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A PROBABILISTIC MACHINE LEARNING FRAMEWORK FOR CLOUD RESOURCE 
SELECTION ON THE CLOUD  

 
 

Abstract 
 
 

By Syeduzzaman Khan  
 

University of the Pacific 
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 The execution of the scientific applications on the Cloud comes with great flexibility, 

scalability, cost-effectiveness, and substantial computing power.  Market-leading Cloud service 

providers such as Amazon Web service (AWS), Azure, Google Cloud Platform (GCP) offer 

various general purposes, memory-intensive, and compute-intensive Cloud instances for the 

execution of scientific applications.  The scientific community, especially small research 

institutions and undergraduate universities, face many hurdles while conducting high-

performance computing research in the absence of large dedicated clusters.  The Cloud provides 

a lucrative alternative to dedicated clusters, however a wide range of Cloud computing choices 

makes the instance selection for the end-users.  This thesis aims to simplify Cloud instance 

selection for end-users by proposing a probabilistic machine learning framework to allow to 

users select a suitable Cloud instance for their scientific applications.  

This research builds on the previously proposed A2Cloud-RF framework that 

recommends high-performing Cloud instances by profiling the application and the selected 

Cloud instances.  The framework produces a set of objective scores called the A2Cloud scores, 

which denote the compatibility level between the application and the selected Cloud instances.  

When used alone, the A2Cloud scores become increasingly unwieldy with an increasing number 

of tested Cloud instances.  Additionally, the framework only examines the raw application 
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performance and does not consider the execution cost to guide resource selection.  To improve 

the usability of the framework and assist with economical instance selection, this research adds 

two Naive Bayes (NB) classifiers that consider both the application’s performance and execution 

cost.  These NB classifiers include: 1) NB with a Random Forest Classifier (RFC) and 2) a 

standalone NB module.  

Naive Bayes with a Random Forest Classifier (RFC) augments the A2Cloud-RF 

framework's final instance ratings with the execution cost metric.  In the training phase, the 

classifier builds the frequency and probability tables.  The classifier recommends a Cloud 

instance based on the highest posterior probability for the selected application.  

The standalone NB classifier uses the generated A2Cloud score (an intermediate result 

from the A2Cloud-RF framework) and execution cost metric to construct an NB classifier.  The 

NB classifier forms a frequency table and probability (prior and likelihood) tables.  For 

recommending a Cloud instance for a test application, the classifier calculates the highest 

posterior probability for all of the Cloud instances.  The classifier recommends a Cloud instance 

with the highest posterior probability. 

This study performs the execution of eight real-world applications on 20 Cloud instances 

from AWS, Azure, GCP, and Linode.  We train the NB classifiers using 80% of this dataset and 

employ the remaining 20% for testing.  The testing yields more than 90% recommendation 

accuracy for the chosen applications and Cloud instances.  Because of the imbalanced nature of 

the dataset and multi-class nature of classification, we consider the confusion matrix (true 

positive, false positive, true negative, and false negative) and F1 score with above 0.9 scores to 

describe the model performance.  
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The final goal of this research is to make Cloud computing an accessible resource for 

conducting high-performance scientific executions by enabling users to select an effective Cloud 

instance from across multiple providers. 
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CHAPTER 1: INTRODUCTION 

 

High-Performance Computing (HPC) is now widely prevalence in several scientific 

research areas including computer science, quantum chemistry, physics, image processing, and 

among others [1].  HPC helps the researchers to reduce the application run time by executing the 

application on the HPC clusters.  These clusters require on-premise power and regular 

maintenance, leading to aggregate costs.  Cloud computing offers cost-effective, scalable, and 

sustainable Cloud resources for high-performance application execution, obviating the need for 

on-site HPC systems [2], [3]. 

Leading Cloud vendors such as Amazon Web Service (AWS) [4], Microsoft Azure [5], 

Google Cloud Platform [6], IBM Cloud [7], Oracle Cloud [8], Alibaba Cloud [9], and Linode 

[10] offer a wide range of Cloud Computing instances to the scientific community.  Most of the 

Cloud service providers offer three broad instance categories: general purpose, compute-

intensive, and memory-intensive instances with varying memory configurations and price per 

hour.  The abundant Cloud instance configurations and pricing options overwhelm the scientist, 

making the selection difficult.  To alleviate the issue, we propose a machine learning approach to 

guide the research community to select a high-performing, cost-effective Cloud instance for 

these applications. 

We present a machine learning approach to recommend the Cloud instances for executing 

scientific applications on the Cloud.  We propose two methodologies: Naive Bayes with Random 

Forest Classifier (NB-Next) and a standalone Naive Bayes (S-NB) built upon our previously 

proposed A2Cloud-RFC Framework [11]. 
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The A2Cloud-RFC framework consists of the A2Cloud-ext model and the Random forest 

classifier (RFC).  The A2Cloud-ext profiles the application and Cloud instance.  The A2Cloud-

ext uses hardware benchmarks to profile the application’s performance parameters including the 

number of single-precision floating-point operations(SPFLOPs), number of double-precision 

floating-point operations (DPFLOPs), the total number of x87 instructions (x87), number of 

main memories reads and writes (mem), and number of disks reads (disk read), and writes (disk 

write).  The framework also computes the Cloud instance characteristics including single-

precision floating-point per second (SPFLOPS), double-precision floating-point operations per 

second (DPFLOPS), and the total number of x87 instructions (x87S), main memory bandwidth, 

disk write and read bandwidths.  The A2Cloud framework generates the A2Cloud score using 

the application and the Cloud instance performance parameters.  The A2Cloud score denotes to 

the level of match between the application and the Cloud instance.  In addition, the framework 

uses vendor-specific cost models to form a cost score.  The cost score represents the level of 

economical match between the application and the Cloud instance.  The framework stores the 

A2Cloud and cost scores in a database for future analysis.  Using the profiled data (A2Cloud 

score and cost score), A2Cloud-RFC creates the multiple decision trees where the nodes of the 

decision trees are assigned numerical rating from 1 to 4.  The average ratings of decision trees 

are the final RFC and RFC and cost ratings.  The RFC rating and cost ratings represent the match 

between the application and the target instance; the higher the rating, the better the match.  

The NB-Next uses the RFC rating and cost rating to recommend Cloud instances. NB-

Next first uses the K-Means clustering technique to produce four clusters (excellent, good, 

average, and bad) using the RFC rating and cost rating.  This clustering is used for the NB model 

training.   
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The S-NB uses the A2Cloud score and cost score versus the RFC rating and cost ratings. 

The K-Means clustering technique forms four clusters (excellent, good, okay, and bad) using the 

A2Cloud and cost score dataset.  The S-NB trains with the output of the K-Means clustering. 

We use eight real-world scientific applications and 20 Cloud instances for generating the 

training dataset.  For the model verification, we use three real-world scientific applications and 

20 Cloud instances.  

We also execute three real-world scientific applications on 20 Cloud instances from 

Amazon Web Service (AWS), Microsoft Azure, Google Cloud Platform (GCP), and Linode and 

collect the application runtime data.  The A2Cloud-RFC calculates the runtime instance rating 

and cost rating.  We apply K-Means clustering to create four runtime rating clusters (excellent, 

good, okay, and bad) information.  Finally, we compare the NB-Next predictions with runtime 

clusters to verify the NB-Next model's performance.   

Using the collected runtime data, A2Cloud-ext engine generates the runtime score and 

cost score.  We apply K-Means algorithm to create clusters (excellent, good, okay, and bad) 

information.  We perform the comparison between the generated runtime clusters and S-NB 

predicted clusters for verification.  

The rest of the thesis is organized as follows. Chapter 2 presents the related work and 

research conducted on Cloud resource selection using machine learning algorithms.  Chapter 3 

explains the A2Cloud-RFC framework and the machine learning algorithms.  Chapter 4 

discusses our proposed Cloud resource selection methodologies: Naive Bayes NEXT to Random 

Forest classifier and Standalone Naive Bayes classifier.  Chapter 5 provides the machine learning 

methodologies in action and model performance evaluation.  In Chapter 6, we conclude our 

research work and provide insights into future work.   
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CHAPTER 2: RELATED WORK 

 

In this chapter, we discuss previously published research on the Cloud resource selection 

problem.  We identify their shortcomings and show how our research overcomes them. 

Roloff et al. [12] perform a detailed analysis of high-performance (HPC) application 

execution on the Cloud instance.  They consider the application performance and cost-efficiency 

of HPC applications on the Cloud.  The application performance is measured by using micro-

benchmarks.  The study finds that the costly and powerful instances ensure the high performance 

and efficiency of the HPC applications on the Cloud.  The study does not include the 

application’s data input-output (I/O) performance. 

Okada et al. [13] evaluate the NASA Advanced Supercomputing (NAS) parallel 

benchmarks performance on the Cloud instances.  The study focuses only on the Google Cloud 

Platform instances.  In contrast, we include other Cloud services such as Amazon EC2, 

Microsoft Azure, and Linode for a comprehensive analysis. 

Kim et al. [14] provide an end-to-end resource management system for scientific 

applications on public Clouds.  They propose a local linear regression model to predict the job 

execution time.  The proposed model uses the type of virtual machines and data size required for 

the execution.  The resource management system works on top of Amazon EC2 and utilizes the 

Amazon EC2’s instances.  The study shows better cost efficiency than baseline models.  In our 

study, we use the cost model and multiple Cloud service providers instances for Cloud resource 

selection. 

