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Abstract: Biological invasions are a major global threat to biodiversity and often affect ecosystem 
services negatively. They are particularly problematic on oceanic islands where there are many 
narrow-ranged endemic species, and the biota may be very susceptible to invasion. Quantifying and 
mapping invasion processes are important steps for management and control but are challenging 
with the limited resources typically available and particularly difficult to implement on oceanic 
islands with very steep terrain. Remote sensing may provide an excellent solution in circumstances 
where the invading species can be reliably detected from imagery. We here develop a method to 
map the distribution of the alien chestnut (Castanea sativa Mill.) on the island of La Palma (Canary 
Islands, Spain), using freely available satellite images. On La Palma, the chestnut invasion threatens 
the iconic laurel forest, which has survived since the Tertiary period in the favourable climatic 
conditions of mountainous islands in the trade wind zone. We detect chestnut presence by taking 
advantage of the distinctive phenology of this alien tree, which retains its deciduousness while the 
native vegetation is evergreen. Using both Landsat 8 and Sentinel-2 (parallel analyses), we obtained 
images in two seasons (chestnuts leafless and in-leaf, respectively) and performed image regression 
to detect pixels changing from leafless to in-leaf chestnuts. We then applied supervised classification 
using Random Forest to map the present-day occurrence of the chestnut. Finally, we performed 
species distribution modelling to map the habitat suitability for chestnut on La Palma, to estimate 
which areas are prone to further invasion. Our results indicate that chestnuts occupy 1.2% of the 
total area of natural ecosystems on La Palma, with a further 12–17% representing suitable habitat 
that is not yet occupied. This enables targeted control measures with potential to successfully 
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manage the invasion, given the relatively long generation time of the chestnut. Our method also 
enables research on the spread of the species since the earliest Landsat images. 

Keywords: invasive species; island ecology; assisted migration; laurel forest; plant functional type; 
deciduous trees; species distribution models; Landsat 8; Sentinel-2; Castanea sativa 

 

1. Introduction 

Oceanic islands play an eminent role in speciation and endemism [1], and they contribute 
disproportionately to global biodiversity relative to their small area [2]. Their isolation, aggregation 
in archipelagos, island life cycles, relief dynamics, climate, topography, and natural and 
anthropogenic disturbance regimes produce and maintain a high diversity of biota and the respective 
ecosystems formed by those species [3]. Oceanic islands are often seen as evolutionary showcases [4] 
prone to pulse dynamics [5] or as evolutionary arenas [6], where speciation can be studied. However, 
the uniqueness of their flora, fauna, and ecosystems is also related to the fact that they host relict 
species and ecosystems, such as the evergreen laurel forest in the Canary Islands including our study 
region: the entire island of La Palma [7]. 

Endemic ecosystems (i.e., specific ecosystems that are characterized and dominated by species 
with a very limited spatial distribution) are particularly threatened by species invasion [8–11]. 
Invasive species are species that establish in new, non-historical ranges and are harmful to their 
environment [12]. They can decrease native species abundances via competition, predation, 
parasitism, and alteration of habitat conditions, causing a loss of biodiversity, ecosystem functioning, 
and services [13]. Invasive species often cause huge economic costs for society [14]. The abundance 
of invasive species was recently found to have increased by up to 70% across 21 countries since 1970 
[15]. The focus of invasion research is mostly on prominent single species of well-known invasion 
potential, such as Lantana camara or Ailanthus altissima [16,17]. Non-native woody species are 
disproportionately represented among the most severe invaders around the world [18], and escapes 
of tree species from plantations have been highlighted as a particular problem [19]. Chestnut 
(Castanea sativa Mill.) (Fagaceae) is a widespread deciduous tree species across Europe, often 
managed for fruit and wood production. It is also an important species for apiculture and historically 
has had other uses such as in tanning and pig farming [20]. The species was introduced to La Palma 
as early as 1493 [21] and managed in orchards, most of which are abandoned today. Observations of 
local authorities suggest that the species is increasingly establishing in natural, evergreen forest 
ecosystems—C. sativa is the agent of change in the ongoing replacement of a native ecosystem by an 
ecosystem that did not previously exist on La Palma. Such a deciduous broadleaved forest, with 
pronounced seasonal leaf phenology, is a novel ecosystem in the context of the Canary Islands. 

Remote sensing (hereafter abbreviated to RS) has been used for almost 65 years in vegetation 
science [22]. However, ecological studies from space only began after the launch of Landsat 1 in 1972 
[23]. In many cases, RS is the only feasible method for measuring the characteristics of habitats across 
broad areas and for detecting environmental changes that occur as a result of human or natural 
processes [24]. It is becoming increasingly popular among conservationists and ecologists. Satellite-
based data have a wide range of applications in ecological studies, including mapping of plant 
communities and also single plant species [25]. A recent study on La Palma used a time series of 
Sentinel-2 images to identify plant communities and measure beta-diversity [26]. 

Remote sensing is advancing invasion research and management by detecting and mapping 
invasive species, their drivers, and potential future distributions [27,28]. Differences in structural, 
biochemical, and physiological characteristics between species can make it possible to distinguish 
invasive plant species from native co-occurring vegetation by their spectral signatures [29]. However, 
there are limits to this if invasives and natives share comparable reflection spectra. If phenological 
differences between species exist, these can play a key role in identifying invasive species within 
native vegetation by RS [30]. To detect seasonal phenological differences between plant species, 
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multitemporal RS data are required, for instance, provided by spaceborne Landsat and Sentinel 
sensors. The timing of RS acquisition is crucial for the detection of phenologically differentiated 
species. Accordingly, Evangelista et al. [31] used six Landsat 7 ETM+ satellite scenes across the 
growing season to remotely sense the evergreen Tamarix species invading native deciduous 
vegetation along the Arkansas River in Colorado, USA. 

