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 Targeting DNA has the advantage over proteins for cancer remediation because of the 

fewer copies of the ligands required for the desired therapeutic effect. Traditionally, covalent 

DNA binders like alkylating agents have been used to induce genetic instability through the 

formation of DNA lesions and strand breaks, leading to cellular apoptosis. The primary 

drawback of this treatment is the non-specific binding that affects both cancerous and non-

cancerous cells.   

 G-quadruplexes are the DNA secondary structures that are present in abundance near the 

promoter regions of the oncogenes and are involved in the regulation of their activities. A ligand-

mediated stabilization of G-quadruplexes in the promoter regions and down-regulation of the 

associated oncogenes have been validated. In contrast to alkylating agents, G-quadruplex ligands 

induce genetic stabilization through non-covalent interactions. They can be designed to interact 

specifically with G-quadruplex DNA over duplex DNA, which reduce side effects arising from 

the off-targeting. 

 G-quadruplex ligands invariably have the large planar aromatic moiety to interact with G-

quadruplexes through π- π stacking interactions. For determining the size effect of the aromatic 

moiety on stabilization of G-quadruplexes, a series of ligands were synthesized by conjugating 
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nucleobases or 1,10-phenanthroline with an aminoglycoside, neomycin. The resulting conjugates 

increased the binding affinity synergistically and enabled us to study the effect of the stacking 

moiety required for G-quadruplex stabilization. Nucleobase-neomycin conjugates did not show 

stabilization stabilize of human telomeric G-quadruplex. 1,10-Phenanthroline-neomycin  

conjugate (7b) on the other hand binds to human telomeric G-quadruplex with a Ka of 

(8.92.4)×108 M-1 and inhibits telomerase activity at 1.56 µM probably through G-quadruplex 

stabilization.  

 Moving forward, we further enlarged the aromatic moiety by tethering two 1,10-

phenantholine molecules together through a five-atom linker. The resulting molecule (2-Clip-

phen) was conjugated with various amino-containing side chains. 2-Clip-phen derivatives 

showed at least 30 times weaker binding to duplex DNA over G-quadruplex DNA. In addition, 

compounds showed a preference for the antiparallel G-quadruplex conformation over parallel 

and hybrid G-quadruplex conformations, as shown in the CD spectroscopy studies. Ligands 11 

and 13 induced the formation of an antiparallel G-quadruplex from random coils and stabilize it 

to 60 oC (Tm) in a salt-free condition. Mass spectrometry study showed the formation of a two-

tetrad G-quadruplex with the 2-Clip-phen ligand. Docking study showed that the ligand interacts 

most favorably with antiparallel G-quadruplex conformation, which is supported further by the 

larger thermal stabilization effect on antiparallel G-quadruplex compared with other G-

quadruplex conformations. Our study suggests that 2-Clip-phen can be used as a scaffold for 

designing G-quadruplex binding ligands that preferentially bind to antiparallel G-quadruplexes, 

which has never been reported before. 
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CHAPTER 1: INTRODUCTION 

  

1.1 Cancer Is a Genetic Disease 

The central dogma of molecular biology1 (governs the flow of information in the cells. 

The genetic code in the DNA is transcribed into the mRNA in the nucleus, which is then 

transported into the cytoplasm, where it is translated into the polypeptides through the agency of 

ribosomes.  Therefore, the information originally stored in the genes (genetic code) is expressed 

in the cells through the polypeptides/proteins.  

 

 

Figure 1.1. The central dogma of molecular biology. Solid arrows present general transfers, 

dotted and unfilled arrows represent special transfers. 

 

 

 

Three decades ago, the prevalent belief was that some viruses were the source of cancer 

in humans; however, Varmus and Bishop’s work2 proved that this phenomenon could only 

account for nearly 20% of humans’ cancers.  In 1982, evidence was found that single nucleotide 

mutation in H-ras (GGC → GTC) leads to the incorporation of valine instead of glycine at the 

12th position of p21 protein derived from T24 bladder carcinoma oncogene, resulting in the 

conversion of this proto-oncogene to its virulent form3.  Wigler and his co-workers published a 

similar study on single-nucleotide mutations that lead to the conversion of N-ras proto-oncogene 
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a year later4.  These pioneering works suggested that changes in the DNA (mutations) could lead 

to activation of the proto-oncogenes and inactivation of tumor suppressor genes (TSGs), factors 

that might be involved in development of cancer. 

1.2. Chemotherapy of the Cancer 

Chemotherapy for cancer treatment dates back to the 1950s.  The first generation of 

chemotherapeutic agents is non-selective with severe side effects.  For instance, nitrogen mustard 

is recognized as a non-selective DNA alkylating agent and an antimetabolite and tubulin-binding 

drug. In recent years, the main focus in this field is to develop targeted cancer therapy.  

Understanding the genetic origin of cancer on a molecular level has paved the way for studying 

biochemical pathways responsible for diseased states.  Targeting these pathways leads to the 

development of targeted cancer therapy, one of the most significant milestones achieved in 

medical sciences.  But this is not without caveats.  These biochemical pathways are often 

involved in signal transduction, causing drug resistance via activation of the alternative 

pathways.  In addition, mutations frequently occur in the proteins involved in these pathways, 

which changes the binding site of the drug to proteins, making it ineffective.  Therefore, there is 

always a need for new alternative strategies to combat cancer.  The following sections 

summarize the different chemotherapy drugs and the problems associated with their use.  

1.2.1. Alkylating Agents 

 Alkylating agents are one of the oldest classes of chemotherapy drugs for the treatment of 

cancer. Their therapeutic effect was discovered serendipitously.  During World War I and II, the 

observations made on the men exposed to mustard gas showed extended depletion of lymph 

nodes and bone marrow aplasia.  In light of this observation, clinical studies with less toxic 

mechlorethamine (Mustragen) showed its remarkable effectiveness against Hodgkin’s disease5.  
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However, remissions were short and incomplete.  This study is considered the dawn of modern 

cancer chemotherapy.  Further research for safer analogs led to the development of the less toxic 

chlorambucil and cyclophosphamide activated in situ by liver enzymes.   

 The alkylating agents can be categorized into the following structural classes6 (Figure 

1.2) 

1. Nitrogen mustards (mechlorethamine (1), chlorambucil (2), and melphalan (3)) 

2. Oxaphosphorines mustards (cyclophosphamide (4) and ifosfamide (5)) 

3. Triazenes (dacarbazine (6) and temozolomide (7)) 

4. Nitrosoureas (N, N’-bis(2-chloroethyl)-N-nitrosourea (BCNU) (8) and N-methyl-N-

nitrosourea (MNNG) (9)) 

 

5. Mitomycin (mitomycin C (10)) 

6. Platinum complexes (cisplatin (11), oxaliplatin (12), and satraplatin (13))  

 Alkylating agents exert their functions by producing DNA cross-links between or within 

the DNA strands (except triazenes, which makes the DNA lesions, leading to strand breaks and 

apoptosis).   
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Figure 1.2. Different structural classes of alkylating agents. 

 

The mechanism of action of mechlorethamine (nitrogen mustard) requires the generation 

of a strongly electrophilic aziridium ion through anchimeric assistance, which is then attacked by 

a weakly nucleophilic tertiary nitrogen on guanine bases (N-7).  Two of such consecutive events 

lead to interstrand cross-links of the DNA (Figure 1.3), resulting in cellular apoptosis.   
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Figure 1.3. Mechanism of action of mechlorethamine (a nitrogen mustard). 

 

1.2.2. Antimetabolites 

 In the 1950’s nutritional scientists observed that folic acid was essential for bone marrow 

function.  Sidney Farber7 used a folic acid antagonist (Methotrexate (14)) (Figure 1.4)  to treat 

leukemia in the children's medical center in Boston.  The result showed temporary remission of 

leukemia progression in children.  In 1954, Elion and Hitchings8 carried out a series of 

experiments on antimetabolites using bacterial models.  They observed a synergistic effect of 

antimetabolites targeting multiple biochemical pathways simultaneously, which ultimately led to 

the development of 6-mercaptopurine (15) and 6-thioguanine (16) (Figure 1.4).  These two 

drugs were used to treat acute leukemia. In addition, they have been used for the treatment of 

herpes viral infection and as immunosuppressive agents.  In 1957, fluorinated analogs of 

pyrimidines (e.g., 5-fluoro uracil (17) (Figure 1.4) and purines were synthesized and tested to 

treat solid tumors.  It achieved remarkable tumor suppression in mice models9.  These two drugs 

became an essential part of the combination of chemotherapy program10 in the late 1970s.   
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Figure 1.4. Structural of the different classes of antimetabolites. 

 

1.2.3. Tubulin Binding Drugs 

 The Discovery of the anticancer activity of plant alkaloids from Vinca rosea viz 

Vinblastine, vincristine, vindesine, and vinorelbine was a breakthrough in cancer treatment11.  

These alkaloids bind to the tubulin and inhibit the formation of spindle fibers (microtubules) 

essential for cell division.  Another drug in this class is Paclitaxel from the bark of the Pacific 

yew tree Taxus brevifolia, which induces the multipolar division due to the formation of 

additional spindle poles. Cell death occurs due to the missing one or more chromosome essential 

for growth12. 

1.2.4. Targeted Cancer Therapy 

Mutations that cause the transformation of proto-oncogenes, disruptions of tumor 

suppressor genes, and cell cycle regulatory pathways are crucial factors of cancer development; 

therefore, targeting the biochemical pathway/target is a practical approach to suppression of 

tumor progression or growth.  This approach is different from the conventional non-selective 
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cytotoxic chemotherapy treatment.  Kinases are one of the largest family of proteins and most 

sought after for anticancer drug development.  These proteins are involved in important cell 

signaling and signal transduction pathways.  In the past two decades, the development of kinase 

inhibitors as a targeted cancer therapy had an exponential growth.  In 2017 there were 201 WHO 

registered (INN) small molecule kinase entities13. 

Tamoxifen, the first drug developed for targeted cancer therapy, is an anti-hormonal drug 

that blocks an oestrogen receptor (OER) on the surface of the OER positive breast cancer cells 

and thus controls the growth of cancer. FDA approved the first targeted small molecule kinase 

inhibitor, Imatinib (nib = kinase inhibitors) in 2001 for Chronic myelogenous leukemia14.  It 

executes its functions by inhibiting tyrosine kinase.  Tyrosine kinase is over-activated due to 

interchromosomal exchange between chromosomes 9 and 22 to form a new shorter chromosome 

22 (Philadelphia chromosome).  The production of this fusion gene BCR-ABL1 (ABL = 

Abelson, BCR = breakpoint cluster) is responsible for a defective protein that renders the 

tyrosine kinase always on, causing the cells to divide uncontrollably.  

Her2 (human epidermal growth factor receptor 2) proto-oncogene was discovered in 

1984, located on chromosome 17, is overexpressed due to its amplification multiple copies15.  It 

encodes for a transmembrane tyrosine kinase receptor protein overexpressed in HER2 positive 

breast cancers.  The downstream signal transduction by this kinase leads to a cascade of events 

for cell proliferation and inhibition of apoptosis.  In 1998, FDA approved trastuzumab 

(Herceptin), a humanized monoclonal antibody, to target and downregulate the HER2 

overexpression (downregulate the intracellular tyrosine kinase)16.  Even though the monoclonal 

antibodies (recognizes only one antigen) were first developed in 1975 by the hybridoma method 
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(murine origin), this was the first example of using the humanized monoclonal antibodies for 

targeted cancer therapy. 

 In addition to these targeted therapies, other targets such as CAR-T (Chimeric Antigenic 

Receptor) (CAR) T-Cell therapy, and immune checkpoint therapy (Nobel prize in 2018) have 

attracted extensive research in recent years. 

1.3. Side Effects and Challenges in Current Therapies 

Conventional cytotoxic alkylating agents are non-selective in their mechanisms of action.  

Because their primary target is the DNA, the rapidly dividing cells like bone marrow, hair 

forming cells, gonads, intestinal mucosal lining cells, and lymphoid tissues, along with cancer 

cells, are the most affected.  Cytotoxic alkylating agents also tend to cause a high percentage of 

single base-pair mutations in the treated cells.  Hence, the dosing regimen of alkylating agents 

must be tailored according to the patient response and recovery from the cytotoxic effect on the 

bone marrow17.   

Similarly, tubulin inhibitors are poised with hematological and neurological side effects 

limiting their clinical use18.  The side effects associated with antimetabolites are hematological, 

including neutropenia, thrombocytopenia, myelosuppression, and mucositis19.  

Even targeted therapies are not without side effects, which are not severe most of the 

time.  The side effects could result from the nature of the targeted pathway or the nature of the 

ligand (monoclinal antibodies or small molecules kinase inhibitors).  It is noteworthy that off-

targeting to other isoforms of the receptor can produce serious side effects20.  

Small molecule kinase inhibitors (tyrosine kinase inhibitors) are usually associated with 

the skin rash problem.  A positive correlation between the response to the treatment and 

development of 2-4 grade skin rash has been observed in addition to the hepatotoxicity, 
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proteinuria, Hemorrhage, ocular toxicity.  Some of these toxicities are the result of primary target 

interactions and while others are due to the off-targeting.  

1.4. Resistance to the Drugs 

1.4.1. Resistance to Conventional Therapies 

Drug resistance is the major factor that affects the clinical applicability of the drug.  The 

resistance of the nitrogen-mustard class of alkylating agents includes two observations.  1) 

Increased activity of the Glutathione S-transferases (GSTs) that neutralize alkylating agents via 

substitution reactions.  2) Increased expression of the DNA repair enzymes and increased 

detoxification of the intermediates. 

In the case of oxazaphosphorines, there is an increased expression of aldehyde 

dehydrogenase (ALDH1), which neutralizes the side product aldehydes and increases the activity 

of the GST and levels of Glutathione (GSH).  There is also increased activity of the O6-

alkylguanine alkyltransferase (AGT), which helps for the repair of damaged DNA. 

The resistance of triazenes mainly results from the AGT over-activation leading to 

dealkylation of a methyl group at the O6 of guanine. 

The resistance to Mitomycin C is associated with its reduction to an inactive form by 

two-electron reduction with DT-diaphorase (DTD) or Xanthine dehydrogenase.  Additionally, 

resistance to mitomycin C has been related to the overactivation of multidrug resistance-1 

(MDR1) proteins. 

The resistance to cisplatin comes from the overactivation of the enzyme involved in DNA 

damage repair ERCC2.  Cisplatin also reacts with other nucleophilic species in the blood 

(albumin) and in the cytosol, such as glutathione and metallothionein.  The resulting products are 

actively effluxed out of the cells by glutathione-S-conjugate pumps6. 
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The resistance of tubulin-binding drugs results from the overexpression of efflux pumps 

such as P-glycoprotein and multidrug resistance-associated protein-1.  These are ATP-dependent 

family of proteins located in the cell membrane.  Mutations in drug binding sites and changes in 

tubulin isotypes are also responsible for observed drug resistance to tubulin-binding drugs18. 

1.4.2. Resistance to Targeted Cancer Therapy 

It includes 1). Resistance to the small molecule kinase inhibitors.  2) Resistance to the 

monoclonal antibody (mAbs).  

1). Resistance to kinase inhibitors in targeted therapy is primarily due to the mutation at   

                 the active site.  For example, Glivec, the first tyrosine kinase inhibitor for targeting   

                 chimeric BCR-ABL1 protein-tyrosine kinase, loses its efficacy due to point mutations   

                 at the ABL tyrosine kinase domain by replacing amino acid 315 threonine with  

                 isoleucince21.  Overexpression of multidrug resistance P-glycoproteins is also  

                 responsible for the resistance to the drug observed22.  

 

2). The resistance to mAbs can be divided into three categories23. 

            a). It can arise due to antibody incompatibility.  Some people develop antibodies against   

                 chimeric or murine origin antibodies.  In some cases, the binding of the Fc site on          

                 monoclonal antibodies to FcR (Fc receptor) on the killer T cells could be ineffective    

                 due to polymorphism in the FcR (Fc receptor).  This interaction is vital  to recruiting   

                 killer T cells to kill cancer cells.  

 

b). It can be of tumor-related origins.  The tumors may develop resistance after initial   

                 exposure to the antibody.  The blocked antigen sites with the antibody are            

                 compensated by decreasing the concentration of the antigen or increasing the number   

                 of pathways on the surface.  Some tumors may induce mutation to create an additional     

                 pathway that stops the desired outcome of the events triggered by antibody-antigen   

                 combination.  For instance, activation of BCL-2 gene in B cell non-Hodgkin’s   

                 lymphoma stops the apoptotic pathway triggered by the antibody interaction.   

 

     Alternatively, drug resistance could result from the generation of mucin in response,   

                 which may mask the potential binding site (epitope masking)24 on the cell surface.   

                 Also, the conformational changes of the binding site (at tumor surface) due to  

                 mutation may significantly reduce the efficacy. 

 

 c). It can result from the host-related factors.  Drugs may behave differently in people of  

                 different ethnicity.  For example, Japanese people have a higher concentration of  

                 circulating CD20 (cCD20).  Because CD20 on the cell surface is the natural target of 

                 Rutiximab, the higher concentration of cCD20 may significantly reduce the efficacy   
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                 of mAbs-based drugs.  Some ethnic groups can develop human anti-chimeric (HACA)  

                 and human anti-mouse antibodies (HAMA) against therapeutic antibodies.  The  

                 development of personalized human mAbs has solved this problem to a significant  

                 extent. 

 

 At the current stage, we are not able to target all disease-related biochemical pathways. 

Many of the pathways still need further understanding.  The combination of different therapies 

can effectively sensitize cancer cells to chemotherapy.  In addition, simultaneous administrating 

drugs with different mechanisms of action increases the probability of remission significantly.10  

Therefore, despite the cytotoxic and secondary mutagenic side effects of alkylating agents, they 

are still used as popular chemotherapeutic agents against cancer.   

 There is always an urgent need for new compounds that can match the cytotoxicity of 

alkylating agents and the benefits of targeted cancer therapy.  In recent years, ligands that target 

G-quadruplexes have attracted much attention.  They can induce synthetic lethality in cancer 

cells deficient in the repair enzymes25, and trigger genetic instability and apoptosis in cells26,27 

with minimum toxic effects28.  Additional benefits of targeting DNA G-quadruplexes over the 

protein targets are described as follows29. 

1). Not all the proteins are druggable, but their corresponding genes can be targeted.  

 

2). Point mutations at the drug binding site may make the drug ineffective30 for the   

     treatment.  Targeting at the gene level (promoter region) can circumvent this problem. 

 

3). Targeting at the gene level is an efficient approach instead of targeting the   

     overexpressing oncogenic proteins.  Fewer copies of the target mean less  

     concentration of the ligand needed.   

 

4). DNA ligands can differentiate between protein and DNA targets.  Most of them don’t   

     follow Lipinksi’s rule of five.  DNA ligands can differentiate between the duplex  

     DNA and tetraplex DNA like G-quadruplex. 

 

The next part of the introductory chapter summarizes the basics of G-quadruplexes and G-

quadruplex binding ligands. 
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1.5. G-quadruplexes 

1.5.1. The Fundamentals of G-quadruplexes   

 G-quadruplexes are helical, non-canonical, dynamic, and polymorphic nucleic acid 

structures.  The basic unit of the G-quadruplexes is the G-tetrad, in which four guanine 

molecules self-associate through the Hoogsteen hydrogen bonds31 and form a planar structure.  

The formation of such a construction was revealed in x-ray diffraction of 5’-guanine 

monophosphate (GMP) by Gellert et al in 1962.  G-tetrads formed in nucleic acid strand(s) can 

stack on top of each other to form a helical structure (G-quadruplex), stabilized through van der 

Waals interactions32 (Figure 1.5) 

 

                 

Figure 1.5. Structure of G-tetrad (four strands are labeled in red) (left) and overlap of G-tetrads 

due to π- π stacking interaction (right). 

  

 

 

 The cavity in the middle of G-tetrads is electron-rich, commonly occupied by monovalent 

metal ions such as Na+ and K+ under physiological conditions.  The interactions between four 

oxygen atoms at the 6-position of guanine tetrads and metal ions are the key factor in the 

stabilization of G-quadruplexes.  Due to its larger ionic radius (1.33 Å), K+ is sandwiched 
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between the two G-tetrads and octa-coordinates with the O6 of guanines in the two G-tetrads 

(Figure 1.5).  Na+ ions (ionic radius 0.95 Å) can move freely along the central cavity33.  The 

nature of the metal ion can affect the topology of G-quadruplex DNA.  For instance, studies 

showed that the human telomeric G-rich DNA sequence 5’-AGGG(TTAGGG)-3’ adopts a 

hybrid conformation in K+and a basket-type antiparallel conformation in Na+34,35.  Detailed 

information on G-quadruplex topologies will be discussed in the following sections.   

Topology of the G-quadruplexes.  G-quadruplexes are highly polymorphic structures.  

Typically, a DNA sequence containing more than four consecutive guanine tracks (three or more 

guanines in each track) can adopt an ensemble of conformation in dynamic equilibrium with 

each other36,37.  G-quadruplexes are composed of stacked G-tetrads with negatively charged 

phosphate backbones that delimit cavities called grooves.  Depending on relative strand 

orientations, G-quadruplexes can adopt parallel, antiparallel, and hybrid topologies.  G-

quadruplex strands can orient in four possible ways38,39.  1). All strands are oriented in the same 

direction.  2). Three strands are oriented in one direction, and the fourth is in the opposite 

direction.  3). Two neighboring strands are oriented in one direction, and the other two are 

oriented in the opposite direction (AABB like arrangement).  4). Two neighboring strands are 

oriented in opposite directions alternatively (ABAB like arrangement) (Figure 1.6).  The strand 

orientations are related to the glycosidic conformation of the guanines, which can be either syn 

or anti (Figure 1.7). The relative orientations of the guanines in the three possible strand 

orientation is given below in Table 1.141 
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Figure 1.6. Four possible type of strand orientations in G-quadruplexes. 

 

 

 

Figure 1.7. Syn and anti-glycosidic bond conformations of the guanine nuleoside40.  

 

 

Table 1.1 

The Relationship Between the Relative Strand Orientation and Allowed G-Tetrad Configuration.   

 

 Strand orientation Allowed G-tetrad 

configuration 

Type 

1. All strands oriented in the same direction anti . anti. anti . anti 

syn . syn . syn . syn 

Parallel 

2. Three strands are oriented in direction, and one 

is in the opposite direction 

syn . anti . anti . anti 

anti . syn . syn . syn 

Hybrid 

(3+1) 

3. Two neighboring strands are oriented in one 

direction, and the other two are in another 

direction 

syn . syn . anti . anti Antiparallel 

4. Two neighboring strands are oriented in 

opposite directions 

syn . anti . syn . anti Antiparallel 
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The grooves (3 types) between strands can be narrow (n), wide (w), or medium, 

depending on the directionality of the strands.  A medium groove is formed between two parallel 

strands with the same orientations of guanines (syn . syn or anti . anti ).  A wide or narrow 

groove is formed between two antiparallel strands with the opposite orientations of guanines (syn 

. anti) (Figure 1.841 and 1.940). 

 

 

Figure 1.8. The cartoon of 3+1 hybrid G4 showing the three types of grooves.  The groove 

dimensions are mentioned with red double-headed arrow41. 

 

 

 

 

Figure 1.9. Syn and anti-glycosidic bond conformations of the guanine determine the groove 

width of G-quadruplexes40. 
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G-quadruplexes have three kinds of loops known as the lateral loop, diagonal loop, and 

edge reversal loop (propeller loop).  Loops have a remarkable effect on the stability of the G-

quadruplexes42.  Theoretically, a G-quadruplex can have three loops and three loop types, giving 

rise to 27 possible loop combinations.  The sequence and number of nucleotides in the loops can 

affect the type of loop that can formed40.  A propeller loop of a G-quadruplex with two or three 

tetrads commonly contains a single nucleotide.  A single-nucleotide loop is also possible as a 

lateral loop, but it is not long enough to form a diagonal loop40 (Figure 1.10). 

 

 

Figure 1.10. Common loop types in the G-quadruplexes. 

 

 The π-π base stacking interactions between G-tetrads play a major role in the stabilization 

of the G-quadruplexes.  A G-tetrad can overlap with the bottom tetrad in three common ways43 

(Figure 1.11) based on the analysis of many G-quadruplexes in the Protein Data40.  
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Figure 1.11. Different ways a G-tetrad can overlap with other G-tetrads. The blue lines are carved 

along the C8-H8 bond. The angle between them is relative rotation angle rotation (θtet) from 5’ to 

3’.  

 

 

 a). A partial 5/6 ring overlap is found in the Anti/Anti base step, in which the imidazole  

      ring of one guanine overlaps with the pyrimidine ring of the other guanine. 

 b). A 5-ring overlap is found in the Syn/Anti base step, in which the imidazole ring of   

           one guanine overlaps with the imidazole ring of the other guanine. 

 c). A partial 6-ring is found in the Anti/Syn base step, in which the pyrimidine of one  

           guanine overlaps with the pyrimidine of the other guanine. 

 

Importance and relative abundance of G-quadruplexes in the genome.  The presence 

of G-quadruplexes in vitro led to the development of algorithms that can scan the genome for the 

putative G-quadruplex (pG4) forming sequences.  The algorithms developed can search for the 

contiguous stretches of three or more guanines with intervening non-guanines such as GGG3+N1–

7GGG3+ N1–7GGG3+ N1–7GGG3+N1–7.  A recent study predicted approximately ~700,000 pG4 

sequences present in the human genome44 considering bulges and longer loop regions45 in the G-

quadruplexes. 

 Studies have shown that the pG4 sequences are mostly concentrated near or in the 

promoter regions of regulatory genes.  These regions are involved in the signal transduction, 

θtet 
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proliferation, cell-cell signaling, growth factor activity, regulation of cell cycles involving other 

than the normal housekeeping genes, and tumor suppressor genes46.  The pG4 sequences are 

typically located in the downstream (transcription starting site +500 base pairs) of the genes with 

significant transcriptional activities (Figure 1.12).  This phenomenon is conserved throughout 

the animal kingdom29, implicating the evolutionary role of the G-quadruplexes in the regulation 

of gene expression47,48.  

 

 

Figure 1.12. Relative abundance of potential quadruplex forming sequences (PQS) in the human 

genome near transcription start site29. 

 

 

  

 Evidence of the role of G-quadruplexes in regulating gene expression also came from the 

following experimental data.  The concentration of G-quadruplexes in cells is cell-cycle 

dependent.  The highest concentration of G-quadruplexes was found in the S phase during DNA 

replication48.  At the S-phase stage, DNA is relaxed from the super helical stress29 allowing for 

winding into G-quadruplexes with a physiological concentration of K+.  G-quadruplex specific 
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helicases have also been discovered, which unfold G-quadruplexes during replication, 

transcription, and translation to prevent genomic instability49.  Mutations in G-quadruplex 

specific helicases like BLM and WRN50 cause the loss of their biological functions, leading to 

pathological conditions such as Bloom’s and Werner’s syndromes51.  Further studies suggest 

these diseases are related to precocious aging, significant DNA damage, and a high propensity 

for cancer development.  A recent finding of XPD and XPB G-quadruplex specific helicases also 

link their role in assisting gene transcription52.  

Telomeres structure and their function. The abundance of pG4 sequences in the 

telomeric regions and their proximity to the promoter regions of the proto-oncogenes has sparked 

considerable interest in G-quadruplexes as a novel class of targets for cancer remediation.  The 

DNA sequences in the telomeric regions contain the highest GC content and have been found to 

fold into G-quadruplexes under physiological conditions as observed with G-quadruplex specific 

antibodies44. 

Human telomeres at the ends of chromosomes contain double-stranded 5’-AGGGTT 

repeats (10-15 kb long) and a single-stranded overhang53 (50-500 nucleotides long) with the 

same sequence repeat at the 3’-end.  This sequence motif is conserved throughout the eukaryotes. 

The 3’ G-rich overhang is folded into the duplex through strand invasion to form a structure 

called T-loop54, where it binds to the complementary C-rich strand, displacing the G-rich strand 

into a displacement loop (D loop).  The size of T-loop varies from species to species, even from 

cell to cell.  The formation of the T-loop (Figure 1.13) protects the chromosome ends, which 

would otherwise be recognized as double-strand breaks (DSBs) by DNA repair pathways.  T-

loop also prevents the chromosome ends from nonhomologous end-joining (NHEJ) and thus 

maintain the chromosome integrity. 
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 The telomeric region and T-loop are stabilized by a shelterin complex comprising of six 

proteins, which associate specifically with the telomeric 5’-TTAGGG repeats.  

 

 

Figure 1.13. T-loop and its stabilization by shelterin complex55. 

 

The proteins TRF1and TRF2 bind the duplex region of the telomere in a sequence-

specific manner.  Studies show that TRF2 can promote the formation of T-loop like structures in 

telomeric DNA in vitro.  POT1 recognizes the single-stranded overhang of TTAGGG repeats 

and the D-loop in the T-loop structure.  TRF1 and TRF2 are abundant in the telomeres and can 

recruit other proteins to the telomeres.  Rap1 is recruited to the telomeres by TRF2, but it does 

not directly bind to telomere DNA.  The TIN2 protein is the central component of the shelterin 

complex, bridging TRF1, TRF2, and TPP1.  It enables the complex to connect the components 

that bind to the single-stranded and double-stranded DNA of telomeres.  TPP1 bridges POT1 to 

TIN2, which has one oligonucleotide/oligosaccharide-binding fold protein domain (OB) to 

interact with the enzyme telomerase.  POT1 has two OB folds with which it recognizes ssDNA 

at the telomeres and helps maintain the length of the telomeres56.  The shelterin complex at the 

telomeres plays a central role in maintaining the genomic integrity56, telomere length 

maintenance57, and replication regulation55. 
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Under normal conditions, a cell loses a part of its DNA at the telomere during each 

replication cycle.  This is called the end replication problem: 

End replication problem. It is an intrinsic property of DNA replication machinery.   

DNA polymerase can only synthesize a DNA strand in the 5’ to 3’ direction.  It requires a free 

hydroxyl group at the 3’-end of the existing RNA or DNA fragment to add additional 

nucleotides.  DNA replication is semi-conservative. A daughter strand is synthesized on the 

template (parent) strand during the replication.  One strand known as the leading strand can be 

synthesized continuously from 5’ to 3’ by the DNA polymerase.  The other strand, known as the 

lagging strand, cannot be replicated continuously.  It uses RNA primers to initiate the synthesis 

of Okazaki fragments (small 150-200 longs pieces of DNA).  Later, these Okazaki fragments are 

connected with a combined activity of DNA endonuclease and DNA ligase.  Because of this 

machinery, the lagging strand cannot be fully extended due to the lack of a template strand at the 

3’-end of chromosome ends (3’ single-stranded overhang) (Figure 1.14).  The loss of the 

chromosome ends accumulates after each replication cycle.  Such erosion of the telomere 

eventually reaches a critical point that triggers DNA damage responses through the shelterin 

complex, leading to cellular senescence and apoptosis58.  

Germ cells and cancer cells use the same replication machinery, but they are involved in 

literally unrestricted replication (immortality).  How do they circumvent the end replication 

problem associated with telomere shortening?  It has been found that these cells overly activate 

an enzyme called telomerase, a reverse transcriptase.  Telomerase maintains the telomere length 

by adding the TTAGGG repeats to the 3’ chromosome ends using its inherent RNA primer.  

Telomerase is overexpressed in 85-90% of the cancer cells, and its presence is negligible in 

somatic cells.  This makes telomerase an attractive therapeutic target.  In the early 1990s, it was 
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found that the G-quadruplexes are not the substrate of the telomerase59.  Therefore, the induction 

and stabilization of G-quadruplex at the telomeric regions can inhibit the binding of telomerase 

and prohibit its ability to maintain the telomere length.  Ultimately, this could trigger cancer 

cells’ programmed death60.  

To successfully targeting telomeric G-quadruplexes, one needs to differentiate G-

quadruplex and duplex DNA.  Besides, as mentioned above, G-quadruplexes can adopt various 

conformations depending on the DNA sequence and experimental conditions.  Methods of 

distinguishing G-quadruplexes with different conformations are ideal for potential therapeutic 

applications.  Using small molecules that specially bind to G-quadruplexes is a promising 

approach to target G-quadruplexes.  In the next section, I will discuss G-quadruplex binding 

ligands and their crucial interactions and structural motifs.  

 

 

Figure 1.14. An illustration of end replication problem. 
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1.6. G-quadruplexes and Their Interactions With Small Molecules 

G-quadruplexes are more prevalent than thought before in the gene promoters.  Under 

physiological conditions, the G-quadruplex sequences can fold into different conformations that 

equilibrate between each other.  How this interplay37 between different conformations leads to 

the difference in gene expression is not fully understood.  G-quadruplexes adopt different 

topologies; however, there is one inherent similarity between different conformations - the 

omnipresence of planar G-tetrads.  The planarity of G-tetrads allows ligands with an extended 

aromatic surface to stack, a key factor to consider when designing G-quadruplex binding ligands. 

Small molecules that stack with G-tetrads increase the thermal stabilization of the G-quadruplex.  

However, such a stacking mode often makes it difficult for molecules to bind selectively to G-

quadruplexes with different topologies.  

In the following sections, different G-quadruplexes and their specific ligands are 

reviewed.  Common G-quadruplexes with different conformations are shown in Table 1.2.  Many 

of them are found in the promoter regions of many oncogenes29.  They are related to the 

regulation of oncogene expression61.  Most G-quadruplexes under physiological conditions adopt 

parallel conformation except BCL-2, which adopts a hybrid conformation.  HRAS1 G-

quadruplex adopts antiparallel conformation. 

 

Table 1.2 

G-quadruplexes and Conformation Adopted by Them. 

Sr. No Gene/region Conformation PDB ID Reference 

1 c-MYC Parallel 1XAV 62 

2 c-KIT 1 Parallel 2O3M 63 

3 c-KIT 2 Parallel 2KYP 64 

4 BCL-2 Hybrid 2F8U 65,66 

5 HRAS1 Antiparallel  67,68 

6 htelo Hybrid 2GKU 69 
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1.7. Ligands Targeting Parallel Stranded G4 

1.7.1. c-MYC G-quadruplex 

The expression of c-MYC in cells is difficult to measure due to the short half-life of c-

MYC mRNA and low concentrations of c-MYC proteins.  Additionally, c-MYC proteins have a 

very short half-life in proliferating cells (~20 mins70), and the proteins readily undergo 

ubiquitylation and degradation by proteases71.  c-MYC proto-oncogene encodes a transcriptional 

factor that activates or suppresses a number of other genes.  c-MYC also interacts with thousands 

of other genes72 through its protein controlling every aspect of cellular functions (Figure 1.15)70.  

