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Hysteretic Behavior in Voltage-Gated
Channels
Carlos A. Villalba-Galea* and Alvin T. Chiem

Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA,
United States

An ever-growing body of evidence has shown that voltage-gated ion channels are likely
molecular systems that display hysteresis in their activity. This phenomenon manifests in
the form of dynamic changes in both their voltage dependence of activity and their
deactivation kinetics. The goal of this review is to provide a clear definition of hysteresis in
terms of the behavior of voltage-gated channels. This reviewwill discuss the basic behavior
of voltage-gated channel activity and how they make these proteins into systems
displaying hysteresis. It will also provide a perspective on putative mechanisms
underlying hysteresis and explain its potential physiological relevance. It is uncertain
whether all channels display hysteresis in their behavior. However, the suggested
notion that ion channels are hysteretic systems directly collides with the well-accepted
notion that ion channel activity is stochastic. This is because hysteretic systems are
regarded to have “memory” of previous events while stochastic processes are regarded as
“memoryless.” This review will address this apparent contradiction, providing arguments
for the existence of processes that can be simultaneously hysteretic and stochastic.

Keywords: hysteresis, voltage-gated channels, voltage-sensing domain, voltage-sensitive phosphatases, modal
gating, mode shift, voltage-sensing domain relaxation

INTRODUCTION

When thinking about a physical or chemical system that responds to a “stimulus,” it is commonly
assumed that such system would display a constant activity-vs.-stimulus relationship. For instance,
imagine a ligand-activated receptor with one binding site and an affinity of 1 µM for an agonist
ligand. Adding 100 µM of such ligand will result in 99% of ligand-bound receptors, leading to their
activation. On the other hand, decreasing the concentration to 0.01 µM of the agonist will result in
less than 1% of ligand-bound receptors, deactivating these proteins. In theory, the level of activity of
the receptor will only depend on the current concentration of the agonist ligand. This will always be
the case regardless of how the ligand concentration changes. In other words, the receptor does not
“remember” what happened before the ligand was at the current concentration, what the
concentration of the ligand had been in the past, or what levels of activation were previously
reached. This lack of “memory” of the receptors is the consequence of the ligand binding and
activation being stochastic processes, unaffected by previous exposures of the receptor to the ligand.

In the case of voltage-gated channels, an analogous scenario is established when considering that
the electrical field across the plasma membrane acts as the “stimulus” that drives channel activation
and deactivation. As an example, let us consider a tetrameric voltage-gated cation-selective channel
that has three effective sensing charges per subunit and that reaches half of its maximum activity at
0 mV. Assuming that it does not inactivate, this channel will be at 0.1% of its maximum activity when
the membrane potential is −60 mV, while reaching about 99% of its maximum at a membrane
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potential of +40 mV. These activity levels will be reached at the
respective membrane potential levels regardless of the history of
the channel’s activity. This voltage sensitivity remains unaltered
over time.

Like in the example of the hypothetical receptor discussed
above, it is commonly thought that the activity-vs.-voltage
relationship that describes the behavior of voltage-gated
channels is a static function of the membrane potential.
However, a growing body of evidence shows that the electrical
sensitivity of voltage-gated channels can be dynamic rather than
static. This dynamic character of the voltage dependence seems to
be rooted in the hysteretic behavior of channels and has
important consequences on the physiology and pharmacology
of these proteins. Therefore, hysteresis seems to play a critical role
in the generation and modulation of electrical signal events in
neurons, muscles, and other excitable tissues.

HOW COULD HYSTERESIS AFFECT
ELECTRICAL SIGNALING IN CELLS?

Let us consider the simple case of an excitable cell that expresses a
prototypic sodium-selective voltage-gated (NaV) channel and a
prototypic potassium-selective voltage-gated (KV) channel. In
addition, let us also consider that the cell has a basal, non-
voltage-dependent conductance that is mostly selective for K+

ions. Upon reaching a threshold potential following a
depolarizing stimulus, the action of NaV channels will further
depolarize the membrane. Then, while NaV channels inactivate,
the activity of KV channels will start to repolarize the membrane,
counteracting the NaV-driven depolarization. As the membrane
gradually returns to more negative voltages, KV channels start to
close. This decreases the voltage-dependent K+ conductance of
the membrane as it crawls back to its resting potential. In this
case, the basal conductance of the membrane becomes critical in
completing the repolarization process. This is the classical view of
the development of an action potential (AP), derived from the
outstanding work of Hodgkin and Huxley (1952).

On the other hand, in a more modern view, the voltage
dependence of KV channels is dynamic and shifts to more
negative potentials following activation. In this case, hysteresis
manifests as Dynamic Voltage Dependence (DVD) of KV channel
activity andmakes the repolarization a more robust process. This is
because transiently shifting the KV channel’s voltage dependence to
more negative potentials would provide a steadier K+ conductance
as the membrane potential nears its resting values and beyond.
Therefore, it is likely that this hysteretic behavior is essential for the
generation and stability of cellular electrical signaling. Hysteresis
in their behavior can make the deactivation of KV-related
conductance more resilient to closing at resting and to
developing hyperpolarized potentials during repolarization.

