
Contents lists available at ScienceDirect

Results in Physics

journal homepage: www.elsevier.com/locate/rinp

Analysis of quantum coherence for localized fermionic systems in an
accelerated motion
Zahid Hussain Shamsia, Amna Noreenb, Asif Mushtaqc,⁎

a Department of Mathematics, University of the Punjab, Lahore 54590, Pakistan
b Rundhaugen 28, 8023 Bodø, Norway
c Fakultet for lærerutdanning, Kunst og Kultur, Nord Universitet, 8049 Bodø, Norway

A R T I C L E I N F O

Keywords:
Quantum coherence
Fermionic cavity modes
Relativistic quantum information
Quantum entanglement

A B S T R A C T

Although quantum coherence is a well known phenomenon in quantum information theory and quantum optics,
it has been investigated from the resource theory perspective only recently. Furthermore, quantum coherence
has important implications in relativistic quantum information where the degradation of entanglement can be
attributed to decoherence. In this paper, we investigate the quantum coherence of +(1 1) Dirac field modes
localized in a cavity as observed by two relatively accelerated observers. The acceleration is assigned very small
values and its effects are investigated in a perturbative regime. For this purpose, we use parameterized two-
qubit pure entangled state and a Werner state. We find that coherence shows a periodic degradation due to
accelerated motion. However, this degradation can be balanced by adjusting the durations of uniform and ac-
celerated motion. Moreover, it is found that dynamics of quantum coherence closely resembles that of en-
tanglement under the same settings. This similarity confirms the recent attempts to relate the resource theories
of coherence and entanglement in a relativistic regime.

Introduction

Quantum coherence, emerging from quantum superposition prin-
ciple, plays a pivotal role in quantum mechanics applications that are
considered impossible within the realm of classical mechanics [1,2].
However, significance of coherence as a useful resource like entangle-
ment and quantum discord has been realized only recently. In analogy
to quantification of entanglement resource, Baumgratz et. al. [3], pro-
vided a rigorous framework for the quantification of quantum co-
herence. By introducing the notions of incoherent states, incoherent
operations Baumgratz et. al. defined necessary conditions which should
be satisfied by any measure of coherence. For instance, measures like l1
norm and relative entropy with respect to a certain basis are found to be
suitable candidates which satisfy these necessary conditions [3]. This
study further triggered the research for finding other suitable measures
of coherence and identifying conditions to manipulate the coherence
[4–8]. Also, the interrelation of coherence has been recently studied
with other quantum information resources like entanglement and
quantum discord [9,10]. Furthermore, following the concept of the
local operations and classical communication (LOCC) employed for
entanglement distillation, a class of local incoherent operations and
classical communication (LICC) has been proposed in [11] for

coherence distillation. However, because of the basis dependent char-
acteristic of coherence, the quantification of coherence departs from
those of the other information resources. More recently, Yao et al. [10]
have developed a hierarchical structure of quantum entanglement,
quantum discord and quantum coherence for multipartite system. Using
this structure they have introduced the basis-free coherence measure
and have shown that basis-free coherence is equivalent to quantum
discord.

Quite recently, quantum coherence has been envisaged in an in-
novative way for detecting topological edge states [12]. These topolo-
gical states have key contribution towards topologically protected
manipulation and processing of quantum information. Therefore, de-
tection of such states is of great importance. To this end, Zaimi et al.
[12] utilized the concept of decoherence rate of a qubit attached to one
end of a topological system. The topological system, on the other end, is
connected to a standard tight-binding hopping Hamiltonian which
serves as the environment. Subsequently, evaluation of decoherence
rate of the attached qubit is rigorously exploited to investigate and
classify the nature of topological states as edge states.

In addition to information theoretic investigation of quantum re-
sources at microscopic scale, the dynamics of these resources has also
been explored in the relativistic regime. In fact, relativistic quantum
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information has emerged as a vibrant field of research which envisages
the general relativistic effects on quantum resources like quantum en-
tanglement, quantum discord, fidelity of teleportation and Bell non-
locality [13–22]. Moreover, relation between coherence and entangle-
ment has also been investigated in relativistic regimes. For instance, the
acceleration can be termed as an environmental decoherence [23–25]
which causes the degradation of entanglement resource and affects the
efficacy of quantum information processes, negatively.

