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Constraint-Coupled Distributed Optimization:
a Relaxation and Duality Approach

Ivano Notarnicola, Member, IEEE and Giuseppe Notarstefano, Member, IEEE

Abstract—In this paper we consider a general, challenging
distributed optimization set-up arising in several important
network control applications. Agents of a network want to
minimize the sum of local cost functions, each one depending
on a local variable, subject to local and coupling constraints,
with the latter involving all the decision variables. We propose
a novel fully distributed algorithm based on a relaxation of the
primal problem and an elegant exploration of duality theory.
Despite its complex derivation, based on several duality steps, the
distributed algorithm has a very simple and intuitive structure.
That is, each node finds a primal-dual optimal solution pair
of a local, relaxed version of the original problem, and then
updates suitable auxiliary local variables. We prove that agents
asymptotically compute their portion of an optimal (feasible)
solution of the original problem. This primal recovery property is
obtained without any averaging mechanism typically used in dual
decomposition methods. To corroborate the theoretical results, we
show how the methodology applies to an instance of a Distributed
Model Predictive Control scheme in a microgrid control scenario.

I. INTRODUCTION

In the last decade distributed optimization has received
significant attention. Literature has mainly focused on cost-
coupled optimization problems in which the cost to be mini-
mized is the sum of local functions depending on a common
decision variable, see [2]–[10] and references therein for
an overview. A different, more general optimization set-up
amenable to distributed computation is the minimization of
the sum of local cost functions, each one depending on a
local variable, subject to a local constraint for each variable
and a coupling constraint involving all the decision variables.
In this problem, the global optimal solution is obtained by
stacking all the local variables. This feature leads easily to
so-called big-data problems having a very highly dimensional
decision variable that grows with the network size. However,
since agents are typically interested in computing only their
(small) portion of the optimal solution, novel tailored methods
need to be developed to address these challenges. We call this
framework constraint-coupled optimization set-up.

Several scenarios of interest in Controls and Robotics
as well as Communication and Signal Processing strongly
motivate the investigation of such a problem. Example set-
ups include resource allocation (e.g., in Communication or
Cooperative Robotics) or network flow optimization (e.g., in
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smart grid energy management). A set-up which is particularly
relevant in our community is distributed Model Predictive
Control (MPC) in which the goal is to design a feedback
law for a (spatially distributed) network of dynamical systems
based on the MPC concept. In such a scheme several optimiza-
tion problems need to be iteratively solved. The local decision
variable of each agent corresponds to its state-input trajectory,
while the local constraints encode its dynamics, which is
usually independent of other agents. A constraint that couples
agents’ states, inputs or outputs needs to be taken into account
in order to enforce cooperative tasks as, e.g., formation control,
or to take into account common bounds, e.g., due to shared
resources. Distributed MPC approaches are mainly classified
into non-cooperative and cooperative schemes [11]. While
in non-cooperative schemes the main focus is to guarantee
recursive feasibility and stability, in cooperative approaches
agents care also about optimality when solving the global,
constraint-coupled problems arising in each time window and,
thus, call for tailored distributed optimization algorithms.

Parallel methods for constraint-coupled problems have been
developed mainly in the context of cooperative MPC. They are
based on a master-subproblem architecture that traces back to
late 90s [12]. Duality is a widely used tool to decompose the
problem and design optimization algorithms as shown, e.g., in
the tutorial papers [13], [14]. In [15] an accelerated dual de-
composition is proposed to solve a MPC problem. In [16] dual
decomposition is combined with a penalty approach to solve
separable nonconvex problems. A linear convergence rate for
a dual gradient algorithm for linearly constrained separable
convex problems is proven in [17]. In [18] an inexact dual
decomposition scheme combined with smoothing techniques
is proposed. In [19] a primal-dual, real-time strategy is pro-
posed to solve parametric nonconvex programs usually arising
in nonlinear MPC. Recently, parallel augmented Lagrangian
methods have been proposed in [20], [21] to solve nonconvex
problem instances with linear coupling constraints. Although
sometimes termed as “distributed” algorithms, they require a
centralized unit performing some steps in the proposed strate-
gies. When further sparsity is assumed in the problem, e.g.,
the sub-systems have coupled dynamics with their neighbors
only [14]–[17], then the parallel scheme can be implemented
over a network without a central authority. In this paper
we propose a purely distributed algorithm also for general
coupling constraints that involve the entire set of agents.

Distributed optimization algorithms for special versions of
the constraint-coupled set-up, arising in the context of resource
allocation problems, have been proposed in [22]–[25].

The general constraint-coupled set-up we consider in this
paper has not received extensive investigation in a purely
distributed framework and only few works are available,
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i.e., [26]–[30]. In [26] a consensus-based primal-dual per-
turbation algorithm is proposed to solve smooth constraint-
coupled optimization problems. Very recently, in [27] and [28]
distributed algorithms are proposed based on a consensus-
based dual decomposition and a dual proximal optimiza-
tion approach, respectively. A class of min-max optimization
problems, strictly related to the constraint-coupled set-up,
is addressed in [29] using a Laplacian-based saddle-point
subgradient scheme. A well-known drawback in methods
based on dual decomposition, is that primal feasibility is not
easily retrieved from dual solutions. Thus, primal recovery
mechanisms are devised in the papers above in order to
recover a primal solution by suitably applying running average
schemes borrowed from the centralized literature, see, e.g.,
[31]. A special coupling associated to peak minimization
problems arising in demand-side management is considered
in [30], where a (simplified) algorithmic approach, similar to
the one proposed in this paper, is proposed for that set-up. An
alternative approach to constraint-coupled problems has been
proposed in [32], and customized to MPC in [33], [34], where
agents employ a cutting-plane consensus scheme to iteratively
approximate their local problems. This approach enforces
agents to eventually agree on the complete solution vector and
this may be an undesirable feature in some applications.

The main paper contributions are as follows. We propose a
novel, distributed optimization algorithm to solve constraint-
coupled optimization problems over networks. Overall, our
distributed algorithm enjoys three appealing features: (i) local
computations at each node involve only the local decision
variable and, thus, scale nicely with respect to the dimension
of the decision vector, (ii) privacy is preserved since agents do
not communicate, and thus disclose, their estimates of local
decision variable, cost or constraints, and (iii) an estimate of
a primal optimal solution component is directly computed by
each agent without any averaging mechanism, which results
in a faster algorithm.

