecular weight protein bands (Band 1, 2 ,11 and 12) were not successfully 

identified due to very low level of proteins exist in those protein bands. Limited number of 

B. taurus database entries in the database used (Mascot) might contribute to no possible 

protein identification of these protein bands. 

However, for further characterization of milk proteins on 1DE, separated protein bands in a 

milk sample from each group were cut from the gel and sent for MS analysis. MALDI-

TOF successfully identified more of these protein bands though it appeared that the 

identified proteins were the normal milk proteins that can be found in bovine milk. These 

include albumin, α-lactalbumin and β-lactoglobulin. This result was in accord with 

previous proteomic analyses (Hogarth et al. 2004; Smolenski et al. 2007; Boehmer et al. 

2008; Boehmer et al. 2010). No casein was identified on the 1DE gel showing that rennet 

precipitation had successfully removed casein.  

Beta-lactoglobulin which comprises about 10% of the total milk protein was identified by 

MALDI-TOF with Mr of 18554 and pI value of 4.83 for subclinical mastitic milk sample 
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and slightly higher Mr of 18640 with the pI value of 4.76 for healthy milk sample. Beta-

lactoglobulin binds to retinol and thus implicates its function in the transport of vitamin A 

to newborns (Wong et al. 1996). Alpha-lactalbumin which accounts for about 13% of total 

whey protein was identified by MALDI-TOF in this study with a Mr of 11541.4 kDa with 

pI values of 4.61. It acts as a specifier protein which catalyzes the biosynthesis of lactose in 

addition of galactosyltransferase (Wong et al. 1996). During intramammary infection, 

there is a possible reduction in the levels of α-lactalbumin and β-lactoglobulin in milk has 

been reported due to depletion in the synthesis and secretion of these proteins following 

damage to the mammary epithelial cells by bacterial toxins or by the presence of infection 

in the mammary gland (McFadden et al. 1988). 

It is known that serum-derived proteins such as albumin, immunoglobulins, complement 

proteins (Ward et al. 2002) and lactoferrin are present in low levels in bovine milk (Lacy-

Hulbert et al. 1999; Smolenski et al. 2007). These may have antimicrobial properties 

(Ward et al. 2002). Albumin is also known to increase in concentration during mastitis as a 

result of leakage from blood circulation into the mammary gland (Hogarth et al. 2004). It 

has also been demonstrated that albumin can be synthesized and secreted in the bovine 

mammary gland as local expression of albumin in the mammary gland increased upon 

exposure to LPS as well as in mastitic condition (Shamay et al. 2005). However, because 

no quantification of specific protein levels in milk samples was made, it is not known 

whether the presence of albumin in subclinical mastitic milk was significantly different 

from its presence in healthy milk in this study. Other than albumin, immunoglobulins and 

lactoferrin were also present in both subclinically infected and healthy milk samples. 

Epithelial cells of the mammary gland are known to produce lactoferrin as well as 

cytokines (IL-8 and TNF-α) in response to LPS stimulation (McClenahan et al. 2005; 

Pareek et al. 2005).Study by Chaneton et al. (2008) suggested that different bacteria 

species may stimulate different mammary gland responses mediated by Lf secretion. On 

the other hand, immunoglobulins are one of the major proteins in colostrum which confer 

passive immunity to the newborn (Smolenski et al. 2007) which also serve as defence 

mechanism against microbial invasion of mammary gland. 

As no differences were observed on the gel pattern of 1D gel electrophoresis between 

subclinical mastitic and healthy milk samples, 2D gel electrophoresis was applied to 

similar samples. It was hope that lower abundance proteins would be identified because 2D 

electrophoresis is generally more effective in separating as in bovine milk. Further pools of 
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milk samples from subclinical and healthy groups were used prior to 2D gel 

electrophoresis. 

Unfortunately, there was again no observable difference in low abundance proteins 

between the pooled subclinically infected milk and pooled healthy milk samples on the 2D 

gel. Mass spectrometry analysis was not undertaken as the protein spots in both gels 

represent the same major milk proteins; albumin, α-lactalbumin and β-lactglobulin and 

have previously been identified (Hogarth et al. 2004). However, it was interesting to find 

that albumin was not observed on the 2D gel of healthy samples. This result further 

supported the findings that albumin was increased in concentration during bovine mastitis 

as a result of either an increase in leakage from serum into the mammary gland or in 

albumin expression in the mammary gland. No reduction in the intensity of protein spots of 

other whey proteins in subclinical sample was shown in this 2D gel.  

In this study, no low abundance protein was seen on the 2D gel of subclinical mastitic 

sample and the possible explanation may derived from the  evidence or the potential 

binding of other proteins to serum albumin. Serum albumin is known to bind as well 

transport long-chain fatty acids and other small molecules such as bradykinin, interferon 

and even acute phase proteins (SAA and α-1-acid glycoprotein) (Peters 1977; Gundry et al. 

2007). Furthermore, 2D gel electrophoresis was thought to have difficulty to separate low 

abundance proteins, acidic and basic proteins, proteins with very small or very large in size 

as well as hydrophobic proteins (Beranova-Giorgianni 2003). This can be explained of 

why no low abundant protein particularly APP seen on 2D gel of subclinical mastitic 

sample. 

In contrast to studies which have removed casein, it has been suggested that in order to 

increase the likelihood of the detection of lower abundance proteins, no sample 

fractionation or depletion of high-abundance proteins should be performed (Boehmer et al. 

2008). Although several other studies suggest the use of fractionation or 

immunoprecipitation (Yamada et al. 2002; Hogarth et al. 2004) to selectively remove 

casein, β-lactoglobulin, α-lactalbumin or other major milk proteins, the possibility of other 

lower-abundance proteins also being removed might occur. To investigate subclinical 

mastitis, more milk samples should also be examined to increase the potential of 

discovering protein biomarkers important in bovine mastitis. Another way to improve and 

increase the separation and detection of lower abundance proteins is by using more 

sensitive staining methods than colloidal Coomassie including silver or sypro-ruby staining 

(Hogarth et al. 2004). As investigation of milk samples from sub clinical mastitis cases did 
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not give any significant difference in the levels of milk proteome, the examination of milk 

samples from clinical mastitis should be considered to find identity possible biomarker 

after which change in the subclinical mastitis could be determined. 

Therefore, milk samples from clinical mastitis cases were collected for comparison with 

healthy milk samples and analyzed using difference gel electrophoresis (DiGE). DiGE 

enables the visualization of multiple protein samples in one 2D gel. After labelling the 

milk samples with the differing fluorescent dyes and running on the same gel, spot patterns 

were visualized by alternately illuminating the gel with the excitation wavelengths of each 

dye. Overlay image was then analyzed using standard proteomics software (Van den Bergh 

et al. 2003).  

Unfortunately, although clear distinction were found between clinical mastitic and healthy 

samples on DiGE gels with lower abundance proteins and increased albumin in the 

mastitic sample, all of the changes had been observed before (Hogarth et al. 2004). Thus, 

no further mass spectrometry analysis was done and based on the previous study (Hogarth 

et al. 2004), the protein spots seen on the Cy dye stained gels were actually the major milk 

proteins (albumin, β-lactoglobulin and α-lactalbumin).  

The protein concentration of the non-casein but still high abundance proteins (albumin or 

whey proteins) of these milk samples might also contribute to failed detection in other 

lower abundance proteins. Thus, in order to increase the potential of using difference gel 

electrophoresis, several important factors must be taken into consideration. The use of 

more clinical mastitic milk samples may increase the sensitivity to detect lower abundance 

proteins. Milk samples should be handled more cautiously in terms of transporting the 

samples from farm to laboratory as well as minimizing the thawing process of milk 

samples. This would ensure no depletion of important milk proteins should occur. 

In conclusion, among milk proteins successfully identified by MALDI-MS on 1D gel 

electrophoresis were albumin, α-lactalbumin, β-lactoglobulin, lactoferrin and 

immunoglobulins. However, no clear distinction was observed between the 2D gel 

electrophoresis of subclinical mastitic and healthy milk samples. Additionally, from DiGE 

analysis, albumin was found increased in clinical mastitic sample whilst β-lactoglobulin 

was reduced in mastitic sample when compared with healthy sample. From this study, it 

was evident that gel-based proteomic techniques as used here were not able to identify 

novel protein biomarker in milk in bovine mastitis or other lower-abundance proteins 

involved in inflammation or host defence mechanism. The technical requirement and 
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resource implication needed for consistent analytical result in a gel-based approach to 

proteomic analysis of milk are further aspects to consider. Accordingly, non-gel 

approaches were undertaken to continue the investigation such as CE-MS and LC-MS/MS 

in the next chapters. 
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Chapter IV: Peptidomic Analysis on Bovine 

Mastitis 

4.1 Introduction 

Peptidomic analysis involves extraction, separation, detection and identification of 

peptides in samples. In earlier studies, less manipulation of the samples was employed to 

allow peptides to be analysed by mass spectrometry (Baggerman et al. 2004). Tissues were 

directly placed on the MALDI target plate together with the matrix solution (Clynen et al. 

2001; Verhaert et al. 2001; Uttenweiler-Joseph et al. 1998; Sweedler et al. 2000) although 

in the case of ESI, a simple extraction was performed in the spraying solvent (Kollisch et 

al. 2000). However, due to the presence of multiple biological peptides at different 

concentrations in cells, tissues or body fluids, it is desirable that peptide extraction and 

separation are used prior to mass spectrometric analysis. Indeed, the aim of several studies 

is to enrich the low-abundance peptide composition of samples (Chertov et al. 2005; 

Baggerman et al. 2002; Skold et al. 2002; Schulz-Knappe et al. 2001). 

As the main difference between protein and peptide is based on their molecular weights, 

the isolation of smaller peptides from higher concentration of larger proteins is essential 

(Hu et al. 2009). Several extraction steps for analysis of endogenous peptides have been 

employed to meet this aim. Some methods which have been applied include ultrafiltration, 

organic solvent precipitation, solid phase extraction, restricted-access material (RAM) - 

trap column-based extraction and others (Hu et al. 2009).  

In ultrafiltration, a membrane with an accurate molecular weight cut-off (MWCO) is used 

to extract peptides of interest while removing other high molecular weight (HMW 

>20kDa) peptides and proteins. However, in this method, the ultrafiltration times will 

increase dramatically if huge amount of sample is applied and also, other LMW (<20kDa) 

contaminants (e.g. salt) may also be concentrated which may affect the efficiency of the 

method (Hu et al. 2009). 

By using organic solvent precipitation, the electrostatic interactions between molecules are 

increased and the smaller peptides are dissolved in the high concentration of solvents 

(Polson et al. 2003). An example of an organic solvent that has been used is acetonitrile 

(Chertov et al. 2004). The use of solid-phase extraction (SPE) has also been employed as 
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part of sample clean-up preparation while functionalized magnetic particles were used as 

adsorbents to enrich specific peptides in various studies (Villanueva et al. 2004; Fiedler et 

al. 2007; Baumann et al. 2005). In addition, conventional chromatographic packing 

materials such as reversed-phase polymers and nanomaterials with different properties 

have been employed as part of this methodology (Aristoteli et al. 2007; Li et al. 2007; Tian 

et al. 2009).  

All these methods are examples of off-line mode sample preparation which may be 

laborious, time-consuming and have poor reproducibility (Hu et al. 2009). The use of a 

special type of chromatographic packing materials called restricted access materials 

(RAMs) with two functions during chromatographic separation has been proposed. It was 

suitable for online extraction of smaller peptides and removal of other high abundance 

peptides (Boos & Grimm 1999). Other techniques including selective electrophoresis and 

continuous elution electrophoresis have similar characteristics in their ability to 

concentrate LMW peptides (Camerini et al. 2007; Ly et al. 2008).  

The next step of peptidomics involves peptide separation. Baggerman et al. (2004) 

reviewed several types of peptide separation methodologies that can be employed. One of 

them is the use of coupling an HPLC to electrospray sources. In this method, the peptides 

are separated by the use of reversed-phase chromatography (Schoofs et al. 1993) and by 

applying the voltage difference between the outlet of HPLC and the sample targets, ions 

can be transferred from solution into the gas phase. This method allowed sensitive peptide 

analysis and have been applied to various peptidomics studies (Schulz-Knappe et al. 2001).  

Recent advances have been developed to detect lower concentrations of peptides from 

complex protein mixtures. When ultra low flow LC systems coupled to nanospray sources 

are used, the flow rates employed for chromatographic separation has been as low as 

20nl/min with the internal diameters of columns down to 15μm (Shen et al. 2002). 

However, this method is time consuming and to prevent this, column switching was 

introduced to separate the sample loading and the actual separation. A whole sample can 

be analyzed and peptides identified can be selected for further fragmentation in the 

collision cell of the MS instrument as they passed through the columns (Baggerman et al. 

2004). When analysing more complex samples, reducing the flow rate during the 

separation can be performed to increase the time analysis of the mass spectra and thus, 

more peptides can be fragmented or fragmented longer in the case of LMW peptides. 
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Another type of peptide analysis is multi-dimensional peptide separation. Reversed-phase 

LC is frequently used as the second separation stage which enables full separation of all 

the effluent material from the first step. It can be combined with size exclusion reversed-

phase (Oosterkamp et al. 1998), reversed phase-reversed phase chromatography 

(Oosterkamp et al. 1998: Wall et al. 1999) or ion exchange-reversed phase (Oosterkamp et 

al. 1998; Davis et al. 2001). Multidimensional protein identification technology (MudPIT) 

using a strong cation resin (SCX) and RP columns has been successfully applied for 

shotgun proteomic research (Hu et al. 2009). The individual peptides separated from SCX 

columns were eluted onto the RP columns before subsequently being sprayed into the ESI 

MS (Baggerman et al. 2004; Hu et al. 2009). 

Most peptidomes, unlike tryptic peptides, do not carry C-terminal Lys or Arg residues and 

SCX column separates peptides based on their charges (Hu et al. 2009).  Reversed phase 

(RP) on the other hand is pH stable, and by using RP-RP separation, peptides may be better 

separated as shown by Dowell et al. (2008). A total of 56 peptides from known 

neuropeptides precursors including 17 unidentified peptides, have been successfully 

separated using this method. A combination of sample ultrafiltration with size-exclusion 

chromatography prefractionation has been considered as a good method for comprehensive 

peptidomics analysis (Hu et al. 2007). It allows the investigation of HMW peptides and at 

the same time, identifying the LMW peptides which improved the sensitivity of LMW 

method of detection. The advances in the MS analysis in detecting HMW peptides have 

developed with the use of quadrupole TOF MS with collision-induced dissociation 

(Möhring et al. 2005), fourier transformion cyclotron resonance MS using electron capture 

dissociation and linear quadrupole ion-trap MS wit electron transfer dissociation (Hu et al. 

2009) which allowed sequencing of large and small peptides.  

Another increasingly popular peptidomics analysis is the combination of capillary 

electrophoresis (CE) with MS. It can perform a separation of peptides from small 

molecules to large proteins in the same analysis. It has been chosen as a method of analysis 

due to the low amount of sample used and short analysis time (Baggerman et al. 2004). 

Pre-concentrating of the sample with hydrophobic media can be employed to increase the 

concentration of the sample. 

Quantitative peptidomics has been increasingly important especially in biomarker 

discovery when it is important to understand the relative difference of each protein/peptide 

in different conditions (Hu et al. 2009; Baggerman et al. 2004). Direct profiling with 
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MALDI/SELDI is most widely used to quantify peptides but another way is the by using a 

UV detector between the LC system and the MS to compare the peptide relative 

abundances (Hu et al. 2009; Baggerman et al. 2004).  

Differential peptide display was introduced by Tammen et al. (2003) in which the sample 

was separated by RP-HPLC and each fraction eluted was analysed by MALDI-TOF MS. 

The mass spectra were transformed into 1D gel-like pattern and the patterns were 

combined to generate a virtual 2D peptide map. To identify the peptides, individual HPLC 

fractions were subjected to nESI-qTOF-MS/MS or MALDI-TOF/TOF-MS sequencing. 

The SELDI-TOF MS technique is another method using the protein chip array technology 

with a modified surface target (Huchens & Yip 1993). The target surface can be modified 

with chemical functionality such as RP, ion exchange chromatography (IEX), immobilized 

metal affinity chromatography, antibodies, proteins and DNA. This binding activity was 

considered as a pre-fractionation step to allow easier analysis. Different expressed peptides 

can be identified from different groups of sample using advanced bioinformatic tools 

(Issaq et al. 2003; 2002).  

However, these methods described above (MALDI/SELDI profiling) which were thought 

to provide semi-quantitative analyses of peptides as ion patterns, could be affected by 

ionization efficiency, ion suppression effects and sample preparation process (Hu et al. 

2009). Furthermore, ion intensities in the mass spectrum did not correlate to the relative 

amounts of the corresponding compounds (Baggerman et al. 2004). To overcome this 

problem, mass labelling was employed in which a known concentration of a „mass 

labelled‟ analogue of the peptide of interest was used as internal reference. A perfect 

example of mass labelling was by incorporating stable isotopes in which two different 

samples had the same ionization efficiency but with a slight difference in masses (Hu et al. 

2009; Baggerman et al. 2004).  

An iTRAQ approach with amine reactive isobaric tagging and tandem MS to quantify the 

peptides has been employed in both proteomics and peptidomics analyses. Peptides with 

the same sequence appeared to be identical in masses but produced as a single ion signal in 

MS (Hu et al. 2009). It may be used in complementary studies with MALDI profiling for 

both clinical diagnosis and biomarker discovery as performed by Hu et al. (2009). 

Another isotope labelling method used for cysteine containing peptides/proteins is isotope-

coded affinity tags (ICAT). The side chains of cysteinyl residues of protein are derivatized 
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with an isotopically light form of the ICAT reagent. By comparing their relative signal 

intensities, the relative quantification of samples in different conditions can be determined 

(Gygi et al. 1999). 

In a previous discussion about peptide analysis in bovine mastitis, most of the studies 

identified proteolytic activities yielding peptides in milk (Wedholm et al. 2008; Larsen et 

al. 2010). Many diseases are associated with proteolytic processes (Hu et al. 2009). 

Proteases reflect the response of the host towards the different physiological conditions. 

Different disease states will lead to different degradation pattern of proteins and these 

degradation products may be of useful as disease biomarkers (e.g. cancer) as described by 

Villanueva et al. (2006). The activity of proteases in the biological samples can be 

quantified by the use of activity-based probes (ABPs) coupling to MS. ABP work by 

targeting specific proteases based on their enzymatic mechanisms such as serine proteases, 

cysteine proteases, threonine proteases, aspartyl proteases and metalloproteases (Kidd et 

al. 2001; Greenbaum et al. 2000, Greenbaum et al. 2002, Kessler et al. 2001, Chun et al. 

2004; Saghatelian et al. 2004). Affinity chromatography can also be used to characterize 

proteases as performed by Tian et al. (2006). 

Peptidomic analysis allows full visualization and characterization of the whole peptidome 

in given cells, tissues or bodily fluid and even their post-transitional modifications 

peptides. With the use of nanoscale LC coupled with MS, one can identify peptides  at the 

acid amino sequence level however, the use of tandem MS can only provide partial amino 

acid sequences of peptides. This can be resolved by using certain bioinformatic 

programmes to identify peptides from protein database or analogue gene from the genomic 

database (Choudhary et al. 2001). Peptidomics analysis can be applied in complementary 

with other protein characterization methodologies to discover novel disease biomarkers as 

well as to identify newly discovered peptides for therapeutic purposes. 

4.1.1 Aims of study 

Overall, the objective of this chapter is to apply a peptidomic approach to study the 

presence of polypeptides that may be used to discriminate normal milk samples from milk 

samples from quarters infected with bacteria causing bovine mastitis. It was hoped that by 

using this sensitive and high-throughput methodology, significant results can be achieved 

and lead to the discovery of important and significant mastitis biomarkers. Milk samples 
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from healthy cows were compared to samples from cows with clinical mastitis caused by 

either S. aureus or E. coli. Initially samples were analyzed by CE-MS to detect positive 

biomarkers and then by LC-MS/MS to sequence putative biomarkers. 

4.2 Materials and Methods 

 

4.2.1 Milk Samples and Reagents 

Milk samples from clinical mastitic cases were obtained from Vale Veterinary Laboratory, 

Devon, UK. Bacteriological culture was performed in the Bacteriology Laboratory of Vale 

Veterinary Laboratory to determine the bacterial cause of bovine mastitis. Milk samples 

from mastitis caused by either E. coli (n=10) or S. aureus (n=6) infection were selected for 

further analysis. Control milk samples (n=10) from healthy cows from the Cochno Farm of 

School of Veterinary Medicine, University of Glasgow were also used in this study as 

comparison to those clinical mastitic cases. The healthy milk samples were confirmed by 

somatic cell counts (<100 000 cells/ml). Prior to peptidomics analysis, SAA and Hp assays 

(Chapter 2) were performed determine the concentration of both acute phase proteins in 

each milk sample. Samples were stored at -20°C prior to analysis. 

Buffers and reagents for both sample preparation and CE-MS analysis are presented as in 

Appendix. 

4.2.2 Milk sample preparation for CE-MS using PD-10 

Desalting Column 

4.2.2.1 Preparation of fresh ammonium (NH4OH) and urea buffer 

An aliquot of 25% NH4OH (400μl) was added into 1 litre of deionised water to make up 

NH4OH buffer. The solution was mixed by inversion and pH value was checked (pH 10.5-

11.5). Urea buffer was prepared by mixing 5ml of 8M urea, 0.4ml of 5M NaCl, 10μl of 

25% (v/v) NH4OH solution and 100μl of 2% (w/v) SDS solution. 

4.2.2.2 Sample Preparation 

Milk samples were defrosted at room temperature prior to centrifugation at 14 000 x g for 

10 minutes at 4ºC to remove the fat. Two aliquots of 1ml milk samples were prepared. An 

aliquot of 700μl of centrifuged milk was added to 700μl of urea buffer, placed in a 

centrisart tube (Sartorius, Goettingen, Germany) and mixed well by pipetting up and down. 



 Chapter 4, 173 
 

 
 

The filter was put on top of the centrisart tube and centrifuged at 3400 rpm for 80 minutes 

at 4ºC. During centrifugation, a PD-10 column (GE Healthcare, Sweden) was equilibrated 

with 25ml of NH4 solution. After centrifugation, 1.1ml of centrisart filtrate was added into 

the columns until the column was dry. Next, 1.9ml of NH4 buffer was added into columns 

until the column was dry. The column was then placed on 15ml collecting tubes and the 

sample was eluted with 2ml of NH4 buffer. The 2ml of flow-through was distributed 

between three Eppendorf tubes (2 tubes containing 900 µl to be used for CE and LC 

analysis and 1 tube for protein determination containing 150 µl). Tubes to be used for CE 

and LC analysis were freeze-dried until further use. 

4.2.3  Protein concentration 

Protein concentration in milk extracted samples was checked using the BCA 

(bicinchoninic acid) assay Uptima from Interchim (Montluçon, France), About 25μl of 

each standard and milk extracted samples were pipetted into microplate wells in duplicates. 

The BCA assay reagent was then added at 200μl and further mixed. The sample mixtures 

were incubated at 37°C for 30 minutes or 2 hours at room temperature. Prior to reading the 

results at the optical absorbance of 562 nm, the microplate was cooled at room 

temperature. The standard curve was plotted and the protein concentration in the sample 

was interpolated. Freeze-dried aliquots have to be resuspended in appropriate volume of 

Milli Q water to reach a concentration of 2μg/μl before running in the CE.  

4.2.4 CE-MS Analysis 

4.2.4.1 Preparation of buffers for CE-MS analysis 

All buffers were freshly prepared every week. 1M sodium hydroxide (NaOH) was 

prepared in deionised water. Ammonium hydroxide buffer was prepared by adding 3.76 

ml of ammonium solution (25%) to deionised water and the volume adjusted to 50 ml 

with deionised water. Running buffer was prepared by adding 10 ml of acetonitrile and 

472 μl of formic acid to a final volume of 50 ml with deionised water. The sheath flow 

liquid was prepared by mixing 15 ml of 2-propanol and 200 μl of formic acid with the 

volume adjusted to 50 ml with deionised water. The standard protein/peptide solution (0.5 

pmol/μl) for the calibration of CE-MS analysis contains Lysozyme (14,303 Da, L4919, 

Sigma-Aldrich, Dorset, UK), ribonuclease (13,681 Da, R5500, Sigma-Aldrich, Dorset, 

UK), aprotinin (6,513 Da, A1153, Sigma-Aldrich, Dorset, UK) and 4 synthetic peptdies : 

ELMTGELPYSHINNRDQIIFMVGR (2,832 Da), TGSLPYSHIGSRDQIIFMVGR (2,333 

Da), GIVLYELMTGELPYSHIN (2,048 Da), REVQSKIGYGRQIIS (1,733 Da). 
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4.2.4.2 CE-MS Analysis for peptide fingerprint 

The capillary was carefully installed into the CE system (Beckman Coulter, Fullerton, 

USA). The capillary was first conditioned with NaOH (pressure 50 psi) for 15 minutes. 

The capillary was then washed with NH4OH solution (50 psi) for 15 minutes and 20 

minutes with running buffer (50 psi). The capillary was not connected to the MS until the 

conditioning procedure has been completed The Beckman CE was set to run in “reverse 

mode” when connected to the MS system using the external detector adapter. Running 

buffer (pressure applied 50 psi) was used to rinse the capillary prior to each injection. 