Gong et al. [15] propose a predictive elastic resource scaling for Cloud services.  The 

predictive model utilizes signal processing and statistical learning algorithms for predicting 
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Cloud resources.  The model uses the RUBiS benchmark and executes it on the Google Cloud 

platform. The study presents a high accuracy for predicting Cloud resources.  Our proposed 

method utilizes the Linux Perf engine and Cloud benchmarks for profiling the applications and 

Cloud instances.  Overdetailed application and Cloud instance profiling provides significant 

insights into applicating behavior on the Cloud instance.  

Grag et al. [16] present a framework for ranking Cloud computing services using the 

Analytical Hierarchical Process (AHP).  The framework is based on the user’s Quality of Service 

(QoS) requirements.  The framework measures the instance quality and prioritizes Cloud 

services. AHP uses the measured data to rank the Cloud services. 

Iosup et al. [17] analyze the Cloud computing services for scientific computing 

applications.  They perform an empirical evaluation of four Amazon EC2 instances using trace-

based performance characteristics and cost models.  The study indicates that scientific 

application's performance characteristics enhance the efficiency of Cloud selection. 

Chard et al. [18] develop a model based on application profiling and dynamic market 

prediction to recommend an effective Cloud service for a given application.  In a similar work, 

Chard et al. [19] develop an automated tool for application performance profiling on Cloud 

different Cloud instances.  The automated tool enables the dynamic provisioning of Cloud 

instances, automated application deployment on Cloud, and generation of profiling data.  The 

automated tool performs application profiling on Cloud instance, which is a costly approach.  

Our proposed work does not require to deploy the application on the Cloud instance. 

Several research articles are machine learning to guide Cloud resource selection. Bankole 

et al. [20] develop a Cloud resource provisioning framework using support vector machine, 

neural network, and linear regression.  The use CPU utilization, response time and throughput 
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metrics for model training dataset.  They test their models with web applications and found that 

the support vector machine performed a better Cloud instance prediction. 

Guo et al. [21] develop a Cloud recommendation model using K-Means and Analytic 

hierarchy model.  The machine learning model employs the user defined values such as CPU and 

memory usage.  They executed the applications on selected Cloud instances for collecting 

runtime.  The training dataset consists of CPU usage, memory usage, and runtime. Our proposed 

model does not require executions on Cloud instances thereby saving money for the end-users.  

Liu et al. [22] propose a Cloud instance type selection algorithm based on genetic 

algorithm (CITSA-GA).  The genetic algorithm uses the 2D encoding between genes, roulette 

strategy, and crossover with mutation methods.  They test their method against three generic 

algorithms: traversal algorithm, genetic algorithm, and particle swarm optimization algorithm. 

The accuracy of the CITSA-GA was obtained almost 82.5%. They only consider the Amazon 

EC2 compute intensive instances and do not consider the instance pricing.  Our study considers 

memory-intensive and general purposes instance from multiple Cloud service providers.  We 

also include the instance cost model for recommending the Cloud instances. 

Samreen et al. [23] implement Daleel, a machine learning based Cloud instance selection 

framework.  The framework uses the evidence-based knowledge of the Internet as a service 

setup.  The framework takes the customer’s requirements and constrains to recommend the 

Cloud instance.  They perform an empirical study on three different Amazon EC2 Cloud 

instances.  They execute one application ‘VARD’ to collect data for polynomial regression.  Thy 

use linear and nonlinear models for the application runtime predication.  This study shows that 

the non-linear model outperforms the linear model.  One major shortcoming of this study are the 

selection of fewer Cloud instances and benchmarking with only one application. 
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Ouyang et al. [24] propose a machine learning-based node performance analyzer.  They 

analyze the node performance using OpenCloud trace log parallel execution data and select a 

series of node performance features.  The proposed analyzer uses the parallel tasks execution log 

data for training and predicts its performance for scheduling tasks.  They consider the 

MapReduce application for analysis of the model data.  The model shows an average accuracy of 

over 92.86%. 

Kaplunovich et al. [25] develop a recommendation system for recommending an effective 

Cloud instance.  The machine learning model uses big data sets on assorted AWS instances for 

training.  The ultimate goal is to save time and cost for choosing a Cloud instance.  

Wamba et al. [26] develop a workload prediction model using constraint programming 

and neural network for dynamic Cloud resource provisioning.  They also build two workload 

generators for extending the experimental data.  The models validate using the real Cloud traces. 

The study shows that the constraint programming is highly amendable for trace generation.  On 

the other hand, the neural network gives better predictions. 

Sun et al. [27] propose a consumer-centered Cloud selection using the Analytical 

hierarchy process (AHP).  The study considers the consumer’s qualitative and semi-qualitative 

personalized preferences such as response time, throughput, availability, reliability, and cost to 

make decisions using AHP.  Thy test the proposed model using AWS EC2 Cloud instances. 

Unlike the above activities, we focus on the scientific application’s performance parameters and 

cost model of the Cloud instance for recommending the Cloud resource.  

Chen et al. [28] develop a fuzzy logic-based decision-making method for Cloud service 

evaluation.  The study uses the fuzzy analytical hierarchy process method to calculate the fuzzy 

weights of each criterion from interval-valued fuzzy sets.  The decision-maker has the choice to 



19 
 

use the linguistic variables for selecting the criteria importance, performance rating, and 

systematic solve the decision problem.  

Ashwini et al. [29] build an efficient Cloud resource selection framework for high-

performance computing applications.  They form a cluster of heterogenous computes instances 

for high-performance computing applications.  They use a K-Means model and employ CPU 

power, bandwidth, and execution time dataset.  The K-Means model and brute force method 

show identical results for Cloud instance selection.  

The literature presents research on the execution of the application on the Cloud instances 

for model training.  The execution of application on Cloud instances is an expensive approach. 

Rathnayake et al. [30] present an analytical modeling approach ‘CELIA’ to determine cost-time-

optimal Cloud resources of elastic applications.  The model uses the execution time and cost 

models from baseline for estimating application resource demand and Cloud resource capacity 

for Amazon EC2 instances.  Their study does not characterize the applications.  

Morais et al. [31] propose a proactive horizontal auto-scaling for instance selection.  

They use CPU and memory utilization, cost, Quality of service (QoS) for the application for 

developing a prediction model.  In addition, they consider only the Amazon EC2 instances.  In 

contrast, we include more instances from more Cloud service providers.  Grandhi et al. [32] 

develop a Cloud performance evaluation model using a fuzzy algorithm.  The performance of 

Cloud computing depends on a multi-attribute group.  The proposed study considers the 

performance evaluation problem as a multi-attribute group decision making problem and 

implements the fuzzy multi-attribute group decision-making model for solving the problem.  The 

research determines the effectiveness of the proposed fuzzy model.  In our study, we use the 

Naive Bayes model for making predictions that requires small dataset and computation powers.  
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Sohaib et al. [33] propose a fuzzy model for e-commerce Cloud computing.  The study includes 

the technological, organizational, and environmental factors associated with e-commerce 

applications hosted on Cloud services.  The fuzzy model recommends the ideal solution for e-

commerce site using the order of preference by similarity.  
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CHAPTER 3: PRELIMINARIES 

 

This chapter describes the theoretical aspects of the A2Cloud-RFC framework and 

explains three machine learning algorithms employed for instance recommendation.  These 

include random forest classifier, K-means clustering, and the Naive Bayes classifier.  Section 3.1 

presents the A2Cloud-RFC framework and Section 3.2 describes the three machine learning 

algorithms. 

3.1 A2Cloud-RFC Framework 

The A2Cloud-RFC framework [11], [34] is an easy-to-use analytical framework that 

recommends effective Cloud instances for executing scientific applications on Cloud platforms. 

Figure 3.1 shows the A2Cloud-RFC framework.  The framework inputs the scientific application 

and the selected Cloud instances and leverages the performance benchmarks and random forest 

classifier to generate the Cloud instances ratings.  These ratings enable users to select the most 

effective Cloud instance for their application.   

The A2Cloud-RFC framework comprises the A2Cloud framework and the random forest 

classifier as shown in Figure 3.1.  The A2Cloud framework generates the A2Cloud score via 

application and Cloud instance benchmarking.  The random forest classifier uses the A2Cloud 

score to form the random forest using multiple decision trees.  Using the random forest, the 

A2Cloud-RFC framework assigns a final rating to the selected Cloud instances for the tested 

application. 
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Figure 3.1 A2Cloud-RFC framework: A2Cloud framework and random forest classifier 

 

The A2Cloud Framework comprises the Linux Perf engine, Cloud trace engine, and 

A2Cloud-ext engine.  The Linux Perf engine generates the application performance parameters 

that characterize an application.  The Cloud trace engine determines the Cloud performance 

parameters for the Cloud instances and these parameters are complementary to application  

performance parameters.  The A2Cloud-ext engine leverages the application vector and Cloud 

vector generator engines.  The application vector generator creates the application vector from 

the application performance parameters.  The Cloud vector generator constructs the Cloud vector 

using the Cloud performance parameters.  The Matrix-vector product operator multiplies the 

application vector and Cloud vector to produce the A2Cloud score vector. 