The proposed approach combines a proper relaxation of the
original problem with an elegant exploration of duality theory.
The resulting distributed algorithm is a two-step procedure in
which each agent iteratively performs a (primal) constrained
and small-sized optimization, followed by a dual update. The
local problems involve the local cost function and the local
constraint of the agent. Also, a local inequality constraint,
which is adjusted at each step, accounts for the coupling
constraint involving all the agents. Although this constraint
dynamically changes over the iterations, we do not need
to assume a priori feasibility of local problems, but rather,
thanks to the proposed relaxation approach, local violations are
allowed and proven to be asymptotically vanishing. Each local
solution estimate is guaranteed to asymptotically converge to
the component of an optimal (and, thus, feasible) solution
of the original problem. Such primal convergence of local
estimates, known in the literature as primal recovery, is non-
obvious in duality-based methods applied to (merely) convex
programs. In our distributed algorithm, this property results
from the methodology we employed, without resorting to any
(commonly used) running averaging mechanism. Moreover,
this key feature has an even stronger impact on our scheme

since it allows primal quantities to directly inherit the conver-
gence rate of a “centralized” subgradient iteration, while, in
general, running averages further degrade such a rate. Finally,
since no particular initialization is required, our distributed
algorithm can be implemented in a dynamic context in which
the problem may change or nodes can appear or disappear.

The paper unfolds as follows. In Section II we formalize the
set-up and introduce our distributed optimization algorithm. In
Section III we give a constructive derivation of of the algo-
rithm and in Section IV we conclude the analysis by proving
the its convergence properties. In Section V we corroborate the
theoretical results by showing how the methodology applies
to an instance of a distributed MPC controller for a microgrid.

II. DISTRIBUTED SET-UP AND OPTIMIZATION ALGORITHM

In this section we formally state the general constraint-
coupled problem we aim at investigating in this paper as
strongly motivated by control applications discussed in the
introduction. Moreover, we introduce the proposed distributed
algorithm along with its convergence theorem.

A. Constraint-Coupled Set-up

Consider the following optimization problem

min
x1,...,xN

N∑
i=1

fi(xi)

subj. to xi ∈ Xi, i ∈ {1, . . . , N}
N∑
i=1

gi(xi) ≤ 0,

(1)

where for all i ∈ {1, . . . , N}, the set Xi ⊆ Rni with ni ∈ N,
the functions fi : Rni → R and gi : Rni → RS with S ∈ N.
The symbol ≤ (and, consistently, for other sides) means that
the inequality holds component-wise and 0 , [0, . . . , 0]>∈RS.

Assumption II.1. For all i ∈ {1, . . . , N}, each function fi
is convex, and each Xi is a non-empty, compact, convex set.
Moreover, each gi is a component-wise convex function, i.e.,
for all s ∈ {1, . . . , S} each component gis : Rni → R of gi
is a convex function. �

The following assumption is the well-known Slater’s con-
straint qualification.

Assumption II.2. There exist x̄1 ∈ X1, . . . , x̄N ∈ XN such
that

∑N
i=1 gi(x̄i) < 0. �

These assumptions are quite standard and guarantee that
problem (1) admits (at least) an optimal solution (x?1, . . . ,x

?
N )

such that its optimal cost is
∑N
i=1 fi(x

?
i ) = f?. Moreover,

a dual approach can be applied since strong duality holds.
Notice that we assumed that

∑N
i=1 gi(xi) ≤ 0 admits a strictly

feasible point, while each gi(xi) ≤ 0 may not.
We consider a network of N processors communicat-

ing according to a connected and undirected graph G =
({1, . . . , N}, E), where E ⊆ {1, . . . , N} × {1, . . . , N} is the
set of edges. Edge (i, j) models the fact that node i sends
information to j. Note that, being the graph undirected, for
each (i, j) ∈ E , then also (j, i) ∈ E . We denote by |E| the
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cardinality of E and by Ni the set of neighbors of node i
in G, i.e., Ni = {j ∈ {1, . . . , N} | (i, j) ∈ E}. Each node i
knows only fi, gi and Xi, and aims at estimating its portion
x?i of an optimal solution (x?1, . . . ,x

?
N ) of (1) by means of

local communication only.

Remark II.3. Problem (1) is a special case of the general
set-up minx∈X

∑
i fi(x). However, addressing the solution

of (1) by means of existing distributed optimization algorithms
tailored for that general set-up incurs in two main issues:
first, each agent i should know the entire coupling constraint∑
i gi (while in some applications i only knows gi); second,

all agents eventually converge to the stack of optimal solutions
while in general they can be interested (e.g., for privacy
reasons) in computing their portion x?i only. �

B. Relaxation and Successive Distributed Decomposition

In this subsection we present our Relaxation and Successive
Distributed Decomposition method (RSDD) which is a novel
strategy to solve problem (1) over networks.

Informally, the algorithm consists of an iterative two-step
procedure. First, each node i ∈ {1, . . . , N} stores a set of
variables ((xi, ρi),µi) ∈ Rni ×R×RS obtained as a primal-
dual optimal solution pair of problem (2). The vector µi is
the multiplier associated to the inequality constraint in (2).
We notice that (2) mimics a local version of the centralized
problem (1), where the coupling with the other nodes in the
original formulation is replaced by a local term depending
only on neighboring variables λij ∈ RS and λji ∈ RS , j ∈
Ni. Moreover, this local version of the coupling constraint is
also relaxed, i.e., a positive violation ρi1 is allowed, where
1 , [1, . . . , 1]> ∈ RS . Finally, instead of minimizing only
the local fi, the (scaled) violation Mρi, M > 0, enters the
cost function as well. The auxiliary variables λij , j ∈ Ni, are
updated in the second step according to a suitable linear law
that combines neighboring µi as in (3). Nodes use a step-size
denoted by γt and can initialize the variables λij , j ∈ Ni to
arbitrary values. In the following table we formally state our
distributed algorithm from the perspective of node i.

Distributed Algorithm RSDD
Processor states: xi, ρi, µi and λij for j ∈ Ni
Initialization: λ0

ij arbitrary for j ∈ Ni, M sufficiently large
Evolution:

Gather λtji from j ∈ Ni
Compute

(
(xt+1
i , ρt+1

i ),µt+1
i

)
as a primal-dual optimal

solution pair of

min
xi,ρi

fi(xi) +Mρi

subj. to ρi ≥ 0, xi ∈ Xi

gi(xi) +
∑
j∈Ni

(
λtij − λtji

)
≤ ρi1

(2)

Gather µt+1
j from j ∈ Ni

Update for all j ∈ Ni

λt+1
ij = λtij − γt

(
µt+1
i − µt+1

j

)
(3)

As already mentioned, each agent i aims at computing
an optimal strategy by means of local interaction only. The
proposed distributed algorithm exploits the nice structure of
the constraints in the problem formulation to derive a protocol
in which agents exchange only the vectors µti and λtij without
explicitly communicating the current estimates of their local
decision variables xti, costs fi or constraints gi.