More recently, the quantification of quantum coherence in non-in-
ertial or accelerated frames has been studied [26] for free Bosonic and
fermionic field modes. In addition to free field modes, the dynamics of
field modes confined in cavities has received much attraction for reli-
able implementation of certain quantum information tasks [27–31]. For
instance, loophole-free violation of a Bell inequality has been recently
investigated using entangled electron spin separated by a distance of 1.3
km [27]. Moreover, localized eigenstates have also been successfully
utilized for stability analysis of classically chaotic quantum systems
[32]. Furthermore, over long distance, relativistic signatures for
quantum information processes may also become significant
[25,13,31,20,33,21,22]. Therefore, it is quite intriguing to investigate
the quantum coherence in such situations. With this motivation, we
explore the quantum coherence for the fermionic field modes in a cavity
observed by two relatively accelerated observers. More precisely, we
follow the Dirac field analysis proposed in [21] where the modes of
massless Dirac field are confined to a cavity where one of the observers
remains inertial while the other one undergoes the segments of inertial
and non-inertial motion with uniform acceleration. We restrict the
uniform acceleration to be very small (h 1) and use perturbation
theory to observe the effects of the accelerated motion on the quanti-
fication of coherence for the confined modes with respect to the weight
parameter and dimensionless acceleration parameter h. Before pro-
ceeding further, it seems reasonable to quickly remind the basic notions
and conditions for coherence measures as proposed in [3].

Let H be a D-dimensional Hilbert space with a given basis i{ }.
Using this basis, we can define = i ii i with an arbitrary set of
non-negative probabilities { }i as an incoherent state. Further, let
I H be a set of consisting of all such incoherent states. As described
in [3], any suitable measure of quantum coherence C ( ) must satisfy
the following conditions:

1. C ( ) 0 for H and =C ( ) 0 iff I

2.
(a) C ( ) is monotonic under all the incoherent completely positive

and trace-preserving (ICPTP) maps (·)ICPTP : i.e.,
C C( ) ( ( ))ICPTP , where K K( )ICPTP n n n

† and K{ }n
denotes the set of Kraus operators (incoherent operations) which
satisfy =K Kn n n

† and K Kn n
†

I I .
(b) Monotonic average coherence under the subselection based on

measurement outcomes: C p C( ) ( )n n n , where
= K K p/n n n n

† , =p K KTr( )n n n
† and Kn satisfies the conditions

defined in 2. (a).
3. Convexity under mixing of quantum states:

p C C p( ) ( )n n n n n n .

We now recall known measures of coherence as discussed in [3].
The l1 norm is intuitively proposed to quantify the coherence by con-
sidering the off-diagonal elements of in the specified basis [3] and it
is given by

=C ( ) | |,l
i j

ij1
(1)

where = i ji j i j, , . Following the distance based argument for

quantification of quantum resource, the relative entropy of coherence is
also proposed in [3] which is defined as

=C S S( ) ( ) ( ),rel ent
D

. . (2)

where = i iD
i ii and =S ( ) Tr( log ). The rest of the paper is

organized as follows. The perturbed Bogoliubov coefficients and Fock
space quantization for vacuum and one charged particle Fermionic
states in a cavity are described in Section “Bogoliubov Transformation
For Inertial and Non-inertial Segments”. The quantum coherence (C) for
the two mode Fermionic Fock state shared between Alice and Rob is
discussed in Section “Coherence for two-mode states”. In Section “Co-
herence for the Werner state”, we extend our investigation to Werner
state [34]. In Section “Conclusion and discussion”, we discuss and
conclude our results.

Bogoliubov transformation for inertial and non-inertial segments

In order to find the unitary transformation of cavity’s transitions
between the inertial and accelerated (non-inertial) segments of motion,
we setup the cavities with the observers referred to as Alice and Rob,
respectively. Both the observers are initially inertial and completely
overlap at =t 0. Here we assume that the walls of the cavity are located
at =x a and =x b with < <a b0 . Rob then moves with uniform ac-
celeration to the right along the time-like killing vector for duration

= 0 to = 1 in the Rindler co-ordinates. Duration of the acceleration,

+a b
2 , measured using proper time at the cavity’s center is thus

= +a b
1 2 1. Finally, Rob again becomes inertial with respect to its rest
frame. Alice cavity remains inertial throughout Rob’s trip. Therefore,
three segments of Rob’s trajectories can be identified as regions I, II and
III.