Based on the previous example, it is clear that hysteresis is an
important property of voltage-gated channels. Thus,
understanding the mechanism of this phenomenon will be
essential for a comprehensive study of channel activity. To
start, this review will provide a definition of hysteresis in
terms of voltage-gated channel activity.

WHAT IS HYSTERESIS?

The term hysteresis derives from the Greek ὑστέρησις, meaning
“lagging behind.” The term was used in 1881 by Sir James Alfred
Ewing to describe the effect of magnetization on current
induction in a conductor (Ewing, 1882). Subsequent studies
showed one of today’s best-known examples of hysteresis: the
magnetization of a ferromagnetic material. Let us consider a
sample of a ferromagnetic material (e.g., iron, a screwdriver) and
impose a magnetic field across the sample. This results in
magnetization of the sample, which will remain magnetically
polarized even when the external field is removed. This means
that the material “remembers” that it was magnetized. If the
sample is allowed to rest for a long time or if it is heated up, then
the magnetization will be lost. Overall, once the external field is
removed, the material will still remember that it has been
magnetized and remain magnetized for a finite time.

Extending the previous example, let us consider the following
steps in a thought experiment: 1) apply a magnetic external field,
2) remove the field, and 3) reapply the external magnetic field in
the reverse direction. Respectively, the outcomes of each step in
this experiment will be that: 1) the material will be magnetically
polarized, 2) it will remain magnetized, and 3) the magnetization
will be reverted. As it can be seen by the outcome of step 2, the
material will resist giving up its magnetization, even when the
external magnetic field has been removed. Yet, this magnetic
polarity can be reverted by applying amagnetic field in the reverse
direction. Further extending this example, let us consider
cyclically imposing the external magnetic field in one direction
and then the reverse direction. Because the material resists giving
up its polarity, what would be observed is that the amplitude and
direction of the magnetization will be trailing behind with respect
to the external magnetic field. The observance of this lagging
response resulted in the coinage of the term “hysteresis.”

PHYSIOLOGICAL ROLE OF HYSTERESIS

Ion channels are a critical component of the plasma membrane in
all known living beings. These proteins are responsible for the
generation of electrical activity in cells, which is essential for
many biological processes. The physiological relevance of
hysteresis remains elusive. However, the voltage dependence of
several KV channels shifts to more negative potentials following
activation, displaying a behavior analogous to that of
ferromagnetic materials. This lagging change in voltage
dependence can be seen as an “on-demand” fine-tuning of
channels’ responsiveness during the generation of electrical
signals. So, KV channel closing happens when the membrane
potential goes to further negative voltages, guaranteeing that the
membrane’s K+ conductance will remain activated during
repolarization.

Another interesting consequence of DVD is that the voltage
dependence for activation is shifted towards more positive
potentials while the KV channels are closed at the resting
potential. This may likely facilitate the triggering of an
electrical signal by keeping the voltage-dependent K+
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conductance of the membrane relatively low as the depolarizing
conductances are initiated (i.e., Na+ and Ca2+ conductance).
Therefore, DVD may constitute a molecular strategy that has
evolved to facilitate the initial triggering of fast electrical signals
and to ensure their prompt termination. Furthermore, if NaV
channels were to display hysteresis, this will also contribute to
preventing reactivation of the Na+ conductance during the
inactivation process (since recovering from inactivation of the
NaV channels would require further repolarization of the
membrane).

The observed “inertia” in the responsiveness of KV channels,
which is driven by changes in their electrical sensitivity, resembles
that of ferromagnetic materials displaying hysteresis. In this case,
the term “sensitivity” refers to the range of potential at which the
channel changes, rather than the amount of change. So, it can be
argued that hysteresis in the activity of KV channels can make
them harder to open when they are closed and harder to close
when they are open. One example of this behavior is that of the
potassium channel KV3. These channels have a half-maximum
potential for current activation above 0 mV (Kaczmarek and
Zhang, 2017). Also, KV3 channels have very fast deactivation
kinetics that make them particularly suitable for high frequency
firing of APs (Rudy et al., 1999; Rudy andMcBain, 2001; Lien and
Jonas, 2003; Kaczmarek and Zhang, 2017). In addition to these
properties, it has been shown that KV3.1b channels display a
remarkable shift in their voltage dependence for sensing charge
movement (gating currents) of about −60 mV following
activation (Labro et al., 2015). This shift favors channel
opening during repolarization. This shift in the voltage-
dependence of the channels results in a notable decrease in
the deactivation rate kinetic of their conduction, guaranteeing
a quick and efficient repolarization of the membrane (Labro et al.,
2015).