Section 3.1.1, 3.1.2, and 3.1.3 describe the three engines of the A2Cloud Framework: 

Perf Engine, Cloud Trace, and A2Cloud-ext engines, respectively. 
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3.1.1 Perf Engine  

The A2Cloud framework executes the Linux Perf engine for application performance 

measurement (see Figure 3.1).  The Linux Perf engine’s statistical sampling counters are 

programmed to take periodical measurements of application parameters including the number of 

single-precision floating-point operations  per second (SPFLOPs), number of double-precision 

floating-point operations per second (DPFLOPs), the total number of x87 instructions (x87), 

number of main memory reads and writes (mem), and number of disks reads (!"#$
%&'(

), and 

writes (!"#$
)%*+&

).  Table 3.1 provides the Perf engine counters and their descriptions. 

 

Table 3.1 
A List of Perf Computation and Memory Counters  
 
Counter Type Mnemonic A2Cloud Name Description 
 
 
 
 
 
 
 
 
 
Computation  

fp comp ops exe.x87 
x87 instructions 

 
fp comp ops exe.sse packed 
single 
simd fp 256.packed single 
 
fp comp ops exe.sse scalar 
double 
fp comp ops exe.sse packed 
double 
 
simd fp 256.packed double 
 

x87 
SP scalar 
 
SP packed 
 
SP SIMD 
 
DP scalar 
 
DP packed 
 
 
DP packed 

x87 instructions  
Scalar single-
precision 
packed SSE single-   
precision 
SIMD single-
precision  
scalar double 
precision   
packed SSE  
 
 
SIMD double-
precision 
 

 
 
Main 
Memory 
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The SFLOPs component comprises one scalar single-precision operation, four packed 

SSE single-precision operations, and eight SIMD single-precision operation.  Equation 3.1 shows 

the calculation of SPFLOPs using its constituents.   

,-./0-# = ,-
23'4&%

+ 4	,-
8'3&(

+ 8	,-
:;<=

   (3.1)  

Similarly, the DPFLOPs combine scalar double-precision, two packed SSE double-

precision and four SIMD double-precision functions (see Equation 3.2). 

>-./0-# = >-
23'4&%

+ 2	>-
8'3&(

+ >	>-
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   (3.2)  

The x87 counter calculates the x87 instructions.  The main memory accesses are 

calculated using the Perf engine uncore read and write functions.  Equation 3.3 shows the 

memory access calculation: 

@A@ = ∑ CDEFGA_GAI!#_"
J

KLM
+ ∑ CDEFGA_NG"OA#_"

J

KLM
   (3.3) 

The disk read and write are the user-defined parameters.  The PERF engine writes the 

performance parameters into an application trace as a JSON file.  A detailed information about 

the counters can be found in [34], [35].  

3.1.2 Cloud Trace Engine 

The Cloud trace engine performs 1000 statistical executions of performance benchmarks 

on the selected Cloud instances to assess the Cloud instance's stochastic behavior.  These 

benchmarks include LINPACK [36] and Stream [37] to calculate the floating-point precision, 

memory, and disk performances of the selected Cloud instances. 

The LINPACK suite evaluates the single-precision floating-point per second (SPFLOPS), 

double-precision floating-point operations per second (DPFLOPS), and the x87 instructions per 

second (x87S) of a system.  The STREAM benchmark suite determines the main memory 
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bandwidth (@A@
P

).  The other Cloud performance parameters such as !"#$
%&'(P

, and 

!"#$
)%*+&P

 are determined by using the dd micro-benchmark. 

After performing the benchmarks on the Cloud instances, the engine writes the 

performance parameters to a Cloud trace and stores in a database as a JSON file. 

3.1.3 A2Cloud-ext Engine 

As seen in Figure 3.1, the A2Cloud-ext engine generates the final A2Cloud score using 

its three components: application vector generator, Cloud vector generator, and matrix-vector 

product operator.  We describe the functionality of the A2Cloud-ext engine components. 

• Application Vector Generator 

The application vector generator inputs the application trace to the application vector. 

The application vector generator IQQRRRRRRR⃗  using Equation 3.4. 

IQQRRRRRRR⃗ = [,./0-,	>-./0-,	@A@	!"#$
%&'(

	!"#$
)%*+&

	U87]
X  (3.4) 

• Cloud matrix generator 

The Cloud matrix generator creates a Cloud matrix whose columns are constituted by the 

Cloud vectors. A Cloud vector contains the Cloud instance performance parameters including the 

SFLOPS, DPFLOPS, x87S, @A@
P

, !"#$
%&'(P

, and !"#$
)%*+&P

. 

To construct a statistical vector for each Cloud instance, the Cloud-matrix generator 

fetches the JSON file from the database.  The generator applies the central limit theorem [38] to 

the Cloud performance parameters to fit normal distribution curves.  Using the normal 

distributions, the generator calculates the mean (Y) and standard deviation (Z) of Cloud 

performance parameters.  Equation 3.5 presents the statistical Cloud vector generated via the 

above process.  
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where Y and Zare the mean and standard deviation of the parameters. 

The Cloud matrix generator arranges the Cloud vectors in the column major format to 

create the Cloud matrix, E[FC!.  This matrix is input by the matrix-vector product operator. 

• Matrix-vector product operator 

This module performs a matrix-vector product (Equation 3.6) of the IQQRRRRRRR⃗  and the E[FC! 

to generate A2Cloud score vectors.  The engine normalizes the scores on scale of 1 to 10 because 

the normalized score improves the performance and training stability of the model. 
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  (3.6) 

Each scalar in the A2Cloud score vector represents to the level of match between the 

application and the corresponding Cloud instance. 

3.2 Machine Learning Algorithms 

Machine learning (ML) is a data-driven method of building an analytical model for 

predictive analysis or recommendation.  The ML model learns from the data and makes a 

prediction based on the learned parameters.  The algorithms are broadly three categorized into 

unsupervised, supervised, and reinforcement techniques [39].  The unsupervised and supervised 

learning require small dataset, create a less complex model, and easy to deploy whereas 

reinforcement learning uses large dataset, complex model, and high computing power to train the 

model.  Our work has small dataset and therefore, we use on supervised machine learning 

algorithms. 
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3.2.1 K-Means Clustering 

Clustering is a machine learning algorithm that searches the hidden patterns in the raw 

data to create clusters with similar characteristics.  K-means is one of the popular algorithms that 

uses numerical and unsupervised method to create clusters.  In our work, we use K-Means to 

create labeled data. 

K-Means divides the data based on the Euclidean distance from the cluster origin. The 

algorithm steps are as follows [40], [41]: 

• Identify the number of clusters (K) and randomly assign the cluster center 
coordinates  
 

• Calculate Euclidean distance of each data point from the cluster centroid 

• Move to the cluster centroid to the mean of its Euclidean distance of assigned 
datapoints 
 

• Repeat step 2 and 3 until the centroid does not change   

Equation 3.8 shows the formula for calculating Euclidean distance between two points is 

! = �(Ät − Ä\)
t
+ (U

t
− U

\
)
t    (3.7) 

where d means the distance between two points, centroid and points coordinates 

are (U
\
, U
t
)	and (Ä

\
, Ä
t
)	respectively. 

3.2.2 Random Forest Classifier 

Random Forest classifier (RFC) [42], [43] is a supervised machine learning algorithm 

that uses multiple decision trees constructed from a dataset.  The entropy and information gain 

are the basis of decision trees construction.  We use Iterative Dichotomiser 3 (ID3) [44] 

algorithm to calculate the entropy and information gain. 
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(a) Unstructured data                       (b) Dataset with four clusters 

Figure 3.2 Example of K-Means algorithm with four clusters 

 

A conceptual diagram of the random forest is depicted in the Figure 3.3. The decision 

trees are constructed using a top-down approach.  The required ID3 metrics are entropy and 

information gain.  The algorithm parameters (entropy and information gain) and ID3 algorithms 

are described as follows. 

• Algorithm Parameters 

Entropy represents the amount of uncertainty in the dataset. It is also a way of measuring 

impurity of the data. Based on the impurity, decision tree nodes are separated. Equation 3.8 

denotes the entropy: 

                               Ç(,) = ∑Q(U)[FÉ
t
-(U)  (3.8) 

where Ç(,) is the entropy of dataset, , represents the current dataset, -(U) is the proportion 

of the number of elements in a category. 
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Figure 3.3 The random forest classifier (RFC) function block diagram 

 

The entropy value becomes zero when all samples of a node belong to the same category. 

In contrast, the entropy has the maximum value for the uniform class distribution.  Also, it may 

reach the maximum value because of all classes in the node having equal probability.  So, the 

entropy maximizes mutual information by creating an equal probability node in the decision tree 

[45], [46]. 

In the decision tree technique, we create the root node first and then pass the feature data 

on the leaf node.  It results in the largest information gain (IG). Also, IG calculates the reduction 
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in entropy in the training dataset and can be used for feature selection by determining the gain of 

each variable in the target variable.  Equation 3.9 shows the mathematical representation of IG 

calculation. 

ÑÖ(,|á) = Ç(,) − ∑Q(O)Ç(O) = Ç(,) − Ç(,|á)  (3.9) 

where , represents the current dataset, Ç(,) is entropy of set S, ∑Q(O)Ç(O) is total 

entropy of all subsets of ,. 