This is an important, appealing feature of the RSDD dis-
tributed algorithm since it guarantees privacy in the network.

Remark II.4. Since the initialization is arbitrary, then the
algorithm can run in a flexible scenario in which agents
can join or leave the network and problem data can change.
These events induce a new optimization problem and trigger
a transient for the distributed algorithm. Provided that the
algorithm runs for sufficiently long time before the triggering
event, then practical convergence is preserved also for the new
problem instance. �

In order to gain more intuition about the algorithmic evo-
lution, at this point we provide an informal interpretation,
supported by Figure 1, of the local optimization step in (2).

gi(x
t
i)

∑
j∈Ni

(λt
ij − λt

ji)

gi(x
t+1
i )

∑
j∈Ni

(λt
ij − λt

ji)

violation
ρt+1
i

Figure 1. Graphical representation of the local constraint relaxation for a
scalar coupling constraint.

Agent i, due to its partial knowledge, can only optimize with
respect to its own decision variable xi. Thus, it can solve an
instance of problem (1) in which all the other variables in
the network have a given value xtj for j ∈ {1, . . . , N} \ {i}.
Thus, the cost function reduces to fi only. As for the coupling
constraint, it describes how the resources are allocated to
all the agents at each iteration t. In the figure, we show a
possible instance of a feasible allocation: in blue we depicted
the resource assigned to agent i while in red an estimate of
the resources currently allocated to all the other agents. When
agent i optimizes its local variable xi only, it can “play”
with the “available resource slot” given by −

∑
j 6=i gj(x

t
j).

Since the current allocation is in general not optimal, this
constraint might be too restrictive. In fact, it can slow down
(and even stall) the optimization process by easily leading to
infeasibility of the local problem (2) when ρi is set to 0. On
this regard, recall that we do not assume feasibility of every
gi independently. Also, it is worth noting that such “available
resource slot” depends on the entire network’s variables, and,
thus, it is not an easily available information in a distributed
scenario. Thus, we propose a strategy in which at each iteration
t, each agent i replaces the term

∑
j 6=i gj(x

t
j) in the coupling

with
∑
j∈Ni

(
λtij−λ

t
ji

)
. Notice that this term can be computed

locally at each node by communicating with neighboring
agents only. This term is then iteratively adjusted along the
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algorithmic evolution in order to eventually obtain an optimal
solution. Finally, each agent i is allowed for a violation ρi1
of the local version of the coupling constraint. At the same
time, this violation is penalized in order to encourage it to
eventually converge to zero. This intuitive description will be
rigorously derived and proven in the following sections.

We are now ready to state the main result of the paper,
namely the convergence of the RSDD distributed algorithm.
We start by formalizing the assumption that the step-size
should satisfy.

Assumption II.5. The sequence {γt}t≥0, with each γt ≥ 0,
satisfies the conditions

∑∞
t=0 γ

t =∞,
∑∞
t=0

(
γt
)2
<∞. �

The convergence theorem is stated below.

Theorem II.6. Let Assumption II.1 and II.2 hold, and let the
step-size γt satisfy Assumption II.5. Moreover, letting µ? be
an optimal solution of the dual of problem (1), assume M >
‖µ?‖1. Consider a sequence

{
xti, ρ

t
i

}
t≥0, i ∈ {1, . . . , N},

generated by the RSDD distributed algorithm with an arbitrary
initialization. Then, the following holds:

(i)
{∑N

i=1

(
fi(x

t
i) + Mρti

)}
t≥0 converges to the optimal

cost f? of (1);
(ii) every limit point of

{
xti
}
t≥0, i ∈ {1, . . . , N}, is a primal

optimal (feasible) solution of (1).

Proof. The proof is given in Section IV-B.

We point out that Theorem II.6 does not require/claim any
asymptotic consensus among the µti, i ∈ {1, . . . , N}.

Remark II.7. When fi = 0 for all i ∈ {1, . . . , N}, then our
RSDD becomes a distributed algorithm for solving a feasibility
problem, i.e., find (x1, . . . ,xN ) such that xi ∈ Xi, for all
i ∈ {1, . . . , N} and

∑N
i=1 gi(xi) ≤ 0. �

III. ALGORITHM ANALYSIS:
RELAXATION AND DUALITY TOUR

In this section we present a constructive derivation of our
distributed algorithm. The methodology relies on a proper
relaxation of the original problem and on the derivation of a
sequence of equivalent problems. We point out that, although
based on a relaxation, the proposed algorithm exploits such a
relaxation to solve exactly the original problem formulation in
a distributed way.

A. First Duality Step and Relaxation Approach

We start our duality tour by deriving the dual problem of (1)
and a restricted version necessary for the algorithm derivation.

Let µ ≥ 0 ∈ RS , be a multiplier associated to the inequality

constraint
N∑
i=1

gi(xi) ≤ 0 in (1). Then, the dual of problem (1)

is given by

max
µ∈RS

N∑
i=1

qi(µ)

subj. to µ ≥ 0

(4)

where each term qi of the dual function q(µ) =
N∑
i=1

qi(µ) is

defined as

qi(µ) = min
xi∈Xi

(
fi(xi) + µ>gi(xi)

)
, (5)

for all i ∈ {1, . . . , N}. Let q? be the optimal cost of (4).
Notice that we do not need to assume uniqueness of the
solution of problem (4). As already mentioned, in light of
Assumptions II.1 and II.2, problem (1) is feasible and has
finite optimal cost f?. Moreover, the Slater’s condition holds
and, thus, the strong duality theorem for convex inequality
constraints, [35, Proposition 5.3.1], applies, ensuring that
strong duality holds, i.e., problems (1) and (4) have the same
optimal cost f? = q?. Moreover, q? is attained at some
µ? ≥ 0, i.e., q(µ?) = q?, cf. [35, Proposition 5.1.4]. Finally,
we recall that since

∑N
i=1 qi(µ) is the dual function of (1),

then it is concave on its convex domain µ ≥ 0. With the dual
problem at hand, several existing algorithms can be applied to
directly solve (4) in a distributed way, see e.g., the distributed
projected subgradient [2]. However, as pointed out in the
introduction such dual approaches do not guarantee primal
recovery and additional schemes must be employed to regain
it, e.g., averaging mechanisms.