In summary, hysteresis in the activity of voltage-gated
channels can have remarkable consequences in the generation
of APs. Thus, comprehensive study on the fundamentals of this
process could lead to a novel perspective on the understanding of
voltage-gated channel activity in cellular electrical signaling.

CANDIDATE MECHANISMS FOR
HYSTERESIS IN S4-VOLTAGE-SENSING
DOMAIN PROTEINS
The activity of ion channels can be defined by at least the
following two general parameters: 1) the probability of
channels to be open and 2) their ability to conduct and
discriminate ions. This review will focus on the first of these
general parameters.

Voltage-gated channels are so called because the probability
of these channels to be open (open probability, PO) is a function
of the difference in electrical potential across the membrane.
There are several types of voltage-gated channels. Here, the
focus of the review will be on channels containing a voltage-
sensing domain (VSD) made of four transmembrane helical
segments (S1–S4), with the fourth segment (S4) bearing the
main voltage-sensing charges. This type of voltage-gated

channels are referred to as “S4-based voltage-gated channels,”
or “S4-VSD channels.”

Evidence for hysteresis in S4-VSD channels dates from the
early 1980s, when it was described for the sodium conductance
that is observed in the squid giant axon (Bezanilla et al., 1982). It
was shown that the voltage dependence for sensing charge
movement is dependent on the holding potential, shifting to
more negative potentials when the membrane was held at 0 mV
instead of −70 mV. Analogous to the case of magnetization of a
ferromagnetic material, the return of gating charges back to their
resting state required bringing the membrane to more negative
potentials when the membrane was initially held at 0 mV.

Similar observations were made over a decade later with the
potassium-selective voltage-gated channel known as “Shaker”
(Olcese et al., 1997; Lacroix et al., 2011). Like that of the squid
axon’s sodium conductance, the voltage-dependence for charge
movement of Shaker was sensitive to the holding potential. In
this case, the voltage dependence for gating charge movement
was displaced approximately 25 mV towards more negative
voltages when the holding potential was set at 0 mV instead
of −90 mV (Olcese et al., 1997). Later research showed that the
change in voltage dependence was overestimated due to a
remarkable decrease in the rate of deactivation (Lacroix et al.,
2011). Nonetheless, at that time, it was proposed that the
channels could either be in a “permissive” or “reluctant”
conformation (Olcese et al., 1997). In the “permissive”
conformation, the channel was able to be activated and
charges were readily moved. In the “reluctant” conformation,
the channel was inactivated and charge movement was slow,
requiring further hyperpolarization of the membrane. Adopting
the “reluctant” state was associated with the slow inactivation of
Shaker (Olcese et al., 1997). As the inactivated state is reached
after the open state, it becomes more thermodynamically stable.
This would make the open state a “transitory” or “meta-stable”
state. From this idea, it can be concluded that bringing the
channel out of a stable state could require more energy than was
needed to move the charges in the first place (Villalba-Galea,
2017).

Another interesting aspect of Shaker is that the channels in the
“permissive” and “reluctant” conformations are considered to be
in separate interconvertible populations, where the fraction of
channels in each of those populations are dependent on the
holding potential (Olcese et al., 1997). The fact that there are two
populations means that the activity of the VSD can adopt to
“modes of operation.” To illustrate this idea, let us consider a
voltage-dependent channel that has two states: closed and open
(Figure 1A, top). Following activation from an initial holding
potential (V0.1,ini) to a given potential that will bring it to 90% of
activity (V90), the channels can switch to another “mode of
activity” with a different sensitivity to the membrane potential
(Figure 1A, bottom). In this new mode, the membrane must be
set at a potential (V0.1,switched) that is more negative than V0.1,ini in
order to bring the channel to the initial activity level (Figure 1B).

For many years, changes in the voltage dependence for charge
movement in Shaker was linked to slow inactivation, which was
thought to be due to conformational rearrangements in the pore
domain. However, studies of charge movement in the voltage-
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sensitive phosphatase isolated from Ciona intestinalis (Ci-VSP)
provided evidence demonstrating that DVD can be a
phenomenon intrinsic of a S4-VSD (Villalba-Galea et al.,
2008; Akemann et al., 2009; Villalba-Galea et al., 2009b). The
voltage-controlled enzyme Ci-VSP is a dimeric protein that is
made of a S4-VSD that is homologous to that of voltage-gated
channels (Murata et al., 2005; Murata and Okamura, 2007;
Sakata and Okamura, 2019). The VSD is linked to the
phosphoinositide phosphate domain through a phospholipid/
phosphoinositide binding motif (Villalba-Galea et al., 2009a;
Kohout et al., 2010; Hobiger et al., 2012; Hobiger et al., 2013).
The action of the VSD confers voltage sensitivity to the VSP’s
enzymatic activity through a mechanism that remains under
debate (Villalba-Galea, 2012a; Villalba-Galea, 2012b; Sakata and
Okamura, 2019).