• ID3 algorithm 

The ID3 algorithm calculates the entropy and information gain of each data attributes 

from the dataset. The attribute with maximum information gain is the root node of decision tree.  

The values contained in this specific attribute become the node's branches.  The algorithm 

continuously splits the attributes of subsets and stops when no more splitting is possible for any 

attribute [47].  Those attributes information gain values become terminal nodes.  ID3 algorithm 

generates multiple decision trees to perform the random forest classification.  The final 

classification combines the terminal nodes of all the decision trees.  The terminal nodes denote a 

different classification and have its own weight value.  The average numerical weight of terminal 

nodes is the final rating for the particular item. 

The RFC engine is cascaded to the A2Cloud Framework as shown in Figure 3.1.  The 

RFC engine suggests the Cloud instances based on two different methodologies: arithmetic 

intensity-based (AIRF) and application-specific random forest generator (ARF).    

• Application-specific Random Forest (ARF) generator 

The application-specific random forest (ARF) generator uses the A2Cloud scores to make 

decision trees (see figure 3.1).  The ARF constructs three decision trees for the best-case, avg-
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case, and the worst-case instance performance.  Each decision tree uses the data splitting rules 

enlisted by Samuel et. al. [11]. 

• Arithmetic-Intensity Random Forest (AIRF) Generator 

The arithmetic intensity generator (AIG) is responsible for generating the arithmetic 

intensity (AI) value of applications.  The AIG engine takes the application vector as input and 

calculates the arithmetic intensity value.  The AIG obtains the AI value using Equation 3.10.  

The numerator term denotes the sum of the computation components of the application vector 

and the denominator term represents the memory access component of the application vector. 

                                        áÑ = ln	(
∑ 3vh8w+*vK2

∑h&hv%ä	'33&22

)   (3.10)  

After determining the AI value, the AIRF pulls the performance traces from the database. 

Then, it constructs the trees using the same methodology as the ARF generator to construct the 

decision trees.  The constructed decision trees combine together to form the random forest.  Each 

tree node is assigned with numerical ratings to generate the final Cloud instance rating. 

3.2.3 Naive Bayes Classifier 

The Naive Bayes classifier is a supervised machine learning algorithm that falls into 

probabilistic classifiers family.  The algorithm is based on Bayes' theorem of probability.  The 

Naive word means that the features are independent of each other. 

Bayes' theorem [48] determines the conditional probability of an event based on the prior 

associated conditions of that event.  Bayes theorem is given in Equation 3.11. 

                              Q(Ç|>) = 8ã>åÇç8(é)

8(=)

   (3.11) 
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where p(H|D) is posterior probability or probability of hypothesis H given data D, p(D|H) 

is the probability of given data D when hypothesis H is true, p(H) is the hypothesis probability or 

prior probability, p(D) is the probability of data 

3.2.3.1 Probabilistic Framework of Naive Bayes Classifier 

The NB framework is shown in the Figure 3.4. The classifier model maps input feature 

vectors U ∈ x to output class labels Ä ∈ 1, 2, . . , í
i
	where U = [U

\
, U
t
, … . , U

K
] feature vector, 

number of classes k, and classes í
i
. 

The classifier model learns from a labeled training set of input pairs as a part of 

supervised learning method.  The Naive Bayes probabilistic classifier [49]-[52] including Bayes 

theorem is shown in Equation 3.12. 

Q(í
i
|U) =

8ãUåí
i
ç8(uî)

8(q)

  (3.12) 

where p(í
i
|U), Q(U|í

i
), Q(í

i
),	and Q(U) are posterior, likelihood, prior, and evidence 

respectively. 

The NB model training has the input feature vectors (i.e. A2Cloud score, cost score).  

The features vector has a numeric value between 1 to 10 and those are continuous.  The NB 

model assumption is that continuous input feature vectors associated with each class are in 

normally distributed.  For our case, we divide the data by class and calculate the mean and 

variance of the input feature vector in each class.   
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Figure 3.4 The NB classifier working methodology 

 

Assume mean (Y
i
) and standard deviation (Z

i
) of the input feature vector is associated 

with class, í
i
.  Then, the mathematical expression of the multi-class Gaussian Naive Bayes 

Classifier is as follows: 

Q(U|í
i
) =

\

�tïa
î
b
AUQ

(qñ_î)
b

ta
î
b

  (3.13) 

where feature vector U = [U
\
, U
t
, … . , U

K
]  in D dimensional space, í

i
. is class variable. 

In summary, the basic steps of Gaussian Naive Bayes Classification algorithm are 

described as follows [53]: 

The NB classifier converts the training dataset into the frequency table and prior 

probability table of four classes.  Based on those tables, model prepares the events probability 

and likelihood tables.  The NB equation determines the posterior probability of each class for the 

new data item. The higher posterior probability of new instances determines its class. 
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3.2.4 Machine Learning Model Evaluation Metrics 

We consider the confusion matrix, accuracy, and F1 score for the machine learning 

model evaluation. 

• Confusion matrix 

The confusion matrix is an NxN matrix where N represents the number of clusters.  The 

matrix contains information about the actual cluster and model predicted cluster information.  A 

table of confusion or the confusion matrix reports the number of false positives, false negatives, 

true positives, and true negatives.  Those parameters express the proportion of correct 

classifications. True positive (TP) represents that the NB correctly predicted positive clusters are 

actually positive clusters.  If the NB classifier predicts the clusters as positive but they are 

actually negative; this represents the false positive (FP).  True negative (TN) expresses the 

accurate prediction of the negative class.  False-negative (FN) is an outcome where the model 

incorrectly predicts the negative class. 

 

           

Figure 3.5 Confusion matrix  
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• Accuracy 

Accuracy explains the correctness of the model, showing the number of correct 

predictions out of the total predictions. 

áEECGIEÄ =
]whó&%	vò	3v%%&3+	8%&(*3+*vK2

Xv+'4	Kwhó&%	vò	8%&(*3+*vK2

=
XdôX]

XdôX]ôedôe]

  (3.14) 

• F1 Score 

F1 score is a combination of recall and precision.  The maximum value of the F1 score is 

1. The high F1 score represents the model performing outstanding in case of recall and precision. 

-GAE"#"FD =
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  (3.15) 
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               (3.16) 
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  (3.17) 

3.3 Summary 

The A2Cloud-RFC framework includes the PERF engine, Cloud trace engine, and 

A2Cloud-ext engine.  The PERF engine calculates the application performance parameters. 

Cloud trace engine generates the Cloud instance performance parameters.  The A2Cloud-ext 

engine converts the application and Cloud performance parameters to application vector and 

Cloud matrix.  The matrix-vector product generator multiples the application vector and Cloud 

matrix to from the A2Cloud score.  

Machine learning algorithms (K-Means, Random Forest Classifier, Naive Bayes) are 

used to build the Cloud instance recommender.  K-Means generates the labeled data using the 
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original dataset.  Random Forest Classifier generates the instance RFC rating.  The Naive Bayes 

makes the final Cloud instance recommendation.  The confusion matrix, accuracy, and F1-score 

evaluate a machine learning model's performance.  
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CHAPTER 4: METHODOLOGY 

 

This chapter outlines the synergy between the A2Cloud-RFC framework and machine 

learning agents for recommending the Cloud instances.  We propose two different 

implementation methodologies: Naive Bayes NEXT to Random Forest Classifier (NB-Next) and 

a Stand-alone Naive Bayes classifier (S-NB).  In addition, we provide an overview of the dataset 

generation and feature selection techniques for the NB-Next and S-NB classifiers.    

4.1 NB-Next 

Sections 4.1.1 and 4.1.2 describe the NB-Next machine approach and feature selection 

methodology, respectively. 

4.1.1 NB-Next Machine Learning Approach 

Figure 4.1 exhibits the workflow of the NB-Next classifier.  The model pipeline 

comprises the A2Cloud-RFC framework with three NB classifiers: compute-intensive (CI), 

balanced, and memory-intensive (MI).  Each one of the NB classifiers trains with a specific 

application class dataset.  

The A2Cloud-ext framework takes the scientific application and target Cloud instance as 

an input.  The A2Cloud-ext uses its internal counters and engines to generate the IQQRRRRRRR⃗  and 

A2Cloud score (see Section 3.1).    
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Figure 4.1 NB-Next working methodology 

 

Arithmetic-intensity generator (AIG) determines the arithmetic intensity (AI) of the 

scientific application (see Section 3.3.2).  The AI value is the natural logarithm of the number of 

computations divided by memory access.  If the arithmetic intensity (AI) value is greater than 

zero, then the AIG classifies the application as compute-intensive (CI) class because the 

application has more computations than memory accesses.  A negative value of AI denotes that 

an application is memory-intensive (MI) (more memory accesses than computations).  The 

balanced class has an AI value that is close to zero (approximately equal number of 

computations and memory accesses).  

As seen in Figure 4.1, the NB-Next classifier workflow has three branches: compute-

intensive, balance, and memory-intensive.  The working principle of the three branches are 
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identical.  Therefore, we describe the compute-intensive branch by using each component (RFC 

(A), K-Means (B), NB (C), and Instance selector (D)) in the pipeline. 

