
University of the Pacific University of the Pacific

Scholarly Commons Scholarly Commons

University of the Pacific Theses and
Dissertations Graduate School

2020

A PROBABILISTIC MACHINE LEARNING FRAMEWORK FOR A PROBABILISTIC MACHINE LEARNING FRAMEWORK FOR

CLOUD RESOURCE SELECTION ON THE CLOUD CLOUD RESOURCE SELECTION ON THE CLOUD

Syeduzzaman Khan
University of the Pacific

Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds

 Part of the Data Storage Systems Commons, Other Computer Engineering Commons, and the Other

Computer Sciences Commons

Recommended Citation Recommended Citation
Khan, Syeduzzaman. (2020). A PROBABILISTIC MACHINE LEARNING FRAMEWORK FOR CLOUD
RESOURCE SELECTION ON THE CLOUD. University of the Pacific, Thesis.
https://scholarlycommons.pacific.edu/uop_etds/3720

This Thesis is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been
accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of
Scholarly Commons. For more information, please contact mgibney@pacific.edu.

https://scholarlycommons.pacific.edu/
https://scholarlycommons.pacific.edu/uop_etds
https://scholarlycommons.pacific.edu/uop_etds
https://scholarlycommons.pacific.edu/graduate-school
https://scholarlycommons.pacific.edu/uop_etds?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F3720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/261?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F3720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F3720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F3720&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F3720&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarlycommons.pacific.edu/uop_etds/3720?utm_source=scholarlycommons.pacific.edu%2Fuop_etds%2F3720&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mgibney@pacific.edu

1

A PROBABILISTIC MACHINE LEARNING FRAMEWORK FOR CLOUD RESOURCE
SELECTION ON THE CLOUD

By

Syeduzzaman Khan

A Thesis Submitted to the

Graduate School

In Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

School of Engineering and Computer Science
Computer Engineering

University of the Pacific
Stockton, California

2020

2

A PROBABILISTIC MACHINE LEARNING FRAMEWORK FOR CLOUD RESOURCE
SELECTION ON THE CLOUD

By

Syeduzzaman Khan

APPROVED BY:

Thesis Advisor: Vivek Krishnamani Pallipuram, Ph.D.

Committee Member: Jinzhu Gao, Ph.D.

Committee Member: David Mueller, Ph.D.

Department Chair: Elizabeth Basha, Ph.D.

3

DEDICATION

This thesis is dedication to my son ‘Ahanf Khan’, who have brought a lot of joy in our

life. I also dedicate this thesis to my parents and my wife.

4

ACKNOWLEDGMENTS

My gratitude goes to Dr. Vivek K. Pallipuram for his hours of patience and guidance

while I struggled through the master thesis work. As my mentor, he has taught more than I could

ever thank him.

I would like to thank my committee members Dr. Jinzhu Gao and Dr. David Mueller for

their amazing support. I would like to thank my family for their unconditional support.

5

A PROBABILISTIC MACHINE LEARNING FRAMEWORK FOR CLOUD RESOURCE
SELECTION ON THE CLOUD

Abstract

By Syeduzzaman Khan

University of the Pacific
2020

 The execution of the scientific applications on the Cloud comes with great flexibility,

scalability, cost-effectiveness, and substantial computing power. Market-leading Cloud service

providers such as Amazon Web service (AWS), Azure, Google Cloud Platform (GCP) offer

various general purposes, memory-intensive, and compute-intensive Cloud instances for the

execution of scientific applications. The scientific community, especially small research

institutions and undergraduate universities, face many hurdles while conducting high-

performance computing research in the absence of large dedicated clusters. The Cloud provides

a lucrative alternative to dedicated clusters, however a wide range of Cloud computing choices

makes the instance selection for the end-users. This thesis aims to simplify Cloud instance

selection for end-users by proposing a probabilistic machine learning framework to allow to

users select a suitable Cloud instance for their scientific applications.

This research builds on the previously proposed A2Cloud-RF framework that

recommends high-performing Cloud instances by profiling the application and the selected

Cloud instances. The framework produces a set of objective scores called the A2Cloud scores,

which denote the compatibility level between the application and the selected Cloud instances.

When used alone, the A2Cloud scores become increasingly unwieldy with an increasing number

of tested Cloud instances. Additionally, the framework only examines the raw application

6

performance and does not consider the execution cost to guide resource selection. To improve

the usability of the framework and assist with economical instance selection, this research adds

two Naive Bayes (NB) classifiers that consider both the application’s performance and execution

cost. These NB classifiers include: 1) NB with a Random Forest Classifier (RFC) and 2) a

standalone NB module.

Naive Bayes with a Random Forest Classifier (RFC) augments the A2Cloud-RF

framework's final instance ratings with the execution cost metric. In the training phase, the

classifier builds the frequency and probability tables. The classifier recommends a Cloud

instance based on the highest posterior probability for the selected application.

The standalone NB classifier uses the generated A2Cloud score (an intermediate result

from the A2Cloud-RF framework) and execution cost metric to construct an NB classifier. The

NB classifier forms a frequency table and probability (prior and likelihood) tables. For

recommending a Cloud instance for a test application, the classifier calculates the highest

posterior probability for all of the Cloud instances. The classifier recommends a Cloud instance

with the highest posterior probability.

This study performs the execution of eight real-world applications on 20 Cloud instances

from AWS, Azure, GCP, and Linode. We train the NB classifiers using 80% of this dataset and

employ the remaining 20% for testing. The testing yields more than 90% recommendation

accuracy for the chosen applications and Cloud instances. Because of the imbalanced nature of

the dataset and multi-class nature of classification, we consider the confusion matrix (true

positive, false positive, true negative, and false negative) and F1 score with above 0.9 scores to

describe the model performance.

7

The final goal of this research is to make Cloud computing an accessible resource for

conducting high-performance scientific executions by enabling users to select an effective Cloud

instance from across multiple providers.

8

TABLE OF CONTENTS

List of Tables ………………………………………………………………………………….

List of Figures …………………………………………………………………………………

Chapter 1: Introduction …………………………………………………..…………………...

Chapter 2: Related Work ……………………………………………….………….…………

Chapter 3: Preliminaries ……………………………………………………….…………….

3.1 A2Cloud-RFC Framework ……………………………………………………….

3.2 Machine Learning Algorithms ……………………………………………………

3.3 Summary ………………………………………………………………………….

Chapter 4: Methodology ………………………………………………….……..………...….

4.1 NB-Next ………………………………………………………………………….

4.2 Stand-alone Naive Bayes (S-NB) Methodology ………………………………….

4.3 Summary ………………………………………………………………………….

Chapter 5: Experimentation and Verification …….……………………………..…………...

5.1 Cloud Instances ………………………………………………………………..….

5.2 Real-world Applications Executed on Cloud Instances ………………………….

5.3 NB-Next …………………………………………………………………………..

5.4 S-NB ……………………………………………………………………………...

5.5 Summary ………………………………………………………………………….

Chapter 6: Conclusion ………………………………………………..……………………….

References ………………………………………………………………………..…………..

09

10

12

15

21

21

26

35

37

37

44

52

53

53

53

56

63

73

75

77

9

LIST OF TABLES

Table

3.1 A List of Perf Computation and Memory Counters ..…..…..……………………....

5.1 Cloud Instances Categories: General-purpose, Compute and Memory-optimized ..

5.2 Frequency and Prior Probability of Compute-intensive Training ….…………...….

5.3 Mean and Standard Deviation of Compute-intensive Training Dataset …………...…..

5.4 Testing Using LULESH 30 of T3.small Instance A2Cloud and Cost rating 4, 4 ..……

5.5 Testing and Verification Set Accuracy and F1 Score ……………………....................

5.6 Frequency and Prior Probability of Memory-intensive Training ………………......

5.7 Mean and Standard Deviation of Memory-intensive Training Dataset ………….........

5.8 Testing Using T3a.medium Instance A2Cloud and Cost scores 1.16 and 1.68 …….…

5.9 Accuracy and F1 Score of Testing and Verification Dataset ………………………

23

54

58

58

59

62

66

67

67

71

67

54

56

10

LIST OF FIGURES

Figure

3.1 A2Cloud-RFC framework .………………………………………………………..

3.2 Example of K-Means algorithm with four clusters ………………….…………....

3.3 The random forest classifier (RFC) function block diagram ..…………………....

3.4 The NB classifier working methodology ………………………………………...

3.5 Confusion matrix …………………………………………………………….…...

4.1 NB- next working methodology ………………………………………….………

4.2 Cost Rating generator working principle ………………………………………...

4.3 Cloud instance rating and cost rating using A2Cloud-RFC framework …………

4.4 Cloud instance rating and cost rating labeled dataset …………………………....

4.5 NB training and testing phase methodology …………………………………….

4.6 Instance selector recommends instance with the highest Euclidean distance …...

4.7 S-NB classifier working methodology ……………………………………..........

4.8 Cost score generator working principle.…………………………………………

4.9 A2Cloud score and cost score using A2Cloud and cost generator ……………...

4.10. Cluster generation using K-Means ……………………………………………

4.11 S-NB training and testing phase methodology ………………………………..

4.12 Instance selector recommends instance with the least Euclidean distance ……

5.1 Compute-intensive NB-Next training dataset …………………………………..

5.2 Compute-intensive NB-Next classifier confusion matrix ………………………

5.3 Memory-intensive NB-Next classifier confusion matrix ……………………….

22

28

29

33

34

38

39

40

42

43

43

45

46

48

49

50

51

57

60

61

11

5.4 Balanced NB-Next classifier confusion matrix …………………………………...

5.5 The runtime and cost rating of 20 instances for LULESH 30 ………………….…

5.6 The runtime and cost rating of 20 instances for Data Migration …………………

5.7 The runtime and cost rating of 20 instances for QODE …………………….........

5.8 S-NB memory-intensive training dataset …………………………………………

5.9 The S-NB compute-intensive application class classifier confusion matrix….

5.10 The S-NB memory-intensive application class classifier confusion matrix ……

5.11 The S-NB QODE application class classifier confusion matrix ………….…….

5.12 The runtime and cost score of 20 instances for LULESH 30 …………….…….

5.13 The runtime and cost score of 20 instances for Data Migration ……………. …

5.14 The runtime and cost score of 20 instances for QODE ………………………...

62

63

64

64

65

69

69

70

72

72

73

16

46

46

64

68

68

69

71

71

72

66

67

67

67

67

67

12

CHAPTER 1: INTRODUCTION

High-Performance Computing (HPC) is now widely prevalence in several scientific

research areas including computer science, quantum chemistry, physics, image processing, and

among others [1]. HPC helps the researchers to reduce the application run time by executing the

application on the HPC clusters. These clusters require on-premise power and regular

maintenance, leading to aggregate costs. Cloud computing offers cost-effective, scalable, and

sustainable Cloud resources for high-performance application execution, obviating the need for

on-site HPC systems [2], [3].

Leading Cloud vendors such as Amazon Web Service (AWS) [4], Microsoft Azure [5],

Google Cloud Platform [6], IBM Cloud [7], Oracle Cloud [8], Alibaba Cloud [9], and Linode

[10] offer a wide range of Cloud Computing instances to the scientific community. Most of the

Cloud service providers offer three broad instance categories: general purpose, compute-

intensive, and memory-intensive instances with varying memory configurations and price per

hour. The abundant Cloud instance configurations and pricing options overwhelm the scientist,

making the selection difficult. To alleviate the issue, we propose a machine learning approach to

guide the research community to select a high-performing, cost-effective Cloud instance for

these applications.