Under voltage-clamp, sensing currents can be observed
during the activation of a VSD. These currents are due to the
movement of sensing charges in the VSD, analogous to gating
currents in voltage-gated channels (Sakata and Okamura, 2019).
In the case of Ci-VSP, the voltage dependence for charge
movement shifts about −50 mV when holding the membrane
potential at +80 mV instead of −60 mV or more negative
voltages. Furthermore, deletion of the phosphoinositide
phosphate domain of Ci-VSP causes a larger shift in voltage
dependence for sensing charge movement following relaxation.
Such shift that nearly doubled that of the intact enzyme
(Villalba-Galea et al., 2008). This observation indicates that
an isolated VSD can shift its voltage dependence without being
coupled to another domain. Determining whether the
interaction between the two VSDs causes a shift in voltage
dependence has yet to be ruled out. Yet, more recent studies
expressing the isolated VSD of Shaker shows that this type of

domain can display an intrinsic hysteretic behavior (Zhao and
Blunck, 2016).

VOLTAGE-SENSING DOMAIN
RELAXATION

Another important aspect of the DVD concept is that changes in
the voltage-dependence do not occur instantaneously. Instead,
the displacement of the activity-vs.-potential relationship towards
negative voltages is a process that can take time (Villalba-Galea
et al., 2008; Villalba-Galea et al., 2009b; Villalba-Galea, 2017). In
the case of Ci-VSP, the shift in voltage dependence has been
proposed to occur through a process termed “VSD relaxation”
(Villalba-Galea et al., 2008). In Ci-VSP, VSD relaxation can take
seconds, indicating that it continues even after sensing currents
have ended. This suggests that VSD relaxation is an intrinsically
voltage-independent process.

VSD relaxation is not unique to Ci-VSP or Shaker—it can be
observed in other S4-VSD proteins such as Hyperpolarization-
activated Cyclic Nucleotide-gated (HCN) channels (Mannikko
et al., 2005; Elinder et al., 2006; Bruening-Wright and Larsson,
2007) and the human Ether-à-go-go-Related Gene channel
(Pennefather et al., 1998; Piper et al., 2003; Thouta et al.,
2017; Shi et al., 2019; Shi et al., 2020). In these cases, VSD
relaxation has been proposed to play an important role in the
remarkable hysteretic behavior observed in these proteins. For
HCN channels, hysteresis is manifested as a process called “mode
shift” (Mannikko et al., 2005; Elinder et al., 2006). As the term
implies, the concept is that channels can adopt one of at least two
discrete modes of activity as a function of the membrane
potential. The same idea seems to apply to VSD relaxation.
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FIGURE 1 | (A) Voltage dependence model for a channel consisting of one closed (C) and one open (O) state. Following activation, the two-state model switches
from onemode of activity to another. For the initial mode, the voltage the half-maximum potential (Vh) is −40 mV. For the final mode, Vh is −60 mV. (B) Semi-log plot of the
activity (fraction of the open channels). Due to themode switch, the change in the potential needed to drive the fraction of open channels from 0.001 to 0.9 (|V90−V0.1,ini|) is
smaller in magnitude that the change in potential required to bring the fraction of open channels back to 0.001(|V0.1,switched−V90). The indices 0.1 and 90 refer to 0.1
and 90% of the channel population, respectively.
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For Shaker, the charge-vs.-potential (Q-V) curves show two
populations of charges moving with distinct voltage sensitivity
(Olcese et al., 1997). Furthermore, the fraction of the total charge
in each mode is a function of the holding membrane potential.
This indicates that modes of activity in a VSD also are likely
discrete sets of states, that channel activity can have more than
one of these modes of activity, and that channels can adopt any of
these modes one at a time.

VOLTAGE-SENSING IN
S4-VOLTAGE-SENSING DOMAIN
CHANNELS
The prototypic S4-based voltage sensor consists of four
transmembrane (S1–S4) segments with S2, S3, and S4
segments containing charged residues (Islas, 2016). Typically,
S2 and S3 segments bear 1 or 2 negative charges each, in the form
of aspartate or glutamate residues. In contrast, the S4 segment
contains positive charges in the form of arginine, lysine, and
histidine residues. The current understanding is that the VSD
charges, mainly those of the S4 segment, are displaced as a
function of the membrane potential. In other words, the
electrical gradient across the membrane does work on the
VSD charges, leading to the rearrangement of the VSD. On
this idea, let us consider the electrical field across the plasma
membrane that does electrical work on the sensing charges, which
can be calculated as:

WELECT � ∑
i

∫bi

ai

QiE(ri)dr (1)

This means that the total electrical work (WELECT) is the sum
of the work done on each charge. The work done by the electrical
field on the i-th charge (Qi) is given by the integral of the
magnitude of that charge multiplied by the electrical field E(ri)
as a function of the position of the charge (ri). The integral is
calculated between position ai and bi, which respectively
represent the initial and final positions of the i-th charge.

