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The MNS blood group antigens are expressed in the RBC
membrane on glycophorin A (GPA), glycophorin B (GPB), or
combinations of both. GPA expresses the M or N antigen, whereas
GPB expresses the S or s antigen and the N antigen (′N′). Both
glycophorin genes (GYPA and GYPB) are located on the long arm
of chromosome 4 and share 95 percent sequence identity. This
high degree of sequence identity, together with the rare
involvement of a third homologous gene (GYPE), provides an
increased chance of recombination, resulting in hybrid molecules
that often carry one or more novel antigens. Some of the antigens
in the MNS system result from a single nucleotide substitution. The
MNS blood group system now consists of more than 40 distinct
antigens. This review summarizes the molecular basis associated
with some of the antigens in the MNS blood group system.
Immunohematology 2006;22:171–182.
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MNS Blood Group System
The MNS blood group system was the second

blood group system to be discovered.1 The MNS
antigens are carried on glycophorin A (GPA),
glycophorin B (GPB), or hybrids of GPA and GPB, and
are fully developed at birth. Currently, this blood group
system consists of more than 40 distinct antigens
(Table 1), and is second only to the Rh blood group
system in its complexity.2 The antigens of the MNS
system arise from single nucleotide substitution,
unequal crossing over,or gene conversion between the
glycophorin genes (Table 2).

Glycophorin A and Glycophorin B
GPA is the most abundant sialoglycoprotein in the

RBC membrane with an estimated 1 × 106 copies per
RBC.3–5 GPA consists of 131 amino acids with an
approximate molecular weight of 43 kDa [by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE)],organized into three domains:an extracellular N-
terminal domain of 72 amino acids, a hydrophobic
membrane-spanning domain of 23 amino acids, and a C-
terminal cytoplasmic domain of 36 amino acids.

GPB is similar to GPA, but consists of 72 amino
acids, has an approximate molecular weight of 25 kDa
(by SDS-PAGE) and is also organized into three domains:
an extracellular N-terminal domain of 44 amino acids, a
hydrophobic membrane-spanning domain of 20 amino
acids, and a short C-terminal cytoplasmic domain of 8
amino acids. There are an estimated 2 × 105 copies of
GPB present on the RBC membrane.4,5

On intact RBCs, GPA is susceptible to cleavage by
trypsin at amino acid residue 31 and 39 but is resistant
to α-chymotrypsin cleavage whereas GPB is resistant to
trypsin cleavage but sensitive to α-chymotrypsin at
amino acid residue 32.3,6 Thus, these proteolytic
enzymes are useful in laboratory testing to identify
antibodies in the MNS blood group system.

Function of Glycophorin A and
Glycophorin B

GPA and GPB contribute most of the carbohydrate
on the RBC membrane. The amino-terminal domains of
GPA and GPB carry O-glycans while only GPA carries
an asparagine-linked-glycan (N-glycan).5 The O-glycans
are smaller molecules than N-glycans and are attached
to serine or threonine. In glycophorins, it is the O-
glycans that carry most of the sialic acid and contribute
to the net negative charge of the RBC through the high
sialic acid content of each glycoprotein. The negative
charge keeps RBCs from sticking to each other and to
the endothelial cells of the blood vessels.5,7 The
negatively charged glycocalyx also protects the RBC
from invasion by bacteria and other pathogens.8,9 GPA-
deficient RBCs are more resistant to invasion by
Plasmodium falciparum merozoites due to the
reduction of sialic acid on the RBCs because sialic acid
appears to be essential for adhesion of the parasite to
the RBC.10–14 The sialic acid attached to GPA and GPB
has been reported to be the target of the influenza
virus8 and the encephalomyocarditis virus.15 Moreover,
GPA plays the role of chaperone for band 3 transport to
the RBC membrane.16,17
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GYP Gene Family
The genes encoding GPA (GYPA) and GPB (GYPB)