Slight differences in seasonal phenology can be sufficient to monitor invasive plant species but 
may require hyperspectral airborne sensors to detect them, with the trade-off of high costs [32]. Such 
hyperspectral approaches and time series can help to identify invasive plant species even in non-
seasonal climate and ecosystems, as demonstrated by Asner et al. [33], who detected the invasive 
evergreen shrub Myrica faya Dryand. (syn. Morella faya Aiton) in Hawaiian rainforests. However, that 
study used EO-1 Hyperion satellite data, and this satellite (and sensor) has been decommissioned 
and is no longer available. 

Generally, the potential to detect invasive species remotely increases with finer spectral, spatial, 
and temporal resolution of RS imagery [34]. Tarantino et al. [17] showed the potential of multi-
seasonal panchromatic WorldView-2 satellite imagery for mapping the deciduous tree Ailanthus 
altissima (Mill.) Swingle, invading a protected area in Southern Italy. In this case, the detection of the 
invasive tree species was enhanced by the contrast with the grass cover of the invaded ecosystems, 
as well as the multitemporal, multispectral, and very high-resolution satellite imagery. Even if there 
is a follow-up satellite (WorldView-3) after the soon-expected end of the lifetime of WorldView-2, the 
data are not freely accessible, limiting their use for conservation practice and for comparative studies. 
Free and open-access RS data provide unlimited use but come at the expense of relatively coarse 
spatial, spectral, and temporal resolution. 

Remote sensing also supports invasion research and management indirectly by providing RS 
data for species distribution and habitat suitability models [27,30]. Vicente et al. [35] were able to map 
the current and predict the future distribution of the invasive tree species Acacia dealbata Link in 
northern Portugal using remotely sensed predictor variables. In contrast to species distribution 
models, ecological niche modelling and habitat suitability mapping aim to reveal the potential 
distribution of a species by applying interpolation between known species occurrences. Such 
modelling techniques and resulting maps aim to guide conservation management and planning [36]. 
Andrew and Ustin [37] modelled the habitat suitability of the noxious pepperweed (Lepidium 
latifolium L.) invading San Francisco Bay/Sacramento-San Joaquin River Delta, California, USA. 
Species presence was derived from airborne HyMap hyperspectral imagery and environmental 
predictors from LiDAR. Accordingly, RS-based modelling approaches can map and predict rapid 
range expansions of invasive species by monitoring invasive species’ ecological niches [38]. 

The free availability and global coverage of RS data are beneficial for comparative studies, and 
for improving the quality of other study outcomes. Result validation and quality control are 
particularly important for studies of moving targets with enormous impact potential, such as 
invasive species. Based on the known benefits and limits of RS applications in invasion research, and 
considering options for compatibility with future studies, we use multitemporal and multispectral 
Landsat 8 and Sentinel-2 satellite imagery combined with field observations of C. sativa to investigate 
the current and potential future distribution of the species on the Canary island of La Palma. We used 
linear image regression [39] and random forest classification [40] to detect C. sativa and map its 
current spatial distribution. As the very steep and unstable slopes limit the extent of field surveys on 
La Palma, we utilized C. sativa’s distinctive phenology to map its current spatial distribution through 
RS. We then conducted and compared ecological niche models (hereafter ENM), also known as 
habitat suitability models, based on field observations of C. sativa and on remotely sensed C. sativa 
occurrences. This study thus aims to detect and map the invasive alien chestnut tree C. sativa on the 
island of La Palma and to assess the risk of the species replacing native and unique ecosystems such 
as the evergreen laurel forest of the Canary Islands. 

We build on previous studies on the detection of invasive plant species through RS, aiming to 
improve RS-based assessments of invasive plant species not only through comparing the sensitivity 
of commonly used sensors that offer open RS data (Landsat/Sentinel) but also, and particularly, 
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through linking modelling approaches with RS and with field data. This approach also allows better 
assessment of existing invasions using long time series. Additionally, we identify new potential for 
future invasion research. Combining RS and SDMs can provide testable predictions for future 
invasion processes under climate change. Finally, our study is the first using RS for a better 
understanding of tree invasion and its consequential impact on the unique laurel forest. 

2. Materials and Methods 

2.1. Study Site and Field Data 

La Palma, also known as “la isla verde” or “la isla bonita”, is one of the highest and western-
most islands of the Canary Islands archipelago. Large surfaces of the island are still covered by 
natural and semi-natural vegetation. The steep slopes in the northeast of the island are exposed to 
constant moisture supply by trade winds. Here, natural laurel forests are found on steep, almost 
inaccessible slopes (Figure 1). This ecosystem covered large parts of the northern hemisphere during 
the Tertiary period, as indicated by fossil records of preserved tree leaves in lignite all over Europe 
[41]. Today, comparable climatic conditions to the zonal climate of the Miocene (i.e., constant 
moisture supply and warm temperatures) exist on some oceanic islands of sufficient elevation in the 
trade-wind zone, including La Palma. 

Despite the strong resemblance in the climate, vegetation structure, and characteristic 
laurophyllous plant functional types between the present-day Canary Islands and the Tertiary 
period, the current Canary Island laurel forest is not a simple copy of a Tertiary biome. The current 
laurel forest species composition of the Canaries that established since the Pliocene is an assemblage 
of taxa that differ in origin [42]. Very likely, oceanic islands that have since eroded to guyots 
(seamounts) served as stepping-stones of suitable habitat for species dispersal closer to the European 
continent [43]. 

However, the laurel forest of the Canary Islands has been strongly reduced through exploitation 
since the European colonization [44]. Most remnant areas are on steep slopes, where access for 
forestry is restricted, if not impossible—but this restriction also applies to scientific field work. In 
consequence, RS approaches, although themselves not free from limitations associated with steepness 
and cloudiness, need to be implemented for data collection within and across steep valleys, slopes, 
and remote ridges. 
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Figure 1. (a) Sentinel-2 true natural colour image of the study area (Red: band 4, Green: band 3, Blue: 
band 2). (b–d) are Google satellite zooms of characteristic landscape units. Trees with yellow canopy 
in the boxes (b–d) represent single trees, groups or patches of C. sativa. 