WELECT � ∫b1

a1

Q1E(r1)dr + ∫b2

a2

Q2E(r2)dr + . . . + ∫bn

an

QnE(rn)dr
(2)

This equation seems difficult to resolve, as the electrical field E
is a function of the position of the charge. However, it can be
simplified when making some assumptions on the structure and
functioning of a prototypic S4-VSD. These assumptions are as
follows:

In terms of the VSD structure, the prototypical S4-based VSD
consists of the four transmembrane helices arranged in a bundle
that forms two crevices—one on each side of the membrane.
These two crevices are separated by a small hydrophobic volume
(Starace et al., 1997; Starace and Bezanilla, 2001; Starace and
Bezanilla, 2004; Ahern and Horn, 2005). This region is commonly
referred to as the “hydrophobic plug,” also known more precisely
as the “hydrophobic gasket.” Structural evidence shows that the
hydrophobic gasket is a few Angstroms thick, only hosting one

charge residue at a time. Consequently, it can be assumed that
some of the S4 segment charge residues can cross the entire
electrical field.

In terms of the VSD functioning, several S4-VSD proteins
have been shown to have a conductance through their VSD when
some of their residues are replaced. To illustrate this, let us
consider the case of Shaker. Replacing the S4-segment arginine
located at positions 362, 365, 368, and 371 with histidine results in
voltage-dependent proton conductance through the channel’s
VSD itself (Starace et al., 1997; Starace and Bezanilla, 2001;
Starace and Bezanilla, 2004). In the particular case of mutation
R362H and R371H, proton currents are observed only at the
resting and activated conformations of the VSD, respectively. In
contrast, the mutants R365H and R368H mediate a proton
conductance when the VSD is residing in intermediate states
between the fully rested or fully activated positions. These implies
that residues R362 through R371—hereafter R1 through R4—can
reside in the hydrophobic gasket, having access to both the
intracellular and extracellular side of the membrane.
Furthermore, this also implies that R365H and
R368H—hereafter R2 and R3—cross the entire field.
Therefore, in a channel like Shaker, the total number of
charges per VSD on which the electrical field is acted on is
between 2 and 4 elementary charges. Using Eq. 2, we can state
that,

WELECT � ∫b1

a1

Q1E(r1)dr + ∫b2

a2

Q2E(r2)dr + ∫b3

a3

Q3E(r3)dr

+ ∫b4

a4

Q4E(r4)dr (3)

Since each charge is an elementary charge, all Qi are equal and
will be called Qe. Replacing and rearranging Eq. 3 yields:

WELECT � Qe
⎛⎜⎜⎜⎝∫b1

a1

E(r1)dr + ∫b2

a2

E(r2)dr + ∫b3

a3

E(r3)dr

+ ∫b4

a4

E(r4)dr⎞⎟⎟⎟⎠ (4)

If the field across the hydrophobic gasket is assumed to be
constant, each of the terms within the parenthesis would be:

∫bi

ai

E(ri)dr � δiΔVM (5)

In Eq. 5, ΔVM is the difference between the initial and the final
membrane potential; δ corresponds to the fraction of the electric
field that each charge crossed. In the case of charges R2 and R3,
assume that they both cross the entire electric field, resulting in
the term δi equal to 1. In the case of charges R1 and R4, the term
would be within 0 and 1. Taking these assumptions into account,
replacing Eq. 5 into Eq. 4 yields:

2QeΔVM <WELECT < 4QeΔVM (6)

To put this in the context of a typical voltage-clamp
experiment, let us consider that the membrane is held at
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−90 mV and an activating pulse is applied to +10 mV. This will
make ΔVM equal to +100 mV. Note that the range of potential
considered for this example allows for a meaningful
displacement of the sensing charges that are driven by the
electric field—if the charges do not move, then no electrical
work is done. The activation of four VSDs will result in an
overall electrical work ranging between 7.71 × 104 and 1.15 ×
105 J/mol (between 18 and 37 kCal/mol). Since both R1 and R4
can gain access to both the intracellular and extracellular crevice
of the VSD, it is unproven but likely that these residues cross at
least half of the electric field. For this reason, it can be stated that
the electric field does work on the equivalent of three elementary
charge per VSD, meaning that the total electrical work is
approximately 3QeΔVM . Consistently, experimental data,
kinetic modeling, and estimation of the free energy show that
the activation of Shaker involves at least 13 charges, or 3.25
charges per VSD. This translates into a total work of about
30 kCal/mol during activation (or deactivation) of the
four VSDs.