We present a machine learning approach to recommend the Cloud instances for executing

scientific applications on the Cloud. We propose two methodologies: Naive Bayes with Random

Forest Classifier (NB-Next) and a standalone Naive Bayes (S-NB) built upon our previously

proposed A2Cloud-RFC Framework [11].

13

The A2Cloud-RFC framework consists of the A2Cloud-ext model and the Random forest

classifier (RFC). The A2Cloud-ext profiles the application and Cloud instance. The A2Cloud-

ext uses hardware benchmarks to profile the application’s performance parameters including the

number of single-precision floating-point operations(SPFLOPs), number of double-precision

floating-point operations (DPFLOPs), the total number of x87 instructions (x87), number of

main memories reads and writes (mem), and number of disks reads (disk read), and writes (disk

write). The framework also computes the Cloud instance characteristics including single-

precision floating-point per second (SPFLOPS), double-precision floating-point operations per

second (DPFLOPS), and the total number of x87 instructions (x87S), main memory bandwidth,

disk write and read bandwidths. The A2Cloud framework generates the A2Cloud score using

the application and the Cloud instance performance parameters. The A2Cloud score denotes to

the level of match between the application and the Cloud instance. In addition, the framework

uses vendor-specific cost models to form a cost score. The cost score represents the level of

economical match between the application and the Cloud instance. The framework stores the

A2Cloud and cost scores in a database for future analysis. Using the profiled data (A2Cloud

score and cost score), A2Cloud-RFC creates the multiple decision trees where the nodes of the

decision trees are assigned numerical rating from 1 to 4. The average ratings of decision trees

are the final RFC and RFC and cost ratings. The RFC rating and cost ratings represent the match

between the application and the target instance; the higher the rating, the better the match.

The NB-Next uses the RFC rating and cost rating to recommend Cloud instances. NB-

Next first uses the K-Means clustering technique to produce four clusters (excellent, good,

average, and bad) using the RFC rating and cost rating. This clustering is used for the NB model

training.

14

The S-NB uses the A2Cloud score and cost score versus the RFC rating and cost ratings.

The K-Means clustering technique forms four clusters (excellent, good, okay, and bad) using the

A2Cloud and cost score dataset. The S-NB trains with the output of the K-Means clustering.

We use eight real-world scientific applications and 20 Cloud instances for generating the

training dataset. For the model verification, we use three real-world scientific applications and

20 Cloud instances.

We also execute three real-world scientific applications on 20 Cloud instances from

Amazon Web Service (AWS), Microsoft Azure, Google Cloud Platform (GCP), and Linode and

collect the application runtime data. The A2Cloud-RFC calculates the runtime instance rating

and cost rating. We apply K-Means clustering to create four runtime rating clusters (excellent,

good, okay, and bad) information. Finally, we compare the NB-Next predictions with runtime

clusters to verify the NB-Next model's performance.

Using the collected runtime data, A2Cloud-ext engine generates the runtime score and

cost score. We apply K-Means algorithm to create clusters (excellent, good, okay, and bad)

information. We perform the comparison between the generated runtime clusters and S-NB

predicted clusters for verification.

The rest of the thesis is organized as follows. Chapter 2 presents the related work and

research conducted on Cloud resource selection using machine learning algorithms. Chapter 3

explains the A2Cloud-RFC framework and the machine learning algorithms. Chapter 4

discusses our proposed Cloud resource selection methodologies: Naive Bayes NEXT to Random

Forest classifier and Standalone Naive Bayes classifier. Chapter 5 provides the machine learning

methodologies in action and model performance evaluation. In Chapter 6, we conclude our

research work and provide insights into future work.

15

CHAPTER 2: RELATED WORK

In this chapter, we discuss previously published research on the Cloud resource selection

problem. We identify their shortcomings and show how our research overcomes them.

Roloff et al. [12] perform a detailed analysis of high-performance (HPC) application

execution on the Cloud instance. They consider the application performance and cost-efficiency

of HPC applications on the Cloud. The application performance is measured by using micro-

benchmarks. The study finds that the costly and powerful instances ensure the high performance

and efficiency of the HPC applications on the Cloud. The study does not include the

application’s data input-output (I/O) performance.

Okada et al. [13] evaluate the NASA Advanced Supercomputing (NAS) parallel

benchmarks performance on the Cloud instances. The study focuses only on the Google Cloud

Platform instances. In contrast, we include other Cloud services such as Amazon EC2,

Microsoft Azure, and Linode for a comprehensive analysis.

Kim et al. [14] provide an end-to-end resource management system for scientific

applications on public Clouds. They propose a local linear regression model to predict the job

execution time. The proposed model uses the type of virtual machines and data size required for

the execution. The resource management system works on top of Amazon EC2 and utilizes the

Amazon EC2’s instances. The study shows better cost efficiency than baseline models. In our

study, we use the cost model and multiple Cloud service providers instances for Cloud resource

selection.

Gong et al. [15] propose a predictive elastic resource scaling for Cloud services. The

predictive model utilizes signal processing and statistical learning algorithms for predicting

16

Cloud resources. The model uses the RUBiS benchmark and executes it on the Google Cloud

platform. The study presents a high accuracy for predicting Cloud resources. Our proposed

method utilizes the Linux Perf engine and Cloud benchmarks for profiling the applications and

Cloud instances. Overdetailed application and Cloud instance profiling provides significant

insights into applicating behavior on the Cloud instance.

Grag et al. [16] present a framework for ranking Cloud computing services using the

Analytical Hierarchical Process (AHP). The framework is based on the user’s Quality of Service

(QoS) requirements. The framework measures the instance quality and prioritizes Cloud

services. AHP uses the measured data to rank the Cloud services.

Iosup et al. [17] analyze the Cloud computing services for scientific computing

applications. They perform an empirical evaluation of four Amazon EC2 instances using trace-

based performance characteristics and cost models. The study indicates that scientific

application's performance characteristics enhance the efficiency of Cloud selection.

Chard et al. [18] develop a model based on application profiling and dynamic market

prediction to recommend an effective Cloud service for a given application. In a similar work,

Chard et al. [19] develop an automated tool for application performance profiling on Cloud

different Cloud instances. The automated tool enables the dynamic provisioning of Cloud

instances, automated application deployment on Cloud, and generation of profiling data. The

automated tool performs application profiling on Cloud instance, which is a costly approach.

Our proposed work does not require to deploy the application on the Cloud instance.

Several research articles are machine learning to guide Cloud resource selection. Bankole

et al. [20] develop a Cloud resource provisioning framework using support vector machine,

neural network, and linear regression. The use CPU utilization, response time and throughput

17

metrics for model training dataset. They test their models with web applications and found that

the support vector machine performed a better Cloud instance prediction.

Guo et al. [21] develop a Cloud recommendation model using K-Means and Analytic

hierarchy model. The machine learning model employs the user defined values such as CPU and

memory usage. They executed the applications on selected Cloud instances for collecting

runtime. The training dataset consists of CPU usage, memory usage, and runtime. Our proposed

model does not require executions on Cloud instances thereby saving money for the end-users.

Liu et al. [22] propose a Cloud instance type selection algorithm based on genetic

algorithm (CITSA-GA). The genetic algorithm uses the 2D encoding between genes, roulette

strategy, and crossover with mutation methods. They test their method against three generic

algorithms: traversal algorithm, genetic algorithm, and particle swarm optimization algorithm.

The accuracy of the CITSA-GA was obtained almost 82.5%. They only consider the Amazon

EC2 compute intensive instances and do not consider the instance pricing. Our study considers

memory-intensive and general purposes instance from multiple Cloud service providers. We

also include the instance cost model for recommending the Cloud instances.

Samreen et al. [23] implement Daleel, a machine learning based Cloud instance selection

framework. The framework uses the evidence-based knowledge of the Internet as a service

setup. The framework takes the customer’s requirements and constrains to recommend the

Cloud instance. They perform an empirical study on three different Amazon EC2 Cloud

instances. They execute one application ‘VARD’ to collect data for polynomial regression. Thy

use linear and nonlinear models for the application runtime predication. This study shows that

the non-linear model outperforms the linear model. One major shortcoming of this study are the

selection of fewer Cloud instances and benchmarking with only one application.

18

Ouyang et al. [24] propose a machine learning-based node performance analyzer. They

analyze the node performance using OpenCloud trace log parallel execution data and select a

series of node performance features. The proposed analyzer uses the parallel tasks execution log

data for training and predicts its performance for scheduling tasks. They consider the

MapReduce application for analysis of the model data. The model shows an average accuracy of

over 92.86%.

Kaplunovich et al. [25] develop a recommendation system for recommending an effective

Cloud instance. The machine learning model uses big data sets on assorted AWS instances for

training. The ultimate goal is to save time and cost for choosing a Cloud instance.

Wamba et al. [26] develop a workload prediction model using constraint programming

and neural network for dynamic Cloud resource provisioning. They also build two workload

generators for extending the experimental data. The models validate using the real Cloud traces.

The study shows that the constraint programming is highly amendable for trace generation. On

the other hand, the neural network gives better predictions.

Sun et al. [27] propose a consumer-centered Cloud selection using the Analytical

hierarchy process (AHP). The study considers the consumer’s qualitative and semi-qualitative

personalized preferences such as response time, throughput, availability, reliability, and cost to

make decisions using AHP. Thy test the proposed model using AWS EC2 Cloud instances.

Unlike the above activities, we focus on the scientific application’s performance parameters and

cost model of the Cloud instance for recommending the Cloud resource.

Chen et al. [28] develop a fuzzy logic-based decision-making method for Cloud service

evaluation. The study uses the fuzzy analytical hierarchy process method to calculate the fuzzy

weights of each criterion from interval-valued fuzzy sets. The decision-maker has the choice to

19

use the linguistic variables for selecting the criteria importance, performance rating, and

systematic solve the decision problem.

Ashwini et al. [29] build an efficient Cloud resource selection framework for high-

performance computing applications. They form a cluster of heterogenous computes instances

for high-performance computing applications. They use a K-Means model and employ CPU

power, bandwidth, and execution time dataset. The K-Means model and brute force method

show identical results for Cloud instance selection.

The literature presents research on the execution of the application on the Cloud instances

for model training. The execution of application on Cloud instances is an expensive approach.

Rathnayake et al. [30] present an analytical modeling approach ‘CELIA’ to determine cost-time-

optimal Cloud resources of elastic applications. The model uses the execution time and cost

models from baseline for estimating application resource demand and Cloud resource capacity

for Amazon EC2 instances. Their study does not characterize the applications.

Morais et al. [31] propose a proactive horizontal auto-scaling for instance selection.

They use CPU and memory utilization, cost, Quality of service (QoS) for the application for

developing a prediction model. In addition, they consider only the Amazon EC2 instances. In

contrast, we include more instances from more Cloud service providers. Grandhi et al. [32]

develop a Cloud performance evaluation model using a fuzzy algorithm. The performance of

Cloud computing depends on a multi-attribute group. The proposed study considers the

performance evaluation problem as a multi-attribute group decision making problem and

implements the fuzzy multi-attribute group decision-making model for solving the problem. The

research determines the effectiveness of the proposed fuzzy model. In our study, we use the

Naive Bayes model for making predictions that requires small dataset and computation powers.

20

Sohaib et al. [33] propose a fuzzy model for e-commerce Cloud computing. The study includes

the technological, organizational, and environmental factors associated with e-commerce

applications hosted on Cloud services. The fuzzy model recommends the ideal solution for e-

commerce site using the order of preference by similarity.

21

CHAPTER 3: PRELIMINARIES

This chapter describes the theoretical aspects of the A2Cloud-RFC framework and

explains three machine learning algorithms employed for instance recommendation. These

include random forest classifier, K-means clustering, and the Naive Bayes classifier. Section 3.1

presents the A2Cloud-RFC framework and Section 3.2 describes the three machine learning

algorithms.