 

 

Figure 1.15. Genes whose expression is affected by overexpression of c-MYC70. 

 

c-MYC is a master regulator for cell growth regulation, increased metabolism73, and 

proliferation of cancer cells74.  Overexpression of c-MYC gene is observed in nearly 80% of the 
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solid tumors of breast, gastrointestinal, and ovarian cancer tumors, making it an attractive 

therapeutic target for cancer remediation.  

The transcription activity of c-MYC is controlled by multiple promoters such as P1 and 

P2 as the predominant ones (Figure 1.16).  Located at 142-115 bp upstream of the P1 promoter, 

NHE III1 is a highly conserved and guanine-rich element, responsible for 80-95% c-MYC 

transcription.  The 27 mer G-rich sequence (pu27) is shown in figure 1.15, which contains five 

consecutive runs of guanines (3 or more guanines in each run).  The pu27 sequence can fold into 

a G-quadruplex with a parallel conformation in K+ under physiological conditions75.  DNA foot 

printing61 and NMR62 showed that the G-quadruplex is composed of the 3’ II, III, IV, and V runs 

of guanines in pu27 (Figure 1.16).  The formation of this G-quadruplex in NHE III1 promotes 

the downregulation of the c-MYC expression76 and has been correlated with antitumor activity.  

The c-MYC G-quadruplex formed in vivo can be unwound by theNM23H2, a non-metastasis 

family of protein.  The resulting single-stranded DNA is stabilized by a nucleic acid-binding 

protein (CNBP) and a CCHH zinc-type zinc finger to facilitate further transcription29.   

 

 
Figure 1.16. Promoter structure of the c-myc gene with pu27 in the NHE III1 of promoter P136. 
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Figure 1.17. NMR structure of the c-MYC G-quadruplex (PDB:1XAV). 

 

Stabilization of the parallel G-quadruplex (Figure 1.17) formed in the NHE III1 can 

prevent the NM23 from binding and unwinding of the G-quadruplex and thus silence the 

expression of the c-MYC gene76.  Over the years, several classes of G-quadruplex binding 

ligands have been developed to interact with the c-MYC G-quadruplex. 

 

 

Figure 1.18. TMPyP4 bound by end stacking mode to the c-MYC G-quadruplex (NMR solution 

structure, PDB ID 2A5R77). 
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TMPyP4 (18) (Figure 1.18) consists of a planar porphyrin ring with 4-methyl substituted 

cationic pyridinium rings as side chains.  NMR studies showed that TMPyP4 end stacks on the 

terminal G-tetrad of the c-MYC G-quadruplex78 and side chains interact with the loops79.  

TMPyP4 has a moderate selectivity for intermolecular quadruplex80 over duplex DNA81,82.  Its 

binding affinity to G-quadruplex DNA is  0.25 ± 0.1 and 1.9 ± 0.2 µM for 3’ and 5’-tetrad of 

23mer htelo human telomeric G-quadruplex83.   

The strong binding of TMPyP4 to c-MYC G-quadruplex DNA comes from its shape 

complementarity with the G-tetrad.  Its large aromatic surface stacks with the G-tetrad via pi-pi 

interactions.  Four positive charges of TMPyP4 are responsible for its diminished selectivity for 

G-quadruplex over duplex DNA. It has been demonstrated experimentally by Ruan et al 84 that a 

TMPyP4 analog with only three positive charges has improved selectivity over duplex DNA.    

Quindoline (19) derivatives have also been extensively studied for interactions with c-

MYC G-quadruplex DNA. Quindolines are derived from the parent compound cryptolepine (20) 

(Figure 1.19).  Cryptolepine is a natural product from Cryptolepis sanguinolenta and has been 

used as a traditional Ghanian folk medicine for the treatment of a variety of ailments.  It has also 

been used as a vasodilator85 and antihyperglycemic medication86.  

 

 

Figure 1.19. Cryptolepine (left) and Quindoline (right). 
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 Ou et al87 synthesized a series of quindoline derivatives to target c-MYC G-quadruplex 

and its downregulation in vivo (Figure 1.20).  The rationale of the design is to optimize the 

electronic properties of quindoline.  The electron density of the nitrogen at position 5 is increased 

by adding an electron-donating substituent at position 11.  Hence, the pKa values of the NH 

group at the 5-position of quindoline derivatives indeed increase from 4.2 to ~8.288.  Under 

physiological conditions, this nitrogen could be readily protonated, enhancing its interaction with 

the electron-rich center of the G-quadruplex.  Compound 29 with an N-diethyl group as an end 

moiety at position 11 showed a mild selectivity for parallel c-MYC G-quadruplex over a hybrid 

G-quadruplex DNA as determined by competition dialysis assay.  It stabilized c-MYC G-

quadruplex (wild type Pu27 5µM) by over 25 oC at 5 µM concentration87.   

 

 

Figure 1.20. 11-substituted Quindoline derivatives.  

 

The G-tetrads at the 3’ and 5’ ends are different depending on their flanking bases89.  The 

effect of flanking bases on ligand binding was studied on a “truncated c-MYC G-quadruplex 

sequence” (Pu22) using solution NMR spectroscopy (Figure 1.21).  The DNA sequences used in 

the study are shown below.  Pu27 is the native sequence of c-MYC.  TGA (-3, -2 and -1 to the 

first guanine involved in G-tetrad formation, labeled in red) are the flanking bases at the 5’-end 

of Pu22, and TAA (+1, +2, and +3 to the adjacent guanine) are the flanking bases at the 3’ end of 

Pu22.  
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Figure 1.21. Sequence of the wild type c-MYC DNA Pu27 and the truncated version Pu22.  

              

Compound 29 forms a 2:1 ligand to G-quadruplex complex.  Its binding to the 5’-end of 

the c-MYC G-quadruplex leads to a dramatic rearrangement of the flanking bases (5’-TGA).  

The adenine (-1A, A6) is recruited by Compound 29 to form a new plane at the top of 5’-G-

tetrad, which is completely by wrapped a guanine residue (-2G, G5) (Figure 1.20).  Binding of 

the ligand at the 3’ end also showed the involvement of the flanking bases (5’-TAA).  Compound 

29 recruits the thymine base (+1T, T23) to form a new plane at the 3’ end of the G-quadruplex, 

which is capped by the adenine residue (+2A, A24) (Figure 1.22).  

 

 

Figure 1.22. The ribbon structure of compound 29 bound to the c-MYC G-quadruplex 

(PDB:2L&V)(left) and c-MYC bound to the terminal G-tetrad at 5’-position (bottom-right) and 

at the 3’end (top right) involving the flanking sequences.  
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Compound 29 is protonated at pH 7 (pKa, ~8.3). NOE constrained MD calculations 

showed the formation of hydrogen bonding between the O4 of thymine (T23) and the N-H of 

Compound 29 (N1H) (Figure 1.23 (right)).  The presence of hydrogen bonding interactions is 

supported by the increased thermal stabilization of G-quadruplex at low salt concentrations.  On 

the other hand, binding at the 5’ end is not affected by the salt concentration as dramatically as 

that at the 3’ end.  The 5’-end is more hydrophobic; therefore, stacking interactions at this end 

have more effect on the binding.  Mutational analysis showed that guanine (G5) that form the 

capping structure at the top of quindoline-i and adenine plane at the 5’ end is more critical for the 

binding.  The overlapping area at the 5’-end is larger than that at the 3’-end, also suggesting the 

importance of hydrophobic stacking interactions (Figure 1.23).  

 

 

Figure 1.23. Compound 29 overlapped at the 5’ G-tetrad and 3’G-tetrad of the c-MYC G-

quadruplex. 

 

 

 

To improve the binding selectivity of quindoline derivatives for c-MYC G-quadruplex, 

Funke et al90 designed and synthesized phenyl-substituted indolo[3,2-b]quinolines.  The 

compound 31 (Figure 1.24) with a larger hydrophobic stacking area showed a remarkable 

stabilization effect (ΔTm is over 35 oC) on c-MYC G-quadruplex.  This compound also showed 

an order of magnitude of selectivity for c-MYC G-quadruplex over human telomeric (htelo) G-
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quadruplex.  The NMR titrations showed an increased preference for binding to the 5’ G-tetrad 

than the 3’ G-tetrad. The better stacking interaction of 31 with the 5’ G-tetrad is believed to be 

the driving force.90  

 

 

Figure 1.24. Structure of 11-phenyl substituted indolo[3,2-b]quinoline (31). 

 

Trisubstituted 11-piperazinylquindoline derivatives (Figure 1.25) were developed for 

tight and selective binding to c-MYC G-quadruplex.  These compounds contain three 

substituents on the quindoline ring.  As an example, incorporation of a N, N-dimethyl ethyl 

linker at R1 in compound 32 increased its selectivity for c-MYC G-quadruplex over duplex DNA 

and other parallel G-quadruplexes.  Thermal denaturation monitored by CD showed more than 

16.5 oC increase in the Tm of c-MYC G-quadruplex when incubating compound 32 and DNA 

with a 1:1 molar ratio.  Unfortunately, the ability to stabilize c-MYC G-quadruplex by these 

trisubstituted derivatives is not correlated well with their antitumor activity against HCT-116 

(colon) and Raji (Lymphoma) cell lines.  A CA46 exon-specific test suggested that the 

stabilization of c-MYC G-quadruplex is not the sole reason for the inhibition of cancer cell 

growth by these derivatives91.  It is noteworthy that the stabilization of DNA might not always 
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have a positive correlation with the inhibition of c-MYC expression.  Similar results were 

observed with the famous G-quadruplex binding ligand Quarfloxin29. 

 

 

Figure 1.25. The general structure of trisubstituted Quindoline derivatives (left) and compound 32 

(right). 

 

 

 

 Ming-Hao Hu and his co-workers reported the development of tetrasubstituted ligands 

with excellent binding affinity and selectivity over other parallel stranded G-quadruplexes such 

as BCL-2, c-KIT 1, and KRAS.  A representative compound IZCZ-3 (33), a 1-methylpiperazine 

substituted diaryl imidazole and carbazole conjugate (Figure 1.26), was able to differentiate 

between hybrid-type telomeric G-quadruplex DNA and antiparallel HRAS G-quadruplex DNA. 

 

 

Figure 1.26. The structure of tetrasubstituted clover leaf-like molecule IZCZ-3 (33). 



 58 
 

The compound 33 inhibited cell growth and induced apoptosis by reducing the level of 

mRNA and c-MYC proteins.  The CA46 exon assay indicated that the observed biological effect 

of the compound is correlated with its stabilization of c-MYC G-quadruplex91.  This G-

quadruplex interacting compound showed comparable activity (effectiveness) with no non-

specific toxicity as compared to the other non-specific DNA binding drug Doxorubicin92.  

The binding modes of compound 33 with G-quadruplex were determined by docking 

studies (Figure 1.27).  Results suggested that compound 33 stacks closely onto the terminal G-

tetrads of c-Myc G-quadruplex. The positively charged imidazole ring of compound 33 sits on 

top of the central cavity of the G-tetrad and electrostatically interacts with it.  The 1-

methylpiperazinyl side chain makes close contacts with the edgewise reversal loop.  In addition, 

the flanking bases of c-MYC G-quadruplex are intrinsically flexible, which accommodates a 

better ligand fit.  As a comparison, in the binding of this compound with htelo G-quadruplex, the 

lateral loop of the G-quadruplex can hinder the close contact between the ligand and G-tetrad, 

leading to the relatively higher binding energy.  The docking data mentioned here can be used to 

explain the better binding affinity and selectivity of this ligand towards c-MYC G-quadruplex.89  
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Figure 1.27. Top view (upper panel) and side view (lower panel) of the binding models of 

compound 33 with (A) the c-MYC G-quadruplex pu22 (PDB ID: 2L7V), (B) the c-KIT G-

quadruplex c-KIT 1 (PDB ID: 4WO3), and (C) the telomeric G-quadruplex htg22 (PDB ID: 

2MB3). 

 

 

 

Other ligands with moderate affinities and relatively better selectivity to c-MYC G-

quadruplex DNA include 11-triazole benzofuruquinoline93, bis-triazolylcarbazole94, some natural 

products like Fonsecin B95, Berberine derivatives96 and metal complexes like Iridium (III)97 and 

Platinum (II) complexes98 (Figure 1.28). 
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Figure 1.28. Different classes of c-MYC G-quadruplex ligands. 

 

1.7.2. c-KIT G-quadruplex 

The c-KIT gene contains codes for a transmembrane protein product.  This protein acts as 

a tyrosine kinase receptor that helps to relay signals from the cell surface to the interior of the 

cell.  Binding of this c-KIT receptor with Stem cell factor (SCF) induces its dimerization and 

promotes transphosphorylation.  Transphosphorylation triggers a cascade of downstream 

reactions affecting hematopoietic cellular differentiation, proliferation, and development.  

Mutations in the c-KIT gene produce proteins that have defects in the juxtamembrane region and 

kinase domain.  Mutant proteins cause SCF independent autophosphorylation and support cell 
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proliferation.  An abnormal level of c-KIT expression is correlated with small cell lung 

carcinona, melanoma, and more than 80% cases of gastrointestinal stromal tumors99 (GISTS).  In 

recent years, c-KIT pathways have become promising targets for cancer remediation.  An FDA 

approved drug, Imatinib14, has been used as an effective treatment against c-KIT positive GISTs 

by inhibiting the tyrosine kinase activity of c-KIT.  

Two potential G-quadruplex forming sequences Kit 1 and Kit 2 are present in the 

promoter regions of the c-KIT gene.  c-KIT 1 extends from -87 to -109 base pairs, and c-KIT 2 

extends from -140 to -160 base pairs located upstream of the transcription initiation site.  The 

region containing c-KIT 2 was found to be a core regulatory element of transcription100.  

Interestingly, this region is highly conserved in the human, rat, mouse, and chimpanzee.  

 c-KIT G-quadruplexes adopt a parallel G-quadruplex conformation under physiological 

conditions63,101–103.  The structure of c-KIT 1 G-quadruplex is unusual.  A two-nucleotide lateral 

loop snaps back another five nucleotide loop, forming a large pocket between the bottom G-

tetrad and lateral loop (Figure 1.29, blue arrow)103.  Solution NMR studies63 showed the 

formation of base pairing between adenine-1 and thymine-12 at the top of 5’-G tetrad and a 

Hoogsteen interaction between adenine and guanine in the five-nucleotide lateral loop. Such 

interactions contribute to the stability of the c-KIT 1 G-quadruplex. 
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Figure 1.29. NMR solution structure of c-KIT 1 (left) and c-KIT 2 solution structure (right). 

 

The c-KIT 2 sequence also adopts a parallel topology containing two one-nucleotide 

double chain reversal loops and one five-nucleotide double chain reversal loop.  A non-canonical 

base pairing between cytidine-1 and adenine-13 at the top of guanine-14/guanine-18G segment 

of the 5’ G-tetrad was found.64  

To search for specific ligands that bind to c-KIT G-quadruplexes, Rocca et al104 used a 

computational method to screen a library of 462,045 molecules against two c-KIT G-

quadruplexes (PDB ID: AWO2 and AWO3).  All molecules were filtered following Lipinski’s 

rule of five and selected for favorable ADME properties.  Three compounds (Figure 1.30) were 

chosen, all of which can bind to both c-KIT 1 and c-MYC G-quadruplexes.  According to the 

dock studies, these compounds are groove binders.  Circular dichroism studies showed a modest 

decrease of the absorption band at 265 nm with increasing ligand concentrations, indicating the 

lack of π-π stacking interactions.  The primary binding site of the ligands to c-KIT 1 G-

quadruplex was in the cleft (Figure 1.29, blue arrow).  According to the docking data, the 

piperidine residue in all the best-fitted structures is oriented towards the negatively charged 

phosphate backbone.  Compound 36 forms a salt bridge between the G4 nucleobases and an 
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adenine residue (A19).  None of the compounds showed the ability to stabilize duplex DNA.  

This study showed a new method to target c-KIT 1 by utilizing phosphate backbones bordering 

the pocket (Figure 1.29. blue arrow).  The ligands bound to the c-KIT 1 G-quadruplex are shown 

in figure 1.31.  

 

 

Figure 1.30. Structure of dual c-KIT and c-MYC binders. 

 

 

Figure 1.31. Representations of the compounds (A) 34, (B) 35 and (C) 36 docked to c-KIT 1 G-

quadruplex104.  

 

 

A  B  C  
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In a separate study, Zorzan et al105 screened an in-house library of compounds based on 

five common DNA binding motifs: Anthraquinone (AQ), anthracene (AN), phenanthroline 

(Phen), naphthalene diimide (NDI), and heterocyclic diamidines (HAD).  Anthraquinone- and 

anthracene-based ligands showed the best thermal stabilization and selectivity for the c-KIT 1 

and c-KIT 2 G-quadruplex over telomeric G-quadruplex and duplex DNA.  The FID assay 

revealed three potential binding ligands (37-39), as shown in figure 1.32.  Out of the three, AQ1 

(37) was the most potent ligand that binds to c-KIT 1 and c-KIT 2 G-quadruplexes. 

 

Table 1.3 

FID G4DC50 and Kd Values of the Hits (37-39) Against c-KIT 1 and c-KIT 2. 

 FID G4DC50 Kd (µM) 

Ligand c-KIT 1 c-KIT 2 c-KIT 1 c-KIT 2 

AQ1 (37) 0.32 ± 0.05 0.35 ± 0.05 1.99 ± 0.15 1.01 ± 0.15 

AQ7 (38) 0.24 ± 0.04 0.25 ± 0.02 3.04 ± 0.43 2.29 ± 0.28 

AN6 (39) 4.11 ± 0.70 3.63 ± 1.00 71.5 ± 20.1 25.5 ± 4.01 

 

 

 

Compound 18 showed low cytotoxicity against c-KIT positive cell lines HGC27 (human 

gastric carcinoma cell line) and MCF7 (Michigan cancer foundation-7, a breast cancer cell line) 

even though it is a potent c-KIT G-quadruplex ligand based on the in vitro studies such as 

polymerase stop assay.    

Compound 39 did not affect the mRNA level in HGC27 cells but showed a weaker effect 

in MCF7 cells.  By contrast, Compound 17 reduced the c-KIT expression by 2 to 10 folds in 

HGC27 cells and 37 folds in MCF7 cells.  Compound 37 showed anti-proliferative activity 

against imatinib-resistant cell lines (HMC1.2: Human mast cells), suggesting the potential of this 

compound to be effective against any c-KIT mutation in the protein-coding region.  The 

cytotoxicity of compound 37 was much less against c-KIT deficient cells, implicating that 37 
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interacts with the c-KIT G-quadruplex.  It is noteworthy that 37 is the best G-quadruplex binding 

ligand developed for downregulation of the c-KIT expression. 

 

 

Figure 1.32. Structure of Anthraquinone derivatives AQ1 (37) (top left), AQ7 (38) (right) and 

Anthracene derivative AN6 (39) (bottom). Lys = lysine.  

 

 

 

All the ligands mentioned above have limited selectivity for c-KIT G-quadruplex over c-

Myc G-quadruplex DNA because they have parallel topologies.  In fact, till today, many G-

quadruplex binding ligands can effectively differentiate between G-quadruplex and duplex DNA 

and distinguish G-quadruplexes with different conformations (parallel, antiparallel, and hybrid).  

However, reports on targeting G-quadruplexes with parallel conformations (e.g., c-KIT G-

quadruplex and c-Myc G-quadruplex DNA) are scarce.  Bejugam et al 106  synthesized a series of 

trisubstituted isoalloxazines derivatives for selective recognition of c-KIT G-quadruplex DNA.  

Impressively, several compounds (Figure 1.33) were able to differentiate between the c-KIT 1 

and c-KIT 2 parallel G-quadruplexes and a telomeric hybrid G-quadruplex DNA.  Compound 40 

was the most potent compound with a Kd value of 3 µM and 6.4 µM for c-KIT 2 and c-KIT 1, 
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respectively.  By contrast, the Kd values of compound 43 for c-KIT 2 and c-KIT 1 were 9.7 µM 

and 31 µM, respectively.  The Kd value of compound 40 binding to the hybrid telomeric G-

quadruplex was 43 µM, and no meaningful Kd value of compound 43 for telomeric G-

quadruplex could be detected.  Compound 43 is the only ligand containing a fluorine atom at the 

R2 and showed the most selective response against c-KIT 1 and 2 over the telomeric hybrid G-

quadruplex.  Results also suggested that extra cationic side chains can lead to non-specific 

binding interactions, which may lead to loss of selectivity of ligand to different G-quadruplex 

species107.  Moreover, the presence of fluorine atom would increase the hydrophobicity of the 

compound, which may interact better with non-polar G-tetrad better.  More detailed binding 

process can be investigated using rate of association and dissociation in SPR studies.  It is 

noteworthy that compound 43 showed the better downregulation of c-KIT expression (31 fold in 

6h) in the MCF-7 cell lines. 

 

          

Figure 1.33. Structures of isoalloxazine ligands 40-45. 
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The same group also developed a new c-KIT G-quadruplex binding scaffold, 

Benzo[a]phenoxazines108 (Figure 1.34).  Both ligands showed greater affinities for c-KIT 2 over 

c-KIT 1.  In particular, compound 46 binds to c-KIT 2 9.5 times more selectively over c-KIT 1, 

and compound 47 binds to c-KIT 2 7.5 times more selectively over c-KIT 1.  Both compounds 

bind to c-KIT G-quadruplexes more preferentially (about 2-5 times) than c-MYC and telomeric 

G-quadruplexes.  In addition, both compounds bind more selectively to G-quadruplexes than 

duplex DNA.  The Kd value of compound 46 binding to G-quadruplex is 10 fold higher than 

duplex DNA, and the Kd value of compound 47 to G-quadruplex is more than 50 fold lower than 

duplex DNA, as determined using surface plasma resonance (SPR). 

 

 

Figure 1.34. Structure of benzo[a]phenoxazines ligand 46 (left) and 47 (right). 

 

Other ligands that are developed for recognition of parallel c-KIT G-quadruplexes over 

hybrid conformation of telomeric G-quadruplex include triarylpyridines derivatives109, 

indolylmethyleneindanone derivatives110, oxazole peptide macrocycles111 shown in Figure 1.35.  
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Figure 1.35. Scaffold of various other classes of ligands developed for c-KIT G-quadruplex. 

 

1.8. Ligands Targeting Antiparallel G-quadruplex 

1.8.1. HRAS/KRAS  

The H-ras, N-ras, and K-ras were the first human oncogenes discovered more than three 

decades ago, belonging to the members of the Ras GTPase family.  They are crucial in relaying 
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signals downstream from the tyrosine kinase membrane receptors to a cascade of parallel 

phosphorylation reactions that culminate with nuclear transcription factors.  This signal 

transduction is involved in normal cell cycle progression, growth, proliferation, apoptosis, and 

senescence.  Mutations in ras genes have been associated with various developmental disorders 

and cancer112.  Ras oncogene mutations are primarily concentrated within 2 hot spots, codons 

12,13 and codon 61, resulting in 1 in 19 possible point mutations for each RAS isoform113.  Val, 

ASP, CYS are the dominant mutant alleles of the K-ras gene.  These mutations lock the protein 

in the active conformation.  Currently, the Sanger Center keeps and updates the nature and 

frequency of ras mutations in human tumors.  About 30% of all human tumors screened carry 

some form of mutations in ras genes, and most of these mutations are detected in K-ras oncogene 

(25-30% of all the tumors screened)114, along with its involvement in 95% of pancreatic tumors, 

50% colon tumors, and 30% of lung adenocarcinomas112.  The rates of oncogenic mutations in 

N-ras and H-ras family members are much less prevalent (8% and 3% of samples screened, 

respectively).  

So far, RAS genes are undruggable at the protein level due to the tissue-specific nature of 

the up/stream signal transduction pathways.  Interestingly, HRAS gene has two G-rich sequences 

HRAS1 (-434 to -462) and HRAS2 (-509 to -530) locate at the upstream of the transcription start 

site of the HRAS68.  HRAS1 was found to adopt an antiparallel conformation in solution68,115.  

On the other hand, HRAS2 adopts parallel G-quadruplex conformation.  Several classes of 

compounds (Figure 1.36) have been developed to target HRAS G-quadruplexes. 

Anthrathiophenedione-guanidino derivative (48, ATPD-1) (Figure 1.36) can bind to both 

parallel and antiparallel HRAS G-quadruplexes and consequently downregulate the expression of 

the gene68. 
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In another report, tetrakis-(diisopropyl-guanidine) phthalocyanine116 (49, DIGP) (Figure 

1.36) was shown to stabilize the antiparallel HRAS1 G-quadruplex and strongly halt the 

formation of full-length product in a polymerase stop assay.  A similar preference for antiparallel 

telomeric G-quadruplex was found for this class of compounds by the Balasubramanian group117.   

Liu et al118 synthesized a series of para-substituted bis-(vinylquinolinium) benzene 

derivatives (50) (Figure 1.36), some of which can increase the Tm of HRAS1 G-quadruplex by 

more than 9.3 oC.  However, the compounds showed low selectivity for HRAS1 over duplex 

DNA (~factor of 2) and limited selectivity toward antiparallel G-quadruplexes.  The lack of 

selectivity might result from their linear shape, which can fit into the duplex grooves with a 

slight twist of the molecules.  On the other side, its preference for antiparallel G-quadruplexes 

could result from the interactions with the lateral loop residues.  

Other quinolinium-based ligands that can selectively bind to HRAS1 G-quadruplex over 

hybrid and parallel G-quadruplexes include a fluorescent triphenylamine-quinolinium119 probe 

(51) and a series of benzothiazole-substituted benzofuroquinolinium (52) compounds120 (Figure 

1.36).  These compounds also show good selectivity over dsDNA and ssDNA. 

Different G-quadruplex topologies have different groove characteristics.  So far, there are 

not many ligands121 that can bind into the grooves of G-quadruplexes specifically.  A carbazole 

based G-quadruplex groove binding ligand (53) for HRAS1 antiparallel G-quadruplex was 

developed122 (Figure 1.36).  The lead compound showed 6 to 20 times selectivity over other G-

quadruplex topologies. 
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Figure 1.36. Classes of ligands that target HRAS1 antiparallel G-quadruplex. 

 

1.9. Ligands Targeting Hybrid Conformation of G-quadruplex 

1.9.1.  BCL-2 G-quadruplex 

The BCL-2 gene codes for mitochondrial membrane proteins that facilitate the 

oncogenesis by avoiding programmed cell death.  BCL-2 gene expression is often significantly 

enhanced in pancreatic cancer in addition to the activation of other oncogenes 28, which has led 

to inadequate responses to chemotherapy and drug resistance in the treatment of human 

pancreatic cancers.  

So far, three G-rich sequences upstream of the BCL-2 transcription site have been 

identified45,65,66,123, which are Pu 32 [-1875 to -1906 base pairs from the transcription start site 
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(TSS)], Pu39 (-1451 to -1489 base pairs upstream of the TSS) and P1G4 (-1412 to -1439 bp 

upstream of the TSS) (Figure 1.37).  Pu32 can adopt a hybrid G-quadruplex conformation as 

observed from spectroscopic data.  However, the detailed structural elucidation and its relevance 

to BCL-2 biological functions have not been elucidated.  Pu39 can adopt multiple conformations 

of G-quadruplexes, depending on the sequence tracts used for the G-quadruplex formation.  The 

most stable G-quadruplex of Pu39, confirmed with DMS DNA footprinting and NMR studies, is 

a parallel G-quadruplex conformation45, with an unconventional 13 nucleotide propeller loop.  A 

loop containing 13 nucleotides is unusual.  Its discovery broadens our knowledge on G-

quadruplex-folding in solution.  Additionally, Pu39 can also adopt a hybrid conformation using 

four G-tracts in the middle of the sequence with a 7-nucleotide lateral loop.  The latter (PDB ID: 

midG4)65 is the key conformation used for research on BCL-2 G-quadruplex.  The guanine-rich 

P1G4 sequence was recently discovered, which is located immediately above the BCL-2 P1 

promoter.  The P1G4 G-quadruplex shows a significant effect on the transcriptional regulation of 

the BCL-2 gene.  It adopts two hairpin-like G-quadruplex conformations with two edge reversal 

loops comprising of 12 nucleotides and 11 nucleotides, respectively.  Both G-quadruplexes 

coexist in equilibrium under physiological conditions. 
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Figure 1.37. G-quadruplexes in the promoter P1 of the BCL-2 gene. The guanines used in the 

formation of G-quadruplex are underlined. The substitutions in the original loop sequence are 

colored in blue. 

 

 

 

 

Figure 1.38. Structure of Naphthalene diimide derivative MM4128. 

 

 A G-quadruplex binding agent  MM41 (54) (Figure 1.38) has been used for 

downregulating the activity of BCL-2 along with the KRAS gene.  Thermal denaturation 

monitored by fluorescence showed that 54 selectively stabilizes BCL-2 G-quadruplex and two 

KRAS G-quadruplexes by more than 20 oC.  Molecular dynamics simulations showed 54 stacks 
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with the terminal G-tetrad through π-π interactions, and four side chains extend into the grooves.  

Guanine-12 of the loop sits at the top of the ligand, forming a sandwich-like structure28 (Figure 

1.39).  54 exhibits antitumor activity in the MIA PaCa-2 pancreatic cancer xenograft model.  

Interestingly, it did not affect the telomerase activity (TRAP assay) and expression of the c-MYC 

gene, suggesting that 54 has a limited stabilization effect on telomeric G-quadruplex and c-MYC 

G-quadruplex.  

 

 

Figure 1.39. A snapshot from MD simulations. Top view of the compound 54 docked onto the 

terminal tetrad and interaction with G12 (left), Side chains of ligands interacting with the 

grooves of the BCL-2 G-quadruplex28. 

 

 

 

In another study, Quindoline (SYUIQ-0187 (55) and SYUIQ-F05124 (56)) and 

cryptolepine derivatives (SYUIQ-FM05125 (57)) were used to downregulate the expression of 

BCL-2 gene (Figure 1.40).  The binding of BCL-2 G-quadruplexes by three compounds was 

measured using SPR spectroscopy (Table 1.4).  Results suggested that the rates of association of 

the ligands to the G-quadruplex and duplex are roughly the same.  But the rates of dissociation of 

the ligands from the G-quadruplex and duplex are drastically different, especially for compounds 

57 and 56. Hence, the low KD (kd /ka) values of these two ligands came from their relatively low 
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rate of dissociation from the G-quadruplex. 57 is a more potent G-quadruplex binding ligand, 

with an impressive kd value of 3.18 × 10−8 M-1.  Due to similar molecular structures, the 

hydrophobic interactions of compounds 56 and 57 with the BCL-2 G-quadruplex DNA is 

roughly the same.  The major difference is the quaternary nitrogen in compound 57. This 

positively charged atom sits above the G-tetrad center and interacts with four oxygens (O6) of 

guanines via electrostatic attractions (acts as a pseudo potassium ion).  Such ionic interactions 

could decrease the observed dissociation constant of compound 57.   It is necessary to point out 

that the positive charge(s) of a ligand must be placed at a specific location in G-quadruplex DNA 

to achieve binding specificity.  Otherwise, non-specific interactions of a positively charged 

ligand with DNA could occur, reducing binding selectivity.  Ligand 57 was also found to reduce 

the production of mRNA and induce apoptosis in HL-60 (human leukemia-60) cells126. 

 

 

Figure 1.40. Structure of Quinoline derivatives SYUIQ-01 (55) (left), SYUIQ-F05 (56) (middle) 

and Cryptolepine derivative SYUIQ-FM05 (57) (right). 
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Table 1.4  

Kinetic Parameters of the Ligands (57-59) Determined by SPR Spectroscopy. 

 SYUIQ-FM05 (57) SYUIQ-F05 (56) SYUIQ-01 (55) 

 BCL-2 duplex BCL-2 duplex BCL-2 duplex 

ka (M−1 s−1) 2.29 × 105 2.23 × 105 1.20 × 105 1.66 × 105 8.65 × 104 5.92 × 103 

kd (s−1) 7.28 × 10−3 0.06 0.02 0.08 0.13 0.02 

KD (M) 3.18 × 10−8 2.69 × 10−7 1.67 × 10−7 4.82 × 10−7 1.50 × 10−6 3.38 × 10−6 

 ka is association constant, kd is dissociation constant, KD (kd/ka) is equilibrium dissociation 

constant 

 

 

 

Giusiniano127 et al synthesized a series of ligands for selectively targeting BCL-2 and c-

MYC G-quadruplex using nucleobases as synthons.  Three nucleobase-oriented scaffolds are 

shown in Figure 1.41. 

 

 

 Figure 1.41. Structure of cytosine, guanine and adenine-based scaffolds for G4 stabilization. 

 

An initial survey of compounds 58, 59, and 60 showed that 58 and 59 were ineffective in 

stabilizing any G-quadruplex conformations.  Compound 60 did show thermal stabilization of 

the c-MYC, BCL-2, and human telomeric G-quadruplexes.  Based on the scaffold of compound  
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60, a library of 16 compounds was synthesized.  Compound 61 (Figure 1.42) was the most 

potent and selective ligand for BCL-2 (hybrid) and c-MYC (parallel) G-quadruplex topologies in 

the series. 

 

 

 

Figure 1.42. Compound 61 (left) Compound 61 docked on BCL-2 G-quadruplex, the 

electrostatic interaction is circled in red. PDB:2F8U (right). 

 

 

 

 Compound 61 showed selective inhibition of BCL-2 positive Jurkat cell growth (human 

leukemia cell line) without having any effect on the cell viability of melanoma cells, MCF-7 

cells, HCT-116 cells, and non-cancerous cells. 

 An NMR titration study showed that the binding of compound 61 only causes slight 

perturbation of the guanines in the 3’ G-tetrad and has no effect on the guanines in the 5’ G-

tetrad.  By contrast, docking studies showed that the compound interacts with the N-H of 

guanines pointing in the grooves (top and middle tetrad) in the grooves.  The amino side chains 

of the ligand interact with the phosphate backbones (Circled in red in Figure 1.42). 