are homologous and are located on the long arm of
chromosome 4.18 Although it may not encode a RBC
product, a third homologous gene, GYPE, which is
adjacent to GYPB, can contribute to hybrid genes. The
GYPA has seven exons, GYPB has six exons (of which
exon 3 is a pseudoexon or non-coding exon), and
GYPE has six exons (of which exons 3 and 4 are
pseudoexons).19–22 For each of the GYP genes, exon 1
and part of the 5′ end of exon 2 encode the leader
sequence for the corresponding glycophorin, exons 2
to 4 encode the extracellular domains, exon 5 encodes
the transmembrane domains of each glycophorin, and
exon 6 and part of the 5′ end of exon 7 of GYPA
encode the cytoplasmic domain of GPA (Fig. 1:
Modified from Reid ME, 1994).23

Polymorphic Antigens

M, N, S, and s antigens
GPA carries M and N antigens. M has serine and

glycine while N has leucine and glutamic acid at
position 1 and 5, respectively.24,25 The first 26 amino
acids of GPB are identical to GPA carrying the N

Table 1. Antigens of the MNS blood group system2

Antigen Historical name ISBT number

M MNS1

N MNS2

S MNS3

s MNS4

U MNS5

He Henshaw MNS6

Mia Miltenberger MNS7

Mc MNS8

Vw Gr,Verweyst MNS9

Mur Murrell MNS10

Mg Gilfeather MNS11

Vr Verdegaal MNS12

Me MNS13

Mta Martin MNS14

Sta Stones MNS15

Ria Ridley MNS16

Cla Caldwell MNS17

Nya Nyberg MNS18

Hut Hutchinson MNS19

Hil Hill MNS20

Mv Armstrong MNS21

Far Kam MNS22

sD Dreyer MNS23

Mit Mitchell MNS24

Dantu MNS25

Hop Hopper MNS26

Nob Noble MNS27

Ena MNS28

ENKT EnaKT MNS29

′N′ MNS30

Or Orriss MNS31

DANE MNS32

TSEN MNS33

MINY MNS34

MUT MNS35

SAT MNS36

ERIK MNS37

Osa MNS38

ENEP MNS39

ENEH MNS40

HAG MNS41

ENAV AVIS MNS42

MARS MNS43

ENDA High – GPA-B-A MNS44

ENEV High – V62G MNS45

MNTD Low – T17R MNS46

Table 2. Molecular mechanisms and associated antigens

Molecular mechanism Associated antigens

Single nucleotide substitution GPA:Vr, Mta, Ria, Nya, Or, ERIK,
Osa, ENEP/HAG, ENAV/MARS

GPB: S/s, Mv, sD, Mit

Two or more nucleotide substitution M/N

Unequal crossing over Sta, Dantu, Hil,TSEN, MINY, SAT

Gene conversion He, Mia,Vw/Hut/ENEH, Mur, Mg,
Mc, Sta, Hil, Hop, Nop, DANE,
MINY, MUT

Fig. 1. Genomic organization of GYPA, GYPB, and GYPE genes.

( , pseudoexon)
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antigen.19,24,26 GPB carries S or s antigens. The Ss
polymorphism of GPB depends on a single amino acid
substitution at position 29; S has methionine and s has
threonine27 (Table 3).

High-Prevalence Antigens

U antigen
The U antigen is commonly found in all

populations. The U– phenotype is found among Blacks
and its prevalence in certain regions of Africa is as high
as 35 percent.28 For expression, the U determinant
requires the presence of GPB amino acids 33 to 3929

and possibly an interaction with another membrane
protein, the Rh associated glycoprotein (RhAG).30 The
U– phenotype is associated with an absence of GPB or
with certain altered forms of GPB.31 U– RBCs (except
those that are Dantu+ and some Rhnull/Rhmod RBCs) are
S–s–. Of S–s– RBCs, approximately 16 percent have
weak expression of U antigen (U+var) encoded by a
hybrid GYP gene. Of these U+var samples approx-
imately 23 percent are He+.32,33

Ena antigen
Anti-Ena is a global term used for antibodies that

detect high prevalence antigens on GPA. The
sensitivity of these antigens to enzyme treatment is
dependent on their location on GPA. Thus,Ena antigens
are classified as trypsin sensitive (TS), ficin sensitive
(FS), and ficin resistant (FR). Ena antigens are absent
from GPA-deficient RBCs and those carrying certain
variants of GPA.3,5,7,34

Genetic Mechanisms Giving Rise to Variant
Phenotypes

Variant phenotypes may occur as a consequence of
a single amino acid substitution, crossing over, gene
conversion, or gene deletion (Table 2). A novel
sequence of amino acids exposed on the outside
surface of the RBC can result in the expression of novel
antigens.