To put this in perspective, let us consider that gating currents
for Shaker are a simple two-state system, with R being the resting
state and A being the activated state. Assuming this system, we
calculate the equilibrium constant (also known as the Boltzmann
distribution) for R and A as follows:

keq � A
R
� e

−WELECT +ΔGC
kBT (7)

Assuming that the free energy of activation ΔGC is
−14 kCal/mol and that there are 3.25 charges per VSD,
the ratio R/A that is given by the Boltzmann distribution
(Eq. 7) will be 8.6 × 10−4 and 4.2 × 102 at −100 and 0 mV,
respectively. This involves a 5.7-order-of-magnitude increase
in the activity of each VSD. Putting this observation in more
familiar terms, the fraction of activated VSD can be
calculated as,

fA � A
A + B

0 fA � keq
keq + 1

(8)

Replacing and rearranging Eq. 7 into Eq. 8 yields a Fermi-
Dirac distribution:

keq
keq + 1

� 1

1 + e
−WELECT + ΔGC

kBT

(9)

Because WELECT is proportional to the sensing charge (Eq. 6)
and ΔGC is proportional to the total charge, Eq. 9 can be re-
written as,

fA � 1

1 + e
−zQe(ΔV − ΔVC)

kBT

(10)

Notice that the Fermi-Dirac distribution is transformed into
what is commonly referred to as the “Boltzmann distribution.” It
is important to highlight that the term “Boltzmann distribution,”
which has been used in electrophysiology for many years, is a
misnomer. The ratio between the active and resting states is the
correct way to refer to a Boltzmann distribution for a 2-state
model (like in Eq. 7). The fraction of the distribution representing

the open state is the correct way to refer to a Fermi-Dirac
distribution (like in Eq. 10).

The exponential term zQeΔVC in Eq. 10 represents the
magnitude of the free energy of activation for a VSD, where z
represents the number of elementary charges and Qe represents
the elementary charge. This is only true if the VSD behaves as a
two-state system—an elegant procedure that has been described
by Chowdhury and Chanda (2012). The basic Boltzmann and
Fermi-Dirac distributions alluded here formally describe systems
with two discrete states. However, in the case of voltage-gated
channels, the existence of multiple interconnected states has been
well-established. Thus, describing their behavior requires more
elaborate functions. Yet, these equations can provide meaningful
approximations when using a suitable charge value. So, the
change in free energy following VSD relaxation is given by:

ΔGRELAX � zQe(ΔVC,ACT − ΔVC,RELAX) (11)

According to Eq. 11, when considering a total of 3.25
elementary charges per VSD, there is a change of −2.98 kCal/
mol for every 10 mV of voltage-dependence displacement.

DYNAMIC KINETICS AND HYSTERESIS

TheHCN channel isolated from the sea urchin Strongylocentrotus
purpuratus (spHCN) shows activity with at least two modes,
which are populated as a function of the holding potential and a
function of the duration of activation (Mannikko et al., 2005;
Bruening-Wright and Larsson, 2007). In either mode, channels
undergo a mode shift. Another important observation is that the
deactivation becomes slower as the channels are kept activated.
Likewise, the activation becomes faster as a function of how
recently they were last activated. In both cases, “remembering”
the event in the near past conditions the behavior of the
channel—a hallmark of hysteresis. This shows that it is
possible to observe a voltage-dependent conformational
change in the channel, which can bring it to a short-lived
transient state referred to as a “meta-stable state.” Particularly,
in channels with slow inactivation, the open/activated set of states
reached following activation corresponds to meta-stable states.
On the other hand, prolonging the activation of the channels lead
to a set of inactivated or low-activity states which corresponds to
stable states.

From a meta-stable state, a channel can transition into a more
stable state, reaching steady state. To illustrate this idea, consider
a deactivated channel in steady state at a given holding potential
(e.g., human Ether-à-go-go-Related Gene and −90 mV or spHCN
at 0 mV). Then, change the potential to a voltage that activates the
channel. Focusing on the gating currents, the VSD will first be
brought out of its steady state conformation arrangement as the
electric field does work on the sensing charges. If this process is
thermodynamically reversible in infinitesimal steps, then
returning to its original resting state will occur with no
changes to its surroundings. Thus, the path back to the resting
state will be unaltered. This is likely not the case for voltage-gated
channels, because the sudden change in the electrical field (e.g.,
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∼1 × 108 V/m for a 100-mV change) would result in a rapid
rearrangement of the protein—a product that would not be in
thermodynamic equilibrium (approx. 1 megawatts, assuming a
20 ms charge movement). In addition, it is likely that many
intramolecular and intermolecular interactions are to take
place, given that the channel and its surroundings are
composed of condensed matter. In this view, the activation
could lead the channel into a meta-stable open conformation,
from which it would eventually “relax” into a stable arrangement.
If this is the case, it would then be expected that deactivation will
also be slower from the stable state compared to the meta-
stable state.

