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The Scalene Cone: Euler, Varignon, and Leibniz

Daniel J. Curtin, Northern Kentucky University (Emeritus)
148 Brentwood Place, Fort Thomas, KY 41075

curtin@nku.edu

Abstract

The work translated alongside this article is Euler’s contribution to the
problem of the scalene cone, in which he discusses the earlier work of
Varignon and Leibniz. He improves Varignon’s solution and corrects Leib-
niz’s more ambitious solution. Here I will discuss the problem, provide
extensive notes on Euler’s paper, and lay out its relation to the other two.
For ease of reference translations of the papers of Varignon and Leibniz
are appended, with the Latin originals. Euler’s version in Latin is available
at https://scholarlycommons.pacific.edu/euler-works/133

1 The Problem

1.1 The History of the Problem

Finding the surface area of a right cone, a cone with circular base and vertex
directly over the center of the circle, was known from antiquity, certainly by
Archimedes.

The problem of finding the surface area of a scalene (or oblique) cone, one
with circular base but vertex not necessarily directly over the center of the circle,
seems to have been solved first by Pierre Varignon. In 1727 he published his
result in the Miscellanea Berolinensia [3]. He called his paper a schediasma, a
Latin version of a word that in Greek means a caprice, or whimsy. Varignon
probably meant a sketch or rough draft. In fact, the mathematics in his paper is
fully formed, but the layout and referencing are not carefully done. He solved the
problem by giving a curve whose arc length at certain points gives the surface
area of the corresponding part of the cone.

In the same volume, in fact in the article immediately following Varignon’s,
Gottfried Leibniz [4] gave his suggested improvements. Varignon’s curve was
transcendental, implicitly using trigonometric functions. Leibniz gave an alge-
braic curve to solve the problem and outlined how to extend his solution to base
curves other than the circle. The two papers share a single diagram, printed in
between them.
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In his introductory paragraph, Leibniz asserted that Gilles de Roberval told
Leibniz he had a solution, but never published it, but Leibniz noted that he
could not find such work among Roberval’s papers, after his death.

A bit later, Euler took up the problem, publishing his solution in 1750 [2]. In
his introduction, he referred to the two earlier papers by Varignon and Leibniz.
He remarked that Leibniz’s solution was excellent, but involved a slight error.
Euler used a Greek word in Latin form, sphalma meaning a misstep or stumble,
perhaps to soften the criticism of a mathematician he greatly admired. Euler
gave his own version of Varignon’s solution, then extended it in several ways.
He explained where Leibniz went wrong, then corrected the misstep.

1.2 The Differential Approach

A cone is defined by starting with a circle in the plane and a vertex V that is
above the plane but not necessarily located directly over the center of the circle.
A point on the circle A is selected and line segment V A is connected. Then
the cone is defined by following points M around the circle as VM sweeps out
any section AVM of the cone that is desired. This dynamic definition allows
infinitesimal methods to be used. For all three authors, a solution to the problem
is a curve whose arc length gives the areas of the sectors of the cone. For either
the arc length problem or the surface area problem, the integrals that result are
rarely integrable in simple terms, since they both involve the element of the arc
length ds =

√
dx2 + dy2 or something similar.

2 The Right Cone

To illustrate the idea let’s do the surface area of the right cone. We don’t need
infinitesimal arguments here. Let C be the center of the circle and r the radius
[Figure 1.] Consider the segment AVM of the cone, with slant height l and
central angle u = ∠MCA. In the plane the circular arc AM has length ru.
Then AVM can be unfolded to a plane figure A′V ′M ′ that is part of a circle
of radius l = A′V ′, with arc A′M ′ of length ru. The central angle of A′V ′M ′

is ru/l, so the area of A′V ′M ′is

1

2
l2
ru

l
=

1

2
lru =

lr

2
u .

Now l and r are constants, so as a function of u this is a curve, in fact a line,
whose arc length for any given point that is parametrized by a particular value
u gives the areas of that circular sector.
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Figure 1: Surface area of a right cone of radius a and slant height l.

3 The Scalene Cone with Circular Base

If the vertex is off center things get quite a bit more complicated. This was first
solved by Varignon [3]. Then Leibniz [4], using a different approach, claimed to
solve it with an algebraic curve. He also claimed his approach extends to the
case of an arbitrary base curve. Euler points out that this is not quite correct
and removes the error, as we will see later.

