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ABSTRACT

Context. The merging of supermassive black holes (SMBHs) is a direct consequence of our hierarchical picture of galaxy evolution.
It is difficult to track the merging process of SMBHs during mergers of galaxies as SMBHs are naturally difficult to observe.
Aims. We want to characterise and confirm the presence of two independent active galactic nuclei (AGN) separated by a few kiloparsec
in seven strongly interacting galaxies previously selected from the Sloan Digital Sky Survey (SDSS) as Seyfert-Seyfert pairs based
on emission-line ratio diagnostics.
Methods. Optical slit spectra taken with MODS at the Large Binocular Telescope are presented to infer the detailed spatial distribution
of optical emission lines, and their line ratios and AGN signatures with respect to the host galaxies, thereby quantifying the impact of
beam smearing and large fibre apertures on the spectra captured by the SDSS.
Results. We find that at most two of the seven targets actually retain a Seyfert-Seyfert dual AGN, whereas the others may be more
likely powered by post-AGB stars in retired galaxies or through shocks in the ISM based on spatially resolved optical line diagnostics.
The major cause of this discrepancy is a bias caused by the spillover of flux from the primary source in the secondary SDSS fibre
which can be more than an order of magnitude at <3′′ separations. Previously reported extremely low X-ray–to–[O iii] luminosity
ratios may be explained by this misclassification, as can heavily obscured AGN for the primaries. We also find that the nuclei with
younger stellar ages host the primary AGN.
Conclusions. Studies of close dual AGN selected solely from fibre-based spectroscopy can create severe biases in the sample selection
and interpretation of the results. Spatially resolved spectroscopy should ideally be used in the future to characterise such compact
systems together with multi-wavelength follow-up observations.
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1. Introduction

If galaxies merge hierarchically and most galactic bulges con-
tain supermassive black holes (SMBHs), the formation of dual
or multiple SMBHs is a natural phenomenon (Begelman et al.
1980). Multiple mergers offer a potential physical mechanism
linking star formation on a galaxy-wide scale with the feeding

? The LBT is an international collaboration among institutions in
the United States, Italy and Germany. LBT Corporation partners are:
The University of Arizona on behalf of the Arizona Board of Regents;
Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft,
Germany, representing the Max-Planck Society, The Leibniz Institute
for Astrophysics Potsdam, and Heidelberg University; The Ohio State
University, and The Research Corporation, on behalf of The University
of Notre Dame, University of Minnesota and University of Virginia.

and evolution of active galactic nuclei (AGN) (e.g. Hopkins et al.
2008). The evolution of merging SMBH systems from sev-
eral kiloparsec to smaller separations is determined by gravita-
tional interactions of the SMBHs with their environment (Mayer
2013), mainly dynamical friction (e.g. Escala et al. 2004), and
the scattering of the SMBHs by massive gas clouds and spiral
arms produced during the merger phase (Fiacconi et al. 2013).

Active galactic nuclei trace the active easily observable
phase of SMBHs, and are therefore the ideal objects where
SMBHs can be discovered. Since dual SMBHs (i.e. with a
separation of 100 pc up to 10 kpc) are a natural consequence
of galaxy mergers, their search received great attention (see
Bogdanović et al. 2009; De Rosa et al. 2019, and references
therein). Evidence of such systems has proven elusive until
now. In particular, only a small number of dual AGN have been
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successfully identified at the centres of single-host galax-
ies so far. Some of the clearest examples are NGC 6240
(Komossa et al. 2003), 0402+379 (Rodriguez et al.
2006), SDSS J1536+0441 (Bondi & Pérez-Torres 2010),
LBQS 0103−2753 (Shields et al. 2012), Mrk 463 (Bianchi et al.
2008), and SDSS J1323−0159 (Woo et al. 2014). However, the
number of confirmed dual or multiple AGN remains small, and
advances in this field have been meager so far.

Large fibre-based optical surveys such as the Sloan Dig-
ital Sky Survey (SDSS, York et al. 2000) and the Large Sky
Area Multi-Object Fibre Spectroscopic Telescope (LAMOST,
Cui et al. 2012) have enabled large systematic searches for close
dual AGN candidates selected as double-peaked emitters in the
[O iii] λλ4960,5007 emission (Wang et al. 2009, 2019; Liu et al.
2010; Smith et al. 2010; Ge et al. 2012; Barrows et al. 2013;
Shi et al. 2014). The assumption is that double-peaked [O iii]
emitters are potentially caused by the presence of two inde-
pendent AGN narrow-line regions (NLRs) around distinct AGN
because of the large velocity offset required to produce two
line peaks (several 100 km s−1). A few hundred double-peaked
[O iii] emitters have been discovered this way, which represent
roughly 1% of the screened parent AGN population. However,
dual AGN are not the only explanation for the double-peaked
[O iii] emission. Bi-polar AGN-driven outflows (Rosario et al.
2010; Shen et al. 2011; Fu et al. 2012; Müller-Sánchez et al.
2015; McGurk et al. 2015; Nevin et al. 2016), rotating gas discs
(Smith et al. 2012), or a single AGN photo-ionising the interstel-
lar media of both galaxies in a merger (Xu & Komossa 2009)
can also explain the line shapes, which emphasises the need for
spatially resolved spectroscopic follow-up of each candidate to
understand the exact nature of the kinematics.

A much more robust detection of dual AGN candidates is
expected if the nuclei exhibit AGN signatures from distinct spec-
tra rather than double-peaked emission in a single spectrum.
Such a catalogue of projected AGN pairs in the range from 5
to 100 kpc was established by Liu et al. (2011) from the SDSS
data release 7 (Abazajian et al. 2009). They reported that 3.6%
of AGN are pairs and that 30% of the pairs show morpholog-
ical disturbances. However, Hou et al. (2019) was able to con-
firm two of the five targets from this catalogue as dual AGN
based on X-ray follow-up observation with Chandra, while the
non-detection would imply extreme X-ray–to–[O iii] flux ratios
if they are still genuine dual AGN.

