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A Bayesian analysis of complete multiple breaks in a panel 
autoregressive (CMB-PAR(1)) time series model 
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ABSTRACT  

Most economic time series, such as GDP, real exchange rate and banking series are irregular 
by nature as they may be affected by a variety of discrepancies, including political changes, 
policy reforms, import-export market instability, etc. When such changes entail serious 
consequences for time series modelling, various researchers manage this problem by 
applying a structural break. Thus, the aim of this paper is to develop a generalised structural 
break time series model. The paper discusses a panel autoregressive model with multiple 
breaks present in all parameters, i.e. in the autoregressive coefficient and mean and error 
variance, which is a generalisation of various sub-models. The Bayesian approach is applied 
to estimate the model parameters and to obtain the highest posterior density interval. Strong 
evidence is observed to support the Bayes estimator and then it is compared with the 
maximum likelihood estimator. A simulation experiment is conducted and an empirical 
application on the SARRC association’s GDP per capita time series is used to illustrate the 
performance of the proposed model. This model is also extended to a temporary shift model. 
Key words: panel autoregressive model, structural break, MCMC, posterior probability.  

1.  Introduction 

When modelling any time series, one may identify characteristics of series such as 
stationarity, seasonality, outliers, linear trend, structural breaks, etc., and then produce 
a good forecast for making a better conclusion. If there is an unexpected shift in time 
series, then this may occur due to outlier(s) or structural break(s). In the structural 
break, mainly any or all model parameters are affected for a particular time interval, 
which may have different inferences. These break points may split time series into two 
or multiple parts. If at multiple time points, which are identified in terms of change on 
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model parameters, the series changes temporarily or permanently, then the model must 
be analysed in such a way that it gives better explanation and prediction. Handling of 
such time series received importance by several researchers, who made inference about 
the break and show its impact in real applications. The problem of estimation and 
testing of change points in the linear model was proposed by Bai and Perron (1998) and 
then extended into multiple breaks in a multiple regression model. Altissimo and 
Corradi (2003) considered a nonlinear process which has dependent and 
heterogeneous observations and contained a break in the mean component. 
They proposed an estimator for the detection and estimation of the number of breaks 
and applied for weekly Eurodollar interest rate. Jin et al. (2013) addressed the problem 
of multiple breaks in piecewise stationary AR process and detected the breaks by the 
penalized model selection approach. Topal et al. (2016) compared various detection 
techniques of multiple break points in artificially modified time series and applied to 
vine sprout length data as well as mercury injection capillary pressure curve. Jibrin et 
al. (2015) modelled an AR fractionally integrated moving average process and used 
Bayes information criterion to study the structural breaks in crude oil prices of Brent 
and WTI series.  

The consequences of the structural break under Bayesian approach is studied by 
several researchers, see Albert and Chib (1993), Bai (2010), Kumar et al. (2012), 
Eo (2012) and Maheu and Song (2018). Further on, Chin et al. (2016) combined both 
robust-jump volatility estimator and a structural break heterogeneous autoregressive 
(HAR) model to battle the structural break in stock market volatility modelling and 
added the empirical literature of high-frequency volatility analysis by using modified 
HAR models and robust-jump volatility estimators. Yamamoto (2016) considered 
a simple modification in EM confidence set proposed by Elliott and Muller (2007) in a 
linear regression model having a single structural break and achieved a shorter 
confidence set than the EM method. Baltagi et al. (2016) considered both cross sectional 
dependence and a structural break in Pesaran (2006) heterogeneous panels and applied 
least square and common correlated effects estimators to estimate the change points. 
Pestova and Pesta (2017) constructed an estimator for a break in panel mean without 
a boundary condition, which was also consistent in no break situation and 
demonstrated in non-life insurance application. Meligkotsiduo et al. (2017) suggested 
a Bayesian approach to detect stationarity from AR(p) model with multiple breaks in 
mean, variance and autoregressive coefficients. To determine the marginal likelihood 
and posterior probability for comparing models, filtering recursions algorithm is used 
in the structural break model. Hwang and Shin (2017) proposed a sequential test for 
detecting mean breaks that allow long memory errors. The proposed test is consistent 
with asymptotic normal distribution and produced an unbiased break estimate as 
compared with Bai and Perron (1998) biased estimates.  
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Many studies have also been carried out on a structural break in the panel data 
model in reference to testing for unit root hypothesis, break point detection, estimation, 
etc. Karavias and Tzavalis (2017) studied the asymptotic properties of least squares 
based fixed-T panel unit root tests of panel AR(1) model considering a structural break 
in the deterministic components and obtained the limiting distribution which is 
dependent on the break date and time. Chen and Huang (2018) considered a non-
parametric method to analyse the consistence of changing parameters and developed 
two types of consistent tests to check the stability of model parameter in time varying 
interaction panel model. Okui and Wang (2018) established a new model which allows 
a common structural change in the coefficients, while the number of breaks, break 
points, and the size of breaks are different across groups. They also obtained a hybrid 
estimation procedure under grouped fixed effects and an adaptive group, fused in panel 
data model with heterogeneous structural breaks. Bardwell et al. (2019) developed an 
approach to detect the change point in panel data model that pools the information 
across time series and come up with the most recent break points in multiple series at 
the same time point. 