This grafting process of Rob’s motion is explained here to make this
paper sufficiently self contained. Earlier the same process is introduced
and exploited by [35,21] to analyze entanglement for Bosonic and
fermionic cavity modes.

The Dirac field representation in three regions is

= +
<

a bI: ,
n

n n
n

n n
0 0

†

(3a)

= +
<

a bII: ,
n

n n
n

n n
0 0

†

(3b)

= +
<

a bIII: ,
n

n n
n

n n
0 0

†

(3c)

with the respective non vanishing anticommutators

= =a a b bI: { , } { , } ,m n m n mn
† † (4a)

= =a a b bII: , , ,m n m n mn
† †

(4b)

= =a a b bIII: { , } { , } .m n m n mn
† †

(4c)

Using Bogoliubov transformation, the Dirac field modes between re-
gions I and II are related as [21]

= A ,m
n

mn n
(5)

where n and m are the Dirac field modes in regions I and II respec-
tively. For the small acceleration case, Friis et al. [21] derived these
coefficients Amn in the perturbative regime by introducing the di-
mensionless parameter = +h L

a b
2 , satisfying < <h0 2. These coeffi-

cients preserve the unitarity of the transformation to the orderO h( )2 for
> +s s0, 0 and are given in terms of Maclaurin’s series expansion as

[21,35]

= + + +A A A A O h( ),mn mn mn mn
(0) (1) (2) 3 (6)

where the superscripts reflect the order of perturbation with respect to
parameter h. During the non-inertial trajectory, modes m with respect
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to Rob remain independent and do not interact. Hence, these modes can
only develop some phases during the non-inertial duration 0 1.
This change in the modes can be balanced by introducing a diagonal
matrix G ( )1 whose diagonal entries are [21]

=G i( ) exp( ).nn n1 1 (7)

For 1, the transformation from region II to region III can be ob-
tained by simply using the inverse transformation =A A† 1. The evo-
lution of the Dirac field mode from region I to region III in Rob’s frame
can then be expressed by the Bogoliubov transformation matrix

= A G A( ) .†
1A (8)

Thus the Bogoliubov transformation for the Dirac field modes between
regions I and III reads

= .m
n

mn nA
(9)

It can be noticed thatA , being the composition of unitary matrices, is
also a unitary matrix to the order h2. Similarly, the Bogoliubov trans-
formation for the Dirac field mode operators can also be expressed as
[35,21]

> = +
<

k a a b0: ,k
l

l lk
l

l lk
0 0

†
A A

(10a)

< = +
<

k b a b0: .k
l

l lk
l

l lk
0

†

0
A A

(10b)

The relation between the Fock vacua in regions I and III denoted by 0
and 0 is [36,37,21]

= Ne0 0 ,W (11)

where

=
<

W V a b .
p q

pq p q
0, 0

† †

(12)

The coefficient matrix V and the normalization constant N are the un-
knowns to be evaluated. Using (3a), (3b), and (9), the coefficient matrix
is given by

= + + = +V V V O h V O h( ) ( ),(0) (1) 2 (1) 2 (13)

with

= =V G G*pq pq q qp p
(1) (1) (1)A A (14)

The relation between Fock vacua in regions I and III given by (11)
yields [21]

= +

+

<

+

+ +

V V

V V O h

0 1 1
2

0 1 1

1
2

1 1 1 1 ( ).

p q
pq

p q
pq p q

p q i j
pq ij p i q j p i q j

0, 0

2

,

, ,
, ,

3

(15)

where + +a1 0p p
† and b1 0q q

† represent the single-particle
Fock states for modes p 0 and <q 0, respectively. Here, sign ± in the
superscript denotes the sign of the charge. Further, the term

1pi p i, is introduced to incorporate the Pauli-exclusion principle
for the single particle states with same charge sign. Also, the ordering of
the single-particle ket states reflect the corresponding ordering of the
fermionic creation operators rather than the fermionic modes [35].
Similarly, the charged single particle states in region III are [21]