The fundamental idea in all cases is to look for another point m, close to
M . The area of the region MVm is then the building block for the surface
area. Taking m infinitesimally close to M makes MVm what they called the
element of the surface area, for us the integrand of the integral that would give
the surface area. For Euler and the others, solving the problem meant finding
a curve whose arc length element is this element of surface area.

4 Notes on Euler’s Paper

In what follows, I will outline what Euler does in various paragraphs, while
leaving the reader to see much of the details in the work itself. I also try to
include things I wish I had seen the first time I read this paper, in hopes they
may prove helpful.

In [1], I go into much more detail about paragraphs 1–16, but note that, as
usual, Euler himself does a good job of explaining his own ideas.

4.1 Paragraphs 2–4

Euler first sets out to reproduce Varignon’s curve [Figure 2]. He uses the central
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Figure 2: Euler’s figure of the scalene cone.

angle of the circle u = ∠ACM as the parameter for his solution. He defines
three constants: a, the radius of the circle; b, the height of the cone (V D); and
c, the distance from the center of the circle to the foot of the perpendicular
from V to the plane of the base (c = CD). He then derives the area as

AVM =
1

2
a

∫
du

√
b2 + (c cosu− a)2.

Euler generally writes bb for b2, etc. In this commentary I will use the more
modern notation, since they mean the same thing. I have not moved his du, etc.,
to the modern location, since I believe we understand the du quite differently
from Euler. I left the notation in my translation as close to Euler’s as possible.

In paragraph 4 he concludes the curve is given, in what we would call
parametric form:

p = bu,

q = c sinu− au.

He then says, “It will be clear to the attentive reader that this curve is the same
as Varignon discovered.” It took me a bit of work, but I was able to verify this
equivalence; see section 5 below.

4.2 Paragraph 5

Euler does not stop here. As usual he works to get as much out of the idea
as possible. He notes that this solution involves transcendental functions, while
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Leibniz has found (almost correctly) an algebraic solution, though by a different
method that Euler discusses later.

4.3 Paragraphs 6 & 7

Euler then proceeds to substitute z = cosu and thus to generate not only one
algebraic solution but in fact a whole family of algebraic solutions.

4.4 Paragraphs 8–15

Euler works out several examples, also detailed in [1]. He always finds a
parametrized curve, never a numerical answer.

4.5 Paragraph 16

Euler solves the case in which the perpendicular from vertex V passes through
the point A on the circle and where the angle of the axis V C of the cone to
the base is 60◦. He derives parametric equations for a curve that solves the
problem, then, almost as an afterthought, notes that the actual area of the part
of the cone swept out from E to M will be 1

2az, where a is the radius of the
base circle and z = arcsin∠ECM , the angle ECM being the complement of
the angle u = ∠ACM used in determining the curve.

5 Euler’s Solution Is the Same as Varignon’s

This section is for those interested in Varignon’s paper [3], which is translated
in Appendix 1.

At the end of Euler’s paragraph 4 he gives a parametrized curve whose arc
length (multiplied by 1

2a) is the surface area of the scalene cone. The curve is
given by abscissa p = bu and ordinate q = c sinu−au. He then asserts, “It will
be clear to the attentive reader this is the same curve as Varignon discovered.”
Let’s see how.

I will use mostly Varignon’s notation. For the radius of the circle, Varignon
uses r, Euler a. For the distance from the center of the circle to the foot of the
perpendicular from the vertex, Varignon has r + a, Euler c. For the distance
from the vertex to the plane of the circle both use b. Euler uses u for the
generating angle ∠DCM. Varignon uses no letter for his angle ∠AOH, but I
will use Euler’s notation u. Further, for the arc swept out on the circle through
the angle u, Varignon uses AH, Euler AM . Either of these is equal to ru.
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Thus in Varignon’s notation (plus u) Euler’s curve becomes

p = bu,

q = (r + a) sinu− ru.

Varignon gives his curve, beginning in the part entitled Proof, with a free
constant m. For us the relevant parts are as follows, first in the form Varignon
wrote them, using the letters from his diagram:

AE =
BC ·AH

2m
=

b

2m
AH,

EP =
AO ·AH +OC ·GH

2m
=

rAH + (r + a)y

2m
.

Here if we suppose p is AE and q = EP , then try 2m = r, we get

p = AE =
b

a
AH,

q = EP =
rAH + (r + a)y

r
.