In this paper we present spatially resolved optical long-
slit spectroscopy with the Large Binocular Telescope (LBT)
of seven dual AGN with angular separations of <9′′ from the
Liu et al. (2011) catalogue. We specifically explore here how
light spillover between distinct SDSS fibres can arise at close
separations due to the relatively large fibre diameters (3′′),
poor seeing, and positional uncertainties, which could artificially
boost the observed emission line fluxes of a secondary nucleus.
These observational issues could naturally lead to the reported
extreme X-ray–to–[O iii] flux ratios as the [O iii] flux of the puta-
tive secondary nuclei could be significantly overestimated for
such misclassified dual AGN at small separations.

Throughout the paper we assume a concordance cosmologi-
cal model with H0 = 70 km s−1 Mpc−1, Ωm = 0.3, and ΩΛ = 0.7.

2. Small-separation dual AGN candidates

2.1. Sample selection

The Sloan Digital Sky Survey (SDSS, York et al. 2000) provides
a large collection of galaxy spectra from which close pairs of

AGN can be drawn. However, the tiling of the plates requires
a minimum distance of 55′′ between the fibres (Blanton et al.
2003). Hence, spectroscopy of two targets with smaller separa-
tions can only be obtained if neighbouring fibre-plate fields are
overlapping on the sky or if repeated observations of the same
field are taken with different fibre positions for small-separation
targets. Mining SDSS data release 7 (DR7, Abazajian et al.
2009), Liu et al. (2011) collected a sample of 1286 candidate
multiple AGN systems with physical separations <100 kpc from
SDSS-DR7 in the redshift range 0.02 < z < 0.33. They selected
obscured (narrow-line) AGN following an emission-line diag-
nostics classification (Kauffmann et al. 2003a) based on MPA-
JHU value-added emission-line catalogues (Brinchmann et al.
2004; Tremonti et al. 2004). They further complemented the
sample with narrow-line quasars from Reyes et al. (2008) and
unobscured (broad-line) AGN from Hao et al. (2005), and
Schneider et al. (2010) within the same redshift range as the
narrow-line AGN.

Here, we focus on narrow-line AGN pairs where emission-
line diagnostic clearly identified Seyfert-like ionisation, and we
exclude pairs with LINER-like emission following the demar-
cation line of Stasińska et al. (2008). Since LINERs can also
be powered by other mechanisms than AGN photo-ionisation,
such as shocks (e.g. Heckman 1980) or post-AGB stars (e.g.
Singh et al. 2013), we want to avoid this additional confusion in
the ionisation mechanisms and select a clean obscured AGN pair
sample based on the recorded fibre spectra. Excluding as well the
very wide pairs with >60 kpc separation, which are not neces-
sarily bound systems, leads to a subsample of only 17 potential
Seyfert-Seyfert pairs. We selected 6 of the 17 pairs with sep-
arations smaller than 3′′ corresponding to <10 kpc separation
at the corresponding redshifts. All these dual AGN candidates
are clearly associated with interacting systems that display at
least two independent nuclei and tidal features (see Fig. 1). In
addition, we selected one target at a slightly larger separation of
∼8′′ in a pair of galaxies as a control galaxy for our study. The
selected sample and the separations of the apparent nuclei are
listed in Table 1.

2.2. Predictions of light spillover and line flux biases

Although a dual AGN is a compelling hypothesis for these
sources, two additional possibilities are usually overlooked: (1)
only one AGN is ionising gas out to the kpc-scale distances
(e.g. Husemann et al. 2014) seen in the secondary fibre, or (2)
the large SDSS fibres can be significantly contaminated by the
flux from the primary source due to the extended wings of the
point-spread function (PSF). In both cases the secondary fibre
may contain emission-line ratios consistent with AGN ionisa-
tion, but significantly lower in absolute flux than the primary
spectrum. In particular the last point is important for very close
dual AGN candidates when the separation of the putative nuclei
is getting close to the fibre diameters and seeing of the spec-
troscopic SDSS observations. It is important to note that SDSS
spectroscopic observations are often taken during relatively poor
seeing >1′′.7 (e.g. Abazajian et al. 2003) as the good seeing con-
ditions were preferentially used for the imaging.

The relatively poor seeing of the SDSS observations can
cause a significant flux spillover of a point source into an offset
fibre. The quantitative strength of this spillover can in principle
be accurately calculated if the shape of the PSF and the light dis-
tribution of the source is accurately known. Unfortunately, this is
usually not the case for fibre-based spectroscopic observations,
but rough predictions of the effect can be obtained by making
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Fig. 1. Overview of LBT slit observations for each target. Left panel: SDSS r-band image of the source rotated such that the slit is orientated in the
vertical direction, as indicated by the two red lines. Right panels: cutout of the LBT MODS 2D spectra focused on the wavelength region covering
the Hβ/[O iii] and the Hα/[N ii]/[S ii] region. The emission lines are labelled.

reasonable assumptions. Here, we assume a simple circular 2D
Moffat function for the PSF

I(r) = I0

[
1 +

( r
α

)2
]−β

, (1)

where I0 is the peak intensity, r is the radial distance, β con-
trols the slope of the wings, and α is a scale factor for the width

that scales as FWHM = 2α
√

21/β − 1. The light distribution for
β = 3 and a width of 2′′ (FWHM) is shown in Fig. 2 (top panel)
where the area covered by a central fibre and an offset fibre with
a displacement of 2′′.5 are highlighted for comparison. The cor-
responding flux ratio fprimary/ fsecondary as a function of offset dis-
tance of the secondary fibre, β parameter, and seeing is shown in
the bottom panel of Fig. 2.
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Fig. 1. continued

Table 1. Sample and observations.