In this paper we propose an alternative approach that relies
on a further duality step that gives rise to the RSDD distributed
algorithm, which overtakes these issues. Let us introduce an
optimization problem similar to (4), given by

max
µ∈RS

N∑
i=1

qi(µ)

subj. to µ ≥ 0, µ>1 ≤M,

(6)

where M is a positive scalar and 1 = [1, . . . , 1]>. This
problem is a restricted version of problem (4). Here, in fact
an additional constraint, namely µ>1 ≤ M , has been added
to (4). It is worth mentioning that this restriction makes the
constraint set of (6) a compact set. Although this step may
seem not motivated at this point of the paper, its necessity
will be clear from the following steps of the analysis, see also
Section IV-C for a dedicated discussion.

Notice that, if M is sufficiently large, the presence of the
constraint µ>1 ≤M in (6) will not alter the optimal solutions
of the unrestricted problem (4). The next result formally
establishes the relationship between problems (6) and (4).

Lemma III.1. Let µ? be an optimal solution of problem (4)
and M be a positive scalar satisfying M > ‖µ?‖1. Then,
problems (6) and (4) have the same optimal cost, namely q? =
f?. Moreover, µ? is an optimal solution also for problem (6).

Proof. The constraint set {µ ≥ 0 | µ>1 ≤M} is a restriction
of the constraint set µ ≥ 0 of problem (4) containing µ?. Thus
the optimal cost of (6) is, in general, greater than or equal to
the optimal cost of (4). Since the domain of (6) contains at
least one optimal solution of problem (4), namely µ?, then the
optimal cost of problem (6) is q? and is (at least) attained at
µ?, so that the proof follows.

With the dual problem (4) and its restricted version (6)
at hand, one may wonder about the connection between
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their primal counterparts. Next, we show that the restricted
problem (6) is the dual of a relaxed version of the original
primal problem (1).

Lemma III.2. Problem (6) is the dual of the following
optimization problem

min
x1,...,xN ,ρ

N∑
i=1

fi(xi) +Mρ

subj. to ρ ≥ 0, xi ∈ Xi, i ∈ {1, . . . , N}
N∑
i=1

gi(xi) ≤ ρ1,

(7)

and strong duality holds.

Proof. The dual function of (7) is given by

qR(µ)= inf
x1∈X1,...,xN∈XN

ρ≥0

N∑
i=1

(
fi(xi)+µ>gi(xi)

)
+ρ
(
M−µ>1

)

=


N∑
i=1

min
xi∈Xi

(
fi(xi) + µ>gi(xi)

)
︸ ︷︷ ︸

qi(µ)

, ifM−µ>1 ≥ 0

−∞, otherwise

where each qi(µ) is the same defined in (5). The maximization
of the dual function qR(µ) on its domain turns out to be the
maximization of

∑N
i=1 qi(µ) over {µ ≥ 0 | µ>1 ≤ M},

which is problem (6), and the proof follows.

Notice that problem (7) is a relaxation of problem (1) since
we allow for a positive violation of the coupling constraint.
At the same time, the violation ρ is penalized with a scaling
factor M in order to discourage it. The variable ρ resembles
the ρi introduced in the distributed RSDD algorithm. However,
as it will be clear from the forthcoming analysis, ρi is not a
local estimate (or copy) of ρ, but it rather represents the local
contribution of agent i to the common violation ρ.

The following result characterizes how the original primal
problem (1) and its relaxed version (7) are related.

Proposition III.3. Let M be such that M > ‖µ?‖1 with
µ? an optimal solution of the dual of problem (1). The
optimal solutions of the relaxed problem (7) are in the form
(x?1, . . . ,x

?
N , 0), where (x?1, . . . ,x

?
N ) is an optimal solution

of (1), i.e., solutions of (7) must have ρ? = 0.

Proof. First, we notice that problem (7) is the epigraph for-
mulation of

min
x1,...,xN

N∑
i=1

fi(xi)+M max
{

0,
N∑
i=1

gi1(xi), . . . ,
N∑
i=1

giS(xi)
}

subj. to xi ∈ Xi, i ∈ {1, . . . , N},
(8)

where gis denotes the s-th component of gi. Problems (1)
and (8) enjoy the same structure as the ones considered
in [36, Proposition 5.25]. By Assumption II.2, problem (7)
(and thus (8)) satisfies the assumptions for strong duality.
Thus, following [36, p. 364], we consider the penalty func-
tion M max{0,

∑N
i=1 gi1(xi), . . . ,

∑N
i=1 giS(xi)}, with M >

‖µ?‖1, so that we can apply [36, Proposition 5.25] to conclude

that problems (1) and (8) have the same optimal solutions, thus
completing the proof.

Remark III.4 (Alternative restrictions). Other choices for the
restriction of the domain µ ≥ 0 of (4) can be considered. For
instance, one can consider upper bounds in the form µ ≤M1
or µ ≤ [M1, . . . ,MS ]>. As one might expect, the specific
constraint restriction gives rise to different forms of the relaxed
primal problem (7). �

B. Second Dual Problem Derivation

At this point, we continue our duality tour in order to design
an algorithm that solves problem (6) instead of the unrestricted
dual problem (4).

In order to make problem (6) amenable for a distributed
solution, we enforce a sparsity structure that matches the
network. To this end, we introduce copies of the common
optimization variable µ and we copy also its domain. More-
over, we enforce coherence constraints among the copies µi
having the sparsity of the connected graph G, thus obtaining

max
µ1,...,µN

N∑
i=1

qi(µi)

subj. to µi ≥ 0,µ>i 1 ≤M, i ∈ {1, . . . , N}

µi = µj , (i, j) ∈ E .

(9)

Being problem (9) an equivalent version of problem (6), it has
the same optimal cost q? = f?.

On problem (9) we would like to use a dual decomposition
approach with the aim of obtaining a distributed algorithm.
That is, the leading idea is to derive the dual of problem (9)
and apply a subgradient method to solve it.

We start deriving the dual problem of (9) by dualizing only
the coherence constraints. Consider the partial Lagrangian

L(µ1, . . . ,µN ,Λ) =
N∑
i=1

(
qi(µi) +

∑
j∈Ni

λ>ij(µi − µj)
)
, (10)

where Λ ∈ RS·|E| is the vector stacking each Lagrange
multiplier λij ∈ RS , with (i, j) ∈ E , associated to the
constraint µi − µj = 0. Notice that we have not dualized
the local constraints {µi ≥ 0 | µ>i 1 ≤M}.