Further, looking at Varignon’s diagram, we see

sinu =
−y
r

.

With AH = ru this gives us

EP =
r2u+ (r + a)r(− sinu)

r
= ru− (r + a) sinu.

Thus we correct our guess to make q = −EP , which makes no difference to
the length.

Finally, as mentioned above, Euler had factored a/2 out of his integral for
the surface area before deriving p and q, but Varignon’s curve can account for
this by adjusting the value of the constant m to be

√
a.

6 Leibniz’s Solution Perfected

For the remainder of the paper, Euler takes up the general problem of a cone
with any curve in the plane whatsoever as base [Figure 3]. After setting this
up in paragraphs 17–20, he returns to Leibniz’s idea and in paragraphs 21–28
corrects his solution.

15

Euleriana, Vol. 1 [2021], Iss. 1, Art. 3

https://scholarlycommons.pacific.edu/euleriana/vol1/iss1/3



Figure 3: The cone with arbitrary curve as base.

6.1 Paragraphs 17 & 18

Euler no longer has the central angle available, so he takes any point M on the
curve and the foot D of the perpendicular from the vertex to the plane, and he
sets x = DM . He then takes the tangent line to the curve at M and identifies
the point Q on that line for which DQ is perpendicular to the tangent. He sets
y = DQ and notes that “there will be an equation between x and y.”

We’ll follow the general trend of the argument. The details are not hard to
read in the text.

As before, he considers a point m on the curve infinitely near M . The
triangle MVm is the element of the surface area of the cone. Recall that
b = V D is the height of the cone. Since V Q is the height of this triangle,

MVm =
1

2
Mm · V Q.

He shows that

MVm =
1

2

xdx
√
b2 + y2√

x2 − y2
,

so

AVM =
1

2

∫
xdx

√
b2 + y2√

x2 − y2
.
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The last equation gives an integral for the area desired.

6.2 Paragraph 19

Euler unfolds the cone onto the plane [Figure 4], as we do with the right cone,
but here he approaches the triangle MVm in a different way. He uses the
perpendicular, Mr from M to V m, which would be the height of the triangle
relative to V m, and derives the distances Mr and mr for later use.

Figure 4: The section of the same cone spread out on the plane.

6.3 Paragraph 20

Next Euler returns to the cone in space [Figure 3], and he assumes the exis-
tence of the solution curve AFS. He will derive properties of the point S and
eventually show how to find it. Leibniz had based his argument on selecting an
angle, essentially ∠SMN to lead to his solution curve FS. In fact, Euler’s Fig.
4 [Figure 5] resembles the figure for Leibniz’s paper [4].

To see how the area can be defined using an angle, Euler defines v =
∠AVM . He also defines u = ∠ADM . Then since VM and V r are radii of an
infinitesimal circle centered at V and dx = Mr is an arc of the circle,

dv =
Mr

VM
.

By a similar argument, using D as the center,

du =
Mn

DM
.
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Figure 5: In the base plane.

Using previous calculations for Mr, VM,Mn, and DM from paragraphs 17–19,
Euler obtains

dv =
xdx

√
b2 + y2

(b2 + x2)
√
x2 − y2

and

du =
ydx

x
√
x2 − y2

.

He solves the second for y, then substitutes into the first, which yields

dv =

√
b2dx2 + (b2 + x2)x2du2√

b2 + x2
.

Thus, since u depends on x, the angle v can be found by integrating, and it
then can be used to find the surface area AVM .

6.4 Paragraph 21

Euler now returns to the basic integral needed to solve the problem,∫
xdx

√
b2 + y2√

x2 − y2
,

and he notes that it can be solved in many different ways. Since Euler’s goal
is to correct Leibniz’s approach, which he describes as “the most elegant,” he
sets out to follow Leibniz’s idea.
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6.5 Paragraph 22

Euler begins to trace Leibniz’s procedure. As noted above, Euler assumes that
the desired curve FS is given, then deduces what is needed to show its existence
and nature.