Freeze dried samples were re-suspended to achieve a final concentration 2 µg/µl with 

HPLC water and centrifuged at 14,000 x g for 10 min at 4 ºC shortly before analysis. The 

samples were then injected at a pressure of 2.0 psi for 99 s resulting in a loading volume of 

290 nl of sample volume. Separation was done with +25kV at the injection site for 30 

minutes with a capillary set temperature of 35°C. In addition to the +25kV, pressure is 

applied as followed ( 0.1 psi for 1 min, 0.2 psi for 1 min, 0.3 psi for 1 min, 0.4 psi for 1 

min and 0.5 psi for the following 30 min). The sheath liquid was applied coaxially at a 

running speed of 0.02 ml/h. The capillary was rinsed with deionised water (50 psi) for 1 

minute after each run followed by a washing step with NH4OH solution (50 psi) for 3 

minutes and lastly by a flushing step with deionised water (50 psi for 3 min). ESI sprayer 

was grounded to achieve electric potential zero and the electrospray interface potential was 

set between -4 000 and -5 000 V. The MS spectra were accumulated every 3 s, over a 

mass-to-charge range from 400 to 3000 m/z for about 60  minutes depending on the 

analysis requirements. The mass calibration of the MS was performed on a weekly basis 

using the standard protein/peptide solution (0.5pmol/μl) for CE-MS analysis. CE-MS 

analysis was performed under supervision of Dr. Bill Mullen and Dr. Amaya Albalat of 

Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK. 

4.2.5  CE-MS Data processing 

Mass spectral ion peaks were deconvoluted into single masses using MosaiquesVisu 

software (www.proteomiques.com). Only signals observed in a minimum of 2 consecutive 

spectra with a signal-to-noise ratio of at least 4 were considered. Signals with a calculated 

charge of +1 were automatically excluded to minimize interference with matrix 

compounds or drugs. MosaiquesVisu uses a probabilistic clustering algorithm and both 

isotopic distribution and conjugated masses for charge-state determination of the entities. 

CE migration time and ion signal intensity were normalized because migration time and 

ion-counts showed significant variability between samples mainly due to different salt and 
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peptide concentrations. Reference signals of over 380 milk entities or „milk housekeeping 

polypeptides‟ were used for CE-time calibration by local regression. The same peptides 

were used for ion signal intensity normalization by a applying a global linear regression. 

The resulting peak list contained the molecular mass (Da) and normalized CE migration 

time (min) for each feature. Normalized signal intensity can be used as a measure of 

relative abundance. Data sets were accepted only if the following quality control criteria 

were met: A minimum of 950 chromatographic features (mean number of features minus 

one standard deviation) must be detected with a minimal MS resolution of 8000 (required 

resolution to resolve ion signals with z=6) in a minimal migration time interval (the time 

window, in which separated signals can be detected) of 10 min. After calibration, the 

mean deviation of migration time (compared to reference standards) must be below 0.35 

min. 

Control and disease-specific polypeptide patterns were generated using support vector 

machine (SVM)-based MosaCluster software.  

4.2.6 Statistical analysis 

Only polypeptides that were found in more than 70% of the samples in at least one of the two 

groups (controls or cases) were considered for biomarker definition. The pre-defined set of 

polypeptides should be further validated by randomly excluding 30% of available samples. 

This was repeated (bootstrapping procedure) up to 10 times. For multiple testing corrections, P 

values were corrected using the stringent maxT test or using false discovery rate 

adjustments of Benjamini-Hochberg (BH). Two models were generated for the 

classification of the samples depending on their CE-MS profile. The first model was used 

to classify the milk sample as control (healthy) or bacteria (infected) and the second one to 

discriminate the infectious microorganism (E .coli or S. aureus). 

4.2.7  LC-MS/MS Analysis for Peptide Sequencing 

4.2.7.1 LC-MS/MS analysis  

LC-MS analysis was performed using an Ultimate3000 nano-LC pump (Dionex, 

Sunnyvale, CA, USA) coupled to a LTQ-Velos (Thermo Corp.). Five μL from each sample 

were loaded onto a Dionex 100μm x 2 cm 5 μm C18 nano trap column at a flowrate of 5 

μl/min by a Ultimate 3000 RS autosampler (Dionex, Camberley UK) and separated on a 

C18 reverse phase column (75 µm ID × 150 mm, 100 Å, Acclaim PepMap RSLC C18, 

Dionex). Peptides were eluted using a gradient of 1-5-40% B (80% ACN, 0.2% formic 

acid) in 0-5-60 min at a flow rate of 300 nL / min. The eluant from the column was 
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directed to a Proxeon nano spray ESI source (Thermo Fisher, Hemel, UK) operating in 

positive ion mode then into an Orbitrap Velos FTMS. The ionisation voltage was 2.5 kV 

and the capillary temperature was 200 ºC. The mass spectrometer was operated in MS/MS 

mode scanning from 2=380 to 2000 amu. The top 20 multi charged ions were selected 

from each full scan for MS/MS analysis, the fragmentation method was HCD at 35% 

collision energy. The ions selected for MS2 using data dependent method with a repeat 

count of 1 and repeat and exclusion time of 15 s. Precursor ions with a charge state of 1 

were rejected. The resolution of ions in MS1 was 60,000 and 7,500 for HCD MS2. LC-

MS/MS analysis was performed under supervision of Dr. Bill Mullen and Dr. Amaya 

Albalat of Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK. 

4.2.7.2 LC-MS/MS – Data analysis 

Raw spectral data from LC-MS/MS analysis of the samples were uploaded to Thermo 

Proteome Discoverer 1.2. Peak picking was performed under default settings for Fourier 

transform mass analyzers (FTMS) analysis i.e. only >+2 peptides were considered with 

signal to noise ratio higher than 1.5 and belonging to precursor peptides between 700 – 

8000 Da. Peptide and protein identification was performed with SEQUEST algorithm. An 

in house compiled database containing proteins from the latest version UniProt SwissProt 

database was compiled to include only Bos taurus, E. coli and S. aureus entries. This 

concatenated database was selected to facilitate peptide identification and reduce the 

probability for false positive identifications upon making searches against 3 differently 

sized FASTA databases. No enzyme cleavage was selected and oxidation of methionine 

and proline were chosen as variable modifications. Precursor tolerance was set at 20 ppm 

and 0.1 Da for MS/MS fragment ions. Resulting peptides and protein hits were further 

screened by excluding peptides with an error tolerance higher than 10 ppm and by 

accepting only those hits listed as high confidence by Proteome Discoverer software. 

4.3 Results 

4.3.1 SCC measurement and acute phase proteins 

concentration 

In order to confirm the disease status of milk samples used in this study, SCC measurement 

and acute phase proteins (SAA and Hp) concentrations were determined. Table 4-1 showed 

the SCC measurement and APP concentrations in all control milk samples used in this 

study. In control milk samples, the range of SAA concentration was between 0.079 and 
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2.96μg/ml. The average of SAA concentration was 0.71μg/ml and the median of SAA 

concentration was 0.48μg/ml in control milk samples. Meanwhile, the range of Hp 

concentration was between 1.95 and 32μg/ml. The average of Hp concentration was 

12.8μg/ml and the median of Hp concentration was 12.64μg/ml. The range of SCC 

measurement in control milk samples was between 10 and 96 x 10
3
 cells/ml. The average 

was 45 x 10
3
 cells/ml and the median was 46 x 10

3
 cells/ml. Table 4-2 (a and b) showed 

the bacteriological culture results and the concentration of both SAA and Hp for mastitic 

milk samples caused by E. coli and S. aureus. For E. coli infected group, the range of SAA 

concentration was between 4.18 and 1500μg/ml. The average of SAA concentration was 

626.6μg/ml and the median of SAA concentration was 90.79μg/ml in E. coli infected 

group milk samples. Meanwhile, the range of Hp concentration was between 16.03 and 

354.26μg/ml. The average of Hp concentration was 112.5μg/ml and the median of Hp 

concentration was 98.85μg/ml. For S. aureus infected group, the range of SAA 

concentration was between 16 and 1500μg/ml. The average of SAA concentration was 

526.1μg/ml and the median of SAA concentration was 51.54μg/ml in E. coli infected 

group milk samples. Meanwhile, the range of Hp concentration was between 22.15 and 

118.83μg/ml. The average of Hp concentration was 71.44μg/ml and the median of Hp 

concentration was 78.49μg/ml. The Statistical analysis (Mann Whitney) showed that both 

SAA and Hp were significantly higher (p=0.00; p<0.05) in the infected group (E. coli and 

S. aureus) but not significantly different between two bacterial groups (p=0.958; p>0.05 

for SAA and p=0.428; p>0.05 for Hp). 
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Control milk samples    

    

Sample Ids SAA Conc.(ng/ml) Hp conc. (ng/ml) SCC (x10
3
) 

102 0.36 7.78 13 

66 0.57 16.38 14 

3 0.55 27.98 48 

62 0.079 1.95 31 

72 1.21 7.24 96 

109 0.65 13.21 10 

80 0.28 24.61 54 

100 0.48 15.36 38 

16 0.9 2.86 58 

58 0.34 1.95 56 

111 0.13 21.94 28 

48 0.39 31.95 85 

4 2.96 4.17 63 

2 1.43 1.95 32 

29 0.29 12.64 46 

Min 0.08 1.95 10 

Max 2.96 31.95 96 

Mean 0.71 12.8 45 

Median 0.48 12.64 46 

 

Table 4-1: The acute phase proteins (SAA and Hp) concentrations and SCC 

measurement in all control milk samples used in this study. The range of SAA 

concentrations was between 0.08 and 2.96 μg/ml with an average of 0.71μg/ml and a 

median of 0.48μg/ml. The range of Hp concentrations was between 1.95 and 32μg/ml with 

an average of 12.8μg/ml and a median of 12.64μg/ml. The range of SCC measurement was 

between 10 and 96 x 10
3
 cells/ml with an average of 45 x 10

3
 cells/ml and a median of 46 x 

10
3
 cells/ml. 
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Mastitic milk 

samples    

Sample Ids 

SAA Conc. 

(ng/ml) 

Hp conc. 

(ng/ml) 

Bacteriological 

results 

475 72.13 89.68 E. coli 

76 1500 115.18 E. coli 

? 1500 78.51 E. coli 

814 1500 141.26 E. coli 

692 9.48 60.27 E. coli 

697 1500 144.89 E. coli 

519 109.44 108.02 E. coli 

453 4.18 16.63 E. coli 

496 24.31 16.03 E. coli 

1222 46.02 354.26 E. coli 

Min 4.18 16.03   

Max 1500 354.26  

Mean 626.56 112.47  

Median 90.79 98.85  

 

Table 4-2a: The acute phase proteins (SAA and Hp) concentrations and bacterial 

causing mastitis in infected milk samples caused by E. coli used in this study. The 

range of SAA concentrations was between 4.18 and 1500μg/ml with an average 

626.6μg/ml and a median of 90.79μg/ml. The range of Hp concentrations was between 

16.03 and 354.26μg/ml with an average of 112.5μg/ml and a median of 98.85μg/ml.
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Mastitic milk 

samples    

Sample Ids 

SAA Conc. 

(ng/ml) 

Hp conc. 

(ng/ml) 

Bacteriological 

results 

438 48.12 70.77 S. aureus 

14 37.21 42.69 S. aureus 

980 1500 111.83 S. aureus 

708 54.96 95 S. aureus 

346 1500 86.2 S. aureus 

715 15.99 22.15 S. aureus 

Min 15.99 22.15  

Max 1500 111.83  

Mean 526.05 71.44  

Median 51.54 78.49  

 

Table 4-2b: The acute phase proteins (SAA and Hp) concentrations and bacterial 

causing mastitis in infected milk samples caused by S. aureus used in this study. The 

range of SAA concentrations was between 15.99 and 1500μg/ml with an average of 

526.1μg/ml and a median of 51.54μg/ml. The range of Hp concentrations was between 

22.15 and 111.8μg/ml with an average of 71.44μg/ml and a median of 78.49μg/ml. 
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4.3.2 Polypeptide Fingerprinting for control and infected 

groups 

Initially in this work the possibility of differences existing in the milk proteome of healthy 

cows (n=10) when compared to mastitic cows, regardless of their bacterial cause (n=16) 

was examined. The polypeptide fingerprints of these groups were very different as shown 

in Figure 4-1. The y-axis represents the molecular mass (kDa) on a logarithmic scale and 

the x-axis represents the CE migration time (min) whilst the z-axis represents the mean 

signal intensity. From the figure, higher molecular mass of peptides appeared to be in 

higher signal intensity eluting between 25 and 40 minutes in control milk samples 

compared with infected milk samples. Lower molecular mass of peptides were found to be 

present in infected milk samples eluting between 50 and 60 minutes although in low signal 

intensity as compared in control milk samples. Peptides with molecular mass between 1.5 

and 4 kDa at 30 to 45 minutes were found to be in higher abundance with higher signal 

intensity in infected milk samples compared with control milk samples. The next step was 

to investigate the differences in milk proteome of infected samples caused by two different 

bacterial pathogens (E. coli and S. aureus). The polypeptide profiles of these 2 different 

groups were almost similar in pattern as shown in Figure 4-2 except in their signal 

intensities. Peptides with molecular mass between 2.5 and 3.0 kDa at 25 to 30 minutes 

were found to be in higher signal intensity in E. coli infected milk samples as compared 

with S. aureus infected milk samples. Peptides with molecular mass between 2.0 and 4 

kDa at 35 and 40 minutes were also found to be in higher signal intensity in E. coli 

infected milk samples as compared with S. aureus infected milk samples. 
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Figure 4-1: The polypeptide fingerprints of both non-infected and infected groups. 

From these fingerprints, they clearly showed a significant differences in the pattern of 

polypeptide peaks between non-infected and infected groups. X-axis referred to the CE 

migration time in minutes whilst y-axis referred to the molecular mass (kDa) on a 

logarithmic scale and z-axis referred to mean signal intensity. 

 

 

 

Figure 4-2: The polypeptide fingerprints of both E. coli and S. aureus groups. From 

these fingerprints, they clearly showed differences in the pattern of polypeptide peaks 

between E. coli and S. aureus groups. 
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4.3.3 Model Generation of the polypeptide fingerprints for 

control and infected groups 

Based on the polypeptide fingerprints described above, multiple testing of statistical 

analysis was performed to identify peaks which discriminate between control and infected 

groups. In the first model, discriminatory peptides were selected that were able to 

differentiate between the control and infected groups with the area under curve (AUC) set 

at more than 0.99, Benjamini-Hochberg (BH) was set at less than 0.05 and Tmax less than 

0.05. With these very stringent conditions a group of 31 peaks were identified that can be 

used to discriminate between control and infected groups. From the statistical analysis, this 

model possessed 100% value for its sensitivity, specificity and accuracy. The peptides that 

from this model could be used to discriminate between non-infected and infected group is 

presented in Figure 4-3. 

Based on the polypeptide fingerprints described above, multiple testing of statistical 

analysis was performed to discriminate peaks between two infected groups caused by E. 

coli and S. aureus. There were three models generated with different values of sensitivity, 

specificity and accuracy. For Model 1 (Figure 4-4), the area under curve (AUC) was set at 

more than 0.99, Benjamini-Hochberg (BH) was set at less than 0.05 and Tmax at less than 

0.05 and 6 peaks were identified that can be used to discriminate between E. coli and S. 

aureus groups. The sensitivity value for this model was 100% whilst the specificity value 

was 91.67% and the accuracy value was 96.3%. For Model 2 (Figure 4-5), with the area 

under curve (AUC) set at more than 0.8, Benjamini-Hochberg (BH) was set at less than 

0.05 and Tmax less than 0.05, 3 peaks were identified that can be used to discriminate 

between E. coli and S. aureus groups. The sensitivity value for this model was 100% whilst 

the specificity value was 83.3% and the accuracy value was 92.52%. For the Model 3 

(Figure 4-6), with the area under curve (AUC) set at more than 0.9, Benjamini-Hochberg 

(BH) was set at less than 0.1 and Tmax less than 0.05, 13 peaks were identified that can be 

used to discriminate between E. coli and S. aureus groups. The sensitivity value for this 

model was 100% whilst the specificity value was 83.3% and the accuracy value was 

92.52%. These three models with different number of polypeptides were used to 

discriminate between E. coli and S. aureus infected groups. All polypeptides generated 

from all three models were tabulated in Table 4-3. It should be noted that a total of 13 

polypeptides appeared in at least one of the models (Table 4-4). 
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Figure 4-3: The model of polypeptide fingerprint after multiple testing of non-

infected and infected groups. This model has successfully identified 31 polypeptide 

peaks that can be used to discriminate between non-infected and infected groups. 

E. coli       S. aureus 

 

Figure 4-4: The first model of polypeptide fingerprint after multiple testing of E. coli 

and S. aureus groups. This model has successfully identified 6 polypeptide peaks that can 

be used to discriminate between E. coli and S. aureus groups. 
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E. coli      S. aureus  

 

Figure 4-5: The second model of polypeptide fingerprint after multiple testing of E. 

coli and S. aureus groups. This model has successfully identified 3 polypeptide peaks that 

can be used to discriminate between E. coli and S. aureus groups. 

E. coli       S. aureus 

 

Figure 4-6: The third model of polypeptide fingerprint after multiple testing of E. coli 

and S. aureus groups. This model has successfully identified 13 polypeptide peaks that 

can be used to discriminate between E. coli and S. aureus groups. 
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Model 1  Model 2  Model 3 

Peptide ID  Peptide ID  Peptide ID 

8093  9662  9662 

8098  8093  8093 

9092  6503  6503 

9662    8098 

13428    9092 

14889    13428 

    14889 

    9960 

    13328 

    4865 

    7557 

    13101 

    3255 

 

Table 4-3: Polypeptides that were identified from 3 models generated to discriminate 

E. coli from S. aureus infected groups. These peptides appeared in at least one of the 

models
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Peptide 

ID 

Models from where the peptide was 

found 

9662 1,2,3 

8093 1,2,3 

6503 1,2 

8098 2,3 

9092 2,3 

13428 2,3 

14889 2,3 

9960 3 

13328 3 

4865 3 

7557 3 

13101 3 

3255 3 

 

Table 4-4: A total of 13 polypeptides generated from 3 models that discriminate E. 

coli from S. aureus infected groups. Models from where the peptide was found were also 

listed. 
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4.3.4 CE-MS Analysis 

A total of 31 discriminatory polypeptides were identified from CE-MS analysis and were 

significant on the basis of comparison between control and infected groups (S. aureus and 

E. coli) and are presented in Table 4-5. Meanwhile, a total of 14 discriminatory 

polypeptides were identified from CE-MS analysis and were significant on the basis of 

comparison between two infected groups (S. aureus and E. coli) and are presented in Table 

4-6. A total of 45 discriminatory polypeptides were presented in Table 4-7 based on the 

sample type comparison (e.g: control vs infected; E. coli vs. S. aureus). These polypeptides 

were found in more than 70% of the samples in at least one of the two groups (controls or 

cases) in order to be considered as disease biomarkers. 
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Peptide ID Peptide Mass CE Migration time 

386 914.5 32.3 

895 1013.5 32.1 

963 1028.6 28.9 

2367 1275.7 32.3 

2664 1335.7 37.8 

2739 1350.7 25.1 

2740 1350.7 27.6 

2757 1352.8 21.1 

2759 1353.7 29 

3422 1481.8 39.2 

3728 1554.8 39.2 

3913 1597.8 28 

4226 1667.9 40 

5064 1893 30.8 

5217 1933.1 30.2 

5263 1947.1 30.8 

6017 2153.2 24.4 

6178 2197.3 26.7 

6465 2277.3 27.6 

6891 2390.2 33.1 

7095 2440.4 24.8 

7323 2490.4 29.7 

7333 2493.4 24.8 

11937 3720 40.5 

14110 4498.4 36.9 

14701 4780.6 26.4 

16632 6376 41.9 

16728 6517.8 29.7 

17239 7687.5 40 

19020 15873.3 26.6 

19046 16123.3 27.8 

 

Table 4-5: The discriminatory polypeptides identified from CE-MS analysis that were 

significant in the basis of comparison between control and infected groups. A total of 

31 polypeptides are presented with their mass values and CE migration times. 
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Peptide ID Peptide Mass CE Migration time 

3255 1451.8 21.4 

4865 1839 27.7 

6503 2285.2 33.1 

7557 2552.3 27.7 

8093 2676.5 34.4 

8098 2677.4 34.2 

9092 2896.5 41.4 

9094 2896.6 59.4 

9662 3028.5 39.5 

9960 3113.6 27.7 

13101 4120.2 37.5 

13328 4205.2 28.3 

13428 4237.2 37.5 

14889 4882.5 38.4 

 

Table 4-6: The discriminatory polypeptides identified from CE-MS analysis that were 

significant in the basis of comparison between two infected groups (E. coli and S. 

aureus). A total of 14 polypeptides are presented with their mass values and CE migration 

times.
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Peptide ID Peptide Mass CE Migration Time Type of comparison 

386 914.486 32.3 Control vs Infected 

895 1013.55 32.1 Control vs Infected 

963 1028.58 28.9 Control vs Infected 

2367 1275.67 32.2 Control vs Infected 

2664 1335.7 37.8 Control vs Infected 

2739 1350.71 25.1 Control vs Infected 

2740 1350.71 27.6 Control vs Infected 

2757 1352.76 21.1 Control vs Infected 

2759 1353.69 29.0 Control vs Infected 

3422 1481.8 39.2 Control vs Infected 

3728 1554.82 39.2 Control vs Infected 

3913 1597.81 28.0 Control vs Infected 

4226 1667.9 40.0 Control vs Infected 

5064 1893.01 30.8 Control vs Infected 

5217 1933.11 30.2 Control vs Infected 

5263 1947.07 30.8 Control vs Infected 

6017 2153.17 24.4 Control vs Infected 

6178 2197.26 26.7 Control vs Infected 

6465 2277.28 27.6 Control vs Infected 

6891 2390.21 33.1 Control vs Infected 

7095 2440.39 24.8 Control vs Infected 

7323 2490.36 29.7 Control vs Infected 

7333 2493.36 24.8 Control vs Infected 

11937 3720.03 40.5 Control vs Infected 

14110 4498.43 36.9 Control vs Infected 

14701 4780.55 26.4 Control vs Infected 

16632 6376.03 41.9 Control vs Infected 

16728 6517.75 29.7 Control vs Infected 

17239 7687.52 40.0 Control vs Infected 

19020 15873.3 26.6 Control vs Infected 

19046 16123.3 27.8 Control vs Infected 

3255 1451.843 21.4 E. coli vs S. aureus 

4865 1838.965 27.7 E. coli vs S. aureus 

6503 2285.208 33.1 E. coli vs S. aureus 

7557 2552.311 27.7 E. coli vs S. aureus 

8093 2676.482 34.4 E. coli vs S. aureus 

8098 2677.406 34.2 E. coli vs S. aureus 

9092 2896.512 41.4 E. coli vs S. aureus 

9094 2896.564 59.4 E. coli vs S. aureus 

9662 3028.54 39.5 E. coli vs S. aureus 

9960 3113.574 27.7 E. coli vs S. aureus 

13101 4120.18 37.5 E. coli vs S. aureus 

13328 4205.192 28.3 E. coli vs S. aureus 
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13428 4237.227 37.5 E. coli vs S. aureus 

14889 4882.521 38.4 E. coli vs S. aureus 

 

Table 4-7: The discriminatory polypeptides identified from CE-MS analysis that were 

significant in the basis of both comparison (between control and infected groups as 

well as between E. coli and S. aureus). These polypeptides are presented with their mass 

values and CE migration times. 
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4.3.5 Peptide sequencing 

In order to identify the discriminatory peptides of the models by their sequences, samples 

were analysed using LC-MS/MS. Twelve of the 45 polypeptides identified with high 

confidence are listed in Table 4-8.  Based on their masses from the CE-MS analysis and 

the number of basic amino acids in the sequence (H, R, K or histidine, arginine and lysine), 

these parameters (peptide mass and number of amino acids) were used to link the peptides 

obtained in both systems (CE-MS and LC-MS). Figure 4-7 showed a scatterplot of 

polypeptides in all milk samples from CE-MS analysis based on the number of basic amino 

acids found in the sequence. The y-axis represents the molecular mass (kDa) of milk 

polypeptides whilst the x-axis represents the CE migration time (min). Based on the 

molecular mass and the CE migration time of certain polypeptides, the number of amino 

acids found in the sequence can be determined from Figure 4-7. The number of basic 

amino acids can be used in the process of determining the peptide sequence for each 

polypeptide identified from CE-MS analysis. From Thermo Proteome Discoverer software 

and SEQUEST algorithm, the potential amino acids sequences were obtained according to 

these polypeptide masses and number of basic amino acid present in the sequence as 

presented in Table 4-8. In this table, other important parameters are presented such as the 

amino acid sequence, protein accession, probability/XCorr/scores, charge, mass-charge 

ratios (m/z), the protonated mass of the peptide (MH +), DM (ppm), LC migration time 

(RT in minutes) and number of ions matched. As the methionine and proline oxidations 

were set as variable modifications you, the lower cases were presented (e.g. p and m) 

instead of their upper cases (e.g. P and M) in the amino acid sequence. The protein 

accessions obtained from the software programme are the coded name for the protein from 

which the peptide belongs and this information was used to search for protein 

identification using protein database (e.g. UniProt or NCBI; see section 4.3.6 below). The 

probability, XCorr and score values were the statistical values provided by the Proteome 

Discoverer and SEQUEST algorithm that depict the validity of the identification. 