In situ recording of mature individuals of C. sativa in the field was conducted during 10–24 April 
2019. We mapped individual trees, recording GPS points for each. The sampling aimed to cover the 
entire range of the species on the island. This, combined with limited available time in the field and 
the restricted accessibility to many parts of the range because of very steep and remote terrain, meant 
that we mostly collected data relatively close to roads. To maximize data collection in these 
circumstances, we planned the field data acquisition based on previous studies on the island, both 
by members of our team and through the expertise of the local administration (Cabildo Insular de La 
Palma). 

2.2. Change Detection 

Deciduous tree species have a distinct phenological cycle with synchronous leaf flush in spring 
and leaf shedding in autumn. In C. sativa on La Palma, this rhythm is presumably maintained and 
triggered by the photoperiod, even though harsh winter temperatures are missing, and the 
evolutionary driver of leaf shedding is no longer effective. In consequence, C. sativa can be mapped 
in a matrix of evergreen vegetation through digital change detection. Its most distinctive stage is its 
leaflessness between autumn and spring, making it a unique species in the otherwise evergreen 
ecosystem. To map C. sativa, we can therefore take advantage of the much larger change between 
seasons, in satellite images, in places where chestnut is (in-leaf vs. leafless) than in places where it is 
absent (in-leaf throughout)—making change detection through image regression appropriate for this 
purpose. We use image regression with the Landsat 8 images from 7 March and 29 July 2017, and 
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with the Sentinel-2 images from 8 July 2018, and 13 February 2019 (Appendix A). By applying change 
detection to a pair of Landsat 8 images and to a pair of Sentinel-2 images, we can compare the 
detection performance of the two sensors. 

Landsat 8 and Sentinel-2 surface reflectance data were obtained from USGS and Copernicus 
Open Access Hub. The Landsat 8 surface reflectance data are orthorectified data generated at 30 m 
grid cell resolution. The data are free from any atmospheric artefacts, illumination, and viewing 
geometry bias [45]. Similarly, the Sentinel-2 data are geometrically, radiometrically corrected, 
orthorectified, and spatially registered bottom-of-the-atmosphere reflectance products that are 
generated at 10, 20, and 60 m spatial resolutions [46]. Therefore, no further pre-processing of the 
images was carried out for those parameters. However, the part of the Landsat 8 image from March 
2017 that contained clouds was cropped out with the help of Quality Assessment band shipped with 
the Landsat 8 surface reflectance product and compensated with an image from 3 February 2017 after 
histogram matching in R using the package RStoolbox [47]. A few cloud-contaminated pixels were 
left around the edges. The areas classified as agriculture and settlements by Corine land cover data 
2018 were cropped out. Therefore, our study area, as calculated in R using the study area shapefile, 
covers approximately 545.82 km2. The Sentinel-2 images used in this study are of 10 m spatial 
resolution. 

Several techniques are used for digital change detection [39,48]; we chose image regression and 
differentiation for our analysis. Image regression does not need training data and can reduce 
atmospheric haze and sun angle effect [39]. Change detection, when used on its own, relies on 
thresholds to discern changed and unchanged pixels. Therefore, we integrated digital change 
detection with supervised classification, to avoid thresholds. The image regression technique 
assumes that the pixel values at time t1 are linear functions of the pixel values from time t2. Therefore, 
an image from one date can be regressed against the image from another date using least-squares 
regression [39,48]. 

Here, we used four different bands (blue [B], green [G], red [R], and near-infrared [NIR]) from 
each sensor, which we refer to as band 1, band 2, band 3, and band 4, respectively. Therefore, 𝑡𝑡11𝑛𝑛 is 
the image from the date 1 with n = 4 spectral bands, and 𝑡𝑡21𝑛𝑛 is the image from date 2 with the same 
number of spectral bands. We considered the image from one date to be a linear function of the image 
from the other date. Therefore, the image from date 1 was regressed on the image from date 2. We 
arbitrarily assigned the images from July as date 1. 

𝑡𝑡11𝑛𝑛 = a + b 𝑡𝑡21𝑛𝑛+ e  (1) 

where, a is intercept, b is slope, and e are the residuals. 
If 𝑦𝑦1𝑛𝑛 is the predicted image on the image 𝑡𝑡21𝑛𝑛 from the regression line in the Equation (1), the 

changed image can be obtained by 

𝑑𝑑1𝑛𝑛= 𝑦𝑦1𝑛𝑛 – 𝑡𝑡11𝑛𝑛  (2) 

where 𝑑𝑑1𝑛𝑛 is the subtracted image from band 1 to n. 

However, the change in pixels in the images obtained from the Equation (2) were not easily 
visible and discernible. The NIR band reflects more light from healthy vegetation than from stressed 
vegetation. Therefore, the NIR bands were subtracted from the red bands in the respective images 
obtained from the Equation (2). 

D = 𝑑𝑑3 – 𝑑𝑑4 (3) 

where, D is the resulted change image. 
Finally, the raster results were created using the band composition of D, d3, and d2, respectively, 

to obtain the changed pixels between two dates. Changed pixels gained from the image regression 
and image differentiation were compared with Google Earth images and field data. 
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2.3. Random Forest Classifications 

The supervised classification algorithm Random Forest (RF) was applied in this study to extract 
the C. sativa present spatial distribution. RF is a machine learning algorithm that works on bagging 
approaches: The algorithm grows multiple decision trees from the random subsets of data and gives 
a final decision based on the majority of votes from the resulting trees [40]. The algorithm has been 
reported to produce promising results [49]. 

The changed pixels may not all be associated with C. sativa. Therefore, C. sativa, forests and 
natural ecosystems were trained in QGIS based on the field reference data (Appendix B) and Google 
Earth images were taken as references. For the training data, the raster data obtained in Figures 2 and 
3 were used to discern changed pixels (C. sativa), and unchanged pixels (forests and other natural 
ecosystems). The data were split into training and testing data in the ratio of 70% to 30% for each 
changed image from Landsat 8 and from Sentinel-2. The data used to train the model were cross-
validated with ten-fold cross-validation. Supervised classifications were carried out in R with the 
caret [50] package on the images obtained from the image regression and image subtraction that 
include five bands as a stack. In the RF models, 650 trees were grown for each supervised 
classification—the out of bag error in the random forest classification reached a low level at 650 trees 
and was near-constant with more. The models were validated using the respective testing data 
(Appendix C). 