GYP gene deletions giving rise to null phenotype
RBCs

A deletion of GYPA (exon 2 to 7) and GYPB (exon
1) gives rise to the rare En(a–)Fin phenotype and RBCs
from these individuals lack GPA and, thus, antigenic
determinants associated with GPA.31,35 Deletion of
GYPB (exon 2 to 6) and GYPE (exon 1) precludes
production of GPB and RBCs from these individuals
have the S–s–U– phenotype.36 A deletion of GYPA
(exon 2 to 7), GYPB (exon 1 to 6) and GYPE (exon 1)
results in the MkMk genotype and RBCs from these
individuals lack both GPA and GPB and, thus lack all
MNS blood group antigens20,37 (Table 4).

Nucleotide substitution
Those antigens in the MNS system that result from

a single nucleotide substitution within GYPA or GYPB31

are listed in Table 5.

Crossing over and gene conversion
The GYPA, GYPB, and GYPE share more than 95

percent sequence identity, span at least 150 kb of DNA,

Table 3. Amino acid polymorphisms of GPA and GPB

Common Amino acid
Glycophorin Gene variants polymorphisms

GPA GYPA GPAM 1 Ser, 5 Gly

GPAN 1 Leu, 5 Glu

GPB GYPB GPBS 29 Met

GPBs 29 Thr

Table 4. Molecular basis of null phenotype RBCs

Null phenotype RBCs Molecular basis

En(a–)Fin Deletion of GYPA (exon 2 to 7) and GYPB
(exon 1)

S–s–U– (deletion type) Deletion of GYPB (exon 2 to 6) and GYPE
(exon 1)

MkMk Deletion of GYPA (exon 2 to 7), GYPB
(exon 1 to 6), and GYPE (exon 1)

Table 5. Molecular basis of antigens in the MNS system involving single
nucleotide substitution38

Antigen Exon Nucleotide change Amino acid change

GPA

ENEH/Vw/Hut 3 140C>T>A Thr28Met/Lys

Vr 3 197C>A Ser47Tyr

Mta 3 230C>T Thr58Ile

Ria 3 226G>A Glu57Lys

Nya 3 138T>A Asp27Glu

Or 3 148C>T Arg31Trp

ERIK 4 232G>A Gly59Arg

Osa 3 217C>T Pro54Ser

ENEP/HAG 4 250G>C Ala65Pro

ENAV/MARS 4 244C>A Glu63Lys

GPB

S/s 4 143T>C Met29Thr

Mv 2 65C>G Thr3Ser

sD 4 173C>G Pro39Arg

Mit 4 161G>A Arg35His
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and are adjacent at the MNS locus in the order of 5′-
GYPA-GYPB-GYPE-3′. GYPE probably does not encode
a RBC membrane component but it does participate in
gene rearrangements resulting in variant alleles.
Sequence homology between the glycophorin genes
increases the chance of recombination because of
unequal crossing over or gene conversion events
(Figure 2: Adapted with permission from Cheng-Han
Huang).31,39

Unequal crossing over is a mutual exchange of
nucleotides between misaligned homologous genes
during meiosis; this mechanism occurs between
regions of homology with generation of two
recombinants in reciprocal arrangement. A
chromosome carrying the hybrid GYP(A-B) does not
have GYPA and GPYB (Lepore type). In contrast, a
chromosome carrying a hybrid GYP(B-A) also has both
GYPA and GYPB (Anti-Lepore type).