4.1.1.1 Random Forest Classifier (RFC) 

The Random forest classifier (RFC) [11] takes the compute-intensive dataset as an input.  

The RFC generates three decision trees (based on best-case, average-case, and worst-case) 

instance performance based on the A2Cloud scores.  RFC combines the three decision trees 

together to make a random forest where it assigns a number from 1 to 4 to each individual leaf 

node of the decision trees.  The assigned number represents four cases: excellent (4), good (3), 

okay (2), and bad (1).  Finally, RFC calculates the average of the leaf nodes for a given 

individual instance to provide an average rating. 

 

    

Figure 4.2 Cost Rating generator working principle 
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             (a) Compute-intensive dataset          (b) Balanced dataset   

                              

(c) Memory-intensive dataset   

Figure 4.3 Cloud instance rating and cost rating using A2Cloud-RFC framework 
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In addition to the A2Cloud scores, we also consider the Cloud instance pricing to 

construct the cost rating score as shown in Figure 4.2.  The cost-per-second and A2Cloud scores 

are multiplied to form the cost score, which is then fed to the RFC to compute the cost random 

forest using the same approach as the A2Cloud random forest.   

Figure 4.3 shows the NB-Next classifier's training dataset for three application classes: 

CI, balanced, and MI.  Figure 4.3 a shows compute-intensive application class dataset. Figures 

4.3 b and 4.3 c exhibit the balanced and memory-intensive datasets.  We apply the K-Means 

clustering on the dataset to label the data.                         

4.1.1.2 K-Means Clustering 

K-Means algorithm transforms the unlabeled dataset into labeled dataset.  K-Means 

creates the four clusters: excellent (4), good (3), okay (2), and bad (1) from the training dataset.  

Figure 4.4 displays the K-Means clustered data with four clusters highlighted in different colors.  

The top right cluster in red represents the excellent case, the bottom right cluster in green denotes 

the okay case, the top left in blue represents the good case, and the bottom left in orange 

represents the bad case. The instance and cost ratings construct the input features for training. 

4.1.1.3 NB Classifier 

NB classifier has two phases: training and testing.  In the training phase, the NB classifier 

uses the result of K-Means clustering to train the model.  Figure 4.5 shows the working principle 

of the NB classifier.  The NB model converts the training dataset into a frequency table for four 

classes: excellent (E), good (G), okay (O), and bad (B).  Based on the frequency table, the NB 

model calculates the prior probability of four classes.  In addition, the NB learns the respective 

mean (Y) and standard deviation (Z) of input features (RFC rating and cost rating) for the four 

classes.   
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              (a) Compute-intensive labeled dataset  (b) Balanced labeled dataset   

                                    

(c) Memory-intensive labeled dataset   

Figure 4.4 Cloud instance rating and cost rating labeled dataset 

 

The testing dataset has instance rating and cost rating for model testing. During the 

testing phase, the NB determines the likelihood probability using the Gaussian NB equation 3.13.   
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Figure 4.5 NB training and testing phase methodology 

 

             

Figure 4.6 Instance selector recommends instance with the highest Euclidean distance  
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Finally, the NB classifier uses the Naive Bayes equation (3.12) to determine the posterior 

probability of the testing dataset.  The highest posterior probability of a class represents the 

outcome of the prediction.  

For the testing phase, NB classifies the Cloud instances for the target scientific 

application and Cloud instances as excellent (E), good (G), Okay (O), or bad (B).  The 

determined classification information is sent to the instance selector, which follows next. 

4.1.1.4 Instance Selector 

The instance selector selects as optimal instance from the excellent (E) class.  The 

instance selector uses the Euclidean distance method to recommend the final instances.  The 

instance selector determines the Euclidean distance of all instances (RFC rating and Cost rating) 

in excellent class from the tuple (1,1).  We choose the tuple (1,1) as origin because the minimum 

RFC rating and cost rating is (1,1).  The instance selector recommends an instance with the 

highest Euclidean distance because the ideal tuple for the excellent class is (4,4).  NB-Next uses 

RFC rating and cost rating that vary from 1 (least) to 4 (excellent).  Figure 4.6 represents an 

example of the Cloud instance selector.  The instance selector recommends the t3.small instance 

because it hast the highest Euclidean distance value 4.24 from the tuple (1,1).  

The balanced and memory-intensive application classes follow the same methodology as 

discussed above. 

4.2 Stand-alone Naive Bayes (S-NB) Methodology 

The Stand-alone Naive Bayes (S-NB) classifier recommends the Cloud instances using 

the NB classifier alone.  The model is referred as Stand-alone because it does not employ the 

Random Forest Classifier [34].  Section 4.2.1 describes the methodology of S-NB. 



45 
 

4.2.1 Stand-alone Machine Learning Approach 

Figure 4.7 shows the working methodology of the S-NB classifier that uses the A2Cloud 

score directly from the A2Cloud framework. 

 

    

Figure 4.7 S-NB classifier working methodology 

 

As shown in Figure 4.7, the A2Cloud-ext framework generates the A2Cloud scores using 

the scientific applications and target Cloud instance (see Section 3.1).  The arithmetic intensity 

generator (AIG) calculates the arithmetic intensity of the scientific application.  The scientific 

application can be compute-intensive, balanced or memory-intensive based on the arithmetic 

intensity value.  The AIG categorizes the A2Cloud scores   into four   application classes.  

Therefore, there are three A2Cloud scores datasets available for training one NB classifier (CI, 

MI, and balanced).  In addition to the A2Cloud score, we add the cost metric of Cloud instances. 
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Figure 4.8 shows the cost score generation principle.  The instance cost-per-second and A2Cloud 

score multiplies to produce the cost score where the lower value indicates a better fit.  

The working methodology of S-NB has three branches: compute-intensive, memory-

intensive, and balanced.  All of the three branches follow the same working principle. Therefore, 

we explain the compute-intensive branch. 

The input features (A2Cloud score, cost score) are used to train the S-NB classifier. 

Figure 4.9 displays the S-NB method’s training dataset for three application classes: CI (4.9 a), 

balanced (4.9 b), and MI (4.9 c).  We apply K-Means on the dataset to generate the labeled data. 

 

      

Figure 4.8 Cost score generator working principle 
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4.2.1.1 K-Means Clustering 

We apply the K-Means algorithm to generate the labeled data of four clusters: Excellent 

(E), Good (G), Okay (O), and Bad (B).  Figure 4.10 displays the K-Mean clustered data with four 

clusters for the three application classes.  Each different color represents a separate cluster.  

Figure 4.10a shows the compute-intensive class labeled data.  The lowest A2Cloud score 

and cost score values form the excellent class because low A2Cloud and cost scores are desirable 

(unlike RFC and cost ratings).  On the other hand, the highest A2Cloud score and cost score 

belongs to bad class.  Figure 4.11b represents the balanced class labeled data. The data-points in 

the left-bottom of the plot are the excellent class.  On the other hand, the data-points close to the 

right-top of the graph constitute the bad case.   Figure 4.10c exhibits the memory-intensive class 

labeled data. The excellent class contains the A2Cloud score and cost score with having lowest 

value.  The right-top of the figure represents the bad class. 

The output of the K-Means is the training dataset for the S-NB classifier.  The dataset has 

input features: A2Cloud score and cost score.  Also, the dataset contains the clusters number 

obtained from the K-Means clustering.   
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                   (a) Compute-intensive dataset         (b) Balanced dataset   

                                 

    (c) Memory-intensive dataset   

Figure 4.9 A2Cloud score and cost score using A2Cloud and cost generator  
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        (a) Compute-intensive labeled dataset      (b) Balanced labeled dataset   

                                      

                                            (c) Memory-intensive labeled dataset   

Figure 4.10 Cluster generation using K-Means  

 

4.2.1.2 NB Classifier 

Figure 4.11 represents the overall working principle of the S-NB classifier. The NB 

classifier trains using the K-Means results.  During the NB model training, the NB classifier 
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transforms the dataset into a frequency table and prior probability.  The model also computes the 

input features' mean and standard deviation.  During the NB model testing, the NB model 

determines the posterior probability for each cluster by using the Naive Bayes equation.  The 

highest posterior probability of a class represents the outcome of the prediction.  For example, 

for a given test data=[A2Cloud score, Cost score]= [1.2, 1.2], the NB calculates the posterior 

probability for excellent, good, okay, and bad classes as follows: 0.6, 0.1, 0.2, and 0.1.  The 

excellent class has the highest posterior probability.  Therefore, the NB recommends the 

excellent class as output for the test data and passes the information to instance selector.  Using 

this method, the classifier classifies all (A2Cloud score, cost score) into the four application cl 

assess. 

 

        

Figure 4.11 S-NB training and testing phase methodology 
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Figure 4.12 Instance selector recommends instance with the least Euclidean distance 

 

4.2.1.3 Instance Selector 

The instance selector selects the optimal instance from the excellent (E) class.  The 

instance selector uses the Euclidean distance method to recommend the final instances.  The 

instance selector determines the Euclidean distance of all instances (A2Cloud score and Cost 

score) in excellent class from the ideal tuple (1,1).  We select the minimum value of the A2Cloud 

score and cost score (1,1) as ideal value.  The instance selector recommends with the least 

Euclidean distance.  Figure 4.12 represents an example of the S-NB Cloud instance selector.  The 

instance selector recommends the t3.small instance because it hast the least Euclidean distance 

value 1.15 from the tuple (1,1).  