 
Figure 2. Changed pixels (proxy for leaf on/leaf off) between March 2017 and July 2017 in the Landsat 
8 image obtained from the image regression and image differentiation, grayscale raster composite, 
red-NIR, red, green, each band with 1/3 saturation. Blue colour highlights changed pixels between 
those dates. Training polygons (red) are the training samples used to discriminate between changed 
and unchanged pixels. Settlements and other intensive human land-uses were cropped out (shown in 
white). 
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Figure 3. Changed pixels (proxy for leaf on/leaf off) between July 2018 and February 2019 in the 
Sentinel-2 image obtained from the image regression and image differentiation, grayscale raster 
composite, red-NIR, red, green, each band with 1/3 saturation. Blue colour highlights changed pixels 
between those dates. Training polygons (red) are the training samples used to discriminate between 
changed and unchanged pixels. Settlements and other intensive human land-uses were cropped out 
(shown in white, excluded from study). 

2.4. Ecological Niche Modelling 

Castanea sativa occurrence and coverage were recorded and mapped in the field from 11 April to 
23 April 2019, mainly using road access. The sampling was conducted based on expert knowledge, 
and the change detection map (Figures 2 and 3) as well as through random C. sativa observations. 
The Global Positioning System (GPS) locations were recorded in the field for presence locations 
(Appendix B) using a WPL-2000 GPS device. 

We retrieved a set of biotic and abiotic environmental variables from Cabildo Insular de La 
Palma, modified from [51]. Topographic information on aspect and slope was calculated in QGIS 
from the 2 m spatial resolution digital elevation model obtained from [52]. All environmental 
variables had a spatial resolution of 100 m except elevation, slope, and aspect; we aggregated the 
resolution of these to 100 m. After performing a correlation analysis on the entire set of environmental 
variables (r > 0.7, Appendix D), the following explanatory variables for ENMs remained: winter 
precipitation, summer precipitation, inter–annual precipitation, intra-annual precipitation, 
vegetation associations, solar radiation, elevation, slope, aspect, and parent materials (Appendix E). 
The mean annual temperature was highly correlated with elevation (r > 0.7), and mean annual 
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precipitation was highly correlated with mean winter precipitation (r > 0.7) (Appendix D). We 
excluded mean annual temperature because La Palma possesses a high altitudinal gradient, and thus, 
the temperature difference is a major function of elevation even if aspect also plays a role due to 
differences in cloud cover and insolation. Similarly, mean annual precipitation was excluded because 
the precipitation exhibits a clear seasonal pattern with high amounts during winter and less 
precipitation in summer. From an ecological perspective, the variation in precipitation was a better 
choice to characterize habitat suitability of C. sativa compared to annual mean precipitation. 

For the ENMs, both species occurrence data from the field and from RS were used 
independently. We used R version 3.6.1 [53] and Quantum GIS (QGIS) version 3.6.3, as well as Google 
Earth applications. To obtain a habitat suitability map for C. sativa, we applied generalized additive 
models (GAMs), Maximum Entropy (MaxEnt) and Random Forest (RF), combining them into an 
ensemble model (EM) using biomod2 [54] (see results for each model algorithm in Appendix F). 
GAMs are data-driven, slightly modified regression models that use non-parametric, data-defined 
smoothers to fit nonlinear functions. GAMs are capable of modelling complex ecological response 
shapes [55,56]. MaxEnt is designed to estimate target probability distributions by finding the 
probability of maximum entropy [57]. The algorithm is extensively used in ENMs [58], but there are 
limitations when data are missing at the edges of species’ distributions. In consequence, we opted for 
an EM, in order to obtain more robust outcomes than likely to be delivered by an individual 
modelling technique [59]. 

We randomly extracted 2500 RS species occurrence points from the area where spatial 
agreements in the resulting maps between both images were found. Data obtained were thinned with 
minimum spatial distances of 300 m and 100 m for RS data and field data, respectively, using spThin 
[60] package in R, to avoid spatial bias. We used 300 m for RS data thinning and 100 m for field data 
thinning because the RS data were uniformly rasterised, and field data were clumped due to 
inaccessible field sites. Applying 300 m in field data would result in far fewer species occurrences. 
The rationale for a 100 m minimum distance is that the environmental raster data that we used has a 
spatial resolution of 100 m. Hence, we wanted to avoid more than one species occurrence point in a 
single pixel. Final numbers of 241 and 172 occurrence points of RS and field, respectively, were used 
for modelling. With the biomod2 [54] package in R, the three different modelling approaches (GAMs, 
MaxEnt, and RF models) were integrated for the EMs. We generated the same number of pseudo-
absence points as presence, taking prevalence into account [61,62] and excluding the area buffered 
by a 30 m radius from the species' occurrence points. The models were each run four times, with ten 
sets of pseudo-absence records that resulted in 120 models in total for each data set (field-collected 
species occurrence data and RS species occurrence data). 

For EM projections, only models meeting the quality standards of total true skill statistic (TSS) > 
0.7 and area under the receiver operating characteristic curve (AUC) > 0.8 were used. Individual 
models that did not meet these requirements were excluded from building the EM—including all the 
GAM and MaxEnt models [Appendix G]. Our resulting EMs were based on 50 and 34 single models 
for RS and field occurrence data, respectively. Mean of the weighted sum of probabilities, committee 
average across prediction, and mean probabilities across prediction of the ensemble forecasts were 
used to generate the suitable habitat map for C. sativa. 

Receiver operating characteristic curve cut-offs that maximized the sum of specificity and 
sensitivity were used as the threshold to generate species habitat suitability (binary) maps. The binary 
maps were used to quantify the suitable habitat for C. sativa from each modelling approach and to 
analyse the variation in those areas with respect to the environmental variables used for the models. 