Gene conversion can occur during the process of
DNA repair between homologous genes during
meiosis.31,40 Gene conversion is the transfer of
nucleotides from one gene to another gene and does
not result in a reciprocal product. Gene conversion

can cause insertion of nucleotides from
GYPA into the GYPB or GYPB into the
GYPA. As a result of this mechanism, the
chromosome carrying a GYP(B-A-B) also
carries a GYPA but not GYPB, whereas
the chromosome carrying a GYP(A-B-A)
also carries a GYPB but not GYPA.
During gene conversion, a consensus
splice sequence may be altered and a
number of recombinant products have
been described. These alterations some-
times cause transcription of part of the
GYPB pseudoexon 3 and hence allow
translation of a novel sequence of amino
acids.31 Gene conversion gives rise to
hybrid genes that encode novel glyco-
phorin molecules carrying certain low-
prevalence antigens in the MNS blood
group system (Table 6).

Low-Prevalence Antigens

He
The He antigen is found in about 3

percent of African Americans but is very
rare in Caucasians.41 Protein sequencing
showed that GP.He is identical to GPB
except for an alteration at the amino-

terminus; the amino acids leucine, threonine, and
glutamic acid found in positions 1, 4, and 5 of GPB are
replaced by threonine, serine, and glycine,
respectively.42 In GP.He, the presence of a glycine
residue at position 5 is recognized by some anti-M.
DNA analysis has shown that He antigen is due to gene
conversion resulting in a GYP(B-A-B) or a GYP(B-A-
ΨB-A) hybrid. In addition to the classic He+S+ and
He+s+ variants, four other GYPB variants of GP.He have
been described as follows.

GP.He(P2) is characterized by two mutations in
GYPB: a C>G change at the 3′ end of exon 5, which
creates a cryptic acceptor splice site, and a G>T change
at position +5 of intron 5, which alters the consensus
donor splice site.43 These two mutations cause skipping
of exon 5 and a shift in the open reading frame with
chain elongation. Consequently, a portion of the 3′
untranslated region is read during protein synthesis,
causing GP.He(P2) to have a new transmembrane
hydrophobic sequence. This variant does not express
the S antigen or the U antigen. GP.He(P2) has not been
detected in the RBC membrane; however, these S–s–
RBCs are He+w because of the expression of low levels

P. PALACAJORNSUK

Fig. 2. An unequal crossing-over event and gene conversion events between homologous
glycophorin genes on the long arm of chromosome 4 during meiosis.

[Figure is adapted from C.-H. Huang (Huang C-H, Blumenfeld OO. MNSs blood groups
and major glycophorins: Molecular basis for allelic variation. In: Molecular Basis of
Human Blood Group Antigens. Cartron J-P, Rouger P (eds). New York: Plenum Press,
1995; p.160.), with permission.]
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of GPB.He. GP.He(NY) is characterized by a partial
deletion of exon 5 that alters the open reading frame
and is predicted to encode a protein of 43 amino acids,
which has not been demonstrated in the RBC
membrane. The S–s– RBCs are He+w caused by the
expression of low levels of GPB.He.33

GP.He(GL) is characterized by two nucleotide
changes: a T>G mutation at nucleotide -6 of the
acceptor splice in intron 3, which leads to skipping of
exon 4, and a C>G mutation in exon 5. The latter point
mutation results not only in a predicted Thr>Ser
substitution at position 65 but in the creation of a new
acceptor splice site; partial inactivation of the normal
splice site results in four different cDNAs. The full-
length transcript GP.He-1,which is equivalent to GPB in
molecular size, contains a Thr>Ser substitution at
position 65 and encodes He, S, and U antigens.
Transcript GP.He-2 codes for a polypeptide with an
intact transmembrane segment but, because of the
deficiency of exon 4, the encoded protein lacks the
sequence defining the S and U antigens as well as the
cleavage sites of α-chymotrypsin.3 Transcripts GP.He-3
and GP.He-4 are low-level transcripts with major
deletions which probably prevent insertion of their
putative protein products into the membrane.44