For each point M on the base curve AM , there is the segment MS to S on
the rectifying curve. For a point m infinitely near M , the corresponding segment
ms should be such that S is infinitely near s. The arc length of the base curve is
given as s = AM . (Yes, Euler uses the same letter for two different things, but
the context always makes it clear which is which.) Let v = ∠SMm, i.e., the
angle of MS to the tangent at M . Then ds = Mm and ∠smN = v + dv. He
defines the osculating circle to AM at M whose center is R and whose radius
is r = MR. Then after a bit of work he obtains

MS =
rds sin v

ds+ rdv
,

from which he claims the construction of the curve FS follows, as we shall see.
Here F is the point on the curve corresponding to M = A.

6.6 Paragraph 23

Euler sets z = MS, so ms = z+dz. Using a bit of right angle trigonometry he
shows that the element of arc length of the resolving curve Ss = ds cos v+ dz.
Integrating with respect to z he obtains

FS =

∫
ds cos v + z + C.

We have z = MS, and when s = 0, MS = AF . Assuming
∫
ds cos v is 0 for

s = 0, we have ∫
ds cos v = FS −MS +AF.

We need to look more closely at this integral.

6.7 Paragraph 24

From previous work,

Mm = ds =
xdx√
x2 − y2

,

and the surface area AVM may be written in two ways:

1

2

∫
ds cos v =

1

2

∫
xdx

√
b2 + y2√

x2 − y2
.
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Thus we want the angle v to be such that
∫
ds cos v leads to

∫
ds
√

b2 + y2.

6.8 Paragraph 25

Euler now obtains v from V Q =
√
b2 + y2 by taking a constant k larger than,

or equal to, the largest possible value of V Q along the base curve, then setting

cos v =

√
b2 + y2

k
.

Thus the surface area is given by

1

2

∫
ds
√
b2 + y2 =

1

2
k

∫
ds cos v.

Geometrically this is
1

2
k(FS +AF −MS).

6.9 Paragraph 26

Recall that r is the radius of the osculating circle to AM at M . After a bit of
work Euler obtains

MS = z =
k2r sin2 v cos v

k2 sin v cos v − y
√
x2 − y2

.

6.10 Paragraph 27

Euler uses this last characterization of MS to show how to derive MS geomet-
rically. With the angle and distance in hand, the point S is found. Doing this
for each M gives the rectifying curve.

To this end [Figure 5] he takes MK perpendicular to the tangent MQ so
that MK = k. Then he forms the semicircle KPM with diameter MK, where
P is the point on the semicircle such that KP =

√
b2 + y2. (Euler does this

geometrically.) Then he takes R on MK such that MR = r, the radius of the
osculating circle. Next he takes MT perpendicular to MP at T . He marks X
on KP so that

PX =
DQ ·MQ

MP
.

Finally,

MS =
KP ·MT

KX
.

Euler states that the distance MS can be found easily for each M , so S is
found and the resolving curve is known.
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6.11 Paragraph 28

To end, Euler returns to the case where AM is a circle. The curve FS con-
structed above is the same curve that Leibniz derived [4]. Euler notes however
that the solution is not FS, as Leibniz said, but rather FS −MS + AF . He
ends with modest triumph, “Thus in this way, we have not only emended the
Leibnizian construction, which was suitable only for scalene cones, but we also
extend it to the cones whose bases are arbitrary figures.”
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Appendix 1

Pierre Varignon’s sketch, on the dimensions of the surface of a
cone that is oblique to a circular base, by means of the length of a
curve whose construction depends only on the quadrature of the
circle.1

Now for many previous centuries the surfaces of cones whose bases are circular
and standing upright [i.e., a right cone] have been known to have a rectangular
area that depends on the quadrature of the circle. Not so for the oblique
case, where I knew no one who had determined their surface area. Here is the
curve that provides their areas by its length and whose construction depends on
nothing other than the quadrature of the circle.

I. [See the diagram at the end.] Let the cone of any obliquity you like be
AHDZAB, with base the circle AHDZA, vertex B, and height BC perpendicular
at C to the plane of the base AHDZA. From that point C through the center
O of the base, let the diameter DA be produced indefinitely in the direction of
S. Then on the diameter AD let there be the bases of two ordinates as close to
each other as you like, GHand gh, from whose extremities G, H, h to the vertex
B are drawn the lines GB, HB, and hB. Finally from the point h let there be
drawn hk perpendicular to HB at k,2 so from the center B through h there will
be the indefinitely small circular little arc hk.

II. Now since BC is normal to the base plane AHDZA (I.) it follows that planes
ABC and AHDZA are perpendicular to one another. Thus, since HG is indeed
perpendicular to their common section AD (I.), it will also be perpendicular to
the plane ABC and thus also to the line GB.