This paper is an extension of Agiwal et al. (2018), which discussed the panel 
autoregressive time series model of order one (PAR(1)) with a break in mean and error 
variance. This model does not allow a change on autoregressive parameter. However, 
it may also have multiple breaks so a PAR(1) time series model with multiple breaks is 
explored in the present study that considers a break in autoregressive coefficient also. 
As this allows breaks on all parameters of the model including coefficients, mean and 
error variance. Therefore, this is termed as a complete multiple breaks panel 
autoregressive time series model of order one (CMB-PAR(1)). A Bayesian analysis of 
the proposed model has been carried out to estimate the parameters under both 
symmetric and asymmetric loss functions and then compared with MLE through both 
simulation and empirical study. This paper has also discussed the temporary shift 
model, where a change occurs in the parameter for a short time interval, then it comes 
to the original structure. This model is a particular form of CMB-PAR(1) model with 
two break points. 

2. Model and Assumptions 

Let {yit} be a PAR(1) time series model having multiple structural breaks and break 
points in each panel that are assumed to be same and known. Due to multiple breaks, 
the structure of PAR(1) model may be shifted temporarily or permanently depending 
on the situation. If all parameters are instable permanently for assumed time intervals, 
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at that time structure of the series also shifted permanently. Let there be B break points, 
then permanently shifted PAR(1) model (PS-PAR(1)) is 
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There are several practical situations where a change occurs on a model for 
a temporary period, i.e. a change in the series only for a particular time interval and 
later on it comes back to the original model/process. Such a model is called a temporary 
shift (TS) model. So, this type of series contains only two breaks to observe the short 
term changes in the model parameters. In that situation, temporary shift PAR(1) model 
(TS-PAR(1)) is expressed as  
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where {yit , t=1,2,…,T; i=1,2…,n}  is a sequence of observations which contains n cross-
sectional units recorded at T time period between T0=0 to TB+1=T . The error term it is 
a sequence of an independently distributed normal random variable with mean zero 
and variance 2

j  for jth break point. Models (1) and (2) are complete multiple structural 
breaks PAR(1) models (CMB-PAR(1)), which contain breaks in autoregressive 
coefficient, mean as well as error variance. The likelihood function for the observed 
data under model (1) is 

       




























   


  











1

1 1

2
1,2

1

1

2

1

1 1
1

2

1
exp2)|(

B

j

n

i

T

Tt
ijjtijit

j

B

j

TTn
j

nT j

j

jj yyyL 




 (3) 

where   Bjnijjij ,...,2,1;,...,2,1,,, 2   . 

Similarly for model (2), the likelihood function is 
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3. Bayesian Analysis 

In Bayesian inference, the current sample information is incorporated within the 
available prior information because the prior distribution gives additional information 
about the unknown parameters that are useful to improve further inference. 
For Bayesian estimation, prior distribution is required to obtain the estimator for 
unknown parameters. If enough information about the parameter is available then it is 
better to incorporate the informative prior, otherwise non-informative prior is 
considered. In general, normal and inverse gamma distributions are the most often 
used conjugate priors for intercept (ij) and error variance ( 2

j ) parameters in various 
time series model (see Meligkotsidou et al. (2017)). For autoregressive coefficient, non-
informative prior as a uniform distribution is considered that provides little 
information related to the proposed model. Therefore, we assume ij parameter is 
conditionally independent and other parameters are mutually independent, having the 
form as  
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Then, the joint prior distribution for   Bjnijjij ,...,2,1;,...,2,1,,, 2   is 
given as 
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Without loss of generality, one may know that prior distributions accurately 
describe the nature of the parameter and assist correctly to find the best estimator. 
The joint posterior distribution of PS-PAR(1) model obtained from the likelihood 
function given in equation (3) with incorporating the joint prior distribution given 
in equation (5) is expressed as 
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where KP is the normalizing constant. Using equation (6), the Bayesian estimator is 
obtained but due to complexity in expression under different loss functions, 
a numerical technique is used to solve the posterior distribution. So, we use MCMC 
sampler technique to generate posterior samples. For this, we obtain the form of 
conditional posterior distributions for PS-PAR(1) model as given by (see Gilks et al. 
(1995), page 75−76) 
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A temporary shifted model contains only two break points so that joint prior 

distribution has parameters   niii ,...,2,1,,,,,, 21
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where KT is the normalizing constant. For computing the conditional posterior 
distribution, one may integrate equation (10) with respect to other parameters and get 
the expression. The expressions of conditional posterior distribution for various 
parameters are (see Gilks et al. (1995), page 75-76) 

 

 
   

       
























 