GP.Cal is an example of a gene conversion event
resulting in a GP(B-A-ΨB-A) hybrid that carries both He
and Sta antigens. The GYPA recombination site is in
exon 2; the mature protein, after cleavage of the leader
peptide, is GP(A-A). GYPB also contributes the pseudo-
exon,which is out-spliced.45 The 5′ portion of GP.Cal is
similar to GP.He with a GP(B-A-B) arrangement,
whereas its 3′ portion has a GP(B-A) configuration
identical to the GP.Sta.46

SAT
The SAT antigen is associated with two different

glycophorin isoforms.47 GP.TK is a GP(A-B) hybrid
composed of exons 1 to 4 of GYPAN and exons 5 to 6
of GYPB.48 This transcript encodes 104 amino acids
with a hexapeptide sequence “Ser-Glu-Pro-Ala-Pro-Val”
at positions 69 to 74 produced by the junction
between GPA and GPB, and encodes the SAT antigen.
GP.SAT is associated with a GYPA-B-A hybrid gene
which encodes a GPA-B-A hybrid (Table 6). This variant
is characterized by an insert, between exon 4 of GYPA
and exon 5 of GYPB, of nine bases (three amino acids)
originating from the 5′ end of exon 5 of GYPB. The tri-
peptide sequence “Ala-Pro-Val” inserted into the GPA
molecule creates the SAT-specific sequence.49

Dantu
GP.Dantu is encoded by a GYP(B-A) hybrid. This

hybrid gene consists of exon 1, exon 2, pseudoexon 3,
exon 4 of GYPB, and exons 5 to 7 of GYPA. There are
four types of Dantu phenotype, designated NE, MD, Ph,
and JO variants (Table 7). The MD hybrid gene is
flanked by GYPA and GYPB, suggesting that this type
originated from a single unequal crossing-over event.50

The NE and Ph variants contain a cis GYPA but lack a
GYPB.51 In the case of NE, the GYP(B-A) hybrid gene is
duplicated; thus NE and Ph variants can be
distinguished by the ratio of GP.Dantu [GP(B-A) hybrid]
to GPA.52 RBCs with the JO variant have only one-half
the normal levels of GPA, thus leading to the
assumption that this variant may contain a GP(A-B-A)
hybrid molecule and an unchanged GYPB rather than
an unchanged GYPA and GP(B-A) hybrid.53

Table 6. Hybrid glycophorin molecules, phenotypes, and associated low
prevalence antigen38

Molecular Phenotype Antigens associated
basis Glycophorin symbol with hybrid

GYP(A-B) GP(A-B) GP.Hil (Mi.V) Hil, MINY

GP.JL (Mi.XI) TSEN, MINY

GP.TK SAT

GYP(B-A) GP(B-A) GP.Sch (Mr) Sta

GP.Dantu Dantu (see Table 7)

GYP(A-B-A) GP(A-B-A) GP.Mg Mg

GP.KI Hil

GP(A-B) GP.SAT SAT

GYP(B-A-B) GP(B-A-B) GP.Mur (Mi.III) Mia, Mur, MUT,
Hil, MINY

GP.Bun (Mi.VI) Mia, Mur, MUT, Hop,
Hil, MINY

GP.HF (Mi.X) Mia, MUT, Hil, MINY

GP.Hop (Mi.IV) Mia, Mur, MUT,
Hop,TSEN, MINY

GP(B-A-B) GP.He; (P2, GL) He

GYP(B-A-ΨB-A) GP(A-A) GP.Cal He, Sta

GYP(A-ΨB-A) GP(A-B-A) GP.Vw (Mi.I) Mia,Vw

GP.Hut (Mi.II) Mia, Hut, MUT

GP.Nob (Mi.VII) Nob

GP.Joh (Mi.VIII) Nob, Hop

GP.Dane (Mi.IX) Mur, DANE

GP(A-A) GP.Zan (MZ) Sta

GYPA 179G>A GPA GP.EBH ERIK (from
transcript 1)