1Varignon, Pierre, Schediasma de Dimensione Superficiei Coni ad basim circularem obliqui,
ope longitudinis Curvæ, cujus constructio à sola Circuli quadratura pendet, Miscellanea Beroli-
nensia, ad incrementum scientiarum ex scriptis Societati Regiæ Scientiarum exhibitis edita III,
1727, pp. 280–284.

Translator’s note: I have modernized the notation and formatting somewhat. Those in-
terested in details of the history of mathematical notation should look at the original. All
footnotes and bracketed comments are mine.

2The point k is not labelled, but lies directly over the point labeled K in the figure. The
point K is not used in this paper, but it is in the Leibniz paper that follows it.
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Therefore setting AO = r, AG = x, GH = y, CD = a, BC = b,3

BH =
√
HG2 +GB2

=
√
HG2 +BC2 +GC2

=
√
y2 + b2 + (2r + a− x)2

=
√
y2 + b2 + 4r2 + 4ar + a2 − 4rx− 2ax+ x2.

From the circle AHDZA comes y2 = 2rx− x2 [so we have further:]

[BH] =
√

4r2 + 4ar + a2 + b2 − 2rx− 2ax. [Eq. 1]

Let c be [such that]

c2 = 4r2 + 4ar + a2 + b2

= (2r + a)2 + b2

= AC2 +BC2

= AB2

and also
f = r + a = OC.

[From this and Eq. 1]

[BH] =
√
c2 − 2fx . [Eq. 2]

[Since Hk = −dBH,] this will make4

Hk =
fdx√
c2 − 2fx

positive because of the alternate increasing and decreasing of AG (x) and BH.
Then

hk =
√
Hh2 −Hk2

=

√
dy2 + dx2 − dx2 f2

c2 − 2fx
.

3Varignon displays this as BH = V (HGq. + GBq.) using a large V for
√

and q. to

abbreviate quadratus. As was customary at the time, Varignon writes yy for y2, etc. I will
use modern notation. Further, Varignon writes this string of equations inline. I display them
in the modern style.

4Varignon has HK, but I believe K is a typo for k in the next two displayed equations.
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Now with the equation of the base, y2 = 2rx− x2, this gives

±dy =
rdx− xdx√
2rx− x2

.

So

[hk] =

√
dx2

(r − x)2
2rx− x2

+ dx2 − dx2 f2

c2 − 2fx

= dx

√
r2

2rx− x2
− f2

c2 − 2fx

= dx

√
c2r2 − 2fr2x− 2f2rx+ f2x2

(2rx− x2)(c2 − 2fx)
.

Now setting g = r + f = 2r + a = AC,

[hk] = dx

√
c2r2 − 2fgrx+ f2x2

(2rx− x2)(c2 − 2fx)
. [Eq. 3]

Thus [from Eq. 2 and Eq. 3]

HBh

(
HB · hk

2

)
= dx

√
c2r2 − 2fgrx+ f2x2

2
√
2rx− x2

will be the sought element of the surface of the cone, from whose summation
[integral] would come the surface at hand, with the help of the length of the
following curve.

III. Let the semiperimeter of the circle AHD be rolled out in a line AQ equal
to it and perpendicular to the diameter AD. Of course the unrolling of the first
point D describes a curve DQ. Then taking any constant m you please, draw
from Q a line RQ, perpendicular to AQ, such that

RQ

AQ
=
BC

2m
.

So

RQ =
AQ ·BC

2m
=
AHD ·BC

2m
.

Then the rectangle QS is completed and its side RS produced to F so that

SF

AS
=
AO

BC
.
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Then

SF =
AS ·AO
BC

=
RQ ·AO
BC

=
AQ ·AO

2m
=
AHD ·AO

2m
.

Next after drawing the lines AR and AF and taking the indeterminate line (on
AQ) AL = AH, the arc rolled out on it by AL,5 describe LM parallel to QR.
From the point M (where the line [i.e., LM ] meets AR) make the indefinite line
MP parallel to AQ so that it meets the lines AS, AF at E, N [respectively].
Finally for MP make it that

NP =
OC ·GH

2m
,

and so on, everywhere.
I say that this is the curve APF passing through each of the points P whose

product m ·AP of any arc AP by the constant m, whatever it may be, is equal
to the corresponding part AHB of the surface of the cone that is sought.

