The Surface Area of a Scalene Cone as Solved by Varignon, Leibniz, and Euler

Daniel J. Curtin
Northern Kentucky University, curtin@nku.edu

Follow this and additional works at: https://scholarlycommons.pacific.edu/euleriana
Part of the Other Mathematics Commons

Recommended Citation

Curtin, Daniel J. (2021) "The Surface Area of a Scalene Cone as Solved by Varignon, Leibniz, and Euler," Euleriana: 1(1), p. 10, Article 3.
Available at: https://scholarlycommons.pacific.edu/euleriana/vol1/iss1/3

This Translation \& Commentary is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Euleriana by an authorized editor of Scholarly Commons. For more information, please contact mgibney@pacific.edu.

The Scalene Cone: Euler, Varignon, and Leibniz

Daniel J. Curtin, Northern Kentucky University (Emeritus)
148 Brentwood Place, Fort Thomas, KY 41075
curtin@nku.edu

Abstract

The work translated alongside this article is Euler's contribution to the problem of the scalene cone, in which he discusses the earlier work of Varignon and Leibniz. He improves Varignon's solution and corrects Leibniz's more ambitious solution. Here I will discuss the problem, provide extensive notes on Euler's paper, and lay out its relation to the other two. For ease of reference translations of the papers of Varignon and Leibniz are appended, with the Latin originals. Euler's version in Latin is available at https://scholarlycommons.pacific.edu/euler-works/133

1 The Problem

1.1 The History of the Problem

Finding the surface area of a right cone, a cone with circular base and vertex directly over the center of the circle, was known from antiquity, certainly by Archimedes.

The problem of finding the surface area of a scalene (or oblique) cone, one with circular base but vertex not necessarily directly over the center of the circle, seems to have been solved first by Pierre Varignon. In 1727 he published his result in the Miscellanea Berolinensia [3]. He called his paper a schediasma, a Latin version of a word that in Greek means a caprice, or whimsy. Varignon probably meant a sketch or rough draft. In fact, the mathematics in his paper is fully formed, but the layout and referencing are not carefully done. He solved the problem by giving a curve whose arc length at certain points gives the surface area of the corresponding part of the cone.

In the same volume, in fact in the article immediately following Varignon's, Gottfried Leibniz [4] gave his suggested improvements. Varignon's curve was transcendental, implicitly using trigonometric functions. Leibniz gave an algebraic curve to solve the problem and outlined how to extend his solution to base curves other than the circle. The two papers share a single diagram, printed in between them.

In his introductory paragraph, Leibniz asserted that Gilles de Roberval told Leibniz he had a solution, but never published it, but Leibniz noted that he could not find such work among Roberval's papers, after his death.

A bit later, Euler took up the problem, publishing his solution in 1750 [2]. In his introduction, he referred to the two earlier papers by Varignon and Leibniz. He remarked that Leibniz's solution was excellent, but involved a slight error. Euler used a Greek word in Latin form, sphalma meaning a misstep or stumble, perhaps to soften the criticism of a mathematician he greatly admired. Euler gave his own version of Varignon's solution, then extended it in several ways. He explained where Leibniz went wrong, then corrected the misstep.

1.2 The Differential Approach

A cone is defined by starting with a circle in the plane and a vertex V that is above the plane but not necessarily located directly over the center of the circle. A point on the circle A is selected and line segment $V A$ is connected. Then the cone is defined by following points M around the circle as $V M$ sweeps out any section $A V M$ of the cone that is desired. This dynamic definition allows infinitesimal methods to be used. For all three authors, a solution to the problem is a curve whose arc length gives the areas of the sectors of the cone. For either the arc length problem or the surface area problem, the integrals that result are rarely integrable in simple terms, since they both involve the element of the arc length $d s=\sqrt{d x^{2}+d y^{2}}$ or something similar.

2 The Right Cone

To illustrate the idea let's do the surface area of the right cone. We don't need infinitesimal arguments here. Let C be the center of the circle and r the radius [Figure 1.] Consider the segment $A V M$ of the cone, with slant height l and central angle $u=\angle M C A$. In the plane the circular arc $A M$ has length $r u$. Then $A V M$ can be unfolded to a plane figure $A^{\prime} V^{\prime} M^{\prime}$ that is part of a circle of radius $l=A^{\prime} V^{\prime}$, with arc $A^{\prime} M^{\prime}$ of length $r u$. The central angle of $A^{\prime} V^{\prime} M^{\prime}$ is $r u / l$, so the area of $A^{\prime} V^{\prime} M^{\prime}$ is

$$
\frac{1}{2} 2^{2} \frac{r u}{l}=\frac{1}{2} l r u=\frac{l r}{2} u .
$$

Now l and r are constants, so as a function of u this is a curve, in fact a line, whose arc length for any given point that is parametrized by a particular value u gives the areas of that circular sector.

Figure 1: Surface area of a right cone of radius a and slant height l.

3 The Scalene Cone with Circular Base

If the vertex is off center things get quite a bit more complicated. This was first solved by Varignon [3]. Then Leibniz [4], using a different approach, claimed to solve it with an algebraic curve. He also claimed his approach extends to the case of an arbitrary base curve. Euler points out that this is not quite correct and removes the error, as we will see later.

The fundamental idea in all cases is to look for another point m, close to M. The area of the region $M V m$ is then the building block for the surface area. Taking m infinitesimally close to M makes $M V m$ what they called the element of the surface area, for us the integrand of the integral that would give the surface area. For Euler and the others, solving the problem meant finding a curve whose arc length element is this element of surface area.

4 Notes on Euler's Paper

In what follows, I will outline what Euler does in various paragraphs, while leaving the reader to see much of the details in the work itself. I also try to include things I wish I had seen the first time I read this paper, in hopes they may prove helpful.

In [1], I go into much more detail about paragraphs $1-16$, but note that, as usual, Euler himself does a good job of explaining his own ideas.

4.1 Paragraphs 2-4

Euler first sets out to reproduce Varignon's curve [Figure 2]. He uses the central

Figure 2: Euler's figure of the scalene cone.
angle of the circle $u=\angle A C M$ as the parameter for his solution. He defines three constants: a, the radius of the circle; b, the height of the cone ($V D$); and c, the distance from the center of the circle to the foot of the perpendicular from V to the plane of the base $(c=C D)$. He then derives the area as

$$
A V M=\frac{1}{2} a \int d u \sqrt{b^{2}+(c \cos u-a)^{2}} .
$$

Euler generally writes $b b$ for b^{2}, etc. In this commentary I will use the more modern notation, since they mean the same thing. I have not moved his $d u$, etc., to the modern location, since I believe we understand the $d u$ quite differently from Euler. I left the notation in my translation as close to Euler's as possible.

In paragraph 4 he concludes the curve is given, in what we would call parametric form:

$$
\begin{aligned}
p & =b u, \\
q & =c \sin u-a u .
\end{aligned}
$$

He then says, "It will be clear to the attentive reader that this curve is the same as Varignon discovered." It took me a bit of work, but I was able to verify this equivalence; see section 5 below.

4.2 Paragraph 5

Euler does not stop here. As usual he works to get as much out of the idea as possible. He notes that this solution involves transcendental functions, while

Leibniz has found (almost correctly) an algebraic solution, though by a different method that Euler discusses later.

4.3 Paragraphs 6 \& 7

Euler then proceeds to substitute $z=\cos u$ and thus to generate not only one algebraic solution but in fact a whole family of algebraic solutions.

4.4 Paragraphs 8-15

Euler works out several examples, also detailed in [1]. He always finds a parametrized curve, never a numerical answer.

4.5 Paragraph 16

Euler solves the case in which the perpendicular from vertex V passes through the point A on the circle and where the angle of the axis $V C$ of the cone to the base is 60°. He derives parametric equations for a curve that solves the problem, then, almost as an afterthought, notes that the actual area of the part of the cone swept out from E to M will be $\frac{1}{2} a z$, where a is the radius of the base circle and $z=\arcsin \angle E C M$, the angle $E C M$ being the complement of the angle $u=\angle A C M$ used in determining the curve.