Name (a) z ∆d (b) Instrument Date texp Airmass Seeing (c)

SDSS J031722.06+004801.8 0.15722 2′′.8 MODS1 2016-02-05 2 × 750 s 1.5 2′′.0
SDSS J080523.29+281815.8 0.12844 2′′.3 MODS1 2016-02-04 2 × 450 s 1.1 1′′.3
SDSS J085837.68+182223.4 0.05894 2′′.6 MODS1 2016-02-04 2 × 300 s 1.1 1′′.1
SDSS J094741.58+633939.2 0.13973 2′′.2 MODS1 2016-02-05 2 × 300 s 1.2 1′′.2
SDSS J111519.98+542316.7 0.07043 8′′.3 MODS1 2016-02-04 2 × 300 s 1.1 1′′.1
SDSS J160933.41+283058.4 0.16960 2′′.7 MODS2 2016-05-26 3 × 900 s 1.2 1′′.2
SDSS J164658.48+241134.1 0.08728 2′′.1 MODS2 2016-05-26 2 × 750 s 1.2 1′′.1

Notes. (a)Identifier from the Sloan Digital Sky Survey of one of the nuclei. (b)Angular distance between the two nuclei as inferred from the optical
continuum light. (c) Inferred FWHM of the seeing during the observations at 6000 Å.

These predictions are compared against the measured flux
ratios of the bright [O iii] λ5007 line as obtained from the SDSS
spectra for our dual AGN candidate sample (Fig. 2, bottom
panel). Nearly all the objects could in principle be explained
entirely by this spillover effect depending on the exact shape of
the PSF and fibre position uncertainties during the observations.

Only the dual AGN with a separation of more than 5′′ should not
be significantly affected by spillover under realistic conditions.
For the others a severe complication with respect to our simple
assumption is that these spectra are obtained on different nights
and therefore the PSF shape will not necessarily be the same and
there is a known uncertainty in the exact position of each fibre of
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Fig. 2. Theoretical expectations for flux ratio between primary and
offset secondary SDSS fibre in the case of a point source. Top panel:
logarithmic light distribution of a point source assuming a circular 2D
Moffat function with β = 3 and seeing of 2′′. The circles indicate the
two independent SDSS fibres with a diameter of 3′′ where the primary is
centred on the target and the secondary is offset by 2′′.5. Bottom panel:
predictions for the flux ratios of the primary and secondary fibre for
a point source as a function of secondary fibre distance to the point
source. The curves are computed for three different seeing values of 1′′
(black curves), 2′′ (blue curves), and 3′′ (red curves) with three differ-
ent β values each as described in the legend. The measured [O iii] λ5007
flux ratios for the six targets are shown as symbols; the error bar indi-
cates the error on the combined fibre position uncertainty of 0′′.4 for the
two fibres.

a few 0′′.1. Hence, it is indispensable to obtain proper spatially
resolved spectroscopy of these dual AGN candidates to confirm
their original classifications based on the SDSS fibre spectra.

3. Observations and data reduction

We obtained spectroscopic observation of the seven candidate
dual AGN with the Multi-Object Double Spectrograph (MODS,
Pogge et al. 2010) mounted to the Large Binocular Telescope
(LBT) at Mount Graham. The data were taken in February and
May 2016 using MODS1 and MODS2 in multi-slit mode. Cus-
tom masks with 20′′×1′′ slits were designed to simultaneously
observe the primary dual AGN target, some reference stars for
simultaneous PSF estimation and sky background together with

some filler targets. Observations were split into two or three
exposures per mask with a total integration time ranging between
600 s and 2700 s. All observations were performed with 1′′ wide
slits in the dual beam G400L/G670L grating mode covering the
full optical wavelength range from 3200Å to 10 000Å. The spec-
tral resolution is R ∼ 1850 for the blue channel and R ∼ 2300 for
the red channel. Details of the observations are given in Table 1.

We performed the primary detector calibrations such as bias
subtraction and flat-fielding with the publicly available python
package modsCCDRed1. Afterwards we masked and cleaned
cosmic ray hits on individual detector frames with PyCosmic
(Husemann et al. 2012) and processed the science and calibra-
tion data with custom-made python scripts. The tracing of the
slits along the wavelength axis was achieved through an edge
detection in the continuum lamp flat observations, if available,
or alternatively using sky background in the science data itself.
A wavelength solution was established by tracing various lines
of arc lamps along the slit after slit extraction. However, the
arc lamps were taken through the wrong slit mask for the target
field of SDSS J0947+6333. We traced the wavelength solution
through sky lines for the red channel instead, but simply lacked
enough bright sky line to derive the solution for the blue chan-
nel. Hence, the blue channel data could not be properly reduced
for SDSS J0947+6333.

The science spectra were then rectified in spatial and spec-
tral dimension. The background was subtracted by fitting a first-
order polynomial in cross-dispersion direction at each wave-
length after masking out the target signal. The same processing
was also applied to a standard star observations obtained through
a fixed long slit with the same slit width to measure the spec-
trophotometric sensitivity for both spectrograph arms. Finally,
we roughly corrected the science spectra for telluric absorption
by measuring the strength of the absorption features in the star
spectra obtained in the same mask as our target galaxies.

In Fig. 1 we provide an overview of the observation for each
dual AGN candidate system. The slits are always oriented such
that the two putative AGN within the galaxies are covered simul-
taneously. The cutouts of the 2D spectra focused on most promi-
nent emission lines in the Hβ/[O iii] and the Hα/[N ii]/[S ii]
region already reveal very different strength of ionised emis-
sion at the two nuclei. Surprisingly, the target SDSS J0858+1822
already sticks out from the sample since the light distribution of
[O iii] does not have its peak at one of the optical continuum
peaks of the galaxy.

4. Analysis and results

4.1. Characterisation of the point-spread function

As a first step in the analysis of the slit spectra, we characterise
the wavelength-dependent PSF from the star observed close to
the science target in the same mask observations. Again we
assume a Moffat profile as described by Eq. (1), but we replace
the radial distance r with the 1D position x − xcent along the slit
where xcent is the position of the star in the slit.