11
,

11

1

~,,|
21

2
1

2
1

21
2

1

1
1

1,11

2
111

2

1

TTTTTT

yy

Ny

i

T

Tt
tiit

i







         

(11) 
 

      

  










































 





n

i

ii

T

Tt
itiit

i

yy
dc

TTTn
IGy

1
2

11

1

2
111,1

11
21

11
2
1

2

1

1

2

1
,

2

1
~,,|




    

(12) 
 

 
  

   


























  

 

 


 


 


1,,,~,,| 1

1 1

2
11

2
1

1 1

2
11

1 1
11,1

2
111

2

1

2

1

2

1 l

yy

yy

TNy
n

i

T

Tt
iit

n

i

T

Tt
iit

n

i

T

Tt
itiiit

i









                

(13) 



140                                                     V. Agiwal et al.: A Bayesian analysis of complete multiple breaks … 

 

 

 
   

       
























 




11
,

11

1

~,,|
12

2
2

2
2

12
2

2

2
1

1,22

2
222

2

1

TTTT

yy

Ny

i

T

Tt
tiit

i







        

(14) 
 

      

  










































 





n

i

ii

T

Tt
itiit

i

yy
dc

TTn
IGy

1
2

22

1

2
221,2

22
12

22
2
2

2

1

1

2

1
,

2

1
~,,|






   (15) 
 

 
  

   


























  

 

 


 


 


1,,,~,,| 2

1 1

2
21

2
2

1 1

2
21

1 1
21,2

2
222

2

1

2

1

2

1 l

yy

yy

TNy
n

i

T

Tt
iit

n

i

T

Tt
iit

n

i

T

Tt
itiiit

i









          

(16) 
 

For getting better estimator form the conditional posterior distribution, a suitable 
loss function is generally adopted. The commonly used loss function is squared error 
(symmetric) loss function (SELF) that takes equal magnitude due to over and under-
estimation and another one is entropy (asymmetric) loss function (ELF). The Bayes 
estimator and its posterior risk for both loss functions are described below: 

Loss Function 
Bayes 

Estimator Posterior Risk 

 2ˆ-=SELF    yE |   yVar |  












 1

ˆ
ln

ˆ
=ELF







    11 |
 yE       xExE |ln|ln 1   

 
It is obvious that the form of the posterior distribution will not be tractable and the 

computation of its respective Bayes estimator under different loss functions will not be 
analytically obtained. Consequently, one can choose stochastic simulation procedures, 
namely, the Gibbs and Metropolis samplers (Gilks et al., 1995) to generate samples from 
the posterior distributions. Then, compute Bayes estimates of the parameters and their 



STATISTICS IN TRANSITION new series, December 2020 

 

141

corresponding interval. This study utilizes the following steps to obtain the posterior 
samples using Gibbs sampling algorithm: 

1. Starting with initial values   )0(2)0( ,,
)0(

jijj   and set k=1 

2. Generate )(k
ij from conditional posterior density   y

k

j
kk

ij ,,|
)1(2)1()(   . 

3. Generate   )(2 k

j from conditional posterior density   yk
ij

kk

j ,,| )1()1()(2   . 

4. Generate )(k
j from conditional posterior density   





  y

k

j
k

ij
k

j ,,|
)1(2)1()(  . 

5. Set k=k+1 
6. Repeat steps 3-6, P times and record the sequence of observations of parameters. 
7. Obtained Bayes estimate under different loss functions. 

4. Simulation Study 

To investigate and compare the performance of the various proposed estimators, 
a simulation study is conducted to observe the behaviour of the proposed models for 
various values of true parameters. For generating a series of sample size 1000, consider 
the following series size T =200 with different break points combination {(T/4, T/2); 
(T/2, 3T/4); (T/4, 3T/4)} for a set of true value:    60,40,20,, 302010 yyy ; 
   9.0,85.0,8.0,, 321  ;    ;4,3,2,, 2

3
2
2

2
1      65,35,10,, 131211  ; 

   70,40,15,, 232221   and    75,45,20,, 333231  . For numerical purpose, 
hyper parameters are to be known in normal and inverse gamma prior. We have taken 
cj = 0.01, dj = 1 for all break points and normal prior mean is equal to average of the 
generated series at (Tj−1, Tj) break interval with parallel variance given in disturbances 
term. For simulation experiment, each pair of break point series is generated based on 
10,000 replications. The generated samples are obtained using an iterative procedure of 
Gibbs sampling algorithm and get the estimates. We mainly compare the performances 
of the Bayes estimator with the maximum likelihood estimator (MLE) by calculating 
average absolute biases (AB) and mean squared error (MSE). A confidence interval (CI) 
of MLE and highest posterior density (HPD) interval of the Bayes estimator are also 
computed.  Tables 1-6 report the MSE, AB and confidence/HPD interval of all 
parameters present in both permanent and temporary shifted models. 
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Table-1.  MSE, AB and CI/HPD of μ parameter under PS-PAR(1) model 