3. Results 

3.1. Change Detection 

C. sativa occurrence locations detected by RS and in the field (Appendix B) had strong spatial 
agreements with the changed pixels (Figures 2 and 3), and model accuracy was high (Table 1). 
Additional pixels were also detected as changed pixels. However, they were ambiguous and were 
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not distinguishable from other vegetation or attributes in the Google Earth reference image, and those 
locations were also not available from field data. Such ambiguities may have resulted from land-
cover changes rather than from changes that occurred because of C. sativa’s phenological cycle. 

Table 1. Statistical evaluation of Random Forest (RF) performance and map accuracy assessment. The 
overall accuracy and kappa were obtained from the testing data and the out-of-bag error (OOB) 
generated by RF of each of the model obtained from training data. 

Sensors 
Parameters 

OOB Error % Overall Accuracy % Kappa 
Landsat 8 1.29 98.8 0.798 
Sentinel-2 0.44 99.5 0.878 

The different sensors resulted in different areas of spatial coverage of C. sativa (Figure 4). The 
total coverages of C. sativa found in 2019 were 5.26 km2 in the Sentinel-2 and 6.72 km2 in the Landsat 
8 images, which make 1% and 1.23%, respectively, of the total island area. Most of the detected 
occurrences of chestnut were from the eastern slopes and northern parts of the island. Only a few 
occurrences were detected on the southern slopes (Figure 4). Most of the occurrences were close to 
agricultural land and some were on lapilli fields. No C. sativa occurrences were detected in southern 
parts and coastal areas of the island. The C. sativa occurrence pixels in the Sentinel-2 are more 
scattered than in the Landsat 8 image (Figures 4 and 5). Even in the area where both sensors spatially 
agree, Landsat 8 was found to have a wider coverage than Sentinel-2 (Figure 5). 

 
Figure 4. C. sativa spatial coverage (blue) detected on (a) the Landsat 8 image and (b) Sentinel-2 image 
obtained from the Random Forest (RF) classifications. The classifications were carried out on the 
images obtained from the image regression and differentiation. ‘Forests and natural ecosystems’ (grey 
shading) are land cover not related to direct human land use. Settlement and agriculture (areas used 
for direct human purposes, including roads, buildings, agricultural lands, etc.) were cropped out and 
not included in the analysis. 
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Figure 5. C. sativa spatial coverage in the images from the Landsat 8 and Sentinel-2 overlapping, 
Landsat 8 only, and Sentinel-2 only. Black are pixels where C. sativa was detected in both sensors’ 
images; orange are pixels where C. sativa was only detected in the Landsat 8 image; blue are pixels 
where C. sativa was only detected in the Sentinel -2 image. The spatial resolution of Landsat 8 is 30 m, 
and Sentinel-2 is 10 m. ‘Forests and natural ecosystems’ (grey shading) are areas not directly used for 
human purposes. Human settlements, infrastructure, and agriculture (white) were cropped out. 

Spatial coverage of C. sativa increases progressively from 400 m a.s.l. to 700 m a.s.l. and decreases 
above 700 m a.s.l. in the images from both the sensors (Figure 6). 
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Figure 6. Number of pixels associated with C. sativa detected from RS along the altitudinal gradient. 
Values along the y-axis are the total number of pixels covered by C. sativa and values along the x-axis 
are the elevational gradient of La Palma (in m a.s.l.). Blue: Landsat 8 only; orange: Sentinel 2 only; 
black: shared pixels of both Landsat 8 and Sentinel-2. The spatial resolution of Landsat 8 was 
disaggregated to 10 m for comparison purpose. 

3.2. Ecological Niche Modelling 

All ENMs showed that habitats in the eastern and northern parts of the island—including the 
areas of present distribution—were more suitable for C. sativa (Figures 7 and 8, Appendices F and H 
for single model results). The ENMs based on species occurrences from field observation and the 
ENMs based on species occurrences from RS data were found to have very good AUC and TSS scores 
(Table 2 and Appendix I). The ENMs based on the RS data (Figure 7b and Figure 8b) predicted larger 
suitable area for C. sativa compared to the prediction made by the models based on the field-collected 
species occurrence data (Figure 7a and Figure 8a). However, the models based on the field-collected 
species occurrences seemed to cover more heterogeneous areas, even tough the total suitable area for 
the species was predicted to be less in the field-collected species occurrence-based models. 
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2  

Figure 7. C. sativa habitat suitability maps obtained from the ecological niche modelling (ENM) using 
ensemble models (EM). (a) The map obtained from the model based on field-collected species 
occurrence data. (b) The map obtained from the model based on the species occurrence data derived 
from remote sensing. The vertical legend on the bottom-left shows the degree of suitability; values 
closer to 1 indicate comparatively higher habitat suitability. 

 
Figure 8. C. sativa binary habitat suitability maps from (a) the ensemble model (EM) based on the 
field-collected species occurrence locations, and from (b) the EM based on RS-derived species 
occurrence locations. These maps are the outcomes of the binary transformation of the predicted maps 
from the respective models. The extent of the laurel forest (based on the plant communities defined 
by Del Arco Aguilar et al. [63]) is indicated as a yellow semi-transparent layer. 
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Table 2. Statistical parameters of model performances, thresholds applied to convert maps resulted 
from each modelling approach to binary maps and area suitable for C. sativa. All the parameters are 
means of ensemble model outputs. 

Model 
Parameters 

AUC Threshold TSS Area (km2) 
Field RS Field RS Field RS Field RS 

EM 0.982 0.961 564.83 634.42 0.885 0.805 66.73 90.12 

4. Discussion 

This study assesses the current and potential distribution of non-native C. sativa, invading the 
endemic species-rich ecosystems of La Palma. The establishment of deciduous chestnut (C. sativa) on 
La Palma and its spread into the native laurel forest has the potential to initiate a secondary 
succession that may change the evergreen broadleaved forest towards a different ecosystem in terms 
of phenology and light regime. C. sativa was introduced on the island approximately 500 years ago 
for agricultural purposes [21]. Extremely steep and unstable slopes restrict access to the sites. Further, 
only estimating the current distribution of the alien species would be problematic because the current 
situation is just a snapshot of the potential occupied space and ecological niche on the island [64]. 
Therefore, it is important to combine in-situ and RS data with modelling approaches. 