1.9.2. Human Telomeric G-quadruplex  

The ends of the chromosome consistently shorten after each replication cycle, known as 

the end replication problem.  When a cell’s chromosome ends reach a critical point, it will trigger 

Groove 
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cellular senescence.  Theoretically, each cell can have around 50-70 replication cycles.  On the 

contrary, cancer cells are immortal, having unrestricted replication cycles.  Cancer cells 

overcome the end replication problem by overexpressing a reverse transcriptase, human 

telomerase.  Telomerase extends the chromosome ends by adding 5’-TTAGGG repeats and thus 

maintain their length.  It requires a single-stranded DNA (3’-G rich overhang) to pair with its 

embedded mRNA template to execute its function.  Telomerase is overexpressed in 85-95% of 

cancer cells, making it a promising anticancer target.  As discussed before, the guanine-rich 

telomeric region can fold into G-quadruplexes in vivo.  Because the G-quadruplexes are not the 

native substrate of telomerase; therefore, the formation of G-quadruplex in the telomeric region 

can prevent the binding of telomerase and thus inhibit its biological activity.  The use of small 

molecules to induce telomeric G-quadruplex is an effective approach for the inhibition of 

telomerase activity. 

The first evidence of ligand-mediated G-quadruplex stabilization responsible for 

telomerase inhibition was reported in 1997.  A G-quadruplex binding ligand 2,6-

diamidoanthraquinone (62) (Figure 1.46) thermally stabilizes telomeric G-quadruplex and 

inhibits telomerase activity with an IC50 value of 23 µM. 

Until today, the design of G-quadruplex binding ligands mainly focuses on two factors, 

aromatic surface and charged side chains.  Ligands containing extended and fused aromatic rings 

can maximize π-π interactions with the planar nature of G-tetrads.  Ligands with positively 

charged moieties can enhance their binding with and negatively charged G-quadruplex grooves 

and electron-rich G-tetrads.  Porphyrin derivatives79,128 (63) and PIPER129 (64) are examples of 

G-quadruplex ligands with extended aromatic rings and charged side chains (Figure 1.46).  

When designing G-quadruplex ligands, one needs to consider the ligand's selectivity for G-
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quadruplex over duplex DNA.  The charged side chains are also a favorable factor for duplex 

binding ligands.  Several synthetic and natural G-quadruplex binding ligands are listed below. 

Neidle et al130 synthesized a series of disubstituted and trisubstituted acridine molecules. 

The side chains were judiciously placed to interact with the grooves to maximize the binding 

affinity.  The derivatives with three side chains showed a much weaker dissociation constant in 

the SPR (surface plasmon resonance) study.  The acridine ring nitrogen aligns along the channel 

of negative electrostatic potential above the top G-tetrad (Figure 1.43).  The compound showed 

40 times selectivity over duplex DNA.  One of the trisubstituted derivatives, BRACO-19 (65), 

showed the inhibition of telomerase activity with an impressive telIC50 value of 95 nM.  It inhibits 

the telomerase-mediated telomere extension in vivo by displacing hTERT (catalytic subunit of 

telomerase) from telomeres.  In addition, it colocalizes with ubiquitin in the cytoplasm for 

proteasomal destruction131.  Cancer cells treated with BRACO-19 showed an increased incidence 

of chromosome fusion132, a hallmark of genetic instability. 

 

 

Figure 1.43. BRACO-19 (yellow color) bound to htelo G-quadruplex130 (red color).  
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Pyridostatin (PDS, 66) is another potent ligand for telomerase inhibition by displacing 

POT1 from telomeres54.  This displacement triggers the DNA damage response in cells.  The 

appearance of nuclear foci of phosphorylated histone gH2AX (an early damage response marker) 

has been observed in the cells treated with PDS26.  Although PDS does not have a fused aromatic 

ring structure, its flexible structure can make intramolecular hydrogen bonds to result in a planar 

structure for binding (Figure 1.46).  The side chains containing amine groups have electrostatic 

interactions with negatively charged phosphate backbones133. 

Phen-DC3 (67), a 1,10-phenanthroline analog, is one of the most potent telomerase 

inhibitors134 via the G-Quadruplex approach135.  It induces genetic instability in the yeast through 

G-quadruplex stabilization27.  Phen-DC3 induces the conformation change of the hybrid G-

quadruplex to two-tetrad antiparallel G-quadruplex or hybrid-3136, leading to the unfavorable 

entropy change during binding137.  The primary mode of binding of Phen-DC3 is stacking 

interactions at the outer tetrad (Figure 1.44) (image shown is for c-MYC G-quadruplex).  

 

 

Figure 1.44. Phen-DC3 (67) stacked on the G-tetrad (left), Phen-DC3 bound to the G-

quadruplex138 (PDB:2MGN). 
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Substituted Naphthalene diimides are another class of ligands extensively developed to 

target telomeric G-quadruplexes.  The ligands have a fused aromatic core and preferentially bind 

through end-stacking mode. One of the advantages of these ligands is to decorate the 

naphthalene diimide core with up to 4 basic/hydrogen bonding moieties stabilizing ranges of 

conformation in solution depending upon the nature of side chains as determined from the CD 

spectra, for example, a parallel  conformation with N-methyl piperazine139 (68), antiparallel with 

morpholine and N-methyl piperazine (2+2) side chains140. 

The basic side chains have a pronounced effect with the one of the most potent analogues 

so far can thermally stabilize telomeric G-quadruplex for over 28.3 oC (Figure 1.46).  The telIC50 

of the compound is 50 nM.  It has shown a potent POT1 in displacement activity, which act as 

the DNA damage response.  The compound showed potent anticancer against pancreatic cancer 

cell lines both in vitro139 and in vivo141.   

The compound is positively charged under physiological conditions and has a suggested 

binding mode similar to the MM41142 (54).  It prefers to binds to the parallel stranded 

conformation htelo conformation, which is the most common binding mode for this class of 

ligands139,142,143 except a few140. 

Telomestatin (69), a natural product from the bacterium Streptomyces annulatus 3533-

SV4144, is one of the most potent G-quadruplex ligands, inhibits telomerase at 0.64nM using 

traditional TRAP assay (58 ± 17nM, according to direct primer assay)134.  The compound has a 

macrocyclic structure, which is in perfect congruity with the outer G-tetrad (Figure 1.45).  The 

compound has over 70-fold selectivity over the duplex DNA80.  It inhibits the activity of 

telomerase at 0.64nM using traditional TRAP assay.  The telomestatin derivative (70, L2H) 

showed binding to the 5’-G tetrad of the (3+1) human telomeric hybrid conformation145.  The 
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compound stabilizes the G-quadruplex through the pi-pi interaction and side chains maintain 

close contacts with the nucleobases in the backbone of G-quadruplexes (Figure1.45). 

 

            

Figure 1.45. Telomestatin analogue L2H2-6M(2)OTD (70) (left), and its bound state to (3+1)  

htelo hybrid G-quadruplex. 
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Figure 1.46. Ligands targeting hybrid G-quadruplexes. 

 

In summary, all the G-quadruplex ligands developed so far share several common 

features. 

1). Positively charged side chains increase the binding affinity by interacting with   

     negatively charged G-quadruplex backbones.  However, the presence of multiple  

     charges can reduce selectivity over duplex DNA 

 

2). An extended aromatic surface is required for enhanced G-quadruplex stabilization. 
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3). The presence of positively charged nitrogen either may enhance interactions of the  

      ligand with the cavity center of G-quadruplexes. 

 

4). The ligand with biaryl or flexible linkages can readily fit in the grooves of G- 

      quadruplexes. 

 

5). Increase in hydrophobicity may increase the binding affinity to the G-quadruplex to a  

     certain extent. 

 

6). The G-quadruplex structures have water ribbons in the grooves.  The binding  

      interaction between the basic side chain and negatively charged backbone can occur  

      through the intermediacy of water bridges. 

 

 In light of these findings, my research focuses on developing potent ligands that bind to 

G-quadruplexes via a dual recognition mode (extended aromatic surface and side chains).  Two 

classes of aromatic molecules, nucleobases and 1,10-phenanthroline, are used.  Neomycin and 

polyamines will be used as cationic side chains.  The synthesis and biochemical evaluations of 

these molecules will be discussed in the following chapters.  

- In chapter 2, four novel nucleobase-neomycin conjugates are synthesized, and their 

 binding to triplex DNA and telomeric G-quadruplex DNA is evaluated.  Also, the 

 anti-bacterial effect of these conjugates is determined. 

 

- In chapter 3, several 1,10-phenanthroline-neomycin conjugates are synthesized and 

 characterized.  Their binding to telomeric G-quadruplex DNA and duplex DNA are 

 studied using various biophysical methods.  In addition, the inhibition of telomerase 

 activity by these compounds is determined using the TRAP assay.  In chapter 4, a 

 series of 2-clip-phen (a 1,10-phenanthroline dimer) derivatives with amino side 

 chains are synthesized and characterized.  The binding of these compounds with three 

 different G-quadruplexes is studied using various biophysical methods. 
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CHAPTER 2: NUCLEOBASE-MODIFIED NEOMYCIN TO TARGET A-FORM OF 

NUCLEIC ACID 

 

2.1. Introduction 

Aminoglycosides are potent antibiotics that have widely used in bactericidal infection. 

The mechanism of action of most aminoglycosides is binding to RNA targets and creating 

fissures in the outer membrane of bacterial cells.  For instance, neomycin, an aminoglycoside, 

binds to the 16S ribosomal A-site, which causes misreading of the genetic code and inhibition of 

translocation146,147, leading to protein synthesis disruption and cell death.  They are effective 

against aerobic, gram-negative bacteria and certain gram-positive bacteria.  Aminoglycosides are 

ototoxic and have acute nephrotoxicity associated with them.  They accumulate in kidney cells 

with a long half-life and damage kidneys over time148.  A recent report showed that a Ru(II) 

arene-neomycin conjugate has moderate antiproliferative activity against MCF-7 cells (human 

breast adenocarcinoma) at low micromolar concentrations with low selectivity over normal 

cells149. 

Recent studies revealed that neomycin has a binding preference for the A-type nucleic 

acid structures like triplex DNA, duplex RNA, and DNA-RNA hybrid150.  The specificity of 

neomycin to these structures is due to the flexible glycosidic linkages and structured amino 

groups, which are positively charged under physiological conditions151.  Over the past years, 

several neomycin conjugates have been synthesized to modulate its binding to several nucleic 

acid structures.  The C5”-position of the ring III is a common site for tethering another moiety 

because the chemical modification at this site has a minimal effect on the binding of neomycin to 

its substrates.  Using this approach, Tor group synthesized an acridine-neomycin conjugate that 
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binds with high affinity to the HIV-1 Rev-Response Element152.  Several intercalator-neomycin 

conjugates have been developed by tethering an aromatic moiety at the C5”- position, showing 

enhanced binding to the triplex DNA over the unmodified neomycin153.  In addition, a perylene-

neomycin conjugate has been found to increase the binding affinity of the intercalator (perylene) 

to G-quadruplex DNA154.  In all the cases mentioned here, the enhanced binding of these 

conjugates to their nucleic acid substrates result from a synergistic effect, in which neomycin 

binds into the groove and the intercalator moiety stacks with aromatic bases of the nucleic acid 

structure simultaneously.  Neomycin has become a promising scaffold for the development of 

ligands that binds unique nucleic acid structures specifically. 

 On the other side, due to the over and indiscriminate use of aminoglycosides, the 

emergence of resistant strains, especially those containing aminoglycosides modifying enzymes 

has become a global concern for public health155.  Modifications of existing aminoglycosides to 

circumvent the resistance while keeping their antibiotic potential is one of the useful approaches 

to quickly tackle this problem as the therapeutic and toxicity profiles of these aminoglycosides 

are already known.  Zhang et al156 synthesized a series of 5”-acetylated neomycin derivatives 

and found two lead compounds that were effective against methicillin and vancomycin-resistant 

bacterial species.  In another study, bisubstrate derivatives of neamine (truncated neomycin) and 

adenosine were synthesized as the competitive inhibitors of the enzyme aminoglycoside 3’-O-

phosphotransferases157. 

 In this chapter, we present the synthesis of four novel nucleobase-neomycin conjugates 

containing a triazole linker.  The binding of these conjugates with duplex, triplex, and G-

quadruplex DNA was studied.  The goal of the study was to explore the size limitation of the 

intercalator moiety in an intercalator-neomycin conjugate on its binding with DNA.  In addition, 
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the cytotoxicity of these novel conjugates against HeLa and MCF-7 cancer cells and their 

antibacterial effect were determined. 

2.2. Experimental Section 

2.2.1. Material and Methods 

Chemicals for synthesis were purchased from Fisher Scientific (Pittsburgh, PA) and used 

without further purification.  Reactions were carried out under Argon using dry solvent unless 

otherwise noted.  IR spectra were collected on a Shimadzu (Pleasanton, CA) IR Prestige-21 FT-

IR spectrophotometer.  1H spectra were collected on a JEOL (Peabody, MA) ECA 600 MHz FT-

NMR spectrometer. HRMS (ESI) spectra were collected on an Agilent 1290 UHPLC connected 

to an Agilent 6230 Time-of-Flight mass spectrometer through an electrospray ionization source 

at Chevron, Richmond, California.  UV spectra were collected on a Varian Cary 100 Bio UV-Vis 

spectrophotometer equipped with a thermoelectrically controlled 6 x 6 cell holder (Walnut 

Creek, CA).  The MTT read-outs were measured by a TriStar LB 941 multimode microplate 

reader.  Dulbecco’s modified Eagles medium (DMEM) was purchased from Sigma (St. Louis, 

MO).  Advanced MEM, glutaMAX, penicillin, and streptomycin were purchased from 

Invitrogen (Carlsbad, CA).  Fetal bovine serum (FBS) was purchased from Tissue Culture 

Biologicals (Seal Beach, CA). 

2.2.2. Synthesis of Nucleobase-neomycin Conjugates 

 Compounds 2-4 and 11-14 have been synthesized according to the published 

procedure158–160.  The synthesis scheme is described in Scheme 2.1. 

 Synthesis of 2.  To the solution of neomycin B (1.0g, 1.1 mmol) in water (7ml), 

triethylamine (2ml, 14.43 mmol) was added, and the reaction mixture was stirred for 10 mins at 

rt. Di-tert-butyl dicarbonate (2.1g, 9.756 mmol) in DMF (20ml) was added dropwise into the 
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flask over a period of 10 mins.  The reaction mixture was stirred at 60 oC for 5 h.  The 

completion of the reaction was monitored with TLC (Rf = 0.414, CH2Cl2: CH3OH = 9:1 (v/v), 

silica gel 60 F254, EMD Millipore].  The residue was precipitated with water (200 ml) and 

filtered. Flash chromatography of the residue [silica gel, CH3COOC2H5, Rf  = 0.19] yielded 

compound 2 (700 mg and 52.4 %) as a white solid.  1H-NMR (600 MHz, CD3OD) δ 1H-NMR 

(600 MHz, CDCl3) δ 6.18 - 4.57 (m, 7H), 4.54 - 4.03 (m, 4H), 4.00 - 2.89 (m, 16H), 1.65 - 1.05 

(m, 54H). 

 Synthesis of 3.   In a 50-ml round-bottomed flask, 2,4,6-triisopropylbenzene sulphonyl 

chloride (7g, 23 mmol) and 2 (1g, 0.83mmol) were dissolved in anhydrous pyridine (20ml).  The 

reaction mixture is stirred at rt for 48 h under N2 and then concentrated under vacuum.  The 

crude compound was in two stages.  In stage one, all the unreacted 2,4,6-triisopropylbenzene 

sulphonyl chloride was removed using CH2Cl2 as eluent.  The column was then flushed with 

CH3OH:CH2Cl2 (2:8 v/v), [Rf = 0.487 in a 9:1 (v/v) CH2Cl2: CH3OH = 9:1 (v/v), silica gel 60 

F254, EMD Millipore].  Residue was concentrated and flash chromatography of the residue [silica 

gel, CH3OH:CH2Cl2 (2 - 5 % v/v)] yielded compound 3 (971.5 mg, 79 %) as white solid.  1H -

NMR (600 MHz, CD3OD) δ 7.27 (s, 2H), 5.42 (s, 1H), 5.16 (s, 1H), 4.85 (s, 1H), 4.01 - 4.42 (m 

7H), 3.86 (s, 1H), 3.65 - 3.79 (m, 3H), 3.31 - 3.63 (m, 9H), 3.09 - 3.25 (m, 1H), 2.85 - 3.00 (m, 

2H), 2.67 - 2.79 (m, 2H), 1.90 - 2.00 (m, 1H), 1.32 - 1.57 (m, 54H), 1.15-1.29 (m, 18H). 

 Synthesis of 4.  To the solution of 3 (330mg, 0.22 mmol) in DMF (5ml), was added 

NaN3 (110 mg, 1.687 mmol).  The reaction mixture was stirred at 90 oC for 24h. The reaction 

completion was monitored with TLC [Rf = 0.26, CH3OH:CH2Cl2 = 0.625:9.375 (v/v), silica gel 

60 F254, EMD Millipore].  The reaction mixture was concentrated under vacuum. Flash 

chromatography of the residue [silica gel, CH3OH:CH2Cl2 = 0.625:9.375 (v/v)] yielded 
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compound 4 (223mg, 82 %) as a white solid.  The yield is 223 mg, 82 % as a white solid.  1H-

NMR (600 MHz, CD3OD) δ 5.46 (s, 1H), 5.15 (s, 1H), 4.91 (s, 1H), 4.23 - 4.39 (m, 2H), 3.99 -

4.09 (m, 1H), 3.67 - 3.96 (m, 5H), 3.42 - 3.63 (m, 8H), 3.10 - 3.21 (m, 1H), 1.89 - 2.00 (m, 1H), 

1.39 - 1.53 (m, 54H). 

 Synthesis of 5a.  Adenine-9-prop-2ynyl (11) (12.5 mg, 0.072 mmol) was added to an 

anhydrous DMF solution (6 mL) of sodium ascorbate (13.7 mg, 0.069 mmol), copper (II) sulfate 

(2.0 mg, 0.008 mmol), and compound 4 (71.0 mg, 0.058 mmol).  The reaction mixture was 

stirred at room temperature overnight.  The completion of the reaction was monitored by TLC 

under UV [Rf= 0.23, CH3OH:CH2Cl2 0.8:9.2 (v/v), silica gel 60 F254, EMD Millipore].  The 

reaction mixture was concentrated under vacuum.  Flash chromatography of the residue [(silica 

gel, CH3OH:CH2Cl2 1:9 (v/v)] yielded compound 5a (67.5 mg, 82.0%) as a pale white solid.  IR 

(KBr) (cm-1) 3343, 2976, 2938, 1644, 1649, 1631, 1367, 1248, 1165, 1043. 1H NMR (CD3OD, 

600 MHz) δ 8.32 (s, 1H), 8.22 - 8.29 (m, 2H), 6.47 - 6.83 (m, 2H), 5.58 - 5.70 (m, 1H). 5.33 - 

5.44 (bs, 1H), 5.01-5.11 (m, 1H), 4.97 (s, 1H), 4.78 - 4.86 (m, 1H), 4.66 - 4.76 (m, 1H), 4.07 -

4.41 (m, 3H), 3.98 (t, 1H, J = 5.8 Hz), 3.90 (s, 1H), 3.66 - 3.83 (m, 3H), 3.50 - 3.65 (m, 2H), 

3.41 - 3.49 (m, 2H), 2.9 8- 3.08 (m, 1H), 1.90 - 2.01 (m, 1H), 1.15 - 1.56 (m, 54H).  HRMS (ESI) 

calcd. for C61H100N14O24 [M+ H]+ = 1413.7113, found 1413.7090. 

 Synthesis of 5b.  Guanine-9-prop-2ynyl (12) (14.0 mg, 0.074 mmol) was added to an 

anhydrous DMF solution (6 mL) of sodium ascorbate (15.0 mg, 0.075 mmol), copper (II) sulfate 

(3.0 mg, 0.012 mmol), and compound 4 (46.0 mg, 0.037 mmol).  The reaction mixture was 

stirred at room temperature overnight.  The completion of the reaction was monitored by TLC 

under UV [Rf= 0.275, CH3OH:CH2Cl2:NH4OH 1.25:8.75:0.1 (v/v/v), silica gel 60 F254, EMD 

Millipore].  The reaction mixture was concentrated under vacuum.  Flash chromatography of the 
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residue [(silica gel, CH3OH:CH2Cl2:NH4OH 1.25:8.75:0.1 v/v/v)] yielded compound 5b (25.0 

mg, 47.3%) as a pale white solid.  IR (KBr) (cm-1) 3408, 1689, 1633, 1516, 13676, 1251, 1167, 

1043, 856. 1H NMR (CD3OD, 600 MHz) δ 8.36 (s, 1H), 7.83 (s, 1H), 6.62 - 6.84 (m, 1H), 5.56 

(d, J = 14.4 Hz, 1H), 5.36 (s, 1H), 5.28 (d, J = 15.6 Hz, 1H), 5.01 (s, 1H), 4.96 (s, 1H), 4.6 - 4.73 

(m, 1H), 3.90 - 4.15 (m, 4H), 3.87 (s, 1H), 3.68 - 3.79 (m, 2H), 3.38 - 3.59 (m, 7H), 3.28 - 3.37 

(m, 1H), 3.04 (br s, 1H), 1.84 - 1.96 (m, 1H), 1.2 5- 1.49 (m, 54H).  HRMS (ESI) calcd. for 

C61H100N14O25 [M+ H]+ =1429.7062, found 1429.7042. 

 Synthesis of 5c.  Cytosine-1-prop-2ynyl (13) (24.0 mg, 0.161 mmol) was added to an 

anhydrous DMF solution (6 mL) of sodium ascorbate (14.6 mg, 0.0738 mmol), copper (II) 

sulfate (2.0 mg, 0.008 mmol), and compound 4 (64.0 mg, 0.054 mmol).  The reaction mixture 

was stirred at room temperature overnight.  The completion of the reaction was monitored by 

TLC under UV [Rf= 0.435, CH3OH:CH2Cl2:NH4OH 1.5:8.5:0.05 (v/v/v), silica gel 60 F254, 

EMD Millipore].  The reaction mixture was concentrated under vacuum.  Flash chromatography 

of the residue [silica gel, CH3OH:CH2Cl2 1.25:8.75 (v/v)] yielded compound 5c (30.0 mg, 

42.0%) as a pale white solid.  IR (KBr) (cm-1) 3369, 2978, 2932, 1701, 1647, 1524, 1394, 1367, 

1280, 1251, 1169, 1043, 865.  1H NMR (CD3OD, 600 MHz) δ 8.07 (s, 1H), 7.73 (d, J = 7.26 Hz, 

1H), 5.85 (d, J = 7.26 Hz, 1H), 5.47 (s, 1H), 5.41 (s, 1H), 5.00 - 5.13 (m, 3H), 4.92 (d, J = 1.56 

Hz, 1H), 4.66 (dd, J = 13.02 Hz, 4.38 Hz, 1H), 4.58 (s, 1H), 4.07 - 4.36 (m, 3H), 3.95 (m, 1H), 

3.88 (s, 1H), 3.69 - 3.79 (m, 2H), 3.57 - 3.67 (m, 1H), 3.39 - 3.55 (m, 4H), 3.31 - 3.38 (m, 2H), 

3.09 (m, 1H), 1.86 - 1.97 (m, 1H), 1.25 - 1.49 (m, 54H).  HRMS (ESI) calcd. for C61H100N14O25 

[M+ H]+ = 1389.7001, found 1389.6990. 
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 Synthesis of 5d.  Thymine-1-prop-2ynyl (14) (13.7 mg, 0.0836 mmol) was added to an 

anhydrous DMF solution (6 mL) of sodium ascorbate (15.8 mg, 0.079 mmol), copper (II) sulfate 

(2.0 mg, 0.008 mmol), and compound 4 (55.0 mg, 0.0442 mmol).  The reaction mixture was 

stirred at room temperature overnight.  The completion of the reaction was monitored by TLC  

under UV [Rf= 0.2125, CH3OH:CH2Cl2 0.75:9.25 (v/v), silica gel 60 F254, EMD Millipore].  The 

reaction mixture was concentrated under vacuum.  Flash chromatography of the residue [silica 

gel, CH3OH:CH2Cl2 0.75:9.25 (v/v)] yielded compound 5d (60.0 mg, 96.7%) as a pale white 

solid.   IR (KBr) (cm-1) 3371, 2978, 2934, 1690,1514, 1458, 1392, 1367, 1267, 1250, 1167, 

1043, 862, 781.  1H NMR (CD3OD, 600 MHz) δ 8.10 (s, 1H), 7.56 (s, 1H), 6.55 - 6.67 (m, 1H), 

6.37 - 6.53 (m, 1H), 5.47 (s, 1H), 5.41 (s, 1H), 4.89 - 5.14 (m, 3H), 4.54 - 4.68 (m, 1H), 4.04 - 

4.47 (m, 3H), 3.95 (t, J = 6.6 Hz, 1H), 3.70 - 3.80 (m, 2H), 3.60 - 3.69 (m, 1H), 3.36 - 3.59 (m, 

3H), 3.08 (t, J = 8.4 Hz 1H), 1.87 - 1.95 (m, 1H), 1.85 (d, J = 1.3 Hz, 3H), 1.25-1.48 (m, 54H).  

HRMS (ESI) calcd. for C61H101N11O26 [M+ H]+ = 1404.6997, found 1404.6971. 

 General procedure for the synthesis of 6a–6d.  Hydrochloric acid in dioxane (4M, 1 

mL) and ethanedithiol (3 μL) were added into a dioxane solution (1 mL) of compound 5a (17.0 

mg), 5b (24.0 mg), 5c (12.0 mg), or 5d (24.0 mg) in a 15-mL conical vial.  The reaction mixture 

was swirled for 5 min and became turbid. The deprotected pro- duct was further precipitated by 

adding ether and hexane (1 mL each).  The solid was collected by centrifugation (3000 rpm), 

decanted, washed with ether (3 × 1 mL) and hexane (3 × 1 mL), and dried overnight under 

vacuum.  The residue was re-dissolved in milli-Q water and lyophilized to give a pale-white 

fluffy solid. 
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 Compound 6a.  Yield: 11.6 mg, 93.5%.  IR (KBr) (cm-1) 3396, 3058, 2948, 1685, 1601, 

1491, 1144, 1044, 1018, 769, 638.  1H NMR (D2O, 600 MHz) δ 8.32 (s, 1H), 8.30 (s, 1H), 8.17 

(s, 1H), 5.94 (d, J = 4.2 Hz, 1H), 5.56 (s, 2H), 5.31 (d, J = 3.6 Hz, 1H), 5.21 (d, J = 1.8 Hz, 1H), 

4.76 (dd, J = 15.0 Hz, 5.0 Hz, 1H), 4.68 (m, 1H), 4.45 (m, 2H), 4.23 (m, 1H), 4.12 (t, J = 6.0 Hz, 

1H), 4.05 (t, J = 9.6 Hz, 1H), 3.82 -3 .93 (m, 4H), 3.72 (s, 1H), 3.62 (t, J = 9.6 Hz, 1H), 3.21 - 

3.51 (m, 9H), 2.38 (m, 1H), 1.82 (m, 1H).  HRMS (ESI) calcd. for C31H53N14O12
+ [M+ H]+ = 

813.3962, found 813.3945. 

 Compound 6b.  Yield: 14.7 mg, 84.0%.  IR (KBr) (cm-1) 3383, 2922, 1701, 1637, 1604, 

1500, 1490, 1369, 1143, 1047, 1024, 781, 605.  1H NMR (D2O, 600 MHz) δ 8.16 (s, 1H), 8.05 

(s, 1H), 5.52 (d, J = 4.2 Hz, 1H), 5.34 (s, 2H), 5.23 (d, J = 4.2 Hz, 1H), 5.19 (d, J = 1.2 Hz, 1H), 

4.71 - 4.75 (m, 1H), 4.65 (s, 1H), 4.43 (q, J = 4.2 Hz, 1H), 4.38 (t, J = 4.8 Hz, 1H), 4.20 (t, J = 

4.8 Hz, 1H), 4.09 (t, J = 3 Hz, 1H), 3.74 - 3.90 (m, 4H), 3.70 (s, 1H), 3.17 - 3.51 (m, 11H), 2.35 

(dt, J = 8.4 Hz, 4.2 Hz, 1H), 1.75 - 1.86 (m, 1H).  HRMS (ESI) calcd. for C31H53N14O13
+ [M+ 

H]+ = 829.3911, found 829.3909. 

 Compound 6c.  Yield: 6.7 mg, 77.0%.  IR (KBr) (cm-1) 3392, 1676, 1497, 1144, 1053, 

1018, 797.  1H NMR (D2O, 600 MHz) δ 8.08 (s, 1H), 7.83 (d, J = 7.8 Hz, 1H), 6.04 (d, J = 7.2 

Hz, 1H), 5.93 (d, J = 3.0 Hz, 1H), 5.30 (d, J = 2.4 Hz, 1H), 5.22 (s, 1H), 5.02 (s, 2H), 4.55 - 4.84 

(m, 2H), 4.45 (s, 2H), 4.24 (t, J = 3.6 Hz, 1H), 4.12 (s, 1H), 4.05 (t, J = 9.6 Hz, 1H), 3.77 - 3.99 

(m, 4H), 3.73 (s, 1H), 3.60 (t, J = 10.2 Hz, 1H), 3.19 - 3.55 (m, 9H), 2.38 (m, 1H), 1.83 (q, J = 

12.0 Hz, 1H).  HRMS (ESI) calcd. for C30H53N14O12
+ [M+ H]+ = 789.3850, found 789.3859. 

 Compound 6d.  Yield: 14.7 mg, 84.0%.  IR (KBr) (cm-1) 3387, 2918, 1701, 1601, 1244, 

1220, 1143, 1049, 1026, 773.  1H NMR (D2O, 600 MHz) δ 8.03 (s, 1H), 7.51 (d, J = 1.2 Hz, 1H), 

5.82 (d, J = 3.6 Hz, 1H), 5.28 (d, J = 3.6 Hz, 1H), 5.21 (d, J = 1.2 Hz, 1H), 4.94 (d, J = 2.4 Hz, 
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2H), 4.75 (dd, J = 15.0 Hz, 3.0 Hz, 1H), 4.56 - 4.72 (m, 1H), 4.39 - 4.48 (m, 2H), 4.20 - 4.25 (m, 

1H), 4.11 (t, J = 3.0 Hz, 1H), 3.84-3.96 (m, 3H), 3.74 - 3.83 (m, 2H), 3.69 - 3.73 (m, 1H), 3.54 

(t, J = 10.2 Hz, 1H), 3.47 - 3.51 (m, 1H), 3.20 - 3.46 (m, 8H), 2.32 (m, 1H), 1.70 - 1.82 (m, 4H).  

HRMS (ESI) calcd. for C31H54N11O14
+ [M+ H]+ = 804.3846, found 804.3850. 

2.2.3. Measurements of High-resolution Mass Spectra 

Samples were introduced by flow injection analysis (FIA) in positive-ion mode.  The 

mobile phase was 90% H2O and 10% MeOH with 0.1% formic acid.  The nebulizer pressure was 

50 psi with 12 L/min of nitrogen (drying gas) at 325 °C for desolvation.  The capillary voltage 

was set at 3500 V, the fragmentor voltage was set at 150 V, the skimmer voltage was set at 65 V, 

and the octopole voltage was set at 750 V.  Spectra were collected from 300–1500 Da at a rate of 

2 spectra/sec with 4962 transients/spectrum. 

2.2.4. Preparation of Triplex DNA for Thermal Denaturation 

 The oligonucleotides dA22 (1 μM) and dT22 (2 μM) were mixed with a solution (1 mL, 

pH 7.0) of sodium cacodylate (10 mM), EDTA (1 mM), and sodium chloride (200 mM) in the 

absence or presence of a ligand (10 μM).  The mixtures were heated at 90 °C for 5 min, slowly 

cooled at 25 °C, and incubated at 4 °C overnight before use. 

2.2.5. Preparation of G-quadruplex DNA for Thermal Denaturation 

The G-quadruplex sequence 5′-AGG(TTAGGG)3T(1 μM) was mixed with a solution (1 

mL, pH 7.0) of lithium cacodylate (10 mM), EDTA (1 mM), and potassium chloride (50 mM) in 

the absence or presence of a ligand (10 μM).  The mixtures were heated at 90 °C for 5 min, 

slowly cooled at 25 °C, and incubated at 4 °C overnight before use. 
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2.2.6. Thermal Denaturation of Triplex DNA or G- quadruplex DNA 

 UV melting spectra were recorded at 260 nm for triplex DNA and 295 nm for G-

quadruplex DNA as a function of increasing temperature (4-80 °C, heating rate: 0.5 °C/min).  

The melting temperatures (Tm) were determined using the first derivative method. 

2.2.7. The MTT Assay 

 All the experiments were carried out in triplicate.  MCF-7 (human breast 

adenocarcinoma) and HeLa cells were maintained in advanced DMEM medium supplemented 

with 5% fetal bovine serum (FBS), L-glutamine, and anti-mycotic (antibiotic) at 37 °C in a 

humid atmosphere containing 5% CO2.  Neomycin and nucleobase-neomycin conjugates (6a–

6b) were pre-dissolved in sterilized water.  The cells (3000 cells/well, 200 μL) were seeded in a 

96-well microtiter plate and incubated for 24 h.  The supernatant in each well was removed, 

followed by adding neomycin or conjugates in FBS-free media (200 μL) to reach a final 

concentration of 500 µM.  After incubation at 37 °C for 24 h, an MTT solution (20 μL, 0.5 

mg/mL) was added to each well and incubated again for 4 h.  The formazan product was 

dissolved in 150 μL of DMSO, and the absorbance of each well was measured at 590 nm using a 

plate reader.  Untreated cells and media without cells were used as controls. To calculate the 

viability (%), the following equation was used. 

Viability % =
A treated − (A media)

(A untreated) − (A media)
×  100 % 

Atreated: The absorbance of the solution containing treated cells.  Amedia: The absorbance of the 

media.  Auntreated: The absorbance of the solution containing untreated cells. 