Meanwhile, the charge column in the table referred to the charge state in which the peptide 

was detected by the mass spectrometer and DM (ppm) means the error difference between 

the theoretical mass value of the peptide and the experimental mass value from the mass 

spectrometer. Theory mass was the mass deviation of the peptide which was calculated 

from the sequence whilst ions matched referred to the produced peptide fragments from air 

collision in the MS and were recorded in a new mass spectrum to produce the amino acid 

sequence. 
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It should be noted that not all the identified polypeptides from CE-MS analysis were 

successfully sequenced. Furthermore, even with the same peptide sequence, the statistical 

values (probability, XCorr, score values) and other parameters appeared to be different as 

the respective peptide originated from different type of samples (control, E. coli or S. 

aureus) as happened in Peptide ID 2367, 3728, 3913, 4226, 4865, 6017, 6178 and 6465.  

4.3.6 Protein identification 

As described above, protein identity was determined from a protein database based on their 

amino acid sequences. The identified and named proteins are presented as in Table 4-9. 

The UniProt Knowledgebase (UniProtKB) database was used to determine the name of 

protein by using the protein accession information of each amino acid sequence. These 

identified proteins will be discussed further in the discussion section. 
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ID 
Peptide Sequence 

Protein 
Accessions 

Pb XC Sc C m/z [Da] MH+ [Da] 
Theory 
Mass 

ΔM 
[ppm] 

RT [min] 
Ions 

Matched 
Origins of 

polypeptides 

2367 PFPEVFGKEKV P02662 2.92 3.00 1.00 2 638.85034 1276.69341 1275.68613 -0.21 64.93 11/20 Found in S. aureus 
sample 

 PFPEVFGKEKV P02662 6.16 3.97 1.00 3 426.23605 1276.69361 1275.68633 -0.05 51.09 17/40 Found in E. coli 
sample 

2757 SKVKEAMAPKHK P02666 23.81 4.33 1.00 3 451.92667 1353.76545 1352.75817 -1.29 8.26 22/44 Found in  S. aureus 
sample 

3728 YQEPVLGPVRGPFP P02666;E1BIM4 25.84 3.73 1.00 2 778.41815 1555.82903 1554.82175 1.42 59.97 14/26 Found in E. coli 
sample 

 YQEPVLGPVRGPFP P02666;E1BIM4 32.84 3.07 1.00 2 778.41870 1555.83013 1554.82285 2.13 64.93 12/26 Found in S. aureus 
sample 

3913 HKEMPFPKYPVEP P02666 1.41 3.31 1.00 3 533.60522 1598.80112 1597.79384 -1.57 41.45 16/48 Found in Control 
sample 

 HKEMPFPKYPVEP P02666;E1BIM4 1.00 4.11 0.20 3 533.60553 1598.80204 1597.79476 -1.00 39.71 17/48 Found in E. coli 
sample 

 HKEMPFPKYPVEP P02666;E1BIM4 1.00 3.93 1.00 3 533.60577 1598.80277 1597.79549 -0.54 38.86 18/48 Found in S. aureus 
sample 

 pNpKTpSSKRQVDP A5D7N6 1.00 3.34  3 533.60590 1598.80313 1597.79586 -6.39 39.22 13/52 Found in E. coli 
sample 

4226 YQEPVLGPVRGPFPI P02666;E1BIM4 18.74 3.76 1.00 2 834.95844 1668.90959 1667.90232 -0.77 64.55 15/28 Found in E. coli 
sample 

 YQEPVLGPVRGPFPI P02666;E1BIM4 4.48 3.16 1.00 2 834.95856 1668.90984 1667.90256 -0.63 66.70 12/28 Found in S. aureus 
sample 

 LYQEPVLGPVRGPFP P02666;E1BIM4 8.54 3.56 1.00 2 834.95856 1668.90984 1667.90256 -0.63 61.65 13/28 Found in S. aureus 
sample 

4865 RGPGGAWAAKVISNARET Q8SQ28;Q56J78 16.53 3.75 1.00 3 614.33032 1840.97641 1839.96914 -0.73 38.82 21/68 Found in E. coli 
sample 

 RGPGGAWAAKVISNARET Q8SQ28;Q56J78 28.50 5.18 1.00 4 460.99957 1840.97646 1839.96919 -0.71 38.01 24/102 Found in S. aureus 
sample 

5217 SRQPQSQNPKLPLSILK P80195 31.69 4.53 1.00 4 484.28540 1934.11977 1933.11250 0.79 42.73 26/96 Found in Control 
sample 

5263 QPQSQNPKLPLSILKEK  1.00 3.54 1.00 4 487.78638 1948.12368 1947.11640 0.52 41.88 22/96 Found in Control 
sample 

6017 RGSKASADESLALGKPGKEPR  10.05 3.87 1.00 5 431.63834 2154.16257 2153.15530 -0.05 15.95 27/160 Found in Control 
sample 

 RGSKASADESLALGKPGKEPR Q4VS17 9.18 3.77 1.00 5 431.63849 2154.16334 2153.15606 0.30 16.34 24/160 Found in Control 
sample 

 RGSKASADESLALGKPGKEPR  6.92 3.92 1.00 5 431.63867 2154.16425 2153.15698 0.73 15.54 28/160 Found in E. coli 
sample 

 RGSKASADESLALGKPGKEPR  9.66 4.66 1.00 5 431.63867 2154.16425 2153.15698 0.73 15.71 27/160 Found in S. aureus 
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Table 4-8: The amino acid sequences of potential biomarkers from the LC-MS/MS analysis. Various other parameters are also presented to help 

better understanding of each of the polypeptides. 

sample 

6178 QPQSQNPKLPLSILKEKHL P80195 22.10 4.59 1.00 5 440.45886 2198.26521 2197.25793 -0.20 44.31 24/144 Found in E. coli 
sample 

 QPQSQNPKLPLSILKEKHL P80195 9.81 4.05 1.00 5 440.45926 2198.26719 2197.25991 0.70 44.51 21/144 Found in Control 
sample 

6465 SSRQPQSQNPKLPLSILKEK P80195 53.89 6.33 1.00 5 456.46353 2278.28855 2277.28127 0.31 34.79 31/152 Found in E. coli 
sample 

 SSRQPQSQNPKLPLSILKEK P80195 22.40 6.44 1.00 5 456.46353 2278.28855 2277.28127 0.31 35.85 29/152 Found in S. aureus 
sample 

 SSRQPQSQNPKLPLSILKEK P80195 49.13 5.28 1.00 5 456.46356 2278.28870 2277.28143 0.37 36.94 28/152 Found in Control 
sample 

7095 SRQPQSQNPKLPLSILKEKHL P80195 1.00 3.96 1.00 5 489.08575 2441.39967 2440.39239 0.35 39.30 25/160 Found in Control 
sample 
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Figure 4-7:  Milk polypeptides detected in CE-MS analysis based on the number of 

basic amino acids found in the amino acid sequence. Y-axis represents the molecular 

mass (kDa) and x-axis represents the CE migration time (min). The red line is specific for 

the number of basic amino acids in the sequence. Up to five basic amino acids can be 

found in certain amino acid sequence. The higher number of basic amino acids found in the 

sequence, the shorter migration time for the CE-MS analysis. This diagram can be used to 

match the sequence from LC-MS/MS analysis for each polypeptides identified from CE-

MS analysis. 
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Peptide 

ID Sequence Protein Identity 

Fq in 

contro

l 

Fq in 

infected 

Fq in 

E. 

coli 

Fq in S. 

aureus 

2367 PFPEVFGKEKV αS1-casein 0.80 1.00     

2757 SKVKEAMAPKHK β-casein 0.50 1.00     

3728 YQEPVLGPVRGPFP β-casein 0.30 1.00     

3913 HKEMPFPKYPVEP β-casein 0.10 1.00     

4226 YQEPVLGPVRGPFPI β-casein 0.20 1.00     

4865 RGPGGAWAAKVISN

ARET 

serum amyloid 

A 

    1.00 0.58 

5217 SRQPQSQNPKLPLSIL

K 

Glycosylation-

dependent cell 

adhesion 

molecule 1 

1.00 0.07 

    

5263 QPQSQNPKLPLSILKE

K 

Protein 

accession not 

available 

1.00 0.48 

    

6017 RGSKASADESLALGK

PGKEPR 

Fibroblast 

growth factor 

binding protein 

1.00 0.59 

    

6178 QPQSQNPKLPLSILKE

KHL 

Glycosylation-

dependent cell 

adhesion 

molecule 1 

1.00 0.15 

    

6465 SSRQPQSQNPKLPLSI

LKEK 

Glycosylation-

dependent cell 

adhesion 

molecule 1 

1.00 0.74 

    

7095 SRQPQSQNPKLPLSIL

KEKHL 

Glycosylation-

dependent cell 

adhesion 

molecule 1 

1.00 0.07 

    

 

Table 4-9: The protein identities obtained from the UniProtKB database 

(www.uniprot.org/uniprot). The frequency of each of the identified protein was also 

presented according to the respected groups. 

 

 

 

 

 

http://www.uniprot.org/uniprot
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4.4 Discussion 

The mastitic milk samples chosen in this study had significantly higher acute phase 

proteins concentrations for both SAA and Hp as compared with the healthy milk samples 

(p<0.05). However, the concentrations for both SAA and Hp were not significant between 

E. coli and S. aureus infectedgroup (p>0.05). The SCC measurement for all healthy milk 

samples was less than 100 000 cells/ml which confirmed the healthy status of the cows 

(average of 46 x 10
3
 cells/ml). 

The chosen peptidomic method of capillary electrophoresis (CE) coupled with the 

electrospray mass spectrometry is known as a rapid (approximately 45 min per sample), 

sensitive method using its automated approach (Kolch et al. 2005). It was used in this 

study to detect differences in the milk peptidome between healthy cows (control) and 

mastitic cows caused by two different bacterial pathogens (E. coli and S. aureus). 

All milk samples were analyzed by CE-MS and only polypeptides present at a frequency 

>70% in at least one of the two groups (control and cases) were chosen for analysis. The 

compiled data for all test groups (control, all infected, E. coli and S. aureus) are shown in 

Figure 4-1 and 4-2. It was found that the milk polypeptide patterns of infected cows were 

markedly different from control cows (Figure 4-1). However, the milk polypeptide patterns 

of both bacterial groups (E. coli and S. aureus) were more similar (Figure 4-2). 

For identification of potential biomarkers for bovine mastitis, milk polypeptides of healthy 

cows were compared with those of cows with mastitis regardless of its bacterial pathogen. 

This analysis identified 31 polypeptides of statistical significance after correction for 

multiple testing (p < 0.05 in max T testing) with 100% sensitivity, specificity and 

accuracy. The distribution of the polypeptides in these groups is shown in Figure 4-3. It is 

observed that the identified polypeptides significantly higher in the infected than control 

group were of lower molecular mass (y-axis) and appeared at much later time of migration 

(x-axis) which is an indicator of containing a lower proportion of basic amino acids. 

To identify biomarkers that could discriminate between two mastitic groups caused by E. 

coli and S. aureus, the analysis successfully generated three different models with different 

values of sensitivity, specificity and accuracy. Model 1 appeared to have 100% sensitivity, 

91.67% specificity and 96.3% accuracy. Six peaks of discriminatory polypeptides were 

found in this model. In Model 2, the sensitivity was 100% with the specificity of 83.3% 

and accuracy of 92.52%. Three peaks of discriminatory polypeptides were found in this 
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model. Finally, Model 3 appeared to have 100% sensitivity, 83.3% specificity and 92.52% 

accuracy. 13 peaks of discriminatory polypeptides were found in this model. In conclusion, 

a total of 13 discriminatory polypeptides were identified from these three models generated 

(Table 4-4). 

The previous step is known as the learning phase in which the „training set‟ was used to 

generate a polypeptide pattern with significant biomarkers (Zürbig et al. 2009). To 

complete biomarker identification exercise, after this training, the model should be able to 

characterize further unknown data sets so that a correct classification can be confirmed. 

There are only a few studies on peptide analysis of milk from cows with bovine mastitis 

using milk samples (Wedholm et al. 2008; Larsen et al. 2010). Both studies employed the 

same method in separating the peptides by RP-HPLC with further protein characterization 

by MALDI-TOF/MS/MS. These studies were also focused on the result of proteolysis 

caused by different types of proteolytic enzymes. Wedholm et al. (2008) have successfully 

identified 10 peptides from milk with high SCC (16 000 000 cells/ml) while Larsen et al. 

(2010) on the other hand identified approximately 20 different peptides in milk samples 

infused with LTA of S. aureus as a result of proteolysis.  

However, the objective of these studies was to gain better understanding in the milk 

proteinase activities during mastitis and in comparison, this present study is focused on 

how the peptide profile of the milk samples can be changed in the presence of bovine 

mastitis. In addition, the discovery of significant peptide biomarker in bovine mastitis was 

also one of the important objectives in this present study. 

Although further model validation will be needed as discussed above, protein identification 

of these discriminatory polypeptides should be done to provide an initial insight on the 

change of peptide profiles in milk samples infected with bovine mastitis. It was interesting 

to see the presence of peptide ID 9094 as one of the discriminatory polypeptides detected 

from the generated model that can be used to discriminate E. coli from S. aureus infected 

group (Table 4-3 and 4-4). However, this polypeptide was not detected from the CE-MS 

analysis that discriminate E. coli from S. aureus infected group (Table 4-6). Although it 

was not a statistically significant polypeptide that discriminated very well between E. coli 

and S. aureus infected group, this shouldn‟t be a problem because we were interested in 

determining the peptide sequencing in the LC-MS system. Thus, it would have been a good 

idea to be able to identify this polypeptide by sequencing in the LC-MS/MS analysis. 
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 A total of 45 discriminatory polypeptides (31 polypeptides which discriminate healthy 

from mastitis cases and 14 polypeptides which discriminate E. coli from S. aureus infected 

cases) from CE-MS analysis were then analysed for their amino acid sequence by LC-

MS/MS As the only parameters used to link the peptides obtained in both systems (CE-MS 

and LC-MS/MS) were peptide mass and the number of basic amino acids, it can lead to 

mass ambiguities due to the highly complex peptide mixtures which complicate the 

assignment of sequences obtained from different separation methods. A further factor was 

the fact that the mass spectrometers used in the two systems were different. For peptide 

identification, the LC-MS was used but it was not possible with 100% certainty to correlate 

the results from the CE-MS with the results from the LC-MS/MS data.  

Despite having a problem with mass ambiguity, the results from the LC-MS/MS analysis 

can be used to determine the protein identity for each of the sequences. However, not all of 

these 45 polypeptides identified by CE-MS were able to be sequenced by the LC-MS/MS. 

This occurred as the peptide mass calculated from the CE-MS analysis was not matched 

with the peptide mass calculated from the LC-MS/MS analysis. It should also be noted that 

the peptide mass calculated from the LC-MS/MS was based on the mass of peptide plus 

one proton which made them one unit more than the mass calculated from CE-MS 

analysis.  

Due to the problem in sequencing, a total of 12 polypeptides were able to be sequenced by 

LC-MS/MS (Table 4-8). From the total of 12 successfully sequenced polypeptides, 11 

were used to discriminate control milk samples from the infected milk samples. Only 1 

sequenced polypeptide in the set was used to discriminate E. coli infected milk samples 

from S. aureus infected milk samples. The origin of the milk peptides from which the 

sequenced polypeptides was found is presented in Table 4-8. Based on their protein 

accession information, these polypeptides were identified by their amino acid sequences. 

UniProtKB database was searched for each of the protein identity. Amongst the 12 

peptides that were successfully identified were sequences from α S1-casein, β-casein, 

serum amyloid A protein (SAA), glycosylation-dependent cell adhesion molecule 1 

(GlyCAM-1) and fibroblast growth factor binding protein (FGFBP) which were mostly on 

the bovine protein database as showed in Table 4-9. 

As the focus was on discriminatory polypeptides, the discussion will be presented based on 

the polypeptides/proteins that were able to discriminate between control, infected and two 

different bacterial pathogens groups. Statistically, α S1-casein, β-casein, GlyCAM-1 and 
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FGFBP were the proteins that can be used to discriminate the infected group (regardless of 

its causing bacterial pathogen) from the control group.  

During mastitis, the proteolytic activity in milk can be increased substantially (Verdi et al. 

1987). Apart from β-casein, plasmin can also hydrolyses α S2-casein and α S1-casein 

(Larsen et al. 2006) which explain the presence of peptides of α S1-casein in the infected 

group higher compared with the control group from the hydrolytic activity in milk. 

Statistically, peptides from glyCAM 1 and FGFBP were the peptides that can be used to 

discriminate the control from the infected groups. The presence of glyCAM 1 protein in 

bovine milk has been reported previously by Smolenski et al. (2007) and Boehmer et al. 

(2010). Smolenski et al. (2007) have identified it as one of the minor milk protein that 

present in all peak lactation, colostrums and mastitic whey and MFGM whilst Boehmer et 

al. (2010) considered it as one of the host defence proteins. Again, it was also surprising to 

observe this minor milk protein which acts in the host defence mechanism to appear in the 

control group in higher frequency compared with the infected group. 

The fibroblast growth factor-binding protein (FGFBP) is a secreted carrier protein that 

releases fibroblast growth factors (FGFs) from the extracellular matrix storage and thus 

enhancing the FGF activity (Xie et al. 2006). Kawakami et al. (2006) concluded that 

FGFBP may be tightly associated with lactoferrin in bovine milk. Plath et al. (1998) 

successfully examined the expression and localization of FGFBP in the bovine mammary 

gland and it may be important in the local regulation of the bovine mammary gland.  

Peptides from SAA (protein ID 4865) were the only discriminatory peptides that were 

sequenced that were significantly that can be used to differentiate E. coli infected group 

from S. aureus infected group. Serum amyloid A protein was one of the important acute 

phase protein in bovine mastitis and it can be produced locally in the mammary gland 

making it a more reliable indicator of bovine mastitis (Eckersall et al. 2001, 2006) but not 

a single previous study that able to determine if SAA can significantly discriminate E. coli 

from S. aureus infected milk samples.  

No other identified peptides could be used to discriminate S. aureus infected group from E. 

coli infected group. Perhaps the use of sample size calculation is needed so that more 

polypeptides can be sequenced that are able to significantly discriminate between these two 

groups. 
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Although several proteins were successfully identified as the precursor of the peptides 

using the protein database based on their sequences, those proteins cannot be used per se as 

the potential markers in each group. The reason is that, it is the peptides of specific 

fragments of the proteins identified as biomarkers. The protein identity only provided with 

an insight into which protein were affected and played role in the disease mechanism. It is 

possible that specific peptides resulted from proteases of the cow rather than bacterial 

proteases. Thus, no ultimate conclusion can be made based on the protein identity that has 

been identified in each of the group. 

The results discussed above can provide an initial insight on how the milk peptide profiles 

can change as result of bovine mastitis. However, these results can be improved by 

applying further improvements. First, validation of SVM models is needed to demonstrate 

that these milk peptidomes really are able to differentiate healthy cows from mastitic cows 

with different bacterial-causing pathogens. More milk samples without knowing their 

infection status (blinded samples) should be tested to validate these models.  By validating 

these models, the status of each marker in each group (control, infected, E. coli or S. 

aureus infected milk groups) can be confirmed and may eventually be used to determine 

the presence of bovine mastitis in the cows or even to predict the type of bacterial pathogen 

that lead to inflammation of the mammary gland. 

Second, it was not possible with 100% certainty to correlate the results from the CE-MS 

with the results from the LC-MS/MS data based on peptide masses, this situation can lead 

to mass ambiguities due to the highly complex peptide mixtures involved which 

complicates the assignment of sequences obtained from different separation methods and 

also due to the fact that the mass spectrometers used after CE-MS and LC-MS/MS were 

different. Therefore, further work should be conducted in order to resolve this ambiguity 

issue by running samples with internal standards of known mass in both systems. In this 

way, an internal mass calibration of each sample can be done that would allow a more 

correct cross-correlation of results between both systems. 

It would also be interesting to propose a time-course of infection study for future work and 

determine the earliest time that can be applied to diagnose an infected cow based on the 

proposed polypeptide biomarker of bovine mastitis and if the putative biomarkers would be 

able to discriminate subclinical mastitis from clinical mastitis and healthy group. More 

information on peptide sequencing can lead to a better understanding of the 
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pathophysiology of bovine mastitis and eventually could help in improving the bovine 

mastitis detection. 
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Chapter V: Metabolomics Analysis in Bovine 

Mastitis 

5.1 General Metabolomics 

Being one of the most newly emerged “-omics” sciences, metabolomics is becoming one 

of the most significant field of study in system biology which complements the other “-

omics” and proving to have unique advantages. It was first proposed by Oliver (1998), and 

seeks to characterize and quantify the whole collection of both intra and extra-cellular 

metabolites. The metabolome is defined as the qualitative and quantitative collection of all 

low molecular weight of molecules that are present in biological fluid, organism or cell 

under a different set of physiological conditions (Tyagi et al. 2010; Banderas et al. 2011).  

These metabolites include a diverse range of endogenous and exogenous chemical 

molecules such as peptides, amino acids, nucleic acids, carbohydrates, organic acids, 

vitamins, polyphenols, alkaloids and any other chemical that is used, ingested or 

synthesized by a given cell or organism (Wishart 2008). Some of the metabolites are 

acquired externally but most are products or intermediates from metabolic reactions 

(Tomita and Nishioka 2005). 

Metabolomic analyses involve two basic methodologies (Nielsen and Jewett 2007). First is 

metabolite profiling which allows qualitative screening of a large number of metabolites 

(usually more than 100) and the pattern of metabolites produced via high-throughput 

detection can be used to find discriminatory elements followed by data deconvolution 

methods. This method covers metabolic fingerprinting (analysis of endometabolome) and 

metabolic footprinting (analysis of exometabolome). According to Álvarez-Sáchez et al. 

(2010), global metabolomics profiling involved detection of metabolites by using a single 

analytical platform or a combination of complementary analytical platforms (GC-MS, LC-

MS, CE-MS or NMR). The second method is target analysis which aims to produce 

absolute or semi-quantitative detection of metabolites. Previously, only small numbers of 

metabolites were able to be analyzed but with new development on quantitative analysis, 

more expanded metabolite coverage can be performed. 

However, the comprehensive analysis of a wide range of metabolites is only possible with 

the use of recent technological advancements in separating and identifying these molecules 

(Wishart 2008). The most widespread analytical platforms include robust, high-resolution 

mass spectrometry (MS) instruments, nuclear magnetic resonance (NMR) spectrometers, 
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capillary electrophoresis (CE) and ultra-high pressure liquid chromatography (UPLC and 

HPLC). Many investigations have used an integration of various analytical methods such 

as gas chromatography combined with mass spectrometry (GC-MS) and liquid 

chromatography combined with mass spectrometry (LC-MS) to improve metabolite 

identification and coverage (Álvarez-Sáchez et al. 2010). 

There are many advantages to studying the metabolome in comparison with transcriptome 

and proteome. According to Dunn & Ellis (2005) and Álvarez-Sáchez (2010) 

metabolomics is often seen more useful because the number of metabolites is smaller than 

the number of proteins and genes in a cell which reduces the sample complexity. 

Furthermore, the concentration of metabolites can significantly change during biochemical 

reaction even though the concentration of enzyme and metabolic flux may not be 

significantly altered (Kell and Mendes 1999). As the downstream product of gene 

expression, the metabolome reflects the functional level of the cell more appropriately and 

is thought to be amplified in physiological changes as compared to proteome and 

transcriptome. Furthermore, metabolic fluxes are more influenced by environmental stress 

than gene expression, making the measurement of metabolites more appropriate. Finally, 

metabolic profiling is less expensive than proteomic and transcriptomic experiments. 

Despite having many benefits for the analysis of smaller molecules, one major problem in 

metabolomics is the lack of standardized methods especially in the analysis of global 

metabolomics (Álvarez-Sáchez et al. 2010). A standard metabolomic experimental 

approach is needed from sample collection through chemical analysis to data processing. 

Metabolomics has been applied to various investigations such as determining the metabolic 

biomarkers that act as indicators to the presence of a disease or as a response towards drug-

based intervention.  Other than that, various metabolomic studies have been performed on 

plants and microbes (Le Gall et al. 2003) and on bacterial characterisation (Vaidyanathan 

et al. 2002). For the past few years, metabolomic analyses has gained an interest in food 

and nutrition fields to give a more comprehensive molecular picture on food composition 

as well as food consumption.(Wishart 2008). 

5.1.1 Metabolites in milk and serum found during bovine 

mastitis 

Metabolomics provide a very important tool to analyse changes in milk metabolome during 

the presence of bovine mastitis because of its rapid and high throughput characterization of 

small molecule metabolites found in milk or serum.  
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There have been many studies on the metabolites in milk and serum in relation to mastitis 

from the era when metabolism study used traditional methodologies. An early study by 

Peter et al. (1990) investigated the metabolites of prostanoids in milk of heifers after 

intramammary infusion of E. coli organisms.  Prostanoids are known to be important 

mediators in the inflammatory processes associated with endotoxin-induced mastitis. 

Increases of arichidonic acid metabolites such as thromboxane A2, prostaglandin E2 

(PGE2) as well as milk prostacyclin (PCM) were seen in milk from infected quarters. The 

increased concentrations of these metabolites showed that they have an important role in 

the pathophysiologic process of coliform mastitis released as the mediators during 

inflammation. 