See text

GP(A-A) GP.EBH Sta (from transcript 2)
See text

GYP(A-ΨE-A) GP(A-A) GP.Mar Sta



176 I M M U N O H E M A T O L O G Y, V O L U M E 2 2 , N U M B E R 4 , 2 0 0 6

P. PALACAJORNSUK

Mg

The Mg antigen is associated with a GYP(A-B-A)
hybrid; it has the same amino acids at positions 1
(leucine) and 5 (glutamic acid) as GYPAN but threonine
in position 4 is substituted by an asparagine.54 RBCs
with GP.Mg do not react with anti-M and anti-N but do
react with anti-Mg.55 Mg+ RBCs react with anti-DANE
because of the amino acids Asn-Glu-Val at positions 4,5,
and 6 are thought to be part of the DANE epitope.56,57

Sta (Stones)
The Sta antigen is most commonly associated with

a GYP(B-A) hybrid but also can be associated with
GYP(A-B-A) or GYP(A-E-A) hybrid genes.38

GP.Sch (Mr) is encoded by a GYP(B-A) hybrid. The
hybrid gene arose from a single unequal crossing over
between misaligned GYPA and GYPB. This misalign-
ment led to GYPB exons 1 to pseudoexon 3 being
joined to exons 4 to 7 of GYPA. The Sta epitope is
determined by the amino acid sequence of the
junction of exon 2 to exon 4 of either GPB or GPA. The
molecule is composed of amino acids 1 to 26 of GPB
and amino acids 59 to 131 of GPA.

GP.Zan (MZ) is encoded by a GYP(A-ΨB-A) hybrid.
The GP.Zan phenotype is characterized by the co-
transmission of M and Sta.58 The homologous segment
of GYPB pseudoexon 3 replaces exon 3 and the 5′ end
of intron 3 of GYPA, introducing the defective donor
splice site of the pseudoexon. Thus, the encoded
glycophorin consists of GPA lacking the amino acids
encoded by exon 3.

GP.EBH is another Sta carrying glycophorin, which
arises by a single nucleotide substitution at position 179
in GYPA. This variant is caused by a G>A mutation in the
3′ end of exon 3,39 which creates a Gly>Arg substitution
at amino acid position 59. The mutation also affects pre-
mRNA splicing because of the partial inactivation of the
adjacent 5′ donor splice site. The full-length transcript
(transcript 1) encodes a variant GPA molecule with the
arginine substitution at amino acid position 59 defining
the ERIK antigen, whereas the shorter transcript
(transcript 2) lacks exon 3 and carries the Sta antigen.58,59

GP.Mar is encoded by a GYP(A-ΨE-A) hybrid that
arose from a homologous DNA transfer from GYPE to
GYPA. This GYPE segment covers pseudoexon 3 and
extends to the defective donor splice site mutated by
the G>A transition at +1 position of GT dinucleotide,
which abolishes a donor splice site as well as the
expression of exon 3 of GPA.60 GYP.Mar gene is
apparently identical to the GYP.Zan in the mode of
gene conversion and in the resulting glycophorin.

The so-called or obsolete Miltenberger subsystem
A number of low-prevalence antigens in the MNS

blood group system were for many years grouped
together in the Miltenberger (Mi.) subsystem.61

Originally, RBCs reactive with the anti-Mia serum were
classified into four classes on the basis of their different
reactions with four type sera called Verweyst (Vw),
Miltenberger (Mia),Murrell (Mur),and Hill (Hil).62 Some
of the classes of Miltenberger did not react with anti-
Mia but reacted with one or more of the other three
specific antisera, e.g., GP.Hil (Mi.V) RBCs reacted with
anti-Mia but did not react with anti-Hil.63 The
Miltenberger subsystem grew to 11 classes,which were
defined by one or more determinants reacting with
type-specific antisera (Table 8).38,64

As the complexity of the Miltenberger subsystem
increased, further expansion no longer seemed
feasible, desirable, or relevant. A notation was
introduced to replace the classification of MNS variants
into the increasingly complicated Miltenberger
subsystem. In this notation, the serologically specified
phenotypes are defined by characteristic glycophorin
variants (GP. for the glycoprotein and GYP. for the
gene) with the abbreviated name of the propositus in
whom the variant has been described, e.g., Mi.V
becomes GP.Hil and the encoding gene is referred to as
GYP.Hil. The Miltenberger subsystem will not be
expanded further and is now considered obsolete.65

The molecular basis of antigens in the obsolete
Miltenberger subsystem can be placed into the
following categories.