2.2.8. Statistical Analysis 

 Minitab software was used to determine statistical significance.  Two-sample student’s t-

test was performed to show statistically significant (p < 0.05) and insignificant (p > 0.05) data. 
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2.2.9. Kirby-Bauer Test Protocol (Disk Diffusion Zone Determination) 

 Neomycin or conjugate (50 nmol) impregnated paper discs were placed onto the surface 

of Müller Hinton agar plates (70191 Fluka) that were pre-seeded with bacteria (Bacillus subtilis, 

Escherichia coli, Proteus vulgaris, and Serratia marcescens) and incubated aerobically at 37 °C 

for 24 h.  The diameters of inhibition zones were measured using a ruler to the nearest 1 mm. 

2.2.10. Determination of Minimum Inhibition Concentrations (MICs) 

 Bacterial species were grown overnight in the Müller Hin- ton broth at 37 °C.  A dilution 

of the overnight culture was made in broth to an approximate concentration of 106 cfu/ mL.  A 

Müller Hinton broth (100 µL) solution containing the desired antibacterial reagent (neomycin or 

compound 6a–6d) was inoculated with a freshly diluted bacterial suspension (5 µL) in a 96-well 

plate and incubated at 37 °C overnight.  The OD600 value in each well was recorded to determine 

the bacterial growth.  The OD600 value of the broth was used as a reference to determine the 

complete inhibition of bacterial growth, and the OD600 value of the bacterial solution without any 

reagent was used as a positive control. 

2.3. Results and Discussion 

2.3.1. Synthesis of Nucleobase-neomycin Conjugates via Click Chemistry 

 Synthesis of nucleobases with a propargyl group (11-14 containing adenine, guanine, 

cytosine, and thymine, respectively) was reported previously159,160.  The C5”-azido neomycin 

precursor (4) were synthesized separately for the click reaction based on a previously published 

procedure152.  The modification at the C5”-position ring III of neomycin does not alter its 

conformation for binding with nucleic acids154,158.  All the six amino groups of neomycin (1) 

were protected using di-tert-butyl decarbonate to yield compound 2.  The C5”-hydroxyl group of 

2 was converted into a good leaving group using 2,4,6- triisopropylbenzenesulfonyl chloride.  
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The use of this bulky reagent enabled us to selectively protect the C5” primary hydroxy of ring 

III of neomycin with a Boc group.  Replacement of 2,4,6- triisopropylbenzenesulfonylate in 3 

with azide via an SN2 mechnism yielded compound 4.  Compound 4 and nucleobase precursors 

(11-14) were finally coupled in the presence of Cu (I) via a click reaction to yield the compounds 

5a to 5d containing a 1,4 substituted161 1,2,3-triazole linker.  The boc-protected amino groups 

were protected using 3M HCl/dioxane to produce final nucleobase-neomycin derivatives 6a to 

6b (6a: adenine-neomycin; 6b: guanine-neomycin; 6c: cytosine-neomycin; 6d: thymine-

neomycin) with a yield ranging from 77.0-93.5%.  All the target compounds were characterized 

by IR, 1H NMR, and high-resolution ESI mass spectrometry. 
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Scheme 2.1. Synthesis of nucleobase-neomycin conjugates (6a-6d), reagents and conditions: (i) 

(Boc)2O, DMF-H2O, 60 °C; (ii) 2,4,6-triisopropylbenznenesulfonyl chloride, pyridine, r.t.; (iii) 

NaN3, DMF, 90 °C; (iv) 11–14, sodium ascorbate, CuSO4, DMF, r.t.; (v) 4M HCl in Dioxane, r.t. 

 

 

 

2.3.2. Nucleobase-neomycin Conjugates Stabilizes DNA-triplex Significantly 

The stabilization of neomycin-nucleobase conjugates on triplex DNA was ascertained 

using thermal denaturation studies monitored by UV at 260 nm.  The observed change (increase) 

in absorbance as a function of temperature is plotted, as shown in (Figure 2.1a).  The melting 

curve of an oligonucleotide DNA triplex (dA22•2dT22) is biphasic, including two distinct 

transitions.  The first transition (increase in hyperchromicity) represents the dissociation of the 

triplex into a DNA duplex (dA22•dT22) and a single strand (dT22).  In the absence of the ligand, 

this transition is shown at 8.7 oC (Tm3→2) using the published protocol162.  The second 
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hyperchromic event (Tm2→1) at 54.1 oC corresponds to the dissociation of the duplex DNA 

(dA22•dT22) to two single-stranded random coils (dA22 and dT22).  In order to compare the effect 

of various ligands on triplex stabilization, we chose a fixed concentration, 10 μM, to conduct the 

experiments.  As shown in figure 2.1b, and Table 2.1, neomycin significantly stabilizes the 

DNA triplex (Tm3→2 = 39.3 oC), an increase in melting temperature of 30.6 oC (ΔTm3→2) while 

having no stabilization effect on the DNA duplex, which is consistent with the previously 

published reports.   

 

 

Figure 2.1. a)  UV melting of a 22 mer T.A.T triplex (1 μM) in the absence and presence of 

neomycin (neo) and compound 6a-6d (10 µM). b) Bar graph showing the melting temperature of 

(Continued) triplex to duplex (Tm3→2) and duplex to random coil (Tm2→1). Buffer conditions: 10 

mM sodium cacodylate, 200mM NaCl, 1mM EDTA at pH 7.0. 

 

 

 

Neomycin snuggly fits into the Watson-Hoogsteen groove of the neomycin due to 

charge/shape complementarity to the binding site151.  Similar results were obtained with the 

nucleobase-neomycin conjugates.  All the compounds showed an increase in the triplex DNA 

melting temperature (Tm3→2) with a negligible effect on the duplex melting temperature (Tm2→1).  



 99 
 

Based on increase in the ΔTm3→2, the order of triplex stabilization effect of these conjugates is 

guanine-neomycin (6b) > neomycin (neo) > adenine-neomycin (6a) > cytosine-neomycin (6c) > 

thymine-neomycin (6d). 

 

 

Table 2.1 

Melting Temperatures (Tm3→2) of Triplex DNA to Duplex DNA and (Tm2→1) Duplex to Single 

Strand Random Coil. 22 mer T.A.T triplex (1µM) in the Absence and Presence of Neomycin 

(neo) and Compounds 6a-6d (10uM). 

 

 

 

 

 

 

 

 

 

 

 

Interestingly, three conjugates (thymine-neomycin, adenine-neomycin, and cytosine-

neomycin) could not stabilize the triplex DNA as efficiently as neomycin.  The increment in 

Tm3→2 values by these three conjugates was a few degrees lower than that by neomycin.  This 

observation could result from the increased non-favorable steric crowding at the binding site of 

neomycin due to the conjugation of a nucleobase.  It is known that the binding pocket of 

neomycin can be affected by the surrounding structural geometry163.  On the other hand, 

compound 6b (guanine-neomycin) increased the Tm3→2 melting temperature 4.1 °C more than 

neomycin.  The order for stacking surface area of nucleobases is guanine (G) > adenine (A) > 

cytosine (C) > thymine (T). Adenine, cytosine, and thymine in the conjugates have a smaller 

aromatic surface, which may not be sufficient for stacking.  These three nucleobases could 

become a steric hindrance factor in the binding of neomycin to triplex DNA.  By contrast, the 

guanine moiety of 6b has the largest surface area that could efficiently intercalate with the base 

Compound T(m3→2) ΔT(m3→2) T(m2→1) ΔT(m2→1) 

No Ligand 8.7 ± 0.5 n/a 54.1 ± 0 n/a 

Neo 39.3 ± 1.8 30.6 54.1 ± 0.5 0 

6a 36.9 ± 1.0 28.2 54.1 ± 0.2 0 

6b 43.4 ± 2.4 34.7 54.0 ± 0.5 -0.1 

6c 35.1 ± 1.7 26.4 53.9 ± 0.3 -0.2 

6d 28.7 ± 3.2 19.7 53.8 ± 0.8 -0.3 
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triplets while neomycin occupies the groove of the triplex DNA.  However, the observed 

stabilization of triplex DNA by 6b is relatively less efficient than that of other neomycin-

conjugates with a much larger surface area of the intercalator moiety such as pyrene-neomycin164 

and BQQ-neomycin153.  As a comparison, at 4 μM concentration, a pyrene-neomycin conjugate 

has ΔTm of 26 oC for triplex melting.  BBQ-neomycin conjugate binds the triplex DNA so tightly 

that the triplex DNA directly dissociates into random coils without the biphasic transitions.  The 

other difference between 6b and these compounds is the linker.  The linker of 6b includes a 

triazole ring.  Both pyrene-neomycin and BQQ-neomycin conjugates contain an aliphatic linker 

that is more flexible than the triazole ring.  This study implicates that the nature of the linker in a 

conjugate could be an essential factor of binding in addition to the aromatic stacking surface. 

The stabilization of a telomeric G-quadruplex by these four conjugates was determined 

using thermal denaturation studies monitored by UV at 290 nm in the presence and absence of a 

conjugate.  In a typical experiment, CD signals at 290 nm were monitored as a function of 

temperature ranging from 20-90 oC.  G-quadruplex dissociates into random coils at higher 

temperatures with concomitant hyperchromicity at 290 nm.  The temperature at which 50% of 

the G-quadruplex dissociates into random coils is called melting temperature (Tm).  As indicated 

in figure 2.2, none of the conjugates could increase the dissociation temperature of the telomeric 

G-quadruplex.  In K+,  the G-quadruplex DNA used in the experiments adopted the hybrid type 

conformation165. 
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Figure 2.2. Bar graph showing G-quadruplex DNA (1µM) melting temperature in the presence 

of neomycin (10 µM) and compounds 6a-6d. Buffer conditions: 10mM LiCaco, 50mM KCl, 

1mM EDTA, pH 7.0. 

 

 

 

The surface area of a G-tetrad is much larger than that of a base triplet.  Stacking with a 

guanine nucleobase with a G-tetrad via π- π interactions may not be strong enough to obtain a 

noticeable increase in the melting temperature.  In addition, only one or two conjugate molecules 

are able to end stack with a G-quadruplex, while more molecules can interact with a triplex 

DNA.  Arya et al reported a similar result on a perylene-neomycin154, which binds efficiently 

with G-quadruplex DNA, and a larger thermal stabilization effect was observed.  The large 

stacking surface of perylene of the conjugate is believed to be a crucial factor for these 

observations.  It is noteworthy that neomycin does not thermally stabilize G-quadruplex DNA.  

At most, it is a relatively weaker G-quadruplex groove binder166.  In addition, the triazole ring in 

the linker might be too rigid for the two moieties to interact synergistically with G-quadruplex 

DNA.  Taken together, we can conclude that the aromatic surface area of guanine could be the 

minimum for binding of the triplex DNA with an intercalator-neomycin conjugate via a 
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synergistic effect.  A larger aromatic surface is required if one designs an intercalator-neomycin 

conjugate for targeting G-quadruplex DNA. 

2.3.3. Nucleobase-neomycin Conjugates Are More Cytotoxic Than Neomycin 

 The cytotoxicity of the conjugates was checked for two cancer cell lines, MCF-7 and 

HeLa, using the MTT assay.  This assay measures a cellular metabolic activity that reflects cell 

viability.  As a general procedure, cells are incubated with a chemical reagent, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT).  NAD(P)H-dependent 

oxidoreductase in live cells' mitochondria reduces MTT to produce insoluble, purple-colored 

formazan (Figure 2.3).  

 

 

Figure 2.3. The conversion of MTT to formazan with mitochondrial reductase. 

 

 The color of the latter can be measured using colorimetry at 500-600 nm. Neomycin has 

relatively low toxicity towards MCF-7 cells (IC50 > 250 µM) as previously reported149; therefore, 

we chose a concentration of 500 µM for all the compounds as the initial study. As shown in 

Figure 2.4, the cell viability values of neomycin toward MCF-7 and HeLa cells were 94.6 ± 12.5 

and 96.4 ± 1.5 %, respectively, showing expected low toxicity.  All nucleobase-neomycin 

conjugates showed better cytotoxicity against the two cells in a statistically significant manner. 

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Methyl
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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All the conjugates (except 6d) were more cytotoxic towards MCF-7 cells than HeLa cells.  The 

order of increasing toxicity towards MCF-7 cells and HeLa cell lines was neo < 6d < 6a < 6c < 

6b and neo < 6a < 6d < 6c < 6b, respectively. 

 

 

Figure 2.4. Cytotoxic effects of neomycin and compounds 6a-6d (500 µM) in MCF-7 and HeLa 

cell lines. Cell viability was determined by the MTT assay. 

 

 

 

The guanine-neomycin conjugate (6b) was the most cytotoxic compound against both 

cell lines.  The cell viability of HeLa cells in the presence of 500 µM 6b was 15.4 ± 0.8 %, 

which is 5-fold better than neomycin and at least 2-fold better than the other conjugates in the 

series.  The cell viability of MCF-7 cells in the presence of 6b under identical conditions was 

47.6 ± 6.7 %.  The cytotoxicity range of the conjugates towards MCF-7 cells ( 47.6 - 61.9%) was 

smaller than that of HeLa cells (15.4-68.3%).  This disparity might arise from different cellular 

uptake of the conjugates by the two cell lines. 6b contains the largest stacking moiety and 

showed the best cytotoxic effect against the cancer cells lines.  It is possible that the larger 

guanine moiety can have more interactions with certain substrates, but the clear correlation 
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between the stacking moiety and cytotoxicity can not be drawn.  The observed toxicity could 

also result from the binding of these conjugates to the cellular RNA150,152  as neomycin is known 

to bind to the A form of the nucleic acids.  We did not conduct concentration-dependent studies 

as IC50 values of these conjugates would be higher than the 250 µM, which is considered 

inactive149.  Because nucleobases are not cytotoxic, the increased cytotoxicity of the conjugates 

should result from the structural modification at the C5” position of neomycin.  Therefore, 

tethering a moiety to the C5”-position of the neomycin can be used to develop novel neomycin-

based cytotoxic agents.  Grau-Campistany and coworkers149 have recently reported a Ru(II)-

neomycin conjugate that showed enhanced cytotoxicity towards two cancer cells used in our 

studies. 

2.3.4. Nucleobase-neomycin Conjugates Showed a Weaker Antibacterial Effect Than 

Neomycin 

 The antibacterial effect of nucleobase neomycin conjugates was assessed on both 

aminoglycoside resistant and non-resistant bacterial strains.  Four antibiotic susceptible strains 

including Serratia marcescens (S. marcescens, Gram-negative), Escherichia coli (E. coli, Gram-

negative), Bacillus subtilis (B. subtilis, Gram-positive), and Proteus vulgaris (P. vulgaris, Gram-

negative) were first tested against 50 nmol of nucleobase-neomycin conjugates using the Kirby-

Bauer (Agar-disk-diffusion) test167.  Neomycin with the same concentration was used as a 

control.  The size of an inhibition zone on the Agar disk reflects the inhibitory potency of a 

compound on bacterial growth.  The larger the inhibition zone, the stronger the inhibition effect 

of the compound is.  The diameter of an inhibition zone can be measured with a ruler (Figure 

2.5).  The size of the inhibition zone (cm) for neomycin was 1.5 for S. marcescens, 2.2 for E. 

coli, 1.9 for B. subtilis, and 2.0 for P. vulgaris.  The median values of inhibition zones by four 



 105 
 

conjugates were calculated for each bacterial strain.  The values (cm) are 1.2 for S. marcescens, 

1.3 E. coli, 1.6 for B. subtilis, and 0.7 for P. vulgaris. (Figure 2.5) 

 

 

 

 

 

Figure 2.5. Petri-dish images of the Kirby-Bauer test.  a) The zone of inhibition for compounds 

6a-6d (50 nmol) is a light circle around the disk.  Neomycin is used as a positive control.  b). Bar 

graph depicting the relative size (cm) of the inhibition zone for each compound against a bacterial 

species. 

 

 

 

  By subtracting these median values from the corresponding values of neomycin, we 

interpreted the effect of conjugation on the antibacterial activity of neomycin.  Neomycin 

showed the best antibacterial effect against all the four bacterial strains as compared to 

nucleobase-neomycin conjugates.  Conjugation of a nucleobase to the C5”- position of neomycin 

reduced the antibacterial effect of neomycin.  It is possible that modifications at the C5”-position 

could interfere with the binding of neomycin to its RNA target site.  The observed reduction is 

bacterial strain-dependent.  Conjugation of nucleobases to neomycin has less reduction effect on 

S. marcescens (Gram-negative) and B. subtilis (Gram-positive) than E. Coli (Gram-negative) and 

P. vulgaris (Gram-negative).  Such a difference could result from a different inhibitory 
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mechanism or a different mechanism of cellular penetration between the Gram-positive and 

Gram-negative bacteria species.  Amongst all the conjugates, guanine-neomycin (6b) is the most 

potent against all four bacterial species.  Adenine-neomycin (6a) was the least potent against all 

the Gram-negative bacterial species.  It is noteworthy that 6a did not show any measurable effect 

on the inhibition of P. vulgaris at the concentration we used.  

The minimum inhibitory concentration (MIC) of the conjugates against the four bacterial 

species was determined on 96-well microtiter plates.  The absorbance of the well at 600 nm 

(OD600) in the absence of bacteria was taken as a control, representing the complete inhibition 

effect of bacterial growth.  As shown in figure 2.6, the order of bacterial species based on 

decreasing inhibitory effect by all compounds was B. subtilis > E. coli > S. marcescens > P. 

vulgaris. 

 

 

Figure 2.6. Minimum inhibition concentration of the compounds 6a-6d against four bacterial 

species (S. marcescens (Gram positive), E. coli (Gram negative), B. subtilis (Gram negative) and 

P. vulgaris (Gram negative). 
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 All the conjugates inhibited the growth of Gram-positive B. subtilis better than that of the 

other Gram-negative bacteria (Figure 2.6).  6b is the most potent inhibitor amongst four 

conjugates against bacteria species used in the study.  The MIC value of 6b against Gram-

positive B. subtilis was 2 µM, which is about twice higher than the value for neomycin.  By 

contrast, 6b had a MIC value of 32 µM against Gram-negative S. marcescens, which is about 8 

times higher than the value for neomycin.  The reduced activity against Gram-negative species 

could be attributed to the factors related to: 

1. Bacterial anatomy- whether Gram-positive or negative. 

2. Altered drug structure/conformational restraints. 

Gram-negative bacteria have an additional outer membrane (OM) composed of a bilayer 

including glycolipids lipopolysaccharides (LPS), glycerol phospholipids, and periplasm, which 

provide protection against a wide range of antibiotics168.  The hydrophobic drugs can diffuse 

through the outer membrane, but the intake of hydrophilic drugs like aminoglycosides is 

maintained through special protein gated channels called porins in the outer membrane169.  The 

addition of nucleobase moiety may have altered the polarity of the molecule, which could result 

in the altered transport of conjugates into the cell to affect the target site.  This is supported by 

the fact that both neomycin and its conjugates showed comparative inhibition of gram-positive 

bacteria species B. subtilis, as evident from the MIC values and Kirby-Bauer test.  In addition, 

covalent tethering of nucleobase moiety at the C5” may introduce steric interactions at the 

binding site.  A previous study suggested that the tethering of a moiety at the C5” position of 

neomycin could affect its interaction with the G1491 base at the binding site of 16S 

rRNA(Figure 2.7a and Figure 2.7b), which may lower the affinity of the conjugate to the target 

site with concomitant loss in antibacterial activity170. 
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Figure 2.7. a) Neomycin bound in the A site of 16S rRNA170 (point of nucleobase attachment is 

labelled in red).   b) Critical contacts between paromomycin (differ from neomycin in one amine 

group in ring II) and residues at the binding site171 (right). 

 

 

 

 Moreover, tethering a moiety at the C5” position of neomycin could reduce the 

conformational freedom of neomycin170.  It is known that the ring I and II of neomycin are 

involved in making conserved (similar among different aminoglycosides of this class)172 critical 

connections (with A1408, G1494, U1495 at the decoding A site of the 16S ribosomes170,171 

(Figure 2.7).  Subtle changes in conformation may reduce the efficiency of neomycin binding to 

its target. 

 The different responses of the Gram-negative bacterial species to the conjugates could be 

due to different permeability/efflux and possible off-targeting.  However, it is difficult to 

pinpoint the exact reason due to the limitation of the study.  In addition, no direct correlation was 

found between the antibacterial activity and the size of conjugated aromatic moiety although the 

polarity of nucleobases could play a role. 

All four nucleobase-neomycin conjugates were also analyzed for their antibacterial 

activities against an aminoglycoside-resistant E. coli strain.  This E. coli strain is transfected with 

a b 
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an aminoglycoside 3’-O-phosphotransferase (APHs) Ia gene.  APHs transfer a phosphate group 

to the 3’ or 5” hydroxyl group of the aminoglycoside molecule.  Addition of a phosphate group 

changes the electronic property of the aminoglycoside and dramatically alters its ability to bind 

to the target rRNA171 (Figure 2.8), increasing to the survival of the bacteria.  This strain is 

known to have a resistance profile, including kanamycin, neomycin, and a few other 

aminoglycosides. 

 

 

Figure 2.8. APH (3’) I modifies neomycin at 3’OH (ring II) or at 5” OH at the ring III labelled 

with red circle. 

 

 

 

 Tethering a nucleobase moiety to the 5” position of neomycin could change the 

antibacterial profile of neomycin to the resistant E. Coli strain.  It will be interesting to see if 

nucleobase-neomycin conjugates can act as better antibiotics against aminoglycoside-resistant 

strains.  In our study, the MIC value of neomycin for this E. coli strain was 64 µM, which is 8 

times higher than that of the non-resistant E. Coli strain, showing the presence of drug resistance 

against neomycin.  The effect of resistance to kanamycin and four conjugates were much 

stronger than that to neomycin.  No meaningful MIC value was observed for kanamycin at the 

concentration up to 512 µM.  Amongst all four conjugates, only 6b showed a detectable MIC 
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value of 512 µM, which is 32 times higher than that (16 µM) toward the non-transfected species. 

These results suggest that none of nucleobase-neomycin conjugates can overcome the bacterial 

resistance because all the MIC values are much higher than that of neomycin. 

2.4. Conclusion 

We have successfully completed the synthesis and characterization of four novel 

nucleobase-neomycin conjugates.  The thermal denaturation studies showed that the size of the 

intercalator moiety has a large impact on the thermal stabilization of DNA triplex and G-

quadruplex DNA.  The aromatic surface size of guanine could be a minimal requirement for the 

synergistic binding effect on DNA triplets, but it is not sufficiently large for stacking with G-

tetrad.  The modifications at the C5” position of the neomycin is an efficient approach to 

enhance the cytotoxicity of the aminoglycoside (neomycin) against HeLa and MCF-7 cancer 

cells.  The antibacterial activity of the conjugates behaves differently between the Gram-positive 

and Gram-negative bacteria.  It is possible that addition of a nucleobase to the C5” position of 

neomycin may affect the binding of neomycin to its rRNA, but this modification may not affect 

the function of 3”-O-phosphotransferase.  The study presented here has provided important 

insights into developing aminoglycoside-based compounds with better DNA binding affinities, 

altered cytotoxicities, and better antibacterial activities. 
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CHAPTER 3: PHENANTHROLINE-NEOMYCIN CONJUGATES, A POTENT G4 LIGANDS 

 

 

 

3.1 Introduction 

Binding of a drug to its substrate with high potency and selectivity is one of the 

requirements to prevent off-targeting and achieve a desired therapeutic effect with low doses if 

other pharmacokinetic parameters of the drug are favorable.  Possible side effects associated with 

the drug could be reduced as well. 

As explained previously, G-quadruplexes are important regulatory elements in the 

cellular processes.  The Nobel laureate Aaron Klug had a famous quote over 30 years ago, “If G-

quadruplexes form so readily in vitro, Nature will have found a way of using them in vivo”. 

Recently, RNA G2-quadruplexes have been found to regulate the polyamine biosynthesis in the 

cells in a negative feedback loop manner173.  Many recent reports have suggested the role of G-

quadruplex in the maintenance of cellular processes.  Targeting G-quadruplex is a viable 

approach to disrupt the processes involved in pathological conditions.  

G-quadruplexes are macro structures, and all of them share a common feature, a planar G 

tetrad.  In general, the G-quadruplex ligands contain a planar aromatic moiety(s) to stack on, and 

the G-tetrads through π- π interactions and consequently stabilize the corresponding G-

quadruplex.  This feature is crucial to the binding selectivity for G-quadruplex over duplex 

DNA80,174.  In addition, most of the G-quadruplex ligands have a permanent positive charge or a 

basic moiety that is charged under physiological conditions.  The positively charged groups 

increase the binding affinity of the ligands to G-quadruplex DNA by electrostatic interactions 

with the negatively charged phosphate backbones. The relative number and disposition of the 

side chains have a profound effect on the binding affinity of the ligand to the G-quadruplexes. 
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Ligands with multiple positive charges have higher binding affinities to G-quadruplex 

DNA125,142, for example, trisubstituted acridine (BRACO-19) containing four positive charges is 

a much stronger G-quadruplex binder than a di-substituted acridine derivative130 containing three 

positive charges (Figure 3.1).  However, there is one caveat. Positively charged groups, if not 

judiciously placed on the molecule, could decrease the binding selectivity for G-quadruplexes 

over duple DNA28,107.  For example, TmPyP4, a potent, selective G-quadruplex ligand, has an 

extended aromatic surface for favorable π- π stacking interaction with the G-quadruplex but has a 

poor selectivity over duplex DNA175 due to the presence of four positive charges.  Replacing one 

charge with a neutral moiety has been shown to improve selectivity for G-quadruplex over 

duplex DNA84.  Our group has also previously reported a potent G-quadruplex binding ligand (a 

thiazole orange-spermine conjugate) that inhibits human telomerase activity at sub-micromolar 

concentrations176.  It binds tightly to telomeric G-quadruplex DNA but with limited selectivity 

for G-quadruplex over duplex DNA, probably due to its highly charged polyamine side chain. 

 

 

Figure 3.1. Structure of disubstituted acridine (top) and trisubstituted acridine (bottom). 
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On the other hand, a judicious disposition of positively charged side chains in a ligand 

can enhance its binding affinity without compromising the selectivity79,92,105.  By positioning 

positively charged groups in a structured fashion, one can reduce non-specific binding between 

the ligands and DNA backbones.  In search of such side chains, we came across the 

aminoglycoside (neomycin) scaffold.  Neomycin has six amino groups on four rings spatially 

separated by the saccharide linkages between the rings (Figure 3.2).  The amino groups are 

positively charged or partially positively charged under physiological conditions177.  Previous 

reports have suggested that neomycin binds preferentially to the A form of the nucleic acids150 

such as RNA and triplex DNA with a minimal affinity to duplex DNA even at significantly high 

concentrations178.   In addition, neomycin binds to G-quadruplex DNA as a groove binder166 with 

a relatively low binding affinity.  The apparent binding selectivity of neomycin towards A-form 

nucleic acids should result from its unique spatial arrangement of multiple positive charges.  We 

believe that by utilizing neomycin as the structured amino-containing side chain, we can develop 

novel and stronger G-quadruplex binding ligands. 

 

 

Figure 3.2. Structure of neomycin.  
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Previous studies from our lab reported several 5-substituted 1,10-phenanthroline 

derivatives as potent G-quadruplex ligands (Figure 3.3).  In particular, derivatives with an amino 

side chain (piperidine, dimethylamine) showed enhanced binding affinity to G-quadruplex 

DNA179.  The 1,10-phenanthroline moiety most likely binds with the end G-tetrad via π-π 

stacking interactions.  Results from molecular modeling180 and solution NMR spectroscopy by 

other groups have shown that 5 and 6 positions of 1,10 phenanthroline are located close to the 

grooves of G-quadruplexes when it stacks at the end G-tetrad of a G-quadruplex138.  Therefore, 

the side chains at the 5 position of 1,10-phenanthroline derivatives should readily fit into the 

groove of G-quadruplex, enhancing the binding affinity of the ligand via a dual recognition 

mode.  

 

 

Figure 3.3. 5-substituted phenanthroline derivatives with piperidine, dimethylamine and 4-

methylphenyl side chains. 

 

 

 

 Encouraged by these findings, we decided to develop novel ligands by tethering 

neomycin to the 5 position of 1,10-phenanthroline as a structured amino group side chain.  The 

tethering position on neomycin was the 5” position of the ring III.  Previous studies suggested 

that modification at this position has minimal influence on the binding affinity of neomycin to 

secondary nucleic acid structures152. 
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In the present work, two phenanthroline-neomycin conjugates were synthesized, which 

differ in the length of the linker between the groove binder moiety (neomycin) and end stacking 

moiety (1,10-phenanthroline) (Figure 3.4).  Their binding affinity and selectivity to G-

quadruplex were determined with biophysical methods, including fluorescence intercalator 

displacement assay (FID), isothermal titration calorimetry (ITC), and thermal denaturation 

monitored by circular dichroism (CD) or UV.  The binding stoichiometry was determined by ESI 

mass spectrometry, and plausible binding modes were estimated using molecular docking.  In 

vitro telomerase inhibition of the ligands was investigated using a modified Telomerase 

Repeated Amplification Protocol (TRAP) assay. 

 

 
Figure 3.4. Structure of the proposed compounds, with longer linker between 1,10-

phenanthroline and neomycin (7a), with longer linker between 1,10-phenanthroline and 

neomycin (7b). 

 

 

 

3.2. Experimental Section 

 

3.2.1. Materials and General Methods 

All the chemicals for synthesis were purchased from Sigma-Aldrich or Fisher Scientific 

and used without further purification.  DNA oligonucleotides were synthesized on an ABI 392 

DNA/RNA synthesizer using standard phosphoramidite protocols and purified using 

polyacrylamide gel electrophoresis.  All reagents and solid-support columns for DNA synthesis 
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were purchased from Glen Research.  The concentrations of DNA solutions were determined by 

UV spectroscopy, using the molar extinction coefficients (in units of mol of strand/L-1 cm-1) 

obtained from OligoAnalyzer (www.idtdna.com).  ε260 = 237,000 for G1 [5’-

AGGG(TTAGGG)3T-3’]; ε260 = 259,100 for S1 (5’-

ATGAAGGACGTAACCGGCTCTGAACG-3’); ε260 = 167,400 for S2 (5’- 

CGTTCAGAGCCGGTTACGTCCTTCAT-3’); ε260 = 238,300 for TS primer (5’-

AATCCGTCGAGCAGAGTT-3’); ε260 = 261,000 for RP (5’-

GCGCGGCTTACCCTTACCCTTACCCTAACC-3’);  ε260 = 151,800 for NT (5’-

ATCGCTTCTCGGCCTTTT-3’); ε260 = 370,100 for TSNT (5’-

AATCCGTCGAGCAGAGTTAAAAGGCCGAGAAGCGAT-3’).  1H NMR and 13C NMR 

spectra were collected on a JEOL ECA 600 MHz FT-NMR spectrometer.  Mass spectra of the 

synthesized compounds were analyzed on an Agilent 1290 UHPLC coupled to an Agilent 6230 

Time-of-Flight mass spectrometer at Chevron, Richmond, California.  Mass spectra of ligand-

DNA complexes were collected on a Thermo Fisher Orbitrap Fusion Tribrid Mass Spectrometer.  

UV spectra were recorded on a Varian Cary 100 Bio UV-Vis spectrophotometer equipped with a 

thermoelectrically controlled 6 × 6 cell holder.  Circular dichroism spectra were recorded on a 

JASCO J-810 spectropolarimeter using a quartz cuvette with a 1 mm or 1 cm optical path length.  

Isothermal microcalorimetric measurements were performed on a TA Instruments Affinity ITC 

LV.  T4 polynucleotide kinase was obtained from New England Biolabs.  [-32P]-ATP was 

purchased from MP Biochemicals.  Quantification of 5’ 32P-labeled oligonucleotides was carried 

out using a Storm 860 phosphorimager and ImageQuant 5.1 software.  Cell medium and 

supplements (fetal bovine serum, L-glutamine, antimycotic) were acquired from Invitrogen.  

HeLa cells were maintained in advanced DMEM/F12 medium supplemented with 5% fetal 
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bovine serum, L-glutamine, and antimycotic at 37 °C in a humid atmosphere containing 5% CO2.  

DNA labeling was performed by incubating [-32P]-ATP (30 Ci) and T4 polynucleotide kinase 

(20 units) in the presence of an oligonucleotide (10 pmol) at 37C for 30 min.  Unreacted [γ-32P]-

ATP was removed using a MicroSpin G-25 column. 

3.2.2. Synthesis of Phenanthroline-neomycin Conjugates 

 The final compounds 7a and 7b are synthesized as described in the scheme 3.1 and 3.2.  

The synthesis of compounds 2-4 was described in chapter 2.  

 Synthesis of 5a-L.  In a 50-ml round-bottomed flask, freshly cut sodium metal (0.648 g, 

28 mmol) was added to anhydrous ethanol (20 ml) and stirred at 0 oC for 30 mins.  2-

aminoethanthiol hydrochloride (1.518 g, 13.4 mmol) was added to the flask, and the reaction 

mixture was stirred for 5 mins at rt.  Compound 3 (460 mg, 0.31 mmol) dissolved in dry ethanol 

(10 ml) was added to the flask using a syringe.  The reaction mixture was stirred at rt for 5 h.  

The competition of the reaction was monitored with TLC [ Rf = 0.43 (CH3OH:CH2Cl2:NH4OH = 

10:90:0.5 (v/v/v), silica gel 60 F254, EMD Millipore].  The reaction mixture was concentrated 

under vacuum.  Flash chromatography of the residue [silica gel, CH3OH:CH2Cl2:NH4OH = 

5:95:0.5 (v/v/v)] yielded compound 5aL (324mg, 82.3 %) as a white solid. 

 Synthesis of 5b-S.  In the hydrogenation flask, compound 4 (160 mg, 0.129 mmol) was 

dissolved in 15ml of anhydrous ethanol.  40mg of the Pd/C catalyst was added to the flask, and 

the reaction mixture was shaken overnight under 40 Psi H2 pressure.  The completion of the 

reaction was monitored for the disappearance of compound 4 using TLC.  The mixture is filtered 

through celite, and the residue is concentrated under vacuum to yield (130mg, 83 %) compound 

5bS as a white solid. 