5 Euler's Solution Is the Same as Varignon's

This section is for those interested in Varignon's paper [3], which is translated in Appendix 1.

At the end of Euler's paragraph 4 he gives a parametrized curve whose arc length (multiplied by $\frac{1}{2} a$) is the surface area of the scalene cone. The curve is given by abscissa $p=b u$ and ordinate $q=c \sin u-a u$. He then asserts, "It will be clear to the attentive reader this is the same curve as Varignon discovered." Let's see how.

I will use mostly Varignon's notation. For the radius of the circle, Varignon uses r, Euler a. For the distance from the center of the circle to the foot of the perpendicular from the vertex, Varignon has $r+a$, Euler c. For the distance from the vertex to the plane of the circle both use b. Euler uses u for the generating angle $\angle D C M$. Varignon uses no letter for his angle $\angle A O H$, but I will use Euler's notation u. Further, for the arc swept out on the circle through the angle u, Varignon uses $A H$, Euler $A M$. Either of these is equal to $r u$.

Thus in Varignon's notation (plus u) Euler's curve becomes

$$
\begin{aligned}
p & =b u, \\
q & =(r+a) \sin u-r u .
\end{aligned}
$$

Varignon gives his curve, beginning in the part entitled Proof, with a free constant m. For us the relevant parts are as follows, first in the form Varignon wrote them, using the letters from his diagram:

$$
\begin{aligned}
& A E=\frac{B C \cdot A H}{2 m}=\frac{b}{2 m} A H, \\
& E P=\frac{A O \cdot A H+O C \cdot G H}{2 m}=\frac{r A H+(r+a) y}{2 m} .
\end{aligned}
$$

Here if we suppose p is $A E$ and $q=E P$, then try $2 m=r$, we get

$$
\begin{aligned}
& p=A E=\frac{b}{a} A H, \\
& q=E P=\frac{r A H+(r+a) y}{r} .
\end{aligned}
$$

Further, looking at Varignon's diagram, we see

$$
\sin u=\frac{-y}{r} .
$$

With $A H=r u$ this gives us

$$
\begin{aligned}
E P & =\frac{r^{2} u+(r+a) r(-\sin u)}{r} \\
& =r u-(r+a) \sin u .
\end{aligned}
$$

Thus we correct our guess to make $q=-E P$, which makes no difference to the length.

Finally, as mentioned above, Euler had factored $a / 2$ out of his integral for the surface area before deriving p and q, but Varignon's curve can account for this by adjusting the value of the constant m to be \sqrt{a}.

6 Leibniz's Solution Perfected

For the remainder of the paper, Euler takes up the general problem of a cone with any curve in the plane whatsoever as base [Figure 3]. After setting this up in paragraphs 17-20, he returns to Leibniz's idea and in paragraphs 21-28 corrects his solution.

Figure 3: The cone with arbitrary curve as base.

6.1 Paragraphs 17 \& 18

Euler no longer has the central angle available, so he takes any point M on the curve and the foot D of the perpendicular from the vertex to the plane, and he sets $x=D M$. He then takes the tangent line to the curve at M and identifies the point Q on that line for which $D Q$ is perpendicular to the tangent. He sets $y=D Q$ and notes that "there will be an equation between x and y."

We'll follow the general trend of the argument. The details are not hard to read in the text.

As before, he considers a point m on the curve infinitely near M. The triangle $M V m$ is the element of the surface area of the cone. Recall that $b=V D$ is the height of the cone. Since $V Q$ is the height of this triangle,

$$
M V m=\frac{1}{2} M m \cdot V Q
$$

He shows that

$$
M V m=\frac{1}{2} \frac{x d x \sqrt{b^{2}+y^{2}}}{\sqrt{x^{2}-y^{2}}}
$$

so

$$
A V M=\frac{1}{2} \int \frac{x d x \sqrt{b^{2}+y^{2}}}{\sqrt{x^{2}-y^{2}}} .
$$

The last equation gives an integral for the area desired.

6.2 Paragraph 19

Euler unfolds the cone onto the plane [Figure 4], as we do with the right cone, but here he approaches the triangle $M V m$ in a different way. He uses the perpendicular, $M r$ from M to $V m$, which would be the height of the triangle relative to $V m$, and derives the distances $M r$ and $m r$ for later use.

Figure 4: The section of the same cone spread out on the plane.

6.3 Paragraph 20

Next Euler returns to the cone in space [Figure 3], and he assumes the existence of the solution curve $A F S$. He will derive properties of the point S and eventually show how to find it. Leibniz had based his argument on selecting an angle, essentially $\angle S M N$ to lead to his solution curve $F S$. In fact, Euler's Fig. 4 [Figure 5] resembles the figure for Leibniz's paper [4].

To see how the area can be defined using an angle, Euler defines $v=$ $\angle A V M$. He also defines $u=\angle A D M$. Then since $V M$ and $V r$ are radii of an infinitesimal circle centered at V and $d x=M r$ is an arc of the circle,

$$
d v=\frac{M r}{V M} .
$$

By a similar argument, using D as the center,

$$
d u=\frac{M n}{D M} .
$$

Figure 5: In the base plane.

Using previous calculations for $M r, V M, M n$, and $D M$ from paragraphs 17-19, Euler obtains

$$
d v=\frac{x d x \sqrt{b^{2}+y^{2}}}{\left(b^{2}+x^{2}\right) \sqrt{x^{2}-y^{2}}}
$$

and

$$
d u=\frac{y d x}{x \sqrt{x^{2}-y^{2}}} .
$$

He solves the second for y, then substitutes into the first, which yields

$$
d v=\frac{\sqrt{b^{2} d x^{2}+\left(b^{2}+x^{2}\right) x^{2} d u^{2}}}{\sqrt{b^{2}+x^{2}}} .
$$

Thus, since u depends on x, the angle v can be found by integrating, and it then can be used to find the surface area $A V M$.

6.4 Paragraph 21

Euler now returns to the basic integral needed to solve the problem,

$$
\int \frac{x d x \sqrt{b^{2}+y^{2}}}{\sqrt{x^{2}-y^{2}}}
$$

and he notes that it can be solved in many different ways. Since Euler's goal is to correct Leibniz's approach, which he describes as "the most elegant," he sets out to follow Leibniz's idea.

6.5 Paragraph 22

Euler begins to trace Leibniz's procedure. As noted above, Euler assumes that the desired curve $F S$ is given, then deduces what is needed to show its existence and nature.

For each point M on the base curve $A M$, there is the segment $M S$ to S on the rectifying curve. For a point m infinitely near M, the corresponding segment $m s$ should be such that S is infinitely near s. The arc length of the base curve is given as $s=A M$. (Yes, Euler uses the same letter for two different things, but the context always makes it clear which is which.) Let $v=\angle S M m$, i.e., the angle of $M S$ to the tangent at M. Then $d s=M m$ and $\angle s m N=v+d v$. He defines the osculating circle to $A M$ at M whose center is R and whose radius is $r=M R$. Then after a bit of work he obtains

$$
M S=\frac{r d s \sin v}{d s+r d v},
$$

from which he claims the construction of the curve $F S$ follows, as we shall see. Here F is the point on the curve corresponding to $M=A$.

6.6 Paragraph 23

Euler sets $z=M S$, so $m s=z+d z$. Using a bit of right angle trigonometry he shows that the element of arc length of the resolving curve $S s=d s \cos v+d z$. Integrating with respect to z he obtains

$$
F S=\int d s \cos v+z+C
$$

We have $z=M S$, and when $s=0, M S=A F$. Assuming $\int d s \cos v$ is 0 for $s=0$, we have

$$
\int d s \cos v=F S-M S+A F .
$$

We need to look more closely at this integral.

6.7 Paragraph 24

From previous work,

$$
M m=d s=\frac{x d x}{\sqrt{x^{2}-y^{2}}},
$$

and the surface area $A V M$ may be written in two ways:

$$
\frac{1}{2} \int d s \cos v=\frac{1}{2} \int \frac{x d x \sqrt{b^{2}+y^{2}}}{\sqrt{x^{2}-y^{2}}} .
$$

Thus we want the angle v to be such that $\int d s \cos v$ leads to $\int d s \sqrt{b^{2}+y^{2}}$.