After smoothing the 2D star spectra with a 30 pixel wide
median filter in the dispersion direction, we fitted each wave-
length slice with a Moffat profile to obtain best-fit parameters
for I0, xcent, α, and β as a function of wavelength. Afterwards,
we describe the wavelength dependence of α, β, and xcent with a
best-fitting fourth-order polynomial separately for the blue and

1 Available at http://www.astronomy.ohio-state.edu/MODS/
Software/modsCCDRed/
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Fig. 3. Analysis of the PSF from the star observations in each of the target fields. The cross-dispersion light profile at 6000Å is shown for each
star with its best-fit 1D Moffat profile overplotted as the red line in the left panels. The measured β and FWHM Moffat shape parameters as a
function of wavelength for the red and blue spectrograph arm are shown in the right panels. A fourth-order polynomial is fitted independently to
both channels to smooth the wavelength dependence of the PSF parameters. The obvious breaks in the parameters between the two channels are
likely caused by slightly different spectrograph focusing for the different observing nights and instruments.

red channel of the spectrograph. In Fig. 3 we show the cross-
dispersion profile of the star at 6000 Å and the measured wave-
length dependence of the FWHM and β for all the science fields.
Since the blue and red channels are independent spectrographs,
their parameters are not necessarily consistent, likely due to a
different spectrograph focus setup and/or optical path depending
on the observations date and location on the sky.

The PSF shape is an important characteristics of the obser-
vations because it is crucial to properly disentangle the emis-
sion of the two galaxies and galaxy nuclei. The FWHM of the
PSF at 6000Å is listed in Table 1 as a reference for the over-
all seeing during the observations. All observations except for
SDSS J0317+0040 are taken during good seeing conditions with
∼1′′ (FWHM). In the following analysis steps we always take
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the measured wavelength-dependence PSF for each science field
into account. If the [O iii] and Hβ lines fall in the spectral overlap
region between the two spectrograph arms, we do not combine
the overlapping spectra and analyse only the data from the arm
providing the highest S/N for those lines to ensure that the intrin-
sic PSF remains well characterised.

4.2. Stellar continuum modelling

Although we are mainly interested in the emission line fluxes
and ratios to study the narrow-line AGN characteristics of the
two galaxy nuclei, it is crucial to subtract the stellar continuum
beforehand for accurate measurements. The stellar continuum is
usually modelled independently along the slit for galaxies, but
our data suffer from a strong blending of the two nuclei and low
S/N in the continuum already a few pixels away from the galaxy
nuclei. Here we chose to obtain integrated spectra of the two
galaxy components which can be properly deblended through
modelling the 1D light distribution along the slit with two Sersic
profiles convolved with wavelength-dependent PSF. This pro-
cess ensures an accurate separation of the continuum light of
both galaxies and a maximum S/N for the continuum spectra.

A single 1D Sersic profile along the slit has four free param-
eters, the central position in the slit (xcent(λ)), the effective radius
(re(λ)), the Sersic index (n(λ)), and the integrated flux (I(λ)).
In our case we have a superposition of two Sersic profiles with
eight free parameters which are convolved with the PSF. Since
the xcent, re, and n should only vary smoothly with wavelength,
we performed the fitting in three steps: (1) we fit the slit profile
for each wavelength with all eight free parameters of the two Ser-
sic model; (2) we repeat the fitting with fixed Sersic indices n1
and n2 at all wavelengths which are set to the median within the
rest-frame wavelength range 5200–6200Å; (3) in the final itera-
tion, we only fit the intensities I1(λ) and I2(λ) and fix the position
and radius as defined by the best-fit fourth-order polynomial to
the wavelength dependence seen in the previous iteration.

In Fig. 4 we show the profile along the slit at 6500Å and PSF-
convolved two Sersic component model as well as the obtained
spectra for each component. An optimal spectrum is extracted
for each component by fitting a linear superposition of the two
PSF-convolved Sersic models (with fixed parameters) to the 1D
light distribution along the slit at each wavelength. The charac-
teristic parameters of the Sersic models are also listed in Table 2.
Subsequently, we model each optimally extracted spectrum with
a superposition of stellar spectra from the INDO-US spectra
library (Valdes et al. 2004) using PyParadise (see Walcher et al.
2015; Weaver et al. 2018; De Rosa et al. 2018). PyParadise has
the advantage that it fits the spectra after normalising, which
deals much better with the systematic residuals at the wave-
length of the beam splitter than adding a polynomial function
to the fitting. All emission lines are masked out during fitting
because their spatial distribution does not necessarily follow
that of the stars, and unphysical residuals of the spatial mod-
elling are imprinted in the spectra at their emission-line wave-
lengths. The best-fit continuum model is shown in Fig. 4 and we
also report the velocity dispersion σ∗ and the Dn(4000) spec-
tral index as useful stellar age indicators (e.g. Bruzual 1983;
Poggianti & Barbaro 1997; Kauffmann et al. 2003b) in Table 2.

Based on the noise-free best-fit continuum we reconstruct the
2D stellar continuum spectra using the best-fit spatial profiles as
a function of wavelength. We then subtract this 2D continuum
signal from the original data which leads to emission-line spectra
along the slit. We remove any remaining faint continuum signal

due to substructure in the galaxy light profile by running a wide
median filter over 300 pixels in wavelength direction and sub-
tract the filter continuum signal from the 2D spectra. The pure
emission-line spectra are then ready for further analysis.

4.3. Emission-line measurements

After the stellar continuum subtraction, we proceed to fit the
emission lines along the slit. We used a single-Gaussian line pro-
file for all the lines and couple their radial velocities and velocity
dispersions during the fitting. The different spectral resolutions
of the blue and red channel were taken into account when mod-
elling the intrinsic velocity dispersion. The kinematical coupling
drastically reduced the number of free parameters and ensures
robust flux estimates of the faintest lines. It allows us to con-
struct line ratios in a meaningful way as the line fluxes for each
emission line are emitted from the same physical association of
clouds. The resulting 1D flux distributions for the Hβ, [O iii],
Hα, and [N ii] lines along the slit are shown in Fig. 5 together
with the radial velocity and intrinsic velocity dispersion.

Here, we are mainly interested in the line ratios at the
position of the two independent nuclei to be able to infer the
true classification. Ideally, we would also fit the 1D flux dis-
tribution as a super-position of two PSF convolved functions.
However, the emission line flux distribution exhibits much more
substructure, unlike the smooth stellar continuum emission, and
can therefore not be easily expressed with a simple analytic func-
tion. We therefore simply compute the average in line fluxes
and kinematics within an aperture of 0′′.4 around the centroid
of each nucleus. The resulting measurements of peak line fluxes
and the associated kinematics are listed in Table 3. Due to the
wavelength-dependent PSF, the Balmer decrement of the peak-
line fluxes cannot be robustly used to measure extinctions so we
do not correct the emission lines for intrinsic dust attenuation.
Therefore, we only provide relative fluxes with respect to [O iii]
and Hα flux of the brightness nuclei for the blue and red part of
the spectra.