The presence of change in metabolites during mastitis is also associated with other factor 

such as dietary selenium (Se). A study by Maddox et al. (1991) showed that cows with Se 

deficiency (-Se) contained significantly higher concentrations of PGE2, 6-keto-

prostaglandin F1α and leukotriene B 4 (LTB4)  in milk after E. coli inoculation as 

compared with milk from cows with Se sufficiency (+Se). The higher eicosanoid 

concentration in milk was associated with higher number of bacteria. This is may be due to 

impaired killing abilities of selenium deficiency polymorphonuclear leukocytes (PMNL) as 

during non-specific immune response such as in coliform mastitis, the function and activity 

of PMNL are highly influenced by eicosanoids. Greater concentration of these eicosanoid 

levels in milk of –Se cows is due to the increase of substrate availability and enzyme 

activity from the activation of cyclooxygenase and lipoxygenase enzymes in the Se-

glutathione peroxidase (Se-GSH-Px) depleted state. The severity of clinical signs seen in –

Se cows could be at least partially caused by the higher eicosanoid concentrations in the 

milk as they have play an important role in the pathogenesis of inflammatory and 

endotoxin-induced diseases. 

Serum trace minerals were also studied (Erskine and Bartlett 1993) during E. coli-induced 

mastitis in which a transient depression in both plasma zinc (Zn) and iron (Fe) was seen 

during intramammary challenge with E. coli. High number of bacteria (E. coli) secreted in 

milk over time was correlated with the severity of clinical signs of infection as well as with 

decreased plasma Zn and Fe concentrations. These divalent cations are important in the 

growth of gram-negative bacteria such as E. coli and reduced concentrations of both Zn 

and Fe may be part of defence mechanism to limit the bacterial growth. As for copper (Cu) 

concentration, this study did not show any increase during the inflammatory process but in 

fact, it decreased to 75% of pre-challenge levels 24 hours post inoculation. This is not in 
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accordance with the previous study by Conner et al. (1986) in which they found increased 

ceruloplasmin during the acute phase response in cattle as well as studies by Barber et al. 

(1988) and Etzel et al. (1982) where they found increased in serum ceruloplasmin in both 

rats and hamster. Ceruloplasmin is the Cu-binding protein which plays a role as a 

scavenger for superoxide anion radicals. The difference might be due to species 

differences.  

Gram negative mastitis in early lactation may also influenced the ovarian and certain 

endocrine functions and metabolism in dairy cows. Huszenicza et al. (1998) found that 

during lipopolysaccharide (LPS) loading, various events occurred that might impair the 

ovarian functions such as delay in the resumption of cyclicity or even causing premature 

luteolysis if sensitive corpus luteum is present simultaneously on the ovary caused by 

prostaglandin F2α. However, based on individual progesterone (P4) profiles in the blood of 

the affected cows, gram negative mastitis influenced the ovarian function during the 3
rd

 up 

to 10
th

 weeks of lactation. During early puerperal (<14 days) mastitis, its prevalence was 

not influenced by the concentration of acetoacetone, β- OH butyrate (BHB) or non-

esterified fatty acids. Cows affected with different forms of early puerperal mastitis did not 

show any delay in the onset of cyclicity either. 

Interesting metabolites that exist in the milk are the reactive oxygen metabolites that 

include superoxide anion (O2
-
), hydroxyl radical (OH), hydrogen peroxide (H2O2) and fatty 

acid radicals (Lindmark-Månsson and Åkesson 2000). These reactive metabolites are 

released by PMN after phagocytising foreign particles or bacteria and discharging their 

granules’ contents. Although they are harmful to bacteria, these oxidants are known to be 

cytotoxic and can induce tissue damage by destroying host cells. To control these reactive 

oxygen radicals, anti-oxidants are also present in the milk during the inflammatory 

processes which include natural vitamins (vitamin E and C), beta-carotene and enzymatic 

systems mainly represented by superoxide dismutase (SOD), catalase and glutathione 

peroxidase (GSHPx). A study by Hamed et al. (2008) investigated the level of these anti-

oxidants in association with the bulk milk somatic cell counts (BMSCC). Because oxidants 

released by PMN induce cellular damage (Weiss 1989; Van Asbeck 1990) and antioxidants 

are needed to control these reactive oxygen metabolites, the relationship between milk 

somatic cells and antioxidant activities was studied. SOD activity was found to be 

unaffected by BMSCC. SOD activity was weakly dependent upon BMSCC and suggested 

that SOD incorporation did not prevent the cytotoxic effect of the oxygenated radicals and 

pointed out the importance of other anti-oxidants. As for the catalase, it showed increased 
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activity in high BMSCC samples probably playing a central role in milk redox control 

especially during mastitis. It also could be used as an indicator in mastitis. This study also 

showed a positive correlation between GHSPx activity with the BMSCC especially with 

the neutrophil content but its role in bovine milk was thought to be limited. However, it 

was concluded that catalase and GSHPx are the principal enzymatic defence that neutralize 

the harmful free radicals.  

Metabolic activity is able to influence the health of the udder.  Near parturition and in the 

period of early lactation, there is a large nutrient demand in which nutrients are mobilized 

from tissue reserves. This results in changes in blood concentration of both hormones and 

metabolites (Ingvartsen and Friggens, 2005). In general, primiparous cows have a greater 

prevalence of mastitis as several important immune factors are impaired around calving. 

Thus, one study by Nyman et al. (2008) revealed that blood concentration of β-

hydroxybutyrate (BHBA), nonesterified fatty acids (NEFA), glucose and α-tocopherol 

around calving were associated with the SCC at first test-milking of primiparous cows. 

Immune variables such as the collectins which consist of collectin-43 (CL-43) and 

conglutinin as well as haptoglobin (Hp) were also seen to be correlated with Box-Cox 

transformed SCC (bcSCC) and these correlations must be based from a direct breed effect. 

It is also known that age and breed factors were significantly associated with several 

metabolites and immunological variables. For example, heifers calving at an older age had 

greater concentrations of serum BHBA and NEFA but lower glucose, insulin and urea 

nitrogen values compared with heifers calving at a younger age (Nyman et al. 2008). This 

has shown that older heifers were in more severe negative energy balance in the period 

around calving and in early lactation than younger heifers. 

Another study that investigated various metabolites in serum and their variation during the 

transition period in dairy cows was performed by Moyes et al. (2009). This study is in 

agreement with Nyman et al. (2008) in which there was an increased NEFA concentration 

in cows that developed clinical mastitis at calving and during early lactation. Thus, higher 

circulating NEFA was shown to inhibit immune responses that lead to the development of 

mastitis especially during early lactation. Clinical mastitic cows also showed higher 

circulating BHBA concentrations during the transition period. This result was in contrast 

with that of Nyman et al. (2008) in which high BHBA concentrations were associated with 

lower bcSCC at the first test-milking during early lactation. According to Nyman et al. 

(2008), this increase may be associated with microbial butyrate production from rumen 

carbohydrate fermentation, which is then converted to BHBA in the rumen epithelium. As 
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for glucose levels, the results were inconclusive. Higher glucose levels were seen during 

pre-partum period in cows that developed clinical mastitis as compared to cows that did 

not developed mastitis during early lactation period.  This can be explained by the lack of 

difference in insulin concentration in clinical mastitic cows and this might suggested a 

lower efficiency of glucose clearance from circulation for these cows compared with 

subclinical mastitic and healthy cows.  This study also suggested that aspartate 

aminotransferase (ASAT) has no association with the development of clinical and 

subclinical mastitis during the first week of lactation making it a less useful marker to 

evaluate the risk of mastitis due to low specificity of ASAT in lactation. Overall, NEFA 

was the most consistent with least conflicting positive association with the development of 

mastitis and making it the most useful marker for the risk of mastitis during early lactation. 

The use of metabolites as the risk factors of mastitis is promising but further investigations 

are needed. 

Melendez et al. (2009) studied a relationship between NEFA at calving with the incidence 

of many periparturient diseases including mastitis in Holstein dairy cattle. The authors 

agreed that increased in NEFA concentrations in serum have been associated with impaired 

immunity which predisposed cows to periparturient diseases. Thus the NEFA values at 

calving can be used to monitor the nutritional management as well as to be used as 

indicators in the risk factors in many periparturient diseases including mastitis. 

Metabolites can also be produced by the mastitis-causing pathogens. These metabolites 

have been used to determine the pathogen. This is based on the fact that all 

microorganisms produced their own range of often volatile metabolites. Hettinga et al. 

(2008) identified a wide range of volatile metabolites that were produced by different types 

of microorganisms using a solid-phase microextraction (SPME) coupled to gas 

chromatography/mass spectrometry (GC/MS). In this study, they found that volatile 

metabolites found in milk from uninfected quarters differed significantly from those found 

in milk from infected quarters. Lower numbers and amounts of metabolites were found in 

the samples from uninfected quarters compared to the samples from mastitis quarters. For 

example, S. aureus and E. coli both formed a large amount of ethyl acetate and acetic acid. 

It was confirmed that different microorganisms produced different types of metabolites 

which means that the presence of certain volatile metabolites in infected milk samples 

could be used to detect and identify mastitis-causing pathogens. 

A further study on volatile metabolites in mastitis milk samples by the same authors 

investigated the origin of these components (Hettinga et al. 2009). Although it is known 
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that pathogens are responsible to the presence of volatile metabolites in mastitic milk 

samples, some of these detected metabolites may also be formed by enzymes, present in 

the blood of the animals but which travel into the milk due to the disruption of blood-milk 

barrier during inflammatory process. Around 20% of metabolites identified in this study 

were found to be different between inoculated milk (milk from healthy animals inoculated 

with the same bacteria) and mastitic milk samples. Nevertheless, most of the volatile 

metabolites detected in mastitis samples are mainly formed by the pathogens except for 

ethyl esters of free fatty acids (FFA) which were absent or significantly lower in inoculated 

samples. These metabolites are formed by the esterase enzymes found in cow’s blood. 

During mastitis, due to increase leaking of the barrier between blood and udder, esterase 

enzymes can be found in the mastitic milk (Raulo et al. 2002). Thus, during mastitis, this 

enzyme can probably transfer from the blood to the milk due to disruption of the blood-

milk barrier. Furthermore, dimethyl sulphide may be useful for E. coli identification as it 

was found that dimethyl sulphide concentrations is increased in samples inoculated with E. 

coli. 

Another type of metabolite which is seen to have an effect in milk production are the 

metabolites of nitric oxide (NO). Bouchard et al. (1999) have investigated the nitric oxide 

production during endotoxin-LPS induced bovine mastitis. In this study, a significant 

three- to five-fold of increase in nitrate and nirite contents (metabolites of nitric oxide) 

were formed in milk samples upon LPS infusion. Nitric oxide is produced from L-arginine 

by the enzymes termed as nitric oxide synthase (NOS). Inducible isoforms of NOS (iNOS) 

are also thought to be cause overproduction of nitric oxide. It is known that somatic cells 

are responsible for the production of nitric oxide although in this study, it did not establish 

of which cell type(s) that is (are) involved. They have also studied the effect of co-infusion 

of LPS with an inhibitor of iNOS; aminoguanidine which successfully prevented the nitric 

oxide production upon LPS infusion. These results confirmed the activity of iNOS during 

the endotoxin-induced inflammatory reaction.  

During lactation, nitric oxide synthase plays a role in generating nitric oxide contained in 

the mammary gland tissues (Lacasse et al. 1996). Nitrate and nitrite are the end products of 

nitric oxide oxidation in aqueous solutions (Moncada et al. 1991). Milk also contains S-

nitrosothiols (RSNO) which are also metabolites of short-lived NO. Because milk contains 

lactoperoxidase, nitrite can be oxidized to toxic nitrogen dioxide (Silanikove et al. 2005). 

A study by Titov et al. (2010) revealed by using an enzyme sensor method that in healthy 

milk and colostrums, no nitrite compounds were found. Thus, its presence in milk can be 
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an indicator of mastitis. However, the occurrence of these compounds was accompanied 

with a lower content of RSNO which possibly occurs under the effect of reactive oxygen 

species. Nitrite also can be produced by leukocytes. As said earlier, the oxidation of nitrite 

by lactoperoxidase can lead to the production of toxic nitrogen dioxide, a powerful oxidant 

that could cause the oxidative breakdown of milk lipoprotein. To avoid this toxic effect, 

the presence of high concentrations of other compounds that are able to compete with 

nitrite for lactoperoxidase is important (thiocyanate and ascorbate). 

5.1.2 Aims of Study 

In conclusion, the aim of this study is to apply metabolomic study by the use of LC-

MS/MS analysis to study the presence of important metabolites that can be used to 

discriminate normal milk samples from milk samples from quarters infected with bacteria 

causing bovine mastitis. It was hoped that by using this sensitive and high-throughput 

methodology, significant results could be achieved and lead to the discovery of important 

and significant mastitis biomarkers and that differences may be found in samples of milk 

from infected quarters caused by different pathogens. 

5.2 Materials and Methods 

5.2.1 Animals and Samples 

Milk samples from clinical mastitic cases were sent from Vale Veterinary Laboratory, 

Devon, UK and bacteriological culture was performed in the Bacteriology Laboratory of 

Vale Veterinary Laboratory to determine the bacterial cause of bovine mastitis. Milk 

samples from mastitis caused with either E. coli (n=10) or S. aureus (n=6) infection were 

collected for further analysis. Control milk samples (n=10) from healthy cows from the 

Cochno Farm of School of Veterinary Medicine, University of Glasgow were also used in 

this study as comparison to those clinical mastitic cases. The healthy milk samples were 

confirmed by somatic cell counts (<100 000 cells/ml). Prior to metabolomic analysis, SAA 

and Hp assays (Chapter 2) were performed determine the concentration of both acute phase 

proteins in each milk sample for further confirmation of disease status. Samples were 

stored at -20°C prior to analysis. 

5.2.2 Chloroform and methanol Extraction 

5.2.2.1 Reagent preparation 

A mixture (1:3) of chloroform: methanol was prepared by adding 20ml of chloroform into 

60ml methanol.  
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5.2.2.2 Extraction method 

An aliquot of 500µl of each milk sample was added to 2ml of 1:3 chloroform: methanol 

solution and mixed vigorously in the cold room at 4ºC for 2 hours. Next, the sample was 

centrifuged at 13 000 x g for 3 minutes at 4ºC. The supernatant was aspirated and was then 

stored at -80ºC until analysis by LC-MS. 

5.2.3 LC-MS Analysis 

LC/MS was carried out using a Dionex UltiMate 1 coupled to an Orbitrap Exactive. The 

separation of metabolites was performed using a 4.6 x 150mm ZIC-HILIC column at 

300μl/min. The gradient ran from 80% acetonitrile (ACN) to 20% ACN in 30 minutes, 

with a step to 5% ACN for 9 minutes. Re-equilibration was then performed for 6 minutes 

at 80% ACN. 10μl of each sample was used per run. The MS acquisition was performed in 

both negative and positive ionisation modes with full scan modes. The MS was set at 

50,000 resolution with the scan range from 70-1400 amu. The LC-MS analysis was 

performed under supervision of Dr. Karl Burgess of Sir Henry Wellcome Functional 

Genomic Functional, University of Glasgow, UK. 

5.2.4 Data Acquisition 

The LC/MS data was analyzed using MzMine software (version 2.0) 

(http://mzmine.sourceforge.net/index.shtml; Finland and Japan). For the peak detection, a 

noise threshold of 5000 and m/z tolerance of 0.0005 Da was performed. An alignment with 

a mass tolerance of 0.0005 and a retention time tolerance was 15 seconds. 

5.2.5  Analysis of Individual Metabolites 

Output from the LC/MS for both positive and negative modes was obtained as spreadsheet 

of mass-to-charge ratio peaks for each sample and with m/z values providing molecular 

formula by comparison to metabolite database and a putative identification was based on 

the formula. Not all m/z peaks gave identified metabolites. For each peak, the mean and 

SD of the m/z intensities for all samples in the group (control; E. coli; S. aureus) were 

automatically determined. Inspection of the results and manipulation of the spreadsheet 

allowed analysis in a variety of criteria. 

For both positive and negative modes, the metabolites were sorted to identify those with 

the 20 metabolites with highest m/z intensities in each of the 3 groups.  
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Numerous metabolites were not present in the control group but were present in either or 

both the E. coli and S. aureus groups. These were identified and the 20 metabolites with 

largest difference in mean m/z intensities determined by substraction. 

Numerous metabolites had large difference between the mean of control group and the 

mean of either E. coli or S. aureus groups. They were determined by calculation of the 

total increase or decrease by dividing the mean of the m/z intensities of the infected groups 

by the mean of the control group and the 15 metabolites with greatest fold increase or 

decrease were identified. 

Metabolites showing significant difference between the E. coli and S. aureus groups were 

identified by calculation of the fold change by dividing the median of the m/z intensities of 

the S. aureus group by the median m/z intensities of the E. coli group. The 15 metabolites 

with the highest fold change between groups increased in either S. aureus or in E. coli were 

identified and the Mann Whitney test for significant differences applied for non-parametric 

data. The metabolites were listed in order of increasing probability of the significance of a 

difference (P-value). 

5.2.6 Metabolites Analysis – Pathway Analysis 

Bioinformatic analysis of the metabolomics data performed using tools provided by the 

Scottish Metabolomics Facility. An in-house web facility, known as PATHOS 

(http://motif.gla.ac.uk/Pathos/index.html), has the ability to display metabolites identified 

based on the metabolic pathways in which they occur. By listing areas of metabolism and 

by generating a Kyoto Encyclopaedia of Genes and Genomes (KEGG) map, the data of 

experimental m/z values or refined lists of metabolites generated by the MS data by other 

means was analysed. PATHOS also provides quantitative data for the metabolites 

identified and these changes are indicated by colour-coding on KEGG map. 

For preliminary analyses, changes in metabolites were grouped based on different 

metabolism; lipid, protein and carbohydrate metabolisms. In each group, the analysis was 

focussed on six metabolic pathways showing most changes for both positive and negative 

ion modes.   
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5.3  Results 

5.3.1 SCC measurement and acute phase proteins 

concentration 

In order to confirm the disease status of milk samples used in this study, SCC measurement 

and acute phase proteins (SAA and Hp) concentrations were determined. Table 5-1 showed 

the SCC measurement and APP concentrations in all control milk samples used in this 

study. The results were as the same as in Chapter 4, Section 4.3.1. Table 5-2 (a and b) 

showed the bacteriological culture results and the concentration of both SAA and Hp for 

mastitic milk samples caused by E. coli and S. aureus. The results were also as the same as 

in Chapter 4, Section 4.3.1. The Statistical analysis (Mann Whitney) showed that both 

SAA and Hp were significantly higher (p=0.00; p<0.05) in the infected group (E. coli and 

S. aureus) but not significantly different between two bacterial groups (p=0.958; p>0.05 

for SAA and p=0.428; p>0.05 for Hp). 
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Control milk samples    

    

Sample Ids SAA Conc.(ng/ml) Hp conc. (ng/ml) SCC (x10
3
) 

102 0.36 7.78 13 

66 0.57 16.38 14 

3 0.55 27.98 48 

62 0.079 1.95 31 

72 1.21 7.24 96 

109 0.65 13.21 10 

80 0.28 24.61 54 

100 0.48 15.36 38 

16 0.9 2.86 58 

58 0.34 1.95 56 

111 0.13 21.94 28 

48 0.39 31.95 85 

4 2.96 4.17 63 

2 1.43 1.95 32 

29 0.29 12.64 46 

Min 0.08 1.95 10 

Max 2.96 31.95 96 

Mean 0.71 12.8 45 

Median 0.48 12.64 46 

 

Table 5-1: The acute phase proteins (SAA and Hp) concentrations and SCC 

measurement in all control milk samples used in this study. The range of SAA 

concentrations was between 0.08 and 2.96 μg/ml with an average of 0.71μg/ml and a 

median of 0.48μg/ml. The range of Hp concentrations was between 1.95 and 32μg/ml with 

an average of 12.8μg/ml and a median of 12.64μg/ml. The range of SCC measurement was 

between 10 and 96 x 10
3
 cells/ml with an average of 45 x 10

3
 cells/ml and a median of 46 x 

10
3
 cells/ml. 
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Mastitic milk 

samples    

Sample Ids 

SAA Conc. 

(ng/ml) 

Hp conc. 

(ng/ml) 

Bacteriological 

results 

475 72.13 89.68 E. coli 

76 1500 115.18 E. coli 

? 1500 78.51 E. coli 

814 1500 141.26 E. coli 

692 9.48 60.27 E. coli 

697 1500 144.89 E. coli 

519 109.44 108.02 E. coli 

453 4.18 16.63 E. coli 

496 24.31 16.03 E. coli 

1222 46.02 354.26 E. coli 

Min 4.18 16.03  

Max 1500 354.26  

Mean 626.56 112.47  

Median 90.79 98.85  

 

Table 5-2a: The acute phase proteins (SAA and Hp) concentrations and bacterial 

causing mastitis in infected milk samples caused by E. coli used in this study. The 

range of SAA concentrations was between 4.18 and 1500μg/ml with an average 

626.6μg/ml and a median of 90.79μg/ml. The range of Hp concentrations was between 

16.03 and 354.26μg/ml with an average of 112.5μg/ml and a median of 98.85μg/ml.
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Mastitic milk 

samples    

Sample Ids 

SAA Conc. 

(ng/ml) 

Hp conc. 

(ng/ml) 

Bacteriological 

results 

438 48.12 70.77 S. aureus 

14 37.21 42.69 S. aureus 

980 1500 111.83 S. aureus 

708 54.96 95 S. aureus 

346 1500 86.2 S. aureus 

715 15.99 22.15 S. aureus 

Min 15.99 22.15  

Max 1500 111.83  

Mean 526.05 71.44  

Median 51.54 78.49  

 

Table 5-2b: The acute phase proteins (SAA and Hp) concentrations and bacterial 

causing mastitis in infected milk samples caused by S. aureus used in this study. The 

range of SAA concentrations was between 15.99 and 1500μg/ml with an average of 

526.1μg/ml and a median of 51.54μg/ml. The range of Hp concentrations was between 

22.15 and 111.8μg/ml with an average of 71.44μg/ml and a median of 78.49μg/ml. 
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5.3.2 Metabolites found in milk 

Upon LC-MS analysis, the identified metabolites were analyzed by MzMine software, the 

data was presented based on the individual metabolites found according to their m/z 

values, retention times, numbers of detected peaks, molecular names and their abundances 

in each of the milk samples. The data was divided into positive and negative ionisation 

modes based on the MS acquisition. A total of 9904 were detected in the milk samples 

using positive mode detection of which 814 were identified using the MzMine software. 

For the negative ion detection the equivalent figures were a total of 5551 metabolites 

detected with 512 being identified. Numerous metabolites were present with both ion 

detection systems and inspection of the data showed that 221 metabolites were in both the 

positive and negative mode so that a total 1105 metabolites were detected across the milk 

samples analysed (Table 5-3). The mean values of m/z intensities of metabolites in each 

group were then determined. The full excel files with the identified and non-identified 

metabolites are presented in the supplementary information.  The following examination of 

the metabolites and their variation between milk from healthy cows and that from udder 

quarters with mastitis caused by E. coli or S. aureus are focused on the metabolites that 

were identified in the samples by LC-MS-MS and the MzMine software programme. 

With the large data set generated by the study, the results were examined by scrutiny of the 

individual metabolites and their variation in mean m/z intensity between control and 

infected groups. In order to reduce the complexity of the interpretation, the metabolites are 

discussed in relation to the m/z intensity and the mean of the peaks obtained with the 

discussion focused on the metabolites with the highest intensity or on those with the 

greatest relative value between bacterially infected groups.   Thereafter the major possible 

metabolic pathway alterations that produce the identified changes in metabolites are 

described. 
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Table 5-3: The total number of metabolites, identified and unidentified in both 

positive and negative ionisation modes. The number of common and individual 

identified metabolites was also presented. A total of 15 455 metabolites were identified 

from the LC-MS/MS analysis. However, only 1326 metabolites were successfully 

identified by the MzMine software. About 221 of common metabolites and 1105 

individual metabolites were identified from this software. 

 Positive 

Mode 

Negative 

Mode 

Total of 

metabolites 

Number of metabolites 9904 5551 15455 

Number of identified metabolites 814 512 1326 

Number of unidentified metabolites 9090 5039 14129 

Number of common identified  

metabolites 

  221 

Number of individual identified 

metabolites 

  1105 
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5.3.3 Effect of mastitis on the metabolites of milk 

The first 20 metabolites with highest m/z intensities in each three groups of milk samples; 

control, E. coli and S. aureus groups were tabulated in each positive and negative 

ionisation modes as presented in Table 5-4 and 5-5. From the positive mode MS, it was 

found that the metabolites with greatest intensity differed between the groups although 

most of the highest metabolites in the control were still within the top group.  The 3 

metabolites with highest intensity in the control group (Table 5-6) were L-acetylcarnitine, 

choline and sn-glycero-3-phosphocholine. The fourth metabolite was lactose, the primary 

carbohydrate of milk. However, the Pathos analysis programme identified this as 1-alpha-

D-Galactosyl-myo-inositol which has an identical molecular formula of C12H22O11. On 

tables, the form given is maintained with lactose identified in bracket. In the group with E. 

coli infection (Table 5-7) choline was the metabolite with highest m/z intensity but L-

carnitine and the amino acid, L-valine were also at the top of the metabolites detected 

while lactose had the fourth highest intensity.  In the group with S. aureus infection (Table 

5-8), L-valine had the highest intensity and it was noticeable that 11 of the top 20 were 

amino acids, di-peptides or tri-peptides, compared to 6 in the E. coli group and only one, 

glutamate in the milk samples from the control group.  Lactose was detected in the S. 

aureus group but was tenth of the twenty metabolites with the highest m/z intensity.   

With the negative ion detection, all three groups had the same metabolites with the two 

highest m/z intensities, being citrate (though incorrectly identified as 5-dehydro-4deoxy-D-

glucarate) and lactose (Tables 5-9 to 5-11), which reflect their high concentration in milk.  