6.8 Paragraph 25

Euler now obtains v from $V Q=\sqrt{b^{2}+y^{2}}$ by taking a constant k larger than, or equal to, the largest possible value of $V Q$ along the base curve, then setting

$$
\cos v=\frac{\sqrt{b^{2}+y^{2}}}{k} .
$$

Thus the surface area is given by

$$
\frac{1}{2} \int d s \sqrt{b^{2}+y^{2}}=\frac{1}{2} k \int d s \cos v .
$$

Geometrically this is

$$
\frac{1}{2} k(F S+A F-M S)
$$

6.9 Paragraph 26

Recall that r is the radius of the osculating circle to $A M$ at M. After a bit of work Euler obtains

$$
M S=z=\frac{k^{2} r \sin ^{2} v \cos v}{k^{2} \sin v \cos v-y \sqrt{x^{2}-y^{2}}} .
$$

6.10 Paragraph 27

Euler uses this last characterization of $M S$ to show how to derive $M S$ geometrically. With the angle and distance in hand, the point S is found. Doing this for each M gives the rectifying curve.

To this end [Figure 5] he takes $M K$ perpendicular to the tangent $M Q$ so that $M K=k$. Then he forms the semicircle $K P M$ with diameter $M K$, where P is the point on the semicircle such that $K P=\sqrt{b^{2}+y^{2}}$. (Euler does this geometrically.) Then he takes R on $M K$ such that $M R=r$, the radius of the osculating circle. Next he takes $M T$ perpendicular to $M P$ at T. He marks X on $K P$ so that

$$
P X=\frac{D Q \cdot M Q}{M P} .
$$

Finally,

$$
M S=\frac{K P \cdot M T}{K X}
$$

Euler states that the distance $M S$ can be found easily for each M, so S is found and the resolving curve is known.

6.11 Paragraph 28

To end, Euler returns to the case where $A M$ is a circle. The curve $F S$ constructed above is the same curve that Leibniz derived [4]. Euler notes however that the solution is not $F S$, as Leibniz said, but rather $F S-M S+A F$. He ends with modest triumph, "Thus in this way, we have not only emended the Leibnizian construction, which was suitable only for scalene cones, but we also extend it to the cones whose bases are arbitrary figures."

References

[1] Curtin, Daniel J. Euler's Work on the Surface Area of Scalene Cones. In Research in History and Philosophy of Mathematics: The CSHPM 2017 Annual Meeting in Toronto, Ontario (Proceedings of the Canadian Society for History and Philosophy of Mathematics), edited by Maria Zack and Dirk Schlimm, pp. 59-67. New York: Birkhäuser, 2018.
[2] Euler, Leonhard. De superficie conorum scalenorum, aliorumque corporum conicorum. In Novi Commentarii academiae scientiarum Petropolitanae 1, 1750, pp. 3-19.
[3] Varignon, Pierre. Schediasma de Dimensione Superficiei Coni ad basim circularem obliqui, ope longitudinis Curvæ, cujus constructio à sola Circuli quadratura pendet. In Miscellanea Berolinensia, ad incrementum scientiarum ex scriptis Societati Regiæ Scientiarum exhibitis edita III, 1727, pp. 280-284.
[4] Leibniz, Gottfried Wilhelm. Additio G. G. L. Ostendens Explanationem superficiei conoïdalis cujuscunque; \& speciatim explantionem superficiei Coni scaleni, ita ut ipsi vel ejus portioni cuicunque exhibeatur rectangulum æquale, interventu extensionis in rectam curvæ, per Geometriam ordinariam construendæ. In Miscellanea Berolinensia, ad incrementum scientiarum ex scriptis Societati Regiæ Scientiarum exhibitis edita III, 1727, pp. 285-287.

Appendix 1

Pierre Varignon's sketch, on the dimensions of the surface of a cone that is oblique to a circular base, by means of the length of a curve whose construction depends only on the quadrature of the circle. 1

Now for many previous centuries the surfaces of cones whose bases are circular and standing upright [i.e., a right cone] have been known to have a rectangular area that depends on the quadrature of the circle. Not so for the oblique case, where I knew no one who had determined their surface area. Here is the curve that provides their areas by its length and whose construction depends on nothing other than the quadrature of the circle.
I. [See the diagram at the end.] Let the cone of any obliquity you like be $A H D Z A B$, with base the circle $A H D Z A$, vertex B, and height $B C$ perpendicular at C to the plane of the base $A H D Z A$. From that point C through the center O of the base, let the diameter $D A$ be produced indefinitely in the direction of S. Then on the diameter $A D$ let there be the bases of two ordinates as close to each other as you like, $G H$ and $g h$, from whose extremities G, H, h to the vertex B are drawn the lines $G B, H B$, and $h B$. Finally from the point h let there be drawn $h k$ perpendicular to $H B$ at $k]^{2}$ so from the center B through h there will be the indefinitely small circular little arc $h k$.
II. Now since $B C$ is normal to the base plane $A H D Z A(\mathbf{I})$ it follows that planes $A B C$ and $A H D Z A$ are perpendicular to one another. Thus, since $H G$ is indeed perpendicular to their common section $A D(\mathbf{I}$.$) , it will also be perpendicular to$ the plane $A B C$ and thus also to the line $G B$.

[^0]Therefore setting $A O=r, A G=x, G H=y, C D=a, B C=b b^{3}$

$$
\begin{aligned}
B H & =\sqrt{H G^{2}+G B^{2}} \\
& =\sqrt{H G^{2}+B C^{2}+G C^{2}} \\
& =\sqrt{y^{2}+b^{2}+(2 r+a-x)^{2}} \\
& =\sqrt{y^{2}+b^{2}+4 r^{2}+4 a r+a^{2}-4 r x-2 a x+x^{2}}
\end{aligned}
$$

From the circle $A H D Z A$ comes $y^{2}=2 r x-x^{2}$ [so we have further:]

$$
[B H]=\sqrt{4 r^{2}+4 a r+a^{2}+b^{2}-2 r x-2 a x}
$$

[Eq. 1]
Let c be [such that]

$$
\begin{aligned}
c^{2} & =4 r^{2}+4 a r+a^{2}+b^{2} \\
& =(2 r+a)^{2}+b^{2} \\
& =A C^{2}+B C^{2} \\
& =A B^{2}
\end{aligned}
$$

and also

$$
f=r+a=O C
$$

[From this and Eq. 1]

$$
[B H]=\sqrt{c^{2}-2 f x}
$$

[Eq. 2]
[Since $H k=-d B H$,] this will make ${ }^{4}$

$$
H k=\frac{f d x}{\sqrt{c^{2}-2 f x}}
$$

positive because of the alternate increasing and decreasing of $A G(x)$ and $B H$.
Then

$$
\begin{aligned}
h k & =\sqrt{H h^{2}-H k^{2}} \\
& =\sqrt{d y^{2}+d x^{2}-d x^{2} \frac{f^{2}}{c^{2}-2 f x}}
\end{aligned}
$$

[^1]Now with the equation of the base, $y^{2}=2 r x-x^{2}$, this gives

$$
\pm d y=\frac{r d x-x d x}{\sqrt{2 r x-x^{2}}}
$$

So

$$
\begin{aligned}
{[h k] } & =\sqrt{d x^{2} \frac{(r-x)^{2}}{2 r x-x^{2}}+d x^{2}-d x^{2} \frac{f^{2}}{c^{2}-2 f x}} \\
& =d x \sqrt{\frac{r^{2}}{2 r x-x^{2}}-\frac{f^{2}}{c^{2}-2 f x}} \\
& =d x \sqrt{\frac{c^{2} r^{2}-2 f r^{2} x-2 f^{2} r x+f^{2} x^{2}}{\left(2 r x-x^{2}\right)\left(c^{2}-2 f x\right)}} .
\end{aligned}
$$

Now setting $g=r+f=2 r+a=A C$,

$$
\begin{equation*}
[h k]=d x \sqrt{\frac{c^{2} r^{2}-2 f g r x+f^{2} x^{2}}{\left(2 r x-x^{2}\right)\left(c^{2}-2 f x\right)}} . \tag{Eq.3}
\end{equation*}
$$