Our observations reveal that the brighter nucleus in the stel-
lar continuum is not necessarily the more luminous emission-
line source. Only in one of the seven cases (SDSS J1609+2830)
does the brighter emission-line source coincide with the brighter
continuum nucleus. Surprisingly, the emission-line peak for
SDSS J0858+1822 is clearly offset by 1′′ from the position of
the two apparent stellar nuclei of the ongoing merger system.
This already calls into question the initial dual AGN nature of
this galaxy as the SDSS fibres were positioned at the two con-
tinuum nuclei, which means that a high fraction of the flux
from the brightest emission-line source is captured by both fibres
simultaneously.

The emission-line kinematics at the position of the two
nuclei are significantly different, which suggest that local
emission is dominating even for the secondary nuclei. An excep-
tion is SDSS J0947+6339, where the radial velocity and veloc-
ity dispersion are consistent within the errors. This means that
the PSF-smeared emission of the primary may even dominate
the emission at the location of the second nucleus. This should
be taken into account when interpreting the emission-line ratios.
The emission lines are very broad for the primary AGN nucleus
in SDSS J1609+2830 with a velocity dispersion of 600 km s−1

and a blue shift of more than 600 km s−1 with respect to the sec-
ondary nucleus. This suggests that a powerful outflow is released
by the AGN which is interesting by itself, but outside the scope
of this paper.
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Fig. 4. Overview of the continuum modelling. Left panel: cross-dispersion profile along the slit at 6500Å. Our best-fit two-component Sersic model
convolved with the PSF is shown for comparison. Right panel: optimally extracted spectra of the two components (black line) assuming that the
Sersic parameters only smoothly vary with wavelength. The red line represent the best-fit continuum model based on the INDO-US spectral library
fitted with PyParadise. The grey shaded areas indicate the regions masked during the continuum fit.
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Fig. 4. continued.

Table 2. Cross-dispersion stellar continuum modelling and spectral parameters.

Name ∆d n1 re,1 σ∗,1 Dn,1(4000) n2 re,2 σ∗,2 Dn,2(4000)
[′′] [′′] [km s−1] [′′] [km s−1]

SDSS J0317+0048 2.8 1.0 ± 0.2 1.1 ± 0.1 195 ± 6 1.5 0.8 ± 0.1 1.0 ± 0.1 288 ± 4 1.8
SDSS J0805+2818 2.3 1.4 ± 0.1 0.9 ± 0.1 189 ± 2 1.3 1.7 ± 0.2 1.8 ± 0.1 263 ± 3 1.2
SDSS J0858+1822 2.6 0.8 ± 0.1 1.3 ± 0.1 236 ± 2 1.5 1.4 ± 0.1 1.4 ± 0.0 337 ± 1 1.7
SDSS J0947+6339 2.2 2.1 ± 0.1 2.1 ± 0.1 343 ± 3 . . . 1.7 ± 0.4 1.0 ± 0.2 375 ± 15 ...
SDSS J1115+5423 8.3 1.1 ± 0.1 0.5 ± 0.0 246 ± 2 2.2 1.9 ± 0.1 1.7 ± 0.1 313 ± 2 2.0
SDSS J1609+2830 2.7 2.0 ± 0.5 1.6 ± 0.2 183 ± 5 1.9 1.8 ± 0.1 1.7 ± 0.1 192 ± 4 1.3
SDSS J1646+2411 2.1 1.8 ± 0.1 1.7 ± 0.2 209 ± 2 1.9 1.6 ± 0.4 0.7 ± 0.2 112 ± 6 1.5

4.4. Emission-line diagnostics for the nuclei

Based on the obtained emission line measurements from the
original SDSS spectra and the LBT long-slit analysis presented
here, we construct two emission-line diagnostic diagrams (see
Fig. 6). The first is the classical [O iii]/Hβ versus [N ii]/Hα
emission-line diagnostics diagram (BPT diagram, Baldwin et al.

1981; Veilleux & Osterbrock 1987) and the second replaces the
[O iii]/Hβ ratio by the equivalent width of Hα (WHα), as pro-
posed by Cid Fernandes et al. (2010), the so-called WHAN dia-
gram. The Seyfert-Seyfert pre-selection from SDSS of the two
nuclei is confirmed by the BPT diagram shown in Fig. 6 (upper
left panel), although the second nucleus of SDSS J1115+5423
and SDSS J1646+2411 is in the weak AGN regime following the
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Fig. 5. Overview of the emission-line fluxes and kinematics along the slit. The four left panels for each object show the 1D flux distributions
for Hβ, [O iii], Hα, and [N ii] as black curves with the dashed blue line highlighting the continuum flux distribution for comparison. The red
bands show the 0′′.4-wide apertures used to obtain average line fluxes centred on the nuclei of the merging galaxies. The blue points represent
the measured fluxes in those aperture including an error-bar based on flux variations. The two right panels present the position-velocity and the
position-velocity dispersion curves for each object. Average kinematics are also measured within the same apertures.

WHAN diagram. Hence, all seven systems have been assumed
as dual AGN in interacting galaxy systems based on these optical
diagnostics.

However, the MODS spatially resolved spectroscopy reveals
a significantly different picture, as shown in the right pan-
els of Fig. 6. Except for SDSS J1115+5423, all the fainter
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Fig. 5. continued.

secondary nuclei, which were initially classified clearly as
Seyfert-like AGN, are changing their apparent emission-line
classification. The secondary nuclei of SDSS J0947+6339 and
SDSS J1646+2411 clearly fall into a lower ionisation regime
which are likely ionised by the stellar population instead of
an AGN given the low equivalent width of Hα in the WHAN
classification. SDSS J0858+1822 is the system where the peak
in the [O iii] emission is located between the two continuum
nuclei making the dual AGN signature of the SDSS fibre obso-
lete, and shows that one of the nuclei is dominated by star for-
mation, as confirmed by the BPT diagram, which cannot be
properly distinguished in the WHAN diagram in the transition
zone. While SDSS J0317+0048 and SDSS J0805+2818 remain
in the Seyfert/AGN classification in the BPT, the equivalent
width of Hα is very low and certainly in the weak AGN regime.
Only SDSS J1609+2830 seems to retain an unambiguous dual
AGN classification although the BPT diagnostic reveals a signif-
icant SF or LINER-like contribution to the emission inconsistent
with the previous Seyfert-Seyfert classification based solely on
SDSS.