The balanced and memory-intensive application follow the same methodology as 

compute-intensive to recommend the Cloud instances. 
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4.3 Summary 

NB-Next datasets contain the RFC rating and cost rating.  K-Means generates the four 

clusters (excellent, good, okay, and bad) from the training dataset.  The NB classifier uses the 

clustered data for training and makes predictions using the verification dataset.  The NB model 

calculates the posterior probability of four clusters (excellent, good, okay, and bad) for the test 

data.  The highest posterior probability is the NB predicted class.  The NB models transfer the 

excellent clusters information to the instance selector.  The instance selector recommends the 

instance with has the largest Euclidean distance from the base tuple (1,1).  

S-NB uses the A2Cloud score and cost score for training and verification studies.  We 

apply K-Means clustering on the training dataset to create four clusters (excellent, good, okay, 

and bad).  The NB calculates the posterior probability of the verification dataset. Then, the 

instance cluster is determined by its highest posterior probability.  The S-NB passes the excellent 

cluster information to the instance selector.  The instance selector calculated the Euclidean 

distance for each instance in the excellent cluster.  Finally, the instance selector recommends the 

instance with the least Euclidean distance from the base tuple (1,1). 
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CHAPTER 5: EXPERIMENTATION AND VERIFICATION 

 

This chapter explains the experimentation and verification results for the Naive Bayes 

NEXT to Random Forest Classifier (NB-Next) and Standalone Naive Bayes classifier (S-NB). 

The chapter also outlines the NB-Next and S-NB in action.    

5.1 Cloud Instances 

We select a total of 20 Cloud instances from different Cloud service providers including 

AWS (Amazon Web Service) EC2 (Elastic Compute Cloud) [4], Microsoft Azure [5], Google 

Cloud Platform [6], and Linode [10].  Our tested Cloud instances, include the general-purpose, 

computation-optimized, and memory-optimized instances,which differ on the number of virtual 

CPUs, memory (GB), and cost-per-hour.  Table 5.1 presents a list of tested Cloud instances 

together with their distinctive characteristics. 

Section 5.2 presents an introduction to the real-world applications used for training and 

verification studies. 

5.2 Real-world Applications Executed on Cloud Instances  

We use several real-world scientific applications for dataset generation and verification. 

Our selected applications cover a wide range of scientific fields including: computer science, 

quantum chemistry, computer vision, hydrodynamics, and neural networks.  Additionally, our 

study considers an application from each application category (compute-intensive, memory-

intensive, and balanced) to verify the classifiers.  Sections 5.2.1, 5.2.2, 5.2.3 describe the selected 

scientific applications used for training and verification.  
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Table 5.1 
Cloud Instances Categories: General-purpose, Compute and Memory Optimized 

Type Instance vCPUs Memory 
(GB) 

Disk Provider Price 
(per hour) 

 
 t2.large 2 8 Network SSD AWS EC2 $0.0928 
 t3a.large 2 8 Network SSD AWS EC2 $0.0753 
 t3.small 2 2 Network SSD AWS EC2 $0.0208 
 t3a.small 2 2 Network SSD AWS EC2 $0.0188 

 t3a.medium 2 4 Network SSD AWS EC2 $0.0376 
General-
Purpose 

m4.large 
 

2 8 Network SSD AWS EC2 $0.1000 

 t2.small 1 2 Network SSD AWS EC2 $0.0230 
 t2.medium 2 4 Network SSD AWS EC2 $0.0464 
 B2ms 2 8 Network SSD Azure VMs $0.0912 
 N1s2 2 7.5 Network SSD GCP $0.0200 
 Linode.G 2 7.5 Network SSD Linode $0.0150 
 c4.large 2 8 Network SSD AWS EC2 $0.1000 
 c5.large 2 4 Network SSD AWS EC2 $0.0850 

Compute-
Optimized 

F2s 2 4 Network SSD Azure VMs $0.0110 

 N1cc 2 4 Network SSD GCP $0.0150 
 Linode.C 2 7.5 Network SSD Linode $0.0450 
 r4.large 2 15.25 Network SSD AWS EC2 $0.1330 
 E2s 2 16 Network SSD Azure VMs $0.0782 

Memory-
Optimized 

N1m2 2 13 Network SSD GCP $0.0250 

 Linode.M 2 7.5 Network SSD Linode $0.0900 

 

5.2.1 LULESH 

The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH) 

solves the Sedov blast problem of hydrodynamics and presents solutions using numerical 

methods [54].  LULESH application has three problem sizes: 30, 50, and 70.  The Arithmetic-

Intensity generator (AIG) calculates the LULESH's arithmetic intensity as 0.23, 0.45, and 2.69 

for LULESH problem sizes 30, 50, and 70, respectively.  The AI value greater than zero 

indicates that LULESH's performs computations than memory accesses.  Therefore, LULESH is 
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moderately compute-intensive application.  We use LULESH 50 and 70 to train the machine 

learning model.  We select LULESH 30 to verify the NB-Next and S-NB models. 

5.2.2 Data Migration Scheduler 

The data migration (DM) scheduler is a large simulation application that simulates the 

scheduling steps in large data centers [55], [56]. DM with flatten and color, DM greedy, Edge 

ranking and DM with space constraints are the different versions of the data migration 

application.  The Data Migration with space constraints has the arithmetic intensity -5.7052. DM 

with space constraints has the higher number of memory access over the number of 

computations, which classifies this application as highly memory-intensive.  We select the DM 

with space constraints to perform verification study and use other DM's to generate training 

dataset.  

5.2.3 QODE 

The University of the Pacific’s chemistry department developed an Electron structure 

theory simulation application, QODE to simulate the electronic structure problem using the 

excitonically re-normalized coupled-cluster theory [57], [58].  The arithmetic intensity of QODE 

is -0.78, meaning  that it falls within the balanced category class.  We use QODE to verify the 

balanced class NB-Next and S-NB models.  

5.2.4 Spiking Neural Networks  

The Spiking Neural Networks (SNN) is a large scale neural network simulation models 

that mimic the human brain mechanism to use for character recolonization [59].  We use the 

Hodgin‐Huxley (HH) model (compute-intensive application) [60], Wilson model (Balanced 
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application) [61], and the Izhikevich model (memory-intensive application) [62] for generating 

training dataset. 

5.2.5 Rotoscope  

The best features digital Rotoscope is a computer vision application that generates the 

artistic videos by adding animation to video sequences [63].  The rotoscope requires more 

memory access operation than computations (memory-intensive application).  We use Rotoscope 

to generate the training dataset.  

We choose real-world applications: LULESH, three SNN simulations, digital rotoscope, 

and three data‐migration schedulers for generating training dataset. 

Sections 5.3 and 5.4 describe the NB-Next in action, NB-Next model performance 

evaluation, S-NB in action, and S-NB model performance evaluation procedure. 

5.3 NB-Next 

NB-Next uses Cloud instance rating and cost rating for the NB-Next model training, 

testing, and verification.  Sections 5.3.1 and 5.3.2 show the NB-Next in action and model 

performance evaluation, respectively. 

5.3.1 NB-Next in Action 

NB-Next pulls the Cloud instance rating and cost rating datasets from the database, and 

generates the labels using K-means algorithm.  We pick the compute-intensive dataset to explain 

how the NB classifier learns hypothesis parameters from the dataset (see Figure 5.1).  NB 

converts the data into a frequency table and calculates the prior probability for the four clusters. 

Table 5.2 lists the calculated frequencies and the cluster prior probabilities which is the 
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frequency divided by the total number of data-points in the dataset.  As seen in the table, the 

frequency column represents the number of data-points within a given cluster.  

             

(a)   Compute-intensive training dataset       (b) Dataset with four clusters  

Figure 5.1 Compute-intensive NB-Next training dataset  

 

The NB classifier generates the training set parameters (mean and standard deviation) for 

the RFC rating and cost rating.  Table 5.3 shows the training parameters of the NB classifier.  

The mean and standard deviation help the NB model to get insight into the clustered data.  Using 

Tables 5.2 to 5.4, the NB model performs the prediction. 

We verify the NB model with a test case (t3.small instance for LULESH 30 application)  

with RFC rating of 4.0 and cost rating of 4.0.  The NB model begins with calculating the 

likelihood of the test data by using Equation 3.13.  Therefore, there are two variables for the 

input data so that it calculates two sets of likelihood probabilities per cluster.  Also, the model 

has already learned the prior probability of the cluster.  Using the above-mentioned parameters, 

the NB classifier determines the posterior probability.  Table 5.4 lists the likelihood, prior 
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probability, and posterior probability values for the test case.  Table 5.4 shows that the excellent 

cluster has the highest posterior probability.  Therefore, t3.small instance belongs to excellent 

cluster. 