 118 
 

 Synthesis of 9.  In a 25-ml round-bottomed flask, β-aminoethanthiol hydrochloride (68 

mg, 0.6 mmol) was dissolved in freshly prepared sodium ethoxide in ethanol (0.1M, 4 ml).  1,10-

Phenanthroline epoxide 8 (100 mg, 0.510 mmol) dissolved in anhydrous ethanol (4 ml) was 

charged into the flask with a syringe.  The reaction mixture was stirred at 50 oC for 10 h, and the 

residue was concentrated under vacuum.  [Rf  =0.22, CH3OH:NH4OH = 20:1 (v/v), silica gel 60 

F254, EMD Millipore].  Flash chromatography of the residue [silica gel, CH3OH:NH4OH (20:1)] 

yielded 9 (110 mg, 84.6 %) as a slightly yellow oily liquid. 

 Synthesis of 9NCS.  In a 25‐mL round‐bottomed flask, compound 9 (80.0 mg, 

0.314 mmol) and DMAP (catalytic amount) were dissolved in DMF (10 ml) under N2.  A DMF 

solution (1 ml) of TCDP (109 mg, 0.471 mmol) was added dropwise into the flask using a 

syringe, and the resulting mixture was stirred overnight at room temperature.  The completion of 

the reaction was monitored by TLC [Rf = 0.52, CH3OH:CH2Cl2:NH4OH = 8:92:0.5 (v/v), silica 

gel 60 F254, EMD Millipore] under UV.  The reaction mixture was concentrated under vacuum.  

Flash chromatography of the residue [silica gel, CH3OH:CH2Cl2 = 5:95 (v/v)] yielded 

compound 9NCS as a pale yellow oil (52.0 mg, 55.5%).  IR (KBr, cm−1) 3,173, 3,018, 2,924, 

2,187, 2,122, 2086, 1674, 1652, 1,590, 1,560, 1,502, 1,418, 1,344, 1,292, 1,284, 1,240, 1,142, 

1,103, 1,079, 942, 874, 824.  1H NMR (600 MHz, CD3OD): δ 9.1 (dd, J = 4.2, 1.8 Hz, 1H), 9.03 

(dd, J = 4.8, 1.8 Hz, 1H), 8.89 (dd, J = 7.8, 4.2 Hz, 1H), 8.38 (dd, J = 7.8, 4.2 Hz, 1H), 8.11 (s 

1H), 7.82 (q, J = 4.2 Hz, 1H), 7.73 (q, J = 4.2 Hz, 1H), 3.79 (t, J = 6 Hz, 2H), 3.40 (t, J = 6.6 Hz, 

2H).  13C NMR (150 MHz, CD3OD) δ 151.16, 151.10, 146.91, 146.14, 137.35, 135.20, 133.55, 

132.34, 130.36, 129.92, 125.13, 124.79, 45.48, 35.21.  HRMS (ESI) calcd for 

C15H13N3S2 [M + H]+: 298.0473, found 298.0459. 
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 Synthesis of 6a-L.  In a 25‐ml round‐bottomed flask, 5a-L (50 mg, 0.0385 mmol) was 

dissolved in anhydrous pyridine (5 ml).  An anhydrous pyridine solution (1 ml) of 

compound 9NCS (9 mg, 0.0302 mmol) was added dropwise into the flask with a syringe.  The 

reaction mixture was stirred overnight at room temperature under N2 and concentrated under 

vacuum. [Rf = 0.24, CH3OH:CH2Cl2:NH4OH = 8:92:1 (v/v/v), silica gel 60 F254, EMD 

Millipore].  Flash chromatography of the residue [silica gel, CH3OH:CH2Cl2:NH4OH = 8:92:1 

(v/v/v)] yielded compound 6a-L (26.5 mg, 56 %).  IR (KBr, cm−1) 3430, 2976, 2930, 1691, 

1515, 1423, 1367, 1248, 1168, 1038.  1H NMR (600 MHz, CD3OD): ): δ 9.07 (dd, J = 4.2, 1.8 

Hz, 1H), 8.97 (dd, J = 4.2, 1.8 Hz, 1H), 8.76 (dd, J = 8.4, 1.8 Hz, 1H), 8.36 (dd, J = 7.8, 1.8 Hz, 

1H), 8.25 (s, 1H), 7.78 (q, J = 4.2 Hz, 1H), 7.70 (q, J = 4.2 Hz, 1H), 6.41 - 6.75 (m, 2H), 5.40 (s, 

1H), 5.12 (s, 1H), 4.91 (s, 1H), 4.13 - 4.37 (m, 2H), 3.99 - 4.11 (m, 1H), 3.63 - 3.98 (m, 6H), 

3.36 - 3.62 (m, 6H), 2.67 - 2.99 (m, 4H), 1.87 - 2.00 (m, 1H), 1.12 - 1.54 (m, 54H).  HRMS (ESI) 

calcd for C68H107N10O24S2 [M + H]+: 1571.6935, found 1571.6856. 

 Synthesis of 6b-S.  In a 25‐ml round‐bottomed flask, 5b-S (46.8 mg, 0.0385 mmol) was 

dissolved in anhydrous pyridine (5 ml).  An anhydrous pyridine solution (1 ml) of 

compound 9NCS (10.4 mg, 0.0350 mmol) was added dropwise into the flask with a syringe.  

The reaction mixture was stirred overnight at room temperature under N2 and concentrated under 

vacuum. [Rf = 0.30, CH3OH:CH2Cl2:NH4OH = 8:92:0.8 (v/v/v) silica gel 60 F254, EMD 

Millipore], Flash chromatography of the residue [silica gel, CH3OH:CH2Cl2:NH4OH = 8:92:0.8 

(v/v/v)] yielded compound 6b-S (23.7 mg, 40.7%).  IR (KBr, cm−1) 3,340, 2,976, 2,920, 2,851, 

1685, 1521, 1,384, 1,252, 1,174, 1,031.  1H NMR (600 MHz, CD3OD): 1H NMR (600 MHz, 

CD3OD): δ 9.11 (dd, J = 4.2, 1.8 Hz, 1H), 9.00 (dd, J = 4.2, 1.8 Hz, 1H), 8.83 (dd, J = 8.4, 

1.8 Hz, 1H), 8.41 (dd, J = 7.8, 1.8 Hz, 1H), 8.35 (s, 1H), 7.82 (q, J = 4.2 Hz, 1H), 7.76 (q, J 
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= 4.2 Hz, 1H), 6.59 - 6.94 (m, 2H), 5.51 (s, 1H), 5.03 (s, 1H), 4.24 - 4.55 (m, 2H), 3.68 - 4.21 

(m, 8H), 3.69 - 3.79 (m, 2H), 3.45 - 3.64 (m, 6H), 3.06 - 3.22 (m, 3H), 1.88 - 1.99 (m, 1H), 1.27 - 

1.57 (m, 54H).  HRMS (ESI) calcd for C68H107N10O24S2 [M + H]+: 1511.6901, found 1511.6894.  

 Synthesis of 7a and 7b.  5-10 mg of 6a-L (10 mg) or 6b-S (6mg) is dissolved in 

trifluoroacetic acid (2 ml) in a small RBF and stirred for 15 mins.  The reaction mixture was 

concentrated under vacuum.  The residual was dissolved in water, and the aqueous solution is 

washed with DCM (3 x 3 ml). Lyophilization of the aqueous layer yielded compound 7a (92.4 

%) and 7b (78.9 %). 

 7a.  IR (KBr pellet, cm-1) 3436, 2919, 2847, 1623, 1503, 1412, 1043.  1H NMR (600 

MHz, D2O) : δ 9.03 (d, J = 4.2 Hz, 1H), 8.84 - 8.99 (m, 2H), 8.69 (d, J = 7.8 Hz, 1H), 8.07 (s, 

1H), 7.99 (dd, J = 8.4, 4.8 Hz, 1H), 7.93 (dd, J = 8.4, 4.8 Hz, 1H), 5.89 (d, J = 4.2 Hz, 1H), 5.24 

(d, J = 3 Hz, 1H), 5.12 (s, 1H), 4.56 - 4.69 (m, 2H), 4.10 - 4.36 (m, 4H), 4.05 (t, J = 3 Hz, 1H), 

3.93 (t, J = 9.6 Hz, 1H), 3.85 (t, J = 9.6 Hz, 1H), 3.60 - 3.81 (m, 4H), 3.53 (t, J = 9.6 Hz, 1H,), 

3.15 - 3.49 (m, 12H), 3.09 (q, J = 7.2 Hz, 1H), 2.91 - 3.01 (m, 1H), 2.65 (dd, J = 15, 7.8 Hz, 1H), 

2.42 - 4.62 (m, 2H), 2.33 (dt, J = 12.6, 4.2 Hz, 1H), 1.74 (q, J = 12.6 Hz, 1H).  HRMS (ESI) 

calcd for C40H64N10O12S3 [M+2H]2+: 486.1910, found 486.1933.  

 7b.  IR (KBr pellet, cm-1) 3431, 2920, 2850, 1624, 1500, 1384, 1040.  1H NMR (600 

MHz, D2O): δ 9.09 (d, J = 4.3 Hz, 1H), 8.89 - 9.03 (m, 2H), 8.76 (d, J = 8.4 Hz, 1H), 8.18 (s, 

1H), 8.02 (dd, J = 8.4, 5.4 Hz, 1H), 7.97 (dd, J = 8.4, 4.8 Hz, 1H), 5.90 (d, J = 3 Hz, 1H), 5.27 

(d, J = 3 Hz, 1H), 5.12 (s, 1H), 4.65 (s, 2H), 4.31 (t, J = 4.8 Hz, 1H), 4.02 - 4.26 (m, 3H), 3.97 (t, 

J = 10.2 Hz, 1H), 3.50 - 3.92 (m, 7H), 3.05 – 3.50 (m, 11H), 2.35 (dt, J = 8.4, 2.4 Hz, 1H), 1.75 

(q, J = 13.2 Hz).  HRMS (ESI) calcd for C38H60N10O12S2 [M+H]+ : 911.3755, found 911.3754.  

Yield was 5.00 mg, 78.9 %. 
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3.2.3. MS Analysis Procedures of Synthesized Compounds 

The samples were diluted in methanol to approximately 1 M concentration.  A sample 

solution (1 µL) was introduced by flow injection analysis (FIA) without a chromatographic 

column except for compound 7a/7b where 2 µL was injected.  The solvent system was 1:1 

methanol:water with 0.1% formic acid. Ions were delivered to the mass spectrometer with an 

electrospray ionization (ESI) source.  The nebulizer pressure was 50 psig. at 325 °C and nitrogen 

drying gas flow was 12 mL/min.  The capillary voltage was 3000 V for all samples.  For 

compound 6 (Boc protected), the fragmentor voltage was 150 V.  Data were collected in the m/z 

range of 100-3200.  Spectra were collected at a rate of 2 spectra/s allowing for 4903 

transients/spectrum.  For compound 7, the fragmentor voltage was 70 V.  Data were collected in 

the m/z range of 500-2000.  Spectra were acquired at a rate of 1 spectra/s allowing for 9978 

transients/spectrum. 

3.2.4. Preparation of G-quadruplex DNA and Duplex DNA for CD and UV Experiments 

The G-quadruplex DNA strand (G1, 100 M) was dissolved in a mixture (100 L) of 

lithium cacodylate buffer (10 mM, pH 7.0) and KCl (50 mM) and incubated at 90 °C for 10 min, 

slowly cooled to 25°C, and incubated at 4 C overnight.  Similarly, duplex D1 (complementary 

strands of S1 and S2, 100 M each) was dissolved in a mixture of lithium cacodylate buffer (10 

mM, pH 7.0) and KCl (150 mM) and incubated at 90 °C for 10 min, slowly cooled to 25°C, and 

incubated at 4 C overnight.  All solutions were stored at 4 C for further use. 

3.2.5. Preparation of G-quadruplex DNA for ESI Mass Spectrometry Experiments 

 G1 (100 µM) in 150 mM NH4OAc solution was heated to 95 °C for 5 min followed by 

cooling slowly to room temperature and incubated at 4°C overnight. 
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3.2.6. Thermal Denaturation Analysis Monitored by CD 

 The mixture solutions (200 μL) of G1 (5 µM) in lithium cacodylate buffer (10 mM, pH 

7.0) and KCl (50 mM) in the absence or presence of a ligand (Phen, neomycin, and 7a/7b, 10 

µM) were prepared.  The CD spectra were recorded at 290 nm as a function of increasing 

temperature (25-85 ˚C) at a heating rate of 0.5 ˚C/min.  Melting profiles were converted into a 

folded faction based on a published procedure, and the melting temperatures were determined at 

the 0.5 folded fraction. 

3.2.7. CD Titration 

 Aliquots of a stock solution containing compound 7a/7b were gradually added into a 

solution (2 mL) of G1 (5 M) in lithium cacodylate (10 mM, pH 7.0) and 50 mM KCl at 20 C. 

The final molar ratios of 7 to G1 were varied from 0 to 5.  After each addition, the solution was 

gently mixed and incubated for 5 min for equilibrium before collecting the spectrum.  The 

overall volume change during the titration was kept less than 1% of the initial volume.  CD 

spectra were recorded as a function of wavelength (200-400 mm, 100 nm/min scan speed, 0.5 nm 

data pitch) using a 1 cm pathlength quartz cuvette.  Each spectrum was averaged over three 

scans. 

3.2.8. Thermal Denaturation Analysis Monitored by UV  

 The mixture solutions (1 mL) of D1 (1 µM) in lithium cacodylate buffer (10 mM, pH 7.0) 

and KCl (150 mM) in the absence or presence of a ligand (Phen, neomycin, and 7a/7b, 10 µM) 

were prepared.  The UV melting curves were recorded at 260 nm as a function of temperature 

(20-85 C, heating rate: 0.5 C/min).  Melting profiles were converted into a folded faction, and 

the melting temperatures were determined at the 0.5 folded fraction. 
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3.2.9. Fluorescent Intercalator Displacement Assay   

A reaction solution containing 0.25 μM DNA (G-quadruplex (G1) or duplex (D1) in 

lithium cacodylate (10 mM, pH 7.0) and KCl (50 mM) was incubated with 0.5 μM thiazole 

orange (TO) for 30 min in the dark.  Aliquots of a ligand were added to this mixture solution and 

equilibrated for 5 min in the dark before measurement.  The fluorescence spectra (Ex: 501 nm, 

slit width: 5.0 nm, scan speed 120 nm/min) were recorded from 510-650 nm after each addition.  

The percent fluorescence displacement (%F) was calculated at λmax by using the formula %FI. 

displacement=100-[(FA/FA0)×100], where FA0 is the initial fluorescence intensity in the absence 

of a ligand, and FA is the fluorescence intensity upon addition of a ligand. 

3.2.10. Isothermal Titration Calorimetry (ITC)  

 In a typical experiment, 2 µL aliquots of compound 7b (200 μM) were injected from a 

264 µL rotating syringe (125 rpm) into an isothermal sample cell containing 185 μL of a 

telomeric G-quadruplex (G1) (20 µM/strand) or a duplex DNA (D1) solution (10 µM/strand) at 

25 °C.  The corresponding control experiment was carried out by injecting 2 µL aliquots of 

compound 7b (200 μM) into a solution of buffer alone.  The duration of each injection was 4 s, 

and the delay between injections was 120 s.  The initial delay prior to the first injection was 100 

s.  A heat burst curve (microcalories per second vs. seconds) was generated from each injection. 

The area under each curve was calculated using the NanoAnalyzer software (Version 3.8.0) to 

yield a measure of the heat associated with that injection.  The heat of ligand binding to DNA 

associated with that injection was obtained by subtracting the heat associated with each ligand-

buffer injection from the corresponding heat associated with each ligand-DNA injection. 
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3.2.11. Preparation of Cell Lysate for TRAP Assay  

 Approximately 1 x 107 HeLa cells were suspended in CHAPS buffer (1 mL) and 

incubated on ice for 30 min.  The supernatant was collected after spinning the sample at 12,000 x 

g for 10 min and stored at -80℃.  

3.2.12. TRAP Assay 

 The 5′-[32P] end-labeled TS primer (0.1 μg) was incubated in a reaction mixture (50 μL) 

[buffer: Tris-HCl (20 mM, pH 8.3), MgCl2 (1.5 mM), KCl (63 mM), 0.05% Tween 20, EGTA (1 

mM)] with cell lysate (1 μL), RP (0.1 μg, reverse primer for telomerase extended products), NT 

(0.1 μg, primer for polymerase as internal standard), TSNT (0.01 amol, template for NT primer), 

2 units of Taq polymerase, dNTP mix (50 μM), and ligand (3.125-100 μM) at 30℃ for 30 min 

and 94 ℃ for 2 min to deactivate telomerase.  The reaction mixture was then incubated using a 

3-step PCR method (94 ℃ for 20 s, 59 ℃ for 30 s, and 72 ℃ for 30 s) with a total of 25 cycles. 

The residues were concentrated and resuspended in formamide loading buffer (7 μL).  Analytical 

separation was carried out using 10% denaturing polyacrylamide gel [5% crosslink, 45% urea 

w/w]. 

3.2.13. Docking Procedure 

 The geometry optimization of compound 7b was carried out at the hybrid density 

functional B3LYP level with 6-31G(d) basis set using the Gaussian’09 program package.  The 

Natural bond order (NBO) analysis was carried out to calculate the atomic charges on the 

optimized geometries. G1 structure for docking simulation was modeled after the solution 

structure of the complex of platinum (II) based ligand with human telomeric G-quadruplex (PDB 

id: 5Z80) whose structure was obtained from RCSB protein data bank.  In the complex structure, 

the bound ligand molecule was removed.  The resulting template has two more A residues at the 
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5’-end and one additional A at the 3’-end in comparison to G1.  In the NMR structure, Adenine-

25 was mutated to thymine, and residues adenine-1, 2, and 26 were truncated to yield the 

structure of G1 for docking studies.  The flexible ligand docking experiments were carried out 

using the DOCK 6.9 program.  Analyses of docked structures and docked image creations were 

carried out using the UCSF Chimera program. 

3.2.14. ESI-MS Analysis of Complex Formation Between G1 and 7a/7b 

  G1 (20 µM) and compound 7a/7b at various concentrations (0, 20, 40, 60, and 80 µM) 

were mixed as 50% methanol-water solutions.  The mixed solutions were injected into a Thermo 

Fisher Orbitrap Fusion Tribrid Mass Spectrometer at a rate of 5 µL/min.  The ion spray voltage 

was set to -2,250 V and ion transfer tube temperature to 300 °C.  Nitrogen sheath and auxiliary 

gas flows were 45 and 0 arbitrary units, respectively.  MS spectra were recorded in the m/z range 

from 1400 to 1800 with an average of 150 scans.  Data were collected and analyzed using the 

Xcalibur 4.0 software. 

3.3. Results and Discussion 

3.3.1. Synthesis of Phenanthroline-neomycin Conjugates 

 As shown in the synthesis scheme 3.1 and 3.2, neomycin precursors were synthesized 

based on the published procedures158,164.  The C-5’’ position of the ribofuranose ring of 

neomycin was used for conjugation as this site has a minimal effect on the structure of the 

neomycin and its ability to bind to nucleic acids154,158.  The six amino groups of neomycin were 

protected with di-tert-butyl dicarbonate in 1:1 DMF-H2O to yield compound 2.  Only the 5’’ 

position of ribofuranose ring of neomycin has a primary hydroxyl group, which was selectively 

tosylated using 2,4,6-triisopropylbenzenesulfonyl chloride (TIPS-Cl) in dry pyridine at room 

temperature to yield 3.  The TIPS group was replaced with sodium azide via an SN2 reaction 
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mechanism in DMF at elevated temperature to yield compound 4, which was further converted 

to 5b-S via catalytic hydrogenation utilizing Pd/C as the catalyst.  The other analogue 5a was 

synthesized by reacting compound 3 with β-mercaptoethanamine hydrochloride using sodium 

ethoxide in ethanol at room temperature.  Compound 9 was synthesized by reacting 5,6-epoxy-

5,6-dihydro-[1,10]phenanthroline 8 with β-mercaptoethanamine hydrochloride using sodium 

ethoxide in ethanol181.  Reaction of compound 9 with 1,1’-thiocarbonyldi-2(1H)-pyridone 

(TCDP) in DMF yielded compound 9NCS.  Compound 9NCS was coupled with compound 5a-L 

and 5b-S through a thiourea linkage to yield a boc-protected phenanthroline neomycin 

conjugates 6a-L and 6b-S, respectively.  Deprotection of amine groups of 6a-L and 6b-S was 

accomplished successfully with trifluoroacetic acid to yield final compounds 7a and 7b. 

 

 

Scheme 3.1. Synthesis of neomycin amine at C5” of ring III.  Reagents and conditions: (i) 

(Boc)2O, DMF-H2O, 60 °C; (ii) 2,4,6-triisopropylbenznenesulfonyl chloride, pyridine, r.t.; (iii) 

NaN3, DMF, 90 °C; (iv) Sodium ethoxide, ethanol, β-mercaptoethanamine; (68%) (v) Pd/C, H2, 

r.t. 

 

 



 127 
 

 

Scheme 3.2. Synthesis of phenanthroline derivatives 9NCS, 7a and 7b.  Reagents and conditions: 

i-iv: (i) Sodium ethoxide, ethanol, β-mercaptoethanamine. (ii) TCDP, DMF, r.t., overnight stir 

(iii) dry pyridine (iv) TFA, 15 mins. 

 

 

 

3.3.2. Phen-neo Conjugates Bind With High Affinity to G-quadruplex (G1) DNA  

 The binding of a telomeric G-quadruplex (G1) or a duplex (D1) with phenanthroline-

neomycin conjugates 7a and 7b, phenanthroline (Phen), and neomycin was first assessed using 

the Fluorescence Intercalator Displacement (FID) Assay182.  This assay is based on the 

phenomenon that binding of thiazole orange (TO) with nucleic acids can drastically increase its 

quantum yield of dye from 2 × 10-4 to 0.1, about 1000 times.  Free TO in solution does not 

fluoresce.  In a typical FID experiment, TO is first incubated with DNA to turn on fluorescence. 

Addition of a ligand of interest into the TO-DNA solution can gradually displace TO out of 
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DNA, resulting in the loss of fluorescence.  The concentration of the ligand required to displace 

50% of pre-bound TO from DNA is defined as DC50.  Low DC50 values represent the high 

binding affinity of the ligand towards DNA.  For G-quadruplex and duplex DNA, this value is 

designated as G4DC50 and dsDC50, respectively.  It is noteworthy that TO is non-specific DNA 

binding dye; therefore, it does not selectively bind to different types of nucleic acids183.  The FID 

assay has been used for the detection of ligands binding to non-canonical structures in the 

genomic DNA184 in conjunction with other biophysical methods182.  Over the years, it has been 

successfully used to determine potent and selective G4 ligands that inhibit human telomerase 

activity176.  

Initial studies were carried out by incubating 7a or 7b with Ni2+ ion because coordination 

of phenanthroline with metal ions can drastically enhance the stacking surface of the ligand.  Our 

results did not show enhanced binding of 7a and 7b to G1 compared with that of 7a and 7b alone 

(Figure 3.5b).  Neomycin is known to coordinate with metal ions185.  It is possible that Ni2+ 

could not effectively coordinate with the Phen moiety of 7a and 7b due to the interference of 

neomycin at the concentration range used.  Therefore, due to this uncertainty, we only report the 

binding of 7a and 7b (without Ni2+) with G-quadruplex DNA in the following section.  As 

shown in figure 3.5a, the corresponding rank order of the G4DC50 values was 7b < 7a < 

neomycin << Phen.  The G4DC50 value for 7b (0.9 µM) was impressively low, 50-fold less than 

that of neomycin (49.8 µM) and at least 500-fold less than that of phenanthroline alone (> 500 

μM).  On the other hand, 7a, a longer linker analog of 7b, had a G4DC50 value of 1.32 µM.  The 

low G4DC50 values for 7b showed a stronger displacement of TO from G1 by 7b, suggesting that 

the structured amino-containing binding motif (neomycin) can significantly enhance the binding 

with G-quadruplex DNA.  Using the same conditions, the dsDC50 values for these compounds 
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were also measured with a DNA duplex (D1).  The dsDC50 values for 7a, 7b, and neomycin are 

2.78, 3.4 µM, and 5.7 µM, respectively. The relative selectivity of G-quadruplex over duplex 

DNA was determined by the ratio of dsDC50/
G4DC50.  The rank order for such selectivity was 7b 

(3.8) > 7a (2.0) > neomycin (0.11).  It is clear that compound 7b binds more preferentially to G4 

than duplex DNA as compared to 7a.  Interestingly, neomycin has a smaller dsDC50 value (5.7 

µM) than its G4DC50 value (49.8 µM).  Phen binds to both duplex and G-quadruplex DNA very 

weakly based on the FID data.  Both of the G4DC50 and dsDC50 values for Phen are over 500 μM; 

therefore, its selectivity of G4 over duplex DNA is negligible.  An FID experiment of a mixture 

of neomycin and Phen (1:1 molar ratio) was also carried out.  The G4DC50 value for the mixture is 

9.0 µM, much smaller than those of neomycin (49.8 µM) and Phen (> 500 µM), indicating that 

the simultaneous binding of neomycin and Phen with G-quadruplex DNA has a synergistic 

effect. As a comparison, this value is 10-fold greater than that of 7b (0.9 µM) and 6.8-fold 

greater than that of 7a.  Hence, conjugation of neomycin with Phen via covalent bonds provides 

a more significant enhancement of binding with G-quadruplex DNA than merely mixing two 

ligands.  It is noteworthy that 7b shows more significantly enhanced binding with G-quadruplex 

DNA than duplex DNA.  The dsDC50 value (4.5 µM) of the mixture of neomycin and Phen is 

similar to the values of neomycin (5.7 µM) and 7 (3.4 µM).  The binding of duplex DNA by 7b 

could mainly result from the non-specific binding by electrostatic interactions of cationic charges 

of the neomycin moiety. 
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Figure 3.5. a) dsDC50 and G4DC50 values for compounds 7a and 7b, neomycin (neo), Phen, a 

mixture of Phen and neomycin (1:1 molar ratio).  b) the G4DC50 values of 7a, 7a-Ni, 7b, and 7b-

Ni from the FID assay.  7a-Ni and 7b-Ni represent a mixture of Ni2+ with 7a and 7b in a 1:2 

ratio, repectively.  Buffer: 10 mM lithium cacodylate, 50 mM KCl, pH 7.0. 

 

 

3.3.3. Compound 7b Binds and Stabilizes Telomeric Hybrid G-quadruplex Without 

Producing Any Change in Conformation of the G-quadruplex 

 Circular dichroism spectroscopy is a useful technique to study the conformations of 

biomolecules.  For instance, it has been extensively used to study the conformation186 and 

handedness of the G-quadruplexes187.  Human telomeric G-quadruplex can adopt a variety of 

conformations depending upon the metal ion165.  In the presence of K+ ions, a hybrid topology188 

is observed, which typically shows a maximum (+) around 290 nm, a shoulder (+) centered 

around 260 nm, a weak band (+) with a maximum around 250 nm, and a band (-) with a 

maximum around 240 nm.  Whereas in Na+ it adopts a basket shape topology with a maximum 

band (+) around 290 nm and a maximum (-) band at 260 nm.  The change in intensity of the 

bands along with their red or blue shift on ligand binding can provide useful information about 

the process of ligand binding.  
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Thermal denaturation monitored by CD is used to study the stabilizing influence of a 

ligand on G-quadruplex DNA189.  The ability of 7b to stabilize G1 was confirmed using thermal 

denaturation of G1 monitored by circular dichroism at 290 nm.  As shown in figure 3.6a and 2b, 

the representative folded fractions of G1 in the absence and presence of a ligand (10 μM) are 

plotted as a function of temperature.  The melting temperature (Tm) of G1 was measured to be 

61.0  0.6 °C.  In the presence of neomycin or Phen at 10 μM, the Tm values were 60.6  0.3 °C 

and 60.8  0.5 °C, respectively.  Both neomycin and Phen could not stabilize G1 under this 

condition.  Phen did not increase the Tm value of G1, which is consistent with the previous 

studies179.  On the other hand, 7a destabilizes G1 by 4 oC.  In the presence of 7b at 10 μM, a 

shorter linker analog of 7a, the Tm value was 66.6  0.3 °C, a 5.6 °C increment as compared with 

that of G1.  Further increase in the concentration of 7b did not increase the Tm of G1 

significantly (Figure 3.6c).  When incubating G1 with neomycin (10 μM) and Phen (10 μM), no 

increment of Tm (61.0  0.8 °C) was observed.  Because both neomycin and phenanthroline 

alone were ineffective in stabilizing the G1, therefore, the stabilization effect of 7b toward G1 

must be resulting from a synergistic enhancement of binding affinity by conjugating neomycin 

and phenanthroline together.  Similar results were obtained from thermal denaturation monitored 

by UV at 295 nm (Figure 3.6d).  
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Figure 3.6. a) CD thermal denaturation of G1 in the presence of phen-neo conjugates, 

phenanthroline, neomycin, and phen:neo (1:1).  b) Tm of G1 in the presence of the ligands.  c) 

Effect of molar concentration of 7b on Tm of G1.  d) UV thermal denaturation of G1 in the 

presence of phen-neo conjugates, phenanthroline, neomycin, and phen:neo (1:1). 

 

 

 

 The difference in thermal stabilization of G1 by 7a and 7b prompted us to investigate 

their interactions with CD titration experiments.  As shown in Figure 3.7b, G1 in K+ adopts a 

hybrid-type topology with a maximum (+) around 292 nm, a shoulder (+) centered around 270 

nm, a weak band (+) with a maximum around 250 nm, and a band (-) with a maximum around 

235 nm, which is consistent with previous reports.  

In general, titration of G1 with 7b did not lead to an overall topological change of G1.  A 

hybrid conformation was conserved even at the 5:1 ligand to DNA ratio.  When the ligand to 

DNA molar ratio was below 3, a gradual increase in the intensity of the band (-) at 235 nm, the 
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band (+) at 250 nm, and the band (+) around 292 nm was observed, respectively, suggesting that 

a further stabilization of the folded hybrid conformation.  When the ligand to DNA molar ratio 

was above 3, a slight decrease in the intensities of these three bands occurred.  A redshift of the 

band (+) at 293 up to 300 nm was clearly observed.  It is known that the lateral or diagonal loops 

of G-quadruplexes greatly affect the shape of their CD spectra.  At high ligand to DNA molar 

ratios, it is plausible that the neomycin moiety of 7 could interact with the loops of G1 via non-

specific interactions, causing the observed shift in band maxima (Figure 3.7b). 

By contrast, titration of 7a with G1 showed a distinct difference (Figure 3.7a).  At the 

ligand to DNA ratio of 0.5, an increase in the intensity of band (+) around 292 nm along with the 

loss of shoulder peak at 270 nm and a slight dip of the peak at 260 nm was observed.  At the 

ligand to DNA molar ratio of 3, the intensity of the band around 292 nm increased along with the 

redshift of the band, and the intensity of the peak (-) at 260 nm also deepened, suggesting the 

topology of G1 was more close to the antiparallel G-quadruplex [the maximum (+) around 292 

nm and a band (-) with a maximum around 260 nm].  When the ligand to DNA molar ratio was 

above 3, a decrease in the intensity of the band (+) around 300 nm and concomitant increase in 

the maximum (-) around 260 nm was observed probably due to the non-specific interactions 

between the ligand and DNA at higher concentrations.  The transient increase in the antiparallel 

topology character observed in the CD titrations might be due to the unfolding pathway of the 

G1.  
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Figure 3.7. a) CD titrations of compound 7a against G1.  b) CD titrations of compound 7b 

against G1. 

 

 

 

 Based on kinetic studies of folding and unfolding pathways of the human telomeric G-

quadruplexes, Chaires et al190 proposed the following folding/unfolding mechanism for htelo G-

quadruplexes (Figure 3.8).  The unfolding of the G-quadruplex was proposed to be sequential190, 

which can be used to explain the Tm difference observed for 7a and 7b in our studies. 

Non-specific binding of 7a with random coil destabilizes the established equilibrium in 

solution.  More hybrid G-quadruplex unfolds sequentially through a triplex like intermediate, an 

antiparallel intermediate, and finally a hairpin-like intermediate.  The observation of the 

antiparallel signature by CD at the ligand to DNA molar ratio of 3 and higher and the observed 

destabilization of (ΔTm = - 4 oC) could fit for this explanation.  It is noteworthy that we observed 

turbidity in solution when titrating 7a into G1 at the ligand to DNA molar ratio more than 3.  

Turbidity could come from the precipitation of DNA because of the non-specific binding of 7a 

with G1.  In the FID experiments, the unfolding of G1 by 7a could release TO of G1, leading to 

a concomitant decrease in fluorescence.  
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Figure 3.8. Folding and unfolding pathway of the htelo G-quadruplexes190. 

 

The stabilization effect of neomycin, 7a and 7b, and Phen on a duplex DNA (D1) was 

investigated using thermal denaturation monitored by UV (Figure 3.9).  None of them showed a 

noticeable stabilization effect on the melting of D1, suggesting a weak binding of phen-neo 

conjugates with duplex DNA.  

 

 
Figure 3.9. UV thermal denaturation of dsDNA in the presence phen-neo conjugates, 

phenanthroline and neomycin.  
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3.3.4. Compound 7b Binds to G1 in a 1:1 Binding Stoichiometry 

 The electrospray-ionization mass spectrometry (ESI-MS) is a highly sensitive analytical 

technique for the analysis of small molecule-DNA interactions.  The use of ESI-MS for the G-

quadruplex structure analyses136, relative binding affinity calculations82, and binding 

stoichiometry176 is well documented.  Compared with other analytical techniques like NMR and 

x-ray crystallography, which are also used for G-quadruplex-ligand binding interactions, ESI-MS 

requires simple sample preparation or less sample consumption due to its high sensitivity.  In 

addition, studies have documented that G-quadruplexes maintained their solution-phase structure 

in the gas phase191,192.  