Thus [from Eq. 2 and Eq. 3]

$$
H B h\left(\frac{H B \cdot h k}{2}\right)=d x \frac{\sqrt{c^{2} r^{2}-2 f g r x+f^{2} x^{2}}}{2 \sqrt{2 r x-x^{2}}}
$$

will be the sought element of the surface of the cone, from whose summation [integral] would come the surface at hand, with the help of the length of the following curve.
III. Let the semiperimeter of the circle $A H D$ be rolled out in a line $A Q$ equal to it and perpendicular to the diameter $A D$. Of course the unrolling of the first point D describes a curve $D Q$. Then taking any constant m you please, draw from Q a line $R Q$, perpendicular to $A Q$, such that

$$
\frac{R Q}{A Q}=\frac{B C}{2 m}
$$

So

$$
R Q=\frac{A Q \cdot B C}{2 m}=\frac{A H D \cdot B C}{2 m} .
$$

Then the rectangle $Q S$ is completed and its side $R S$ produced to F so that

$$
\frac{S F}{A S}=\frac{A O}{B C} .
$$

Then

$$
S F=\frac{A S \cdot A O}{B C}=\frac{R Q \cdot A O}{B C}=\frac{A Q \cdot A O}{2 m}=\frac{A H D \cdot A O}{2 m} .
$$

Next after drawing the lines $A R$ and $A F$ and taking the indeterminate line (on $A Q) A L=A H$, the arc rolled out on it by $A L$ describe $L M$ parallel to $Q R$. From the point M (where the line [i.e., $L M$] meets $A R$) make the indefinite line $M P$ parallel to $A Q$ so that it meets the lines $A S, A F$ at E, N [respectively]. Finally for $M P$ make it that

$$
N P=\frac{O C \cdot G H}{2 m},
$$

and so on, everywhere.
I say that this is the curve $A P F$ passing through each of the points P whose product $m \cdot A P$ of any arc $A P$ by the constant m, whatever it may be, is equal to the corresponding part $A H B$ of the surface of the cone that is sought.

Proof

1. ${ }^{6}$ Since (by construction) there is

$$
\frac{2 m}{B C}=\frac{A Q}{R Q}=\frac{A L}{L M}=\frac{A H}{A E},
$$

then

$$
\begin{equation*}
A E=\frac{B C \cdot A H}{2 m}, \tag{Eq.4}
\end{equation*}
$$

and so the parallel element is

$$
\delta p=\frac{B C \cdot H h}{2 m}
$$

by the notation in II. Since the circle $A H D Z A$ yields

$$
\begin{equation*}
H h=\frac{A O \cdot G g}{H G} \tag{Eq.5}
\end{equation*}
$$

then

$$
[\delta p]=\frac{b r d x}{2 m \sqrt{2 r x-x^{2}}}
$$

[^2]2. Further, (by construction) not only is
\[

$$
\begin{aligned}
\frac{B C}{A O} & =\frac{A S}{S F} \\
& \left.=\frac{A E}{E N} \quad \text { I. }\right) \\
& =\frac{\frac{B C \cdot A H}{2 m}}{E N} . \quad \text { [from Eq. 4] }
\end{aligned}
$$
\]

Now with 7

$$
[E N]=\frac{A O \cdot A H}{2 m} .
$$

and also

$$
N P=\frac{O C \cdot G H}{2 m}
$$

then

$$
E P=\frac{A O \cdot A H+O C \cdot G H}{2 m} .
$$

Next (taking $H V$ perpendicular to $g h$ at V) its element will be

$$
\delta P=\frac{A O \cdot H h+O C \cdot V h}{2 m}
$$

(Then from the previous section [Eq. 5], using the equation $y^{2}=2 r x-x^{2}$, with $f=r+a$,

$$
\begin{aligned}
{[\delta P] } & =\frac{r^{2} d x}{2 m \sqrt{2 r x-x^{2}}}+\frac{(r+a)(r d x-x d x)}{2 m \sqrt{2 r x-x^{2}}} \\
& =\frac{d x\left(2 r^{2}+a r-r x-a x\right)}{2 m \sqrt{2 r x-x^{2}}} \\
& =\frac{\left(2 r^{2}+a r-f x\right) d x}{2 m \sqrt{2 r x-x^{2}}} .
\end{aligned}
$$

3. Therefore there will be the element $p P$ [of the arc length] of the curve $A P F$, namely

$$
\begin{aligned}
\sqrt{\delta p^{2}+\delta P^{2}} & =\frac{d x \sqrt{b^{2} r^{2}+4 r^{4}+4 a r^{3}-4 f r^{2} x+a^{2} r^{2}-2 f a r x+f^{2} x^{2}}}{2 m \sqrt{2 r x-x^{2}}} \\
& =\frac{d x \sqrt{c^{2} r^{2}-2 f g r x+f^{2} x^{2}}}{2 m \sqrt{2 r x-x^{2}}}\left(\text { since } b^{2}+4 r^{2}+4 a r+a^{2}=c^{2}\right) \\
& =\frac{H B h}{m} .
\end{aligned}
$$

[^3]Therefore $H B h=m \cdot P p$, whose integral, or such a summation, is the sought surface of the part of the cone, $A H B=m \cdot A P$, and so on for other parts of this surface obtained in this way. Thus the integral extends so that the surface area of this oblique cone $=2 m \cdot A P F$. Quod erat Dem.
IV. From this measure of the surface of an oblique-angled cone that of the common type, given by a right angle, also follows. Now if the cone $A H D Z A B$ be a right cone, then certainly its height $B C$ coincides with $B O$ - for this reason making both [segments] equal and normal to the base of the cone, which would nullify $O C$. Then (from 2) the curve $A P F$ has ordinate

$$
E P=\frac{A O \cdot A H+O C \cdot C G}{2 m}
$$

reducing to

$$
\frac{A O \cdot A H}{2 m}=E N
$$

while the abcissa (see 1) remains the same:

$$
A E=\frac{B C \cdot A H}{2 m} .
$$

The curve $A P F$ would be changed into the right line $A N F$, and its arc $A P$ changed into $A N$. From this in the right cone, it would follow that

$$
m \cdot A N=m \cdot A P=A H B . \quad(\text { from } 3)
$$

And then

$$
\begin{aligned}
A N & =\sqrt{A E^{2}+E N^{2}} \quad(\text { from } 3) \\
& =\frac{\sqrt{(B C \cdot A H)^{2}+(A O \cdot A H)^{2}}}{2 m} \\
& =\frac{A H \sqrt{B C^{2}+A O^{2}}}{2 m} .
\end{aligned}
$$

(Then because $B O=B C$ and is perpendicular to the plane $A H D Z A$ and thus also to the radius $O H=A O$,)

$$
\begin{aligned}
{[A N] } & =\frac{A H \cdot \sqrt{B O^{2}+O H^{2}}}{2 m} \\
& =\frac{A H \cdot B H}{2 m} .
\end{aligned}
$$

Thus in this case

$$
\frac{A H \cdot B H}{2}=A H B
$$

or the portion $A H B$ of the right convex cone will be equal to the product

$$
\frac{A H \cdot B H}{2}
$$

from half of the side $B H$ times the corresponding base arc $A H$. Thus the entire surface of such a convex cone taken together will be equal to the product of half the side and the whole circuit of the base, which geometers, by other reasoning, had observed long before now.