TB Estimator 

μ11 μ12 μ13 

MSE AB CI/HPD MSE AB CI/HPD MSE AB CI/HPD 

(T/4,T/2) 

MLE 1.0097 0.7992 (8.3520,11.6731) 2.8189 1.3439 (32.1162,37.6330) 4.1938 1.6321 (61.4577,68.2851) 

SELF 0.4467 0.5310 (8.8963,11.1026) 0.7323 0.6838 (33.5560,36.3717) 1.0261 0.8037 (63.2851,66.6140) 

ELF 0.4587 0.5385 (8.8201,11.0390) 0.7386 0.6865 (33.5144,36.3355) 1.0315 0.8057 (63.2497,66.5852) 

(T/4,3T/4) 

MLE 1.0214 0.8077 (8.3261,11.6969) 1.3548 0.9268 (33.0093,36.8435) 6.2002 2.4134 (59.7821,69.6432) 

SELF 0.4480 0.5349 (8.8875,11.1057) 0.6333 0.6338 (34.6719,36.3143) 0.9074 0.7529 (63.3898,66.4942) 

ELF 0.4619 0.5440 (8.8113,11.0439) 0.6345 0.6340 (34.6440,36.2917) 0.9193 0.7584 (63.3398,66.4532) 

(T/2, 3T/4) 

MLE 0.5090 0.5702 (8.7913,11.1464) 2.8941 1.3561 (32.0412,.37.5400) 6.0916 2.4069 (59.7758,69.7308) 

SELF 0.3249 0.4553 (9.0410,10.9053) 0.7501 0.6878 (33.5291,36.3639) 0.8998 0.7517 (63.4293,66.5347) 

ELF 0.3303 0.4589 (8.9923,10.8737) 0.7589 0.6916 (33.4820,36.3237) 0.9088 0.7561 (63.3835,66.4915) 

TB Estimator 
μ21 μ22 μ23 

MSE AB CI/HPD MSE AB CI/HPD MSE AB CI/HPD 

(T/4,T/2) 

MLE 1.0579 0.8203 (13.3809,16.7410) 2.9550 1.3646 (37.0322,42.7015) 4.2959 1.6558 (66.4581,73.2309) 

SELF 0.4524 0.5361 (13.9168,16.1238) 0.7642 0.6949 (38.5207,41.3918) 1.0474 0.8145 (68.2761,71.6419) 

ELF 0.4560 0.5387 (13.8672,16.0811) 0.7689 0.6967 (38.4815,41.3583) 1.0519 0.8162 (68.2468,71.6148) 

(T/4,3T/4) 

MLE 1.0466 0.8161 (13.3834,16.7071) 1.4273 0.9550 (37.9952,41.9061) 6.1377 2.4031 (64.7961,74.6504) 

SELF 0.4472 0.5327 (13.9129,16.1081) 0.6651 0.6507 (38.6354,41.3231) 0.8987 0.7514 (68.3781,71.5061) 

ELF 0.4525 0.5356 (13.8627,16.0628) 0.6670 0.6517 (38.6153,41.2989) 0.9076 0.7550 (68.3328,71.4683) 

(T/2, 3T/4) 

MLE 0.5177 0.5759 (13.8422,16.2097) 2.8491 1.3429 (37.0584,42.6770) 9.3331 2.4443 (64.6742,74.5916) 

SELF 0.3274 0.4569 (14.0637,15.9513) 0.7371 0.6835 (38.5278,41.3831) 0.9208 0.7632 (68.3538,71.4903) 

ELF 0.3291 0.4575 (14.0380,15.9231) 0.7416 0.6849 (38.4910,41.3515) 0.9317 0.7677 (68.3074,71.4531) 

TB Estimator 
μ31 μ32 μ33 

MSE AB CI/HPD MSE AB CI/HPD MSE AB CI/HPD 

(T/4,T/2) 

MLE 1.1202 0.8484 (18.3352,21.8126) 2.8274 1.3391 (42.1176,47.5853) 4.1250 1.6185 (71.4899,78.1837) 

SELF 0.4531 0.5383 (18.9068,21.1262) 0.7377 0.6808 (43.5558,46.3537) 1.0014 0.7949 (73.2988,76.5888) 

ELF 0.4555 0.5395 (18.8665,21.0915) 0.7431 0.6831 (43.5204,46.3205) 1.0052 0.7963 (73.2724,76.5637) 

(T/4,3T/4) 

MLE 1.1247 0.8477 (18.3371,21.8030) 1.4071 0.9446 (43.0046,46.8866) 9.4117 2.4297 (69.6114,79.7753) 

SELF 0.4522 0.5374 (18.9187,21.1211) 0.6536 0.6443 (43.6595,46.3211) 0.9259 0.7596 (73.3484,76.5294) 

ELF 0.4546 0.5394 (18.8757,21.0888) 0.6544 0.6443 (43.6383,46.2961) 0.9353 0.7637 (73.3094,76.4956) 