Since the communication graph G is undirected, we can
exploit the symmetry of the constraints. Indeed, for each
(i, j) ∈ E we also have (j, i) ∈ E , and, expanding all the
terms in (10), for given i and j, we always have both the
terms λ>ij(µi − µj) and λ>ji(µj − µi). Thus, after some
simple algebraic manipulations, we can rephrase (10) as
L(µ1, . . . ,µN ,Λ) =

∑N
i=1

(
qi(µi)+µ>i

∑
j∈Ni(λij−λji)

)
,

which is separable with respect to µi, i ∈ {1, . . . , N}. Thus,
the dual function of (9) is

η(Λ)=
N∑
i=1

ηi
(
{λij ,λji}j∈Ni

)
, (11)

where, for all i ∈ {1, . . . , N},

ηi
(
{λij ,λji}j∈Ni

)
= sup

µi≥0,

µ>
i 1≤M

(
qi(µi)+µ>i

∑
j∈Ni

(λij−λji)
)
. (12)



6

Finally, by denoting the domain of η as Dη = {Λ ∈ RS·|E| |
η(Λ) < +∞}, the dual of problem (9) reads

min
Λ∈Dη

η(Λ) = min
Λ∈Dη

N∑
i=1

ηi
(
{λij ,λji}j∈Ni

)
. (13)

Since problem (13) is a dual program, then it is a convex
(constrained) problem. Moreover, its cost function η(Λ) is
very structured since it is a sum of contributions ηi and each
of them depends only on neighboring variables. In the next
lemma we characterize the domain of problem (13).

Lemma III.5. The domain Dη of η in (11) is RS·|E|, thus
optimization problem (13) is unconstrained.

Proof. We show that each ηi
(
{λij ,λji}j∈Ni

)
is finite for all

{λij ,λji}j∈Ni . Each function qi(µi) is concave on its domain
µi ≥ 0 for all i ∈ {1, . . . , N}. In fact, from the definition
of qi in (5), we notice that it is obtained as minimization
over a nonempty compact set Xi of the function fi(xi) +
µ>i gi(xi). Such a function is concave (in fact linear) in µi,
thus, following the proof of [35, Proposition 5.1.2], we can
conclude that every qi is concave over its convex domain µi ≥
0. For each i ∈ {1, . . . , N}, the function ηi as defined in (12)
is obtained by maximizing a (concave) continuous function (qi
plus a linear term) over a compact set and, thus, has always
a finite value, so that the proof follows.

It is worth noting that Lemma III.5 strongly relies on the
compactness of {µi ≥ 0 | µ>i 1 ≤ M}. This means that
without the primal relaxation, Dη is not guaranteed to be
RS·|E|. In Section IV-C, we better clarify this aspect.

Next we characterize the optimization problem (13).

Lemma III.6. Let M be such that M > ‖µ?‖1 with µ? an
optimal solution of the dual of problem (1). Problem (13) has
a bounded optimal cost, call it η?, and a nonempty optimal
solution set. Moreover, it enjoys strong duality with (9). Also,
it holds η? = f?, where f? is the optimal solution of the
original primal problem (1).

Proof. Since (9) is equivalent to (4), then by Lemma III.1 its
optimal cost is finite and equal to q?. Since each qi is concave
as shown in the proof of Lemma III.5, then also

∑N
i=1 qi(µi) is

a concave function of (µ1, . . . ,µN ). Thus, since the domain
{µ1, . . . ,µN | µi ≥ 0 | µ>i 1 ≤ M, i ∈ {1, . . . , N}}, is
polyhedral, by [35, Proposition 5.2.1] strong duality between
problem (9) and its dual (13) holds, i.e., η? is finite since it
holds η? = q?. From the same proposition, we have that the
optimal solution set of (13) is nonempty. The equality η? = f?

follows readily by strong duality between problems (1) and (4),
which concludes the proof.

C. Distributed Subgradient Method

We detail in this subsection how to explicitly design a
distributed dual decomposition algorithm to solve problem (6)
based on a subgradient iteration applied to problem (13).

Exploiting the separability of η in (11), we recall how to
compute each component of a subgradient of η at a given
Λ ∈ RS·|E|, see e.g., [35, Section 6.1] That is, it holds

∂̃η(Λ)

∂λij
= µ?i − µ?j , (14)

where ∂̃η(·)
∂λij

denotes the component associated to the variable
λij of a subgradient of η, and

µ?k ∈ argmax
µk≥0,µ>

k 1≤M

(
qk(µk) + µ>k

∑
h∈Nk

(λkh − λhk)
)
, (15)

for k = i, j.
Having recalled how to compute subgradients of η, we are

ready to summarize how the subgradient method reads when
applied to problem (13). At each iteration t, each node i:
(S1) receives λtji, j ∈ Ni, and computes µt+1

i as an optimal
solution of

max
µi≥0,µ>

i 1≤M

(
qi(µi) + µ>i

∑
j∈Ni

(λtij − λtji)
)

; (16)

(S2) receives the updated µt+1
j , j ∈ Ni and updates λij , j ∈

Ni, via

λt+1
ij = λtij − γt(µt+1

i − µt+1
j ),

where γt is the step-size.
Notice that (S1)–(S2) is a distributed algorithm, i.e., it

can be implemented by means of local computations and
communications without any centralized step. However, we
want to stress that the algorithm is not implementable as it is
written, since the functions qi are still not explicitly available.

The next lemma states a property on the subdifferential of
the convex function η.

Lemma III.7. The subgradients of η are uniformly bounded,
i.e., there exists a positive constant C such that for every
Λ ∈ RS·|E| with components λij ∈ RS , ∀ (i, j) ∈ E , any
subgradient ∂̃η(Λ)/∂Λ satisfies ‖ ∂̃η(Λ)

∂Λ ‖ ≤ C.

Proof. To prove the lemma, we show that each component
∂̃η(Λ)
∂λij

of ∂̃η(Λ)
∂Λ is bounded. Using (14), it is sufficient to

show that µ?i and µ?j , associated to the given Λ, are uniformly
bounded and, hence, their difference. Since, from equation (15)
the two are obtained as maxima of a concave function over a
compact domain, the proof follows.

IV. ALGORITHM ANALYSIS: CONVERGENCE PROOF

This section is devoted to prove the convergence of the
RSDD distributed algorithm formally stated in Theorem II.6.

A. Preparatory Results

We give two intermediate results that represent building
blocks for the convergence proof given in Section IV-B. The
next lemma is instrumental to the second one.

Lemma IV.1. Consider the optimization problem

max
µi

fi(xi) + µ>i

(
gi(xi) +

∑
j∈Ni

(λtij − λtji)
)

subj. to µi ≥ 0,µ>i 1 ≤M,

(17)
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with given xi, λ
t
ij and λtji, j ∈ Ni, and M > 0. Then, its

dual problem is

min
ρi

fi(xi) +Mρi

subj. to ρi ≥ 0

gi(xi) +
∑
j∈Ni

(λtij − λtji) ≤ ρi1,
(18)

and strong duality holds.