The measure of the surface area of the same right-angle cone also follows immediately from the oblique-angle element

$$
\begin{equation*}
H B h=\frac{d x \sqrt{c^{2} r^{2}-2 f g r x+f^{2} x^{2}}}{2 \sqrt{2 r x-x^{2}}}, \tag{from3}
\end{equation*}
$$

in which $c=A B$ and $f=O C$. Now since the surface of the rectangular cone forces $A B=B H$ and $O C=0$, or $c=B H$ and $f=0$, the oblique-angle element becomes, in the right-angle case,

$$
\begin{aligned}
H B h & =\frac{d x \sqrt{r^{2} B H^{2}}}{2 \sqrt{2 r x-x^{2}}} \\
& =\frac{B H}{2} \frac{r d x}{\sqrt{2 r x-x^{2}}} \\
& =\frac{B H}{2} \frac{O H \cdot H V}{H G} \\
& =\frac{B H \cdot H h}{2},
\end{aligned}
$$

and after integrating, or summing, it will give (and quickly) the surface of the right-angle cone

$$
A B H=\frac{B H \cdot A H}{2},
$$

etc., as above.
I will not dwell upon this any longer, but only wanted it known how great is the affinity between the preceding case of the oblique-angle cone and the common right-angle cone.
V. This part looks at the curve $A P F$ (III.) that yields the measure of the surface of the oblique-angle cone.

1) It establishes the angle $A D B$ at F across from A with the ordinate $S F$ and the angle $A B C$ at A across from S with the axis $A S$. Then the side $A B$ of the oblique cone $A H D Z A B$ is normal to this curve at A, which, if it is right, also has its side $A B$ normal at the point A to the line $A N F$ which thus has been added to the curve.
2) Then the curve will be such that the largest of its ordinates $E P$ corresponds to

$$
A G=\frac{A C \cdot A O}{O C}
$$

which will always be larger than $A O$ and less than $A D$.
3) The total segment of that curve, $A N F P A$, and any desired indeterminate part $A N P p A$, can be completely rectified ${ }^{8}$ This is possible from the known construction of the quadrature of the circle $A H D Z A$. Yet you would not say the areas $F P A S, P p A E$ are both quadrable, since the size of the triangles $F N A S, N A E$, though rectilinear, depend on the quadrature of this circle.
4) However, the length of $A P F$ and any part of it $A P$ is measured by the quadrature of the curve placed between two parallel asymptotes with the distance between them the diameter $A D$ of the base of the cone, and [the length] is expressed by the equation

$$
z=\frac{\sqrt{c^{2} r^{2}-2 f g r x+f^{2} x^{2}}}{2 \sqrt{2 r x-x^{2}}}
$$

whose coordinates, normal to each other, are x, z.
It may be noted that if the perpendicular $B C$ to the base plane $A H D Z A$ of the oblique cone $A H D Z A B$, which here [in the diagram] falls outside of the base, were to fall inside, over $O C$ and with the same point D, nothing different from the preceding would occur, except the change of the sign of the quantity a or $D C$, and with the removal of this term the same construction would remain and the use of the above curve $A P F$.

[^4]

The figure from Varignon's paper, which is also used by Leibniz's addendum, immediately following in the same volume of the Miscellanea.

$-\frac{\text { 劵 (280) * }}{\text { XIX. }}$
 PETRI VARIGNONIS Schediafma de
 Dimenfione Superficiei Coni ad bafim circularem obliqui, ope longitudinis Curvæ, cujus conftructio à fola Circuli quadratura pendet.

JAm à multis retrò faculis notum eft conorum, bafibus circularibus recte infiftentium fuperficies, menluram in reclangulis habere, à quadratura circuli pendentem : At non item in obliquangulis, quorum fuperficies qui definierit, neminem novi. Ecce curva qux horum menfuram fua longitudine praber, cujusque conftruatio non aliunde quam र̀ quadratura circuli pendet.
I. Sit obliquitatis cujusvis Conus A H D Z A B, bafeos circularis AHDZA, verticis B, altitudinis B C perpendicularis in C ad planum bafeos $\triangle H D Z A$; ex quo puncto C per bafeos centrum O fit diameter ejus D A indefinite producta verfus S; Hanc ad diametrum AD fint bafeos ordinatx dux, invicem quam proximx quevis GH,gh, ex quarum extremitatibus G, H, h per coni verticom B , ducantur rects $G B$, $H B, h B$. Tandem ex puncoo h fingatur $h k$ perpend cularis ad $H B$ in \mathbf{k}, five ex centro B per h fit circularis arculus indefinite parvus hh.
II. Jam cum fit (art.i.) BC normalis ad planum bafios AHDZA , liquet, plana ABC \& AHDZA ad invicem ef̃e perpendicularia; atque
que adeo cum HG fit quoque (art. 1.) perpendicularis se commanem eorum fectionem AD, erit pariter ea perpendicularis ad planum $A B C$, \& confequenter etiam ad rectam GB.

Ergo pofitis $\mathrm{AO}=r, \mathrm{AG}=x, \mathrm{GH}=y, \mathrm{CD}=\boldsymbol{a}, \mathrm{BC}=\boldsymbol{b}$, erit $\mathrm{BH}=V(\mathrm{HGq} \cdot \pm \mathrm{GBq})=.V(\mathrm{HGq} \cdot \pm \mathrm{BCq} \cdot \pm \mathrm{GCq})=.V(y y \pm b b \pm$ $(2 r+a-x) q \cdot)=V(y y \pm b b+4 r r \pm 4 a r \pm a a-4 r x-2 a x$ $\pm x x$) (circulo AHDZA exigente $y y=2 r x-x x)=V(4 r r \pm$ $4 a r \mp a a \ddagger b b-2 r x-2 a x)(\operatorname{fint} c c=4 r r+4 a r \pm a a+b b=$ (2rゅa) qu. $4 b b=A C q \cdot+B C q$; $=\mathrm{ABq} . \& f=r \pm a=0 \mathrm{C}]$ $=V(c c-2 f x)$. Unde fiet $\mathrm{HK}=f d x: V(c c-2 f x)$ pofitiva, propter alternatim crefcentes aut decrefcentes AG $(x) \& B \mathrm{H}$. Ergo hk= $V($ Hhqu. - Н Кqu. $)=V(d y d y+d x d x-d x d x(f f:, c c-2 f x))$ [hafeos xquatione $y y=2 r x-x x$ dante $\Psi d y=r a x-x d x$, : $V_{(2 r x-x x)]}=V(d x d x((r-x)$ qu.: , $2 r x-x x) \Psi d x d x-$ $d x d x(f f:, c c-2 f x))=d x V((r \because, 2 r x-x x)-(f f:, c c-2 f x))$ $=d x V(c c r r-2 f r r x-2 f f r x+f f x x,:(2 r x-x x)(c c-2 f x))$ $=[f i t g=r \ddagger f=2 r \pm a=\mathrm{AC}] d x$ Viccrr- $2 f g r x+f f x x,:$, ($2 r x-x x, c c-2 f x)$). Igitur fuperficiei conicx quxfita elementuin erit HBh[HB.hk:2] $=d x V(c c r r-2 f g r x+f f x x): 2 V(2 r x-x x)$ qualium fummatio feu fuperficies ifthec habetur, ope longitudinis Cur$\mathrm{v} x$ fequentis.
III. Fingatur femiperipheria circularis A HD evolvi in rectam ipfi xqualem $A Q$ perpendicularem ad diametrum ejus $A D$, primo fcilicet evolutionis ejus puncto D defcribente curvam $D Q$. Dein ad perpendiculum ipfi AQ (fumta quavis conftante m) ponatur in Q recta $R Q$ ita, ut fit RQ:AQ=BC:2m. SiveRQ=AQ.BC: $2 m=A H D . B C:$ $2 m$; perfectoque reCangulo QS , latus ejus RS producatur verfus F , donec fit $S F: A S=A O: B C$. Sive $S F=A S . A O: B C=R Q . A O$: $B C=A Q \cdot A O: 2 m=A H D . A O: 2 m$. Tum ductis rectis AR,AF, indererminateque fumpta (in $A Q$) ređta $A L=A H$ arcui in ipfam evoluto, per HL, fiat LM parallela ad QR; \& ex puncoo M (occurfu ejus cum AR) item fiat indefinita MP parallela ad A Q, quaque occurrat in E, N, rectis AS, AF. Tandem in illa MP fumarur $N P=O C . G H$: $2 m$; \& fic ubique.