In the samples for both the E. coli and S. aureus infections the third highest m/z intensity 

was lactate, which was not in the top 20 in the control group and its presence in the 

samples from mastitic milk would indicate the alteration in metabolism caused by the 

bacteria.  Also noticeable was that that glucose/galactose (identified as myo-inositol) was 

detectable in milk from the control group and that from the E. coli infected but not the S. 

aureus infected groups.  It was noticeable that the metabolites in the top 20 of the negative 

ion detection were mostly small molecular weight acidic metabolites while those in the 

positive ion detection had a higher proportion of basic metabolites. 

Metabolites which were absent in control milk samples but present in both infected groups 

(E. coli and S. aureus) were examined in both positive and negative ion modes. Twenty 

metabolites with the largest difference between intensities in E. coli and S. aureus infected 

groups were tabulated in Table 5-12, 5-13, 5-14, 5-15. From the positive mode analysis, of 

the 20 metabolites which were higher in the S. aureus group than E. coli 18 were 
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tripeptides, with Leu-Val-Ser being the metabolite with greatest difference from that in the 

E. coli group (Table 5-12). In contrast ten different tripeptides had higher intensities in the 

samples from the E. coli   group compared to the S. aureus group (Table 5-13).  However 

also detected in this group were other metabolites such as calligonine, harmolol (both are 

alkaloids) and lincomycin.  From the negative mode analysis, of the 20 metabolites which 

were higher in the S. aureus group than E. coli, 12 were tripeptides with Leu-Gln-Ser being 

the metabolites with greatest difference from that in the E. coli group (Table 5-14).  In 

contrast, eight different tripeptides had higher intensities in the samples from the E. coli 

group compared to the S. aureus group (Table 5-15).  



Chapter 5, 223 

 

 

Name Control Name E. coli Name 

S. 

aureus 

L-Acetylcarnitine 5.3E+08 Choline 6.9E+08 L-Valine 4.7E+08 

Choline 4.6E+08 L-Carnitine 3.3E+08 Choline 4.6E+08 

sn-glycero-3-Phosphocholine 4.6E+08 L-Valine 3.2E+08 L-Phenylalanine 4.2E+08 

1-alpha-D-Galactosyl-myo-inositol 

(lactose) 4.1E+08 

1-alpha-D-Galactosyl-myo-inositol 

(lactose) 3E+08 L-Acetylcarnitine 3.5E+08 

L-Carnitine 4E+08 L-Acetylcarnitine 3E+08 Piperidine 3.2E+08 

[FA methyl(4:2/18:2)] methyl 9-

butylperoxy-10_12-octadecadienoate 2.3E+08 L-Phenylalanine 2.2E+08 Leucyl-leucine 3E+08 

Methyl acetyl ricinoleate 1.9E+08 

[ST] (5Z_7E)-9_10-seco-5_7_10(19)-

cholestatriene 2.1E+08 L-Carnitine 2.8E+08 

Methacholine 1.7E+08 Piperidine 1.9E+08 

[ST] (5Z_7E)-9_10-seco-

5_7_10(19)-

cholestatriene 2.7E+08 

L-Glutamate 1.5E+08 

[FA methyl(4:2/18:2)] methyl 9-

butylperoxy-10_12-octadecadienoate 1.8E+08 L-Proline 2.5E+08 

N-Acetyl-D-glucosamine 1.5E+08 Methyl acetyl ricinoleate 1.6E+08 

1-alpha-D-Galactosyl-

myo-inositol (lactose) 2.5E+08 

Glycogen 1.5E+08 Methacholine 1.4E+08 L-Glutamate 2.4E+08 

[ST] (5Z_7E)-9_10-seco-5_7_10(19)-

cholestatriene 1.4E+08 Glycogen 1.3E+08 

sn-glycero-3-

Phosphocholine 2.3E+08 

1-O-(1Z-Tetradecenyl)-2-(9Z-

octadecenoyl)-sn-glycerol 1.2E+08 L-Tyrosine 1.2E+08 L-Tyrosine 2.1E+08 

[FA oxo(19:0)] 10-oxo-nonadecanoic 

acid 1.1E+08 Leu-Tyr 1.1E+08 

[FA oxo(19:0)] 10-oxo-

nonadecanoic acid 1.6E+08 



Chapter 5, 224 

 

 

 

Table 5-4: The first 20 of metabolites with the highest m/z intensity of positive ionisation mode from the total of 814 metabolites identified using 

the MzMine software in control, E. coli infected and S. aureus infected groups. 

 

 

 

 

 

 

[FA methoxy_hydroxy(18:2)] 8-

methoxy-13-hydroxy-9_11-

octadecadienoic acid 1.1E+08 L-Proline 1.1E+08 Leu-Phe 1.5E+08 

O-Propanoylcarnitine 9.3E+07 

[FA oxo(19:0)] 10-oxo-nonadecanoic 

acid 1.1E+08 Leu-Tyr 1.5E+08 

[FA (17:1/2:0)] 8E-Heptadecenedioic 

acid 8.8E+07 L-Glutamate 1E+08 Leu-Val-Ser 1.5E+08 

Mercaptoethanol 7.6E+07 

[FA methoxy_hydroxy(18:2)] 8-

methoxy-13-hydroxy-9_11-

octadecadienoic acid 9.7E+07 Leu-Leu-Val 1.4E+08 

1_3_8-Naphthalenertriol 7E+07 sn-glycero-3-Phosphocholine 8.7E+07 Leu-Thr 1.3E+08 

O-Butanoylcarnitine 6.6E+07 

[FA (17:1/2:0)] 8E-Heptadecenedioic 

acid 7.8E+07 Methacholine 1.3E+08 
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Table 5-5 : The first 20 of metabolites with the highest m/z intensity of negative ionisation mode from the total of 512 metabolites identified using 

the MzMine software in control, E. coli infected  and S. aureus infected groups. 

Name 

Control Name E. coli Name S. aureus 

5-Dehydro-4-deoxy-D-glucarate (citrate) 1.8E+09 5-Dehydro-4-deoxy-D-glucarate (citrate) 1.4E+09 5-Dehydro-4-deoxy-D-glucarate (citrate) 1.7E+09 

1-alpha-D-Galactosyl-myo-inositol (lactate) 1.5E+09 1-alpha-D-Galactosyl-myo-inositol (lactate) 1.2E+09 1-alpha-D-Galactosyl-myo-inositol (lactose) 1.2E+09 

N-Acetyl-D-glucosamine 6-phosphate 2.6E+08 (R)-Lactate 8.1E+08 (R)-Lactate 9.2E+08 

cis-Aconitate 1.7E+08 myo-Inositol (glucose/galactose) 1.8E+08 L-Glutamate 1.6E+08 

myo-Inositol (glucose/galactose) 1.1E+08 Succinate 1.8E+08 cis-Aconitate 1.2E+08 

Hippurate 9.9E+07 cis-Aconitate 1.1E+08 myo-Inositol (glucose/galactose) 1.2E+08 

Urate 9E+07 2-C-Methyl-D-erythritol 4-phosphate 9.2E+07 (S)-Malate 1E+08 

2_5-Dioxopentanoate 8.4E+07 2-Dehydro-3-deoxy-L-arabinonate 8.6E+07 Urate 9.4E+07 

Miserotoxin 7.9E+07 Pyruvate 8.2E+07 2-C-Methyl-D-erythritol 4-phosphate 8.5E+07 

2-C-Methyl-D-erythritol 4-phosphate 7.8E+07 Creatine 7.3E+07 L-Erythrulose 7.5E+07 

L-Erythrulose 7.5E+07 Hippurate 7.2E+07 N-Acetyl-D-glucosamine 7.4E+07 

N-Acetyl-D-glucosamine 7.4E+07 (S)-Malate 7.1E+07 Miserotoxin 7.1E+07 

Creatine 7.4E+07 2-C-Methyl-D-erythritol 4-phosphate 6.3E+07 2_5-Dioxopentanoate 6.9E+07 

(S)-Malate 7.4E+07 Urate 6.1E+07 Taurine 6.2E+07 

L-Glutamate 7.4E+07 L-Glutamate 6E+07 (R)-3-Hydroxybutanoate 6.2E+07 

sn-glycero-3-Phospho-1-inositol 6.6E+07 2_5-Dioxopentanoate 6E+07 Pyruvate 5.8E+07 

D-Glucose 6-phosphate 5.2E+07 N-Acetyl-D-glucosamine 6-phosphate 5.9E+07 Creatine 5.7E+07 

2-Dehydro-3-deoxy-L-arabinonate 4.4E+07 Glycerol 2-phosphate 5.2E+07 Hippurate 5.4E+07 

2-Butyne-1_4-diol 4.4E+07 2-Oxoglutarate 4.8E+07 2-Dehydro-3-deoxy-L-arabinonate 4.5E+07 

Pantothenate 4.3E+07 (2S)-2-Isopropylmalate 4.6E+07 Mesaconate 4.3E+07 
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Controls    

row m/z Molecular formula Name m/z intensity 

204.12288 C9H17NO4 L-Acetylcarnitine 532069651.6 

104.10717 C5H14NO Choline 459631082.1 

258.10994 C8H21NO6P sn-glycero-3-Phosphocholine 455789062.4 

343.12334 C12H22O11 1-alpha-D-Galactosyl-myo-inositol (lactose) 410172949.4 

162.11236 C7H16NO3 L-Carnitine 404013964.3 

383.31543 C23H42O4 [FA methyl(4:2/18:2)] methyl 9-butylperoxy-10_12-octadecadienoate 233919160.6 

355.28412 C21H38O4 Methyl acetyl ricinoleate 190471829.2 

160.1331 C8H18NO2 Methacholine 165776723.1 

148.06034 C5H9NO4 L-Glutamate 151091045.9 

222.09705 C8H15NO6 N-Acetyl-D-glucosamine 148793168.2 

667.22894 C24H42O21 Glycogen 146868998.2 

369.35138 C27H44 [ST] (5Z_7E)-9_10-seco-5_7_10(19)-cholestatriene 137976616.2 

551.50347 C35H66O4 1-O-(1Z-Tetradecenyl)-2-(9Z-octadecenoyl)-sn-glycerol 121462416.9 

313.27353 C19H36O3 [FA oxo(19:0)] 10-oxo-nonadecanoic acid 112684801.4 

327.25284 C19H34O4 [FA methoxy_hydroxy(18:2)] 8-methoxy-13-hydroxy-9_11-octadecadienoic acid 108737293.9 

218.13858 C10H19NO4 O-Propanoylcarnitine 93016510.12 

299.22155 C17H30O4 [FA (17:1/2:0)] 8E-Heptadecenedioic acid 87738450.94 

79.02126 C2H6OS Mercaptoethanol 75530497.29 

177.05456 C10H8O3 1_3_8-Naphthalenertriol 69725634.82 

232.15421 C11H21NO4 O-Butanoylcarnitine 66011561.24 

Table 5-6: The top 20 metabolites by m/z intensity of positive ionisation mode analysis in control group. The mass-to-charge ratio, formula and the 

m/z intensity of each named metabolites are presented as well.
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E. coli    

row m/z Molecular formula Name m/z intensity 

104.1071682 C5H14NO Choline 688544094.3 

162.1123612 C7H16NO3 L-Carnitine 328583661.3 

118.0865562 C5H11NO2 L-Valine 323402732.5 

343.1233364 C12H22O11 1-alpha-D-Galactosyl-myo-inositol (lactose) 302781524.5 

204.1228806 C9H17NO4 L-Acetylcarnitine 301572172.6 

166.0861809 C9H11NO2 L-Phenylalanine 220244923.1 

369.3513767 C27H44 [ST] (5Z_7E)-9_10-seco-5_7_10(19)-cholestatriene 208831576.3 

86.09644175 C5H11N Piperidine 191708498.1 

383.315431 C23H42O4 [FA methyl(4:2/18:2)] methyl 9-butylperoxy-10_12-octadecadienoate 179797044.2 

355.2841233 C21H38O4 Methyl acetyl ricinoleate 156590246.4 

160.1331034 C8H18NO2 Methacholine 144540343 

667.2289361 C24H42O21 Glycogen 125929094.7 

182.08111 C9H11NO3 L-Tyrosine 119735739.5 

295.16499 C15H22N2O4 Leu-Tyr 113966956.8 

116.070917 C5H9NO2 L-Proline 113953650.9 

313.2735285 C19H36O3 [FA oxo(19:0)] 10-oxo-nonadecanoic acid 106969595.2 

148.0603401 C5H9NO4 L-Glutamate 99580277.45 

327.2528422 C19H34O4 [FA methoxy_hydroxy(18:2)] 8-methoxy-13-hydroxy-9_11-octadecadienoic acid 97136487.65 

258.1099366 C8H21NO6P sn-glycero-3-Phosphocholine 86502311.46 

299.2215456 C17H30O4 [FA (17:1/2:0)] 8E-Heptadecenedioic acid 77637189.42 

Table 5-7: The top 20 metabolites by m/z intensity of positive ionisation mode analysis in E. coli group. The mass-to-charge ratio, formula and the 

m/z intensity of each named metabolites are presented as well. 



Chapter 5, 228 

 

S. aureus    

row m/z Molecular formula Name m/z intensity 

118.09 C5H11NO2 L-Valine 474193023 

104.11 C5H14NO Choline 459760192 

166.09 C9H11NO2 L-Phenylalanine 420899486 

204.12 C9H17NO4 L-Acetylcarnitine 353171406 

86.10 C5H11N Piperidine 317818082 

245.19 C12H24N2O3 Leucyl-leucine 304379656 

162.11 C7H16NO3 L-Carnitine 275815803 

369.35 C27H44 [ST] (5Z_7E)-9_10-seco-5_7_10(19)-cholestatriene 266427751 

116.07 C5H9NO2 L-Proline 253743805 

343.12 C12H22O11 1-alpha-D-Galactosyl-myo-inositol  248665608 

148.06 C5H9NO4 L-Glutamate 244795489 

258.11 C8H21NO6P sn-glycero-3-Phosphocholine 231299639 

182.08 C9H11NO3 L-Tyrosine 214276582 

313.27 C19H36O3 [FA oxo(19:0)] 10-oxo-nonadecanoic acid 161755798 

279.17 C15H22N2O3 Leu-Phe 154149870 

295.16 C15H22N2O4 Leu-Tyr 153060034 

318.20 C14H27N3O5 Leu-Val-Ser 151748149 

344.25 C17H33N3O4 Leu-Leu-Val 139384457 

233.15 C10H20N2O4 Leu-Thr 132935813 

160.13 C8H18NO2 Methacholine 131531174 

Table 5-8: The top 20 metabolites by m/z intensity of positive ionisation mode analysis in S. aureus group. The mass-to-charge ratio, formula and 

the m/z intensity of each named metabolites are presented as well.
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Control    

row m/z Molecular formula Name m/z intensity 

191.02 C6H8O7 5-Dehydro-4-deoxy-D-glucarate (citrate) 1750330040 

341.11 C12H22O11 1-alpha-D-Galactosyl-myo-inositol (lactose) 1513754934 

300.05 C8H16NO9P N-Acetyl-D-glucosamine 6-phosphate 261652267 

173.01 C6H6O6 cis-Aconitate 166893330 

179.06 C6H12O6 myo-Inositol 106110746 

178.05 C9H9NO3 Hippurate 98680533 

167.02 C5H4N4O3 Urate 89863389 

129.02 C5H6O4 2_5-Dioxopentanoate 84341727 

266.09 C9H17NO8 Miserotoxin 78910119 

215.03 C5H13O7P 2-C-Methyl-D-erythritol 4-phosphate 78482788 

119.03 C4H8O4 L-Erythrulose 75351299 

220.08 C8H15NO6 N-Acetyl-D-glucosamine 74489145 

130.06 C4H9N3O2 Creatine 74407132 

133.01 C4H6O5 (S)-Malate 73918031 

146.05 C5H9NO4 L-Glutamate 73661846 

333.06 C9H19O11P sn-glycero-3-Phospho-1-inositol 66333040 

259.02 C6H13O9P D-Glucose 6-phosphate 52176193 

147.03 C5H8O5 2-Dehydro-3-deoxy-L-arabinonate 44090003 

85.03 C4H6O2 2-Butyne-1_4-diol 43558519 

218.10 C9H17NO5 Pantothenate 43488200 

Table 5-9: The top 20 metabolites by m/z intensity of negative ionisation mode analysis in control group. The mass-to-charge ratio, formula and the 

m/z intensity of each named metabolites are presented as well. 
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E. coli   

row m/z Molecular formula Name m/z intensity 

191.02 C6H8O7 5-Dehydro-4-deoxy-D-glucarate (citrate) 1375581553 

341.11 C12H22O11 1-alpha-D-Galactosyl-myo-inositol (lactose) 1163878111 

89.02 C3H6O3 (R)-Lactate 812425519 

179.06 C6H12O6 myo-Inositol 182735001 

117.02 C4H6O4 Succinate 179764837 

173.01 C6H6O6 cis-Aconitate 105428739 

215.03 C5H13O7P 2-C-Methyl-D-erythritol 4-phosphate 91564904 

147.03 C5H8O5 2-Dehydro-3-deoxy-L-arabinonate 86395991 

87.01 C3H4O3 Pyruvate 81948401 

130.06 C4H9N3O2 Creatine 73380634 

178.05 C9H9NO3 Hippurate 72131854 

133.01 C4H6O5 (S)-Malate 71188741 

215.03 C5H13O7P 2-C-Methyl-D-erythritol 4-phosphate 63327089 

167.02 C5H4N4O3 Urate 60860379 

146.05 C5H9NO4 L-Glutamate 60367636 

129.02 C5H6O4 2_5-Dioxopentanoate 59941285 

300.05 C8H16NO9P N-Acetyl-D-glucosamine 6-phosphate 59306858 

171.01 C3H9O6P Glycerol 2-phosphate 51930002 

145.01 C5H6O5 2-Oxoglutarate 47839083 

175.06 C7H12O5 (2S)-2-Isopropylmalate 46199319 

Table 5-10: The top 20 metabolites by m/z intensity of negative ionisation mode analysis in E. coli group. The mass-to-charge ratio, formula and the 

m/z intensity of each named metabolites are presented as well.
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S. aureus   

row m/z Molecular formula Name m/z intensity 

191.02 C6H8O7 5-Dehydro-4-deoxy-D-glucarate (citrate) 1713079641 

341.11 C12H22O11 1-alpha-D-Galactosyl-myo-inositol (lactose) 1246746397 

89.02 C3H6O3 (R)-Lactate 921868860 

146.05 C5H9NO4 L-Glutamate 155669416 

173.01 C6H6O6 cis-Aconitate 124042799 

179.06 C6H12O6 myo-Inositol (glucose/galactose) 116014627 

133.01 C4H6O5 (S)-Malate 100377602 

167.02 C5H4N4O3 Urate 94020844 

215.03 C5H13O7P 2-C-Methyl-D-erythritol 4-phosphate 85004997 

119.03 C4H8O4 L-Erythrulose 74942006 

220.08 C8H15NO6 N-Acetyl-D-glucosamine 73840064 

266.09 C9H17NO8 Miserotoxin 70788430 

129.02 C5H6O4 2_5-Dioxopentanoate 69476176 

124.01 C2H7NO3S Taurine 62376397 

103.04 C4H8O3 (R)-3-Hydroxybutanoate 62310337 

87.01 C3H4O3 Pyruvate 58442163 

130.06 C4H9N3O2 Creatine 56614851 

178.05 C9H9NO3 Hippurate 53708833 

147.03 C5H8O5 2-Dehydro-3-deoxy-L-arabinonate 45261272 

129.02 C5H6O4 Mesaconate 42718964 

Table 5-11: The top 20 metabolites by m/z intensity of negative ionisation mode analysis in S. aureus group. The mass-to-charge ratio, formula and 

the m/z intensity of each named metabolites are presented as well. 
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row 

m/z 

Molecular formula Name m/z intensity (E. coli; EC) m/z intensity (S. aureus; SA) Difference in m/z intensity, 

SA - EC   

318.20 C14H27N3O5 Leu-Val-Ser 7169464 1.52E+08 144578685 

392.25 C21H33N3O4 Leu-Leu-Phe 2515770 62511479 59995709 

347.19 C14H26N4O6 Leu-Gln-Ser 66451.19 37865683 37799232 

378.20 C19H27N3O5 Val-Pro-Tyr 77005.78 20353927 20276921 

373.24 C17H32N4O5 Leu-Leu-Gln 68299.4 15413856 15345557 

321.14 C11H20N4O7 Gln-Ser-Ser 24894.88 15198151 15173256 

253.12 C12H16N2O4 Ala-Tyr 7303190 22111654 14808464 

333.21 C14H28N4O5 Lys-Val-Ser 262397 13470687 13208290 

496.22 C25H29N5O6 Trp-Gln-Tyr 381281.3 4664604 4283322 

300.19 C14H25N3O4 Leu-Ala-Pro 139108.5 3942298 3803190 

332.18 C14H25N3O6 Val-Val-Asp 1028657 4747132 3718476 

318.17 C13H23N3O6 Leu-Ala-Asp 6637.732 3344439 3337801 

423.22 C20H30N4O6 Leu-Gln-Tyr 338654.2 3321623 2982969 

361.24 C16H32N4O5 Leu-Lys-Thr 5150.919 2567885 2562734 

294.14 C14H19N3O4 Phe-Ala-Gly 1376626 3563815 2187189 

409.21 C19H28N4O6 Leu-Asn-Tyr 3618.938 2079692 2076073 

333.16 C16H20N4O4 Trp-Ala-Gly 115248 1737862 1622614 

303.18 C11H22N6O4 Ala-Gly-Arg 213576.7 1810903 1597326 

287.24 C14H30N4O2 N1_N12-Diacetylspermine 3925092 5423238 1498145 

290.17 C12H23N3O5 Leu-Ala-Ser 17054.07 944656.8 927603 

Table 5-12: Metabolites identified from positive ionisation mode analysis which were absent in control group but found greater in S. aureus 

infected group by means of m/z intensity than E. coli infected group. The m/z intensity for each of metabolites identified in both infected groups and 

the difference in m/z intensity were as presented. The difference in m/z intensity was equal to the m/z intensity of S. aureus infected group minus the m/z 

intensity of E. coli infected group 
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row m/z Molecular formula Name m/z intensity 

(E. coli; EC) 

m/z intensity 

(S. aureus; 

SA) 

Difference in 

m/z intensity, 

SA - EC   

187.12 C12H14N2 Calligonine 7135922 2485802 4650121 

376.22 C20H29N3O4 Leu-Phe-Pro 15054435 11700662 3353774 

181.07 C7H8N4O2 Theophylline 4655026 1465804 3189222 

306.17 C12H23N3O6 Leu-Ser-Ser 1107760 283639 824122 

407.22 C18H34N2O6S Lincomycin 1197998 434791 763207 

199.09 C12H10N2O Harmalol 591018 108776 482242 

408.25 C21H33N3O5 Leu-leu-tyr 1228049 841475 386574 

350.21 C18H27N3O4 Leu-Phe-Ala 490555 130928 359627 

468.34 C23H50NO6P [PC methyl(14:2)] 2-methyl-3-tetradecyl-sn-glycero-1-

phosphocholine 

731979 412006 319973 

295.18 C19H22N2O Eburnamonine 597554 286885 310669 

334.16 C13H23N3O7 Leu-Asp-Ser 380049 88191 291859 

286.18 C13H23N3O4 Leu-Gly-Pro 324809 36711 288099 

165.07 C8H8N2O2 Ricinine 243149 4239 238910 

458.25 C22H31N7O4 Trp-Pro-Arg 641744 451644 190100 

140.03 C6H5NO3 4-Nitrophenol 171175 5689 165486 

366.17 C17H23N3O6 Pro-Ser-Tyr 163275 14072 149204 

296.12 C13H17N3O5 Asn-Tyr 655710 512128 143582 

451.16 C20H26N4O6S Met-Trp-Asp 126010 1722 124289 

393.14 C14H24N4O7S Met-Asp-Gln 164428 40184 124244 

407.22 C18H34N2O6S Lincomycin 201509 80887 120622 

Table 5-13: Metabolites identified from positive ionisation mode analysis which were absent in control group but found greater in E. coli 

infected group by means of m/z intensity than S. aureus infected group. The m/z intensity for each of metabolites identified in both infected groups 
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and the difference in m/z intensity were as presented. The difference in m/z intensity was equal to the m/z intensity of S. aureus infected group minus the 

m/z intensity of E. coli infected group.
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row m/z Molecular formula Name m/z intensity (E. coli; EC) m/z intensity (S. aureus; SA) Difference in m/z intensity, SA - EC   

345.18 C14H26N4O6 Leu-Gln-Ser 46782 18858881 18812099 

331.20 C14H28N4O5 Lys-Val-Ser 640021 18012351 17372329 

231.14 C10H20N2O4 Leu-Thr 189543 14873123 14683580 

390.24 C21H33N3O4 Leu-Leu-Phe 258374 6241107 5982733 

359.23 C16H32N4O5 Leu-Lys-Thr 34118 5490747 5456629 

244.13 C10H19N3O4 Leu-Asn 145972 5592910 5446938 

354.18 C15H25N5O5 Thr-Val-His 337 4768081 4767744 

342.17 C15H25N3O6 Leu-Asp-Pro 50023 4469062 4419038 

201.12 C9H18N2O3 Leu-Ala 303533 3822614 3519082 

247.09 C9H16N2O6 Glu-Thr 618714 3901821 3283106 

329.18 C14H26N4O5 Leu-Ala-Gln 11706 3261910 3250204 

251.10 C12H16N2O4 Ala-Tyr 1199633 4388952 3189320 

373.17 C15H26N4O7 Leu-Asp-Gln 27874 2290843 2262968 

217.12 C9H18N2O4 Leu-Ser 1781005 3651567 1870562 

311.14 C18H20N2O3 Phe-Phe 1020478 2422191 1401713 

364.19 C18H27N3O5 Leu-Ala-Tyr 105095 1312711 1207616 

345.21 C15H30N4O5 Leu-Lys-Ser 207570 1389000 1181430 

205.08 C7H14N2O5 Thr-Ser 14626 1171204 1156578 

350.17 C17H25N3O5 Leu-Gly-Tyr 147416 1294531 1147114 

301.16 C11H22N6O4 Ala-Gly-Arg 204285 1220662 1016377 

Table 5-14: Metabolites identified from negative ionisation mode analysis which were absent in control group but found greater in S. aureus 

infected group by means of m/z intensity than E. coli infected group. The m/z intensity for each of metabolites identified in both infected groups and 

the difference in m/z intensity were as presented. The difference in m/z intensity was equal to the m/z intensity of S. aureus infected group minus the m/z 

intensity of E. coli infected group.
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row 

m/z 

Molecular 

formula 

Name m/z intensity (E. coli; 

EC) 

m/z intensity (S. aureus; 

SA) 

Difference in m/z intensity, SA - 

EC   

270.15 C12H21N3O4 Val-Gly-Pro 1214191 445816 768374 

304.15 C12H23N3O6 Leu-Ser-Ser 399260 61590 337670 

197.07 C7H10N4O3 5-Acetylamino-6-amino-3-

methyluracil 

340796 54974 285821 

277.12 C14H18N2O4 Pro-Tyr 520743 281163 239580 

374.21 C20H29N3O4 Leu-Phe-Pro 1167418 987379 180040 

147.01 C5H8O3S 4-Methylthio-2-oxobutanoic acid 154641 1714 152927 

294.11 C13H17N3O5 Asn-Tyr 469728 328468 141260 

355.20 C16H28N4O5 Leu-Gln-Pro 160771 42431 118340 

281.11 C13H18N2O5 Thr-Tyr 408989 315714 93275 

373.21 C16H30N4O6 Leu-Lys-Asp 903396 851149 52247 

91.06 C7H8 Toluene 52963 996 51967 

221.09 C11H14N2O3 Phe-Gly 95534 44609 50925 

344.18 C15H27N3O6 Leu-Val-Asp 47648 16611 31037 

217.12 C9H18N2O4 Leu-Ser 33732 11357 22375 

395.20 C17H28N6O5 Leu-Gln-His 19559 3891 15667 

284.16 C13H23N3O4 Leu-Gly-Pro 28598 17983 10615 

Table 5-15: Metabolites identified from negative ionisation mode analysis which were absent in control group but found greater in E. coli 

infected group by means of m/z intensity than S. aureus infected group. The m/z intensity for each of metabolites identified in both infected groups 

and the difference in m/z intensity were as presented. The difference in m/z intensity was equal to the m/z intensity of S. aureus infected group minus the 

m/z intensity of E. coli infected group. 
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5.3.4 Relative changes 

In order to identify the metabolites in both modes that showed differences between 

bacterial infection groups and control group, the median of the m/z intensities were 

calculated for each metabolite in each group. Fifteen metabolites that were either increased 

or decreased in both bacterial infection groups from control group in both modes are 

presented in Table 5-16, 5-17, 5-18 and 5-19. Most of the metabolites that increased in 

both bacterial infection groups were tripeptides or dipeptides (Val-Pro-Pro, Leu-Leu-Ser, 

Lys-Ala-Pro, Leu-Ala-Gln, Val-Arg, Leu-Val, etc).  