5. Discussion

5.1. Interpretation of dual AGN signatures in very close
systems from SDSS

A key result of this work is that nearly all of the six putative
AGN systems with separations of less than 3′′ change their initial
Seyfert–Seyfert classification from the SDSS fibre spectra. One
of the targets turns out to be completely offset with respect to the
fibre positions targeting optically bright continuum knots. This
means that the unambiguous (Seyfert 2–Seyfert 2) dual AGN frac-
tion at the closest separations (<3′′) reported by Liu et al. (2011)
is overestimated by a larger factor. However, given the complex
selection function and completeness of the SDSS for obtaining
spectra so close together, which avoids merging or neighbouring
galaxies, we do not attempt to extrapolate our findings on the dual
AGN fraction from our sample to the overall population.

Another big complication is the actual classification of galax-
ies based solely on the emission-line diagnostic diagrams which
are often ambiguous to clearly identify AGN signatures. In
particular, the LINER-like emission-line ratios may not be
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Table 3. Normalised peak line fluxes and kinematics of the two nuclei from LBT spectroscopy.

Name Hβ1 [OIII]1 Hα1 [NII]1 σ1 WHα,1 Hβ2 [OIII]2 Hα2 [NII]2 σ2 WHα,2 ∆v

[km s−1] [Å] [km s−1] [Å] [km s−1]

SDSS J0317+0048 0.08
±0.02

1.00
±0.03

1.00
±0.04

0.94
±0.04

194
±3

47.9
±1.4

0.03
±0.02

0.08
±0.03

0.18
±0.04

0.14
±0.04

214
±27

8.4
±1.4

321
±36

SDSS J0805+2818 0.01
±0.01

0.02
±0.01

0.04
±0.01

0.04
±0.01

180
±5

6.5
±0.3

0.10
±0.01

1.00
±0.01

1.00
±0.01

0.81
±0.01

320
±2

169.0
±0.3

34
±4

SDSS J0858+1822 0.05
±0.02

0.04
±0.01

0.18
±0.01

0.09
±0.01

190
±3

15.7
±0.3

0.16
±0.02

1.00
±0.01

1.00
±0.01

1.04
±0.01

207
±2

88.1
±0.3

30
±2

SDSS J0947+6339 ... 0.04
±0.02

0.04
±0.02

0.03
±0.02

312
±20

1.5
±0.3 ... 1.00

±0.02
1.00
±0.02

0.62
±0.02

295
±2

34.8
±0.3

1
±51

SDSS J1115+5423 0.03
±0.01

0.20
±0.01

0.13
±0.02

0.06
±0.02

113
±2

5.1
±0.2

0.11
±0.01

1.00
±0.01

1.00
±0.02

0.64
±0.02

200
±1

40.0
±0.2

371
±1

SDSS J1609+2830 0.02
±0.01

0.02
±0.01

0.08
±0.01

0.07
±0.02

193
±12

10.9
±0.5

0.23
±0.02

1.00
±0.02

1.00
±0.02

0.97
±0.02

598
±4

136.5
±1.0

612
±10

SDSS J1646+2411 0.04
±0.02

0.06
±0.03

0.12
±0.02

0.09
±0.02

236
±6

2.1
±0.2

0.19
±0.02

1.00
±0.02

1.00
±0.02

0.77
±0.02

149
±2

17.0
±0.2

117
±7

Notes. Emission-line flux in the blue ([O iii], Hβ) and red part ([N ii], Hα) of the spectra are normalised by the [O iii] and Hα flux of the brighter
nuclei, respectively. The implied line ratios are not corrected for Galactic extinction as we use them only for the BPT diagnostics which are
insensitive to extinction.

necessarily produced by AGN and are shown to be often pro-
duced by post-AGB stars in galaxies with old stellar popula-
tions (e.g. Cid Fernandes et al. 2011; Singh et al. 2013). Also
emission-line ratios in the intermediate region between the
star forming and AGN classification could be entirely powered
by a starburst or an actual mix of star formation and AGN
photo-ionisation. In both cases the AGN signature of the cor-
responding nucleus needs to be verified at other wavelengths,
for example radio (e.g. Bondi & Pérez-Torres 2010; Fu et al.
2015; Müller-Sánchez et al. 2015; Bondi et al. 2016) or X-rays
(e.g. Koss et al. 2012; Comerford et al. 2015; Ellison et al. 2017;
Hou et al. 2019). For LINERs it may be more likely to detect the
radio emission of a jet if the accretion disc is in a radiatively inef-
ficient mode.

While it has often been highlighted that double-peaked
[O iii] emitters require spatially resolved spectroscopy and
multi-wavelength follow-up to confirm the dual AGN nature, our
study reveals that spatially resolved spectroscopy is also indis-
pensable for verifying the dual AGN at separations of < 5′′ even
if the separate spectra were taken with fibre spectroscopy such as
SDSS, LAMOST, and 4MOST (de Jong et al. 2019), or WEAVE
(Dalton et al. 2014) in the near future. While we only studied the
spillover effect for obscured dual AGN candidates, we note that
the same effect will also impact unobscured dual AGN candi-
dates at close separation. In that case, the light of broad emis-
sion lines would also be detected in fibres placed a few arcsec
away depending on brightness and seeing conditions. While the
detection of broad Balmer lines is a much less questionable AGN
signature than the emission-line ratios, it may suffer from the
same spillover effects and also requires spatially resolved spec-
troscopy for confirmation.