(T/2, 3T/4) 

MLE 0.5293 0.5790 (18.8400,21.2299) 2.8747 1.3513 (42.0962,47.6055) 9.0290 2.3882 (69.6876,79.5348) 

SELF 0.3290 0.4569 (19.0554,20.9419) 0.7446 0.6863 (43.5311,46.5311) 0.8870 0.7422 (73.3785,76.4407) 

ELF 0.3310 0.4585 (19.0332,20.9224) 0.7500 0.6889 (43.4978,46.3552) 0.8973 0.7468 (73.3380,76.4061) 
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Table-2.  MSE, AB and CI/HPD of ρ parameter under PS-PAR(1) model 

TB Estimator 
ρ1 ρ2 ρ3 

MSE AB CI/HPD MSE AB CI/HPD MSE AB CI/HPD 

(T/4,T/2) 
MLE 3.86E-04 0.0155 (0.7617,0.8231) 6.05E-04 0.0191 (0.8009,0.8735) 3.45E-04 0.0144 (0.8623,0.9156) 
SELF 3.08E-04 0.0140 (0.7775, 0.8152) 3.85E-04 0.0156 (0.8226,0.8665) 2.37E-04 0.0120 (0.8897,0.9088) 
ELF 3.11E-04 0.0141 (0.7710,0.8149) 3.91E-04 0.0157 (0.8220,0.8662) 2.40E-04 0.0121 (0.8893,0.9086) 

(T/4,3T/4) 
MLE 3.70E-04 0.0153 (0.7635,0.8238) 4.40E-04 0.0165 (0.8018,0.8718) 5.46E-04 0.0183 (0.8537,0.9293) 
SELF 3.01E-04 0.0139 (0.7786,0.8159) 3.42E-04 0.0147 (0.8250,0.8653) 2.72E-04 0.0130 (0.8776,0.9099) 
ELF 3.04E-04 0.0140 (0.7782,0.8156) 3.46E-04 0.0147 (0.8245,0.8650) 2.76E-04 0.0131 (0.8772,0.9097) 

(T/2, 3T/4) 
MLE 3.12E-04 0.0140 (0.7660,0.8211) 6.39E-04 0.0197 (0.8000,0.8741) 5.55E-04 0.0182 (0.8527,0.9188) 
SELF 2.75E-04 0.0132 (0.7801,0.8139) 4.06E-04 0.0160 (0.8221,0.8669) 2.73E-04 0.0129 (0.8775,0.9198) 
ELF 2.77E-04 0.0133 (0.7796,0.8136) 4.12E-04 0.0162 (0.8215,0.8665) 2.77E-04 0.0130 (0.8771,0.9196) 

Table-3.  MSE, AB and CI/HPD of σ2 parameter under PS-PAR(1) model 

TB Estimator 

2
1  2

2  2
3  

MSE AB CI/HPD MSE AB CI/HPD MSE AB CI/HPD 

(T/4,T/2) 
MLE 0.0553 0.1871 (1.6443,2.4148) 0.1313 0.2881 (2.4492,3.6385) 0.1075 0.2624 (3.4804,4.5571) 
SELF 0.0526 0.1829 (1.8313,2.2798) 0.1257 0.2830 (2.6303,3.3918) 0.1052 0.2598 (3.7656,4.3302) 
ELF 0.0524 0.1824 (1.9096,2.2477) 0.1249 0.2825 (2.6976,3.3445) 0.1052 0.2600 (3.7420,4.3005) 

(T/4,3T/4) 
MLE 0.0561 0.1885 (1.6373,2.4258) 0.0623 0.2001 (2.6040,3.4266) 0.2228 0.3725 (3.2728,4.8284) 
SELF 0.0534 0.1846 (1.7258,2.2931) 0.0609 0.1982 (2.7886,3.3007) 0.2150 0.3676 (3.4610,4.6897) 
ELF 0.0530 0.1848 (1.7034,2.2607) 0.0612 0.1988 (2.7713,3.2783) 0.2125 0.3677 (3.4182,4.6233) 

(T/2, 3T/4) 
MLE 0.0278 0.1317 (1.7418,2.2914) 0.1246 0.2800 (2.4502,3.6277) 0.2198 0.3721 (3.2543,4.7904) 
SELF 0.0269 0.1299 (1.8322,2.1748) 0.1190 0.2738 (2.6383,3.3839) 0.2114 0.3654 (3.5519,4.5576) 
ELF 0.0269 0.1300 (1.8209,2.1597) 0.1182 0.2739 (2.6046,3.3360) 0.2098 0.3652 (3.5085,4.4927) 

Table-4.  MSE, AB and CI/HPD of μ parameter under TS-PAR(1) model 

TB Estimator 
μ11 μ12 

MSE AB CI/HPD MSE AB CI/HPD 

(T
/4

,T
/2

) MLE 0.3484 0.4701 (9.0470,10.9694) 9.6882 2.4927 (59.7725,70.0058) 
SELF 0.2544 0.4018 (9.1776,10.6238) 0.8789 0.7509 (63.4696,66.5473) 
ELF 0.2569 0.4041 (9.1451,10.7981) 0.8860 0.7538 (63.4210,66.5083) 