 

Table 5.2 
Frequency and Prior Probability of Compute-intensive Training  
 

 

 

 

 

 

Table 5.3 
Mean and Standard Deviation of Compute-intensive Training Dataset	
 

Cluster Mean 

( Y
%'+*Kù

) 

S.D 

(Z
ú'+*Kù

) 

Mean 

( Y
3v2+_%'+*Kù

) 

S.D 

( Y
3v2+_%'+*Kù

) 

1 or bad 1.84 0.37 1.50 0.50 

2 or average 1.64 0.47 3.68 0.43 

3 or good 3.15 0.37 1.63 0.49 

4 or 

excellent 

3.36 0.48 3.38 0.39 

 

 

 
 
 
 

Cluster 1 or bad 2 or average 3 or good 4 or excellent Total 

Frequency 19 19 55 67 160 

Prior Probability 0.12 0.12 0.34 0.42 1.0 
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Table 5.4 
Testing Using LULESH 30 of T3.small Instance A2Cloud and Cost Rating 4, 4 
 

 Likelihood  

Cluster 

 

p(Rating|Cluster) p(Cost|Cluster) Prior 

Probability 

Posterior 

Probability 

1 or bad 4.59x10-5 2.97x10-6 0.12 1.63x10-11 

2 or average 2.84x10-6 0.67 0.16 2.29x10-7 

3 or good 0.078 6.77x10-6 0.34 1.77x10-7 

4 or excellent 0.34 0.35 0.42 0.05 

 

5.3.2 Model Performance Evaluation 

Model performance evaluation estimates the accuracy of the NB classifier using 

verification dataset.  We select the confusion matrix, accuracy, and F1-score metrics to evaluate 

the classifiers. 

We split the dataset into 80/20 ratio for training and testing purposes with the three real-

world applications execute on the 20 Cloud instances.  We then collect the runtime ratings via 

actual execution and the A2Cloud-RFC [11].  In addition, we calculate the cost rating by 

multiplying the instance-cost-per-time and runtime. K-Means generates clusters data from 

runtime and cost rating.  We use this clustering result to evaluate the NB-Next's predictions. 

Figure 5.2 shows the compute-intensive NB-Next classifier's testing and verification 

confusion matrix.  The predicted label and true label present the predicted cluster and the actual 

cluster (derived from runtime analysis).  Figure 5.2a exhibits the testing set confusion matrix. 

The NB-Next classifies all classes correctly.  Therefore, the confusion matrix is diagonal. Figure 
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5.2b displays the verification set (LULESH 30) confusion matrix.  The NB-Next model identifies 

17 correct prediction out of 20.  That makes the confusion matrix close to diagonal.  The model 

performs misclassification of two good classes as average and one average class as good.  It 

shows the conservative nature of the NB-Next model while rating instances. 

 

          

(a) Testing set confusion matrix    (b) LULESH 30 confusion matrix  

Figure 5.2 Compute-intensive NB-Next classifier confusion matrix  

 

Figure 5.3 represents the memory-intensive NB-Next classifier's testing and verification 

confusion matrix.  Figure 5.3a shows the testing set confusion matrix.  The NB-Next identifies 

all points correctly that makes the confusion matrix diagonal.  Figure 5.3b displays the 

verification set (Data Migration) confusion matrix.  The NB-Next model makes 19 correct 

prediction out of 20 data points.  One miss-prediction is where the NB-Next predicts a category 

as good but actually it is excellent.  Although the NB-Next predicts a class as good but actually it 

is excellent, it represents the NB-Next's conservative nature. 
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(a) Testing set confusion matrix                (b) Data migration  confusion matrix  

Figure 5.3 Memory-intensive NB-Next classifier confusion matrix  

 

Figure 5.4 represents the balanced NB-Next classifier's testing and verification confusion 

matrix.  Figure 5.4a displays the testing set confusion matrix.  The NB-Next identifies all points 

correctly that makes the confusion matrix strictly diagonal.  Figure 5.4b displays the verification 

set (QODE) confusion matrix.  The NB-Next model identifies 18 data point correctly out of 20 

data points.  Therefore, the QODE confusion matrix is almost diagonal.  Although the NB-Next 

performs two miss-classification, it does not identify bad cluster as good or excellent.  That 

means the NB-Next is conservative while making prediction. 

Table 5.5 shows the NB-Next models performance parameters (accuracy and F1 score) 

for testing and verification datasets.  For the testing dataset, the NB-Next exhibits high accuracy 

(100%) and F1 score (1.0).  The model predicts all the data-points accurately and identifies all 

the possible positive labels.  For the verification studies, the CI NB-Next model shows the 

accuracy and F1 score 85% and 0.84, respectively.  The MI and balanced NB-Next models 

perform higher accuracy (>90%) and F1 score (>0.90). 
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(a) Testing set confusion matrix                  (b) QODE confusion matrix  

Figure 5.4 Balanced NB-Next classifier confusion matrix 

 

Table 5.5 
Testing and Verification Set Accuracy and F1 Score 
 

 Testing Verification 

Accuracy (%) F1 Score Accuracy (%) F1 Score 

Compute-intensive 100 1.0 85 0.84 

Memory-intensive 100 1.0 95 0.95 

Balanced 100 1.0 90 0.92 

 

Figure 5.5 presents the runtime and cost rating of 20 Cloud instances for LULUESH 30 

application.  The t3.small is located the highest distance from the tuple (1,1). The instance 

selector recommends t3.small as best match for LULESH 30.  The NB-Next also recommends 

t3.small instance for LULESH 30 which matches with the runtime and cost rating plot.  The 

runtime plot suggests that t3a.large is the best for Data Migration application.  The NB-Next also 

recommends t3a.large instance for Data Migration which verifies the NB-Next model. 
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Figure 5.7 shows the runtime and cost rating of 20 Cloud instances for balanced (QODE) 

application.  The c5.large Cloud instance has the highest Euclidean distance 4.24 from the tuple 

(1, 1).  The runtime plot suggests that c5.large is the best match for QODE application.  The NB-

Next also recommends c5.large instance for QODE which verifies the NB-Next model. 

 

               

Figure 5.5 The runtime and cost rating of 20 instances for LULESH 30 

 

Figure 5.6 shows the runtime and cost rating of 20 Cloud instances for Data Migration 

application.  The t3a.large Cloud instance has the Euclidean distance 3.72 from the tuple (1,1).  

5.4 S-NB 

The stand-alone Naive Bayes (S-NB) classifier working principle is discussed in the 

Chapter 4. In what follows, we explain the S-NB training and testing phase in details. 

Furthermore, the validation and instance recommendation are presented for three real-world 

applications. 
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Figure 5.6 The runtime and cost rating of 20 instances for Data Migration 

 

                   

Figure 5.7 The runtime and cost rating of 20 instances for QODE 
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5.4.1 S-NB in Action 

In the S-NB approach, there are three separate NB classifiers used for instance 

recommendation: CI, MI, and balanced.  We apply K-Means on the datasets to create clusters. 

Out of three application classes, we explain how the memory-intensive NB classifier training and 

testing phase because the other classes follow the same methodology. 

               

(a)  memory-intensive training dataset   (b) Dataset with four clusters  

Figure 5.8 S-NB memory-intensive training dataset   

 

The memory-intensive application class dataset has 1140 rows and 4 columns (see Figure 

5.8).  The NB classifier uses the A2Cloud score and cost columns to map its hypothesis function 

into the cluster value. 

The NB classifier converts the dataset into the frequency distribution table for four 

clusters where the frequency means the number of samples per cluster.  The prior probability 

(p[cluster]) is the frequency divided by the total number of samples.  The frequency distribution 
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and the prior probability of the memory-intensive class dataset are shown in the Table 5.6.  The 

NB classifier determines the model parameters such as mean and standard deviation for each 

class using the Gaussian distribution assumption.  Table 5.7 presents the model training function 

parameters including mean  (Y
stu4vw(ûü†jk

, Y
uv2+ûü†jk

) and standard deviation 

(Z
stu4vw(ûü†jk

, Z
uv2+ûü†jk

).  Using Tables 5.6, 5.7, and 5.8, the S-NB model performs the 

prediction. 

 

Table 5.6 
Frequency and Prior Probability of Memory-intensive Training  
 

 

 

 

 

We test the NB model with a test case (t3a.medium instance for Data Migration 

application) with A2Cloud score of 1.16 and cost rating cost score 1.68.  The NB model 

calculates the likelihood of the test data by using the equation 3.13.  Table 5.8 lists the 

likelihood, prior probability, and posterior probability values for the A2Cloud score=1.16 and 

cost score= 1.68.  The excellent cluster has the highest posterior probability (1.68x10-2). So, the 

S-NB identifies the t3a.medium as excellent instance for Data Migration.  S-NB passes the 

information to instance selector to make final decision using Euclidean distance. 