Proof. First, since xi, λtij and λtji are given, problem (17)
is a feasible linear program (the box constraint is nonempty)
with compact domain. Thus, both problem (17) and its dual
have finite optimal cost and strong duality holds.

In order to show that (18) is the dual of (17), we introduce
a multiplier ρi ≥ 0 associated to the constraint M−µ>i 1 ≥ 0.
Then the dual function of (17) is defined as maxµi≥0 fi(xi)+

Mρi +µ>i

(
gi(xi) +

∑
j∈Ni(λ

t
ij −λtji)− ρi1

)
. It is equal to

fi(xi) + Mρi if gi(xi) +
∑
j∈Ni(λ

t
ij − λtji) − ρi1 ≤ 0 and

+∞ otherwise. Finally, the minimization of the dual function
on its domain with respect to ρi ≥ 0 gives problem (18) and
concludes the proof.

In the following, we propose a technique to make step (16)
explicit. By plugging in (16) the definition of qi, given in (5),
the following max-min optimization problem is obtained:

max
µi≥0,

µ>
i 1≤M

min
xi∈Xi

(
fi(xi)+µ>i

(
gi(xi)+

∑
j∈Ni

(λtij−λ
t
ji)
))
. (19)

The next lemma allows us to recast problem (19) in a more
convenient formulation from a computational point of view.

Lemma IV.2. Consider the optimization problem

min
xi,ρi

fi(xi) +Mρi

subj. to ρi ≥ 0, xi ∈ Xi

gi(xi) +
∑
j∈Ni

(
λtij − λtji

)
≤ ρi1.

(20)

A finite primal-dual optimal solution pair of (20), call it(
(xt+1
i , ρt+1

i ),µt+1
i

)
, does exist and (xt+1

i ,µt+1
i ) is a solution

of (19).

Proof. Problem (20) is a feasible convex program, in fact
fi(xi) + Mρi is convex, the set Xi is nonempty, convex
and compact, the constraint ρi ≥ 0 is convex as well as the
inequality constraint gi(xi) +

∑
j∈Ni

(
λtij − λtji

)
− ρi1 ≤ 0.

Then, by choosing a sufficiently large ρi, we can show that
the Slater’s constraint qualification is satisfied and, thus, strong
duality holds. Therefore, a primal-dual optimal solution pair
(xt+1
i , ρt+1

i ,µt+1
i ) of (20) exists. Moreover, problem (20) can

be recast as

min
xi∈Xi

(
min

ρi≥0, gi(xi)+
∑
j∈Ni

(λtij−λtji)≤ρi1
fi(xi) +Mρi

)
.

By Lemma IV.1, we can substitute the inner minimization
with its equivalent dual maximization obtaining

min
xi∈Xi

max
µi≥0,

µ>
i 1≤M

(
fi(xi)+µ>i

(
gi(xi)+

∑
j∈Ni

(λtij−λ
t
ji)
))
. (21)

Let φ(xi,µi)=fi(xi)+µ>i

(
gi(xi)+

∑
j∈Ni(λ

t
ij−λ

t
ji)
)

and
observe that (i) φ(·,µi) is closed and convex for all µi ≥
0 (affine transformation of a convex function with compact
domain Xi) and (ii) φ(xi, ·) is closed and concave since it is a
linear function with compact domain ({µi ≥ 0 | µ>i 1 ≤M}),
for all xi ∈ RS . Thus, we can invoke [37, Propositions 4.3]
to switch min and max operators in (21), and write

min
xi∈Xi

max
µi≥0,

µ>
i 1≤M

(
fi(xi)+µ>i

(
gi(xi)+

∑
j∈Ni

(λtij−λ
t
ji)
))

= max
µi≥0,

µ>
i 1≤M

min
xi∈Xi

(
fi(xi)+µ>i

(
gi(xi)+

∑
j∈Ni

(λtij−λ
t
ji)
))
.

(22)

which is (19), thus concluding the proof.

We highlight that problem (20) is the local optimization
step (2) in the RSDD distributed algorithm.

Finally, the next corollary makes a connection between the
optimal cost of i-th problem (20) and the value of the i-th
local term ηi (defined in (12)) of the second dual function η
(defined in (11)).

Corollary IV.3. Let (xt+1
i , ρt+1

i ) be a solution of (20) with
given λtij and λtji for j ∈ Ni. Then

ηi
(
{λtij ,λ

t
ji}j∈Ni

)
= fi(x

t+1
i ) +Mρt+1

i , (23)

with ηi defined in (12).

Proof. In the proof of Lemma IV.2, we have shown that
condition (22) holds for all t ≥ 0. Its left hand side has optimal
cost fi(xit+1) +Mρt+1

i , while the one of the right hand side
is exactly the definition of ηi

(
{λtij ,λ

t
ji}j∈Ni

)
in (12). Thus,

equation (22) can be rewritten as

fi(x
t+1
i ) +Mρt+1

i = ηi
(
{λtij ,λ

t
ji}j∈Ni

)
,

for all i ∈ {1, . . . , N}, concluding the proof.

B. Proof of Theorem II.6

To prove statement (i), we show that the RSDD distributed
algorithm is an operative way to implement the subgradient
method (S1)–(S2) and, that (S1)–(S2) solves problem (6).

First, let {µti}t≥0 and {λtij}t≥0, j ∈ Ni, be the auxiliary
sequences generated by the RSDD distributed algorithm as-
sociated to {(xti, ρti)}t≥0, for each i ∈ {1, . . . , N}. From
Lemma IV.2, a primal-dual optimal solution pair

(
(xti, ρ

t
i),µ

t
i

)
of (2) in fact exists at each iteration t, so that the algorithm is
well-posed. Second, to show that RSDD implements (S1)–(S2)
we notice that update (3) and (S2) are trivially identical. As
for (S1), we have shown in the discussion after Lemma IV.1,
that equation (19) is an explicit expression for (16) in (S1).
Thus, by invoking Lemma IV.2, we can conclude that finding
the dual part of a primal-dual optimal solution pair of (2)
corresponds to performing (S1). Therefore, the sequences
{λtij}t≥0, (i, j) ∈ E generated by RSDD and by (S1)–(S2)
coincide. Third, we show that RSDD solves problem (13). By
Lemma III.6 the optimal solution set of (13) is nonempty and
by Lemma III.7 the subgradients of η are uniformly bounded.
Since the step-size γt satisfies Assumption II.5, we can
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invoke [38, Proposition 3.2.6] to conclude that the sequence
{λtij}t≥0, (i, j) ∈ E generated by RSDD (or equivalently by
(S1)–(S2)) converges to an optimal solution of (13). Then, we
use (23) in Corollary IV.3 and take the limit as t → ∞, thus
obtaining

lim
t→∞

N∑
i=1

(
fi(x

t+1
i ) +Mρt+1

i

)
= lim
t→∞

N∑
i=1

ηi
(
{λtij ,λ

t
ji}j∈Ni

)
= η? = f?,

where the last equality follows by Lemma III.6, so that the
proof of the first statement is complete.