Proof

1.6 Since (by construction) there is

2m

BC
=
AQ

RQ
=

AL

LM
=
AH

AE
,

then

AE =
BC ·AH

2m
, [Eq. 4]

and so the parallel element is

δp =
BC ·Hh

2m

by the notation in II. Since the circle AHDZA yields

Hh =
AO ·Gg
HG

, [Eq. 5]

then

[δp] =
br dx

2m
√
2rx− x2

.

5My correction: Varignon has HL instead of AL.
6Varignon restarts the sequence of Roman numerals. For clarity, I have changed this second

series of steps to Hindu-Arabic numerals.
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2. Further, (by construction) not only is

BC

AO
=
AS

SF

=
AE

EN
( I.I.I.)

=
BC·AH

2m

EN
. [from Eq. 4]

Now with7

[EN ] =
AO ·AH

2m
.

and also

NP =
OC ·GH

2m
,

then

EP =
AO ·AH +OC ·GH

2m
.

Next (taking HV perpendicular to gh at V ) its element will be

δP =
AO ·Hh+OC · V h

2m

(Then from the previous section [Eq. 5], using the equation y2 = 2rx − x2,
with f = r + a,

[δP ] =
r2dx

2m
√
2rx− x2

+
(r + a)(rdx− xdx)

2m
√
2rx− x2

=
dx(2r2 + ar − rx− ax)

2m
√
2rx− x2

=
(2r2 + ar − fx)dx
2m
√
2rx− x2

.

3. Therefore there will be the element pP [of the arc length] of the curve
APF , namely√

δp2 + δP 2 =
dx
√
b2r2 + 4r4 + 4ar3 − 4fr2x+ a2r2 − 2farx+ f2x2

2m
√
2rx− x2

=
dx
√
c2r2 − 2fgrx+ f2x2

2m
√
2rx− x2

(since b2 + 4r2 + 4ar + a2 = c2)

=
HBh

m
.

7I correct a printing error in the original.
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Therefore HBh = m · Pp, whose integral, or such a summation, is the sought
surface of the part of the cone, AHB = m · AP , and so on for other parts of
this surface obtained in this way. Thus the integral extends so that the surface
area of this oblique cone = 2m ·APF . Quod erat Dem.

IV. From this measure of the surface of an oblique-angled cone that of the
common type, given by a right angle, also follows. Now if the cone AHDZAB
be a right cone, then certainly its height BC coincides with BO – for this reason
making both [segments] equal and normal to the base of the cone, which would
nullify OC. Then (from 2) the curve APF has ordinate

EP =
AO ·AH +OC · CG

2m
,

reducing to
AO ·AH

2m
= EN,

while the abcissa (see 1) remains the same:

AE =
BC ·AH

2m
.

The curve APF would be changed into the right line ANF, and its arc AP
changed into AN. From this in the right cone, it would follow that

m ·AN = m ·AP = AHB. (from 3)

And then

AN =
√
AE2 + EN2 (from 3)

=

√
(BC ·AH)2 + (AO ·AH)2

2m

=
AH
√
BC2 +AO2

2m
.

(Then because BO = BC and is perpendicular to the plane AHDZA and thus
also to the radius OH = AO,)

[AN ] =
AH ·

√
BO2 +OH2

2m

=
AH ·BH

2m
.

27

Euleriana, Vol. 1 [2021], Iss. 1, Art. 3

https://scholarlycommons.pacific.edu/euleriana/vol1/iss1/3



Thus in this case
AH ·BH

2
= AHB,

or the portion AHB of the right convex cone will be equal to the product

AH ·BH
2

from half of the side BH times the corresponding base arc AH. Thus the entire
surface of such a convex cone taken together will be equal to the product of half
the side and the whole circuit of the base, which geometers, by other reasoning,
had observed long before now.