Although the existence of such conformations remains a
matter of debate, electrophysiological studies have provided
examples of supporting evidence. In fact, several voltage-gated
channels demonstrate this feature in their respective activity. For
instance, prolonging the activation of HCN, Shaker, and KV3.1b
leads to a decrease in the rate of deactivation for both gating
currents and ionic currents (Mannikko et al., 2005; Elinder et al.,
2006; Bruening-Wright and Larsson, 2007; Lacroix et al., 2011;
Labro et al., 2012; Priest et al., 2013; Labro et al., 2015; Zhao and
Blunck, 2016). Others, like KV7.2 and KV7.2/KV7.3 channels,
undergo remarkable decreases in their rate of deactivation as a
function of activation (Corbin-Leftwich et al., 2016). This
indicates that the activated/open state that is observed in the
study of any voltage-gated channel immediately after
depolarization may not be in a thermodynamically stable state.

IMPLICATIONS OF HYSTERESIS TO THE
CURRENT UNDERSTANDING OF
S4-VOLTAGE-SENSING DOMAIN PROTEIN
FUNCTION

One remarkable instance is KV3.1b, which undergoes a fast VSD
relaxation that enables a resurgent current during deactivation
(“hooked tail”) (Labro et al., 2015). Under voltage-clamp,
activation by a pulse to positive values readily activates the
channel. Then, returning to a moderate negative potential
(−40 or −50 mV) results in a transient increase in the
conductance. This occurs because the VSD quickly relaxes as
it is activated, shifting its voltage-dependence to more negative
potentials. This phenomenon has strong physiological
implications because the rising of a “hooked tail” current
during deactivation yields a transient increase in repolarizing
power, securing the repolarization of the plasma membrane even
after a brief depolarization (Labro et al., 2015). From a
generalizing angle, it can be said that this kind of mechanism
prevents K+-selective voltage-gated channels from rapidly
closing, since their own activity repolarized the membrane and
caused them to deactivate themselves.

As another example, mode shift in HCN channels seems to
be essential to their role in pace-making. In essence, the
activation of HCN currents leads to the depolarization of the
membrane and eventual triggering of an electrical event (e.g., an
AP in the sinoatrial node) (Elinder et al., 2006). As the AP

develops, the voltage-dependence of HCN channels shifts mode
to one in which activation occurs at more negative potentials.
Thus, HCN currents are not readily activated during
repolarization. Instead, the activation of the channels is
delayed. In the meantime, as the membrane becomes
negative, the voltage-dependence for HCN-current activation
switches to more positive voltages. At this point, HCN
reactivates and currents drive depolarization, so the cycle
starts anew.

In the previous two cases, the observance of DVD in the
activity of KV3.1b and HCN channels guarantees that they are
activated when they are “most needed.” A slightly different
strategy seems to have evolved with members of the KV7
family. For both the homomeric KV7.2 and the heteromeric
KV7.2/KV7.3 channels, the deactivation rate decreases as the
channels are held activated. However, the response of these
channels to depolarization is slower than the duration of the
stereotypical neuronal AP (Corbin-Leftwich et al., 2016).
Furthermore, the time required to observe a change in the
deactivation rate is in the order of tens of milliseconds. Thus,
it seems that hysteresis would not have a major role in the
response of these channels to the AP under physiological
conditions. Instead, the role of hysteresis seems to be at steady
state. KV7.2 and KV7.2/KV7.3 channels display meaningful
activity at the typical resting membrane potentials (between
−40 and −60 mV) (Jentsch, 2000; Cooper, 2012). In steady
state at these potentials, the homomeric KV7.2 and the
heteromeric KV7.2/KV7.3 channels change their mode of
activation so that their deactivation becomes much slower
(∼7-fold) than that of channels activated by depolarizing
pulses, even those as strong as +40 mV in amplitude with a
duration of 100 ms (Corbin-Leftwich et al., 2016). Thus,
hysteresis plays a role in stabilizing open channels so that they
will be resilient to deactivation when they are the most needed.

STOCHASTICITY, REVERSIBILITY, AND
HYSTERESIS

Since the future behavior of a hysteretic system is affected by the
past, this implies that voltage-gated channels displaying
hysteresis will “remember” what happened in the past. As a
result, they are said to have a short-term “memory.” The idea
that hysteresis confers “memory” to a system directly collides
with two well-accepted concepts in ion channel function: 1) that
channels seems to behave stochastically, and 2) that channel
activity is thermodynamically reversible (except for the fibrosis
transmembrane conductance regulator and similar molecules)
(Csanady et al., 2010). One of the fundamental assumptions
regarding the first concept is that channels adopt discrete
states—transitions between these states depend only on the
current state (Colquhoun and Hawkes, 1977). In other words,
transitions are “memoryless” events. This property seems to sit
diametrically opposite from the process of hysteresis that have
been discussed above.