We found through this combined methodology that deciduous chestnut trees and forest today 
occupy approximately 1.2% of the total area of natural ecosystems (i.e., non-agricultural and 
excluding infrastructure and settlements) on La Palma, with a further 12–17% representing suitable 
habitat that is not yet occupied by this species. This is important because this non-native deciduous 
tree species can reach high canopy cover and has the potential to strongly modify the species 
composition of the original evergreen forest ecosystems, as well as the nature of the ecosystem (e.g., 
leafless in winter) and the services it provides. Comparing the current spatial distribution of C. sativa 
in La Palma obtained from RS and the results obtained from ENMs, we can see that C. sativa has not 
yet reached its full potential distribution on La Palma. Our results show varying areas of available 
suitable habitats for C. sativa that could be occupied in the future, depending on the reference data 
and modelling algorithm. However, in all cases, there is a considerable overlap of the species’ niche 
with the distribution of the native laurel forest ecosystem in the eastern and northern slopes of the 
island. 

Despite their southern location, the Canary Islands are clearly part of the Holarctic realm. Most 
of the plant families native to the islands are very abundant across the Mediterranean. In addition, 
the ecosystems of the archipelago are strongly linked to Mediterranean climate and ecosystems 
through their evolutionary history and phylogenetic relations. Although the Macaronesian islands 
have many endemic species, the perennial and woody taxa that shape the islands’ forest and 
shrubland ecosystems are either shared with the Mediterranean region of Europe (native non-
endemics on the Canaries) or in the case of endemic species have their closest relatives there, and not 
in the Palaeotropcis (e.g., Laurus, Viburnum, Prunus, Pistacia, Olea, Arbutus, Asparagus, Cistus, Echium, 
Carlina, Genista, Helianthemum, Hypericum, Lavandula, Micromeria, Ononis, Rhamnus, Rubia, Ruscus, 
Salvia, Sideritis, Smilax, Sonchus, Thesium). Several native ferns of the laurel forest are also abundant 
in moist forests of the Mediterranean (e.g., Asplenium hemionitis, Selaginella denticulata, Adiantum 
capillus-veneris, Polystichum setiferum, Woodwardia radicans). Sub-Mediterranean species such as C. 
sativa find adequate climatic conditions mainly at mid-elevation of the volcanic mountains on those 
islands that exhibit a pronounced topography. 

Habitat suitability is calculated by models that are based either on in situ data or on RS data. 
Our study combines a slightly modified change detection technique with machine learning 
supervised classification algorithms. The change detection technique is especially suitable for 
invasive plant species detection if the species exhibits clear phenological changes compared to native 
vegetation through time, as shown by the detection of glossy buckthorn (Frangula alnus Mill.) 
spreading into forests of southern Quebec, Canada, by applying a linear temporal unmixing model 
to a time series of the normalized difference vegetation index (NDVI) derived from Landsat 8 
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Operational Land Imager (OLI) [65]. The RS-based C. sativa spatial distribution assessments yielded 
differences in spatial coverage, with the area estimated by Landsat 8 slightly higher than that 
estimated by Sentinel-2. The variation in the image resolutions between two sensors may be one of 
the reasons for greater spatial coverage estimated from the Landsat imagery. As Landsat 8 images 
have a spatial resolution of 30 m and Sentinel-2 images (used in this study) have a spatial resolution 
of 10 m, one pixel of Landsat 8 is equivalent to 9 pixels of Sentinel-2. 

Smaller spatial extent of C. sativa area extracted from Sentinel-2 compared to Landsat 8 
translated into less modelled spatial coverage based on Sentinel-2 compared to Landsat 8. Both 
sensitivity and grain size in spatial resolution can lead to such findings. Image quality, especially in 
a heterogeneous environment where plant species cannot easily be discerned, may result in spectral 
mixing [66], which is poorly represented by a low-spatial-resolution image. Thus, with lower spatial 
resolution, classification accuracy tends to decrease [67]. However, this relationship can reverse when 
using very high spatial resolution imagery [68]. Furthermore, residual yet marginal cloud coverage 
on the image from 7 March 2017, could have influenced the performance of the Landsat 8 scene. 

The survival of C. sativa across the heterogeneous environment in La Palma suggests that the 
species shows high adaptive ability. We find that the moist and humid regions with broad-leaved 
trees, shrubs, and herbs are most suitable for the species. Similarly, Ríos-Mesa et al. [21] stated that 
on Tenerife, C. sativa is more dominant in the regions where trade winds humidify the area. 

Ecological theory suggests that species-rich ecosystems can be more resistant to invasion [69–
71]. Since many niches are not occupied on islands, it is expected that more species will naturalize in 
the future [72]. Such an increasing saturation of species richness could enhance the functioning of 
ecosystems [73]. However, individual alien species may also modify important ecosystem functions, 
causing negative effects even centuries after their establishment when replacing other key species 
such as dominant plant functional types [13]. 

The replacement of one dominating plant functional type by another can particularly affect 
sensitive ecosystems on very steep slopes in a humid zone. The natural stability of the laurel forest 
on these slopes is astounding and results from its species diversity and the clonal root systems of the 
contributing tree species in combination with their evergreen foliage [44]. A regime shift away from 
long-lived, clonal evergreen trees can create new risks for the human population downslope through 
altered run-off, erosion and landslide potential. The respective loss of diversity caused by an invading 
species also affects ecosystem stability [70]. 