1. Glycophorin A-B hybrids: GP(A-B)
GP.Hil (Mi.V) and GP.JL (Mi.XI) are each encoded

by a GYP(A-B) hybrid gene (Fig. 3-I). The GYPA to
GYPB junction in the GYP.Hil gene is located at the 5′
end of the intron 3 of GYPA, whereas in GYP.JL the
junction occurs at the 3′ end of intron 3 and includes 7
nucleotides (nts) of exon 4 of GYPB. The allele
responsible for GP.Hil encodes s antigen, travels with
either Ms or Ns, and expresses Hil and MINY

Table 7. Mechanism, ethnicity, and occurrence of Dantu phenotypes

Dantu Occurrence
phenotypes Mechanism Ethnicity (relative)

NE GYPA-GYP(B-A)-GYP(B-A) Black Most (common
phenotype)

MD GYPA-GYP(B-A)-GYPB White Rare (1 proband)

Ph GYPA-GYP(B-A) Black Rare (1 proband)

Jo GYP(B-A)-GYPB White Rare (1 proband)
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antigens,22,66,67 whereas GP.JL expresses an altered S, a
weak M,TSEN, and MINY antigens.67–71 No example of
GP.Hil phenotype was found in testing 50,000 English
donors, but GP.Hil was found with a frequency of 1 in
2000 in one survey of Swiss blood donors.72

2. Glycophorin A-B-A hybrids: GP(A-B-A)
GP.Vw (Mi.I), GP.Hut (Mi.II), GP.Nob (Mi.VII),

GP.Joh (Mi.VIII), and GP.Dane (Mi.IX) are each encoded
by a GYP(A-B-A) hybrid (Fig. 3-II). In these hybrid
genes, inserts of different short portions of the
pseudoexon of GYPB replace the same number of
nucleotides in exon 3 of GYPA. The small inserts range
from 1 to 16 bp and do not alter the open reading
frame or disrupt the splice sites. Thus, the short part of
the pseudoexon is translated in this hybrid.

The insert encoding GP.Vw and GP.Hut variants
results in an amino acid polymorphism at position 28;
the threonine present in GPA is changed to methionine
in the case of GP.Vw73 and to lysine in the case of
GP.Hut. GPVw and GP.Hut phenotype RBCs are
recognized by anti-Vw and anti-Hut, respectively. The
allele responsible for GP.Vw usually travels with Ns, NS,
or MS whereas GP.Hut travels with MS or Ns. The
highest prevalence of GP.Vw phenotype, 1.43 percent,
was found in southeastern Switzerland.41

RBCs with GP.Nob express the Nob antigen.
Structural analysis of GP.Nob showed that it differs
from GPA at amino acid positions 49 and 52; the
arginine at position 49 in GPA is substituted by
threonine and the tyrosine at position 52 is replaced by
serine because of ten nucleotides in exon 3 of GYPA
(nt 67–76) that have been replaced by the
corresponding sequence of the GPB pseudoexon.74,75

The GP.Nob phenotype has been only found in white
donors; three positive reactors with the Raddon serum
were found in tests on 4929 random group O blood
donors at Bristol, England, a frequency of 0.06
percent.76 GP.Nob is associated with Ms and MS.