To prove statement (ii), i.e., the primal recovery property,
we start by studying the properties of the aggregated vector
(xt1, . . . ,x

t
N , ρ

t
1, . . . , ρ

t
N ). By construction, for all t ≥ 0

each pair (xti, ρ
t
i) satisfies xti ∈ Xi, ρti ≥ 0 and gi(x

t
i) +∑

j∈Ni

(
λt−1ij −λt−1ji

)
≤ ρti1. Summing over i ∈ {1, . . . , N}

the previous condition, it follows that

N∑
i=1

gi(x
t
i) +

N∑
i=1

∑
j∈Ni

(
λt−1ij − λt−1ji

)
≤

N∑
i=1

ρti1, (24)

for all t ≥ 0. Let us denote by aij the (i, j)-th entry of the
adjacency matrix associated to the undirected graph G. Then,
we can write
N∑
i=1

∑
j∈Ni

(λtij − λtji)
(a)
=

N∑
i=1

N∑
j=1

aij(λ
t
ij − λtji)

=
N∑
i=1

N∑
j=1

aijλ
t
ij −

N∑
i=1

N∑
j=1

aijλ
t
ji

(b)
= 0,

where (a) follows by writing the sum over neighboring agents
in terms of the adjacency matrix, while (b) holds since G is
undirected (so that aij = aji for all (i, j) ∈ E), which implies
that the two summations in the second line are identical for
all t ≥ 0. Hence, equation (24) reduces to

N∑
i=1

gi(x
t
i) ≤

N∑
i=1

ρti1, (25)

for all t ≥ 0. Equation (25) shows that for all t ≥ 0 the
aggregate vector (xt1, . . . ,x

t
N , ρ

t
1, . . . , ρ

t
N ) is feasible for the

following optimization problem

min
x1,...,xN
ρ1,...,ρN

N∑
i=1

fi(xi) +M
N∑
i=1

ρi

subj. to ρi ≥ 0, xi ∈ Xi, i ∈ {1, . . . , N}
N∑
i=1

gi(xi) ≤
N∑
i=1

ρi1.

(26)

Notice that, by defining ρ =
∑N
i=1 ρi, problem (26) is

equivalent to problem (7). Thus, at each iteration t the point
(xt1, . . . ,x

t
N ,
∑N
i=1 ρ

t
i) is feasible for problem (7). The equiv-

alence also shows that ρi is not a copy of ρ, but it is the i-th
contribution to ρ.

We now show that every limit point of the sequence
{xt1, . . . ,xtN ,

∑N
i=1 ρ

t
i}t≥0 is feasible for problem (7). By

construction, each xti ∈ Xi for all i ∈ {1, . . . , N},
so that {xti}t≥0 is bounded. Moreover, from the state-
ment (i) of the theorem, also the sequence {

∑N
i=1 ρ

t
i}t≥0

is bounded since {
∑N
i=1 fi(x

t
i) + M

∑N
i=1 ρ

t
i}t≥0 con-

verges to a finite value f?. Since the sequence of vectors
{(xt1, . . . ,xtN ,

∑N
i=1 ρ

t
i)}t≥0 is bounded, then there exists a

sub-sequence of indices {tn}n≥0 ⊆ {t}t≥0 such that the sub-
sequence {(xtn1 , . . . ,x

tn
N ,
∑N
i=1 ρ

tn
i )}n≥0 converges to a limit

point (x̄1, . . . , x̄N , ρ̄). From the first statement of the theorem
we have that (x̄1, . . . , x̄N , ρ̄) satisfies

N∑
i=1

fi(x̄i) +Mρ̄ = f?.

Moreover, since each component of gi is a (finite) convex
function over Rni , it is also continuous over any compact
subset of Rni . Thus, by taking the limit as n → ∞ in (25)
with t = tn, it also holds

N∑
i=1

gi(x̄i) ≤ ρ̄1. (27)

By Proposition III.3 it must hold that (x̄1, . . . , x̄N , ρ̄) =
(x̄1, . . . , x̄N , 0), i.e., ρ̄ = 0. Thus, (27) holds with ρ̄ = 0
and, thus, guarantees that every limit point of (xt1, . . . ,x

t
N ) is

feasible for the (not relaxed) coupling constraint in the original
problem (1) and thus optimal for that problem. So that the
proof follows.

C. Discussion on the Necessity of the Relaxation

In this subsection we show how our approach reads when
no dual restriction is applied. This will further highlight the
strength of the proposed strategy.

Suppose we do not restrict the original dual problem (4),
but we still apply the same formal derivation given in the
previous sections. Then, the counterpart of (11) is ηNR(Λ) =∑N
i=1 η

NR
i

(
{λij ,λji}j∈Ni

)
with, for all i ∈ {1, . . . , N},

ηNRi
(
{λij ,λji}j∈Ni

)
= sup

µi≥0

(
qi(µi) + µ>i

∑
j∈Ni

(λij−λji)
)
.

Finally, by denoting the domain of ηNR as DNR
η , we have

that the counterpart of problem (13) is minΛ∈DNR
Λ
ηNR(Λ).

Notice that this problem is a constrained minimization since,
differently from the relaxed case, the domain DNR

η does not
always coincide with the entire space RS·|E| (Cf. Lemma III.5).
Thus, to apply the subgradient method we need to adapt (S1)–
(S2) by appending an additional projection step, i.e., Λt+1 =[
Λ̃t+1

]
DNR
η

, where each component λ̃t+1
ij of Λ̃t+1 is the result

of (S2) and [ · ]DNR
η

denotes the Euclidean projection onto DNR
η .

Notice that the projection onto DNR
η of the entire Λ̃t+1 prevents

the distributed implementation of the algorithm.
It is worth noting that, being the set {µi ∈ RS | µi ≥ 0}

not compact, then Lemma IV.2 would not hold. The theoretical
issue is that switching min and max operators in (22) may
not be possible due to the non-compact domains (Cf. [37,
Propositions 4.3]. Moreover, differently from the relaxed case,
Lemma III.7 does not hold anymore so that no guarantees
about the boundedness of subgradients of ηNR can be es-
tablished. Thus, the convergence result about the centralized
subgradient method cannot be invoked.
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V. APPLICATION TO DISTRIBUTED MICROGRID CONTROL

In this section we present a computational study of our
RSDD distributed algorithm tailored for an optimization prob-
lem to be solved within a distributed MPC scheme for micro-
grid control. We consider a simplified microgrid model (with
both static and dynamical units) to compute an optimal power
profile in a given horizon [0, T ].