However, these two types of process are compatible. The “lack
of memory” of a stochastic process suggests that the current state
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is the only influence on the probability of a channel to transition
states and on what that new state would be—what happened in
the past is irrelevant (Colquhoun and Hawkes, 1977). However,
the presence of hysteresis does not rely on whether the transition
possesses memory or not. Instead, hysteresis exists when there is
more than one pathway from one set of states to another, where
one set of states can be made of a single state (Villalba-Galea,
2017).

To illustrate how a stochastic process can also display hysteresis,
let us consider a model containing two sets of closed and open
states, C and O, which are alternatingly stable (subscripted with a
“S”) and meta-stable (subscripted with a “M”) (Figure 2A, rate
coefficients in Table 1). The potential of half-maximum activity
(Vh) for the top branch of the model is −20mV; for the bottom

branch, Vh is −65mV (Figures 2A,B). Both branches are
connected through voltage independent transitions. In steady
state at −90mV, the rates favor the population of states CS and
CM, with CS constituting 90% of the population (Figure 2C, top,
green digits). On the other hand, in steady state at +40 mV, state
OM and OS are most favored, with OS making up 93% of the
population (Figure 2C, bottom, green digits). To reach state OS

during activation, the model must go through either CM or OM. At
+40 mV, the rate α1 is 2 orders of magnitude larger than the rate γ1,
thus the activation preferentially proceeds through the top branch.
When returning to −90mV, the rate β2 is six times larger than δ1,
thus deactivation proceeds preferentially through the lower branch
in a 1 to 7 ratio. This indicates that this stochastic model follows a
preferred direction. This explanation applies only to channels that
are in steady state. The situation is different in channels before
reaching steady state. To illustrate this idea, let us consider that
deactivation in the top branch is 146 times faster than in the
bottom branch. Following activation at +40 mV, the overall speed
of deactivation changes as a function of the time that themodel was
kept activated. This model shows that prolonging the duration of
the activation results in a decrease in the deactivation kinetics, as
deactivation from OM is faster than from OS.
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FIGURE 2 | (A) Four-state model for channel activity displaying hysteresis. The rates α and β are functions of the membrane potential; the rates c and δ are voltage
independent. The top and bottom branches of the model as partially isolated from each other by making the rates c and δ small and constant. (B) Voltage-dependence
for the top and bottom branchwhen calculated in isolation (making rates c and δ equal to zero). (C)Rate constants for themodel when themembrane potential was either
−90 mV (top) or +40 mV (bottom). Rate coefficients can be found in Table 1. (D) Simulation of the model applying +40-mV pulses of different duration (2, 5, 10,
20, and 50 ms). As the activation was prolonged, the temporal profile of deactivation changed, becoming slower. The rates αi and βi were defined by the functions
αi � α0,ie1.5FV/RT and βi � β0,i e

−1.5FV/RT, respectively. The model assumes a charge of 1.5 e- associated with each voltage-dependent rate.

TABLE 1 | Rate coefficients for the four-state model in Figure 2.

Coefficient Value (ms−1) Coefficient Value (ms−1)

α0,1 0.100 α0,2 0.1000
β0,1 0.010 β0,2 0.0001
c1 0.030 c2 0.0100
δ1 0.002 δ2 0.1000
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Another important issue is reversibility. In the case of the
hypothetical model considered here (Figure 2), reversibility is
guaranteed, as the product of the coefficient rates in one
direction of the cycle is equal to the coefficient rate in the
opposite direction (Onsager, 1931). In addition, the total
sensing charge mobilized in the top branch is equal to the total
sensing charge mobilized in the bottom branch. Therefore, the
example presented here is a stochastic reversible model that
presents a preferred directing and changing kinetic of
deactivation as a function of the duration of activation.

HYSTERESIS AND CHANNEL
STRUCTURES

Structural models of voltage-gated channels obtained from
crystallography studies likely represent stable conformations of
these proteins in the absence of an electric field (at 0 mV).
Furthermore, the VSD in such models may likely be in a
relaxed state of the domain. This implies that structures which
are commonly regarded to be representing voltage-gated
channels in activated states may likely instead be representing
channels in a conformation that is not the “short-lived” (meta-
stable) open state. This would have implications in our
understanding of the intramolecular interactions governing the
activity of channels and of the intermolecular interactions of
channels with modulatory subunits, signaling molecules, drugs,
and other factors affecting their activity.

A FINAL THOUGHT

In general, hysteresis seems to dynamically adjust the voltage-
sensitivity and kinetics to optimize channel function to match
its physiological role. DVD, an example of hysteresis, may be
mechanistically rooted in VSD relaxation and other processes
found in the pore domain, intracellular domains, and
auxiliary subunits. Although discussing these instances is
beyond the scope of this review, it is important to mention
a few examples for a more complete understanding. These
examples include: hysteresis in the proton-dependent
activation of KcsA (Tilegenova et al., 2017), hysteresis in
the binding of nucleotides in CNG channels (Nache et al.,
2013), and hysteresis in the activity of TRP channels (Liu
et al., 2011).
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