莫（ 282 ）弗

Dico eam effe Curvam APF per omnia ejusmodi puncta P tranfeun－ tem，qux productum m ．A P ex arcu quovis ejus A P per conftantem m ， ubique reddat，xquale refpondenti portioni AHB conicx fuperficiei quafitx．

Demonft．I．Siquidem（conftr．）ubique eft $2 m: B C=A Q: R Q$ $=\mathrm{AL}: L M=\mathrm{AH}: \mathrm{AE}$ ．eft etiam ubique $\mathrm{AE}=\mathrm{BC} . \mathrm{AH}: 2 m$ ，$\& \mathrm{ipf}$ parallelum elementum ejus $\delta p=$ BC．Hh： $\mathbf{2 m}$（ juxta nomina art．2．\＆ circulum AHDZA exigentem $\mathrm{Hh}=\mathrm{AO} . \mathrm{Gg}: \mathrm{HG})=b r d x: 2 \mathrm{~m}$ $v(2 r x-x x)$

II．Pariter cum fit（congfr．）non modo BC：AO＝AS：SF＝AE： EN（num．1．）$=($ BC．AH：2m）：EN二AO．AH：2m．Sed etiam $\mathrm{NP}=\mathrm{OC} . \mathrm{GH}: 2 m$ ；erit $\mathrm{EP}=\mathrm{AO} . \mathrm{AH} \pm \mathrm{OC} . \mathrm{GH},: 2 m$ ，\＆ele－ mentum ejus（ductâ HV perpendiculari in V adgh）$\delta \mathrm{P}=\mathrm{AO} . \mathrm{Hh} \mathrm{h}$ OC．V $h,: 2 m$（ex pramiffis nominibus \＆ex xquatione $y y=2 r x-x x$ art．2．）$=(r . r d x: 2 m V(z r x-x x)) \ddagger(r \ddagger a)(r d x-x d x): 2 m$ $V(2 r x-x x)=d x(2 r r$ 中 $a r-r x-a x): 2 m V(2 r x-x x ;$［art． 2．dante $f=r \pm a]=2 r r \ddagger a r-f x, d x: 2 m V(2 r x-x x)$

III．Ergo（ $n u m$ ．1．2．）erit Curvx $A P F$ elementum $P P$ vel $V(\delta P q u$. $\ddagger \delta P q u.)=d x V\left(b b r r \pm 4 r^{+} \pm 4 a r^{3}-4 f r r x \pm a a r r-2 f a r x\right.$ $\uplus f f x x): 2 m V(2 r x-x x)($ Propter $b b+4 r r \pm 4 a r \pm a a=c c)$ $=d x V(c c r r-2 f g r x+f f x x): z m V(2 r x-x x)[a r t .2]=\mathrm{HBh}:$.$m ．$ Igitur erit $\mathrm{HBh}=\boldsymbol{m} . \mathrm{P} p$ ，cujus integrale，feu qualium fummatio eft co－ nicx fuperficiei quafitx portio $\mathbf{A H B}=\boldsymbol{m}$ ．AP；\＆fic de ceteris ejus－ dem fuperficiei portionibus hac ratione fumptis：Unde patet integram hanc Coni obliqui fuperficiem effe $=\mathbf{2 m}$ APF．Quod erat Dem．

IV．Ex hac obliquangulx conicx fuperficiei menfura fluit ultrò val－ garis ea，qux rectangule tribuitur．Nam fi Conus AHDZAB fieret redus，is nimirum，cujus altitudo BC，converfa in BO，hac ratione fa－ Ctam ipfi zqualem \＆normalem ad Coni bafim，aboleret OC；tunc Cur－ $\mathbf{v}_{\boldsymbol{x}}$ APF ordinatis EP（art．3．num．2．）＝AO．A H \ddagger OC．CG，： $2 m$ evadentibus＝AO．AH： $2 m=E N$ interim dum abfciffx manerent es－ $\operatorname{dem} A E$（art．3．num．1．）＝BC．AH：2m，Curva hac APF mutarerur in rectam ANF，\＆ejus arcus AP in AN：Unde hoc in Cono rectangu－ lo foret m．AN＝m．AP（art．3．num．3．）＝AHB．Atqui AN＝ V（AEq．
 AH)q.) $2 m=A H v(B C q . \Psi A O q):. 2 m$ (Siquidem hic eft BO $=B C$ \& perpendicularis ad planum AHDZA, indeque ad radium OH $=\mathrm{AO})=\mathrm{AH} \cdot V(\mathrm{BOq} \cdot \not+\mathrm{OHq}):. 2 m=\mathrm{AH} \cdot \mathrm{BH}: 2 m$. Ergo hoc in eodem cafu erit AH.BH: $2=\mathrm{AHB}$, five Coni redi convexx fuperficiei portio AHB xqualis erit producto AH.BH: 2 ex dimidio latere BH per refpondentem bafeos arcum AH: Unde tota hujusmodi Coni fuperficies convexa pariter erit xqualis producto ex dimidio latere per totum bafeos ambitum; quod Geometris alia ratione jam pridem notum eft.

Eadem Conicx fuperficiei rectangulx menfura fatim fluit etiam ex obliquangulx elemento $\mathrm{HBh}(a r t .2)=.d x V(c c r r-2 f g r x+f f x x)$: $2 V(2 r x-x x)$ in quo funt (art.z.) $c=\mathrm{AB}, \& f=0 \mathrm{C}$. Nam cum rectangula fuperficies conica exigat $\mathrm{AB}=\mathrm{BH} \& \mathrm{OC}=0$, feu $c=\mathrm{BH}$, $\& f=0$; iftud obliquangulx elementum in rectangula fiet $\mathrm{HBh}=d x$ $V(r r \times$ BHq. $):: 2 V(2 r x-x x)=(\mathrm{BH}: 2)(r d x: V(2 r x-x x)$ $=(\mathrm{BH}: 2)(\mathrm{OH} . \mathrm{HV}: \mathrm{HG})=\mathrm{BH} . \mathrm{Hh}: 2$; atque integrando, five fummando erit (ut mox) rectangulx fuperficiei Conicx portio ABH $=$ BH.AH:2, \&c. ut fuperius.

Porro his tamdiu non immoror, nifi ut magis pateat quanta fit affinitas inter pracedentem (art.3.) Conicx fuperficiei obliquangula menfuram \& reaangule vulgarem.
V. Quod fectat Curvam APF qux (art.3.) obliquangule illius fuperficiei Conics menfuram prabet.
i. Ea conftituit in F verfus A cum ordinata SF angulum $=\mathrm{ADB}$ \& in A cum axe AS verfus S. angulum $=A B C$; atque ita hanc ad Curvam normale eft in A Latus AB Coni obliqui AHDZ AB; qui, fi rectus effet, pariter haberet Latus fuum $A B$ normale in eodem puncto A ad reCtam ANF in quam tunc illa curva mutaretur.
2. Dum ea curva eft, ordinatarum ejus EP maximx refpondet AG $=A C . A O: O C$ femper major quam AO, \& minor quam AD.
3. Ejusdem Curvx fegmentum totum ANFPA, ac etiam indeterminata quavis ejus portio ANPpA, poffunt abfolute quadrari, Licet fint conftructionis exigentis quadrataram circuli A HDZ. . Ne tamen dixeris areas FPAS, PpAE, pariter effe quadrabiles; cum triangularium FNAS, NAE, etfi rectilinearum, dimenfio ab ifta circuli quadratura pendeat.
4. Longitudo autem APF, \& pars ejus quxvis AP menfuram hap bent à Quadratura Curva pofitæ duas inter afymptotos parallelas diftantes ab invicem quantitate diametri AD bafeos Coni, \& expreffa per \boldsymbol{x} quationem $z=V(c \operatorname{crr}-2 f g r x+f f x x): 2 V(2 r x-x x)$ cujus coordinate ad invicem normales funt x, z.

Notandum fi perpendicularis BC ad planum bafeos AHDZA Coní obliqui A HDZAB, qua hic cadit extra bafim iftam, caderet intra, fut per OC, aut in ipfum punctum D; nihil inde varietatis pracedentibus eventurum effe, prxter mutationem figni quantitatis a yel $D C$, aut hujus quantitatis extinctionem, manentibus femper iisdem conftructione \& ufu curva fuperioris A P F.