A. Microgrid Model

A microgrid consists of generators, controllable loads, stor-
age devices and a connection to the main grid [39]. Generators
are collected in the set GEN, storage devices are collected
in STOR, controllable loads are collected in CONL while the
device tr is the connection node with the main grid. Formally,
the constraint-coupled optimization problem to be solved is

min
T∑
τ=0

( ∑
i∈GEN

fτgen,i(p
τ
gen,i)

+
∑

i∈CONL
fτconl,i(p

τ
conl,i) + fτtr(pτtr)

)
subj. to pgen,i ∈ Xgen, i ∈ GEN, pstor,i ∈ Xstor, i ∈ STOR

pconl,i ∈ Xconl, i ∈ CONL, |pτtr| ≤ E, τ ∈ [0, T ]∑
i∈GEN

pτgen,i +
∑

i∈STOR
pτstor,i

+
∑

i∈CONL
pτconl,i + pτtr −Dτ≤ 0, τ ∈ [0, T ],

where the optimization variables are pgen,i, pstor,i, pconl,i,
ptr ∈ RT+1. For the generators, at each time instant τ ,
the power pτgen,i must satisfy magnitude and rate bounds,

¯
p ≤ pτgen,i ≤ p̄ and

¯
r ≤ pτ+1

gen,i−pτgen,i ≤ r̄, with τ ∈ [0, T−1],
for given positive scalars

¯
p, p̄,

¯
r and r̄; the cost to produce

power by a generator is modeled as a quadratic function
fτgen,i(p

τ
gen,i) = α1p

τ
gen,i + α2(pτgen,i)

2 for some α1 > 0
and α2 > 0. The power of each storage device pτstor,i
satisfies bounds and a dynamical constraint given by −dstor ≤
pτstor,i ≤ cstor, τ ∈ [0, T ], qτ+1

stor,i = qτstor,i + pτstor,i,
τ ∈ [0, T − 1], and 0 ≤ qτstor,i ≤ qmax, τ ∈ [0, T ], where
qτstor,i, τ ∈ [0, T ], describes the storage capacity and the initial
value q0stor,i is given and dstor, cstor and qmax are positive
scalars. There are no costs associated with the stored power.
The power of controllable loads pτconl,i must follow a desired
load profile pτdes,i for pτconl,i. The controllable load incurs in
a cost fτconl,i(p

τ
conl,i) = βmax{0, pτdes,i−pτconl,i}, β ≥ 0, if

the desired load is not matched. Upper and lower bounds on
the pτconl,i are imposed to avoid meaningless power values.
The power of the connection node pτtr incurs in a trading
cost modeled as fτtr(pτtr) = −c1pτtr + c2|pτtr|, with c1 > 0
and c2 > 0 being respectively the price and the transaction
cost. Finally, the power network must satisfy a given power
demand Dτ modeled by the coupling constraint. Reasonably,
we assume Dτ to be known only by the connection node tr.
B. Numerical Results

We consider a heterogeneous network of N = 10 units
with 4 generators, 3 storage devices, 2 controllable loads and
1 connection to the main grid. We assume that in the dis-
tributed MPC scheme each unit predicts its power generation
strategy over a horizon of T = 12 slots. In order to fit the

microgrid control problem in our set-up, we let each xi be
the whole trajectory over the prediction horizon [0, T ], e.g.,
xi =

[
p0gen,i, . . . , p

T
gen,i

]>, for all the generators i ∈ GEN
and, consistently, for the other device types. As for the cost
functions we define fi(xi) =

∑T
τ=0 f

τ
gen,i(p

τ
gen,i) for i ∈ GEN

and, similarly, for the other device types. Each local constraint
Xi encodes the heterogeneous dynamics and bounds on the
state of the units. We set M = 10, where µ? is a dual optimal
solution of the problem computed in a centralized way and
γt = 0.1 · (1/t)0.7.

In Figure 2 we show the algorithmic evolution of the sum
of the penalty parameters ρti and the maximum violation of
the coupling constraint at each iteration t. As claimed in
Theorem II.6,

∑N
i=1 ρ

t
i asymptotically goes to zero. In this

particular instance we also notice that, after the very first
iterations, the generated points are strictly feasible for the
coupling constraints and hit the boundary in the limit from the
interior. We point out that feasibility of the coupling constraint
is obtained during the transient, even if some ρti are positive,
so that the algorithm would not work without the relaxation
strategy. In Figure 3 we show how

∑
j∈Ni(λ

t
ij−λ

t
ji) compares

with the unknown part of the coupling constraint of each
agent i, namely

∑
j 6=i gj(x

t
j). The picture highlights that∑

j∈Ni(λ
t
ij−λ

t
ji) actually distributedly “tracks” the maximum

of the contribution in the coupling constraint due to all the
other agents j 6= i in the network.
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Figure 2. Asymptotically vanishing
behavior of the sum of local violations
(blue). Evolution of the maximum vio-
lation of coupling constraints showing
feasibility of primal sequences (red).
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Figure 3. Evolution of the max-
imum difference (over the compo-
nents s ∈ {1, . . . , S}) between∑

h 6=i ghs(x
t
h) and

∑
j∈Ni (λ

t
ij −

λt
ji), for all i.

Finally, in Figure 4 we compare the convergence rate of
the RSDD and the distributed subgradient [2] applied to (13)
equipped with a running average to recover a primal feasible
solution, [28]. That is, we plot the difference between the
optimal cost η? = f? and the sum of local costs

∑N
i=1 fi(x

t
i

normalized by |f?|. It can be seen that both algorithms
converge to the optimal cost f? in a non-monotone fashion
with a sublinear rate. However our algorithm is faster since
no averaging mechanisms are used.

VI. CONCLUSIONS

In this paper we have proposed a novel distributed method
to solve constraint-coupled convex optimization problems in
which a separable cost function is minimized subject to both
local constraints involving one component of the decision
vector and coupling constraints involving all the components.
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t
i) +Mρti

)
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that shows convergence to the optimal cost.

While the algorithm has a very simple structure (a local
optimization and a linear update), its analysis involves a re-
laxation approach and a deep tour into duality theory showing
both the convergence to the optimal cost and the primal
recovery. In particular, this last property allows each node to
compute its portion of the optimal solution without resorting
to any averaging mechanism, which is instead commonly
required in methods based on dual decomposition. Numerical
computations on an instance of a cooperative Distributed
Model Predictive Control scheme in smart microgrids have
corroborated the theoretical results.
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