 Because of the possible ion suppression effect of non-volatile alkali metals, ammonium 

acetate was commonly used for studying G-quadruplex DNA in ESI-MS.  Ammonium ions assist 

in the folding of G-quadruplex just as K+ ions do.  As shown in figure 3.10, G1 in NH4
+ adopts a 

hybrid topology determined by CD spectroscopy.  Because NH4
+ ions are present between the 

adjacent G-tetrads; therefore, the number of NH4
+ associated with the G-quadruplex structure 

indicates the number of G-tetrads in the topology.  For example, the observation of two NH4
+ 

ions in a G-quadruplex complex suggests that it contains three G-tetrads.136,193  
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Figure 3.10. CD spectrum of the human telomere DNA (5 µM) annealed in 150 mM ammonium 

acetate and 10 mM LiCaco buffer. 

 

 

 

In our study, the complexation of a ligand (7a, 7b, or neomycin) with G1 in NH4
+ was 

investigated with electrospray ionization (ESI) mass spectrometry.  All the spectra shown here 

are normalized relative to the most abundant ion peak (base peak) in the spectrum.  Mixtures of a 

ligand (7a or 7b) and G1 at a molar ratio ranging from 1:1 to 1:4 in 150 mM NH4
+ were prepared 

and analyzed.  A solution of G1 under the same condition in the absence of a ligand was used as 

a control.  A mass spectrum representing a mixture of G1 and 7b ([G1]:[7] = 1:2) is shown in 

figure 3.11b.  The formation of the G-quadruplex structure was confirmed by the peak at m/z 

1459.85, representing the ion [G1+2NH4
+-7H+]5-.  The inclusion of two NH4

+ ions is a distinct 

indication of the presence of three G-tetrads in the G-quadruplex.  Compound 7b was found to 

form a 1:1 complex with G1, indicated by the ion [G1+2NH4
++7b-7H+]5- at m/z 1642.13.  The 

relative abundance of the complex is higher than those of free intact G-quadruplex when the 

molar ratio of 7b to G1 is larger than 1 suggesting the strong tenancy of 7b to bind with the G-
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quadruplex.  It is noteworthy that varying the molar ratios of 7b and G1 did not lead to different 

binding stoichiometries (Figure 3.11c and 3.11d) 

 

 
Figure 3.11. Mass spectrum of a mixture solution of G1 and 7b at different molar ratio. The peak 

with the maximum intensity was set as the base peak (100%). 

 

 

 Interestingly, mixtures of 7a and G1 did not show any complexation in ESI mass 

spectrometry, even with the molar ratio of 7a to G1 at 4 (Figure 3.12b).  It is noteworthy that 

precipitation was observed when the ratio of 7a to G1 was above 3.  Failing to observe the 

complexation of 7a with G1 suggested a relatively weak interaction between the two, which is 

consistent with our thermal stabilization studies.  Because of this, in the following sections, we 
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will only pursue further biochemical and biophysical characterization of 7b with telomeric G-

quadruplex DNA. 

 

 

Figure 3.12. Mass spectrum of a mixture solution of G1 and 7a at [7a]:[G1] = 1 (left) and at 

[7a]:[G1] = 4 (right). The peak with the maximum intensity was set as the base peak (100%). 

 

 

 

3.3.5. 7b Binds With a Much Higher Binding Affinity to G1 as Compared to Neomycin and 

Phenanthroline 

 Isothermal titration calorimetry (ITC) was used for the analysis of the thermodynamics of 

binding.  ITC is a gold standard for measuring binding affinity, and it is the only technique that 

measures the binding enthalpy directly.  It allows for the dissection of the free energy of binding 

into the relative contribution of the entropy and enthalpy components, providing indispensable 

information about the kinds of forces involved in binding and ligand optimization194.  A 

complete thermodynamic characterization provides more information on the nature of driving 

force for the binding process if they are enthalpic or entropic in origin.  
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In a typical ITC experiment, a series of aliquots of a ligand are injected into a sample cell 

containing the binding substrate.  The heat released or gained during each injection is integrated 

and plotted against the molar ratio of ligand to substrate.  The resulting thermogram is then fitted 

with a binding model that can describe the binding event.  The fitting provides crucial 

parameters, including the number of binding sites, enthalpy, entropy, and free energy of the 

binding event (Figure 3.13)194. 

 

 

Figure 3.13. Basic principle of isothermal titration calorimetry194. 

 

In the present study, ligands (7b and neomycin) were analyzed for their thermodynamics 

of binding to a telomeric G-quadruplex (G1) and a 26-mer duplex (D1).  Figure 3.14 shows the 

representative ITC profiles (upper panels) resulting from a series of injections of 7b (200 µM) 

into a solution (20 μM) of G1 (A) and D1 (B) in K+ at 25 °C.  Each injection of the ligand to the 

G1/D1 is accompanied by the heat burst from the binding event and heat of dilution.  The area 

under the thermogram peak is calculated with Nano Analyze software (version 3.8.0) and plotted 

against the molar ratio of ligand to DNA in the calorimetry cell.  Calorimetric data from 

injections of 7b into K+ phosphate buffer under the same experimental conditions is used as 
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blank for the heat of dilution (black peaks in the thermograms).  The blank data was deducted on 

the peak by peak basis from the heat of interaction between ligand 7b and G1/D1. 

The dotted lines (Figure 3.14, lower panels) show the resulting corrected injection heats 

(by subtracting the blank data for corrections of dilution effects) plotted as a function of the 

[7b]/[DNA] molar ratio. 

 

 

Figure 3.14. upper panel: ITC profiles of G1 (20 µM) (A) and D1 (10 µM) (B) titrated with 7b 

(200 µM) in a 10 mM potassium phosphate buffer with a total of 150 mM K+, pH 7.0 at 25 °C.  

The black peaks represent the heat of dilution.  lower panel: The dotted line represents the 

integrated corrected injection heats plotted as a function of the [7b]/[G1] (A) and [7b]/[D1] (B) 

molar ratio.  The smooth solid line reflects the calculated fit of the data using the binding models 

(multiple-sites for G4 and independent for duplex) from the software NanoAnalyze.  Upward 

peaks represent an exothermic event. 

 

 

 

Two slopes in the graph (Figure 3.14a, lower panel) are indicative of two primary 

binding events (there could multiple-binding sites with equal binding affinities).  The data best 

fit a multiple-sites model with a 90% confidence level and result in the two association constants 

(Kas), (8.92.4)×108 M-1 and (3.5 0.5)×105 M-1.  Based on the Ka values, the first binding event 

is a tight binding with a sharp transition, and the second binding event shows a gradual slope 

towards the binding saturation of G1 by 7b, suggesting a relatively weak binding.  Neomycin is 

a b 
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positively charged under the conditions used in the study, so it is reasonable to expect weak non-

specific electrostatic interactions between the charged molecules.  A similar low-affinity second 

binding event at higher concentrations was also found in the study of G-quadruplex ligands such 

as BRACO-19195 and Se2SAP196 by other groups, which have permanently charged side chains. 

Binding enthalpies for the two events were determined to be ΔH1 [-(37.31.6) kJ/mol] and ΔH2 [-

(32.30.5) kJ/mol], indicative of highly enthalpically favored binding for both events.  The first 

binding event is entropy favorable with a TΔS value of +13.8 kJ/mol, which means the binding 

process is accompanied by favorable release of small molecules (e.g., water, ions).  Just like 

duplex DNA, G-quadruplexes also have organized water molecules (hydration of spine) in the 

grooves197.  The neomycin moiety of 7b binds into the grooves of G1 could release water 

molecules and/or metal ions.  According to a survey of thermodynamic signatures for ligand-

DNA binding mode, groove binding is predominantly entropically driven, while intercalation is 

enthalpically driven.  Our observation suggests that the tight-binding event could involve both 

groove-binding and π-π stacking, implying a synergetic binding effect between Phen and 

neomycin.  The second binding event is slightly entropy unfavorable with a TΔS value of -0.7 

kJ/mol, which might be coming from non-specific interactions with the loop nucleotides or 

backbones without the release of relative equivalents of the water or ions.  The presence of the 

first strong binding event was highlighted by a separate ITC titration experiment in which a 

series of injections of 7b (200 µM) was titrated into a solution (40 μM) of G1 to reach a final 

mole ratio of approximately 3 (Figure 3.15a). 

 The overall stoichiometry for binding of 7b to G1 in the K+ solution was determined to 

be approximately five ligands per G-quadruplex DNA.  The sizeable binding stoichiometry also 

suggests the second (weak) binding event may be associated with non-specific binding.  It is 
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noted that only a 1:1 binding stoichiometry was obtained from the ESI/MS experiments, as 

mentioned above.  This discrepancy could result from the stability variations of ligand-DNA 

complexes in the solution phase and the gas phase of experimental conditions; therefore, the 

binding of 7b to weaker binding sites (non-specific binding) might not be observed in the 

ESI/MS experiments.  The binding selectivity of 7b for G1 was analyzed by performing another 

experiment at 25 °C with D1.  The binding isotherm of 7b with D1 (Figure 3.14b, lower panel) 

best fits with an independent (single-site) model with a 90% confidence level and result in an 

association constant of (5.90.3)×104 M-1 as evident from the gradual slope.  It is evident that the 

binding of 7b with D1 is much weaker than both binding events of 7b with G1 when comparing 

Ka values.  The results obtained here are consistent with the aforementioned biophysical studies, 

in which compound 7b binds preferentially to telomeric G4 over duplex DNA.  As a comparison, 

the titration of neomycin to G1 at 25 oC was performed under the same condition.  The binding 

of neomycin to G1 showed a much lower association constant of (6.10.2)×103 M-1 (Figure 

3.15b).  Given that Phen does not bind to G4s and weak binding of neomycin with G1, the 

strong binding of 7b with G1 must come from covalently tethering neomycin and phenanthroline 

together.  
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Figure 3.15. upper panel: ITC profiles of G1 (40 µM) titrated with 7b (200 µM) (A) and G1 (20 

µM) titrated with neomycin (400 µM) (B) in a 10 mM potassium phosphate buffer with a total of 

150 mM K+, pH 7.0 at 25 °C.  The black peaks represent the heat of dilution. lower panel: The 

dotted line represents the integrated corrected injection heats plotted as a function of the 

[7b]/[G1] (A) and [Neomycin]/[G1] (B) molar ratio.  The smooth solid line reflects the 

calculated fit of the data using the binding models (Independent model for 7b and multiple sites 

for neomycin) from the software NanoAnalyze.  Upward peaks represent an exothermic event. 

 

 

 

3.3.6. 7b Binds to G1 With a Dual Recognition Mode 

Plausible binding modes of 7b with human telomeric G-quadruplex DNA was 

investigated using the DOCK 6.9 program.  Because the G4 structure of the exact sequence used 

this work is not available in the data bank, we modeled G1 structure using the NMR solution 

structure (PDB id: 5Z80) of the complex formed by a platinum ligand and a human telomeric G-

quadruplex as the initial point.  It is noted that the G-quadruplex-forming regions of G1 and 

5Z80 are the same.  Upon manual removal of the platinum ligand and modification of a few 

residues at the 5’ and 3’-positions, the resulting G4 structure has the same sequence as G1 and is 

a hybrid-type topology.  The simple docking results show that compound 7b can bind in the 

original binding site of the hybrid G-quadruplex, where the platinum ligand was found in the 

solution NMR structure.  The most energetically favorable binding mode (Figure 3.16a) of 7b 

has the phenanthroline ring stack on top of the base pair in the G-quadruplex through π-π 

stacking and the neomycin moiety in the groove of the G-quadruplex.  Further analysis shows π-

a b 
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π stacking between the phenanthroline ring of 7b and residues of adenine-7 and guanine-8 

(Figure 3.16b) and hydrogen bonding interactions of the neomycin moiety with guanine-21 

amino group in the groove with the primary amine group on idopyranose ring of neomycin.  

Similarly, one of the amine groups in the glucopyranose ring of neomycin (circled) interacts with 

the guanine in the upper G-tetrad.  In addition, neomycin was found to have hydrogen bonding 

interactions with the phosphate backbone of residues 19-21 (Figure 3.16c).  The proposed 

binding mode is cohesive with the synergistic effect observed from biophysical studies.  Using 

docking simulation, we also found several binding modes that do not interfere with each other.   

A representative binding mode of G1 with three molecules of 7b is presented in (Figure 3.16d). 

These binding modes could represent plausible non-specific interactions between G1 and 7b due 

to the electrostatic interactions of the neomycin moiety with DNA backbones.  
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Figure 3.16. a) Docked structure of compound 7b with a human telomeric G-quadruplex (G1).  

G-quadruplex is represented as surface colored by electrostatic potential, and the ligand is 

represented as ball and stick.  b) π-π stacking interactions of the phenanthroline moiety with the 

top G-tetrad of G1.  c) Binding interactions of the neomycin moiety with the groove of G1.  The 

distances are in Å.  d) A plausible binding mode of three molecules of 7b at higher concentration 

to G1.3.3.6.  7b inhibits the telomerase activity at low micromolar concentrations. 

 

 

 

Upon confirming the favorable interactions between 7b and the telomeric G4, we 

investigated their inhibition of human telomerase activity in vitro using a modified (Telomerase 

Repeat Amplification Protocol) TRAP assay. 
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3.3.7. 7b Inhibits Telomerase at Low Micromolar Concentration as Determined by TRAP 

    Assay 

 TRAP assay was originally developed by Kim et al198 to study the relationship between 

cancer cell immortality and telomerase concentration (above a certain threshold).  It includes 

three steps (Figure 3.17): 

1. Extension: Telomeric repeats are added to the radiolabeled telomerase substrate (TS 

Primer).  In humans, a 6-mer repeat 5’-TTAGGG-3’ is added by the telomerase during 

each round of addition. 

 

2. Amplification: Extension of extended DNA by PCR with reverse primer RP and 

forward primer TS.  

 

3. Detection of telomerase products: The presence and absence of telomerase activity is 

analyzed by gel electrophoresis.  Typically, a ladder-like pattern reflects the activity of 

telomerase because it adds different units of 5’-TTAGGG-3’ during the process. 

 

 The compound may inhibit the DNA polymerase during the amplification step, which 

would give false-positive results.  We used an internal standard to distinguish if a compound 

inhibits telomerase activity (through G-quadruplex stabilization) and not DNA polymerase 

(directly or by binding to duplex) from amplifying the telomerase extended product because 

either event will give a positive result. 

An internal standard TSNT, a non-G-rich oligonucleotide primer, is used in the assay, 

which is amplified with its own reverse primer NT during the amplification step.  With the 

addition of the internal standard, the results can be interpreted in the following ways.  First, if 

both the ladder pattern and internal standard are observed, then the ligand has no effect on both 

the telomerase and polymerase activity.  Second, if the telomerase extended products are reduced 

or disappeared and the product of the internal standard is still present, the compound inhibits 

telomerase activity while having no effect on the polymerase activity.  Therefore, the use of the 
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internal standard helps in predicting ligand selectivity for G-quadruplex (telomerase) over duplex 

DNA (polymerase).  

 

 

Figure 3.17. Schematic presentation of a TRAP assay. 

 

Two control compounds, BIBR (50 µM) and TmPyP4 (100 µM ), were employed in the 

assay.  BIBR199 is a telomerase translocation inhibitor which inhibits the telomerase activity 

without interacting with DNA.  TMPyP4 is a known G-quadruplex DNA binding ligand82,175.  

 As shown in figure 3.18, Lane 1 is the negative control Lane with no telomerase.  Only 

the product of the internal standard (IS) band was observed at the bottom.  Lane 2 is a positive 

control Lane with telomeres in the absence of any ligand.  The latter pattern indicates the 

telomerase activity, and the product of the internal standard (IS) at the bottom shows the 
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polymerase activity.  Lane 3 represents the reaction with BIBR.  The extension product bands 

were negligible, while the band for the internal standard was clearly observed, suggesting that 

BIBR inhibited telomerase but not polymerase in the reaction.  In contrast to BIBR, TMPyP4, a 

potent non-selective G-quadruplex ligand, fully inhibited the activities of both telomerase and 

polymerase.  No telomerase extension and PCR product bands (IS band disappeared) could be 

observed (Lane 4).  The large stacking surface of TMPyP4 could intercalate into duplex DNA at 

this high concentration (50 μM) and thus inhibit the polymerase activity.  These results were 

consistent with previously reported data.  Compound 7b (Lanes 5-8) selectively inhibited the 

telomerase activity while it has no effect on the polymerase activity in the concentration range of 

1.6 to 12.5 µM.  The inhibition of telomerase activity by 7b could be unambiguously observed at 

3.1 µM.  Such inhibition is clearly concentration-dependent.  At 12.5 µM, the activity of 

telomerase is greatly inhibited while the polymerase activity remains unaffected (IS band 

observed).  Lane 9-11 represent the reactions in the presence of a mixture of phenanthroline and 

neomycin (1:1 molar ratio).  Even at 25 µM, the mixture could not inhibit the telomerase activity 

because no extension products were observed.  This observation further suggests a synergistic 

enhancement of the G-quadruplex mediated telomerase inhibition by phenanthroline-neomycin 

conjugation. 
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Figure 3.18. 32P-TRAP reactions in the presence of 7b (left) at concentrations of 12.5, 6.25, 

3.125 and 1.56 µM in Lanes from 5 to 8, respectively.  32P-TRAP reactions in the presence of 

phen:neo (1:1) (right) at concentrations of 25, 12.5, and 6.25 µM in Lanes from 9 to 11, 

respectively.  Reactions in the presence of BIBR (50 µM) and TMPyP4 (50 µM) were carried 

out as controls.  IS: PCR product as the internal control. 

 

 

 

3.4. Conclusion 

 In summary, the data here demonstrate that structured amino-containing side chains such 

as neomycin can be used as a suitable binding motif for 5-substituted phenanthroline based G4 



 151 
 

ligands and telomerase inhibitors.  Phenanthroline-neomycin conjugates can bind to telomeric G-

quadruplex selectively over duplex DNA.  The binding of conjugates to telomeric G-quadruplex 

DNA depends on the linker length between two moieties.  Phenanthroline-neomycin conjugates 

bind to G-quadruplex in a synergistic fashion, in which phenanthroline stacks with the end G-

tetrad while neomycin binds into the groove.  Phenanthroline-neomycin conjugates can inhibit 

telomerase activity at low micromolar concentrations.  The research presented in this chapter 

suggests that a structured amino group side chain can be used as a motif for designing selective 

G-quadruplex ligands and telomerase inhibitors. 
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CHAPTER 4: 2-CLIP-PHEN DERIVATIVES AS G4 LIGANDS TARGETING 

ANTIPARALLEL G-QUADRUPLEXES 

 

4.1. Introduction 

G-quadruplexes are dynamic DNA secondary structures, which have received much 

attention due to their direct involvement in the regulation of proto-oncogenes.  The G-

quadruplexes are formed in a stretch of G-rich strands, and many G-quadruplex conformations 

are in a dynamic equilibrium36,37.  The interplay of these conformations may control gene 

expression in various ways; however, the understanding of such relationships is still in infancy. 

Efforts are usually spent on targeting the most stable conformation under physiological 

conditions studied by solution-phase NMR63,101,200, molecular dynamics simulations, along with 

a variety of biochemical and biophysical techniques201.  Most of the ligands have good 

selectivity for G-quadruplex over duplex DNA195.  Examples of selective ligands toward G-

quadruplexes with different conformations are scarce.  Hundreds of thousands of putative G-

quadruplexes forming sequences are present in the human genome.  Without efficient ligands to 

target different G-quadruplexes, off-targeting side effects202 could occur in therapeutic 

applications.  There are more than 1000 G-quadruplex ligands in the G4 database.  Most of them 

have extended aromatic surface to end-stack a G-quadruplex and contain cationic side chains to 

enhance the binding with electron-rich G-quadruplex grooves.92,105  As mentioned in the 

previous chapters, extended aromatic rings could increase the selectivity of a ligand for G-

quadruplex over duplex DNA, while cationic side chains often decrease the ligand’s selectivity 

to some extent.  Two drugs CX-5461203 and CX-3543204 (Quarfloxin) have entered clinical trials, 

which can induce selective lethality in DNA repair-deficient cancer cells by stabilizing G-
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quadruplexes in vivo203.  Both drugs cannot selectively target G-quadruplex conformations as 

found in vitro studies.  In fact, most of the G-quadruplex binding ligands developed so far have 

limited conformational selectivity61,87,175,205.  

In our effort to develop more potent G-quadruplex ligands, we came across a novel class 

of molecules that show good selectivity for antiparallel G-quadruplexes over parallel and hybrid 

G-quadruplexes.  In chapter 3, I reported phenanthroline-neomycin conjugates as G4 ligands. 

Previous studies in our group showed when 5-substituted 1,10-phenanthroline derivatives 

coordinate with Ni2+ ions, the resulting complexes have enhanced binding affinity towards G-

quadruplexes179.  The enhancement comes from forming a larger aromatic surface by 

coordinating two phenanthroline molecules with a Ni2+ ion.  In light of this finding, we initially 

tried to complex phenanthroline-neomycin conjugates (Chapter 3) with Ni2+ to develop more 

potent G4 ligands; however, our attempt was unsuccessful because the interference of neomycin 

with metal ions made the study complicated. So, we sought to covalently link two 1,10-

phenanthroline moieties with a serinol bridge that can mimic the phenanthroline-Ni2+ planar 

structure (Figure 4.1).  The proposed molecule known as 2-Clip-phen was previously developed 

by Pitie et al206.  2-Clip-phen coordinated with Cu2+ has been used as an artificial endonuclease, 

which cleaves deoxyribose units from the minor grooves of DNA207–209.  Efforts have been made 

to improve the DNA binding affinity by conjugating 2-Clip-phen with spermine208.  2-Clip-phen 

was tethered with acridine210 and poly N-methylpyrrole209 to increase its cellular uptake and 

DNA cleavage efficiency.  2-Clip-phen has also been linked to cis-platin, and the resulting 

complex showed dual functionality – DNA cleavage and DNA crosslinking26,211 (Figure 4.2).  

Ozalp-Yaman et al212 synthesized bis-Clip phen platinum compounds for better DNA cleavage 
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and cytotoxicity.  Recently, conjugation of clip-phen with a triplex-forming oligonucleotide 

(TFO) for site-specific DNA cleavage has reported213. 

From the structure viewpoint, 2-Clip-phen has a very large extended aromatic surface 

that in theory, should stack with G-tetrads well.  We believe it could be used as a lead to develop 

G-quadruplex ligands.  Surprisingly, to the best of our knowledge, no studies using 2-Clip-phen 

as a G-quadruplex ligand scaffold have been reported in the literature.  Only one similar 

structure, a bis-phenanthroline derivative with a single-nitrogen-atom linker, was reported by 

Bianco et al214 for recognition of G-quadruplexes (Figure 4.3), which has a weak-to-moderate 

G-quadruplex binding ability.  Given the ability of 2-Clip-phen to cleave DNA, we believe that it 

can be used as a promising scaffold for developing G-quadruplex binding ligands and for G-

quadruplex specific cleaving agents (future direction). 

 

 

                                   

Figure 4.1. A) 5-substituted phenanthrolines B) 2-Clip-phen design. 
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Figure 4.2. The complex of the Clip-phen with cis-platin.  

 

 

 

 

 

 

Figure 4.3. Bis-phenanthroline ligand with a three-carbon linker between two 1,10-

phenanthroline rings.  

 

 

 

Our multiple attempts to synthesize the 2-Clip-phen and neomycin conjugates were 

unsuccessful.  The 2-Clip-phen moiety was degraded under the acidic deprotection condition for 

Boc groups (Scheme 4.2).  Hence, we replaced neomycin with various amino-containing side 

chains and synthesized a series of conjugates.  To our surprise, these conjugates can specifically 

target antiparallel G-quadruplexes over hybrid and parallel G-quadruplexes.  This discovery is 

exciting, and it allows us to add novel G-quadruplex ligands that can distinguish conformations 

to the G4 ligand library.  The structures of the 2-Clip-phen conjugates also provide future 

directions to develop novel G4 ligands.  The synthesis and biophysical evaluations of these 

ligands will be presented in Chapter 4.  
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4.2. Experimental Section 

 

4.2.1. Materials and Methods 

All the chemicals for synthesis were purchased from Sigma-Aldrich or Fisher Scientific 

and used without further purification.  DNA oligonucleotides were synthesized on an ABI 392 

DNA/RNA synthesizer using standard phosphoramidite protocols and purified using 

polyacrylamide gel electrophoresis.  All reagents and solid-support columns for DNA synthesis 

were purchased from Glen Research.  The concentrations of DNA solutions were determined by 

UV spectroscopy, using the molar extinction coefficients (in units of mol of strand/L-1 cm-1) 

obtained from OligoAnalyzer (www.idtdna.com). ε260 = 237,000 for G1 [5’-

AGGG(TTAGGG)3T-3’].  ε260 = 248200 for G3 (5’-TGG GGA GGG TGG GGA GGG TGG 

GGA-3’). ε260 = 259,100 for S1 (5’-ATGAAGGACGTAACCGGCTCTGAACG-3’); ε260 = 

167,400 for S2 (5’- CGTTCAGAGCCGGTTACGTCCTTCAT-3’).  1H NMR and 13C NMR 

spectra were collected on a JEOL ECA 600 MHz FT-NMR spectrometer.  Mass spectra of the 

synthesized compounds were analyzed on an Agilent 1290 UHPLC coupled to an Agilent 6230 

Time-of-Flight mass spectrometer.  Mass spectra of ligand-DNA complexes were collected on a 

Thermo Fisher LTQ Mass Spectrometer.  UV spectra were recorded on a Varian Cary 100 Bio 

UV-Vis spectrophotometer equipped with a thermoelectrically controlled 6 × 6 cell holder.  

Circular dichroism spectra were recorded on a JASCO J-810 spectropolarimeter using a quartz 

cuvette with a 1 mm or 1 cm optical path length.  

4.2.2. Synthesis of 2-Clip-phen (2-CP) Derivatives 

 Compounds 2-CP-1 and 2-CP-2 were synthesized according to the scheme 4.1.  5a-NCS 

was synthesized using the published procedure154.  Compound 5b-NCS was synthesized from 

5b-S, which was synthesized as described in chapter 3.  We were not able to deprotect the 2-CP-
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1 and 2-CP-2 to get the final compounds even when we used the mildest conditions possible215 

for deprotection.  The synthesis of 2-CP-1 and 2-CP-2 is described below (Scheme 4.1 and 

Scheme 4.2).  We also synthesized a series of novel 2-Clip-phen derivatives (10-18) by 

decorating 2-Clip-phen scaffold with potent G-quadruplex binding side chains88,130 (scheme 4.3 

and scheme 4.4). 

 Synthesis of 2-Clip-phen (2-CP).  Synthesis of this compound was done following the 

published procedure206 with some changes.  To the solution of sodium hydride (232 mg, 5.8 

mmol) in dry DMF (4ml) at 0oC in two neck flask were added 2-bromo-1,10-phenanthroline 

(200 mg, 0.77 mmol) and serinol (35mg, 0.386 mmol).  The reaction mixture was stirred at 0oC 

for 24 h and then allowed to warm to room temperature.  The crude product was dissolved in 10 

ml of DMF and 3.4 ml of ethanol and precipitation was done with 33 ml of water.  The 

precipitates were collected with vacuum filtration and re-dissolved in 18 ml of hot methanol and 

precipitated again with water.  Finally, the precipitates were dissolved in dichloromethane and 

precipitated with hexane.  The compound has Rf value of 0.17, CH3OH:CH2Cl2:NH4OH = 

6:94:0.6 (v/v/v), silica gel 60 F254, EMD Millipore.  Yield = 143 mg (32 mmol, 41.4%).1H NMR 

(600 MHz, CDCl3): δ 9.15 (dd, J = 4.2, 1.8 Hz, 2H), 8.21 (dd, J = 7.8, 1.8 Hz, 2H), 8.09 (d, J = 

9.0 Hz, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.57 (m, 2H), 7.16 (d, J = 9.0 Hz, 2H), 4.98 (d, J = 5.4 Hz, 

4H), 3.84 (quint, J = 5.4 Hz, 1H).  13C-NMR (151 MHz, CDCl3) δ 162.99, 150.05, 139.18, 

136.27, 126.39, 123.86, 122.61, 114.14, 68.45, 50.75. 

 Synthesis of 5b-NCS.  In 20-ml round-bottomed flask, 5b-S (60 mg, 0.493 mmol) was 

dissolved in 6 ml of dry DMF.  To the stirred solution TCDP (14.3 mg, 0.0616 mmol) along with 

catalytic amount of DMAP was added.  The reaction mixture was stirred for 12 h at room 

temperature under Argon.  The completion of the reaction was monitored with TLC [ Rf = 0.3 
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(CH3OH:CH2Cl2 = 8:92 (v/v), silica gel 60 F254, EMD Millipore].  The residue was concentrated 

under vacuum.  Flash chromatography of the residue [silica gel, CH3OH:CH2Cl2 = 8:92: (v/v)] 

yielded compound 5b-NCS (47 mg, 76 %) as a white solid.  1H-NMR (600 MHz, CDCl3) δ 6.56-

4.48 (m, 8H), 4.45-2.65 (m, 19H), 1.82-1.29 (m, 54H). 

 Synthesis of 2-CP1.  In 10-ml round-bottomed flask, 5a-NCS (58 mg, 0.44 mmol) was 

dissolved in anhydrous pyridine (5 ml).  An anhydrous pyridine solution (1 ml) of 2-CP (21.6 

mg, 0.048 mmol) was added to the flask with a syringe.  The reaction mixture was stirred 

overnight at room temperature under N2.  The reaction progress was monitored with TLC [ Rf = 

0.27 (CH3OH:CH2Cl2:NH4OH = 8:92:0.8 (v/v/v), silica gel 60 F254, EMD Millipore].  The 

residue was concentrated under vacuum.  Flash chromatography of the residue [silica gel, 

CH3OH:CH2Cl2 = 8-10:92-90 (v/v)] yielded compound 2-CP1 (32 mg, 41 %) as a white solid.  

IR (KBr pellet, cm-1) 3419, 2968.17, 2936, 1702, 1605, 1498, 1369, 1262, 1155, 1026, 843.  1H 

NMR (CD3OD) δ 8.93 (m, 2H), 8.28 (d, 2H, J = 7.8 Hz), 7.93 (bs, 2H), 7.35 - 7.77 (m, 6H), 7.00 

- 7.24 (m, 2H), 5.43 (bs, 2H), 5.25 (d, 1H, J = 9.6 Hz), 5.01 - 5.19 (m, 3H), 4.18 - 4.42 (m, 2H), 

4.02 - 4.14 (m, 1H), 3.69 - 4.01 (m, 6H), 3.59-3.68 (s, 2H), 3.41 - 3.59 (m, 6H), 2.72 - 3.01 (bs, 

4H), 1.86 - 2.05 (m, 1H), 1.1 - 1.67 (m, 54H).  HRMS (ESI) calcd for C83H119N12O26S2 [M+H]+ : 

1763.7800, found 1763.7766. 

 Synthesis of 2-CP2.  In 10-ml round-bottomed flask, 5b-NCS (47 mg, 0.38 mmol) was 

dissolved in anhydrous pyridine (5 ml).  An anhydrous pyridine solution (1 ml) of 2-CP (18.7 

mg, 0.042 mmol) was added to the flask with a syringe.  The reaction mixture was stirred 

overnight at room temperature under N2.  The reaction progress was monitored with TLC [ Rf = 

0.43 (CH3OH:CH2Cl2:NH4OH = 8:92:0.8 (v/v/v), silica gel 60 F254, EMD Millipore].  The 

residue was concentrated under vacuum.  Flash chromatography of the residue [silica gel, 
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CH3OH:CH2Cl2 = 8:92 (v/v)] yielded compound 2-CP2 (30 mg, 47 %) as a white solid.  IR (KBr 

pellet, cm-1) 3422, 2987, 2932, 1691, 1507, 1376, 1267, 1180, 1039, 853.  1H NMR (CD3OD) δ 

8.89 (dd, 2H, J = 10.8, 3.6 Hz), 8.25 (t, 2H, J = 6.6 Hz), 8.86 (bs, 2H), 7.33-7.68 (m, 6H), 7.12 

(q, 2H, J = 9 Hz), 5.78 (bs, 1H), 5.36 (bs, 2H), 4.99-5.25 (m, 3H), 4.60 (s, 1H), 4.28 - 4.51 (m, 

2H), 4.19 (bs, 1H), 3.85 - 4.11 (m, 3H), 3.45 - 3.83 (m, 9H), 1.89 - 2.04 (m, 1H), 1.15 - 1.66 (m, 

54H).  13C NMR (CD3OD) δ 163.94, 159.04, 159.01, 158.73, 158.62, 158.25, 158.00, 149.94, 

149.84, 145.38, 145.35, 144.34, 144.30, 140.05, 138.01, 137.93, 130.41, 130.36, 127.45, 127.30, 

126.05, 126.00, 124.40, 123.76, 115.65, 115.62, 113.81, 100.04, 98.65, 80.75, 80.64, 80.43, 

80.32, 76.35, 75.81, 74.62, 73.22, 73.16, 73.09, 73.00, 72.41, 71.71, 69.13, 65.87, 65.39, 56.90, 

54.57, 53.54, 52.52, 51.24, 49.85, 42.42, 42.02, 35.74, 29.02, 28.92, 28.84, 28.79, 28.76.  HRMS 

(ESI) calcd for C81H115N12O26S [M+H]+: 1703.7466, found 1703.7832. 

 General procedure for synthesis of AM1-9.  20-50 mg (1 equivalent) of the amine was 

dissolved in 5 ml dry DCM.  To the solution was added TCDP (1.5 equivalent), DMAP (catalytic 

amount).  The reaction mixture was stirred at room temperature for 12 h under N2 atm.  Reaction 

was monitored with TLC. 

 Compound AM1.  Pale oil (52.35%, 35.8mg), The reaction was monitored with TLC [Rf 

= 0.33, CH2Cl2: CH3OH = 0.45:9.55 (v/v), silica gel 60 F254, EMD Millipore].  Column 

chromatography [silica gel, CH3OH:CH2Cl2 = 4.5:95.5 (v/v)].  1H-NMR (600 MHz, CDCl3) δ 

3.63 (t, J = 8Hz, 2H), 2.77 (t, J = 8 Hz, 2H), 2.50-2.62 (m, 4H), 1.74 - 1.83 (m, 4H).  13C-NMR 

(151 MHz, CDCl3) δ 131.47, 55.23, 54.17, 44.68, 23.60. 