The measure of the surface area of the same right-angle cone also follows
immediately from the oblique-angle element

HBh =
dx
√
c2r2 − 2fgrx+ f2x2

2
√
2rx− x2

, (from 3)

in which c = AB and f = OC. Now since the surface of the rectangular cone
forces AB = BH and OC = 0, or c = BH and f = 0, the oblique-angle
element becomes, in the right-angle case,

HBh =
dx
√
r2BH2

2
√
2rx− x2

=
BH

2

rdx√
2rx− x2

=
BH

2

OH ·HV
HG

=
BH ·Hh

2
,

and after integrating, or summing, it will give (and quickly) the surface of the
right-angle cone

ABH =
BH ·AH

2
,

etc., as above.
I will not dwell upon this any longer, but only wanted it known how great

is the affinity between the preceding case of the oblique-angle cone and the
common right-angle cone.
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V. This part looks at the curve APF (III.) that yields the measure of the
surface of the oblique-angle cone.

1) It establishes the angle ADB at F across from A with the ordinate SF
and the angle ABC at A across from S with the axis AS. Then the side AB of
the oblique cone AHDZAB is normal to this curve at A, which, if it is right,
also has its side AB normal at the point A to the line ANF which thus has
been added to the curve.

2) Then the curve will be such that the largest of its ordinates EP corre-
sponds to

AG =
AC ·AO
OC

,

which will always be larger than AO and less than AD.
3) The total segment of that curve, ANFPA, and any desired indeterminate

part ANPpA, can be completely rectified.8 This is possible from the known
construction of the quadrature of the circle AHDZA. Yet you would not say
the areas FPAS, PpAE are both quadrable, since the size of the triangles
FNAS, NAE, though rectilinear, depend on the quadrature of this circle.

4) However, the length of APF and any part of it AP is measured by
the quadrature of the curve placed between two parallel asymptotes with the
distance between them the diameter AD of the base of the cone, and [the
length] is expressed by the equation

z =

√
c2r2 − 2fgrx+ f2x2

2
√
2rx− x2

whose coordinates, normal to each other, are x, z.
It may be noted that if the perpendicular BC to the base plane AHDZA

of the oblique cone AHDZAB, which here [in the diagram] falls outside of the
base, were to fall inside, over OC and with the same point D, nothing different
from the preceding would occur, except the change of the sign of the quantity a
or DC, and with the removal of this term the same construction would remain
and the use of the above curve APF .

8He says quadrari, to be found by making a square.
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The figure from Varignon’s paper, which is also used by Leibniz’s addendum,
immediately following in the same volume of the Miscellanea.
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Appendix 2

An Addition by G.G.L. Setting forth an explanation of the surface
area of any conoidal surface whatsoever; and a step-by-step ex-
planation of the surface area of a scalene cone, so as this or that
portion whatsoever is presented equal to a rectangle, by means of
the length of a right curve constructed by ordinary geometry.1

The surface area of a right cone was already laid out by Archimedes and it
is equal to a given circle. It is certain that the ancients did not arrive at the
surface area of a scalene cone. Ægidius [Gilles] de Roberval told me when I was
young that he had found a solution for it, but he did not tell me how he had
managed it, nor was I able to find anything about it among his papers. In fact
now with the same method that appeared in the previous sketch [Appendix 1],
we will easily be able to give plane figures, constructed by ordinary geometry,
that are equal to the surface area not only of scalene cones, but also of conoids
generated by lines BH (see the Figure above) through a fixed point B taken
above and passed along any curve Hh2 whatsoever in the plane AHC below.

Now let BC be normal to the plane below, and therefore to the line AC,
whose directrix HG is applied normal to the curve Hh and meeting AC at G.
It is clear that3

BG =
√
BC2 + CG2 ,

which is normal to HG, and thus

BH =
√
BG2 +GH2 .

Now GH is given from AG by the nature of the curve, and BC and AC are
given. Then CG is the sum or difference of CA and AG. Further, BH is also
given from AG. Therefore also is given the ratio of the momentary increment,

1Leibniz, Gottfried Wilhelm, Additio G. G. L. Ostendens Explanationem superficiei
conöıdalis cujuscunque; & speciatim explantionem superficiei Coni scaleni, ita ut ipsi vel ejus
portioni cuicunque exhibeatur rectangulum æquale, interventu extensionis in rectam curvæ, per
Geometriam ordinariam construendæ, Miscellanea Berolinensia ad incrementum scientiarum ex
scriptis Societati Regiæ Scientiarum exhibitis edita III, 1727, pp. 285–287.

Translator’s note: This paper appears right after Varignon’s paper (Appendix 1) on the
scalene cone. They share a diagram, reproduced at the end of Appendix 1. I have mod-
ernized the notation and formatting somewhat. Those interested in details of the history of
mathematical notation should look at the original. All footnotes and bracketed comments are
mine.