Appendix 2

An Addition by G.G.L. Setting forth an explanation of the surface
area of any conoidal surface whatsoever; and a step-by-step ex-
planation of the surface area of a scalene cone, so as this or that
portion whatsoever is presented equal to a rectangle, by means of
the length of a right curve constructed by ordinary geometry.]
The surface area of a right cone was already laid out by Archimedes and it is equal to a given circle. It is certain that the ancients did not arrive at the surface area of a scalene cone. Ægidius [Gilles] de Roberval told me when I was young that he had found a solution for it, but he did not tell me how he had managed it, nor was I able to find anything about it among his papers. In fact now with the same method that appeared in the previous sketch [Appendix 1], we will easily be able to give plane figures, constructed by ordinary geometry, that are equal to the surface area not only of scalene cones, but also of conoids generated by lines $B H$ (see the Figure above) through a fixed point B taken above and passed along any curve $H h^{2}$ whatsoever in the plane $A H C$ below.

Now let $B C$ be normal to the plane below, and therefore to the line $A C$, whose directrix $H G$ is applied normal to the curve $H h$ and meeting $A C$ at G. It is clear that ${ }^{3}$

$$
B G=\sqrt{B C^{2}+C G^{2}}
$$

which is normal to $H G$, and thus

$$
B H=\sqrt{B G^{2}+G H^{2}} .
$$

Now $G H$ is given from $A G$ by the nature of the curve, and $B C$ and $A C$ are given. Then $C G$ is the sum or difference of $C A$ and $A G$. Further, $B H$ is also given from $A G$. Therefore also is given the ratio of the momentary increment,

[^5]or element, of the same $B H$ and certainly of $H K$ itself to $H V$, the element of $A G$. (Where [K] is placed down [i.e., directly below k] from the normal $h k$ from h to $B H$.)

Now if the square of $H K$ is subtracted from the square of $H h$ there remains the square of $h K$, the element of the arc length of the curve. This line is set in ratio to $H V$, the increment of $A G$, and this ratio is called r / a, where a is any constant whatsoever assumed once arbitrarily, and r is determined from $A G$. Then it will be that 4^{4}

$$
h K=\frac{r}{a} d A G .
$$

But half of the rectangle $B H$ by $h K$ is equal to the triangle $B H h$, which is the element of the surface area of the conoid. So if the line $(r / 2 a) B H$ (which will clearly be to $B H$ as r to $2 a$) is applied to $d A G$, that is to $G g$, or if $G H$ is always summed from G in the direction of H, then a curvilinear figure will be made whose element is $(r / 2 a) B H d A G$, the same as the element of the surface of the conoid.

Thus the appropriate part of this figure summed will be equal to the corresponding part of the surface of the conoid, both lines being derived from the point above and the base curve. Hence the surface of any conoid can be laid out by ordinary geometry giving a plane figure equal to it, if the base of the conoid $A H h$ is a figure from ordinary geometry.

Now Archimedes presented the surface of a right cone, or a part of it, as equal to a circle, or a part of a circle. Then the area of a circle, or a part of it, may easily be turned into a rectilinear figure through the length ${ }^{5}$ of a particular curve (an arc of a circle, in fact). From this the desired [curve] was found in a most elegant way by that most renowned man, Pierre Varignon, as laid out immediately above [Appendix 1], whereby the plane figure equal to the surface area of the scalene cone can be measured by the length of a certain curve.

Now the curve that he sets forth is not ordinary, but transcendental, which it might not have been if it did not require the quadrature [tetragonismo] of the circle or the rectification of the arc of the circle for its construction. I prefer to seek an ordinary curve that would provide the same [result]. Here is how I proceeded. In the same way as before, let $G W$ be taken from G towards D, which will be to $A G$ as $C D$ is to the radius $D O$ and let $B W$ be connected, which will yield

$$
B H=\frac{\sqrt{c^{2} r^{2}-2 r f g x+f^{2} x^{2}}}{r} .
$$

[^6][From Varignon's paper: $O A=r$ is the radius of the circle, $C D=a, A B=c$, $O C=f=r+a, A C=g=r+f$. The expression follows by a relatively straightforward calculation from $B W=\sqrt{C W^{2}+B C^{2}}=\sqrt{(O W+O C)^{2}+B C^{2}}$, using $B C^{2}=c^{2}-g^{2}$ and $O W=r-A G-G W=r-(1+a / r) x$.]

Then I place A to be the farthest point of the diameter $A D$ from B. HI is led from the point H to the line $A C$ so that, when $O \psi$ is led from O normal to $H I,[O \psi]$ is to the radius $H O$ as half of $B W$ is to the constant line, which is larger than half of $B A$. From the same line $H I, O \phi$ is taken from the center O perpendicular to $C O$, and continued on the same side as H to make ϕ [on $H I]$. Likewise all this is done to points h and g, as $B W$ was drawn, so on to $h i$, and $O \phi$ is made to (ϕ) [on $h i$].

Now $O \phi, O(\phi)$, etc., are equal to $I \Omega$, $i \omega$, etc., the ordinates applied normal to $O I, O i$, etc., that make the curve $\Omega \omega$, whose tangent ωT meets $A C$ at T. Finally along $A C$ from I is taken $I X$ to the side where $I H$ [and] $i h$ approach each other. Then $I X$ is to $I O$ as $T I$ is to $T O$.

From any such point X found in this way the normal $X Y$ is taken, running to the corresponding position Y on the given line $H I$. This will be the applied ordinate of a new curve $Y(Y)$. Then with the elementary arc between point Y and (Y), and with the intercept defined by the process given above, and with the above-mentioned constant that is no less than $\frac{1}{2} B A$, the included rectangle will be equal to the triangle $B H h$, which is, of course, the element of the surface of the scalene cone. Thus by the evolution or extension of the appropriate curve $Y(Y)$ in a line, if the thread rolled out is led along using the same constant, a rectangle will be produced equal to $A B D H A$, the surface of half the scalene cone, or any portion of it (made up, of course, of half of the line from B and the arc of the base).

第 (285) 然

Additio G. G. L.

Oftendens Explanationem fuperficiei conoïdalis cuipscunque; \& fecciatim explanationem fuperficiei Coni fcaleni, ita ut ipft vel, ejus portioni cuicunque exhibeatur rectangulum æquale, interventu extenfionis in rectam curvæ, per Geometriam ordinariam conftruend $æ$.

SUperficies Coni recti jam ab Archimede explanata eft ; \& xqualis ei circulus affignatus. Coni Scaleni fuperficiem vereres, quod confter, non attigêre. Ægidiüs Robervallius, me juvene ajebat, ejus explanationem fibi effe notam, fed qualem habuerit non dixit, nihilque ea de re inter ejus fchedas repertum accepi. Equidem hodie ad euin modum quo proceffum eft in Schediafmate praceden$t i$, poffumus facile dare figuras planas easque per Geometriam ordinariam conftruendas, non tantùm qux aquentur fuperficiebus coni Scaleni, fed etiam cujusque Conoeidis gerrerati recta BH (vide eandern que fupra Figuram) per pundum B, conftans, in fublimi transeunte, \& circumlata per curvan quameunque $\mathrm{H}(\mathrm{H})$ in plano fubjecto $A \mathrm{HC}$ pofitam. Nam cum BC fit normalis ad planum fubjectum, adcoque \& ad rectam AC , qux fit direarix ipfarum HG normsliter applicatarum ex curva Hh, \& ipfi $\mathrm{A} C$ occurrentium in G ; patet $\mathrm{B} \mathrm{G}=V(\mathrm{BC} . \mathrm{BC} \not$ CG.CG) fore normalent ad HG; atque adeo BH fore V BG. BG *GH.GH). Datur autem GH ex AG per naturam curvx ; \& BC, AC funt datx, \& CG eft fumma vel differentia ipfarum CA, A G; habetur ergo \& BH exAG. Ergo \& ratio datur incrementi momentanei feu elementi ipfarum BH; nempe ipfius HK (fi ponatur ex h demiffa in BH normalis hk) ad HV elementum ipfarum A G. Quod fam quadratum ipfins HK detrahatur à quadrato ipfius Hh , elementi arcus cur$v x$, fupererit quadratum ipfus $h \mathrm{~K}$, cujus recta adeò etiam dabitur ratia ad HV , incrementum ipfius AG; quæ ratio vocetur $r: a$, pofitâ a