3.1 A2Cloud-RFC Framework

The A2Cloud-RFC framework [11], [34] is an easy-to-use analytical framework that

recommends effective Cloud instances for executing scientific applications on Cloud platforms.

Figure 3.1 shows the A2Cloud-RFC framework. The framework inputs the scientific application

and the selected Cloud instances and leverages the performance benchmarks and random forest

classifier to generate the Cloud instances ratings. These ratings enable users to select the most

effective Cloud instance for their application.

The A2Cloud-RFC framework comprises the A2Cloud framework and the random forest

classifier as shown in Figure 3.1. The A2Cloud framework generates the A2Cloud score via

application and Cloud instance benchmarking. The random forest classifier uses the A2Cloud

score to form the random forest using multiple decision trees. Using the random forest, the

A2Cloud-RFC framework assigns a final rating to the selected Cloud instances for the tested

application.

22

Figure 3.1 A2Cloud-RFC framework: A2Cloud framework and random forest classifier

The A2Cloud Framework comprises the Linux Perf engine, Cloud trace engine, and

A2Cloud-ext engine. The Linux Perf engine generates the application performance parameters

that characterize an application. The Cloud trace engine determines the Cloud performance

parameters for the Cloud instances and these parameters are complementary to application

performance parameters. The A2Cloud-ext engine leverages the application vector and Cloud

vector generator engines. The application vector generator creates the application vector from

the application performance parameters. The Cloud vector generator constructs the Cloud vector

using the Cloud performance parameters. The Matrix-vector product operator multiplies the

application vector and Cloud vector to produce the A2Cloud score vector.

Section 3.1.1, 3.1.2, and 3.1.3 describe the three engines of the A2Cloud Framework:

Perf Engine, Cloud Trace, and A2Cloud-ext engines, respectively.

23

3.1.1 Perf Engine

The A2Cloud framework executes the Linux Perf engine for application performance

measurement (see Figure 3.1). The Linux Perf engine’s statistical sampling counters are

programmed to take periodical measurements of application parameters including the number of

single-precision floating-point operations per second (SPFLOPs), number of double-precision

floating-point operations per second (DPFLOPs), the total number of x87 instructions (x87),

number of main memory reads and writes (mem), and number of disks reads (!"#$
%&'(

), and

writes (!"#$
)%*+&

). Table 3.1 provides the Perf engine counters and their descriptions.

Table 3.1
A List of Perf Computation and Memory Counters

Counter Type Mnemonic A2Cloud Name Description

Computation

fp comp ops exe.x87
x87 instructions

fp comp ops exe.sse packed
single
simd fp 256.packed single

fp comp ops exe.sse scalar
double
fp comp ops exe.sse packed
double

simd fp 256.packed double

x87
SP scalar

SP packed

SP SIMD

DP scalar

DP packed

DP packed

x87 instructions
Scalar single-
precision
packed SSE single-
precision
SIMD single-
precision
scalar double
precision
packed SSE

SIMD double-
precision

Main
Memory

uncore imc {0-7} cas count
read

uncore imc {0-7} cas count
write

uncore read {0-
7}

uncore write {0-7

memory read opera-
tions performed
(un- core read ops)

memory write
opera- tions
performed (un- core
write ops)

24

The SFLOPs component comprises one scalar single-precision operation, four packed

SSE single-precision operations, and eight SIMD single-precision operation. Equation 3.1 shows

the calculation of SPFLOPs using its constituents.

,-./0-# = ,-
23'4&%

+ 4	,-
8'3&(

+ 8	,-
:;<=

 (3.1)

Similarly, the DPFLOPs combine scalar double-precision, two packed SSE double-

precision and four SIMD double-precision functions (see Equation 3.2).

>-./0-# = >-
23'4&%

+ 2	>-
8'3&(

+ >	>-
:;<=

 (3.2)

The x87 counter calculates the x87 instructions. The main memory accesses are

calculated using the Perf engine uncore read and write functions. Equation 3.3 shows the

memory access calculation:

@A@ = ∑ CDEFGA_GAI!#_"
J

KLM
+ ∑ CDEFGA_NG"OA#_"

J

KLM
 (3.3)

The disk read and write are the user-defined parameters. The PERF engine writes the

performance parameters into an application trace as a JSON file. A detailed information about

the counters can be found in [34], [35].

3.1.2 Cloud Trace Engine

The Cloud trace engine performs 1000 statistical executions of performance benchmarks

on the selected Cloud instances to assess the Cloud instance's stochastic behavior. These

benchmarks include LINPACK [36] and Stream [37] to calculate the floating-point precision,

memory, and disk performances of the selected Cloud instances.

The LINPACK suite evaluates the single-precision floating-point per second (SPFLOPS),

double-precision floating-point operations per second (DPFLOPS), and the x87 instructions per

second (x87S) of a system. The STREAM benchmark suite determines the main memory

25

bandwidth (@A@
P

). The other Cloud performance parameters such as !"#$
%&'(P

, and

!"#$
)%*+&P

 are determined by using the dd micro-benchmark.

After performing the benchmarks on the Cloud instances, the engine writes the

performance parameters to a Cloud trace and stores in a database as a JSON file.

3.1.3 A2Cloud-ext Engine

As seen in Figure 3.1, the A2Cloud-ext engine generates the final A2Cloud score using

its three components: application vector generator, Cloud vector generator, and matrix-vector

product operator. We describe the functionality of the A2Cloud-ext engine components.

• Application Vector Generator

The application vector generator inputs the application trace to the application vector.

The application vector generator IQQRRRRRRR⃗ using Equation 3.4.

IQQRRRRRRR⃗ = [,./0-,	>-./0-,	@A@	!"#$
%&'(

	!"#$
)%*+&

	U87]
X (3.4)

• Cloud matrix generator

The Cloud matrix generator creates a Cloud matrix whose columns are constituted by the

Cloud vectors. A Cloud vector contains the Cloud instance performance parameters including the

SFLOPS, DPFLOPS, x87S, @A@
P

, !"#$
%&'(P

, and !"#$
)%*+&P

.

To construct a statistical vector for each Cloud instance, the Cloud-matrix generator

fetches the JSON file from the database. The generator applies the central limit theorem [38] to

the Cloud performance parameters to fit normal distribution curves. Using the normal

distributions, the generator calculates the mean (Y) and standard deviation (Z) of Cloud

performance parameters. Equation 3.5 presents the statistical Cloud vector generated via the

above process.

26

E[FC!RRRRRRRRRRR⃗ = [
\

](_,a
b):defgd2

	
\

](_,a
b)=defgd2

		
\

](_,a
b)h&h

		
\

](_,a
b)(*2i

jklm

		
\

](_,a
b)(*2i

njopk

			
\

](_,a
b)qrJ

]
X (3.5)

where Y and Zare the mean and standard deviation of the parameters.

The Cloud matrix generator arranges the Cloud vectors in the column major format to

create the Cloud matrix, E[FC!. This matrix is input by the matrix-vector product operator.

• Matrix-vector product operator

This module performs a matrix-vector product (Equation 3.6) of the IQQRRRRRRR⃗ and the E[FC!

to generate A2Cloud score vectors. The engine normalizes the scores on scale of 1 to 10 because

the normalized score improves the performance and training stability of the model.

,EFGARRRRRRRRRRR⃗
stu4vw(

= [E[FC!RRRRRRRRRRR⃗
\
	E[FC!RRRRRRRRRRR⃗

t
					E[FC!RRRRRRRRRRR⃗

h
]
X
x	

⎣

⎢

⎢

⎢

⎢

⎡

,-./0-#

>-./0-#

@A@

!"#$
%&'(

!"#$
)%*+&

U87 ⎦

⎥

⎥

⎥

⎥

⎤

 (3.6)

Each scalar in the A2Cloud score vector represents to the level of match between the

application and the corresponding Cloud instance.

3.2 Machine Learning Algorithms

Machine learning (ML) is a data-driven method of building an analytical model for

predictive analysis or recommendation. The ML model learns from the data and makes a

prediction based on the learned parameters. The algorithms are broadly three categorized into

unsupervised, supervised, and reinforcement techniques [39]. The unsupervised and supervised

learning require small dataset, create a less complex model, and easy to deploy whereas

reinforcement learning uses large dataset, complex model, and high computing power to train the

model. Our work has small dataset and therefore, we use on supervised machine learning

algorithms.

27

3.2.1 K-Means Clustering

Clustering is a machine learning algorithm that searches the hidden patterns in the raw

data to create clusters with similar characteristics. K-means is one of the popular algorithms that

uses numerical and unsupervised method to create clusters. In our work, we use K-Means to

create labeled data.

K-Means divides the data based on the Euclidean distance from the cluster origin. The

algorithm steps are as follows [40], [41]:

• Identify the number of clusters (K) and randomly assign the cluster center
coordinates

• Calculate Euclidean distance of each data point from the cluster centroid

• Move to the cluster centroid to the mean of its Euclidean distance of assigned
datapoints

• Repeat step 2 and 3 until the centroid does not change

Equation 3.8 shows the formula for calculating Euclidean distance between two points is

! = �(Ät − Ä\)
t
+ (U

t
− U

\
)
t (3.7)

where d means the distance between two points, centroid and points coordinates

are (U
\
, U
t
)	and (Ä

\
, Ä
t
)	respectively.

3.2.2 Random Forest Classifier

Random Forest classifier (RFC) [42], [43] is a supervised machine learning algorithm

that uses multiple decision trees constructed from a dataset. The entropy and information gain

are the basis of decision trees construction. We use Iterative Dichotomiser 3 (ID3) [44]

algorithm to calculate the entropy and information gain.

28

(a) Unstructured data (b) Dataset with four clusters

Figure 3.2 Example of K-Means algorithm with four clusters

A conceptual diagram of the random forest is depicted in the Figure 3.3. The decision

trees are constructed using a top-down approach. The required ID3 metrics are entropy and

information gain. The algorithm parameters (entropy and information gain) and ID3 algorithms

are described as follows.

• Algorithm Parameters

Entropy represents the amount of uncertainty in the dataset. It is also a way of measuring

impurity of the data. Based on the impurity, decision tree nodes are separated. Equation 3.8

denotes the entropy:

 Ç(,) = ∑Q(U)[FÉ
t
-(U) (3.8)

where Ç(,) is the entropy of dataset, , represents the current dataset, -(U) is the proportion

of the number of elements in a category.

29

Figure 3.3 The random forest classifier (RFC) function block diagram

The entropy value becomes zero when all samples of a node belong to the same category.

In contrast, the entropy has the maximum value for the uniform class distribution. Also, it may

reach the maximum value because of all classes in the node having equal probability. So, the

entropy maximizes mutual information by creating an equal probability node in the decision tree

[45], [46].

In the decision tree technique, we create the root node first and then pass the feature data

on the leaf node. It results in the largest information gain (IG). Also, IG calculates the reduction

30

in entropy in the training dataset and can be used for feature selection by determining the gain of

each variable in the target variable. Equation 3.9 shows the mathematical representation of IG

calculation.

ÑÖ(,|á) = Ç(,) − ∑Q(O)Ç(O) = Ç(,) − Ç(,|á) (3.9)

where , represents the current dataset, Ç(,) is entropy of set S, ∑Q(O)Ç(O) is total

entropy of all subsets of ,.

• ID3 algorithm

The ID3 algorithm calculates the entropy and information gain of each data attributes

from the dataset. The attribute with maximum information gain is the root node of decision tree.