 
 
 
 
 
 

Cluster  1 or  
bad 

2 or average 3 or good 4 or excellent Total 

Frequency  345  339  286  170  1140 

Prior Probability  0.30  0.29  0.26  0.15  1.0 
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Table 5.7 
 Mean and Standard Deviation of Memory-intensive Training Dataset 

 

 

 

 

 

 
 
 
 
 
 
 
 

 
 
 

Table 5.8 
Testing Using T3a.medium Instance A2Cloud and Cost Scores 1.16 and 1.68 

 

 

Cluster  °AID 

	(Y
stu4vw(23v%&

) 

S.D 

(Z
stu4vw(23v%&

) 

°AID 

	(Y
uv2+_23v%&

) 

 

S.D 

(Z
3v2+_23v%&

) 

1 or bad 8.55 1.11 8.80 1.48 

2 or 

average 

7.45 1.88 2.14 1.01 

3 or good 5.56 0.87 5.86 0.57 

4 or 

excellent 

1.88 1.06 2.05 0.99 

           Likelihood  

Cluster 

 

P (A2Cloud score  

| Cluster) 

P (Cost score | 

Cluster) 

Prior  

Probability 

Posterior  

Probability 

 1 or bad 8.53x10-11 2.34x10-5 0.30 5.99x10-16 

2 or    average 7.5x10-4 0.35 0.29 7.84x10-5 

 3 or good 1.27x10-6 1.47x10-12 0.26 4.89x10-19 

4 or excellent 0.29 0.37 0.15 1.68x10-2 



68 
 

5.4.2 Model Performance Evaluation 

For the training and testing purposes, the dataset is split into a 80/20 ratio. The 

verification dataset is derived from real-world applications: LULESH 30, Data Migration, and 

QODE. 

Figure 5.9 shows the compute-intensive S-NB model performance visualization using the 

confusion matrix.  The testing set confusion matrix represents that S-NB classifies single data-

point as average class instead of good class; aside from this the S-NB performs well on testing 

dataset. Figure 5.9b represents the LULESH 30 verification set confusion matrix.  We observe 

that the S-NB has miss-classified two Cloud instances out of 20. S-NB predicts a good instance 

and an average class instance as excellent and bad class, respectively.  Although S-NB makes 

two false predictions, but those pre- dictions are no more than the category apart.  This 

characteristic of S-NB shows the conservative nature.  Overall, the S-NB model accuracy and F1 

score for LULESH 30 are 90% and 0.90 enlists in the Table 5.9. 

Figure 5.10 exhibits the memory-intensive S-NB model confusion matrix. For the testing 

set (Figure 5.10a), the S-NB has the almost diagonal confusion matrix that represents the S-NB 

per- forms correct predictions on testing set.  Figure 5.10b shows the Data Migration application 

verification confusion matrix.  The S-NB performs excellent because the confusion matrix is 

diagonal or almost diagonal.  The model predicated one instance as good instead of average 

class. 
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(a) Compute-intensive testing set confusion matrix       (b) Verification (LULESH 30) confusion 

matrix 

Figure 5.9 The S-NB compute-intensive application class classifier confusion matrix  

 

             
	

(a) Memory-intensive testing set confusion matrix    (b) Data Migration verification confusion 

matrix 

Figure 5.10 The S-NB memory-intensive application class classifier confusion matrix 

 

Figure 5.11 exhibits the balanced application S-NB model’s confusion matrix.  The S-NB 

has    the almost diagonal confusion matrix that expresses the S-NB model high accuracy on 
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testing dataset (see Figure 5.11a).  For the QODE application verification, the S-NB exhibits 

excellent performance because the confusion matrix is diagonal or almost diagonal (see Fig. 

5.11b).  The model predicated two instances as bad instead of average class. 

 

            

(a) Balanced class testing set confusion matrix        (b) Verification (Qode) confusion matrix 

Figure 5.11 The S-NB QODE application class classifier confusion matrix 

 

Table 5.9 shows the S-NB models performance parameters (accuracy and F1 score) for 

testing and verification datasets.  The original dataset divides into training dataset (80%) and 

testing dataset (20%).  For the testing dataset, the S-NB exhibits the high accuracy (>97%) and 

F1 score (>0.98).  The model predicts all the data-points accurately and identifies all the possible 

positive labels.  For the verification studies, the CI S-NB model shows the accuracy and F1 score 

90% and 0.90, respectively.  The MI S-NB model has the accuracy and F1 score 95% and 0.93, 

respectively.  The balanced S-NB model shows the 90% accuracy and 0.90 F1 score. 
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Table 5.9 
Accuracy and F1 Score of Testing and Verification Dataset 

 Testing Verification 

Accuracy (%) F1 Score Accuracy (%) F1 Score 

Compute-intensive 99.07 0.99 90 0.90 

Memory-intensive 99.58 9.98 95 0.93 

Balanced 97.11 0.98 90 0.91 

 

 

Figure 5.12 presents the runtime and cost rating of 20 Cloud instances for LUESH 30 ap- 

plication.  The S-NB instance selector recommends the instance that has the minimum distance 

from the base tuple (1,1).  The base tuple is (1,1) because an instance could have minimum (1,1) 

runtime score and cost score.  The t3.small has the least Euclidean distance (1.20) from the tuple 

(1,1).  The instance selector recommends t3.small as best match for LULESH 30.  The NB-Next    

also recommends t3.small instance for LULESH 30 which matches with the runtime and cost 

rating plot. 

Figure 5.13 shows the runtime and cost rating of 20 Cloud instances for Data Migration 

application.  The t3a.medium Cloud instance has the Euclidean distance 1.07 from the tuple 

(1,1).  The runtime plot suggests that t3a.medium is the best for Data Migration application.  The 

S-NB also recommends t3a.medium instance for Data Migration which verifies the NB-Next 

model. 
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Figure 5.12 The runtime and cost score of 20 instances for LULESH 30 

	
	

	

Figure 5.13 The runtime and cost score of 20 instances for Data Migration 

 

Figure 5.14 shows the runtime and cost rating of 20 Cloud instances for balanced 

(QODE) application.  The t3.small Cloud instance has the highest Euclidean distance 1.11 from 

the tuple (1,1).  The runtime plot suggests that t3.small is the best match  for  QODE  
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application.  The NB-Next also recommends t3.small instance for QODE which verifies the NB-

Next model. 

 

																																					 	
	
Figure 5.14 The runtime and cost score of 20 instances for QODE 

 

5.5 Summary  

We use eight scientific applications and 20 Cloud instances for generating training 

dataset.  To verify the NB-Next and S-NB models, we use LULESH 30, QODE, Data Migration 

with space constraints applications. 

NB-Next uses the RFC rating and cost rating for model training.  To verify the NB-

NEXT, the CI NB-Next model shows the accuracy and F1 score 85% and 0.84, respectively.  

The MI and balanced NB-Next models perform higher accuracy (> 90%) and F1 score (> 0.90). 

S-NB uses the A2Cloud score and cost score for training purposes.  For the verification 

study, the CI S-NB model shows the accuracy and F1 score 90% and 0.90, respectively.  The MI 

S-NB model has the accuracy and F1 score 95% and 0.93, respectively.  The balanced S-NB 
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model shows the 90% accuracy and 0.90 F1 score.  The S-NB methodology shows the higher 

accuracy over NB-Next. 
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CHAPTER 6: CONCLUSION  

 

We present the NB-Next and S-NB classifiers for the Cloud instance selection.  Both of 

the methods simplify the A2Cloud-RFC based recommender system using a Naive Bayes 

classifier.  The A2Cloud-RFC framework profiles the scientific applications and Cloud instances 

without executing the applications on Cloud instance, which saves unnecessary execution costs 

on the Cloud.  The A2Cloud-RFC framework utilizes the application performance and cloud 

performance characteristics to generate scores; Those scores represent a scientific application’s 

runtime and cost on the targeted instances, thereby producing the first level of instance 

recommendation.  The generated results are stored in a database to build the Cloud instance 

recommendation system using the Naive Bayes Classifier. 

The NB-Next is comprised of A2Cloud-RFC framework, K-Means, Naive Bayes 

classifier, and an instance selector.  The K-Means takes the cloud rating and cost rating as input 

from the A2Cloud-RFC framework and divides the dataset into four clusters: E, G, O, and B. 

The Naive Bayes trains with the clustered dataset to identify the Cloud instance clusters.  The 

instance selector selects the instance from an excellent class using our proposed Euclidean 

distance.  The RFC rating and cost rating are the higher the better. The NB-Next trains with 

LULESH, Data Migration, Rotoscope, and Spiking neural networks scientific applications over 

20 Cloud instances.  The shows an accuracy of over 85% and F1 score over 0.84 in the 

verification dataset. 

The S-NB comprises of A2Cloud-ext engine, K-Means, Naive Bayes classifier, and 

instance selector.  The A2Cloud-ext engine generates the A2Cloud score and cost score. The K-

Means use the A2Cloud score and cost score and forms the four clusters: E, G, O, and B.  The 
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Naive Bayes trains with the K-Means output and predicts the instances clusters.  The lower the 

A2Cloud score and cost score are better.  The instance selector pulls the instance from the 

excellent cluster and recommends an instance with the least Euclidean distance.  The S-NB 

model shows an accuracy of over 90% and F1 score over 0.90 in the verification dataset. 

The NB-Next include the random forest classifier.  The inclusion of random forest 

classifier makes the NB-Next methodology more complex.  It shows the average accuracy 

approximately 90%. In contrast, the S-NB has the simple methodology with NB classifier.  It has 

the accuracy approximately 92%.  The HPC should select the S-NB methodology to get instance 

recommendation.   

Our proposed methodologies (NB-Next and S-NB) provide a cost-effective guidance for 

scientific community particularly small private/public organizations and universities to select 

Cloud resources.  Furthermore, the proposed machine learning approaches require small training 

dataset and less training time.  In the future, we propose to explore other machine learning 

algorithms such as Support vector machine or Neural Network for solving classification 

problems.  For the existing model, we only use two input features. Additionally, we can add 

other Cloud instance network components i.e. latency. 
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