The relative change in intensity for each identified metabolite between the sample groups 

from the infections was also calculated by dividing the median m/z intensity from the S. 

aureus samples by the median m/z intensity determined for the E. coli group.  Fifteen 

metabolites that either increased or decreased when comparing between bacterial infection 

groups (Table 5-20 and 5-21). As the majority of the group data was non-parametric, the 

Mann-Witney test used to test for the significance of the difference between the bacterial 

groups.  The tables (5-20 and 5-21) are arranged in increasing value of P as determined by 

the Mann-Witney test which shows the change observed in m/z intensity for the 

metabolites with the most significant difference in each of the categories. (Positive mode: 

significantly increased in S. aureus or increased in E. coli; Negative mode; significantly 

increased in S. aureus or in E. coli.) In positive mode, the p-values increased from 0 to 

0.0439 in group of metabolites increased in E. coli and the p-values increased from 0.0001 

to 0.037 in group of metabolites increased in S. aureus. In negative mode, the p-values 

increased from 0 to 0.0419 in group of metabolites increased in E. coli and the p-values 

increased from 0 to 0.0489 in group of metabolites increased in S. aureus. 
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Reduced in .E coli     

row m/z Molecular formula Name  m/z intensity (Control) m/z intensity (E. coli) Fold increase/decrease 

221.09 C11H12N2O3 5-Hydroxy-L-tryptophan 396487.6 0 0 

261.06 C14H12O3S Suprofen 235737.3 0 0 

345.18 C14H24N4O6 Thr-Gln-Pro 405720.5 0 0 

223.10 C12H14O4 Dillapiole 14979735 23468.75 0.002 

177.05 C10H8O3 1_3_8-Naphthalenertriol 69725635 211373.6 0.003 

419.32 C26H42O4 Diisononyl phthalate 14710838 45524.96 0.003 

75.09 C3H10N2 1_3-Diaminopropane 469562.7 2367.125 0.005 

79.02 C2H6OS Mercaptoethanol 75530497 1880468 0.025 

160.10 C7H13NO3 (-)-Betonicine 1187418 31450.85 0.026 

126.13 C8H15N gamma-Coniceine 284401.3 9156.271 0.032 

208.10 C11H13NO3 Cantleyine 246641.8 8702.787 0.035 

85.10 C6H12 Cyclohexane 1094320 42105.6 0.038 

165.09 C10H12O2 Isoeugenol 661742.4 39724.09 0.060 

268.10 C10H13N5O4 Deoxyguanosine 7124045 462562 0.065 

142.03 C2H8NO4P Ethanolamine phosphate 505132.3 33286.07 0.066 

      

      

Increased in E. coli     

329.15 C18H20N2O4 Phe-Tyr 71 3960112 55932 

283.13 C13H18N2O5 Thr-Tyr 48 1374349 28406 

312.19 C15H25N3O4 Val-Pro-Pro 235 3696719 15739 

188.18 C9H21N3O N1-Acetylspermidine 171 2211589 12931 

313.15 C18H20N2O3 Phe-Phe 744 8893432 11959 
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274.19 C11H23N5O3 Val-Arg 855 9403370 10995 

332.22 C15H29N3O5 Leu-Leu-Ser 78 753642 9678 

315.20 C14H26N4O4 Lys-Ala-Pro 35 304693 8789 

249.13 C10H20N2O3S Met-Val 103 867833 8393 

217.12 C9H16N2O4 Thr-Pro 91 651287 7184 

264.10 C9H17N3O4S Ala-Ala-Cys 115 492733 4274 

366.20 C18H27N3O5 Leu-Ala-Tyr 227 801312 3524 

272.16 C12H21N3O4 Val-Gly-Pro 2911 8509340 2923 

175.11 C7H14N2O3 N-Acetylornithine 2353 5549482 2359 

262.14 C10H19N3O5 Lys-Asp 25 55845 2267 

Table 5-16: A relative change of metabolites in positive ionisation mode analysis in E. coli infected group in comparison to control group. The 

relative change in intensity for each identified metabolite between the sample groups was calculated by dividing the mean m/z intensity from the E. coli 

infected samples by the mean m/z intensity determined for the control group.
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Reduced in S. aureus      

row m/z Molecular formula Name m/z intensity (Control) m/z intensity (S.aureus) Fold increase/decrease 

221.09 C11H12N2O3 5-Hydroxy-L-tryptophan 396487.6 0 n/a 

261.06 C14H12O3S Suprofen 235737.3 0 n/a 

232.17 C15H21NO Metazocine 230323.2 0 n/a 

142.03 C2H8NO4P Ethanolamine phosphate 505132.3 0 n/a 

212.04 C4H10N3O5P Phosphocreatine 20806449 0 n/a 

152.06 C5H5N5O 8-Hydroxyadenine 7285295 0 n/a 

183.09 C6H14O6 Mannitol 257290.9 0 n/a 

174.02 C6H7NO3S 2-Aminobenzenesulfonate 6894.951 0 n/a 

240.11 C9H13N5O3 Dihydrobiopterin 298827 0 n/a 

223.10 C12H14O4 Dillapiole 14979735 25325.15 0.002 

268.10 C10H13N5O4 Deoxyguanosine 7124045 17460.44 0.002 

75.09 C3H10N2 1_3-Diaminopropane 469562.7 1188.912 0.003 

131.13 C5H14N4 Agmatine 238399.8 813.1191 0.003 

160.10 C7H13NO3 (-)-Betonicine 1187418 4261.909 0.004 

177.05 C10H8O3 1_3_8-Naphthalenertriol 69725635 273655.9 0.004 

      

      

Increased in S .aureus    

329.15 C18H20N2O4 Phe-Tyr 71 6899649 97449 

344.18 C15H25N3O6 Leu-Asp-Pro 370 24766005 66964 

366.20 C18H27N3O5 Leu-Ala-Tyr 227 8501998 37387 



Chapter 5, 241 

 

 

Table 5-17: A relative change of metabolites in positive ionisation mode analysis in S. aureus infected group in comparison to control group. The 

relative change in intensity for each identified metabolite between the sample groups was calculated by dividing the mean m/z intensity from the S. aureus 

infected samples by the mean m/z intensity determined for the control group.

331.20 C14H26N4O5 Leu-Ala-Gln 599 22347998 37289 

274.19 C11H23N5O3 Val-Arg 855 30879290 36106 

313.15 C18H20N2O3 Phe-Phe 744 25542108 34345 

332.22 C15H29N3O5 Leu-Leu-Ser 78 2561617 32895 

246.14 C10H19N3O4 Leu-Asn 290 8706973 30007 

249.13 C10H20N2O3S Met-Val 103 2856985 27630 

292.13 C14H17N3O4 Trp-Ser 188 4827665 25732 

312.19 C15H25N3O4 Val-Pro-Pro 235 5247047 22340 

302.21 C14H27N3O4 Leu-Leu-Gly 92 2001246 21736 

283.13 C13H18N2O5 Thr-Tyr 48 1023145 21147 

401.29 C18H36N6O4 Leu-Leu-Arg 213 3979172 18697 

288.20 C12H25N5O3 Leu-Arg 1262 21946148 17391 
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Reduced in E. coli     

row m/z Molecular formula Name m/z intensity 

(Control) 

m/z intensity 

(E. coli) 

Fold increase/decrease 

219.01 C7H8O8 4-Carboxy-4-hydroxy-2-oxoadipate 528160 2379 0.005 

141.06 C7H10O3 4-Oxocyclohexanecarboxylate 129673 1436 0.011 

112.99 C4H2O4 Acetylenedicarboxylate 143871 2380 0.017 

275.02 C13H9N2O3Cl GW 9662 324140 12136 0.037 

95.01 C5H4O2 Protoanemonin 59718 2432 0.041 

155.03 C7H8O4 2-Hydroxy-6-keto-2_4-heptadienoate 231762 10357 0.045 

210.03 C4H10N3O5P Phosphocreatine 1659260 89840 0.054 

373.10 C18H18N2O7 PortulacaxanthinII 27781 1508 0.054 

188.99 C6H6O5S 3-Sulfocatechol 88004 5368 0.061 

113.02 C5H6O3 2-Hydroxy-2_4-pentadienoate 11126302 756437 0.068 

153.02 C7H6O4 3_4-Dihydroxybenzoate 965175 99451 0.103 

194.05 C9H9NO4 Salicyluric acid 1409008 163048 0.116 

104.04 C3H7NO3 L-Serine 161750 19405 0.120 

266.12 C17H17NO2 (-)-Caaverine 87469 10795 0.123 

140.01 C2H8NO4P Ethanolamine phosphate 1079475 135707 0.126 

      

      

Increased in E. coli     

187.11 C8H16N2O3 N6-Acetyl-L-lysine 45 2013370 44736 

259.13 C11H20N2O5 Glu-Leu 398 2881723 7249 

327.14 C18H20N2O4 Phe-Tyr 37 263896 7187 

195.05 C7H8N4O3 1-3-Dimethyluricacid 92 634581 6865 

272.17 C11H23N5O3 Val-Arg 857 5143175 6004 

339.09 C12H20O11 3-Ketosucrose 92 343018 3746 
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277.16 C15H22N2O3 Leu-Phe 132 392424 2962 

466.33 C23H50NO6P [PC methyl(14:2)] 2-methyl-3-tetradecyl-

sn-glycero-1-phosphocholine 

255 730878 2861 

229.16 C11H22N2O3 Leu-Val 341 743738 2183 

313.19 C14H26N4O4 Lys-Ala-Pro 151 310677 2060 

181.04 C6H6N4O3 1-Methyluric acid 1359 2723161 2004 

203.08 C11H12N2O2 L-Tryptophan 187 320534 1714 

261.12 C14H18N2O3 Phe-Pro 525 855177 1628 

243.10 C10H16N2O5 Glu-Pro 364 556272 1527 

175.06 C7H12O5 (2S)-2-Isopropylmalate 31248 46199319 1478 

Table 5-18: A relative change of metabolites in negative ionisation mode analysis in E. coli infected group in comparison to control group. The 

relative change in intensity for each identified metabolite between the sample groups was calculated by dividing the mean m/z intensity from the E. coli 

infected samples by the mean m/z intensity determined for the control group.
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Reduced in S. aureus     

row m/z Molecular 

formula 

Name m/z intensity 

(Control) 

m/z intensity 

(S.aureus) 

Fold increase/decrease 

210.03 C4H10N3O5P Phosphocreatine 1659260 0 n/a 

150.04 C5H5N5O 8-Hydroxyadenine 216939 0 n/a 

219.01 C7H8O8 4-Carboxy-4-hydroxy-2-oxoadipate 528160 1524 0.003 

140.01 C2H8NO4P Ethanolamine phosphate 1079475 7703 0.007 

179.03 C9H8O4 3-(4-Hydroxyphenyl)pyruvate 53543 477 0.009 

229.01 C5H11O8P D-Ribose 5-phosphate 655172 10906 0.017 

155.03 C7H8O4 2-Hydroxy-6-keto-2_4-heptadienoate 231762 6764 0.029 

259.02 C6H13O9P D-Glucose 6-phosphate 52176193 1588423 0.030 

171.01 C3H9O6P Glycerol 2-phosphate 15741286 539478 0.034 

141.06 C7H10O3 4-Oxocyclohexanecarboxylate 129673 5551 0.043 

112.99 C4H2O4 Acetylenedicarboxylate 143871 6429 0.045 

104.04 C3H7NO3 L-Serine 161750 9620 0.059 

289.03 C7H15O10P D-Sedoheptulose 7-phosphate 1368021 81751 0.060 

175.02 C6H8O6 D-Glucuronolactone 5130855 368321 0.072 

298.07 C9H18NO8P D-4'-Phosphopantothenate 1604867 128723 0.080 

      

      

Increased in S. aureus     

187.11 C8H16N2O3 N6-Acetyl-L-lysine 45 8264384 183632 

277.16 C15H22N2O3 Leu-Phe 132 13157998 99319 
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259.13 C11H20N2O5 Glu-Leu 398 9024354 22699 

327.14 C18H20N2O4 Phe-Tyr 37 594526 16192 

286.19 C12H25N5O3 Leu-Arg 304 4349308 14315 

272.17 C11H23N5O3 Val-Arg 857 10020592 11697 

243.17 C12H24N2O3 Leucyl-leucine 2334 23052455 9879 

229.16 C11H22N2O3 Leu-Val 341 2683365 7875 

233.08 C8H14N2O6 Glu-Ser 233 1236984 5305 

203.08 C11H12N2O2 L-Tryptophan 187 786619 4207 

241.09 C9H14N4O4 Ser-His 311 1043698 3360 

321.24 C20H34O3 2alpha-(Hydroxymethyl)-5alpha-androstane-

3beta_17beta-diol 

496 1658760 3343 

345.24 C22H34O3 Taxa-4(20)_11(12)-dien-5alpha-acetoxy-10beta-ol 561 1687503 3010 

232.13 C9H19N3O4 Lys-Ser 305 800527 2627 

466.33 C23H50NO6P [PC methyl(14:2)] 2-methyl-3-tetradecyl-sn-

glycero-1-phosphocholine 

255 669343 2620 

Table 5-19: A relative change of metabolites in negative ionisation mode analysis in S. aureus infected group in comparison to control group. The 

relative change in intensity for each identified metabolite between the sample groups was calculated by dividing the mean m/z intensity from the S. 

aureus infected samples by the mean m/z intensity determined for the control group. 
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Row m/z Molecular formula Name Control E. coli (EC) S. aureus (SA) SA/EC P value for EC.>SA 

E. coli > S. aureus 

268.10 C10H13N5O4 Deoxyguanosine 7393670 246102 2422 0.010 0 

360.17 C17H21N5O4 Phe-Gly-His 74624 147797 19243 0.130 0 

131.13 C5H14N4 Agmatine 7274 25157 678 0.027 0.0001 

262.13 C11H19NO6 Mycosporine 2215241 1490476 73639 0.049 0.0002 

662.48 C35H68NO8P [PC (11:0/16:0)] 1-(10E-undecenoyl)-2-hexadecanoyl-sn-glycero-3-phosphocholine 807946 1369890 82201 0.060 0.0004 

395.32 C24H42O4 [ST (4:0)] 5alpha-Cholane-3alpha_7alpha_12alpha_24-tetrol 675090 237003 28238 0.119 0.0007 

347.17 C14H26N4O4S Lys-Cys-Pro 0 14053 2309 0.164 0.0008 

302.15 C16H19N3O3 Trp-Pro 3722 60648 6427 0.106 0.001 

690.51 C37H72NO8P [PC (18:0/11:0)] 1-octadecanoyl-2-(10E-undecenoyl)-sn-glycero-3-phosphocholine 6104185 6834848 1086403 0.159 0.0012 

122.10 C8H11N Phenethylamine 332351 366314 28392 0.078 0.0013 

136.06 C5H5N5 Adenine 15149 25308 2037 0.080 0.0015 

170.08 C8H11NO3 Pyridoxine 10690 43702 4123 0.094 0.0035 

292.10 C11H17NO8 2_7-Anhydro-alpha-N-acetylneuraminic acid 392316 242233 30159 0.125 0.0061 

341.27 C20H36O4 [FA (20:2)] 15S-hydroperoxy-11Z_13E-eicosadienoic acid 3284897 1757064 278653 0.159 0.0077 

415.23 C22H30N4O4 Tentoxin 4205 873662 59028 0.068 0.0185 

247.11 C10H18N2O3S Met-Pro 83543 3674935 453681 0.123 0.0307 

291.12 C11H18N2O7 N-Succinyl-LL-2_6-diaminoheptanedioate 132015 45106 6421 0.142 0.0371 

452.28 C21H42NO7P LysoPE(0 22523 429336 70584 0.164 0.0439 
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Row m/z Molecular formula Name Control E. coli (EC) S. aureus (SA) SA/EC P value for EC.>SA 

S. aureus > E. coli  

        

288.20 C12H25N5O3 Leu-Arg 882 106405 2643318 24.8 0.0001 

295.18 C19H22N2O Eburnamonine 0 7322 911037 124.4 0.0001 

204.13 C8H17N3O3 Lys-Gly 0 4545 105894 23.3 0.0002 

275.17 C11H22N4O4 Lys-Ala-Gly 0 7408 259091 35.0 0.0007 

288.22 C15H29NO4 L-Octanoylcarnitine 32223 21165 882738 41.7 0.0011 

217.13 C8H16N4O3 N-a-Acetyl-L-arginine 17622 6593 251098 38.1 0.0012 

316.25 C17H33NO4 O-Decanoyl-L-carnitine 6766 11711 528729 45.1 0.0012 

233.15 C10H20N2O4 Leu-Thr 1694 599153 13755161 23.0 0.0042 

93.05 C3H8O3 Glycerol 948 2760 301366 109.2 0.0049 

262.10 C9H15N3O6 Ala-Asp-Gly 0 2511 527607 210.1 0.0062 

243.11 C9H14N4O4 Ser-His 0 3427 111584 32.6 0.0067 

246.16 C9H19N5O3 beta-Alanyl-L-arginine 0 595 21148 35.5 0.0086 

304.16 C11H21N5O5 Glu-Arg 0 1208 57459 47.6 0.0102 

246.14 C10H19N3O4 Leu-Asn 0 6124 1226699 200.3 0.0139 

220.09 C7H13N3O5 1D-1-Guanidino-1-deoxy-3-dehydro-scyllo-inositol 0 401 116297 290.2 0.0162 

400.34 C23H45NO4 L-Palmitoylcarnitine 0 49632 1440263 29.0 0.0166 

300.29 C18H37NO2 Sphingosine 10283 11327 975206 86.1 0.0185 
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Table 5-20: A relative change of metabolites in positive ionisation mode analysis in E.coli and S. aureus infected groups in comparison to control 

group. The relative change in intensity for each identified metabolite between the sample groups from the infections was also calculated by dividing the 

median m/z intensity from the S. aureus samples by the median m/z intensity determined for the E. coli group. 

 

428.37 C25H49NO4 Stearoylcarnitine 3663 31932 870431 27.3 0.0203 

241.03 C6H12N2O4S2 L-Cystine 233951 15219 1219633 80.1 0.0228 

320.12 C15H17N3O5 Trp-Asp 0 1689 186229 110.2 0.037 
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Row m/z Molecular formula Name  Control E. coli (EC) S. aureus (SA) P- value SA/EC 

E. coli > S. aureus       

377.11 C13H22N4O7S Met-Asn-Asp 6890577.34 8802326.18 214344.33 0.024 0 

421.22 C23H34O7 Picrasin C 14239.19 41027.42 3517.35 0.086 0 

181.05 C9H10O4 3-Methoxy-4-hydroxyphenylglycolaldehyde 62009.99 529282.74 39401.15 0.074 0.0001 

149.02 C8H6O3 2-Carboxybenzaldehyde 1776.99 19169.73 3885.44 0.203 0.0002 

208.06 C7H15NO4S MOPS 463757.13 674283.55 55062.11 0.082 0.0003 

413.22 C22H30N4O4 Tentoxin 0.00 9914.58 684.99 0.069 0.0006 

227.14 C11H20N2O3 Leu-Pro 0.00 586049.23 103807.18 0.177 0.0012 

175.06 C7H12O5 (2S)-2-Isopropylmalate 28034.31 484537.27 16910.05 0.035 0.0013 

185.09 C8H14N2O3 Ala-Pro 0.00 110493.93 4949.62 0.045 0.0015 

225.05 C9H10N2O5 3-Nitrotyrosine 16030.61 64844.81 8919.53 0.138 0.0015 

191.06 C7H12O6 Valiolone 459049.45 836759.32 142111.11 0.170 0.0022 

464.28 C22H44NO7P [PC (14:0)] 1-(9Z-tetradecenoyl)-sn-glycero-3-phosphocholine 6635.16 61018.85 9555.26 0.157 0.0026 

240.05 C10H11NO6 N-(2_3-Dihydroxybenzoyl)-L-serine 4933.71 12066.26 1245.97 0.103 0.0031 

241.01 C6H11O8P D-myo-Inositol 1_2-cyclic phosphate 126772.78 268187.98 18729.54 0.070 0.0037 

138.02 C6H5NO3 4-Nitrophenol 2779.26 266216.76 18730.86 0.070 0.0068 

157.05 C7H10O4 2-Isopropylmaleate 9008.42 120032.46 18651.52 0.155 0.0077 

163.04 C9H8O3 Phenylpyruvate 4799.75 188677.58 36508.59 0.193 0.0077 

304.15 C12H23N3O6 Leu-Ser-Ser 0.00 77330.97 9092.19 0.118 0.0108 

166.04 C5H5N5O2 8-Hydroxyguanine 284694.89 163094.08 17370.75 0.107 0.0166 

181.04 C6H6N4O3 1-Methyluric acid 1341.04 237648.75 1724.51 0.007 0.0302 

171.01 C3H9O6P Glycerol 2-phosphate 12866412.16 3984791.07 350936.16 0.088 0.0339 

91.06 C7H8 Toluene 0.00 3206.91 574.50 0.179 0.0419 
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Row m/z Molecular formula Name  Control E. coli (EC) S. aureus (SA) P-value SA/EC 

S. aureus > E. coli       

111.01 C5H4O3 3-Furoicacid 144280.02 37867.85 1270896.79 33.6 0 

241.09 C9H14N4O4 Ser-His 0.00 5983.68 404950.12 67.7 0.0007 

315.20 C14H28N4O4 Leu-Lys-Gly 0.00 2223.93 50059.68 22.5 0.0015 

237.09 C11H14N2O4 Gly-Tyr 0.00 7716.76 145858.86 18.9 0.0024 

339.25 C20H36O4 [FA (20:2)] 15S-hydroperoxy-11Z_13E-eicosadienoic acid 5925.74 7410.93 161970.79 21.9 0.0025 

302.15 C11H21N5O5 Glu-Arg 0.00 1449.54 51160.10 35.3 0.0028 

246.15 C10H21N3O4 Lys-Thr 203.59 72670.00 2556646.63 35.2 0.0042 

260.09 C9H15N3O6 Ala-Asp-Gly 0.00 4508.99 1183200.27 262.4 0.0042 

227.20 C14H28O2 Tetradecanoic acid 1803.83 7008.93 176840.89 25.2 0.0048 

360.14 C14H23N3O8 Leu-Asp-Asp 0.00 1015.08 78304.48 77.1 0.0094 

255.23 C16H32O2 Hexadecanoic acid 24943.22 57428.79 1014884.73 17.7 0.0108 

203.07 C7H12N2O5 Ala-Asp 0.00 10488.46 522376.69 49.8 0.0145 

239.02 C6H12N2O4S2 L-Cystine 85659.22 2122.87 560196.97 263.9 0.0161 

260.13 C10H19N3O5 Lys-Asp 0.00 1026.23 56647.44 55.2 0.0185 

301.24 C17H34O4 MG(0 3153.57 4636.33 93332.57 20.1 0.0278 

278.05 C8H14N3O6P Cidofovir 655109.72 136903.56 2662709.08 19.4 0.0283 

231.10 C9H16N2O5 N2-Succinyl-L-ornithine 0.00 1513.78 46034.74 30.4 0.0293 

233.08 C8H14N2O6 Glu-Ser 0.00 7358.12 491377.73 66.8 0.0303 

253.03 C7H14N2O4S2 L-Djenkolic acid 0.00 762.58 15942.83 20.9 0.0324 

218.08 C7H13N3O5 1D-1-Guanidino-1-deoxy-3-dehydro-scyllo-inositol 0.00 738.01 101885.03 138.1 0.038 

353.31 C22H42O3 [FA oxo(22:0)] 10-oxo-docosanoic acid 1592.50 6321.76 113698.29 18.0 0.0489 
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201.12 C9H18N2O3 Leu-Ala 0.00 32485.10 869131.79 26.8 0.0644 

258.15 C11H21N3O4 Leu-Ala-Gly 0.00 38433.25 666891.94 17.4 0.083 

205.08 C7H14N2O5 Thr-Ser 0.00 3997.60 199953.30 50.0 0.0963 

300.05 C8H16NO9P N-Acetyl-D-glucosamine 6-phosphate 250003647.30 373727.48 19134245.55 51.2 0.2508 

 

Table 5-21: A relative change of metabolites in negative ionisation mode analysis in E.coli and S. aureus infected group in comparison to control 

group. The relative change in intensity for each identified metabolite between the sample groups from the infections was also calculated by dividing the 

median m/z intensity from the S. aureus samples by the median m/z intensity determined for the E. coli group. 
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5.3.5 Metabolic Pathways Altered by Bovine Mastitis 

 

 Pathos web facility provided by the Scottish Metabolomics Facility was used to further 

analyze the metabolites identified in each group of milk samples. The file was downloaded 

and this website (http://motif.gla.ac.uk/Pathos/index.html) allowed an investigation of the 

metabolites found in certain group of samples according to corresponded metabolic 

pathways. The pathways were listed starting from the greatest changes in the metabolites 

abundances in mastitic samples to the least changes in the metabolites abundances in both 

groups of mastitic as presented in Figure 5-1 and 5-2. The colour-coding scale indicator at 

each of the metabolites showed their abundances from increase to decrease in the milk 

samples. According to the website, light blue colour is an indication of decreased of 

metabolites in mastitic milk samples whilst the dark red colour is an indication of increased 

of metabolite in mastitic milk samples. 