(T
/4

,3
T/

4) /.MLE 0.5264 0.5769 (8.8041,11.1993) 4.3461 1.6701 (61.4640,68.2793) 
SELF 0.3320 0.4578 (9.0383,10.9339) 1.0267 0.8107 (63.2910,66.6277) 
ELF 0.3380 0.4618 (8.9952,10.9010) 1.0311 0.8126 (63.2588,66.6000) 

(T
/2

, 3
T/

4) MLE 0.3564 0.4763 (9.0041,10.9704) 9.5505 2.4672 (59.5605,69.8348) 
SELF 0.2601 0.4070 (9.1457,10.8226) 0.8662 0.7403 (63.3814,66.5010) 
ELF 0.2627 0.4092 (9.1124,10.7953) 0.8746 0.7442 (63.3389,66.4576) 

TB Estimator 
μ21 μ22 

MSE AB CI/HPD MSE AB CI/HPD 

(T
/4

,T
/2

) MLE 0.3389 0.4640 (14.0701,15.9820) 9.0765 2.4004 (64.7812,74.5734) 
SELF 0.2460 0.3951 (14.2963,15.6310) 0.8259 0.7231 (68.4579,71.4092) 
ELF 0.2470 0.3958 (14.2751,15.6134) 0.8342 0.7265 (68.4169,71.3705) 

(T
/4

,3
T/

4) MLE 0.5396 0.5827 (13.8021,16.2317) 4.2236 1.6387 (66.5093,73.2619) 
SELF 0.3371 0.4609 (14.0440,15.9567) 1.0094 0.7992 (68.2958,71.6303) 
ELF 0.3397 0.4627 (14.0114,15.9304) 1.0123 0.8003 (68.2650,71.5994) 

(T
/2

, 3
T/

4) MLE 0.3463 0.4674 (14.0265,15.9676) 8.9987 2.3973 (64.9211,74.7977) 
SELF 0.2516 0.3983 (14.1652,15.8195) 0.8139 0.7184 (68.5092,71.4686) 
ELF 0.2528 0.3989 (14.1437,15.8033) 0.8190 0.7211 (68.4693,71.4312) 

TB Estimator 
μ31 μ32 

MSE AB CI/HPD MSE AB CI/HPD 

(T
/4

,T
/2

) MLE 0.3410 0.4622 (19.0455,20.9890) 9.1295 2.4025 (69.7670,79.6721) 
SELF 0.2465 0.3930 (19.1830,20.7309) 0.8263 0.7213 (73.4572,76.4584) 
ELF 0.2470 0.3934 (19.1673,20.7180) 0.8335 0.7245 (73.4118,76.4259) 

(T
/4

,3
T/

4) MLE 0.5579 0.5957 (18.7864,21.2446) 4.1963 1.6336 (71.5202,78.2553) 
SELF 0.3452 0.4683 (19.0392,20.9707) 0.9911 0.7936 (73.3388,76.6031) 
ELF 0.3464 0.4691 (19.0184,20.9520) 0.9944 0.7948 (73.3101,76.5762) 

(T
/2

, 3
T/

4) MLE 0.3559 0.4773 (19.0131,20.9763) 9.7078 2.4736 (69.6701,79.8414) 
SELF 0.2579 0.4063 (19.1466,20.8161) 0.8784 0.7447 (73.4009,76.4541) 
ELF 0.2590 0.4071 (19.1316,20.8015) 0.8865 0.7481 (73.3617,76.4218) 
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Table-5.  MSE, AB and CI/HPD of ρ parameter under TS-PAR(1) model 

TB Estimator 
ρ1 ρ2 

MSE AB CI/HPD MSE AB CI/HPD 

(T
/4

,T
/2

) MLE 6.84E-05 0.0066 (0.7852,0.8120) 1.44E-04 0.0095 (0.8765,0.9140) 
SELF 6.50E-05 0.0064 (0.7863,0.8127) 8.61E-05 0.0074 (0.8828,0.9031) 
ELF 6.51E-05 0.0064 (0.7863,0.8126) 8.66E-05 0.0074 (0.8827,0.9030) 

(T
/4

,3
T/

4) MLE 7.53E-05 0.0068 (0.7842,0.8125) 1.06E-04 0.0081 (0.8795,0.9115) 
SELF 6.94E-05 0.0066 (0.7865,0.8109) 8.22E-05 0.0072 (0.8828,0.9109) 
ELF 6.96E-05 0.0066 (0.7864.0.8108) 8.27E-05 0.0072 (0.8827,0.9100) 