5.2. X-ray–to–[O iii] line ratios in close dual AGN candidates

A systematic study of X-ray follow-up observations with Chan-
dra was presented by Hou et al. (2019) for five of the com-
pact dual AGN candidates selected from SDSS, including
SDSS J0805+2818. Only two of the five putative dual AGN

candidates could be confirmed with clear X-ray detection in
both nuclei despite the unobscured AGN classifications from the
SDSS spectroscopy. Hou et al. (2019) interpret their results as
an indication for systematically lower X-ray–to–[O iii] luminos-
ity ratios in those systems. Based on our analysis, we suggest
that the measured [O iii] luminosities are strongly biased in the
SDSS spectra. As we show in Fig. 7, the [O iii] luminosity can
be overestimated by an order of magnitude for the secondary
nucleus at <3′′ separations.

Chandra X-ray observations are available for
SDSS J0805+2818 (Barrows et al. 2016; Hou et al. 2019),
SDSS J0858+1822 (Proposal ID: 14700279, PI: Liu, unpub-
lished), and SDSS J1115+5423 (Barrows et al. 2016). In all
Chandra images the primary nuclei are always detected, while
the secondary nuclei are usually undetected. We derived a 5σ
upper limit on the 2–10 keV flux based on the background noise,
which corresponds to <5 × 1041 erg s−1, <2.2 × 1040 erg s−1, and
<2.5 × 1040 erg s−1 for the three sources, respectively, adopting
a NH = 1022 cm−2 and a power-law index of Γ = 1.7. The
X-ray fluxes of the primary nuclei for SDSS J0805+2818 and
SDSS J1115+5423 are published in Barrows et al. (2016), but
we re-visit the spectra and adjust luminosity estimates based on
spectral shape. For SDSS J0858+1822 we found that the bulk of
X-ray emission is located between the optical nuclei in the SDSS
images, which is fully consistent with our LBT spectroscopy.
Furthermore, the X-ray spectra of SDSS J0805+2818 and
SDSS J0858+1822 are rather soft, which could be due to a
heavy obscuration of the primary nuclear component up to
4–5 keV (and potentially up to the Compton-thick level of
10 keV when the spectrum is dominated by the disc reflected
component) and leaving a soft X-ray scattered component
dominating at low energies.

At the S/N of the X-ray spectra a detailed modelling of
the reflection spectrum is difficult. To obtain the upper limit
to the X-ray luminosity, we assume that the direct X-ray radi-
ation is totally absorbed by a Compton-thick medium (NH >
1024 cm−2) and that we are observing the reflected compo-
nent in the 2–10 keV energy band. We apply a mean correc-
tion factor of 70 to obtain the intrinsic 2–10 keV luminosity
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Fig. 7. [O iii] flux ratios based on SDSS (left panel) and LBT (middle panel) spectroscopy for the two nuclei as a function of separation. The
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symbols. The dashed line shows the correlation determined by Ueda et al. (2015) for a large sample of obscured (type 2) AGN as a reference.

(e.g. Lamastra et al. 2009; Marinucci et al. 2012), which is close
to an absolute upper limit for the intrinsic X-ray luminosity.

In Fig. 7 (right panel) we compare the 2–10 keV X-ray
luminosities against the [O iii] luminosities. For the secondary
nuclei we adopt the [O iii] flux ratios from the LBT data and
applied it to the flux measured for the primary by SDSS. This
avoids potential aperture losses in the slit spectra for the absolute

luminosities. We see that the primary nuclei closely follow the
X-ray–to–[O iii] correlation by Ueda et al. (2015), but only if the
correction factors are applied for the reflection-dominated spec-
tra. The secondary nuclei fall short of correlation by 2 orders of
magnitude even if a correction factor is applied to the upper lim-
its for reflection except for SDSS J0805+1822. Hence our data
is consistent with normal X-ray–to–[O iii] ratios considering
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the updated emission-line ratio diagnostics which show that the
secondary nuclei are not necessarily genuine obscured type 2
AGN. The interpretation of exceptional X-ray–to–[O iii] ratios
by Hou et al. (2019) was based on the SDSS line fluxes which
simply need to be significantly revised. SDSS J0805+1822 could
be a dual AGN consistently inferred from the emission lines, but
the corresponding X-ray source is quite faint and only consistent
with an AGN interpretation if the X-ray luminosity is scaled up
by a factor of 70 for a Compton-thick source. The X-ray obser-
vations of SDSS J0858+1822 also confirm the non-AGN nature
of the secondary nucleus which appears to be dominated by star
formation in the LBT spectra. SDSS 1115+5432 shows AGN
ionised gas along the entire slit between the galaxies, which is a
clear indication that the ionisation cone of the primary is point-
ing towards the companion galaxy. This opens the possibility
that the ionised gas in the secondary neighbouring galaxy is actu-
ally illuminated by the primary AGN (Xu & Komossa 2009) as
the narrow-line region is known to extend out to scales of sev-
eral kiloparsec at this AGN luminosity (e.g. Hainline et al. 2013;
Husemann et al. 2014). This may also explain the low equivalent
width of Hα for the secondary nucleus in SDSS J1115+5423
despite the clear Seyfert-like emission-line ratios. Only 3D spec-
troscopy would allow us to map the entire ENLR structure.

5.3. AGN triggering in interacting systems

While it is difficult to explain the triggering of AGN, it has
been suggested that radiatively efficient AGN are often asso-
ciated with recent star formation activity in their host galaxies
(e.g. Canalizo & Stockton 2000; González Delgado et al. 2001;
Kauffmann et al. 2003a; Davies et al. 2007; Wild et al. 2010). One
potential explanation for this connection is the common gas
reservoir necessary for the two processes (e.g. Maiolino et al.
2007; Netzer 2009; Rosario et al. 2012; Mullaney et al. 2012;
Chen et al. 2013; Hickox et al. 2014; Husemann et al. 2018). We
therefore explore whether the nuclear activity in our interact-
ing galaxies is linked to the star formation history in their host
galaxies. Here we use the Dn(4000) stellar index as a luminosity-
weighted age indicator of the stellar population (e.g. Hamilton
1985; Poggianti & Barbaro 1997; Kauffmann et al. 2003b). Val-
ues Dn(4000) > 1.5 correspond to stellar ages of tage > 1 Gyr and

Dn(4000) < 1.5 to tage < 1 Gyr adopting solar metallicities. In
Fig. 8, we compare the [O iii] luminosity with the Dn(4000) index.