2The text has H(H), but clearly Hh is meant
3The equation in the text is typeset as BG = V (BC ·BC + CG · CG).
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or element, of the same BH and certainly of HK itself to HV , the element
of AG. (Where [K] is placed down [i.e., directly below k] from the normal hk
from h to BH.)

Now if the square of HK is subtracted from the square of Hh there remains
the square of hK, the element of the arc length of the curve. This line is set in
ratio to HV , the increment of AG, and this ratio is called r/a, where a is any
constant whatsoever assumed once arbitrarily, and r is determined from AG.
Then it will be that4

hK =
r

a
dAG.

But half of the rectangle BH by hK is equal to the triangle BHh, which is
the element of the surface area of the conoid. So if the line (r/2a)BH (which
will clearly be to BH as r to 2a) is applied to dAG, that is to Gg, or if GH is
always summed from G in the direction of H, then a curvilinear figure will be
made whose element is (r/2a)BH dAG, the same as the element of the surface
of the conoid.

Thus the appropriate part of this figure summed will be equal to the cor-
responding part of the surface of the conoid, both lines being derived from the
point above and the base curve. Hence the surface of any conoid can be laid
out by ordinary geometry giving a plane figure equal to it, if the base of the
conoid AHh is a figure from ordinary geometry.

Now Archimedes presented the surface of a right cone, or a part of it, as
equal to a circle, or a part of a circle. Then the area of a circle, or a part of it,
may easily be turned into a rectilinear figure through the length5 of a particular
curve (an arc of a circle, in fact). From this the desired [curve] was found in
a most elegant way by that most renowned man, Pierre Varignon, as laid out
immediately above [Appendix 1], whereby the plane figure equal to the surface
area of the scalene cone can be measured by the length of a certain curve.

Now the curve that he sets forth is not ordinary, but transcendental, which
it might not have been if it did not require the quadrature [tetragonismo] of
the circle or the rectification of the arc of the circle for its construction. I prefer
to seek an ordinary curve that would provide the same [result]. Here is how I
proceeded. In the same way as before, let GW be taken from G towards D,
which will be to AG as CD is to the radius DO and let BW be connected,
which will yield

BH =

√
c2r2 − 2rfgx+ f2x2

r
.

4The r and a here are not those of Varignon’s paper. Lebniz uses (r : a) where I have r/a,
and similarly elsewhere.

5I use the word “length”; Leibniz says “by extension in a line.”
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[From Varignon’s paper: OA = r is the radius of the circle, CD = a, AB = c,
OC = f = r + a, AC = g = r + f . The expression follows by a relatively
straightforward calculation fromBW =

√
CW 2 +BC2 =

√
(OW +OC)2 +BC2,

using BC2 = c2 − g2 and OW = r −AG−GW = r − (1 + a/r)x.]
Then I place A to be the farthest point of the diameter AD from B. HI

is led from the point H to the line AC so that, when Oψ is led from O normal
to HI, [Oψ] is to the radius HO as half of BW is to the constant line, which
is larger than half of BA. From the same line HI, Oφ is taken from the center
O perpendicular to CO, and continued on the same side as H to make φ [on
HI]. Likewise all this is done to points h and g, as BW was drawn, so on to
hi, and Oφ is made to (φ) [on hi].

Now Oφ, O(φ), etc., are equal to IΩ, iω, etc., the ordinates applied normal
to OI, Oi, etc., that make the curve Ωω, whose tangent ωT meets AC at T.
Finally along AC from I is taken IX to the side where IH [and] ih approach
each other. Then IX is to IO as TI is to TO.

From any such point X found in this way the normal XY is taken, running
to the corresponding position Y on the given line HI. This will be the applied
ordinate of a new curve Y (Y ). Then with the elementary arc between point Y
and (Y ), and with the intercept defined by the process given above, and with
the above-mentioned constant that is no less than 1

2BA, the included rectangle
will be equal to the triangle BHh, which is, of course, the element of the surface
of the scalene cone. Thus by the evolution or extension of the appropriate curve
Y (Y ) in a line, if the thread rolled out is led along using the same constant,
a rectangle will be produced equal to ABDHA, the surface of half the scalene
cone, or any portion of it (made up, of course, of half of the line from B and
the arc of the base).
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