(T
/2

, 3
T/

4) MLE 6.78E-05 0.0065 (0.7851,0.8122) 1.46E-04 0.0094 (0.8758,0.9138) 
SELF 6.48E-05 0.0064 (0.7861,0.8130) 8.51E-05 0.0072 (0.8831,0.9128) 
ELF 6.49E-05 0.0064 (0.7860,0.8129) 8.56E-05 0.0072 (0.8830,0.9128) 

 

Table-6.  MSE, AB and CI/HPD of σ2 parameter under TS-PAR(1) model 

TB Estimator 
2

1  2
2  

MSE AB CI/HPD MSE AB CI/HPD 

(T
/4

,T
/2

) MLE 0.0179 0.1060 (1.7948,2.2324) 0.2226 0.3779 (3.2909,4.8390) 
SELF 0.0113 0.0810 (1.8216,2.1787) 0.1358 0.2834 (3.5064,4.5448) 
ELF 0.0113 0.0811 (1.9124,2.1674) 0.1355 0.2842 (4.5515,4.4714) 

(T
/4

,3
T/

4) MLE 0.0266 0.1292 (1.7484,2.2860) 0.1069 0.2602 (3.4820,4.5781) 
SELF 0.0163 0.0978 (1.8903,2.2176) 0.0673 0.1976 (3.6646,4.3453) 
ELF 0.0165 0.0987 (1.8756,2.1985) 0.0678 0.1988 (3.6351,4.3069) 

(T
/2

, 3
T/

4) MLE 0.0174 0.1051 (1.7963,2.2275) 0.2146 0.3666 (3.2875,4.8103) 
SELF 0.0111 0.0804 (1.8269,2.1748) 0.1319 0.2756 (3.4099,4.6227) 
ELF 0.0112 0.0809 (1.8176,2.1635) 0.1330 0.2794 (3.3519,4.5439) 

 
For the simulation study, we observed that both PS-PAR(1) and TS-PAR(1) models 

are having minimum AB and average MSE when estimated through the Bayesian 
estimator as compared to MLE. It is also observed that there is a considerable difference 
in AB and MSE in respective sets of break points on both models with complete and 
temporary shifts. We observe the same performance of the Bayes estimates under both 
symmetric and asymmetric loss functions and approximately same magnitude in terms 
of their MSE and AB.  

5. Real Data Analysis  

An empirical application is the way of analysis of real data to get the applicability 
of the proposed model. There are sufficient studies that show a change on economic 
series due to a change on economic policy, trade strategy, market fluctuation, etc. For 
example, present scenario of India is making several policies specially demonetization, 
good and service tax (GST), which may be improving the economic condition in the 
future. For analysis purpose, we have taken annual series of gross domestic product 
(GDP) per capita of South Asian Association for Regional Cooperation (SAARC) 
countries over the period from 1981 to 2016. Due to restrictions in data availability, 
it was not possible to include the economy series of Afghanistan as it is available since 
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2002. GDP per capita determines the growth of the economy of a country and compares 
it with its trading participant countries as well as applies it in better economic analysis 
and policy-making in the future. Over the world, SAARC association has a common 
cultural background and shared political experience and decides five areas namely 
agriculture, rural development, telecommunications, meteorology, health and 
population activities, where economic prosperity is the best achieved. The purpose is to 
investigate whether the presence of break point(s) in GDP per capita series may be 
varying due to a change in all model parameters or not and then find the estimates of 
the parameter for the best fitted model. For better understanding, we require a strongly 
balanced panel that has multiple breaks at the same time point. For this, it is natural to 
determine the number and location of structural breaks, which is developed by Zeileis 
et al. (2002). The most preferred break point(s) and its location for GDP per capita 
series for all countries are summarized in Table 7. 

Table-7.  Number of breaks and its location for GDP series of SAARC countries 

Country Number of Breaks T1 T2 
Bangladesh 1 2008 - 
Bhutan 2 1997 2008 
India 2 1997 2008 
Maldives 2 1997 2008 
Nepal 1 2008 - 
Pakistan 2 1992 2008 
Sri Lanka 2 1994 2008 

 
Results reported in Table 7 indicate that the break arises mostly in 1997 and 2008. 

These break points occur when Asian financial crisis and Global financial crisis 
happened. These financial crises were analysed by various researchers from both 
theoretical and application point of view. To study the PS-PAR(1) model, assembly 
Bhutan, India and Maldives as a panel, which has similar break points TB = (1997, 2008) 
and compute the estimated values of the proposed model. To check the validity of the 
proposed PS-PAR(1) model to the other change point models which have a break in 
lesser number of parameter(s), i.e. incomplete multiple breaks PAR(1) models. For 
GDP per capita series, we verify the applicability of PS-PAR(1) model using Akaike 
information criterion (AIC) and Bayesian information criterion (BIC). The AIC and 
BIC values are based on the likelihood function, which needs to be determined by 
Bayesian estimators. The mathematical formula for the calculation of AIC and BIC is 

  KyLAIC 2|ˆlog2   

   nTKyLBIC log|ˆlog2   

where  yL |̂  is the likelihood of the PS-PAR(1) model given the data when it is 
evaluated at the Bayesian estimator of Θ for 1000 iterations and K is the number of 
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estimated parameters in the proposed model. The results are obtained by taking the 
average of all values of AIC and BIC.  