 Compound AM2.  White oil (52.7%, 35 mg), The reaction was monitored with TLC [Rf = 

0.21, CH2Cl2: CH3OH = 0.6:9.4 (v/v), silica gel 60 F254, EMD Millipore].  Column 

chromatography [silica gel, CH3OH:CH2Cl2 = 6:94 (v/v)].  1H-NMR (600 MHz, CDCl3) δ 4.00 
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(t, J = 4 Hz, 2H), 2.48 - 2.63 (m, 6H), 1.91 (quint, J = 8 Hz, 2H), 1.73-1.81 (m, 4H).  13C-NMR 

(151 MHz, CDCl3) δ 54.29, 53.04, 43.37, 29.11, 23.60. 

 Compound AM3.  Slightly yellow oil (95%, 19mg), The reaction was monitored with 

TLC [Rf = 0.35, CH2Cl2: CH3OH = 0.45:9.55 (v/v), silica gel 60 F254, EMD Millipore].  Column 

chromatography [silica gel, CH3OH:CH2Cl2 = 4.5:95.5 (v/v)].  1H-NMR (600 MHz, CDCl3) δ 

3.63 (t, J = 8 Hz, 2H), 2.77 (t, J = 8 Hz, 2H), 2.47 - 2.63 (m, 4H), 1.64 - 1.86 (m, 4H).  13C-NMR 

(151 MHz, CDCl3) δ 132.13, 58.10, 54.48, 43.18, 26.00, 24.21. 

  Compound AM4.  Slightly yellow oil (49.2%, 31.9 mg), The reaction was monitored 

with TLC [Rf = 0.425, CH2Cl2: CH3OH = 0.8:9.2 (v/v), silica gel 60 F254, EMD Millipore].  

Column chromatography [silica gel, CH3OH:CH2Cl2 = 8:92 (v/v)].  1H-NMR (600 MHz, CDCl3) 

δ 3.59 (t, J = 8 Hz, 2H), 2.28 - 2.50 (m, 6H), 1.87 (quint, J = 8 Hz, 2H), 1.59 (quint, 4H), 1.38 -

1.48 (m, 2H).  13C-NMR (151 MHz, CDCl3) δ 55.77, 54.74, 43.44, 27.40, 25.97, 24.42. 

 Compound AM5.  Slightly yellow oil (51.5%, 34mg), The reaction was monitored with 

TLC [Rf = 0.65, CH3OH:CH2Cl2 = 0.3:9.7 (v/v), silica gel 60 F254, EMD Millipore].  Column 

chromatography [silica gel, CH3OH:CH2Cl2 = 3:97 (v/v)] yielded the desired compound.  1H-

NMR (600 MHz, CDCl3) δ 3.71 (t, J = 4.5 Hz, 4H), 3.58 (t, J = 6.2 Hz, 2H), 2.66 (t, J = 6.2 Hz, 

2H), 2.50 (t, J = 4.1 Hz, 4H).  13C NMR (151 MHz, CDCl3) δ 133.03, 67.02, 57.73, 53.42, 42.97. 

 Compound AM6.  Slightly yellow oil (78.1 %, 50.4mg) The reaction was monitored with 

TLC [Rf = 0.36, CH3OH:CH2Cl2 = 0.4:9.6 (v/v), silica gel 60 F254, EMD Millipore].  Column 

chromatography [silica gel, CH3OH:CH2Cl2 = 4:96 (v/v)] yielded the desired compound.  1H-

NMR (600 MHz, CDCl3) δ 3.68 (t, J = 4.5 Hz, 4H), 3.59 (t, J = 6.5 Hz, 2H), 2.43 (t, J = 6.9 Hz, 

6H), 1.82 - 1.86 (m, 2H).  13C-NMR (151 MHz, CDCl3) δ 130.15, 67.03, 55.25, 53.73, 43.10, 

26.94. 
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 Compound AM7.  Slightly yellow oil (72.5 %, 47 mg).  The reaction was monitored with 

TLC [Rf = 0.146, CH3OH: (C2H5)2O = 1:9 (v/v), silica gel 60 F254, EMD Millipore].  Column 

chromatography [silica gel, CH3OH: (C2H5)2O = 4:96 (v/v)] yielded the desired compound.  1H-

NMR (600 MHz, CDCl3) δ 3.56 (t, J = 6.2 Hz, 2H), 2.65 (t, J = 6.2 Hz, 2H), 2.31 - 2.52 (m, 8H), 

2.27 (s, 3H).  13C-NMR (151 MHz, CDCl3) δ 132.63, 57.27, 55.09, 52.96, 46.09, 43.11. 

 Compound AM8.  Slightly yellow oil (54.6 %, 34.6 mg).  The reaction was monitored 

with TLC [Rf = 0.65, CH3OH:CH2Cl2 = 0.7:9.3 (v/v), silica gel 60 F254, EMD Millipore].  

Column chromatography [silica gel, CH3OH:CH2Cl2 = 7:93 (v/v)] yielded the desired 

compound.  1H-NMR (600 MHz, CDCl3) δ 3.56 (t, J = 6.5 Hz, 2H), 2.26 - 2.43 (m, 13H), 1.80 - 

1.84 (m, 2H).  13C-NMR (151 MHz, CDCl3) δ 130.02, 55.16, 54.80, 53.17, 46.09, 43.19, 27.27.  

 Compound AM9.  Pale oil (15mg, 51.93 %). The reaction was monitored with TLC [Rf = 

0.37, CH3OH:CH2Cl2:NH4OH = 5:95 (v/v)], silica gel 60 F254, EMD Millipore].  Column 

chromatography [silica gel, CH3OH:CH2Cl2 = 5:95 (v/v)] yielded the desired compound.  1H-

NMR (600 MHz, CDCl3) δ 3.62 (t, J = 6.5 Hz, 2H), 2.63 (t, J = 6.2 Hz, 2H), 2.31 (s, 6H).  13C-

NMR (151 MHz, CDCl3) δ 58.55, 45.42, 43.46, 131.98.  

 General procedure for the synthesis of 2-Clip-phen neomycin conjugates (2-CP1 and 

2-CP2).  To 5-8M solution of the 5a/5b-NCS in dry pyridine, 1.1 molar equivalent of the 2-Clip-

phen is added.  The reaction mixture is stirred overnight at room temperature.  The highly non-

polar boc-protected neomycin impart sufficient non-polar character to the molecule that it can be 

separated from the unreacted 2-Clip-phen without a significant problem using column 

chromatography.  

 

 



 162 
 

 General procedure for the synthesis of 10-18.  To the solution of 2-Clip-phen (10-25 

mg in 5 ml of dry pyridine), 4 equivalents of AM1-9 was added to consume all the 2-Clip-phen.  

The pyridine is removed under reduced pressure.  Crude residue is rinsed with hexane to remove 

most of the unreacted AM1-9.   Flash chromatography of the residue yields the white solid as the 

final compounds (10-18). 

 Compound 10.  White solid (59.5%, 16mg).  The reaction was monitored with TLC [Rf = 

0.25, CH2Cl2: CH3OH = 0.4:9.6 (v/v), silica gel 60 F254, EMD Millipore].  Column 

chromatography [silica gel, [silica gel, CH3OH:CH2Cl2:NH4OH = 4:96:0.4 (v/v/v)] yielded the 

desired compound.  IR (KBr, cm−1) 3270, 3065, 2957, 2936, 2877, 2794, 1608, 1592, 1451, 

1554, 1451, 1417, 1394, 1344, 1221.  1H -NMR (600 MHz, CDCl3) δ 9.08 - 9.09 (m, 2H), 8.16 - 

8.02 (2H), 7.87 (s, 2H), 7.49 - 7.59 (m, 6H), 6.98 (s, 2H), 5.46 (d, J = 4.6 Hz, 1H), 5.22 (s, 2H), 

5.02 (s, 2H), 3.78 (s, 2H), 2.37 (d, J = 201.7 Hz, 6H), 1.29 (s, 4H).  13C-NMR (151 MHz, CDCl3) 

δ 182.91, 162.92, 149.63, 144.98, 143.94, 138.83, 136.17, 129.02, 126.27, 124.76, 123.66, 

122.56, 114.16, 65.77, 54.68, 53.63, 43.68, 23.30. 

 Compound 11.  White solid (52.1%, 10.7mg).  The reaction was monitored with TLC [Rf 

= 0.225, CH3OH:CH2Cl2:NH4OH = 10:90:1 (v/v/v)], silica gel 60 F254, EMD Millipore].  

Column chromatography [silica gel, CH3OH:CH2Cl2:NH4OH = 10:90:1 (v/v/v)] yielded the 

desired compound.  IR (KBr, cm−1) 3451, 3070, 2955, 2877, 1607, 1592, 1503, 1453, 1348, 

1264, 1223. 1H -NMR (600 MHz, CDCl3) δ 9.06 (d, J = 2.7 Hz, 2H), 8.16 (d, J = 7.6 Hz, 2H), 

7.97 (s, 2H), 7.54 - 7.66 (m, 6H), 7.03 (d, J = 6.9 Hz, 2H), 5.36 (s, 1H), 5.14 (s, 2H), 4.95 (s, 

2H), 3.73 (s, 2H), 2.75 - 2.24 (6H), 1.92 - 1.55 (6H).  13C -NMR (151 MHz, CDCl3) δ 162.97, 

149.67, 145.01, 143.96, 139.11, 136.42, 129.21, 126.39, 124.95, 123.88, 122.77, 114.26, 66.25, 

53.94, 43.32, 29.79, 27.61, 23.44. 
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 Compound 12.  White solid (53.2%, 15.3mg), The reaction was monitored with TLC [Rf 

= 0.29, CH3OH:CH2Cl2:NH4OH = 5:95:0.5 (v/v/v)], silica gel 60 F254, EMD Millipore].  Column 

chromatography [silica gel, CH3OH:CH2Cl2:NH4OH = 5:95:0.5 (v/v/v)] yielded the desired 

compound.  IR (KBr, cm−1) 3428, 3074, 2931, 2851, 1608, 1592, 1503, 1453, 1416, 1349, 1266, 

1222.  1H-NMR (600 MHz, CDCl3) δ 9.06 (s, 2H), 8.03 (s, 2H), 7.79 (s, 2H), 7.47 (s, 6H), 6.91 

(s, 2H), 5.55 - 5.36 (1H), 5.32 - 4.92 (4H), 4.04 - 3.62 (2H), 2.78 - 1.76 (m, 6H), 1.48 - 0.90 (m, 

6H).  13C-NMR (151 MHz, CDCl3) δ 182.86, 162.66, 149.42, 144.71, 143.72, 138.55, 135.96, 

128.82, 126.04, 124.53, 123.46, 122.44, 113.90, 65.40, 57.16, 53.89, 41.34, 29.62, 24.89, 23.73. 

 Compound 13.  White solid (93.4 %, 26.4 mg).  The reaction was monitored with TLC 

[Rf = 0.19, CH3OH:CH2Cl2:NH4OH = 6:94:0.6 (v/v/v)], silica gel 60 F254, EMD Millipore].  

Column chromatography [silica gel, CH3OH:CH2Cl2:NH4OH = 6:94:0.6 (v/v/v)] yielded the 

desired compound.  IR (KBr, cm−1) 3436, 3065, 2933, 2853, 2805, 1608, 1592, 1560, 1546, 

1558, 1452, 1417, 1395, 1349.  1H -NMR (600 MHz, CDCl3) δ 9.06 (d, J = 2.7 Hz, 2H), 8.17 (d, 

J = 7.6 Hz, 2H), 7.97 (d, J = 6.2 Hz, 2H), 7.54 - 7.66 (m, 6H), 7.04 (d, J = 7.6 Hz, 2H), 5.41 (s, 

1H), 5.05 (d, J = 129.2 Hz, 4H), 3.69 (s, 2H), 2.21 (s, 6H), 1.32-1.71 (m, 8H).  13C -NMR (151 

MHz, CDCl3) δ 162.99, 149.67, 145.04, 143.97, 139.09, 136.40, 129.21, 126.40, 124.95, 123.85, 

122.74, 114.27, 66.01, 56.73, 54.33, 43.26, 26.30, 25.55, 24.17. 

 Compound 14.  White solid (93.8%, 13 mg).  The reaction was monitored with TLC [Rf 

= 0.22, CH3OH:CH2Cl2:NH4OH = 4:96:0.4 (v/v/v)], silica gel 60 F254, EMD Millipore].  Column 

chromatography [silica gel, CH3OH:CH2Cl2:NH4OH = 4:96:0.4 (v/v/v)] yielded the desired 

compound.  IR (KBr, cm−1) 3451, 3280, 3063, 2954, 2867, 1608, 1592, 1562, 1503, 1346, 1418, 

1222, 1135, 1222.  1H-NMR (600 MHz, CDCl3) δ 9.06 (s, 2H), 7.76 (d, J = 334.7 Hz, 10H), 6.94 

(s, 2H), 5.42 (s, 1H), 5.07-5.27 (m, 4H), 3.75 (s, 2H), 2.35 - 3.17 (m, 4H), 1.63 - 2.19 (m, 7H).  
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13C-NMR (151 MHz, CDCl3) δ 162.84, 149.50, 144.90, 143.85, 138.63, 136.11, 128.93, 126.23, 

124.66, 123.58, 122.55, 114.12, 66.46, 65.45, 57.19, 53.52, 53.16. 

 Compound 15.  White solid (62.6%, 20 mg).  The reaction was monitored with TLC [Rf 

= 0.15, CH3OH:CH2Cl2:NH4OH = 4:96:0.4 (v/v/v)], silica gel 60 F254, EMD Millipore].  Column 

chromatography [silica gel, CH3OH:CH2Cl2:NH4OH = 4:96:0.4 (v/v/v)] yielded the desired 

compound.  1H-NMR (600 MHz, CDCl3) δ 9.06 (d, J = 2.7 Hz, 2H), 8.16 (d, J = 7.6 Hz, 2H), 

7.95 (s, 2H), 7.53-7.65 (m, 6H), 7.02 (s, 2H), 5.44 (s, 1H), 5.17 (s, 2H), 4.95 (s, 2H), 3.72 (s, 

1H), 3.49 (s, 4H), 2.60 (s, 1H), 2.14 (s, 6H), 1.65 (s, 2H).  13C-NMR (151 MHz, CDCl3) δ 

163.00, 149.60, 145.03, 143.93, 139.06, 136.40, 129.18, 126.42, 124.93, 123.81, 122.70, 114.28, 

66.88, 66.08, 56.38, 53.55, 43.10, 26.18.  

 Compound 16.  White solid (72.2%, 24.5 mg).  The reaction was monitored with TLC 

[Rf = 0.22, CH3OH:CH2Cl2:NH4OH = 6:94:0.6 (v/v/v)], silica gel 60 F254, EMD Millipore].  

Column chromatography [silica gel, CH3OH:CH2Cl2:NH4OH = 6:94:0.6 (v/v/v)] yielded the 

desired compound.  IR (KBr, cm−1) 3436, 3068, 2945, 2815, 1608, 1592, 1563, 1555, 1503, 

1453, 1418, 1347.  1H-NMR (600 MHz, CDCl3) δ 9.03 (s, 2H), 7.40 - 8.06 (m, 10H), 6.87 (s, 

2H), 5.02 - 5.42 (m, 5H), 3.75 (s, 2H), 1.74 - 2.54 (m, 13H).  13C-NMR (151 MHz, CDCl3) δ 

182.47, 162.59, 149.21, 144.64, 143.65, 138.28, 135.83, 128.69, 125.97, 124.40, 123.26, 122.37, 

113.86, 64.88, 56.34, 54.14, 52.27, 50.62, 45.42, 41.50. 

 Compound 17.  White solid (88.3%, 28.1 mg).  The reaction was monitored with TLC 

[Rf = 0.14, CH3OH:CH2Cl2:NH4OH = 6:94:0.6 (v/v/v)], silica gel 60 F254, EMD Millipore].  

Column chromatography [silica gel, CH3OH:CH2Cl2:NH4OH = 6:94:0.6 (v/v/v)] yielded the 

desired compound.  IR (KBr, cm−1) 3428, 3066, 2940, 2807, 1608, 1561, 1549, 1504, 1452, 

1418, 1394, 1347, 1367, 1222.  1H-NMR (600 MHz, CDCl3) δ 9.06 (d, J = 2.9 Hz, 2H), 8.18 (d, 



 165 
 

J = 7.4 Hz, 2H), 7.98 (s, 2H), 7.54 - 7.67 (m, 6H), 7.04 (d, J = 6.7 Hz, 2H), 5.44 (s, 1H), 5.15 (s, 

2H), 4.93 (s, 2H), 3.72 (s, 2H), 2.04 - 2.75 (m, 13H), 1.65 (s, 2H). 13C-NMR (151 MHz, CDCl3) 

δ 162.98, 149.87, 144.98, 143.90, 139.06, 136.41, 129.17, 126.40, 124.91, 122.69, 121.38, 

114.27, 65.92, 55.99, 54.97, 52.98, 45.97, 43.44, 26.54. 

 Compound 18.  White solid (71.5%, 12mg).  The reaction was monitored with TLC [Rf = 

0.202, CH3OH:CH2Cl2:NH4OH = 5:95:0.5 (v/v/v)], silica gel 60 F254, EMD Millipore].  Column 

chromatography [silica gel, CH3OH:CH2Cl2:NH4OH = 5:95:0.5 (v/v/v)] yielded the desired 

compound.  1H-NMR (600 MHz, CDCl3) δ 9.10 (d, J = 2.7 Hz, 2H), 8.14 (d, J = 7.6 Hz, 2H), 

7.94 (s, 2H), 7.74 - 7.37 (6H), 7.05 (d, J = 8.2 Hz, 2H), 5.43 - 5.47 (m, 1H), 5.23 (s, 2H), 5.00 (s, 

2H), 3.69 (s, 2H), 2.48 (s, 5H), 2.38 - 2.08 (s, 2H), 1.83 (s, 6H).  13C-NMR (151 MHz, CDCl3) δ 

150.26, 136.51, 125.05, 118.77, 112.69, 54.23, 66.17, 66.8, 46.05, 43.95, 44.17. 

4.2.3. MS Analysis Procedures of Synthesized Compounds 

 The samples were diluted in methanol to approximately 1 M concentration.  A sample 

solution (1 µL) was introduced by Direct injection without a chromatographic column.  High 

resolution mass spectra (HRMS) were obtained on a JEOL AccuTOF time-of-flight mass 

spectrometer (Peabody, MA) coupled with an ESI source or Ion sense DART open-air ionization 

source (Saugus, MA).  The solvent system was 1:1 methanol:water.  Ions were delivered to the 

mass spectrometer with an electrospray ionization (ESI) source.  The capillary voltage was set to 

be 4000V for the all the samples.  Data were collected in the m/z range of 200-1100.  Spectra 

were collected at a rate of 2 spectra/s allowing for 4800 transients/spectrum. 

4.2.4. Preparation of G-quadruplex DNA and Duplex DNA for CD and UV experiments 

 Three G-quadruplexes with different conformations were used in the study, including G1 

(htelo, hybrid) 5’-AGGG(TTAGGG)3T-3’ in K+, G2 (htelo, antiparallel) 5’-
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AGGG(TTAGGG)3T-3’in Na+, and G3 (c-MYC, parallel) 5’-

TGGGGAGGGTGGGGAGGGTGGGGA-3’ in a mixture of Li+ and K+.  

The G-quadruplex DNA strand (G1, G2 or G3, 100 M) was dissolved in a mixture (100 

L) of lithium cacodylate buffer (40 mM, pH 7.1) and a corresponding salt (150 mM KCl for 

G1, 150 mM NaCl for G2, and a mixture of 99 mM LiCl and 1mM KCl for G3), heated at 90 °C 

for 10 min, slowly cooled to 25°C, and incubated at 4 C overnight.  Duplex D1 (complementary 

strands of S1 and S2, 100 M each) was dissolved in a mixture of lithium cacodylate buffer (40 

mM, pH 7.1) and KCl (150 mM), heated at 90 °C for 10 min, slowly cooled to 25°C, and 

incubated at 4 C overnight.  All solutions were stored at 4 C for further use. 

4.2.5. Preparation of G-quadruplex DNA for ESI Mass Spectrometry Experiments  

 G1 (100 µM) in 150 mM NH4OAc solution was heated to 95 °C for 5 min followed by 

cooling slowly to room temperature and incubated at 4°C overnight. 

4.2.6. Thermal Denaturation Analysis Monitored by CD 

 The mixture solutions (200 μL) of (G1, G2 or G3) (5 µM) in lithium cacodylate buffer 

(40 mM, pH 7.1) and a corresponding salt (150 mM KCl for G1, 150 mM NaCl for G2, and a 

mixture of 99 mM LiCl and 1mM KCl for G3) in the absence or presence of a ligand were 

prepared.  The CD spectra were recorded at a fixed wavelength (290 nm for G1 and G2, 265 nm 

for G3) as a function of increasing temperature (25-85 ˚C) at a heating rate of 0.5 ˚C/min. 

Melting profiles were converted into a folded fraction based on a published procedure162, and the 

melting temperatures were determined at the 0.5 folded fraction. 

4.2.7. CD Titration 

 Aliquots of a stock solution containing compounds were gradually added into a solution 

(200 µL) of G1 (G2 or G3) (5 M) in lithium cacodylate (40 mM, pH 7.0) and 150 mM KCl at 
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25 C.  The final molar ratios of ligands to G-quadruplex were varied from 0 to 5.5.  After each 

addition, the solution was gently mixed and incubated for 5 min for equilibrium before collecting 

the spectrum.  The overall volume change during the titration was kept less than 1% of the initial 

volume.  CD spectra were recorded as a function of wavelength (200-400 mm, 50 nm/min scan 

speed, 0.5 nm data pitch) using a 1 cm pathlength quartz cuvette.  Each spectrum was averaged 

over three scans. 

4.3.8. G-quadruplex Induction 

 The solution of G1 (10 μM) in 50 mM Tris.HCl, pH 7.4 buffer was heated at 90 oC for 5 

mins and immediately cooled to 0 oC using ice-water slush.  The solution was kept in ice and 

taken out just before CD spectra measurement.  Aliquots of stock solution of the ligands were 

added to vary the molar equivalents in solution from 0 to 10.  After each addition, the solution 

was gently mixed and incubated for 5 min for equilibrium before collecting the spectrum.  CD 

spectra were recorded as a function of wavelength (200-400 mm, 50 nm/min scan speed, 0.5 nm 

data pitch) using a 1 cm pathlength quartz cuvette.  Each spectrum was averaged over three scans 

and blank subtracted. 

4.2.9. Thermal Denaturation Analysis Monitored by UV  

 The mixture solutions (1 mL) of D1 (2 µM) in lithium cacodylate buffer (40 mM, pH 7.1) 

and KCl (150 mM) in the absence or presence of a ligand (8 µM) were prepared.  The UV 

melting curves were recorded at 260 nm as a function of temperature (20-85 C, heating rate: 0.5 

C/min).  Melting profiles were converted into a folded fraction, and the melting temperatures 

were determined at the 0.5 folded fraction. 
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4.2.10. Fluorescent Intercalator Displacement Assay   

 A reaction solution containing 0.25 μM DNA (G1, G2, G3, or D1) in lithium cacodylate 

(10 mM, pH 7.0) and KCl (50 mM) was incubated with 0.5 μM thiazole orange (TO) for 30 min 

in the dark.  Aliquots of a ligand were added to this mixture solution and equilibrated for 5 min 

in the dark before measurement.  The fluorescence spectra (Ex: 501 nm, slit width: 5.0 nm, scan 

speed 120 nm/min) were recorded from 510-650 nm after each addition.  The percent 

fluorescence displacement (%F) was calculated at λmax by using the formula % FI. 

displacement=100-[(FA/FA0)×100], where FA0 is the initial fluorescence intensity in the absence 

of a ligand, and FA is the fluorescence intensity upon addition of a ligand. 

4.2.11. Docking Procedure 

 The geometry optimization of the representative ligand 11 was carried out at the hybrid 

density functional B3LYP level with 6-311G(d) basis set using Gaussian’09 program package.  

The Natural bond order (NBO) analysis was carried out to calculate the atomic charges on the 

optimized geometries.  Docking simulations of 11 were carried out on the antiparallel, parallel, 

and hybrid G-quadruplexes.  The structures of hybrid G-quadruplex, antiparallel G-quadruplex, 

and parallel G-quadruplex were modeled after the solution structures with the PDB id (the RCSB 

protein data bank) of 5Z80, 2MCC, and 2L7V, respectively.  Each initial solution structure is 

ligand-bound, and the corresponding ligand was manually removed to obtain the G-quadruplex 

structure for docking.  The flexible ligand docking experiments were carried out using the 

DOCK 6.9 program.  Throughout the docking of all three ligands, the same receptor grid was 

used.  Analyses of docked structures and docked image creations were carried out using the 

UCSF Chimera program.  
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4.2.12. ESI-MS Analysis of the Complex Formation Between G1 and 11/13 

 G1 (20 µM) and compound 11/13 (80 µM) were mixed and methanol was added to make 

33% methanol-water final concentration.  The mixed solutions were injected into a Thermo 

Scientific LTQ XL Mass Spectrometer at a rate of 5 µL/min.  The ion spray voltage was set to - 

4500 V and ion transfer tube temperature to 300 °C.  Nitrogen sheath and auxiliary gas flows 

were 12 and 0 arbitrary, respectively.  MS spectra were recorded in the m/z range from 1400 to 

1800 with an average of 150 scans.  Data were collected using Thermo Xcalibur 2.2 and 

analyzed using the Thermo Xcalibur 4.0 software. 

4.3. Results and Discussion 

4.3.1 Synthesis of 2-Clip -phen Derivatives 

 The final compounds were synthesized in three steps, as shown in Schemes 1-3. 2-Clip -

phen was synthesized based on a published procedure206.  We used 2-bromo-1,10-phenanthroline 

instead of 2-chloro-1,10-phenanthroline as the starting material because it is readily available 

and cost-effective.  Reaction of 2-bromo-1,10-phenanthroline with serinol in the presence of 

NaH in anhydrous DMF followed by recrystallization yielded pure 2-Clip-phen (Scheme 4.1).  It 

is noteworthy that 2-Clip-phen streaks in the silica gel column so that it cannot be easily purified 

using column chromatography.  In separated reactions, amines 5a-L, 5b-S and AN1-9 were 

converted into the corresponding isothiocyanates by reacting with 1,1’-thiocarbonyldi-2(1H)-

pyridone (TCDP) in dry dichloromethane/dimethylformamide.  In the final step, 2-Clip-phen 

react with isothiocyanates to yield the target products via the thiourea linkage formation in good 

yields.  The target compounds had very similar mobility to 2-Clip-phen on the silica gel column; 

therefore, purification with column chromatography was very time-consuming.  Using a large 
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excess (4-5 molar equivalents) of isocyanates to consume most 2-Clip-phen in the coupling 

reaction greatly helped the purification step. 

 

 
 Scheme 4.1. Synthesis of 2-Clip-phen. 

 

 

 

 
 

Scheme 4.2. Synthesis of 2-Clip-neomycin derivatives. 
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Scheme 4.3. Synthesis of isothiocyanate (AM1-9) from primary amines (AN1-9).  (TCDP is 1-

1’-thiocarbonyldi-2(1H)-pyridone). 

 

 

 

 
 

Scheme 4.4. Coupling of isothiocyanates and 2-Clip-phen moieties. 
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4.3.2. 2-Clip-phen Derivatives Stabilize the Human Telomeric Antiparallel G-quadruplexes 

Over Other G-quadruplexes 

 The stabilization of G-quadruplex DNA by 2-Clip-phen derivatives was determined by 

thermal denaturation studies monitored by circular dichroism (CD).  CD spectroscopy is a 

common technique that is used to analyze the conformation of proteins and DNA.  DNA G-

quadruplexes can adopt three major conformations, characterized by unique signature peaks in 

circular dichroism.  A typical parallel G-quadruplex topology exhibits a maximum peak (+) 

around 260 nm and a peak (-) with a maximum around 240 nm216.  A hybrid G-quadruplex 

topology188 typically shows a maximum (+) around 290 nm, a shoulder (+) centered around 260 

nm, a weak band (+) with a maximum around 250 nm, and a band (-) with a maximum around 

240 nm.  An antiparallel G-quadruplex topology shows a maximum (+) around 290 nm and a 

band (-) with a maximum around 260 nm.  CD signals of G-quadruplexes depend on the sugar-

phosphate backbone strand orientation, loops composition, helical handedness, and nucleobase 

orientations217,186.  For instance, the positive CD peak at 260 nm indicates the parallel strand 

orientation or anti-anti base steps, and the CD peak at 290 nm most likely shows the antiparallel 

strand orientation or syn-anti, anti-syn base steps.  Hybrid G-quadruplex DNA can have more 

than one conformation.  Its CD peaks at 290 nm and 260 nm come from a combination of 

nucleobase orientations.  The relative intensity of the signals at 290 nm and 260 nm reflects the 

percentage of nucleobase orientations contributed to the conformation(s).  For example, human 

telomeric DNA and BCL-2 proto-oncogene G-quadruplexes both adopt hybrid conformation(s) 

under physiological conditions, but their CD signals are slightly different.  The CD spectrum of 

the BCL-2  G-quadruplex is contributed from anti-anti base steps, and that of the human 

telomeric G-quadruplex is contributed from syn-anti or anti-syn base steps200. 
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         In the present study, three G-quadruplexes were chosen for thermal denaturation 

monitored by CD.  A hybrid human telomeric G-quadruplex (G1) was formed in the presence of 

150 mM K+.  The same sequence was used to create an antiparallel G-quadruplex in the presence 

of 150 mM Na+.  To form a parallel G-quadruplex (G3) conformation, we used a 27mer c-MYC 

DNA sequence annealed in a mixture of 99 mM Li+ with 1 mM K+.  The conformations of three 

G-quadruplexes were confirmed using circular dichroism (Figure 4.4). 

 

Figure 4.4. The CD spectra of htelo hybrid (G1), htelo antiparallel (G2) and c-MYC parallel 

(G3) G-quadruplex conformations. 
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Figure 4.5. Effect of compound 13 on the Tm of htelo hybrid (G1) (left), and antiparallel G-

quadruplex conformation (G2) (right). 

 

 

 

Figure 4.6. Effect of compound 13 on the Tm of c-MYC parallel (G3) G-quadruplex. 

 

Thermal stability of G-quadruplex DNA can be probed by analyzing CD ellipticity at 290 

nm or 265 nm as a function of increasing temperature.  The intensity of the ellipticity decreases 

as a G-quadruplex dissociates into random coils at high temperatures.  The temperature at which 

50% of the G-quadruplex dissociates into random coils is defined as melting temperature (Tm).  
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A melting profile is normally converted into a folded fraction as a function of increasing 

temperature.  The melting temperature can be determined at the folded fraction of 0.5. 

The thermal denaturation experiments were conducted with a DNA: ligand ratio of 1:4. 

All the experiments were duplicated.  The representative normalized melting profiles of 

compound 13 with three G-quadruplex conformations are shown in figure 4.5 and 4.6.  The 

melting curves for all the compounds are presented in the appendix C.  

All 2-Clip-phen derivatives showed a more significant stabilization effect (Table 4.1) on 

the antiparallel telomeric G-quadruplex (G2) than the other two G-quadruplexes (G1 and G3).  

2-Clip-phen had a minor effect on the stabilization of three G-quadruplexes, which increased the 

Tms of G1, G2, and G3 by 0.8, 2.3, and 2.9 °C, respectively.  Amongst all the derivatives, 

compounds 11 and 13 had the best stabilization effect, which increased the Tm of G2 by more 

than 10 °C.  All the derivatives slightly increased the Tms of G1 and G3 (1-3 °C in most cases), 

suggest that they preferentially bind to the antiparallel telomeric G-quadruplex.  The effect of 

amino-containing side chains of the derivatives was determined by comparing the ΔTms of the 

derivatives with that of 2-Clip-phen for each G-quadruplex (ΔΔTm in Table 4.1).  Conjugation of 

amino-containing side chains to 2-Clip-phen could not enhance its binding to the parallel c-MYC 

G-quadruplex (G3) because the ΔΔTm values were within the experimental errors.  The amino-

containing side chains drastically increased the binding of 2-Clip-phen to the antiparallel 

telomeric G-quadruplex (G1) and slightly increased its binding to the hybrid telomeric G-

quadruplex (G2).  The positively charged alicyclic bases or (aliphatic amine) make favorable 

interactions with the N-H of G-tetrads in the grooves or with negatively charged phosphate 

backbones.  The alicyclic rings pyrrolidine and piperidine showed the most stabilizing effect 

followed by piperazine and morpholine.  The morpholine ring contains an oxygen atom which 
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may cause electrostatic repulsive interactions with the phosphate backbones and thus decrease 

the ligand binding to G-quadruplexes176.  The N-methyl group of the piperazine ring might be 

involved in some steric interactions within the groove, which renders the stacking interaction 

with the G-tetrads.  The length of the linker seems to play an important role in thermal 

stabilization.  The derivatives with a longer linker showed a slightly better stabilization effect 

when comparing the corresponding Tm values. 

 

Table 4.1 

G-quadruplex Stabilization Potential (ΔTm) of the 2-Clip-phen (2-CP) Derivatives by CD 

Thermal Denaturation Study. 

ΔTm = melting temperature (Tm) of G-quadruplex with the 4 molar equivalents of compound – 

melting temperature  of G-quadruplex without ligand (C).  ΔΔTm = melting temperature (Tm) of 

G-quadruplex with the 4 molar equivalents of compound – melting temperature of G-

quadruplex 2-CP. C= control 

 

 

 

All 2-Clip-phen derivatives showed the binding selectivity for G-quadruplexes over 

duplex DNA as none of them could stabilize an oligonucleotide duplex DNA (D1) (Figure 4.7). 