The values contained in this specific attribute become the node's branches. The algorithm

continuously splits the attributes of subsets and stops when no more splitting is possible for any

attribute [47]. Those attributes information gain values become terminal nodes. ID3 algorithm

generates multiple decision trees to perform the random forest classification. The final

classification combines the terminal nodes of all the decision trees. The terminal nodes denote a

different classification and have its own weight value. The average numerical weight of terminal

nodes is the final rating for the particular item.

The RFC engine is cascaded to the A2Cloud Framework as shown in Figure 3.1. The

RFC engine suggests the Cloud instances based on two different methodologies: arithmetic

intensity-based (AIRF) and application-specific random forest generator (ARF).

• Application-specific Random Forest (ARF) generator

The application-specific random forest (ARF) generator uses the A2Cloud scores to make

decision trees (see figure 3.1). The ARF constructs three decision trees for the best-case, avg-

31

case, and the worst-case instance performance. Each decision tree uses the data splitting rules

enlisted by Samuel et. al. [11].

• Arithmetic-Intensity Random Forest (AIRF) Generator

The arithmetic intensity generator (AIG) is responsible for generating the arithmetic

intensity (AI) value of applications. The AIG engine takes the application vector as input and

calculates the arithmetic intensity value. The AIG obtains the AI value using Equation 3.10.

The numerator term denotes the sum of the computation components of the application vector

and the denominator term represents the memory access component of the application vector.

 áÑ = ln	(
∑ 3vh8w+*vK2

∑h&hv%ä	'33&22

) (3.10)

After determining the AI value, the AIRF pulls the performance traces from the database.

Then, it constructs the trees using the same methodology as the ARF generator to construct the

decision trees. The constructed decision trees combine together to form the random forest. Each

tree node is assigned with numerical ratings to generate the final Cloud instance rating.

3.2.3 Naive Bayes Classifier

The Naive Bayes classifier is a supervised machine learning algorithm that falls into

probabilistic classifiers family. The algorithm is based on Bayes' theorem of probability. The

Naive word means that the features are independent of each other.

Bayes' theorem [48] determines the conditional probability of an event based on the prior

associated conditions of that event. Bayes theorem is given in Equation 3.11.

 Q(Ç|>) = 8ã>åÇç8(é)

8(=)

 (3.11)

32

where p(H|D) is posterior probability or probability of hypothesis H given data D, p(D|H)

is the probability of given data D when hypothesis H is true, p(H) is the hypothesis probability or

prior probability, p(D) is the probability of data

3.2.3.1 Probabilistic Framework of Naive Bayes Classifier

The NB framework is shown in the Figure 3.4. The classifier model maps input feature

vectors U ∈ x to output class labels Ä ∈ 1, 2, . . , í
i
	where U = [U

\
, U
t
, … . , U

K
] feature vector,

number of classes k, and classes í
i
.

The classifier model learns from a labeled training set of input pairs as a part of

supervised learning method. The Naive Bayes probabilistic classifier [49]-[52] including Bayes

theorem is shown in Equation 3.12.

Q(í
i
|U) =

8ãUåí
i
ç8(uî)

8(q)

 (3.12)

where p(í
i
|U), Q(U|í

i
), Q(í

i
),	and Q(U) are posterior, likelihood, prior, and evidence

respectively.

The NB model training has the input feature vectors (i.e. A2Cloud score, cost score).

The features vector has a numeric value between 1 to 10 and those are continuous. The NB

model assumption is that continuous input feature vectors associated with each class are in

normally distributed. For our case, we divide the data by class and calculate the mean and

variance of the input feature vector in each class.

33

Figure 3.4 The NB classifier working methodology

Assume mean (Y
i
) and standard deviation (Z

i
) of the input feature vector is associated

with class, í
i
. Then, the mathematical expression of the multi-class Gaussian Naive Bayes

Classifier is as follows:

Q(U|í
i
) =

\

�tïa
î
b
AUQ

(qñ_î)
b

ta
î
b

 (3.13)

where feature vector U = [U
\
, U
t
, … . , U

K
] in D dimensional space, í

i
. is class variable.

In summary, the basic steps of Gaussian Naive Bayes Classification algorithm are

described as follows [53]:

The NB classifier converts the training dataset into the frequency table and prior

probability table of four classes. Based on those tables, model prepares the events probability

and likelihood tables. The NB equation determines the posterior probability of each class for the

new data item. The higher posterior probability of new instances determines its class.

34

3.2.4 Machine Learning Model Evaluation Metrics

We consider the confusion matrix, accuracy, and F1 score for the machine learning

model evaluation.

• Confusion matrix

The confusion matrix is an NxN matrix where N represents the number of clusters. The

matrix contains information about the actual cluster and model predicted cluster information. A

table of confusion or the confusion matrix reports the number of false positives, false negatives,

true positives, and true negatives. Those parameters express the proportion of correct

classifications. True positive (TP) represents that the NB correctly predicted positive clusters are

actually positive clusters. If the NB classifier predicts the clusters as positive but they are

actually negative; this represents the false positive (FP). True negative (TN) expresses the

accurate prediction of the negative class. False-negative (FN) is an outcome where the model

incorrectly predicts the negative class.

Figure 3.5 Confusion matrix

35

• Accuracy

Accuracy explains the correctness of the model, showing the number of correct

predictions out of the total predictions.

áEECGIEÄ =
]whó&%	vò	3v%%&3+	8%&(*3+*vK2

Xv+'4	Kwhó&%	vò	8%&(*3+*vK2

=
XdôX]

XdôX]ôedôe]

 (3.14)

• F1 Score

F1 score is a combination of recall and precision. The maximum value of the F1 score is

1. The high F1 score represents the model performing outstanding in case of recall and precision.

-GAE"#"FD =
Xd

Xdôed

 (3.15)

öAEI[[=
Xd

Xdôe]

 (3.16)

.1 =
t	õ	d%&32*vK	õ	ú&3'44

d%&32*vK	ô	ú&3'44

 (3.17)

3.3 Summary

The A2Cloud-RFC framework includes the PERF engine, Cloud trace engine, and

A2Cloud-ext engine. The PERF engine calculates the application performance parameters.

Cloud trace engine generates the Cloud instance performance parameters. The A2Cloud-ext

engine converts the application and Cloud performance parameters to application vector and

Cloud matrix. The matrix-vector product generator multiples the application vector and Cloud

matrix to from the A2Cloud score.

Machine learning algorithms (K-Means, Random Forest Classifier, Naive Bayes) are

used to build the Cloud instance recommender. K-Means generates the labeled data using the

36

original dataset. Random Forest Classifier generates the instance RFC rating. The Naive Bayes

makes the final Cloud instance recommendation. The confusion matrix, accuracy, and F1-score

evaluate a machine learning model's performance.

37

CHAPTER 4: METHODOLOGY

This chapter outlines the synergy between the A2Cloud-RFC framework and machine

learning agents for recommending the Cloud instances. We propose two different

implementation methodologies: Naive Bayes NEXT to Random Forest Classifier (NB-Next) and

a Stand-alone Naive Bayes classifier (S-NB). In addition, we provide an overview of the dataset

generation and feature selection techniques for the NB-Next and S-NB classifiers.

4.1 NB-Next

Sections 4.1.1 and 4.1.2 describe the NB-Next machine approach and feature selection

methodology, respectively.

4.1.1 NB-Next Machine Learning Approach

Figure 4.1 exhibits the workflow of the NB-Next classifier. The model pipeline

comprises the A2Cloud-RFC framework with three NB classifiers: compute-intensive (CI),

balanced, and memory-intensive (MI). Each one of the NB classifiers trains with a specific

application class dataset.

The A2Cloud-ext framework takes the scientific application and target Cloud instance as

an input. The A2Cloud-ext uses its internal counters and engines to generate the IQQRRRRRRR⃗ and

A2Cloud score (see Section 3.1).

38

Figure 4.1 NB-Next working methodology

Arithmetic-intensity generator (AIG) determines the arithmetic intensity (AI) of the

scientific application (see Section 3.3.2). The AI value is the natural logarithm of the number of

computations divided by memory access. If the arithmetic intensity (AI) value is greater than

zero, then the AIG classifies the application as compute-intensive (CI) class because the

application has more computations than memory accesses. A negative value of AI denotes that

an application is memory-intensive (MI) (more memory accesses than computations). The

balanced class has an AI value that is close to zero (approximately equal number of

computations and memory accesses).

As seen in Figure 4.1, the NB-Next classifier workflow has three branches: compute-

intensive, balance, and memory-intensive. The working principle of the three branches are

39

identical. Therefore, we describe the compute-intensive branch by using each component (RFC

(A), K-Means (B), NB (C), and Instance selector (D)) in the pipeline.

4.1.1.1 Random Forest Classifier (RFC)

The Random forest classifier (RFC) [11] takes the compute-intensive dataset as an input.

The RFC generates three decision trees (based on best-case, average-case, and worst-case)

instance performance based on the A2Cloud scores. RFC combines the three decision trees

together to make a random forest where it assigns a number from 1 to 4 to each individual leaf

node of the decision trees. The assigned number represents four cases: excellent (4), good (3),

okay (2), and bad (1). Finally, RFC calculates the average of the leaf nodes for a given

individual instance to provide an average rating.

Figure 4.2 Cost Rating generator working principle

40

 (a) Compute-intensive dataset (b) Balanced dataset

(c) Memory-intensive dataset

Figure 4.3 Cloud instance rating and cost rating using A2Cloud-RFC framework

41

In addition to the A2Cloud scores, we also consider the Cloud instance pricing to

construct the cost rating score as shown in Figure 4.2. The cost-per-second and A2Cloud scores

are multiplied to form the cost score, which is then fed to the RFC to compute the cost random

forest using the same approach as the A2Cloud random forest.

Figure 4.3 shows the NB-Next classifier's training dataset for three application classes:

CI, balanced, and MI. Figure 4.3 a shows compute-intensive application class dataset. Figures

4.3 b and 4.3 c exhibit the balanced and memory-intensive datasets. We apply the K-Means

clustering on the dataset to label the data.

4.1.1.2 K-Means Clustering

K-Means algorithm transforms the unlabeled dataset into labeled dataset. K-Means

creates the four clusters: excellent (4), good (3), okay (2), and bad (1) from the training dataset.

Figure 4.4 displays the K-Means clustered data with four clusters highlighted in different colors.

The top right cluster in red represents the excellent case, the bottom right cluster in green denotes

the okay case, the top left in blue represents the good case, and the bottom left in orange

represents the bad case. The instance and cost ratings construct the input features for training.

4.1.1.3 NB Classifier

NB classifier has two phases: training and testing. In the training phase, the NB classifier

uses the result of K-Means clustering to train the model. Figure 4.5 shows the working principle

of the NB classifier. The NB model converts the training dataset into a frequency table for four

classes: excellent (E), good (G), okay (O), and bad (B). Based on the frequency table, the NB

model calculates the prior probability of four classes. In addition, the NB learns the respective

mean (Y) and standard deviation (Z) of input features (RFC rating and cost rating) for the four

classes.

42

 (a) Compute-intensive labeled dataset (b) Balanced labeled dataset

(c) Memory-intensive labeled dataset

Figure 4.4 Cloud instance rating and cost rating labeled dataset

The testing dataset has instance rating and cost rating for model testing. During the

testing phase, the NB determines the likelihood probability using the Gaussian NB equation 3.13.

43

Figure 4.5 NB training and testing phase methodology

Figure 4.6 Instance selector recommends instance with the highest Euclidean distance

44

Finally, the NB classifier uses the Naive Bayes equation (3.12) to determine the posterior

probability of the testing dataset. The highest posterior probability of a class represents the

outcome of the prediction.

For the testing phase, NB classifies the Cloud instances for the target scientific

application and Cloud instances as excellent (E), good (G), Okay (O), or bad (B). The

determined classification information is sent to the instance selector, which follows next.