We find that all primary nuclei with unambiguous signa-
tures of an obscured Seyfert-like AGN are associated with very
young stellar populations indicating recent or ongoing star for-
mation activity. The secondary nuclei with ambiguous ionisa-
tion classifications exhibit significantly older stellar populations
sometimes close to passive galaxies. The only exceptions are the
secondary nuclei of SDSS J0805+2818 and SDSS J0858+1822,
which can be explained by a weak, heavily obscured AGN in
the first case and a star formation dominated region in the sec-
ond case. On the other hand, the old stellar populations for the
other secondary nuclei support the notion that post-AGB stars or
shock-ionisation are likely the primary reasons for the gas exci-
tation and not necessarily an embedded AGN. Overall, the stellar
ages support the diversity of the emission-line diagnostics from
the LBT spectra which challenge the original classification of
dual AGN system from SDSS spectroscopy.

6. Conclusions
In this paper we analysed follow-up spatially resolved slit spec-
troscopy taken with MODS at the LBT of seven dual candidates
with separations of a few arcsec previously identified in SDSS
by Liu et al. (2011). Classical emission-line diagnostics based
on the SDSS spectra suggest unambiguous obscured Seyfert-
Seyfert pair classification in all cases, but our slit spectra reveal
a much more diverse nature of the activity in the nuclei of the
ongoing merging systems. We attribute the diagnostic difference
between the SDSS and LBT observations due to the relatively
large SDSS fibres. The spectra of the secondary nuclei are con-
taminated by spillover light from the primary nuclei due to the
seeing at the time of observations and small separation of the
nuclei. Considering multiple emission-line diagnostic diagrams
together with age indicators of the stellar population shows that
nearly all of the secondary nuclei are likely not AGN, but rather
consistent with pure star formation or LINER-like emission
potentially powered by post-AGB stars (e.g. Singh et al. 2013).

X-ray follow-up observations usually identified only one
AGN in such SDSS-selected interacting systems, even for the
large-separation source SDSS J1115+5423. Based on the orig-
inal dual AGN classification the low X-ray fluxes for the sec-
ondary nuclei have been interpreted as a systematically lower
X-ray–to–[O iii] ratio in interacting systems. We propose an
alternative explanation that the secondary nuclei are not neces-
sarily AGN, and therefore actually do not need to follow the clas-
sical X-ray–to–[O iii] correlations of AGN. In addition, heavy
obscuration of the primary nuclei could also play a significant
role in the interpretation of the ratio which require deep X-ray
spectra to correct properly.

This study highlights the need for spatially resolved spec-
troscopy of such compact interacting galaxy systems to prop-
erly classify the activity in the independent nuclei. Hence, spe-
cial care needs to be taken when interpreting fibre-based spec-
troscopy of small separation sources due to seeing effects, which
also remains an issue for the ongoing and upcoming fibre-based
surveys such as LAMOST, WEAVE, and 4MOST. In addition,
a multi-wavelength approach is necessary to verify the activ-
ity types that are often ambiguous, even from high-quality rest-
frame optical spectroscopy.

Acknowledgements. We thank the anonymous referee for constructive feed-
back that improved the quality and clarity of the presented work. BH would
like to thanks the European Space Agency (ESA) for the hospitality and

A117, page 14 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/202037988&pdf_id=8


B. Husemann et al.: Revisiting dual AGN candidates with spatially resolved LBT spectroscopy

financial support for a science visit at ESA/ESTEC in Noordwijk (Nether-
lands) part of this work has been conducted. SB and ADR acknowledges
financial support from the Italian Space Agency (ASI) under grant ASI-INAF
2017-14-H.O. CV is grateful for financial support from ASI under the con-
tracts ASI-INAF I/037/12/0 and ASI-INAF n.2017-14-H.0. This paper used
data obtained with the MODS spectrographs built with funding from NSF
grant AST-9987045 and the NSF Telescope System Instrumentation Program
(TSIP), with additional funds from the Ohio Board of Regents and the Ohio
State University Office of Research. All authors are members of the MAGNA
team (www.issibern.ch/teams/agnactivity/Home.html) and acknowl-
edge support from the International Space Science Institute (ISSI) in Bern,
Switzerland. Funding for SDSS-III has been provided by the Alfred P. Sloan
Foundation, the Participating Institutions, the National Science Foundation, and
the US Department of Energy Office of Science. The SDSS-III web site is http:
//www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Con-
sortium for the Participating Institutions of the SDSS-III Collaboration includ-
ing the University of Arizona, the Brazilian Participation Group, Brookhaven
National Laboratory, Carnegie Mellon University, University of Florida, the
French Participation Group, the German Participation Group, Harvard Uni-
versity, the Instituto de Astrofisica de Canarias, the Michigan State/Notre
Dame/JINA Participation Group, Johns Hopkins University, Lawrence Berkeley
National Laboratory, Max Planck Institute for Astrophysics, Max Planck Insti-
tute for Extraterrestrial Physics, New Mexico State University, New York Uni-
versity, Ohio State University, Pennsylvania State University, University of
Portsmouth, Princeton University, the Spanish Participation Group, University
of Tokyo, University of Utah, Vanderbilt University, University of Virginia, Uni-
versity of Washington, and Yale University.

References
Abazajian, K., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2003, AJ, 126,

2081
Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS,

182, 543
Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5
Barrows, R. S., Sandberg Lacy, C. H., Kennefick, J., et al. 2013, ApJ, 769, 95
Barrows, R. S., Comerford, J. M., Greene, J. E., & Pooley, D. 2016, ApJ, 829,

37
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1980, Nature, 287, 307
Bianchi, S., Chiaberge, M., Piconcelli, E., Guainazzi, M., & Matt, G. 2008,

MNRAS, 386, 105
Blanton, M. R., Lin, H., Lupton, R. H., et al. 2003, AJ, 125, 2276
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