 

On each of the metabolic pathway, all metabolites involved in the particular metabolic 

pathway can be analyzed with the presented histogram showing the abundances in three 

different groups of milk samples as shown in Figure 5-3. A KEGG map was also be 

generated to highlight the potential metabolites involved in a particular metabolic pathway 

as showing in Figure 5-4 for the arachidonic acid pathway. 

The next step involved was dividing the metabolic pathways identified into three different 

groups; lipid, protein and carbohydrate metabolisms. Six metabolic pathways with the 

most apparent changes in each metabolism from both positive and negative ionisation 

modes were chosen based on the abundances values provided by the Pathos website. For 

the lipid metabolism (Table 5-22), the arachidonic acid metabolic pathway was the 

pathway with most apparent changes with icosatetraenoic acid, prostaglandin F2 alpha, 

prostaglandin A2, leukotrienes A4 and B4 were increased in mastitic samples whilst no 

metabolites related to this pathway was found decreased in mastitis. Linoleic acid and α-

linolenic acid metabolic pathways were the next pathways with the most changes with 

increased in icosatetraenoic and stearidonic acids in mastitic samples. Hexadecanoic acid 

was also found to increase in mastitic milk which derived from fatty acid-related metabolic 

pathways. The majority of these metabolites were the main precursors of eicosanoids 

involved in inflammatory activity in a host. Thus, it is not surprising to see these 

metabolites increased in mastitic samples. 
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For carbohydrate metabolism (Table 5-23), galactose, pentose and glucuronate 

interconversions, fructose and mannose, starch and sucrose metabolic pathways were the 

pathways with the most apparent changes in carbohydrate metabolism apart from 

glycolysis/gluconeogenesis pathway. Glycerol, glycerone phosphate, fructose and glucose 

were the metabolites found increased in mastitic samples, whilst fructose-6-phosphate, 

mannose-6-phosphate and glucose-6-phosphate were among the metabolites decreased in 

mastitic samples. 

Protein metabolism was analyzed and the metabolic pathways with the most apparent 

changes were arginine, tryptophan, tyrosine, phenylalanine, cysteine and methionine, as 

well as glycine, serine and threonine metabolic pathways (Table 5-24). The metabolites 

found to be increased in mastitic samples were tryptophan, ornithine, methionine and 

tyrosine. Glutamine, phosphocreatine, acetoacetate, propanoate and serine were among the 

protein metabolites decreased in mastitic milk samples. 

Di- and tri-peptides were also found to increase in both groups of mastitic samples. A table 

of peptides identified by Pathos programme is presented in Table 5-25 and includes Asn-

His, Asp-Arg, Gln-Ser-Ser and Leu- Gly- Ser. 
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Figure 5-1: An example of various metabolic pathways generated by PATHOS website.  In this example, the data from negative ionisation mode 

was used and the metabolic pathway was listed starting with the most apparent changes of metabolites to the least apparent changes of metabolites. 
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Figure 5-2: An example of metabolic pathway (Arachidonic acid metabolism) which listed down the metabolites with greatest changes of 

abundances (dark red colour) to the least changes of abundances in both groups of mastitis (light blue colour; not showing). 
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Figure 5-3: An example of histogram of prostaglandin F2 alpha showing abundances in control, E. coli infected and S. aureus infected groups. It 

shows here that prostaglandin F2 alpha increased in abundances in both mastitis groups but present in the lowest abundances in control group. 
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Figure 5-4: An example of KEGG map generated from arachidonic acid metabolism to highlight the potential metabolites involved in a 

particular metabolic pathway. A dark red dot shows metabolite which was increased in mastitic milk samples. Further click on the dot revealed a 

histogram as showed in Figure 5.2. 
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Table 5-22: Six metabolic pathways in lipid metabolism with the most apparent changes of metabolites from both positive and negative ionisation 

mode analyses. The abundances values were provided by the Pathos website.

Lipid Metabolic Pathways Metabolites Increased in Mastitis Metabolites Decreased in Mastitis 

Arachidonic acid Met. Icosatetraenoic acid, Prostaglandin F2α, 

Leukotriene A4, Leukotriene B4, Prostagladin 

A2 

None 

Linoleic acid Met. Icosatetraenoic acid,  Linoleate  

α-linolenic acid Met. Stearidonic acid Heptadecatrienal  

Biosynthesis of unsaturated fatty acid Hexadecanoic acid Icosatetraenoic acid 

Fatty acid biosynthesis Hexadecanoic acid None 

Fatty acid Met. Hexadecanoic acid None 
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Carbohydrate Metabolic Pathways Metabolites Increased in Mastitis Metabolites Decreased in Mastitis 

Galactose Met. Glycerol D-Glucose-1-Phosphate, α-D-Galactose 

1-phosphate 

Pentose & Glucuronate 

interconversions 

Glycerone phosphate, D-Xylonolactone D-Fructose-6-Phosphate 

Fructose & Mannose Met D-Fructose D-Mannose-6-Phosphate 

Starch & Sucrose Met.  Reduced acceptor D-Glucose D-Glucose-6-phosphate 

Glycolysis/Gluconeogenesis None Acetate 

Table 5-23: Six metabolic pathways in carbohydrate metabolism with the most apparent changes of metabolites from both positive and negative 

ionisation mode analyses. The abundances values were provided by the Pathos website.
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Protein Metabolic Pathways  Metabolites Increased in Mastitis  Metabolites Decreased in Mastitis  

ArginineMet. N-Acetylornithine, L-Ornithine  L-Glutamine, Phosphocreatine  

Tryptophan Met.  L-Tryptophan  Anthranilate, 2-Oxoadipate  

Tyrosine Met.  L-Tyrosine, 4-

Hydroxyphenylacetate  

Acetoacetate  

Phenylalanine Met.  L-Phenylalanine, Succinate  Propanoate, 2-Hydroxy-2,4-

pentadienoate  

Cysteine and Methionine Met.  L-Methionine  2-Oxobutanoate, L-Serine  

Glycine, Serine and Threonine Met.  L-Tryptophan  L-Serine,D-serine  

Table 5-24: Six metabolic pathways in protein metabolism with the most apparent changes of metabolites from both positive and negative 

ionisation mode analyses. The abundances values were provided by the Pathos website. 
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Amino acid/Peptides  Examples  

Di-peptides  Asn-His, Asp-Arg, Lys-Asn, Leu-Met, Ala-Tyr, 

Trp-Gly  

Tri-peptides  Gln-Ser-Ser, Leu-Gly-Ser, Met-Ala-Ser, Ala-

Gly-Arg, Leu-Asp-Gly, Leu-Asn-Gly  

Table 5-25: Examples of di- and tri-peptides which were found increased in both 

mastitic groups from both positive and negative ionisation mode analyses. The 

abundances values were provided by the Pathos website. 
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5.4 Discussion 

From positive ion mode analysis, the 3 metabolites with highest intensity in the control 

group (Table 5-4) were L-acetylcarnitine, choline and sn-glycero-3-phosphocholine which 

are related to lipid metabolism and the choline content of phopsholipids in the milk fat 

globule membrane. Citrate, lactose, glucose and galactose were found high in intensity 

from negative ion mode in both control and E. coli infected group but the monosaccharides 

were not at the top in S. aureus infected group, possibly indicative that these 

monosaccharides are more rapidly absorbed for use in metabolism by the latter bacterium 

Identification of the metabolites which show the most significant differences between the 

infections caused by the bacteria provide valuable indications for demonstration of 

differences in the metabolic effects of the infections and also reveal potential targets for 

biomarkers to identify the type of bacteria causing the mastitis.  Notable in the evaluation 

of metabolite changes on infection are the increase in identification of di-and tripeptides in 

in both infections with particular tripeptides being associated with both of the bacteria, 

though with S. aureus infection causing more of these peptides to be present.  The source 

of the peptides in the infected samples is likely to be breakdown products from milk 

proteins caused by bacterial or immune cell protease activity.  The finding that there are 

differences between bacterial causative agent could be either due to differences in the 

specifity of action of the bacterial proteases or that the bacteria have differing efficiencies 

in absorbing the peptides after they are released by hydrolysis.  As S. aureus infection 

caused the greater degree of di and tripeptide in the metabolite pool, the bacteria either 

have more active proteolytic enzymes or are less efficient at absorbing the peptides for 

their own metabolism. 

An attempt was made to find the origin of the tripeptides by comparison to the bovine 

genome of those found in either infection group. Although 40% of the tripeptides present 

in the mastitis milk could be identified in the amino acid sequence of the milk proteins: 

caseins, α-lactalbumin, β-lactoglobin, albumin and lactoferrin it was found by scanning the 

bovine protein database, that the tri-peptides were identified in over 5000 proteins in the 

bovine proteome so that no definitive conclusion could be made on the origin of the 

peptides.   

 

Of the 100 metabolites investigated, with the largest differences in m/z intensity between 

S. aureus and E. coli, there was a mix of metabolites, with lipid, nucleotide and 

carbohydrate related metabolites being identified.  There were also non-host and non-
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pathogen metabolites identified such as tentoxin, ricinine, quinate, toluene and others. 

When these occurred in the infected groups and not in the control group it is possible that 

the metabolites are derived from therapeutic reagents.  A number had metabolite database 

hits as either drugs (for infection or inflammation) or of compounds used in herbal or 

chinese medicine.  As mentioned above the identification by the computer database of a 

number of metabolites were questionable, and while a number of these were identified and 

corrected (1-alpha-D-galactosyl-myo-inositol =lactose; myo-inositol = glucose or 

galactose) it is possible that the molecules are incorrectly named and these identified 

agents may be erroneously named.  Confirmation of molecular identity would be a major 

task in following up this initial investigation.  

 

5.4.1 Lipid Metabolism 

As part of the analysis, the effect of mastitis on lipid metabolism was assessed by 

examination of the metabolites in the 6 metabolic pathways with the most apparent 

changes from both positive and negative ion modes. From these six metabolic pathways, 

the 6 metabolites greater in both diseased and control groups were selected for discussion. 

The method reported in this chapter revealed increases in arachidonic acid metabolites in 

both two mastitic group caused by E. coli and S. aureus. Examples of increased 

metabolites are icosatetraenoic acid, prostaglandin F2α (PGF2α), prostaglandin E2 

(PGE2), leukotriene A4 (LKA4), leukotriene B4 (LKB4), thromboxane A2 (TXA2), 

thromboxane B2 (TXB2) and others.  

These metabolites are the main precursors of eicosanoids which are the fatty acid-derived 

mediators involved in a wide-range of inflammatory activity in the host cell (Bannerman 

2009). Thromboxanes and prostaglandins are formed by the catabolism of arachidonic acid 

mediated by cyclooxygenase while the formation of leukotrienes is mediated by 

lipoxygenase (Kuehl Jr. and Egan 1980; Williams and Higgs 1988). Each eicosanoids has a 

differing role in inflammatory processes and may have antagonizing effects to other 

eicosanoids. Thromboxane A2 for example is most potent of the eicosanoids in contracting 

aortic tissue and can trigger platelet aggregation whereas other prostaglandins (e.g, 

prostacyclin) and PGI2 cause vasodilation and inhibit platelet aggregation (Kuehl Jr. and 

Egan 1980; Ball et al. 1986; Feuerstein and Hallenbeck 1987). Meanwhile, leukotrienes 

are involved in inducing leukocyte recruitment and promoting leukocyte respiratory burst 

activity and cytokine production (Zipser and Laffi 1985; Williams and Higgs 1988; 

Bottoms and Adams 1992).  According to Bannermann (2008), leukotriene B4 is the most 
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potent endogenous chemoattractant. Thus, eicosanoids are responsible in mediating 

inflammatory response with a wide-range of activities on the immune response towards 

infection and injury.  

With their important role as mediators in inflammatory responses, it is not surprising that 

increases in concentrations of these eicosanoids happen in bovine mastitis. These results 

were in accordance with Giri et al. (1984) in which they also found a greater concentration 

of both PGF1α and PGF2α in milk after 50μg infusion of LPS. However, they did not find 

any increase in other eicosanoids such as TXB2 or LKB4. Anderson et al. (1985) on the 

other hand, revealed only an increase of TXB2 milk level after 10μg of LPS infusion. 

According to Anderson et al. (1985), the reason of an absence of PGF2α in the milk 

samples following infusion in their study is because of the reduced concentration of LPS 

infused into the quarters as compared to the former study. 

In this present study, both of the different pathogen-causing mastitis; E. coli and S. aureus 

are able to induce the release of these eicosanoids. One experimental intrammary infection 

study on E. coli by Peter et al. (1990) showed increases in prostacyclin (PCM), PGE2 and 

TXB2. However, no PCM was detected in this present study. However, Anderson et al 

(1985) also failed to show any increased in both PGF2α and TXB2 in experimental study 

of E.Coli. These differences are due to large biological and individual variability observed 

in milk eicosanoids concentrations in cows with acute coliform mastitis.  

Furthermore, studies by Atroshi et al. (1986, 1987) which involved naturally occurring 

cases of mastitis caused by S. uberis, S. aureus, S. dysgalactiae or Micrococcus species 

revealed increases in PGE2, PGF2α and TXB2. In this present study, milk samples 

infected with S. aureus showed greater concentrations of both TXA2 and TXB2 than milk 

samples infected with E. coli. Similarly, study by Boutet et al. (2003) on chronic mastitis 

caused by coagulase-negative staphylococci such as S. uberis, S. agalactiae or S. aureus 

showed increases in LTB4. Based on these results, it is indicated that different types of 

pathogen elicit increases in releasing eicosanoids during bovine mastitis.  

Apart from increased level of eicosanoids in all mastitic milk samples, there was also an 

increased in fatty acids metabolites seen in both groups of mastitic samples such as 

hexadecanoic acid, icosatetraenoic acid, linoleate, octadecenoic acid, octadecanoic acid, 

tetradecanoic acid etc.  

Fatty acids in the blood play an important role in modulating inflammatory reactions 

(Calder 2008; Serhan et al. 2008). Stored fatty acids are important as energy substrate 
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especially during negative energy balance (NEB) period. During this period, in a lactating 

cow the majority of available glucose is directed to the mammary gland for lactose 

synthesis (Herdt 2000). Thus, lipid mobilization from body reserve occurs and as a 

consequence, there is a release of non-esterified fatty acids (NEFA) into the blood stream. 

However an excess in the levels of circulating NEFAs could contribute to increase in 

disease susceptibility dairy cows especially in periparturient inflammatory-based diseases 

including mastitis, ketosis and metritis (Bernabucci et al. 2005; Goff 2006; Douglas et al. 

2007).  

Fatty acids can either provide benefit or have detrimental effects on the host through its 

regulating mechanisms in inflammatory reactions (Sordillo et al. 2009). For example, 

saturated fatty acids including lauric, palmitic and oleic acids can activate the toll-like 

receptor 4 (TLR4) through activation of NK-κB which leads to activation of innate 

immune response of the host. Thus, the presence of hexadecanoic acid or palmitic acid; a 

saturated fatty acid in both groups of mastitic samples could play an important role in 

activation of host innate immune response which provide the initial protection against 

invading pathogens before the acquired immune response is activated. 

During inflammation of the udder, milk composition is known to change and this includes 

the fat content in the milk. Previous studies showed that the levels of free fatty acids (FFA) 

is increased during mastitis (Randolph & Erwin, 1979; Salih & Anderson 1979; Needs & 

Anderson 1984; Atroshi et al. 1989). These events were contributed to a high lipase 

activity which leads to lipolysis and increase in the permeability of the mammary gland to 

blood lipids (Randolph & Erwin 1979). According to Salih & Anderson (1979), lipoprotein 

lipase (LPL) is an enzyme that responsible for lipolysis in milk. Furthermore, the transfer 

of an increased amount of LPL activator from blood to milk may contribute to partly 

caused rise of the FFA in mastitic milk.  

However, a study by Fitz-Gerald et al. (1981) did not agree on the role of LPL in 

increasing the level of FFA in mastitic milk. It might be explained by other mastitis-

influenced factors (e.g; presence of blood-serum activators or changes in substrate 

susceptibility). Lower LPL activity in mastitic milk is due to impaired biosynthetic 

capability of mammary gland through permanent tissue damage or the action of proteolytic 

enzymes which are also present in the milk during mastitis. This was also supported by 

Anderson and Needs (1983) who observed high levels of FFA from lipolysis in mastitic 

milk but these increases were not necessarily due to LPL activators. Blood serum or 

heparin might give a stimulatory effect on lipolysis as discussed by Salih & Anderson 
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(1979) previously. According to Murphy et al. (1989), increase in lipolysis was contributed 

from the susceptibility of the milk fat substrate to lipolysis in mastitic milk and not from 

the high level of lipase acitivity. 

A number of factors can influence the level of FFA in milk such as above-normal FFA 

levels on secretion, LPL activator, cell lipase, proteolytic enzymes, anions, heparin-like 

substances and fat globule membrane (Salih & Anderson 1979; Fitz-Gerald et al. 1981). 

Other than that, the variation occurred in individual cows on the levels of FFA in milk are 

also influenced by factors such as diet, oestrus and stage of lactation (Anderson & Needs 

1983).   

In this present study, both linoleic and α-linolenic acid metabolism were increased in both 

mastitic groups. This is with an agreement with Hogan et al. (1987) in which they 

observed high content of unsaturated linoleic and linolenic acid in mastitic milk which 

might be important in the killing of bacteria. Linoleic acid is a precursor of archidonic acid 

and both could be released from the cell membrane phospholipids by phospholipase-like 

enzymes. Futhermore, according to Atroshi et al. (1989), α-linolenic acid was positively 

correlated with PGE2 and PGF2α which were also found in higher levels in mastitic milks 

in this present study than in healthy milk. 

In this present study, high levels of long-chain fatty acids were observed in both groups of 

mastitic milk. However, it is not an agreement with studies by Kisza & Batura (1969), 

Randolph & Erwin (1974) and Karijord et al. (1982) only reported the highest content of 

18:0 and C 18:1 in milk during early lactation but not during mastitis.  

In contrast, other previous studies argued with the high fat content observed in mastitic 

milk (Bartsch et al. 1981; Massart-Leen et al. 1994). They assumed that during mastitis, 

the low level in milk yield could lead to reduce synthesis of the total amount amount of 

milk fat as the mammary gland epithelium does not retain its normal integrity for synthesis 

of major milk components.  

5.4.2 Carbohydrate Metabolism 

Carbohydrates are one of the most important sources of energy in all living organisms. In 

cows, carbohydrate is fermented by microorganisms in the rumen to produce volatile fatty 

acids such as acetic acid, butyric acid and propionic acid. Gluconeogenesis in the cows 

occurs in the liver and glucose is produced from metabolites such as propionate, valerate, 

amino acids, lactate and glycerol (Nafikov & Beitz 2007). 
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The mammary gland takes up glucose from the liver via circulatory system to be used in 

lactose synthesis. Glucose is also important for lipid metabolism as it serves as the 

backbone of milk fat synthesis in which glucose is converted to glycerol. Glycerol is then 

being attached to the fatty acids produced by acetate and ß-hydroxybutyrate. About 70% of 

net uptake of glucose from blood by lactating bovine udders is used to synthesize lactose 

and the remainder is oxidized in pentose and TCA cycles (Qiao et al. 2005). 

Following mass spectrometry of metabolomics, six carbohydrate metabolic pathways were 

chosen and in each metabolic pathway, metabolites that increased or decreased in mastitis 

in relation to control animals were assigned in both positive and negative ion modes.   

It was apparent that some carbohydrate metabolites were less evident in both groups of 

mastitis compared to control animals. Among these metabolites are glycerol, D-fructose, 

and others, while D-glucose or its isomer D-galactose and identified by the PATHOS 

programme as myo-inositol was still in the top 4 in E. coli and top 6 in S. aureus groups. 

Marschke & Kitchen (1984) agreed that levels of glucose were negatively correlated with 

both log somatic cell counts (logSCC) and log N-acetyl-beta-D-glucosaminidase 

(logNAGase). However, the reason for low levels of glucose found in mastitic milk is 

unknown. Several hypotheses have been made on how this event occurred. According to 

Linzell & Peaker (1971), during mastitis, reduced blood flow to the udder result in reduced 

in the supply of blood glucose to the secretory cells of mammary gland. It is also possible 

that glucose would move out of milk during mastitis by a paracellular pathway as Na
+
 and 

Cl
-
 increased in milk. This would to help in maintaining the osmolarity between 

extracellular fluid and milk (Marschke & Kitchen 1984). 

A study by Cecil et al. (1965) revealed that glycogen concentrations were greatly increased 

in mastitic milk compared with normal milk. As leukocytes contain high glycogen levels, 

there is a possibility that high glucose levels in mastitic milk are due to leukocyte 

infiltration during the inflammatory processes. However, the results in this present study 

showed that the end-products of glycogen breakdown such as glucose-1-phosphate and 

glucose-6-phosphate are lower in mastitic milk than in control milk. It seems that the 

influence of somatic cells in mastitis milk samples used in the present study was not great 

enough to release glycogen in the milk. Futhermore, because glycogen is only available 

from the liver as glucose for it to become accessible to other organs, reduced blood flow to 

the mammary gland during mastitis was the reason why glycogen levels are reduced in 

mastitic milk. 
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Giesecke & Heever (1981) observed a fluctuation in glucose levels in milk from 

artificially-induced mastitis by human strains Group B Streptococci intracisternally. In 

certain conditions, low levels of glucose may occur relative to its supply and demand even 

in normal udder quarters. Reduced concentration of glucose in mastitic milk can affect the 

abilities of PMN-leukocytes by affecting the efficiency of phagocytosis and the killing of 

bacteria (Giesecke & Heever 1981). 

Low levels of glucose contribute to cessation of milk secretion implying the importance of 

glucose in milk secretion (Rook et al. 1965).Thus, a reduced blood perfusion to the 

mammary gland and less glucose uptake by the mammary cells may occur in mastitis. In 

turn, depressed milk yield is seen which could explain one of the important clinical sign in 

mastitis. 

5.4.3 Protein Metabolism 

Ruminant animals require two types of digestible proteins; the one which escapes rumen 

degradation which is digested in the small intestine to be used by the animals itself and the 

one is a degradable protein in the rumen used by the micro-organisms to synthesize 

microbial protein. Proteins are important sources for maintenance of vital functions, 

reproduction, growth and lactation. Within the mammary gland, large amounts of amino 

acids are needed to synthesize milk proteins. Amino acids can also be converted into other 

non-essential amino acids or oxidized into energy in the mammary gland (Wattiaux and 

Karg 2004). 