4.1.1.4 Instance Selector

The instance selector selects as optimal instance from the excellent (E) class. The

instance selector uses the Euclidean distance method to recommend the final instances. The

instance selector determines the Euclidean distance of all instances (RFC rating and Cost rating)

in excellent class from the tuple (1,1). We choose the tuple (1,1) as origin because the minimum

RFC rating and cost rating is (1,1). The instance selector recommends an instance with the

highest Euclidean distance because the ideal tuple for the excellent class is (4,4). NB-Next uses

RFC rating and cost rating that vary from 1 (least) to 4 (excellent). Figure 4.6 represents an

example of the Cloud instance selector. The instance selector recommends the t3.small instance

because it hast the highest Euclidean distance value 4.24 from the tuple (1,1).

The balanced and memory-intensive application classes follow the same methodology as

discussed above.

4.2 Stand-alone Naive Bayes (S-NB) Methodology

The Stand-alone Naive Bayes (S-NB) classifier recommends the Cloud instances using

the NB classifier alone. The model is referred as Stand-alone because it does not employ the

Random Forest Classifier [34]. Section 4.2.1 describes the methodology of S-NB.

45

4.2.1 Stand-alone Machine Learning Approach

Figure 4.7 shows the working methodology of the S-NB classifier that uses the A2Cloud

score directly from the A2Cloud framework.

Figure 4.7 S-NB classifier working methodology

As shown in Figure 4.7, the A2Cloud-ext framework generates the A2Cloud scores using

the scientific applications and target Cloud instance (see Section 3.1). The arithmetic intensity

generator (AIG) calculates the arithmetic intensity of the scientific application. The scientific

application can be compute-intensive, balanced or memory-intensive based on the arithmetic

intensity value. The AIG categorizes the A2Cloud scores into four application classes.

Therefore, there are three A2Cloud scores datasets available for training one NB classifier (CI,

MI, and balanced). In addition to the A2Cloud score, we add the cost metric of Cloud instances.

46

Figure 4.8 shows the cost score generation principle. The instance cost-per-second and A2Cloud

score multiplies to produce the cost score where the lower value indicates a better fit.

The working methodology of S-NB has three branches: compute-intensive, memory-

intensive, and balanced. All of the three branches follow the same working principle. Therefore,

we explain the compute-intensive branch.

The input features (A2Cloud score, cost score) are used to train the S-NB classifier.

Figure 4.9 displays the S-NB method’s training dataset for three application classes: CI (4.9 a),

balanced (4.9 b), and MI (4.9 c). We apply K-Means on the dataset to generate the labeled data.

Figure 4.8 Cost score generator working principle

47

4.2.1.1 K-Means Clustering

We apply the K-Means algorithm to generate the labeled data of four clusters: Excellent

(E), Good (G), Okay (O), and Bad (B). Figure 4.10 displays the K-Mean clustered data with four

clusters for the three application classes. Each different color represents a separate cluster.

Figure 4.10a shows the compute-intensive class labeled data. The lowest A2Cloud score

and cost score values form the excellent class because low A2Cloud and cost scores are desirable

(unlike RFC and cost ratings). On the other hand, the highest A2Cloud score and cost score

belongs to bad class. Figure 4.11b represents the balanced class labeled data. The data-points in

the left-bottom of the plot are the excellent class. On the other hand, the data-points close to the

right-top of the graph constitute the bad case. Figure 4.10c exhibits the memory-intensive class

labeled data. The excellent class contains the A2Cloud score and cost score with having lowest

value. The right-top of the figure represents the bad class.

The output of the K-Means is the training dataset for the S-NB classifier. The dataset has

input features: A2Cloud score and cost score. Also, the dataset contains the clusters number

obtained from the K-Means clustering.

48

 (a) Compute-intensive dataset (b) Balanced dataset

 (c) Memory-intensive dataset

Figure 4.9 A2Cloud score and cost score using A2Cloud and cost generator

49

 (a) Compute-intensive labeled dataset (b) Balanced labeled dataset

 (c) Memory-intensive labeled dataset

Figure 4.10 Cluster generation using K-Means

4.2.1.2 NB Classifier

Figure 4.11 represents the overall working principle of the S-NB classifier. The NB

classifier trains using the K-Means results. During the NB model training, the NB classifier

50

transforms the dataset into a frequency table and prior probability. The model also computes the

input features' mean and standard deviation. During the NB model testing, the NB model

determines the posterior probability for each cluster by using the Naive Bayes equation. The

highest posterior probability of a class represents the outcome of the prediction. For example,

for a given test data=[A2Cloud score, Cost score]= [1.2, 1.2], the NB calculates the posterior

probability for excellent, good, okay, and bad classes as follows: 0.6, 0.1, 0.2, and 0.1. The

excellent class has the highest posterior probability. Therefore, the NB recommends the

excellent class as output for the test data and passes the information to instance selector. Using

this method, the classifier classifies all (A2Cloud score, cost score) into the four application cl

assess.

Figure 4.11 S-NB training and testing phase methodology

51

Figure 4.12 Instance selector recommends instance with the least Euclidean distance

4.2.1.3 Instance Selector

The instance selector selects the optimal instance from the excellent (E) class. The

instance selector uses the Euclidean distance method to recommend the final instances. The

instance selector determines the Euclidean distance of all instances (A2Cloud score and Cost

score) in excellent class from the ideal tuple (1,1). We select the minimum value of the A2Cloud

score and cost score (1,1) as ideal value. The instance selector recommends with the least

Euclidean distance. Figure 4.12 represents an example of the S-NB Cloud instance selector. The

instance selector recommends the t3.small instance because it hast the least Euclidean distance

value 1.15 from the tuple (1,1).

The balanced and memory-intensive application follow the same methodology as

compute-intensive to recommend the Cloud instances.

52

4.3 Summary

NB-Next datasets contain the RFC rating and cost rating. K-Means generates the four

clusters (excellent, good, okay, and bad) from the training dataset. The NB classifier uses the

clustered data for training and makes predictions using the verification dataset. The NB model

calculates the posterior probability of four clusters (excellent, good, okay, and bad) for the test

data. The highest posterior probability is the NB predicted class. The NB models transfer the

excellent clusters information to the instance selector. The instance selector recommends the

instance with has the largest Euclidean distance from the base tuple (1,1).

S-NB uses the A2Cloud score and cost score for training and verification studies. We

apply K-Means clustering on the training dataset to create four clusters (excellent, good, okay,

and bad). The NB calculates the posterior probability of the verification dataset. Then, the

instance cluster is determined by its highest posterior probability. The S-NB passes the excellent

cluster information to the instance selector. The instance selector calculated the Euclidean

distance for each instance in the excellent cluster. Finally, the instance selector recommends the

instance with the least Euclidean distance from the base tuple (1,1).

53

CHAPTER 5: EXPERIMENTATION AND VERIFICATION

This chapter explains the experimentation and verification results for the Naive Bayes

NEXT to Random Forest Classifier (NB-Next) and Standalone Naive Bayes classifier (S-NB).

The chapter also outlines the NB-Next and S-NB in action.

5.1 Cloud Instances

We select a total of 20 Cloud instances from different Cloud service providers including

AWS (Amazon Web Service) EC2 (Elastic Compute Cloud) [4], Microsoft Azure [5], Google

Cloud Platform [6], and Linode [10]. Our tested Cloud instances, include the general-purpose,

computation-optimized, and memory-optimized instances,which differ on the number of virtual

CPUs, memory (GB), and cost-per-hour. Table 5.1 presents a list of tested Cloud instances

together with their distinctive characteristics.

Section 5.2 presents an introduction to the real-world applications used for training and

verification studies.

5.2 Real-world Applications Executed on Cloud Instances

We use several real-world scientific applications for dataset generation and verification.

Our selected applications cover a wide range of scientific fields including: computer science,

quantum chemistry, computer vision, hydrodynamics, and neural networks. Additionally, our

study considers an application from each application category (compute-intensive, memory-

intensive, and balanced) to verify the classifiers. Sections 5.2.1, 5.2.2, 5.2.3 describe the selected

scientific applications used for training and verification.

54

Table 5.1
Cloud Instances Categories: General-purpose, Compute and Memory Optimized

Type Instance vCPUs Memory
(GB)

Disk Provider Price
(per hour)

 t2.large 2 8 Network SSD AWS EC2 $0.0928
 t3a.large 2 8 Network SSD AWS EC2 $0.0753
 t3.small 2 2 Network SSD AWS EC2 $0.0208
 t3a.small 2 2 Network SSD AWS EC2 $0.0188

 t3a.medium 2 4 Network SSD AWS EC2 $0.0376
General-
Purpose

m4.large

2 8 Network SSD AWS EC2 $0.1000

 t2.small 1 2 Network SSD AWS EC2 $0.0230
 t2.medium 2 4 Network SSD AWS EC2 $0.0464
 B2ms 2 8 Network SSD Azure VMs $0.0912
 N1s2 2 7.5 Network SSD GCP $0.0200
 Linode.G 2 7.5 Network SSD Linode $0.0150
 c4.large 2 8 Network SSD AWS EC2 $0.1000
 c5.large 2 4 Network SSD AWS EC2 $0.0850

Compute-
Optimized

F2s 2 4 Network SSD Azure VMs $0.0110

 N1cc 2 4 Network SSD GCP $0.0150
 Linode.C 2 7.5 Network SSD Linode $0.0450
 r4.large 2 15.25 Network SSD AWS EC2 $0.1330
 E2s 2 16 Network SSD Azure VMs $0.0782

Memory-
Optimized

N1m2 2 13 Network SSD GCP $0.0250

 Linode.M 2 7.5 Network SSD Linode $0.0900

5.2.1 LULESH

The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH)

solves the Sedov blast problem of hydrodynamics and presents solutions using numerical

methods [54]. LULESH application has three problem sizes: 30, 50, and 70. The Arithmetic-

Intensity generator (AIG) calculates the LULESH's arithmetic intensity as 0.23, 0.45, and 2.69

for LULESH problem sizes 30, 50, and 70, respectively. The AI value greater than zero

indicates that LULESH's performs computations than memory accesses. Therefore, LULESH is

55

moderately compute-intensive application. We use LULESH 50 and 70 to train the machine

learning model. We select LULESH 30 to verify the NB-Next and S-NB models.

5.2.2 Data Migration Scheduler

The data migration (DM) scheduler is a large simulation application that simulates the

scheduling steps in large data centers [55], [56]. DM with flatten and color, DM greedy, Edge

ranking and DM with space constraints are the different versions of the data migration

application. The Data Migration with space constraints has the arithmetic intensity -5.7052. DM

with space constraints has the higher number of memory access over the number of

computations, which classifies this application as highly memory-intensive. We select the DM

with space constraints to perform verification study and use other DM's to generate training

dataset.

5.2.3 QODE

The University of the Pacific’s chemistry department developed an Electron structure

theory simulation application, QODE to simulate the electronic structure problem using the

excitonically re-normalized coupled-cluster theory [57], [58]. The arithmetic intensity of QODE

is -0.78, meaning that it falls within the balanced category class. We use QODE to verify the

balanced class NB-Next and S-NB models.

5.2.4 Spiking Neural Networks

The Spiking Neural Networks (SNN) is a large scale neural network simulation models

that mimic the human brain mechanism to use for character recolonization [59]. We use the

Hodgin‐Huxley (HH) model (compute-intensive application) [60], Wilson model (Balanced

56

application) [61], and the Izhikevich model (memory-intensive application) [62] for generating

training dataset.

5.2.5 Rotoscope

The best features digital Rotoscope is a computer vision application that generates the

artistic videos by adding animation to video sequences [63]. The rotoscope requires more

memory access operation than computations (memory-intensive application). We use Rotoscope

to generate the training dataset.