The development of a forest with deciduous canopy in contrast to the native evergreen forest is 
creating a novel ecosystem in the Canary Islands, where such ecosystems did not exist before. The 
emergence of novel ecosystems with altered species composition, structure, and functioning [74] is a 
common phenomenon worldwide. Such substantial changes are in the first instance linked with 
uncertainty because expert knowledge on such novel systems does not exist. The lost system may 
also matter. Functional traits, structures, phenology, and biodiversity can be assessed for newly 
emerging ecosystems and compared to the replaced ones. In the case of the alien deciduous chestnut 
forest on the Canary Islands, a highly diverse and evergreen forest is replaced by monodominant 
stands with seasonal foliage. Consequences for species loss, erosion control, landslide threat, and 
carbon sequestration are to be expected and require further monitoring [13]. 

Here we used open-access RS data, which come at the expense of relatively coarse spatial and 
spectral resolutions. We could, nevertheless, achieve a very high detection accuracy because the 
application of multi-date RS data made it possible to effectively resolve the phenological differences 
of deciduous C. sativa in this particular study system. When such clear spectral differences are known, 
expensive very-high-resolution RS data are not required to detect invasive species, even though most 
studies recommend such RS data for high accuracy. For example, multispectral Quickbird data 
including 4 bands and a spatial resolution of 2.4 m were used to map invasive Tamarix species along 
the Colorado River [75]. However, commission errors were still high due to the relatively coarse 
spectral resolution. Another comparison revealed that AISA hyperspectral imagery is more effective 
than Quickbird in identifying invasive individuals [76]. Müllerová et al. [77] investigated the 
effectiveness of panchromatic, multispectral, and colour very high spatial resolution aerial 
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photography (resolution 0.5 m) and medium spatial resolution satellite data (Rapid Eye, resolution 5 
m) in monitoring the noxious invasive giant hogweed (Heracleum mantegazzianum Sommer & Levier) 
using pixel- and object-based image analysis. The authors found that object-based analysis of aerial 
0.5 m resolution data during the flowering period resulted in high detection accuracy, while pixel-
based analysis of 5 m resolution satellite data achieved moderate accuracy. Underwood et al. [78] 
detected iceplant (Carpobrotus edulis L.) and jubata grass (Cortaderia jubata Lemoine ex Carriere) in 
Mediterranean-type ecosystems of California using Airborne Visible and Infrared Imaging 
Spectrometer (AVIRIS) imagery with 4 m resolution. These RS data were particularly useful because 
both invasive species could be distinguished from co-occurring species by leaf water content. Downy 
brome (Bromus tectorum L.) was mapped in semi-arid rangeland ecosystems of Washington state, 
USA, using AVIRIS imagery with 4 m [79]. The authors compared the detection accuracy from single-
date and multi-date AVIRIS data applying a filtering algorithm for image classification. The accuracy 
was higher for multitemporal RS data that could resolve phenological differences through time. In 
terms of the effectiveness of multitemporal RS data, Hestir et al. [80] and Evangelista et al. [31] show 
that omission errors for mapping phenologically different and invasive plant species depend strongly 
on acquisition dates of RS images. Interestingly, in the Great Basin, B. tectorum could only be detected 
with very low accuracy (35%) using multitemporal data from Landsat MSS, TM, and ETM+, which 
are spaceborne sensors with relatively low spectral and spatial resolution [81]. However, the invasive 
shrubs Frangula alnus Mill. and Rhamnus cathartica L. were sufficiently mapped in Ohio and Michigan 
States, USA, by applying multitemporal Landsat TM and ETM+ satellite images [82]. In addition, 
airborne LiDAR and hyperspectral sensors are commonly used in precision agriculture and forestry 
to map crop quality, weeds, and pests [83], and thermal spectrometers have also proven to be very 
advantageous for detecting invasive plant species [84]. In view of all these examples, it remains 
challenging to select the appropriate RS data, particularly concerning the temporal, spatial and 
spectral resolution, to efficiently detect invasive plant species among native vegetation [30]. 
However, given the inaccessibility and high costs of very-high-resolution RS data, free and open-
access RS data should be promoted in research and conservation when they are appropriate. Here 
we prove the effectiveness of open-access RS data for invasion science and management despite 
relatively coarse spatial, temporal, and spectral resolution of RS data. 

Ensemble models perform better than single models in predicting invasive plant species’ habitat 
suitability [85]. Nevertheless, using correlative models such as ENMs to predict the potential 
distribution of invasive species can be problematic because invasive species can establish in 
environmental niches that are new or very restricted compared to their native range [86]. Moreover, 
our models do not address the question of community saturation, i.e., to what degree environmental 
drivers limit species richness, composition and invasion of communities [73]. Moreover, the choice 
of environmental predictors drives the explanation of distributions [30]. The prediction success 
additionally depends on the frequency of test occurrences that makes prediction success a potentially 
biased estimator of model performance [61]. Hence, invasives’ distributions in non-native ranges may 
be severely under- or overestimated by ENMs. However, such predictions are often the only 
reasonable way to guide conservationists to potential areas of invasion [87,88]. Range expansions of 
invasive species can happen rapidly due to changes in the species’ invasibility or environmental 
factors such as land use and climate change [89]. Consequently, models based on species occurrence 
points should be interpreted as risk of species establishment, not species abundance, or impact [90]. 

Correlative model predictions involving abiotic factors only are also criticized because real 
invasion processes such as interspecific competition are ignored [91]. Mechanistic or process-based 
models may thus perform better than correlative models. However, process-based models require 
greater understanding of the invasion process than is usually available. Notably, biological 
mechanisms can be revealed by RS approaches. Asner et al. [33] revealed climate interactions 
promoting the invasive evergreen tree M. faya spreading into Hawaiian rainforest by analysing a time 
series of EO-1 Hyperion satellite data only. Once mechanistic models are applied, their performance 
can be validated by species distribution data directly derived from RS [30]. 
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Detection accuracy depends not only on RS data and modelling approaches but also on 
algorithms applied for image classification. In Mediterranean forests, spaceborne QuickBird and 
airborne ADS40-SH52 imagery was combined to identify individual trees of the Iberian wild pear 
(Pyrus bourgaeana Decne.) [67]. Applying maximum likelihood approach and support vector 
machines on a pixel-by-pixel basis yielded different results depending on the combination of RS data 
and classification algorithms. Müllerová et al. [77] conclude that object-based analysis of aerial 
photography with 0.5 m resolution taken during the flowering period resulted in high detection 
accuracy, while pixel-based analysis of 5 m resolution Rapid Eye data achieved moderate accuracy 
in monitoring the noxious invasive giant hogweed (H. mantegazzianum). 