 Hybrid G-quadruplex  

          (G1) 

Antiparallel G-quadruplex   

               (G2) 

Parallel G-quadruplex 

           (G3) 

        Tm         ΔTm     ΔΔTm                 Tm              ΔTm      ΔΔTm               Tm          ΔTm     ΔΔTm 

C         67.4 ± 0.4                               53.3 ± 0.3                                 60.3 ± 0.6 

2-CP   68.2 ± 1.2    0.8          -           55.6 ± .5         2.3          -          63.2 ± 0.3    2.9         - 

10 71.6 ±0.4 4.2 3.4 63.3 ± 1 10 7.7 64.2 ± 0.7 3.9 1.0 

11 72.7 ± 0.01 5.3 4.5 63.4 ± 1 10.1 7.8 62.3 ± 0.1 2.0 -0.9 

12 71.2 ± 0.4 3.8 3.0 62.9 ± 0.8 9.6 7.3 65.2 ± 1.6 4.9 2.0 

13 72.8 ± 0.4 5.4 4.6 64.7 ± 0.5 11.4 8.1 63.2 ± 0.6 2.9 0 

14 68.6 ± 0.6 1.2 0.4 58.4 ± 1 5.1 2.8 62.1 ± 0.1 1.8 -0.9 

15 70.3 ± 0.4 2.9 2.1 60.4 ± 0.8 7.1 4.8 62.5 ± 0.7 2.2 -0.7 

16 70.7 ± 0.7 3.3 2.5 61.4 ± 0.01 8.1 5.8 62.9 ± 1.7 2.6 -0.3 

17 70.5 ± 0.1 3.1 2.3 60.5 ± 1 7.2 4.9 62.1 ± 0.5 1.8 -1.1 

18 71.1 ± 0.6 3.7 2.9 61.3 ± 1 8.0 5.7 65.5 ± 0.3 5.2 2.3 
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Figure 4.7. Melting of the dsDNA (26 mer) with 2-Clip-phen derivatives. 

 

4.3.3. Binding of 2-Clip-phen Derivatives With G-quadruplex DNA Investigated Using the 

FID Assay 

 The binding to 2-Clip-phen derivatives was further investigated with the fluorescent 

intercalator displacement (FID) assay.  The nature of the FID assay has been discussed in 

Chapter 3.  FID assay is a well-established assay to complement the results of thermal 

denaturation studies182.  In our study, thiazole orange (TO) was first incubated with G-

quadruplex DNA for equilibrium binding.  The pre-bound TO was gradually displaced from 

DNA by the addition of a ligand.  The displacement of TO from the bound state leads to a 

dramatic loss of its quantum yield.  The concentration of a ligand required to displace 50% of 

pre-bound TO from G-quadruplex DNA is defined as G4DC50 (Figure 4.8). 

As shown in Table 4.2, the G4GC50 value of 2-Clip-phen is much higher than those of 2-

Clip-phen derivatives for each G-quadruplex, suggesting that tethering an amino side chain to 2-

Clip-phen can greatly enhance its binding to G-quadruplex DNA.  All the 2-Clip -phen 
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derivatives showed stronger affinities to the antiparallel G-quadruplex (G2) than the hybrid G-

quadruplex (G1).  This result is in accordance with the thermal denaturation results mentioned 

above.  The G4GC50 value of each 2-Clip-phen derivative for G3 is much higher than those for 

G1 and G2, indicating relatively weaker affinities of these ligands towards parallel c-MYC G-

quadruplex. 

For G1, the compounds 11, 13, 15, 17 containing a 3-carbon linker between an alicyclic 

base and 2-Clip-phen showed lower G4DC50 as compared to their analogs 10, 12, 14, 16 with a 2-

carbon linker, respectively.  The compounds 14 and 15 containing a 2-carbon and 3-carbon 

linker with the morpholine moiety showed a negligible difference in the G4DC50 for the G1.  The 

2-Clip-phen showed a G4DC50 value of 33.3 µM, which is around ~18 times weaker than the least 

potent derivative 12 for G1, suggesting the effect of side chains on increasing the binding 

affinity of 2-Clip-phen.  The alicyclic base moiety may provide additional ionic interactions with 

G-quadruplexes in the grooves.  The following trend was found in terms of the alicyclic base 

moiety in the FID assay for G2: pyrrolidine > piperidine > morpholine  > n-methyl 

piperazine which is also the trend of the pKa of the alicyclic bases218,219. 
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Figure 4.8. Displacement of thiazole orange (TO) by 2-Clip-phen derivatives from a) G1, b) G2 

c) G3 in Fluorescent Intercalator displacement (FID) assay. 

 

 

G-quadruplex DNA in Na+ folds into the antiparallel conformation (G2).  The compounds 

11 and 13 with a pyrrolidine and piperidine alicyclic base showed no significant difference in 

G4DC50 values for G2, which is in accordance with the thermal denaturation studies.  The 2-

carbon linker containing derivatives of 2-Clip-phen overall showed better G4DC50 than the three 

carbon linker analogues except for morpholine derivatives.  One possible reason could be the 

ligand induced G-quadruplex conformation has different groove features in K+ and Na+ salt 

conditions.  The exact reason for this reversal of trend is not known yet. 2-Clip-phen showed a 



 180 
 

high G4DC50 value of 22.90 µM, which is in accordance with a small thermal stabilization 

observed. 

 

Table 4.2 
G4DC50 Values of 2-Clip-phen Derivatives Against G1, G2 and G3. 

G4DC50 of 2-Clip-phen derivatives against different G4 conformations in µM 

       Compounds              G1                                  G2                                   G3 

10   1.3 ± 0.1    0.6± 0.03   5.81 ± 0.78 

11    01 ± 0.1    0.6 ± 0.02   9.67 ± 0.47 

12   1.8 ± 0.3     0.4 ± 0.07   3.94 ± 0.16 

13   1.0 ± 0.1    0.7 ± 0.02   5.13 ± 0.26 

14   1.3 ± 0.1    1.3 ± 0.10 23.2 ± 2.5 

15   1.4 ± 0.1    0.8 ± 0.08 10.76 ± 0.46 

16   1.8 ± 0.2    0.7 ± 0.04   9.49 ± 0.73 

17   1.4 ± 0.1     0.7 ± 0.02 10.23 ± 0.63 

18   1.4 ± 0.1     0.4 ± 0.03   7.25 ± 1.07 

2-CP  33.3 ± 2.9     22.9 ± 0.7 19.9 ± 2.2 

 2-CP = 2-Clip-phen 

 

2-Clip-phen derivatives showed the least affinity towards parallel stranded c-MYC 

conformation.  Out of all the derivatives, the piperidine-containing derivatives were the most 

potent, followed by pyrrolidine, N-methyl piperazine and morpholine which is in accordance 

with thermal denaturation studies.  Derivatives with C-2 linker performed better than the ligands 

with C-3 linker except morpholine containing derivatives.  The trend is again in line with the 

thermal denaturation studies. 

The binding of the 2-Clip derivatives to dsDNA was also evaluated using the FID assay. 

As shown in Table 4.3, none of the derivatives showed the 50% displacement of the at 20 µM 

concentration.  Both 11 and 13 showed the highest displacement of TO at 20 µM, which is 34.3 

± 2.4 % and 34.5 ± 3.0 %, respectively.  Using a rough estimate, 11 and 13 are at least 28 times 
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more selective to G2 than the duplex DNA.  The corresponding selectivity to G1 is at least 20 

times over duplex DNA.  Compounds showed better selectivity for G2/G1 over duplex DNA 

than Phen-DC6.  The selectivity profile is equivalent or better than Phen-DC3, one of the best G-

quadruplex ligand220. 

 

Table 4.3 

Percentage Displacement of the TO from the Duplex DNA at 20 µM Ligand Concentration. 

 

 

  

 

 

 

 

 

4.3.4. 2-Clip-phen Derivatives Induced Conformational Change in a Hybrid Telomeric G-

quadruplex 

 CD titrations were performed to study the conformation preference of the ligands to three 

G-quadruplex conformations mentioned above.  As shown in figure 4.4, the CD spectrum of the 

htelo hybrid G-quadruplex (G1) showed a maximum at 293 nm, a shoulder peak at 270 nm, and 

a negative band at 235 nm, which signifies a hybrid conformation.  The addition of ligand 11 and 

13 to the DNA solution led to the increase in the intensity of the peak at 293 nm with a 

concomitant blue shift of the maximum (287.5 nm at 5.5 molar equivalents of ligand).  There is a 

clear emergence of a new peak at 263 nm (negative band), which intensifies as more ligand stock 

Compound TO displacement at 20 µM concentration 

10 23.3 ± 3.0 

11 34.3 ± 2.4 

12 16.7 ± 1.2 

13 34.5 ± 3.0 

14 24.0 ± 2.1 

15 34.8 ± 2.5 

16 27.4 ± 4.8 

17 28.3 ± 2.90 

18 19.8 ±1.7 

2-CP 16.2 ± 1.1 
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is added to the G-quadruplex solution.  This observation suggested a ligand-induced transition 

from the hybrid conformation to the antiparallel conformation in solution.  As a representative 

example, an isoelliptic point at 273 nm when titrating a ligand (11 or 13) to G1 was observed, 

showing the clear transition to the antiparallel conformation117.  In addition, titrating the hybrid 

conformation G-quadruplex (G1) with 11 or 13, the intensity of the peak at ~293 nm increased 

as a function of increasing ligand concentrations in solution, signifying the conformation 

transition to the antiparallel conformation (Figure 4.9a and 4.9c).  It is known that a concomitant 

increase in the peak at 295 nm (+) with a blue shift at this wavelength and an increase in the peak 

at 265 (-) are a signature feature of the antiparallel conformation, resulting from the syn-anti and 

anti-syn base steps186.  The change in conformation of hybrid htelo (G1) to antiparallel 

conformation (G2) has also been observed with other ligands such as 1,10-phenanthroline 

scaffold214,221,  natural product Telomestatin222, metal porphyrins117 and bis quinolinium 

derivative of pyridine221. 

Previous studies suggested that the G1 sequence in K+ can form an ensemble of different 

conformations in rapid equilibrium, with the hybrid conformation being the most stable62,223. 

Therefore, the CD spectrum of a hybrid G-quadruplex could be the weighted average spectrum 

of all conformers present in solution.  The shoulder peak at 270 nm results from a minor 2-tetrad 

antiparallel G-quadruplex136, in which guanines stack in exclusively alternating orientations and 

a triplet of guanines stacks on one terminal G-tetrad136,223.  Two-tetrad G-quadruplex also called 

hybrid-3 is well characterized and is found to exist in equilibrium with hybrid conformations in 

the solution223,224.  The presence of 5’-flanking sequences is required for its stabilization in 

solution223.  The disappearance of the shoulder peak at 270 nm upon addition of 11 or 13 (Figure 

4.9b and 4.9d) indicates the interaction of the ligand with this 2-tetrad G-quadruplex.  This 
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disappearance was observed at a low ligand concentration (0.5 equivalent of Compound 11), 

suggesting that the percentage of this 2-tetrad G-quadruplex in solution is small.  A previous 

study reported a less than 10% contribution226 of the 2-tetrad G-quadruplex to the CD spectrum 

of the hybrid G-quadruplex, which is consistent with our result.  The disappearance of the peak 

at 270 nm also suggests that 11 or 13 could stack on top of the end G-tetrad in the 2-tetrad G-

quadruplex and consequently disrupt the stacking of the guanine triplet at this location.  The 

ligand ability to induce the hybrid to antiparallel conformational change is weaker for 2-Clip-

phen (without any side chains) because higher ligand concentrations are needed.  2-Clip-phen 

derivatives with an amino side chain can bind to antiparallel G-quadruplexes more tightly than 2-

Clip-phen, facilitates the transformation.  At this point, it is inconclusive whether the hybrid G-

quadruplex transforms into the 3-tetrad or 2-tetrad antiparallel G-quadruplex or both in solution. 

More characterization will be discussed in the later section when we discuss the results of ESI 

mass spectrometry. 
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Figure 4.9. CD titrations of compound 11 with 13 to G1 in 150 mM KCl.  a) Ligand 11 to G1.  

b) Disappearance of shoulder peak at 270 nm with 0.5 equivalent of 11 in solution.  c) Ligand 13 

to G1.  d) Disappearance of shoulder peak at 270 nm at 0.5 equivalent of 13 in solution. 

 

 

 

By contrast, the addition of 2-Clip-phen derivatives to the c-MYC parallel G-quadruplex 

did not show any conformational changes even in the presence of more than 5.5 equivalents of 

ligands (Figure 4.10).  This G-quadruplex is very stable, so the transformation from parallel to 

antiparallel could be thermodynamically unfavorable.  The weak binding of 2-Clip-phen 

derivatives cannot promote the transformation as well.  
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Figure 4.10. c-MYC G-quadruplex (black line) with 5.5 equivalents of 2-Clip-phen derivatives. 

 

4.3.5. 2-Clip-phen Derivatives Can Even Induce Antiparallel G-quadruplex Formation in 

the Salt (K+) Free Conditions  

 The ability of the ligands to induce the G-quadruplex formation from random coils in a 

salt-deficient condition was studied.  Compound 11 and 13 were chosen as a representative 

example.  Monovalent alkali metal ions like Na+ and K+ are necessary to stabilize G-quadruplex 

structures by sitting in/near the center cavity of G-tetrads and coordinating with O6 of guanines.  

The energy of this coordination almost entirely drives the folding of G-quadruplex with little or 

no contribution from other weak interactions225.  The ligands were analyzed for their ability to 

induce the folding of G-quadruplex DNA from random coils in the absence of K+/Na+.  The htelo 

DNA (10 µM) in 50mM Tris•HCl (K+ free buffer) was heated to 90oC for 5 mins and then 

rapidly cooled in ice water to ensure the random coil of the DNA, characterized by the positive 

maximum at 255 nm and negative maximum ~240 nm (red line in figure 4.11).  The addition of 

0.5 equivalent of 11 and 13 followed by 5 min equilibrium time leads to induction of antiparallel 
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G-quadruplex characterized by the appearance of peak (positive) at 295 nm along with the peak 

(negative) at 265 nm.  The addition of stoichiometric amounts of the ligand leads to further 

amplification of the peaks at 295 nm and 265 nm.  The transition from random coils to folded G-

quadruplex DNA is fast and takes only a few mins.  The presence of the isoelliptic point at 272 

nm suggests a clean transition to the antiparallel G-quadruplex upon the addition of 11.  A 

similar but much weaker effect was reported by Balasubramanian group117 on a 

tetramethylpyridiniumporphyrazines class of G-quadruplex ligands,  

 To determine the effect of the side chain in 11 and 13, the ability of the 2-Clip-phen for 

the induction of G-quadruplex from random coils was analyzed (Figure 4.12).  

 

 
Figure 4.11. CD spectrum of non-annealed 10µM htelo DNA in a K+ /Na+ free Tris.HCl buffer, 

pH 7.4 (black) and in the increasing stoichiometric amounts of ligands a) 11 and (b) 13. 

 

 

 

 The comparable CD spectrum of 2-Clip-phen was weaker at all the concentrations as 

seen from the intensity of the peak at 295 nm (due to antiparallel G-quadruplex) and the peak at 

255 nm (due to random coil), which is due to the antiparallel G-quadruplex and random coils of 

DNA, respectively.  The peak at 255 nm at 10 equivalents of 2-Clip-phen has relatively the same 
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amplitude as peak at 295 nm, signifying much weaker influence of 2-Clip-phen scaffold alone on 

the induction of G-quadruplex from random coil.   

 Compound 11 and 13 were able to induce the formation of G-quadruplex from random 

coils even at a very low ligand to DNA molar ratio (0.5).  There is not much change in intensity 

at 295 nm when th ligand to DNA molar ratio is over 6, as shown in figure 4.9.  All the 2-Clip-

phen derivatives were tested for their ability to induce G-quadruplex formation in K+/Na+ free 

buffer at both 0.5 and 6 molar equivalents for comparison (Figure 4.13a and Figure 4.13b).  It is 

evident that 11 and 13 are the most potent ligands based on the intensity changes of peaks at 295 

nm at both 0.5 and 6 molar equivalents of ligand concentrations.  This data supports the thermal 

denaturation studies. 

 

 
Figure 4.12. CD spectrum of random coil in a K+ free buffer (black).  The addition of aliquots of 

2-Clip-phen to the solution lead to the appearance of the peaks at 295 nm (+ ve), 260 nm (- ve) 

with concomitant decrease in intensity at 255 nm.  There is no significant increase in the 

amplitude of the peak at 295 nm after addition of 6 molar equivalents of 2-Clip-phen. 
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Figure 4.13. CD spectrum of the random coil in a K+ free buffer (black).  a) Addition of the 0.5 

molar equivalents of 2-Clip-phen derivatives lead to appearance of peaks at 295 nm (+ve), 260 

nm (-ve) with concomitant decrease in intensity at 255 nm.  b) CD spectra of the mixture 

solutions with 6 molar equivalents of ligands. 

 

 

 

The G-quadruplex (the G1 sequence) induced by both 11 and 13 in a salt-free condition 

are stable, which can be readily observed by thermal denaturation.  The melting temperature (Tm) 

of the induced G-quadruplex in the presence of both 11 and 13 (a 4:1 ligand to DNA ratio) is 60 

oC (Figure 4.14).  By contrast, without 11 or 13, this sequence is random coils in solution. No 

melting transitions were observed. 
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Figure 4.14. CD thermal denaturation of induced G-quadruplex. 

 

4.3.6. Compound 11 Binds the Antiparallel Htelo G-quadruplex With 2:1 Binding 

Stoichiometry   

The changes in ellipticity in CD spectrum were plotted against the ligand/DNA ratio226.  

As shown in the previous section, 11 can induce the formation of the antiparallel G-quadruplex 

in the absence of salts but has a little effect on the antiparallel G-quadruplex in 150 mM NaCl.  

Therefore, the CD spectra for the induction of G-quadruplex from random coils in a salt-free 

buffer and in 150 mM KCl were used to investigate the binding stoichiometry.  The ellipticity at 

292 nm was plotted against the ligand to DNA molar ratios.  The graphs are shown in figure 

4.15.  The intersection point in the graphs corresponds to an approximately 2:1 ligand to DNA 

binding ratio, suggesting that two ligand molecules bind to one G-quadruplex molecule.  UV/Vis 

titrations were not used for this study because the ligands have a UV λmax at 270 nm, which 

interferes with the absorption of DNA in the same region.  
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Figure 4.15. CD Job plot of 11 against G1 random coil in 50mM Tris.HCl buffer, pH7.4 (left) 

and against folded G1 in 150 mM KCl and 40 mM LiCaco buffer (right). 

 

 

4.3.7. 2-Clip-phen Derivatives Induced a Two-tetrad G-quadruplex Conformation in 

Solution 

The binding stoichiometry of the ligands to DNA and the nature of bound complexes 

were further investigated with electrospray ionization (ESI) mass spectrometry.  As explained in 

Chapter 3, the number of ammonium ions complexed with a G-quadruplex DNA provides the 

nature of the G-quadruplex under study.  If the G-quadruplex complex contains only one NH4
+, it 

is a two-tetrad structure because two G-tetrads can only sandwich one NH4
+ ion.  If the G-

quadruplex complex contains two NH4
+ ions, it is composed of three G-tetrads.  Previous CD 

studies suggested that 2-Clip-phen derivatives can induce the transformation of G1 (hybrid) into 

antiparallel G-quadruplex(es) although the identity of the antiparallel G-quadruplex (2-tetrad or 

3-tetrad) is uncertain. 

 In the study, compounds 11 and 13 were analyzed using an ESI-LTQ mass spectrometer 

for their binding stoichiometry and relative binding affinity for G-quadruplex DNA.  A solution 

of G-quadruplex sequence (Gseq) annealed in 150 mM NH4
+ was used as a control (G1) (Figure 

4.16a).  The ion at m/z 1460.36 corresponds to the G1 [Gseq + 2NH4
+ - 7H+]5- anion.   
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The inclusion of two NH4
+ ions suggests the formation of a 3-tetrad G-quadruplex (G1) in 

solution.  Previous CD result shows this sequence folds into a hybrid G-quadruplex in NH4
+, 

which is preserved in the gas phase227.  The addition of 4 equivalents of ligand 11 to the G-

quadruplex solution leads to the complexation of nearly all the G-quadruplex in solution.  Only a 

small peak representing the free G1 was observed (Figure 4.16a and b).  Two new ion peaks at 

m/z 1432.64 and 1719.18 emerge, representing the [Gseq + NH4
++DMF + 2x(11))]6- and [Gseq + 

NH4
++ DMF + 2x(11)]5- ions, respectively, suggesting the formation of a 2:1 ligand to DNA 

complex with only one ammonium ion associated with the complex ion peaks.  It shows that the 

G-quadruplex folds into a two-tetrad conformation (Q1) as only one NH4
+ ion is associated with 

the ligand-DNA complex.  We also observed the peaks at m/z 1435.91 and 1723.36, [Gseq + 

2NH4
++DMF + 2x(11))]6- and [Gseq + 2NH4

+ + DMF + 2x(11))]5- respectively which showed the 

inclusion of two NH4
+ ions in the complex ion peak along with two molecules of 11 in the 

complex ion peak (Figure 4.16b).  Q1 and G1 were calculated according to the formula, Q1 or 

G1 = [(Gseq) + (NH4
+)y - x(H+)]-x+y, where Gseq is a unfolded DNA sequence.  The ligands do not 

contribute to the overall charge of the complex ion peak in our case. 
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Figure 4.16. Mass spectrometry analysis of the G-quadruplex. a) G1 without ligand. b) Mixture 

solution of G1 and 11 ([G1]:[11] = 1:4).  The peak with maximum intensity is set as the base 

peak (100%). 

 

 

 

To confirm the result is not due to the experimental condition, an ESI experiment on the 

complexation of a phenanthroline-neomycin conjugate (Chapter 3, 7b) with G1 was carried out.  

As expected, this ligand forms a 1:1 ligand and G1 complex with the inclusion of two NH4
+ ions, 

indicating the presence of a 3-tetrad G-quadruplex (Figure 4.17a).  It is noteworthy that our 

previous studies (Chapter 3) showed no change in conformation of the hybrid G-quadruplex 

occur on the addition of 7b to G1227.  

 The relative intensities of Q1 and G1 in the mass spectra changed when we prolonged the 

incubation time (from 30 minutes to 3 days) of the ligand (11 or 13) with G1.  As shown in 

figure 4.15b and 4.16b, after a 3-day incubation time, the intensities of complex ions 

representing 2-tetrad G-quadruplex (Q1) increased, suggesting that 2-Clip-phen derivatives 

could bind more preferentially to the 2-tetrad antiparallel G-quadruplex over the 3-tetrad G-

quadruplex (antiparallel or hybrid). 

a b 
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Overall, both 11 and 13 binds with the 2-tetrad and 3-tetrad G-quadruplexes in a 2:1 ligand to 

DNA stoichiometry.  The mass spectral data is consistent with the results of CD studies. 

 

 

Figure 4.17. Mass spectrum of the mixture solution of a) G1 and 7b ([G1]:[7b] =1:2) and b) G1 

and 13 ([G1]:[13] =1:4) mixture solution on the right. 

 

 

 

4.3.8. Docking Studies 

 The binding interactions of 2-Clip-phen derivatives with three G-quadruplexes were 

further studied with docking simulations.  Compound 11 was chosen as a representative ligand. 

The Grid score and energy attribution of compound 11 with antiparallel, parallel, and hybrid G-

quadruplexes are shown in Table 4.5.  Relative binding interactions involved in stabilization of 

the ligand are primarily non-polar in nature due to the large contribution of the van der Waals 

interactions to the binding (Table 4.5).  

 

 

 

 

a b 
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Table 4.4 

DOCK 6 Grid Score and Energy Attribution of Ligand 11 With Three Different G-quadruplexes. 

G-quadruplex conformation 

Receptor Antiparallel Parallel Hybrid 

van der Waals -50.3 -58.0 -48.9 

Electrostatic -12.1 -10.0 -15.2 

 

 

 

Ligand 11 binds with a relatively higher electrostatic contribution to hybrid G-quadruplex 

(Figure 4.18a).  The two nitrogen atoms at the 1 and 10 positions of phenanthroline are probably 

interacting with the N-H of the guanines (G10, G18 in the top and G11, G17 in the middle tetrad) 

in the grooves.  The amino-containing side chains point up, making no bonding contribution in 

this state.  For the antiparallel G-quadruplex (Figure 4.18b), ligand 11 binds with the top G-

tetrad through favorable π- π interactions, and One of the phenanthroline rings interacts with the 

lateral loop nucleobases with the ligand side chain pointing into the groove.  We previously 

observed that 2-Clip-phen stabilizes G2 poorly; therefore, the strong polar interactions in the 

groove between the basic nitrogen of the side chain are a plausible explanation for the effect of 

side chains on antiparallel G-quadruplex (G2) stabilization.  The docking results indicate more 

contacting points of 11 with antiparallel G-quadruplex (G2), clearly showing that the binding of 

11 to antiparallel G-quadruplex is better than that to hybrid G-quadruplex.  This result is 

consistent with our CD and thermal denaturation studies.  Parallel c-MYC G-quadruplex used in 

the study has propeller loops, which might be hampering the binding of the side chain in the 

groove.  One of the phenanthroline rings and the side chain interact with flanking sequences 

(Figure 4.18c).  The binding to the c-MYC G-quadruplex is governed mainly by the van der 

Waals interactions means that the side chain is not able to make favorable electrostatic 
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interactions.  It is necessary to point out that the docking studies on the 2-tetrad G-quadruplex 

cannot be carried out at this moment due to the lack of reliable PDB structures.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18. Docked structure of ligand 11 to different G-quadruplex conformations. The G-

quadruplex is represented as surface colored by electrostatic potential and ligand 11 is 

represented as a ball and stick.  a) Ligand interactions with the hybrid conformation, the two 

rings are involved in stacking and groove interactions.  b) Ligand 11 interacting with antiparallel 

conformation and c) 11 is interacting with the parallel G-quadruplex preferably through π-π 

interactions.  
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 4.4. Conclusion  

 The 2-Clip-phen derivatives show a remarkable preference to G-quadruplexes.  They can 

induce antiparallel G-quadruplex from the random coils in a Na+/K+ free buffer and stabilize it to 

a great extent (Tm = 60 °C).  In addition, the ligands can induce the formation of antiparallel 

conformation from the already folded hybrid conformation under the conditions suitable for the 

formation of hybrid conformation.  A plausible mode of action is shown in figure 4.19.  The 2-

Clip-phen derivatives could bind to both 2-tetrad and 3-tetrad antiparallel G-quadruplexes.  The 

binding of a 2-Clip-phen derivative to the 2-tetrad G-quadruplex disrupts its guanine triplet 

capping.  When binding to the antiparallel G-quadruplex conformation, two phenanthroline 

moieties of 2-Clip-phen derivatives can interact individually with the loops nucleotides as 

observed in the docking study.  The inability to be in a plane also greatly affects its ability to 

interact with c-MYC parallel G-quadruplex.  The additional specificity could result from steric 

interactions between the side chain and edge reversal loop in the groove, which forces the side 

chain interacts with the flanking sequence rather than being in the groove (Figure 4.18c). 

 The discovery of 2-Clip-phen preferentially binding to antiparallel G-quadruplex DNA is 

encouraging.  2-Clip-phen derivatives are capable of coordinating with Cu2+, which makes a 

fixed planar aromatic surface.  The resulting metal complexes should have even better G-

quadruplex binding affinities.  In addition, The Cu2+-2-Clip-phen complexes have the ability to 

cleave DNA; therefore, our 2-Clip-phen derivatives could be used as G-quadruplex specific 

cleaving agents.  The evaluation will be reported in due course. 
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Figure 4.19. Proposed model to explain the different extent of thermal stabilization observed in 

NaCl and KCl salt solutions. 
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APPENDIX A: 1H AND 13C NMR SPECTRA OF SELECTED COMPOUNDS 
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APPENDIX B: IR SPECTRA OF THE SELECTED COMPOUNDS 

 

 

  

IR Spectrum of 5a 

 

IR Spectrum of 5b 
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IR Spectrum of 5c 

 

 

IR Spectrum of 5d 
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IR Spectrum of 6a 

 

 

IR Spectrum of 6b 
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 IR Spectrum of 6c 

 

 

IR Spectrum of 6d 
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IR Spectrum of 9NCS 

 

 

IR Spectrum of 6a-L 
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IR Spectrum of 6b-S 

 

 

IR Spectrum of 7a 
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IR Spectrum of 7b 

 

 

IR spectrum of 2-CP1 
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IR spectrum of 2-CP2. 

 

 

IR spectrum of 10 
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IR spectrum of 11 

 

 

IR spectrum of 12 
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IR spectrum of 13 

 

 

IR spectrum of 14 
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IR spectrum of 15 

 

 

IR spectrum of 16 
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IR spectrum of 17 

 

IR spectrum of 18 



 283 
 

APPENDIX C: CD MELTING AND CD TITRATIONS SPECTRA OF G1 AND G2 WITH 

2-CLIP-PHEN DERIVATIVES 

 

 

 

 
 

 

 

 

 

Figure C.1.  CD Titrations curves for G1 with 2-Clip-phen derivatives. 
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Figure C.2.  CD Titrations curves for G2 with 2-Clip-phen derivatives (10-15). 

 

 

 

 

 



 285 
 

 

 

 

 

 

 

 

 

 

Figure C.3.  CD Titrations curves for G2 with 2-Clip-phen derivatives (16-18). 
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Figure C.4.  CD melting curves of G1 (top-left), (G2) (top-right) and (G3) (bottom right) with 2-

Clip-phen derivatives. The temperature at 0.5 folded fraction is called the melting temperature. 
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Figure C.5.  Stabilizing effect of the compound 13 on the G1 (left) and (G2) under different salt 

conditions. The two transitions are clearly visible at low salt concentration (25 mM, biphasic 

curves). 

 

 

Figure C.6.  Stabilizing effect of the compound 11 on the G1 (left) and (G2) under different salt 

conditions. The two transitions are clearly visible at low salt concentration (25 mM, biphasic 

curves). 
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Figure C.7.  Effect of KCl and NaCl concentration on the melting temperature (Tm) of the G1 

(left) and G2 (right) respectively. 
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APPENDIX D: MIC DETERMINATION OF NEOMYCIN AND NUCEOBASE-NEOMYCIN 

CONJUGATES 

 

 
E. coli (Gram-) 

Conc  

(µM) 
256 128 64 32 16 8 4 2 1 0.5 

+ve 

Control 
Emtpy 

Neo 0.04 0.04 0.039 0.037 0.04 0.04 0.051 0.119 0.144 0.154   0.038 

N-A 0.04 0.038 0.037 0.047 0.12 0.12 0.141 0.147 0.175 0.176 0.199 0.039 

N-T 0.04 0.038 0.037 0.041 0.11 0.12 0.144 0.154 0.159 0.151 0.176 0.043 

N-C 0.04 0.04 0.039 0.04 0.1 0.1 0.125 0.15 0.17 0.17 0.172 0.039 

N-G 0.04 0.04 0.039 0.039 0.04 0.1 0.119 0.135 0.166 0.194   0.039 

S. marcescens (Gram-)           

Conc(µM) 512 256 128 64 32 16 8 4 2 1 
+ve 

Control 
Emtpy 

Neo 0.04 0.039 0.04 0.038 0.04 0.04 0.037 0.039 0.226 0.352 0.761 0.038 

N-A 0.05 0.039 0.038 0.167 0.24 0.35 0.542 0.731 0.754 0.783 0.745 0.045 

N-T 0.04 0.039 0.037 0.139 0.19 0.32 0.49 0.722 0.754 0.757 0.738 0.039 

N-C 0.04 0.041 0.039 0.04 0.16 0.22 0.278 0.45 0.63 0.78 0.73 0.039 

N-G 0.06 0.047 0.042 0.041 0.04 0.13 0.249 0.351 0.479 0.655 0.8 0.039 

B. subtilis (Gram+)           
Conc 

(µM) 
512 256 128 64 32 16 8 4 2 1 

+ve 

Control 
Emtpy 

Neo 0.04 0.039 0.038 0.039 0.04 0.04 0.039 0.039 0.041 0.041 0.357 0.035 

N-A 0.04 0.038 0.038 0.037 0.04 0.04 0.093 0.334 0.243 0.341  - 0.038 

N-T 0.04 0.038 0.041 0.039 0.04 0.04 0.039 0.133 0.334 0.322  - 0.038 

N-C 0.04 0.041 0.041 0.04 0.04 0.04 0.042 0.039 0.177 0.416  - 0.04 

N-G 0.04 0.039 0.039 0.04 0.04 0.04 0.041 0.04 0.042 0.154 0.451 0.038 

P. vulgaris (Gram-)           
Conc 

(µM) 
512 256 128 64 32 16 8 4 2 1 

Positive 

Control 
Emtpy 

Neo 0.04 0.04 0.039 0.038 0.04 0.04 0.152 0.212 0.197 0.21  - 0.039 

N-A 0.04 0.04 0.153 0.175 0.19 0.19 0.191 0.171 0.187 0.178 0.208 0.039 

N-T 0.05 0.039 0.153 0.185 0.19 0.18 0.193 0.195 0.185 0.184 0.195 0.038 

N-C 0.05 0.044 0.041 0.189 0.2 0.19 0.199 0.194 0.188 0.206 0.217 0.04 

N-G 0.05 0.047 0.04 0.04 0.19 0.25 0.272 0.281 0.287 0.3 0.286 0.039 

E. coli (resistant)           
Conc 

(µM) 
512 256 128 64 32 16 8 4 2 1 

+ve 

Control 
Emtpy 

Kana 0.35 0.33 0.327 0.295 0.27 0.28 0.324 0.288 0.283 0.305 0.314 0.039 

Neo 0.04 0.037 0.037 0.04 0.05 0.11 0.234 0.281 0.261 0.249 0.294 0.039 

N-A 0.1 0.244 0.409 0.209 0.34 0.36 0.349 0.349 0.336 0.348 0.279 0.038 

N-T 0.17 0.269 0.308 0.363 0.35 0.36 0.356 0.322 0.313 0.323 0.287 0.039 

N-C 0.06 0.07 0.144 0.314 0.33 0.38 0.408 0.347 0.334 0.329 0.314 0.039 

N-G 0.04 0.047 0.21 0.185 0.22 0.33 0.438 0.37 0.349 0.347 0.306 0.039 

Figure D.1.  MIC determination: The OD600 values for each bacterial strain in the presence of 

neomycin and compound 6a-6d at various concentrations. 
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