We choose real-world applications: LULESH, three SNN simulations, digital rotoscope,

and three data‐migration schedulers for generating training dataset.

Sections 5.3 and 5.4 describe the NB-Next in action, NB-Next model performance

evaluation, S-NB in action, and S-NB model performance evaluation procedure.

5.3 NB-Next

NB-Next uses Cloud instance rating and cost rating for the NB-Next model training,

testing, and verification. Sections 5.3.1 and 5.3.2 show the NB-Next in action and model

performance evaluation, respectively.

5.3.1 NB-Next in Action

NB-Next pulls the Cloud instance rating and cost rating datasets from the database, and

generates the labels using K-means algorithm. We pick the compute-intensive dataset to explain

how the NB classifier learns hypothesis parameters from the dataset (see Figure 5.1). NB

converts the data into a frequency table and calculates the prior probability for the four clusters.

Table 5.2 lists the calculated frequencies and the cluster prior probabilities which is the

57

frequency divided by the total number of data-points in the dataset. As seen in the table, the

frequency column represents the number of data-points within a given cluster.

(a) Compute-intensive training dataset (b) Dataset with four clusters

Figure 5.1 Compute-intensive NB-Next training dataset

The NB classifier generates the training set parameters (mean and standard deviation) for

the RFC rating and cost rating. Table 5.3 shows the training parameters of the NB classifier.

The mean and standard deviation help the NB model to get insight into the clustered data. Using

Tables 5.2 to 5.4, the NB model performs the prediction.

We verify the NB model with a test case (t3.small instance for LULESH 30 application)

with RFC rating of 4.0 and cost rating of 4.0. The NB model begins with calculating the

likelihood of the test data by using Equation 3.13. Therefore, there are two variables for the

input data so that it calculates two sets of likelihood probabilities per cluster. Also, the model

has already learned the prior probability of the cluster. Using the above-mentioned parameters,

the NB classifier determines the posterior probability. Table 5.4 lists the likelihood, prior

58

probability, and posterior probability values for the test case. Table 5.4 shows that the excellent

cluster has the highest posterior probability. Therefore, t3.small instance belongs to excellent

cluster.

Table 5.2
Frequency and Prior Probability of Compute-intensive Training

Table 5.3
Mean and Standard Deviation of Compute-intensive Training Dataset	

Cluster Mean

(Y
%'+*Kù

)

S.D

(Z
ú'+*Kù

)

Mean

(Y
3v2+_%'+*Kù

)

S.D

(Y
3v2+_%'+*Kù

)

1 or bad 1.84 0.37 1.50 0.50

2 or average 1.64 0.47 3.68 0.43

3 or good 3.15 0.37 1.63 0.49

4 or

excellent

3.36 0.48 3.38 0.39

Cluster 1 or bad 2 or average 3 or good 4 or excellent Total

Frequency 19 19 55 67 160

Prior Probability 0.12 0.12 0.34 0.42 1.0

59

Table 5.4
Testing Using LULESH 30 of T3.small Instance A2Cloud and Cost Rating 4, 4

 Likelihood

Cluster

p(Rating|Cluster) p(Cost|Cluster) Prior

Probability

Posterior

Probability

1 or bad 4.59x10-5 2.97x10-6 0.12 1.63x10-11

2 or average 2.84x10-6 0.67 0.16 2.29x10-7

3 or good 0.078 6.77x10-6 0.34 1.77x10-7

4 or excellent 0.34 0.35 0.42 0.05

5.3.2 Model Performance Evaluation

Model performance evaluation estimates the accuracy of the NB classifier using

verification dataset. We select the confusion matrix, accuracy, and F1-score metrics to evaluate

the classifiers.

We split the dataset into 80/20 ratio for training and testing purposes with the three real-

world applications execute on the 20 Cloud instances. We then collect the runtime ratings via

actual execution and the A2Cloud-RFC [11]. In addition, we calculate the cost rating by

multiplying the instance-cost-per-time and runtime. K-Means generates clusters data from

runtime and cost rating. We use this clustering result to evaluate the NB-Next's predictions.

Figure 5.2 shows the compute-intensive NB-Next classifier's testing and verification

confusion matrix. The predicted label and true label present the predicted cluster and the actual

cluster (derived from runtime analysis). Figure 5.2a exhibits the testing set confusion matrix.

The NB-Next classifies all classes correctly. Therefore, the confusion matrix is diagonal. Figure

60

5.2b displays the verification set (LULESH 30) confusion matrix. The NB-Next model identifies

17 correct prediction out of 20. That makes the confusion matrix close to diagonal. The model

performs misclassification of two good classes as average and one average class as good. It

shows the conservative nature of the NB-Next model while rating instances.

(a) Testing set confusion matrix (b) LULESH 30 confusion matrix

Figure 5.2 Compute-intensive NB-Next classifier confusion matrix

Figure 5.3 represents the memory-intensive NB-Next classifier's testing and verification

confusion matrix. Figure 5.3a shows the testing set confusion matrix. The NB-Next identifies

all points correctly that makes the confusion matrix diagonal. Figure 5.3b displays the

verification set (Data Migration) confusion matrix. The NB-Next model makes 19 correct

prediction out of 20 data points. One miss-prediction is where the NB-Next predicts a category

as good but actually it is excellent. Although the NB-Next predicts a class as good but actually it

is excellent, it represents the NB-Next's conservative nature.

61

(a) Testing set confusion matrix (b) Data migration confusion matrix

Figure 5.3 Memory-intensive NB-Next classifier confusion matrix

Figure 5.4 represents the balanced NB-Next classifier's testing and verification confusion

matrix. Figure 5.4a displays the testing set confusion matrix. The NB-Next identifies all points

correctly that makes the confusion matrix strictly diagonal. Figure 5.4b displays the verification

set (QODE) confusion matrix. The NB-Next model identifies 18 data point correctly out of 20

data points. Therefore, the QODE confusion matrix is almost diagonal. Although the NB-Next

performs two miss-classification, it does not identify bad cluster as good or excellent. That

means the NB-Next is conservative while making prediction.

Table 5.5 shows the NB-Next models performance parameters (accuracy and F1 score)

for testing and verification datasets. For the testing dataset, the NB-Next exhibits high accuracy

(100%) and F1 score (1.0). The model predicts all the data-points accurately and identifies all

the possible positive labels. For the verification studies, the CI NB-Next model shows the

accuracy and F1 score 85% and 0.84, respectively. The MI and balanced NB-Next models

perform higher accuracy (>90%) and F1 score (>0.90).

62

(a) Testing set confusion matrix (b) QODE confusion matrix

Figure 5.4 Balanced NB-Next classifier confusion matrix

Table 5.5
Testing and Verification Set Accuracy and F1 Score

 Testing Verification

Accuracy (%) F1 Score Accuracy (%) F1 Score

Compute-intensive 100 1.0 85 0.84

Memory-intensive 100 1.0 95 0.95

Balanced 100 1.0 90 0.92

Figure 5.5 presents the runtime and cost rating of 20 Cloud instances for LULUESH 30

application. The t3.small is located the highest distance from the tuple (1,1). The instance

selector recommends t3.small as best match for LULESH 30. The NB-Next also recommends

t3.small instance for LULESH 30 which matches with the runtime and cost rating plot. The

runtime plot suggests that t3a.large is the best for Data Migration application. The NB-Next also

recommends t3a.large instance for Data Migration which verifies the NB-Next model.

63

Figure 5.7 shows the runtime and cost rating of 20 Cloud instances for balanced (QODE)

application. The c5.large Cloud instance has the highest Euclidean distance 4.24 from the tuple

(1, 1). The runtime plot suggests that c5.large is the best match for QODE application. The NB-

Next also recommends c5.large instance for QODE which verifies the NB-Next model.

Figure 5.5 The runtime and cost rating of 20 instances for LULESH 30

Figure 5.6 shows the runtime and cost rating of 20 Cloud instances for Data Migration

application. The t3a.large Cloud instance has the Euclidean distance 3.72 from the tuple (1,1).

5.4 S-NB

The stand-alone Naive Bayes (S-NB) classifier working principle is discussed in the

Chapter 4. In what follows, we explain the S-NB training and testing phase in details.

Furthermore, the validation and instance recommendation are presented for three real-world

applications.

64

Figure 5.6 The runtime and cost rating of 20 instances for Data Migration

Figure 5.7 The runtime and cost rating of 20 instances for QODE

65

5.4.1 S-NB in Action

In the S-NB approach, there are three separate NB classifiers used for instance

recommendation: CI, MI, and balanced. We apply K-Means on the datasets to create clusters.

Out of three application classes, we explain how the memory-intensive NB classifier training and

testing phase because the other classes follow the same methodology.

(a) memory-intensive training dataset (b) Dataset with four clusters

Figure 5.8 S-NB memory-intensive training dataset

The memory-intensive application class dataset has 1140 rows and 4 columns (see Figure

5.8). The NB classifier uses the A2Cloud score and cost columns to map its hypothesis function

into the cluster value.

The NB classifier converts the dataset into the frequency distribution table for four

clusters where the frequency means the number of samples per cluster. The prior probability

(p[cluster]) is the frequency divided by the total number of samples. The frequency distribution

66

and the prior probability of the memory-intensive class dataset are shown in the Table 5.6. The

NB classifier determines the model parameters such as mean and standard deviation for each

class using the Gaussian distribution assumption. Table 5.7 presents the model training function

parameters including mean (Y
stu4vw(ûü†jk

, Y
uv2+ûü†jk

) and standard deviation

(Z
stu4vw(ûü†jk

, Z
uv2+ûü†jk

). Using Tables 5.6, 5.7, and 5.8, the S-NB model performs the

prediction.

Table 5.6
Frequency and Prior Probability of Memory-intensive Training

We test the NB model with a test case (t3a.medium instance for Data Migration

application) with A2Cloud score of 1.16 and cost rating cost score 1.68. The NB model

calculates the likelihood of the test data by using the equation 3.13. Table 5.8 lists the

likelihood, prior probability, and posterior probability values for the A2Cloud score=1.16 and

cost score= 1.68. The excellent cluster has the highest posterior probability (1.68x10-2). So, the

S-NB identifies the t3a.medium as excellent instance for Data Migration. S-NB passes the

information to instance selector to make final decision using Euclidean distance.

Cluster 1 or
bad

2 or average 3 or good 4 or excellent Total

Frequency 345 339 286 170 1140

Prior Probability 0.30 0.29 0.26 0.15 1.0

67

Table 5.7
 Mean and Standard Deviation of Memory-intensive Training Dataset

Table 5.8
Testing Using T3a.medium Instance A2Cloud and Cost Scores 1.16 and 1.68

Cluster °AID

	(Y
stu4vw(23v%&

)

S.D

(Z
stu4vw(23v%&

)

°AID

	(Y
uv2+_23v%&

)

S.D

(Z
3v2+_23v%&

)

1 or bad 8.55 1.11 8.80 1.48

2 or

average

7.45 1.88 2.14 1.01

3 or good 5.56 0.87 5.86 0.57

4 or

excellent

1.88 1.06 2.05 0.99

 Likelihood

Cluster

P (A2Cloud score

| Cluster)

P (Cost score |

Cluster)

Prior

Probability

Posterior

Probability

 1 or bad 8.53x10-11 2.34x10-5 0.30 5.99x10-16

2 or average 7.5x10-4 0.35 0.29 7.84x10-5

 3 or good 1.27x10-6 1.47x10-12 0.26 4.89x10-19

4 or excellent 0.29 0.37 0.15 1.68x10-2

68

5.4.2 Model Performance Evaluation

For the training and testing purposes, the dataset is split into a 80/20 ratio. The

verification dataset is derived from real-world applications: LULESH 30, Data Migration, and

QODE.