GP.Joh closely resembles GP.Nob but has the Hop
antigen as well as the Nob antigen. The altered GPA of

Table 8. GP classification and associated antigens of the obsolete Miltenberger subsystem38

GP. Mi.Reaction of RBCs with antiserum

Classes Mia Vw Mur Hil Hut MUT Hop Nob DANE MINY TSEN

GP.Vw Mi.I + + – – – – – – – – –

GP.Hut Mi.II + – – – + + – – – – –

GP.Mur Mi.III + – + + – + – – – + –

GP.Hop Mi.IV + – + – – + + – – + +

GP.Hil Mi.V – – – + – – – – – + –

GP.Bun Mi.VI + – + + – + + – – + –

GP.Nob Mi.VII – – – – – – – + – – –

GP.Joh Mi.VIII – – – – – – + + – – –

GP.Dane Mi.IX – – + – – – – – + – –

GP.HF Mi.X + – – + – + – – – + –

GP.JL Mi.XI – – – – – – – – – + +

Fig. 3. Genomic organization of some glycophorin hybrids.

( , GPA; , GPB; and , pseudoexon B)
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GP.Joh differs from GP.Nob by having only the arginine
to threonine substitution at amino acid position 49.77

The frequency of GP.Joh is unknown. The GYP.Joh
traveled with Ns in the families of the two known
propositi.

RBCs carrying GP.Dane express Mur and DANE
antigens. In GP.Dane, exon 3 of GYPA (codons 35–41)
is replaced by the corresponding sequence of the
GYPB pseudoexon.78 As a consequence of this gene
conversion event, the hepta peptide sequence of GPA,
35Ala-Ala-Thr-Pro-Arg-Ala-His41, is changed to the
hexapeptide sequence 35Pro-Ala-His-Thr-Ala-Asn40.
GP.Dane has a prevalence of 0.43 percent in Danes. In
the four Danish propositi, GYP.Dane was inherited
with MS.56

3. Glycophorin B-A-B hybrids: GP(B-A-B)
GP.Mur (Mi.III),GP.Hop (Mi.IV),GP.Bun (Mi.VI), and

GP.HF (Mi.X) are each encoded by a GYP(B-A-B)
hybrid (Fig. 3-III).

GP.Mur RBCs are Mur+, Hil+ and MINY+ and the
allele responsible for GP.Mur always travels with s
antigen, either as Ms or Ns. GP.Bun is almost identical
to GP.Mur but GP.Bun cells are Hop+ and the allele
responsible for GP.Bun was aligned with Ms. Both
GP.Mur and GP.Bun are encoded by a GYPBs but differ
in the length of the GPB pseudoexon insert (55 bp for
GP.Mur and 131 bp for GP.Bun).79 Because this
segment comprises a portion of both exon 3 and intron
3, which carries a functional 5′ splicing signal, the
rearrangement results in the expression of a normally
unexpressed GYPB pseudoexon sequence. The
GYP.Bun gene differs from the GYP.Mur gene by only
one nucleotide in the coding sequence. This results in
a predicted arginine (GP.Mur) or threonine (GP.Bun) at
position 48. GP.Mur and GP.Bun are rare in Caucasians
but GP.Mur has a prevalence between 5 and 10 percent
in some Asian populations,40,80,81 9.6 percent in Thais,
and 7.3 percent in Taiwanese.82

GP.Hop, which expresses TSEN but not Hil, is
identical to GP.Bun. The allele responsible for GP.Hop
always travels with S, whereas the allele for GP.Bun
always carries the s antigen.61,83

GP.HF is characterized by M and an unusually
strong s antigen as well as by its reactivity with anti-Hil
and anti-MINY. This glycophorin hybrid is similar to
GP.Mur and GP.Bun.84 In GP.HF, a 98-bp insert from
exon 3 of GYPA creates a GYP(B-A-B) hybrid, which
encodes a peptide differing from GP.Mur by five amino
acid residues and from GP.Bun by six amino acid
residues.

Conclusion
The MNS system is a complex blood group system

consisting of more than 40 antigens on GPA and GPB,
or on hybrid glycophorin molecules. It is second only
to the Rh blood group system in its complexity. The
antigens of the MNS blood group system arise from
single nucleotide substitution, unequal crossing over,
gene conversion, or both between the glycophorin
genes. Some of these molecular mechanisms occur as
a consequence of misalignment of the chromosomes
carrying the glycophorin genes during meiosis. This is
possible because the glycophorin family of genes is
homologous and adjacent on the chromosome.
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