宽 (286

conftante quacunque pro arbitrio femel affumta, \& \boldsymbol{r} determinatâ ex AG. Erit ergo hK $=(r: a) d A G$. Sed dimidium rectanguli ex BH in hK eft xquale triangulo BHh , id eft elemento fuperficiei Conoidis, ergo fi reda $(r ; 2 a)$ BH (nempe qux fit ad BH ut r ad $2 a$) accommodetur ad $d \lambda \mathrm{G}$, id eft, ad Gg , feu fumatur femper in ipfa GH ex G verfus H ; fiet figura curvilinea, cujus elementum erit ($r: 2 a$) B H . $d \mathrm{~A}$ G idem cum elemento fuperficiei conoidis. Itaque ipfius hujus Figurx portio ritè fumta xquabitur refpondenti fuperficiei Conoeidis portioni, binis ređtis ex puncto in fublimi, \& arcu bafis comprehenfx; \& proinde quxvis fuperficies Conoidalis explanari poteft, adhibita figura plana ei \boldsymbol{x} quali, per Geometriam ordinariam conftruenda, fi ipfa AHh bafis Conoidis, fit figurd Geometrix ordinarix.

Sed quia Archimedes Circulum, vel Circuli portiones, fuperficiei coni ređi vel ejus portionibus xquales exhibuir ; Circuli autem vel ejus portionum area vel converfio in figuram rectilineam facillime haberur per extenfionen curvx (nempe ipfius arcus Circularis) in rettam: hinc à Viro Celeberrimo Petro Varignone quafitus eft inventusque modus elegans paulo ante pofitus, quo figura plana zqualis fuperficiei coni fcaleni etiam menfurari poteft, per extenfionem curva alicujus in recham. Cum vero, curva illa quam exhibet non fit ordinaria, fed transcendens, quamvis non nifi tetragonifino Circuli feu rettificatione arcus Circularis ad conftructionem indigeat ; placuit mihi quarere curvam ordinariam qux idem preftet, feu cujus rectificatione exhibeatur fuperficiei Coni Scaleni vel ejus portioni cuivis x qualis figura rectilinea. Hoc ita fum confecutus:

Iisdem qua antea pofitis, à puncto G verfus D fumatur $G W$, que fit ad $A G$ ut $C D$ ad radium $D O$ \& jungatur $B W$, qux erit $V($ ccrr$2 r f g x \Psi f f x x): r$. Pono autem A effe extremum diametri A D remotius à B. Ex puncto H ad re tam AC ducatur HI ita ut ex O ducta ad HI normalis $\mathrm{O} \psi$ fit ad HO radium ut dimidia $\mathrm{B} W$ ad rectam conftantem, qux fit msjor dimidia BA; Et reAta HI ipfam $O \phi$ ex centro 0 perpendiculariter ad CO eductam ad partes H , fecet in ϕ. Eadem omnia fiant ad punat b \& g, ut ducatur $B W$, ducatur \& $b i$, qux ipfam $0 \uparrow$ fecet in (ϕ). Jam ipfis $\mathbf{O} \phi, \mathbf{O}(\phi)$, \&c. aquales $I_{\Omega}, i \notin$, , \&c. ordina-

\% (287) \%

tim applicentur normaliter ad $\mathrm{OI}, \mathrm{Oi}, \& c$. ut fiat curva $\Omega \omega$, cujus tangens Ω T occurrat ipfi AC in T. Tandem in AC ex I fumatur IX ad partes ad quas convergunt IH, ih, que IX fit ad IO ut TI ad TO ; \& ex puncto X quovis, hoc modo reperto, normaliter educta $X Y$, occurrens refpondenti rectx pofitione datx HI in Y , erit ordinatim applicata curve nove Y (Y) cujus fub arcu elementari inter puncta Y \& (Y) prxfcripta ratione determinanda intercepto, \& fub conftante fupradicta, non minore quàm $\frac{1}{2} B A$, comprehenfum rełtangulum xquabiturtriangulo BHh , nempe elemento fuperficiei coni fcaleni : atque adeo evolutione feu extenfione debita curva Y . (Y) in rectam, filo evoluto ducto in iplam conftantem fupradictaın, exhibebitur rectangulum æquale ipfi AB DHA fuperficiei dimidix coni Scaleni vel ejus portioni (rectis fcilicet binis ex $\mathrm{B} \&$ arcu bafis comprehenfă) cuicunque.

XX.
 JOH WILH WAGNERI Annotationes ad Eclipfin Solis, 1724. D. 22. Maji.

MAxima in obfcuratione aër colorem fimulabat cineritium, \& lux diei fuperftes crepera erat, pallida vel gintica, legend x tamen adhuc foripturx, \& rebus procul mediccriter difcernendis fufficiens.

Stellx, prater Venerem feu kefperum, nullx apparebant, licet Spectatores, vifu quorum plurimi pollebant, in colum hinc inde oculorum aciem direxerint. Aër \& erat magis, ac ante \& peft, figidiufculus. ros non cadebat. hirundines in volaru fuo, ad terram plus tamen demilis, peifeverabant.

Circa

[^0]: ${ }^{1}$ Varignon, Pierre, Schediasma de Dimensione Superficiei Coni ad basim circularem obliqui, ope longitudinis Curvæ, cujus constructio à sola Circuli quadratura pendet, Miscellanea Berolinensia, ad incrementum scientiarum ex scriptis Societati Regiæ Scientiarum exhibitis edita III, 1727, pp. 280-284.

 Translator's note: I have modernized the notation and formatting somewhat. Those interested in details of the history of mathematical notation should look at the original. All footnotes and bracketed comments are mine.
 ${ }^{2}$ The point k is not labelled, but lies directly over the point labeled K in the figure. The point K is not used in this paper, but it is in the Leibniz paper that follows it.

[^1]: ${ }^{3}$ Varignon displays this as $B H=V(H G q .+G B q$.) using a large V for $\sqrt{ }$ and q. to abbreviate quadratus. As was customary at the time, Varignon writes $y y$ for y^{2}, etc. I will use modern notation. Further, Varignon writes this string of equations inline. I display them in the modern style.
 ${ }^{4}$ Varignon has $H K$, but I believe K is a typo for k in the next two displayed equations.

[^2]: ${ }^{5}$ My correction: Varignon has $H L$ instead of $A L$.
 ${ }^{6}$ Varignon restarts the sequence of Roman numerals. For clarity, I have changed this second series of steps to Hindu-Arabic numerals.

[^3]: ${ }^{7}$ I correct a printing error in the original.

[^4]: ${ }^{8}$ He says quadrari, to be found by making a square

[^5]: ${ }^{1}$ Leibniz, Gottfried Wilhelm, Additio G. G. L. Ostendens Explanationem superficiei conö̈dalis cujuscunque; \& speciatim explantionem superficiei Coni scaleni, ita ut ipsi vel ejus portioni cuicunque exhibeatur rectangulum æquale, interventu extensionis in rectam curvæ, per Geometriam ordinariam construendæ, Miscellanea Berolinensia ad incrementum scientiarum ex scriptis Societati Regiæ Scientiarum exhibitis edita III, 1727, pp. 285-287.

 Translator's note: This paper appears right after Varignon's paper (Appendix 1) on the scalene cone. They share a diagram, reproduced at the end of Appendix 1. I have modernized the notation and formatting somewhat. Those interested in details of the history of mathematical notation should look at the original. All footnotes and bracketed comments are mine.
 ${ }^{2}$ The text has $H(H)$, but clearly $H h$ is meant
 ${ }^{3}$ The equation in the text is typeset as $B G=V(B C \cdot B C+C G \cdot C G)$.

[^6]: ${ }^{4}$ The r and a here are not those of Varignon's paper. Lebniz uses $(r: a)$ where I have r / a, and similarly elsewhere.
 ${ }^{5}$ I use the word "length"; Leibniz says "by extension in a line."