Figure 5.9 shows the compute-intensive S-NB model performance visualization using the

confusion matrix. The testing set confusion matrix represents that S-NB classifies single data-

point as average class instead of good class; aside from this the S-NB performs well on testing

dataset. Figure 5.9b represents the LULESH 30 verification set confusion matrix. We observe

that the S-NB has miss-classified two Cloud instances out of 20. S-NB predicts a good instance

and an average class instance as excellent and bad class, respectively. Although S-NB makes

two false predictions, but those pre- dictions are no more than the category apart. This

characteristic of S-NB shows the conservative nature. Overall, the S-NB model accuracy and F1

score for LULESH 30 are 90% and 0.90 enlists in the Table 5.9.

Figure 5.10 exhibits the memory-intensive S-NB model confusion matrix. For the testing

set (Figure 5.10a), the S-NB has the almost diagonal confusion matrix that represents the S-NB

per- forms correct predictions on testing set. Figure 5.10b shows the Data Migration application

verification confusion matrix. The S-NB performs excellent because the confusion matrix is

diagonal or almost diagonal. The model predicated one instance as good instead of average

class.

69

(a) Compute-intensive testing set confusion matrix (b) Verification (LULESH 30) confusion

matrix

Figure 5.9 The S-NB compute-intensive application class classifier confusion matrix

	

(a) Memory-intensive testing set confusion matrix (b) Data Migration verification confusion

matrix

Figure 5.10 The S-NB memory-intensive application class classifier confusion matrix

Figure 5.11 exhibits the balanced application S-NB model’s confusion matrix. The S-NB

has the almost diagonal confusion matrix that expresses the S-NB model high accuracy on

70

testing dataset (see Figure 5.11a). For the QODE application verification, the S-NB exhibits

excellent performance because the confusion matrix is diagonal or almost diagonal (see Fig.

5.11b). The model predicated two instances as bad instead of average class.

(a) Balanced class testing set confusion matrix (b) Verification (Qode) confusion matrix

Figure 5.11 The S-NB QODE application class classifier confusion matrix

Table 5.9 shows the S-NB models performance parameters (accuracy and F1 score) for

testing and verification datasets. The original dataset divides into training dataset (80%) and

testing dataset (20%). For the testing dataset, the S-NB exhibits the high accuracy (>97%) and

F1 score (>0.98). The model predicts all the data-points accurately and identifies all the possible

positive labels. For the verification studies, the CI S-NB model shows the accuracy and F1 score

90% and 0.90, respectively. The MI S-NB model has the accuracy and F1 score 95% and 0.93,

respectively. The balanced S-NB model shows the 90% accuracy and 0.90 F1 score.

71

Table 5.9
Accuracy and F1 Score of Testing and Verification Dataset

 Testing Verification

Accuracy (%) F1 Score Accuracy (%) F1 Score

Compute-intensive 99.07 0.99 90 0.90

Memory-intensive 99.58 9.98 95 0.93

Balanced 97.11 0.98 90 0.91

Figure 5.12 presents the runtime and cost rating of 20 Cloud instances for LUESH 30 ap-

plication. The S-NB instance selector recommends the instance that has the minimum distance

from the base tuple (1,1). The base tuple is (1,1) because an instance could have minimum (1,1)

runtime score and cost score. The t3.small has the least Euclidean distance (1.20) from the tuple

(1,1). The instance selector recommends t3.small as best match for LULESH 30. The NB-Next

also recommends t3.small instance for LULESH 30 which matches with the runtime and cost

rating plot.

Figure 5.13 shows the runtime and cost rating of 20 Cloud instances for Data Migration

application. The t3a.medium Cloud instance has the Euclidean distance 1.07 from the tuple

(1,1). The runtime plot suggests that t3a.medium is the best for Data Migration application. The

S-NB also recommends t3a.medium instance for Data Migration which verifies the NB-Next

model.

72

																																												 	
	
Figure 5.12 The runtime and cost score of 20 instances for LULESH 30

	
	

	

Figure 5.13 The runtime and cost score of 20 instances for Data Migration

Figure 5.14 shows the runtime and cost rating of 20 Cloud instances for balanced

(QODE) application. The t3.small Cloud instance has the highest Euclidean distance 1.11 from

the tuple (1,1). The runtime plot suggests that t3.small is the best match for QODE

73

application. The NB-Next also recommends t3.small instance for QODE which verifies the NB-

Next model.

																																					 	
	
Figure 5.14 The runtime and cost score of 20 instances for QODE

5.5 Summary

We use eight scientific applications and 20 Cloud instances for generating training

dataset. To verify the NB-Next and S-NB models, we use LULESH 30, QODE, Data Migration

with space constraints applications.

NB-Next uses the RFC rating and cost rating for model training. To verify the NB-

NEXT, the CI NB-Next model shows the accuracy and F1 score 85% and 0.84, respectively.

The MI and balanced NB-Next models perform higher accuracy (> 90%) and F1 score (> 0.90).

S-NB uses the A2Cloud score and cost score for training purposes. For the verification

study, the CI S-NB model shows the accuracy and F1 score 90% and 0.90, respectively. The MI

S-NB model has the accuracy and F1 score 95% and 0.93, respectively. The balanced S-NB

74

model shows the 90% accuracy and 0.90 F1 score. The S-NB methodology shows the higher

accuracy over NB-Next.

75

CHAPTER 6: CONCLUSION

We present the NB-Next and S-NB classifiers for the Cloud instance selection. Both of

the methods simplify the A2Cloud-RFC based recommender system using a Naive Bayes

classifier. The A2Cloud-RFC framework profiles the scientific applications and Cloud instances

without executing the applications on Cloud instance, which saves unnecessary execution costs

on the Cloud. The A2Cloud-RFC framework utilizes the application performance and cloud

performance characteristics to generate scores; Those scores represent a scientific application’s

runtime and cost on the targeted instances, thereby producing the first level of instance

recommendation. The generated results are stored in a database to build the Cloud instance

recommendation system using the Naive Bayes Classifier.

The NB-Next is comprised of A2Cloud-RFC framework, K-Means, Naive Bayes

classifier, and an instance selector. The K-Means takes the cloud rating and cost rating as input

from the A2Cloud-RFC framework and divides the dataset into four clusters: E, G, O, and B.

The Naive Bayes trains with the clustered dataset to identify the Cloud instance clusters. The

instance selector selects the instance from an excellent class using our proposed Euclidean

distance. The RFC rating and cost rating are the higher the better. The NB-Next trains with

LULESH, Data Migration, Rotoscope, and Spiking neural networks scientific applications over

20 Cloud instances. The shows an accuracy of over 85% and F1 score over 0.84 in the

verification dataset.

The S-NB comprises of A2Cloud-ext engine, K-Means, Naive Bayes classifier, and

instance selector. The A2Cloud-ext engine generates the A2Cloud score and cost score. The K-

Means use the A2Cloud score and cost score and forms the four clusters: E, G, O, and B. The

76

Naive Bayes trains with the K-Means output and predicts the instances clusters. The lower the

A2Cloud score and cost score are better. The instance selector pulls the instance from the

excellent cluster and recommends an instance with the least Euclidean distance. The S-NB

model shows an accuracy of over 90% and F1 score over 0.90 in the verification dataset.

The NB-Next include the random forest classifier. The inclusion of random forest

classifier makes the NB-Next methodology more complex. It shows the average accuracy

approximately 90%. In contrast, the S-NB has the simple methodology with NB classifier. It has

the accuracy approximately 92%. The HPC should select the S-NB methodology to get instance

recommendation.

Our proposed methodologies (NB-Next and S-NB) provide a cost-effective guidance for

scientific community particularly small private/public organizations and universities to select

Cloud resources. Furthermore, the proposed machine learning approaches require small training

dataset and less training time. In the future, we propose to explore other machine learning

algorithms such as Support vector machine or Neural Network for solving classification

problems. For the existing model, we only use two input features. Additionally, we can add

other Cloud instance network components i.e. latency.

	
	
	
	
	
	
	
	
	

77

REFERENCES

[1] P. Ruiu, O. Terzo, G. Carlino, et al. “HPC Cloud Pills: On-Demand Deployment
and Execution of HPC Application in Cloud Environments”. In: 2014 Ninth International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing. 2014, pp. 82–88. doi: 10.
1109 / 3PGCIC.2014.39.

[2] J. Emeras, S. Varrette, and P. Bouvry. “Amazon Elastic Compute Cloud (EC2) vs. In-House
HPC Platform: A Cost Analysis”. In: 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD). 2016, pp. 284–293. doi: 10.1109/CLOUD.2016.0046.

[3] G. Fox and D. Gannon. “Using Clouds for Technical Computing”. In: Cloud Computing and
Big Data (2013).

[4] Amazon EC2 Instances Types. url: https://aws.amazon.com/ec2/instance-types/.

[5] Microsoft Azure Instances Types. url: https://azure.microsoft.com/en- us/pricing/
details/virtual-machines/linux/#a-series.

[6] Google Cloud Platform Instances Types. url: https://cloud.google.com/compute/vm-
instance-pricing.

[7] IBM Cloud. url: https://www.ibm.com/cloud.

[8] Oracle Cloud. url: https://www.oracle.com/cloud/.

[9] Alibaba Cloud. url: https://us.alibabacloud.com/en.

[10] Linode Instances Types. url: https://www.linode.com/products/high-memory/.

[11] D. Samuel, S. Khan, C.J. Balos andZ. Abuelhaj, et al. “A2Cloud-RF: A Random Forest
based Statistical Framework to guide Resource Selection for High-Performance Scientific
Computing on the Cloud”. In: Conc. and Comp.: Pract. (2019).

[12] E. Rolo, M. Diener, L. P. Gaspary, et al. “HPC Application Performance and Cost
Efficiency in the Cloud”. In: 2017 25th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP). 2017, pp. 473–477. doi:
10.1109/PDP.2017.59.

[13] T. K. Okada, A. Goldman, and G. G. H. Cavalheiro. “Using NAS Parallel Benchmarks to
evaluate HPC performance in clouds”. In: 2016 IEEE 15th International Symposium on Network
Computing and Applications (NCA). 2016, pp. 27–30. doi: 10.1109/NCA.2016.7778587.

[14] I. K. Kim, J. Steele, Y. Qi, et al. “Comprehensive Elastic Resource Management to En-
sure Predictable Performance for Scientific Applications on Public IaaS Clouds”. In: 2014

78

IEEE/ACM 7th International Conference on Utility and Cloud Computing. 2014, pp. 355– 362.
doi: 10.1109/UCC.2014.45.

[15] Zhenhuan Gong, Xiaohui Gu, and J. Wilkes. “PRESS: Predictive Elastic Resource Scaling
for cloud systems”. In: 2010 International Conference on Network and Service Management.
2010, pp. 9–16. doi: 10.1109/CNSM.2010.5691343.

[16] “A framework for ranking of cloud computing services”. In: Future Generation Computer
Systems 29.4 (2013), pp. 1012–1023. doi: https://doi.org/10.1016/j.future.2012.06.
006.

[17] A. Iosup, S. Ostermann, M. N. Yigitbasi, et al. “Performance Analysis of Cloud
Computing Services for Many-Tasks Scientific Computing”. In: IEEE Transactions on Parallel
and Distributed Systems 22.6 (2011), pp. 931–945. doi: 10.1109/TPDS.2011.66.

[18] R. Chard, K. Chard, R. Wolski, et al. “Cost-Aware Cloud Profiling, Prediction, and
Provisioning as a Service”. In: IEEE Cloud Computing 4.4 (2017), pp. 48–59. doi:
10.1109/MCC.
2017.3791025.