In this study, the six protein metabolic pathways with greatest change were chosen for 

discussion and in each metabolic pathways, six metabolites were identified that increased 

or decreased in mastitis compared to control animals. However, breakdown of milk 

proteins such as casein is most likely to be responsible for much of the amino acid and di-, 

tri- peptides formed in this study. 

Amongst these metabolites, it is apparent that methionine (Met) is increased in both 

mastitic groups. As mentioned previously, amino acids in milk are absorbed from blood 

but also synthesized and degraded in the mammary gland (Bequette et al. 1998). 

According to Pinotti et al. (2002), healthy dairy ruminants produce large amounts of 

methionine or a combination of Met and lysine (Lys) (Schwab et al. 1992). But in the 

present study, no increase in free Lys was observed in mastitic groups. These amino acids 

are the first limiting amino acids for milk protein synthesis and Met particularly is required 

for transmethylation reactions and milk protein synthesis and also able to stimulate both 



Chapter 5, 269 

 

milk and milk fat productions. However, the level of amino acids in milk is greatly 

influenced by the quality and quantity of amino acids in basal diets (Klein et al. 2010). 

Glycine (Gly) level is increased in milk from both mastitic groups in this present study and 

this increased has been observed during the early lactation due to increased Gly 

metabolism during this period (Klein et al. 2010). Phosphocholine levels showed a positive 

correlation (r=0.81) with the levels of Gly which is also increased during early stage of 

lactation (Klein et al. 2010). In this present study, phosphocholine is also increased in 

mastitic milk samples. Phosphocholine acts as a precursor of Gly and serves as its storage 

form within the cytosol. It is therefore possible that the increased levels of both Gly and 

phosphocholine found in this study are due to mastitic milk collected at an early stage of 

lactation and that the ability of mammary gland to synthesize these amino acids are not 

impaired by udder infection. 

High levels of both tyrosine and isoleucine amino acids are seen in the present study in 

mastitic milk samples. These amino acids are seen to increase in organic milk compared to 

conventional whole milk as studied by Boudonck et al. (2009). High tyrosine levels in 

mastitic milks can be explained by the extensive proteolysis in milk. Proteolysis can result 

in accumulation of small peptides which contribute to the bitterness in the milk. According 

to Murphy et al. (1989), casein proteolysis products can be measured by the determination 

of tyrosine level. Thus, these authors agreed that high values on tyrosine during infection 

period are due to high milk protease activity during mastitis.  

 Bacterial fermentation in the milk can produced milk products which contained 

considerably amounts of D-amino acids (Man and Bada 1987) and bacteria can be 

regarded as a biological source of D-amino acids (D-AA). Study by Pohn et al. (2009) 

revealed greater increases of free amino acids are seen in milk with different scores of 

CMT especially Ile, Ala, Asp, Pro and Leu. This is in accordance with the present study in 

which Ile, Pro and Leu were increased in mastitic milk samples. Study by Pohn et al. 

(2009) also observed high free D-AA as CMT score increased for all nine free D-AA (D-

Asp, D-Ser, D-Glu, D-Pro, D-Ala, D-Val, D-allo-Ile, D-Leu and D-Lys). In this present 

study, D-Pro and D-Cys did increase in mastitic milk samples. Thus, it can be concluded 

the presence of D-AA content is associated with mastitis and related to the bacterial 

activity in the udder. However, the MS analysis cannot differentiate D- from L- amino aicd 

as they have identified m/z and retention time, so that identification as D- amino acid is not 

definitive. 
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It can be concluded that increase in many amino acids in mastitic milk samples is due to 

proteolytic activity caused by proteases from pathogens and also from immune cells such 

as plasmin caused by the presence of microorganisms during udder infection. End products 

of major milk proteins degradation by proteases contribute to a wide-range of amino acids 

present in the mastitic milk samples. Thus, certain amino acids can be used to indicate the 

activity of pathogenic bacteria which lead to inflammation of mammary gland. 

In conclusion, there was an increase in identification of di-and tripeptides in both 

infections with particular tripeptides being associated with either of the bacteria, though 

with S. aureus infection causing more of these peptides to be released. Differences that 

present between bacterial causative agents could be either due to differences in the 

specificity of action of the bacterial proteases or that the bacteria have differing 

efficiencies in absorbing the peptides after they are released by hydrolysis. Amongst other 

metabolites changes in lipid, nucleotide and carbohydrate metabolism have been identified, 

there were also non-host and non-pathogen metabolites identified such as tentoxin, 

ricinine, quinate, toluene and others and it was possible that the metabolites are derived 

from therapeutic reagents though mis-classification is also possible. 

To differentiate between E. coli and S. aureus infected milk samples, certain metabolites 

may have potential as biomarkers such as pyridoxine, N-acetyl-L-glutamate, 

isopropylmalate and pyruvate. These metabolites were seen in E. coli infected milk 

samples as compared with S. aureus infected milk samples. The majority of increased 

metabolites in S. aureus infected milk samples were comprised of di- or tri-peptides such 

as Gln-Ser-Ser, Leu-Asn-Tyr, Leu-Thr and others. 

Mastitis had an effect on lipid, protein and carbohydrate metabolic pathways. In lipid 

metabolic pathway, there was an increased in arachidonic acid metabolites in mastitis. As 

for protein metabolic pathway, arginine metabolites were seen increased in mastitis whilst 

galactose metabolites from carbohydrate metabolic pathway were increased in mastitic 

milk samples.  

From this study, it can be concluded that metabolomic analysis has successfully studied the 

presence of important metabolites or even determined the changes of metabolites that 

occurred in milk samples of dairy cows during the course of intramammary inflammation. 

Further analysis is needed with more milk samples being studied to confirm the status of 

these important metabolites and also to assess their appearance in subclinical as well as the 

clinical mastitic samples studied in this investigation. 
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Chapter VI. General Discussion 

The aims of this thesis were outlined in chapter 1 and the relevant conclusions have been 

detailed in the appropriate chapters. This chapter will summarise the important and 

significant findings and highlight the areas which have been recognised as worthy of future 

research. 

Despite the numerous researches that have been undertaken to control bovine mastitis, this 

disease still poses one of the most prevalent and costly diseases in dairy cows. The 

negative impacts of bovine mastitis include reduction in milk production and quality 

because of changes in milk composition which in turn affects the economy of dairy 

industry. Other factors such as costs of treatment, veterinary services, diagnostics and 

culling were also contribute to the detrimental effect on dairy industry worldwide (Halasa 

et al. 2007). 

In chapter 1, various traditional and common bovine mastitis diagnostic methods have 

been discussed. Somatic cell counts (SCC) is still widely used as one of the most useful 

diagnostic techniques to detect the level and occurrence of bovine mastitis especially for 

bovine subclinical mastitis (Dohoo & Meek 1982; Schukken et al. 2003). However, in 

order to avoid false-positive or false-negative results, several factors should be taken into 

consideration before any conclusion can be made. These factors include mastitis causing 

pathogens, number of infected quarters, previous mastitis history, age, stage of lactation, 

milking frequency as well as the type of samples taken for SCC analysis (quarter, 

composite or bulk tank). 

Other important diagnostic methods that have been discussed in detecting the presence of 

bovine mastitis are California Mastitis Test (CMT), enzyme levels, electrical conductivity 

(EC) and infrared thermography (IRT). CMT which was developed by Schalm & 

Noorlander (1957) is the main cow-side test used to diagnose bovine mastitis and is based 

on the formation of gel formation which reflects the cell count of the milk (Barnum & 

Newbould 1961). Previous studies have been shown the relationship of CMT results with 

the leukocyte content of milk, the level of subclinical mastitis as well as bacteriological 

analyses (Barnum & Newbould 1961; Daniel et al. 1966; Wesen et al. 1967). 

Several types of enzymes may be useful as mastitis indicators but one enzyme that is 

considered reliable and sensitive is N-acetyl-β-D-glucosaminidase (NAGase) (Kitchen 

1976). The use of both SCC and NAGase provides valuable interpretation for the diagnosis 



Chapter 6, 272 
 

of bovine mastitis so that the level and extent of infection can be controlled (Pyörälä & 

Pyörälä 1997). Other important enzymes include β-glucuronidase, milk antitrypsin, L-

lactate dehydrogenase (LDH) and myeloperoxidase (MPO).  

The use of EC has been one of the most popular methods in diagnosing bovine mastitis. 

The concentration of NaCl is often measured as milk electrical conductivity and many 

studies have been performed to assess the ability of EC in diagnosing bovine mastitis 

particularly subclinical mastitis (Linzell et al. 1974; Fernando et al. 1982, 1985). 

Finally, another popular bovine mastitis diagnostic method is IRT. It has been shown that 

IRT has strong correlation with CMT and a high predictive diagnostic ability making it a 

sensitive tool in detecting early onset of subclinical mastitis (Berry et al. 2003; Polat et al. 

2010) although several cow factors should be consider before analysing the reliability of 

IRT in diagnosing bovine mastitis. 

However, these traditional methods of bovine mastitis diagnosis may have their technical 

drawbacks such as less sensitive, less specific, lacking in speed, very labour-intensive and 

expensive. Their results can also be mis-interpreted which then lead to false positive or 

negative (Chagunda et al. 2006). 

Recently, much research interest has been focused on analysing the presence of bovine 

mastitis biomarkers that can be used to predict the progress and outcome of a disease. 

Biomarkers are important analytes which can be used to predict changes in any biological 

and pathological processes so that any disease states can be revealed (Biomarkers 

Definitions Working Group 2001). Because of the limitations in traditional methods of 

diagnosing bovine mastitis that had been discussed previously (Chagunda et al. 2006; Le 

Roux et al. 2003; Labohm et al. 1998; Nielen et al. 1995), the discovery of specific 

mastitis biomarkers is needed for an early diagnosis of bovine mastitis. Thus, several 

bovine mastitis biomarkers have been proposed including the use of combinations of 

several bovine mastitis indicators such as enzymes, SCC, prostanoids, bacteriological 

culture and others (Mattila et al. 1986; Zank & Schlatterer 1998; Barta et al. 1990; Baeker 

et al. 2002; Bannikov et al. 2010). 

Two important APPs that are known to increase in response to disease are SAA and Hp 

(Conner et al. 1986; Eckersall et al. 2001). Hp and SAA are also known to rise 

substantially in serum or milk as indicators of bovine mastitis (Pyörälä et al. 2011). In 

chapter 2, the reliability of both SAA and Hp was assessed by validating and optimising 

these APPs assays with the use of bovine milk samples. 
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The aim of chapter 2 was to develop sandwich ELISA by using rabbit anti-bovine antibody 

to measure Hp level in bovine milk and used commercialized Phase
TM 

Range SAA Assay 

to quantify the level of milk SAA so that the concentrations of the APPs in different types 

of milk samples could be compared statistically. To group milk samples into healthy, 

subclinical and clinical mastitis, the estimation of SCC and bacteriological culture were 

used before APP assays were performed in order to confirm the disease status. It was 

shown in this chapter that Hp concentrations showed to be statistically increased in clinical 

mastitic samples when compared between healthy and clinical mastitic cases as well as 

between subclinical and clinical mastitic cases. However, Hp showed no significant 

difference between healthy and subclinical mastitic milk samples (p>0.05). Several factors 

were discussed which may contribute to this reason which include different types of 

cytokines produced during bovine mastitis, less Hp production during subclinical mastitis, 

insensitive immunoassay to detect a slight elevation of Hp concentrations in subclinical 

mastitic milk samples as well as different types of pathogen virulence and host responses. 

Milk serum amyloid A3 (M-SAA3) has also been shown to have an important role as 

biomarker in bovine mastitis (Eckersall et al. 2001; Grönlund et al. 2003, 2005; Nielsen et 

al. 2004; Pyörälä et al. 2011). This study successfully confirmed the use of M-SAA3 in 

diagnosing bovine mastitis in which M-SAA3 concentrations were significantly different 

between healthy, subclinical and clinical mastitic milk samples (p<0.05). 

SAA levels showed a relatively strong relationship with Hp levels further confirming that 

SAA and Hp can be used together as good mastitis indicator. It has also been shown that 

these APP measurements can be performed using milk samples instead of serum/plasma 

samples for an ease of sampling and sample preparation. 

Somatic cell counts (SCC) were measured in both healthy and subclinical mastitic milk 

samples and the relationship between SCC values and APP measurements was determined. 

SCC measurement was significantly different between healthy and subclinical mastitic 

samples (p<0.05) which proved the reliability of SCC to diagnose subclinical mastitis. The 

correlation between SCC and APP showed positive relationship although the relationship 

was not strong. The correlation between SCC and SAA gave a medium relationship with 

the value of r was 0.438 while here was no correlation between SCC and Hp as the value 

of r was 0.08. The reason for this difference could be that these correlations were 

calculated based on all milk samples regardless of the type of milk samples (control vs. 

infected) and various cut-off values for SCC have been suggested depending on several 

factors (countries, breeds, types of milk samples) (Mattila et al. 1986; Holdaway et al. 
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1996). The use of log transformed SCC can be considered when analysing their 

relationship to achieve good correlation between APP and SCC. 

The application of advances in proteomics has been a major recent area of research in 

studying the protein changes in bovine milk during mastitis. In chapter 3, several 

proteomics methods were applied, such as 1DE, 2DE, DiGE and MALDI-MS analyses, to 

investigate the changes of milk proteome during the presence of intramammary 

inflammation. Milk samples from subclinical and clinical mastitic cases were used in 

comparison with healthy milk samples as comparison. It was hoped that by applying these 

methods, discovery of new biomarkers of bovine mastitis can be achieved. 

Prior to the use of proteomic methods, SCC and APP measurements were used to confirm 

the disease status of the milk samples investigated. In initial studies rennet coagulation was 

performed to remove the majority of milk casein in order to examine changes in low 

abundance proteins. In the first phase of this study, subclinical mastitic milk samples were 

analysed in comparison with healthy milk samples using 1D gel electrophoresis and the 

protein bands developed on the gel were analysed by the MALDI-MS for protein 

identification. Unfortunately, no clear difference was seen on the gel although lower 

intensity bands but with high molecular weight were not successfully identified by the 

MALDI-MS analysis.  

Because no clear difference was observed on the gel pattern of 1D gel electrophoresis, 2D 

gel electrophoresis was applied to similar samples. Unfortunately, there was again no 

observable difference in low abundance proteins between pooled subclinical mastitic and 

pooled healthy milk samples. However, it was evident that albumin was not present in 

healthy milk samples which further supported the idea that albumin concentrations was 

increased during bovine mastitis as a result of either an increase in leakage from serum into 

the mammary gland or in albumin expression in the mammary gland.  

Due to these limitations, clinical mastitic milk samples were analysed by using DiGE 

which enables the visualization of multiple protein samples in one 2D gel. However, the 

only findings observed were increases in albumin concentration and decreased whey 

protein concentrations (β-LG and α-LA) in clinical mastitic milk samples as compared 

with healthy milk samples. Due to lack of significant findings in this chapter, non-gel 

proteomic approaches were recommended to continue the investigation of bovine mastitis 

biomarkers. 
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Peptidomic approach was applied next to investigate the presence of polypeptides in 

bovine milk that may be used to discriminate normal from bovine mastitic milk samples 

and also to determine if peptide biomarkers could discriminate between mastitis caused by 

two different types of bacterial pathogens. It was hoped that by using this sensitive and 

high-throughput methodology, significant results can be achieved and lead to the discovery 

of important and significant bovine mastitis biomarkers by employing CE-MS and LC-

MS/MS analyses. 

Milk samples used in this study were from clinical mastitic cases, caused by two common 

bacterial pathogens which were E. coli and S. aureus, and were assessed in comparison to 

healthy milk samples. Two different types of comparison were analysed to determine the 

ability of peptidomics to compare between healthy and clinically infected milk samples as 

well as the ability of peptidomics to compare between E. coli infected and S. aureus 

infected milk samples. SCC and APP measurements were used as previously to confirm 

the disease status of the milk samples used.  

From CE-MS analysis, polypeptide fingerprinting was performed for different groups of 

milk samples to generate disease models. However, these models need to be validated so 

that the status of each marker in each group (control, infected, E. coli or S. aureus) can be 

confirmed and may eventually used to determine the presence of bovine mastitis or even 

predict the type of bacterial pathogens that caused bovine mastitis.  

A total of 45 discriminatory polypeptides were identified by CE-MS analysis with 31 

polypeptides used to discriminate healthy from mastitis cases and 14 polypeptides 

discriminating E. coli from S. aureus infected cases. These polypeptides were then further 

analysed for their amino acid sequence by LC-MS/MS, although not all polypeptides were 

successfully sequenced. The reason was because the only parameters used to link the 

peptides obtained in both systems (CE-MS and LC-MS/MS) were peptide mass and the 

number of basic amino acids. Thus, mass ambiguities occurred which complicate the 

assignment of sequences obtained from these two different methods.  

However, a total of 12 sequenced polypeptides were identified using UniProtKB database. 

Amongst the proteins identified from the peptide sequences were α S1-casein, β-casein, 

serum amyloid A protein (SAA), glycosylation-dependent cell adhesion molecule 1 

(GlyCAM-1) and fibroblast growth factor binding protein (FGFBP). Although GlyCAM-1 

was characterized as one of the host defence mechanism proteins (Boehmer et al. 2010; 

Smolenski et al. 2007), it was interesting to see the presence of these peptides from 

GlyCAM-1 in healthy milk samples. Peptides from SAA were also seen in both E. coli and 
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S. aureus infected milk samples but they were not able to discriminate E. coli infected milk 

samples from S. aureus infected milk samples. The results from this chapter provided an 

initial insight on how milk peptide profiles can change as a result of bovine mastitis. 

Further improvements have been discussed but it was confirmed that peptidomic 

methodology able to identify significant biomarkers in bovine mastitis. 

Finally, a metabolomic approach was applied to further investigate the presence of 

important metabolites that can be used to discriminate normal from mastitic milk samples 

by the use of LC-MS/MS analysis. As previously, SCC and APP measurements were 

performed to confirm the disease status of the samples used. Individual metabolites were 

analysed in both positive and negative ionisation modes in each different types of milk 

sample. Metabolites which were absent in control milk samples but present in both infected 

groups (E. coli and S. aureus) were also examined in both ionisation modes. Among the 

many metabolites detected, a variety of tri-peptides were seen with higher intensities in S. 

aureus group compared with E. coli group regardless of the type of ionisation modes. The 

relative change in intensity for each identified metabolites between two infected groups 

was determined and Mann-Whitney test was performed to show the significant difference 

in each of the categories. Amongst the identified metabolites which were significantly 

increased in the E. coli infected group regardless of the type of ionisation modes were 3-

nitrotyrosine, deoxyguanosine and 3-methoxy-4-hydroxylphenyl. Whilst Leu-Arg, Ser-His 

and Lys-Ala-Gly were amongst the identified metabolites found significantly increased in 

S. aureus infected group. 

Metabolic pathways were also analysed to allow an investigation of the metabolites found 

in different group of milk samples according to their corresponding metabolic pathways. In 

lipid metabolic pathway, arachidonic acid metabolites were seen increased in mastitis 

while in protein metabolic pathway, arginine metabolites were found to be increased in 

mastitis. Finally, galactose metabolites from carbohydrate metabolic pathways were 

increased in mastitic milk samples. 

In chapter 4 and 5, several significant findings were found which could be proposed as 

bovine mastitis biomarkers. It was also apparent that some of the milk indicators could be 

applied to differentiate clinical mastitis caused by different type of bacterial pathogens (E. 

coli and S. aureus). This would be of especial value in allowing the appropriate 

antibacterial treatment.  However, further experiments with more milk samples should be 

performed to validate and confirm these results so that they can be used to diagnose bovine 

mastitis. Furthermore it is important to investigate the differentiation of subclinical and 
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clinical bovine mastitis, so that subclinical mastitic milk samples should be used in both 

peptidomic and metabolomics methodologies in comparison with clinical mastitic and 

healthy milk samples as it was apparent that the use of proteomic methodology in this 

study was not able to differentiate between subclinical and clinical bovine mastitis. It is 

also hoped that changes in bovine milk proteome, peptidome or metabolome can be 

perceived efficiently.  

In summary of this thesis, with a prior knowledge of known acute phase proteins during 

bovine mastitis, various ‘-omics’ studies such as proteomics, peptidomics and 

metabolomics can be applied to study the presence of other lower abundance proteins, 

peptides and metabolites which may serve as important mastitis biomarkers. 
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Appendices 

Appendix Chapter 3 

1. Preparation of 12% PAGE gels 

The monomer solution was prepared by mixin APS. The mixture was degassed for 15 minutes. 

Percent Gel DDI water (ml) 30% Degassed 

Acrylamide/Bis 

(ml) 

 Gel 

buffer 

(ml) 

10% w/v SDS 

(ml) 

12% 3.4 4.0 2.5 0.1 

 Resolving Gel Buffer – 1.5M Tris-HCl, pH 8.8 

 Stacking Gel Buffer – 0.5M Tris-HCl, pH 6.8 

Immediately prior to pouring the gel, for 10 ml monomer solution, these solutions were added: 

Resolving Gel: 50μl 10% APS and 5μl TEMED 

Stacking Gel: 50μl 10% APS and 10μl TEMED 

The mixed solution was gently swirled to initiate polymerization 

2. Bradford Assay 

The Bradford reagent which consists of Brillian Blue G in phosphoric acid and methanol as well as 

Protein Standard (BSA) Solution (2mg/ml) were purchased from Sigma-Aldrich.Inc. 

a) Protein Standard preparation 

Bovine serum albumin at 2mg/ml was used as the protein standard in performing Bradford assay. The 

standard was further diluted using MilliQ water into 1.5mg/ml, 1.0mg/ml and 0.5mg/ml to produce a 

standard curve. 

 

 

b) Milk samples preparation 
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Milk samples were used from both healthy and mastitic cows. All samples were kept at -20°C before 

analysis. After thawed, all samples were further diluted in 1:2, 1:4, 1:6 and 1:8 using MilliQ water. This 

dilution procedure was not necessary to perform in all assays. 

c) Assay 

250μl of Bradford reagent was added into 5μl of each standard and sample at different dilutions. The 

sample was incubated for a few minutes at room temperature and the absorbance was measure at 595nm 

using [name]. 

d) Protein Concentration Analysis 

The net absorbance values against the protein concentration of each standard were plotted automatically 

after the measurement. The protein concentration of each sample was determined by comparing the Net 

A595 values against the standard curve. 

3. Lysis buffer 

6M urea  

2M thiourea  

4% CHAPS  

25mM tris base 

4. Equilibration buffer I  

 pH8.8, 1.5M Tris HCl  

216.21 g urea 

180ml glycerol 

12g SDS 

100mg DTT 

5. Equilibration buffer II 

pH8.8, 1.5M Tris HCl 

216.21 g urea 

180ml glycerol 

12g SDS 
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250mg iodoacetamide 

 

6. DiGE Lysis Buffer 

7M urea 

2M Thiourea 

4% CHAPS 

25mM Tris HCl 

 

Appendix Chapter 4 

1. Preparation of Standards for microplate assay 

Standard BSA standard Water or buffer Final protein 

concentration 

Standard A 75 µL stock  

(2 mg/ml) 

225 µl 500 µg/ml 

Standard B 200 µL of A 200 µl 250 µg/ml 

Standard C 200 µL of B 200 µl 125 µg/ml 

Standard D 80 µL of C 120 µl 50 µg/ml 

Standard E 60 µL of D 140 µl 15 µg/ml 

Standard F 60 µL of E 120 µl 5 µg/ml 

Standard G 80 µL of F 120 µl 2 µg/ml 

Blank 0 200 µl 0 µg/ml 

2. Preparation of BC Assay reagent 

Prepare the required amount of BC Assay reagent by adding: 

1 part of reagent B to 50 parts of reagent A. 

 

3. Components for sample preparation 
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1. Disposable de-salting PD10-columns (GE Healthcare Biosciences AB, Bedford, USA). 

2. Centristart ultrafilter tubes 20 kD, 0.62 cm
2
 tubes (Sartorius Stedim Limited, UK). 

3. BCA protein quantification kit (Uptima, Interchim, Montluçon, France). 

4. Lyophilisation Christ Speed-Vac RVC 2-18/Alpha 1-2 (Christ, Osterode am Harz, Germany). 

 

4. Components for CE-MS analysis 

1. P/ACE MDQ capillary electrophoresis system (Beckman Coulter, Crea, CA, USA)  

2. Micro-TOF (time-of-flight) mass spectrometer (Bruker Daltonics, Bremen, Germany). 

3. Electro-ionisation sprayer (Agilent Technologies, Santa Clara, USA) (see Note 3). 

4. Capillary 90 cm, 50 µm I.D. fused silica capillary non-coated (New Objective, Woburn, USA) 

5. Cole-Parmer single-syringe infusion pump (Cole-Parmer Instrument Company, USA). 

6. Hamilton syringe 2.5 ml  

 

5. Software for Data processing and Statistical Analysis 

a) Software for peak detection: MosaiquesVisu (Biomosaiques, Hannover, Germany). 

b) Commercial statistical packages: SAS (www.sas.com) and MedCal (www.medcalc.be). 

c) Multitest R-package available at www.bioconductor.org 

d) SVM-based program for multiparametric data classification: MosaCluster (Biomosaiques, 

Hannover, Germany). 

 

 

 

 

 

 

http://www.sas.com/
http://www.medcalc.be/
http://www.bioconductor.org/
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