The spectral signatures of species change through time due to biochemical, physiological, 
phenological, and environmental factors [92]. This variation of spectra limits the transferability of the 
relationships between spectral signatures, species, and environments to other study systems. 
Consequently, we recommend adapting our methodological approach individually to other systems. 

5. Conclusions 

This study identifies the probability of invasion of the introduced C. sativa, with particular focus 
on the laurel forest ecosystems of the island of La Palma, Canary Islands, Spain. Even if the spread of 
this deciduous tree species has been slow until now, major uncertainties arise from the fact that 
represents a plant functional type different from the zonal vegetation. Only two, rare native 
deciduous tree species can be found naturally (Salix pedicellata subsp. canariensis (C. Sm. ex Link) A. 
K. Skvortsov; Sambucus palmensis Link), along semi-permanent brooks and streams. However, these 
native deciduous species play no role in the natural evergreen forest ecosystems of the island. 

The projected potential for the replacement of an evergreen broadleaved laurel forest rich in 
endemic tree species by a deciduous broadleaved forest formed by one introduced tree species does 
not inform about the speed of such processes. Inertia in long-lived tree species that can sprout from 
their rootstock is likely to avoid a rapid transition. However, a very resilient and stable ecosystem 
could be replaced by a less resilient and less stable one with only seasonal leaf cover and low species 
diversity. The steep and moist slopes of the island limit the accessibility in the field. We therefore 
recommend monitoring the future spread of C. sativa using RS approaches, as herein. 

Our findings can be applied to other islands of the archipelago, where comparable climatic 
conditions are found and the characteristic laurel forest occurs, i.e., El Hierro, La Gomera, Tenerife, 
and Gran Canaria. For these islands, our findings provide an early warning to generate awareness of 
possible invasion processes and to start proactive measures to avoid invasion into unique, valuable, 
and remnant laurel forests. Our results can also be transferred to the islands of Madeira and the 
Azores, where climatic conditions are very likely even more appropriate for C. sativa. In the case of 
the Azores, the laurel forest is almost completely replaced by conifer plantations and other invasive 
species (e.g., Pittosporum undulatum Vent., Hedychium gardnerianum Sheppard ex Ker Gawl.) This 
makes the preservation of the Canary Island laurel forest an even more important priority in the 
international context. 
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Appendix A 

Table A1. Satellite images used in the study. 

Sensor Scene Id 
Landsat 8 LC082080402017072901T1-SC20190612132658 
Landsat 8 LC082080402017030701T1-SC20190128221754 
Landsat 8 LC082080402017020301T1-SC20190612132509 
Sentinel-2 S2A_MSIL2A_20180708T120331_N0208_R023_T28RBS_20180708T141805 
Sentinel-2 S2A_MSIL2A_20190213T120321_N0211_R023_T28RBS_20190213T172742 

Appendix B 

Table A2. Total number of training and testing data used in Random Forest classification. 

Sensor 
Data 

Training Testing 
Sentinel-2 101501 43499 
Landsat 8 11557 4952 

Appendix C 

 
Figure A1. Species occurrence locations recorded from field and species occurrence locations used in 
Ecological niche modellings (ENMs) with two cut-out sections for details. 
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Appendix D  

 
Figure A2. Pearson correlation coefficients of environmental raster used in ecological niche modelling 
(ENM). 

 
Figure A3. Pearson correlation coefficients of environmental raster used in ecological niche modelling 
(ENM). 
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Appendix E 

 
Figure A4. Environmental raster used in ecological niche modelling (ENM); Data surfaces are 
modified from data published in Irl et al., 2015. 

Appendix F 

 
Figure A5. C. sativa habitat suitability maps (a) from the Random Forest (RF) field-collected species 
occurrence locations, (b) from the (RF) based on the remote sensing (RS) species occurrence locations, 
(c) from the Generalized Additive Linear Model (GAM) based on the RS species occurrence locations 
and (d) from the Maximum Entropy (MaxEnt) Model based on the RS species occurrence locations. 
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Appendix G 

 
Figure A6. The initial model evaluation for the models from the RS data. Among the 120 models, the 
models which have True Skill Statistics and Area Under ROC scores greater than 0.7 and 0.8 
respectively were only considered in habitat suitability modelling. 

 
Figure A7. The initial model evaluation for the models from the Field data. Among the 120 models, 
the models which have True Skill Statistics and Area Under ROC scores greater than 0.7 and 0.8 
respectively were only considered in habitat suitability modelling. 
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Appendix H 

 
Figure A8. C. sativa presence absence maps (a) from the Random Forest (RF) field-collected species 
occurrence locations, (b) from the Random Forest (RF) based on the RS species occurrence locations, 
(c) from the Generalized Additive Linear Model (GAM) based on the remote sensing (RS) species 
occurrence locations and (d) from the Maximum Entropy (MaxEnt) Model based on the RS species 
occurrence locations. 

Appendix I 

Table A3. Ecological niche modelling performances. The GAM and MaxEnt rows for the Field 
columns are NA because the TSS and AUC from these were less than 0.7 and 0.8 so we excluded these 
models from the analysis. 

Model 
Parameters 

AUC Threshold TSS 
Field RS Field RS Field RS 

EM 0.982 0.961 564.833 634.417 0.885 0.805 
GAM NA 0.943 NA 572.540 NA 0.789 

RF 0.982 0.968 570.875 675.625 0.881 0.811 
MaxEnt NA 0.928 NA 634.167 NA 0.730 
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