[19] R. Chard, K. Chard, B. Ng, et al. “An Automated Tool Profiling Service for the Cloud”.
In: 2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid). 2016, pp. 223–232. doi: 10.1109/CCGrid.2016.57.

[20] A. A. Bankole and S. A. Ajila. “Predicting cloud resource provisioning using machine
learning techniques”. In: 2013 26th IEEE Canadian Conference on Electrical and Computer
Engineer- ing (CCECE). 2013, pp. 1–4. doi: 10.1109/CCECE.2013.6567848.

[21] Taiyang Guo, Rami Bahsoon, Tao Chen, et al. “Cloud Instance Selection Using Parallel K-
Means and AHP”. In: UCC ’19 Companion. Auckland, New Zealand: Association for Com-
puting Machinery, 2019, pp. 71–76. isbn: 9781450370448. doi: 10.1145/3368235.3368845.
url: https://doi.org/10.1145/3368235.3368845.

[22] W. Liu, P. Wang, Y. Meng, et al. “A Novel Algorithm for Optimizing Selection of Cloud
In- stance Types in Multi-Cloud Environment”. In: 2019 IEEE 25th International Conference on
Parallel and Distributed Systems (ICPADS). 2019, pp. 167–170. doi: 10.1109/ICPADS47876.
2019.00033.

[23] F. Samreen, Y. Elkhatib, M. Rowe, et al. “Daleel: Simplifying cloud instance selection
using machine learning”. In: NOMS 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium. 2016, pp. 557–563. doi: 10.1109/NOMS.2016.7502858.

[24] X. Ouyang, C. Wang, R. Yang, et al. “ML-NA: A Machine Learning Based Node
Performance Analyzer Utilizing Straggler Statistics”. In: 2017 IEEE 23rd International
Conference on

79

Parallel and Distributed Systems (ICPADS). 2017, pp. 73–80. doi: 10.1109/ICPADS.2017.
00021.
[25] A. Kaplunovich and Y. Yesha. “Cloud big data decision support system for machine
learning on AWS: Analytics of analytics”. In: 2017 IEEE International Conference on Big Data
(Big Data). 2017, pp. 3508–3516. doi: 10.1109/BigData.2017.8258340.

[26] G. M. Wamba, Y. Li, A. Orgerie, et al. “Cloud Workload Prediction and Generation
Models”. In: 2017 29th International Symposium on Computer Architecture and High-
Performance Computing (SBAC-PAD). 2017, pp. 89–96. doi: 10.1109/SBAC-PAD.2017.19.

[27] M. Sun, T. Zang, X. Xu, et al. “Consumer-Centered Cloud Services Selection Using AHP”.
In: 2013 International Conference on Service Sciences (ICSS). 2013, pp. 1–6. doi: 10.1109/
ICSS.2013.26.

[28] C. Chen and Kuan-Hung Lin. “A decision-making method based on interval-valued fuzzy
sets for cloud service evaluation”. In: 4th International Conference on New Trends in
Information Science and Service Science. 2010, pp. 559–564.

[29] J. P. Ashwini, C. Divya, and H. A. Sanjay. “Efficient resource selection framework to en-
able cloud for HPC applications”. In: 2013 4th International Conference on Computer and
Communication Technology (ICCCT). 2013, pp. 34–38. doi: 10.1109/ICCCT.2013.6749599.

[30] S. Rathnayake, D. Loghin, and Y. M. Teo. “CELIA: Cost-Time Performance of Elastic Ap-
plications on Cloud”. In: 2017 46th International Conference on Parallel Processing (ICPP).
2017, pp. 342–351. doi: 10.1109/ICPP.2017.43.

[31] F. J. A. Morais, R. Lopes, and F. Brasileiro. “Instance Type Selection in Proactive
Horizontal Auto-Scaling”. In: 2016 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). 2016, pp. 102–109. doi: 10.1109/CloudCom.2016.0031.

[32] S. Grandhi and S. Wibowo. “Performance evaluation of cloud computing providers using
fuzzy multiattribute group decision making model”. In: 2015 12th International Conference on
Fuzzy Systems and Knowledge Discovery (FSKD). 2015, pp. 130–135. doi:
10.1109/FSKD.2015.7381928.

[33] O. Sohaib and M. Naderpour. “Decision making on adoption of cloud computing in e-
commerce using fuzzy TOPSIS”. In: 2017 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE). 2017, pp. 1–6. doi: 10.1109/FUZZ-IEEE.2017.8015404.

[34] C. Balos, D. De La Vega, Z. Abuelhaj, et al. “A2Cloud: An Analytical Model for
Application- to-Cloud Matching to Empower Scientific Computing”. In: 2018 IEEE 11th
International Conference on Cloud Computing (CLOUD). 2018, pp. 548–555. doi:
10.1109/CLOUD.2018.00076.

80

[35] G. Ofenbeck, R. Steinmann, V. Caparros, et al. “Applying the roofline model”. In: 2014
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).
2014, pp. 76–85.

[36] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, et al. “Design and Implementation of the
Linpack Benchmark for Single and Multi-node Systems Based on Intel® Xeon Phi Copro-
cessor”. In: 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.
2013, pp. 126–137.

[37] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance
Comput- ers. Tech. rep. A continually updated technical report.
http://www.cs.virginia.edu/stream/. Charlottesville, Virginia: University of Virginia, 1991-2007.
url: http://www.cs.virginia.edu/stream/.

[38] M. Reitzner. “Central limit theorems for Gaussian polytopes”. In: Probab. Theory Relat.
Fields (2005).

[39] S. B. Kotsiantis, I. D. Zaharakis, and P. E. Pintelas. “Machine learning: a review of classifi-
cation and combining techniques”. In: Artif Intell Rev 26 (2006).

[40] K. Rajeswari, O. Acharya, M. Sharma, et al. “Improvement in k-Means Clustering
Algorithm Using Data Clustering”. In: 2015 International Conference on Computing
Communication Control and Automation. 2015, pp. 367–369.

[41] S. Na, L. Xumin, and G. Yong. “Research on k-means Clustering Algorithm: An Improved
k-means Clustering Algorithm”. In: 2010 Third International Symposium on Intelligent In-
formation Technology and Security Informatics. 2010, pp. 63–67.

[42] K. Nugroho, E. Noersasongko, Purwanto, et al. “Improving Random Forest Method to
Detect Hate speech and Offensive Word”. In: 2019 International Conference on Information and
Communications Technology (ICOIACT). 2019, pp. 514–518.

[43] M. S. Kumar, V. Soundarya, S. Kavitha, et al. “Credit Card Fraud Detection Using Random
Forest Algorithm”. In: 2019 3rd International Conference on Computing and Communications
Technologies (ICCCT). 2019, pp. 149–153.

[44] X. Liu, D. Wang, L. Jiang, et al. “A novel method for inducing ID3 decision trees based on
variable precision rough set”. In: 2011 Seventh International Conference on Natural Compu-
tation. Vol. 1. 2011, pp. 494–497.

[45] SCIKIT-LEARN: DECISION TREE LEARNING I- ENTROPY, GINI, AND
INFORMATION GAIN. Available at https:// www. bogotobogo. com/ python/ scikit-
learn/scikt_machine_learning_Decision_Tree_Learning_Informatioin_Gain_IG_Impurity_
Entropy_Gini_Classification_Error.php (03/25/2020).

81

[46] Jason Brownlee. Information Gain and Mutual Information for Machine Learning.
Available at https://machinelearningmastery.com/information-gain-and-mutual-information/
(03/26/2020).

[47] Jason Brownlee. Decision Tree. Available at https://www.hackerearth.com/practice/
machine - learning / machine - learning - algorithms / ml - decision - tree / tutorial/ (03/26/2020).

[48] Kamal Nigam Andrew Mccallum. A Comparison of Event Models for Naive Bayes Text
Classification. Available at https:// www. cs. cmu. edu/~knigam/ papers/ multinomial-
aaaiws98.pdf (03/31/2020).

[49] Kevin P. Murphy. Na¨ıve Bayes Classifications. Available at https://www.ic.unicamp.br/
~rocha/teaching/2011s1/mc906/aulas/naive-bayes.pdf (04/02/2020).

[50] Irina Rish. “An Empirical Study of the Na¨ıve Bayes Classifier”. In: IJCAI 2001 Work
Empir Methods Artif Intell 3 (Jan. 2001).

[51] Zhihua Cai Jia Wu. “A naive Bayes probability estimation model based on self-adaptive
differential evolution”. In: Journal of Intelligent Information Systems 42 (2013), pp. 671– 694.

[52] George H. 5. John, Pat Langley, and G. Yong. “). Estimating Continuous Distributions in
Bayesian Classifiers”. In: 1995 Proc. Eleventh Conf. on Uncertainty in Artificial Intelligence.
1995, pp. 338–345.

[53] L. Mandal and N. D. Jana. “A Comparative Study of Naive Bayes and k-NN Algorithm for
Multi-class Drug Molecule Classification”. In: 2019 IEEE 16th India Council International
Conference (INDICON). 2019, pp. 1–4.

[54] Ian Karlin, Jeff Keasler, and Rob Neely. Livermore Unstructured Lagrangian Explicit
Shock Hydrodynamics (LULESH). Available at https:// computing. llnl. gov/ projects/
codesign/lulesh (04/14/2020).

[55] G. Roberts, S. Chen, C. Kari, et al. “Data migration algorithms in heterogeneous storage
systems: A comparative performance evaluation”. In: 2017 IEEE 16th International Symposium
on Network Computing and Applications (NCA). 2017, pp. 1–4.

[56] S. Chen, C. Kari, and M. Coolbeth. “Data Migration in Large Scale Heterogeneous Storage
Systems with Space Constraints”. In: 2020 International Conference on Computing,
Networking and Communications (ICNC). 2020, pp. 358–362.

[57] Yuhong Liu and Anthony Dutoi. “Excitonically renormalized coupled-cluster theory”. In:
Molecular Physics 117 (Sept. 2018), pp. 1–16. doi: 10.1080/00268976.2018.1523481.

[58] Anthony Dutoi and Yuhong Liu. “Systematically improvable excitonic Hamiltonians for
electronic structure theory”. In: Molecular Physics 117 (Sept. 2018), pp. 1–15. doi: 10.1080/
00268976.2018.1522003.

82

[59] M. A. Bhuiyan, V. K. Pallipuram, M. C. Smith, et al. “Acceleration of spiking neural
networks in emerging multi-core and GPU architectures”. In: 2010 IEEE International
Symposium on Parallel Distributed Processing, Workshops and PhD Forum (IPDPSW). 2010,
pp. 1–8.

[60] Huxley AF Hodgkin AL. “A quantitative description of membrane current and application
to conduction and excitation in nerve”. In: J Physiol. 1952; 117:500-544 (Aug. 1952), pp. 500–
544.

[61] Wilson HR. “Simplified dynamics of human and mammalian neocortical neurons”. In:
Journal of Theoretical Biology (1999), pp. 375–388. doi: https://doi.org/10.1006/jtbi.1999. 1002.

[62] Izhikevich EM. “Simple model to use for cortical spiking neurons”. In: IEEE Trans Neural
Network (2003), pp. 1569–1572.

[63] I. Murphy, T. Norlund, and V. K. Pallipuram. “A best-features based digital rotoscope”. In:
2017 51st Asilomar Conference on Signals, Systems, and Computers. 2017, pp. 243–247.

	A PROBABILISTIC MACHINE LEARNING FRAMEWORK FOR CLOUD RESOURCE SELECTION ON THE CLOUD
	Recommended Citation

	Thesis v5