Table 8 records the AIC and BIC values for each model as per the break presence 
in the parameters. From Table 8, one can observe that the PS-PAR(1) model with 
a break present in autoregressive coefficient, mean and error variance having minimum 
AIC and BIC value with other permanent shifted models at breaks (1997, 2008). Hence, 
the PS-PAR(1) model is well fitted for the GDP series. We also verify the result based 
on the Bayes factor. The Bayes factor is the ratio of posterior probability under null and 
alternative hypothesis. Higher values of the Bayes factor lead to rejection of null 
hypothesis. This shows that series is well fitted from the alternative model, i.e. proposed 
model. Hence, Table 9 records the value of Bayes factor (BF) to take decision about the 
best fitted model. This table shows that there is a strong evidence to support the 
presence of breaks in all parameters as Bayes factor is so much high to reject the null 
hypothesis. Overall, we conclude that PS-PAR(1) model is well fitted for the GDP series 
at breaks (1997, 2008). 

Table-8.  Selection the parameter(s) shifting in PS-PAR(1) model using information criterion 

Model Break in Parameter(s) -logL AIC BIC 

PAR(j, μij, σj) AR coefficient, mean & error variance  205.8028 441.6056 481.8375 

PAR(j, μij, σ) AR coefficient & mean 250.9187 527.8375 562.7052 

PAR(j, μi, σj) AR coefficient & error variance 221.6518 461.3035 485.4427 

PAR(, μij, σj) Mean & error variance 471.7729 969.5459 1004.414 

PAR(j, μi, σ) AR coefficient 232.5329 479.0658 497.8407 

PAR(, μij, σ) Mean  8.35E+28 1.67E+29 1.67E+29 

PAR(, μi, σj) Error variance 2.15E+30 4.30E+30 4.30E+30 

PAR(, μi, σ) - 7.19E+30 1.44E+31 1.44E+31 

 

Table-9.  Model selection using Bayes factor when alternative hypothesis (H1) considers multiple 
breaks in all parameters 

Model Null hypothesis (H0 ) consider breaks in BF Evidence against 
H0 

PAR(j, μij, σ) AR coefficient & mean 1.13E+34 Very Strong 

PAR(j, μi, σj) AR coefficient & error variance 6.26E+13 Very Strong 

PAR(, μij, σj) Mean & error variance 1.20E+11 Very Strong 

PAR(j, μi, σ) AR coefficient 1.00E+38 Very Strong 

PAR(, μij, σ) Mean 9.69E+29 Very Strong 

PAR(, μi, σj) Error variance 3.09E+20 Very Strong 

PAR(, μi, σ) - 4.60E+30 Very Strong 
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After identifying the best suitable model, the estimated value of the maximum 
likelihood and Bayesian estimators of PS-PAR(1) model parameters are summarized in 
Table 10. 

Table-10.  MLE and Bayes estimates based on GDP series using PS-PAR(1) model 

Parameter MLE SELF ELF 

1 9.54E-01 9.97E-01 9.97E-01 

2 9.61E-01 9.66E-01 9.66E-01 

3 9.78E-01 9.29E-01 9.29E-01 

μ11 3.15E+02 4.65E+02 4.38E+02 

μ21 2.80E+02 3.41E+02 2.85E+02 

μ31 2.97E+02 1.17E+03 1.16E+03 

μ12 5.54E+02 1.01E+03 1.80E+03 

μ22 2.94E+02 6.33E+02 4.98E+02 

μ32 1.93E+03 3.84E+03 3.81E+03 

μ13 8.07E+03 2.34E+03 2.27E+03 

μ23 4.72E+03 1.50E+03 1.33E+03 

μ33 3.80E+04 9.70E+03 1.00E+04 

2
1  2.45E+03 7.42E+04 7.84E+04 

2
2  1.03E+04 1.24E+05 2.21E+05 

2
3  9.95E+03 1.16E+05 1.78E+05 

6. Conclusion 

There is a sufficient literature on the time series model with a structural break, 
which allows a break on mean and variance, but the present paper has extended the 
frontier of knowledge in a PAR(1) model, which allows a break on all parameters of the 
model at multiple time points, and carried out the Bayesian analysis. Sometimes, 
changes on parameters are temporary, so the model with a temporary shift is also 
discussed. It recorded better results in a simulation study. An empirical application on 
GDP per capita time series of SARRC association is applied to PS-PAR(1) model and it 
is observed that both Asian and World financial crises have affected the GDP series of 
SAARC countries due to a break in all parameters permanently and the same may be 
applied in other areas like insurance, agriculture, administrative, crime, etc. The result 
may be extended for other structural break models with non-normal error and time 
trend. 
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