> = +

+

+

+ +

+ + +

+ + +

k V

V V

V V

O h

0: 1 1

1 1
2

1 1 1 1

1
2

1 1 1 1 1

( ),

k
p q

pq qk p
m

mk

p q
pq m

p q
pq pm m p q

p q i j
pq ij pi pm mi qj m p i q j

, 0

,

2

,

, ; ,

3

A A

(16a)

< = +

+

+

<

+

+ +

k V V

V

V V

O h

0: 1 1 1 1
2

1 1 1 1

1
2

1 1 1 1 1

( ),

k
p q

pq pk q
m

mk
p q

pq

m
p q

pq qm p q m

p q i j
pq ij pi qm qj mj p i q j m

, 0 ,

2

,

, ; ,

3

A A

(16b)

where the one particle states ±1k in region I are

=+k a0: 1 0 ,k k
† (17a)

< =k b0: 1 0 .k k
† (17b)

Coherence for two-mode states

Here we compute the quantum coherence for a complete trip of a
two mode entangled states from region I to region III in perturbative
regime to the second order perturbation, h2, and study the effects of
uniform acceleration (h) and weight parameter ( ) on the coherence of
the evolved fermionic modes confined to a cavity. We consider a bi-
partite two qubit pure state parameterized by weight parameter in
region I. The state consists of two Dirac field modes in a cavity. The
initial parameterized state is

= +0 0 1 1 1 ,init A R m A
µ

k R
2 (18)

where the subscripts A and R refer to the observers, Alice and Rob,
respectively. The superscripts µ and reflect positive of negative fre-
quency of cavity modes, so that µ ( ) = + when m k( ) 0 and µ ( ) =
− when m k( ) 0. Following the procedure given in [21], the initial
state (18) is represented in two mode Hilbert space by using the two-
particle basis, with one excitation for each of the modes m and k in
Alice’s and Rob’s cavities, respectively. The corresponding density
matrix in the region I is written as

= +

+ + H c

0 0 0 0 (1 ) 1 1 1

1 ( 1 0 1 0 1 . ).
A R m A

µµ
m k R

k A
µ

m R k

2 2

2 (19)

It should be noted that all the modes, except the reference mode in the
Rob’s cavity are related to the environment. Therefore, a partial trace is
taken over all of modes in the Rob’s cavity except mode k. By exploiting
the unitarity of the perturbed Bogoliubov transformation (8) up to the
second order perturbation and using the inside out partial tracing ap-
proach [21], we obtain the following reduced density matrix in region
III
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= +

+ + ×

+ +

+

¬ f h f h

G h

H c f h

f h

Tr 0 0 {(1 ) 0 0 1

1 } 1 {( ) 0 1 0

1 . } (1 ) 1 1 {(1 ) 1

1 0 0 },

k k A k III k k III

k k kk A
µ

m III

k m A
µµ

m k k III

k k III

,
2 2 2

2 (2) 2

2 2

2

A

(20)

where fk and fk are defined as

> =f0: ,k
p

pk
0

(1)
2

A

(21a)

< =
<

f0: .k
q

qk
0

(1)
2

A

(21b)

The density matrix can be re-written as

= + h ,k k k, ,
(0)

,
(2) 2 (22)

where k,
(0) and k,

(2) denote the unperturbed and perturbed matrix
components, respectively. In order to evaluate the the quantum co-
herence given by (2), we need to compute the eigenvalues of the density
matrices k, and k

D
, . Here, k

D
, is a diagonal matrix which contains the

diagonal elements of k, . The eigenvalues of the unperturbed part of
the evolved density matrix k,

(0)are ={ } {1, 0, 0, 0}i
(0) . Note that the ei-

genvalues 1 and 0 denote the non-degenerate and degenerate case,
respectively. Before proceeding further to find second order corrections
to the unperturbed eigenvalues, it is pertinent to seek the source of
degenerate eigenvalues. It can be noticed by meticulous comparison of
(19) and (20) that the leading order terms in (20) remain invariant
under Bogoliubov transformation. Thus, the degeneracy of unperturbed
eigenvalues may be attributed to invariance or symmetry of leading
order terms under Bogoliubov transformation. Interestingly, it is worth
noticing that the symmetry is broken in perturbative regime when
second order terms are also considered. Therefore, the broken sym-
metry may be attributed to second order perturbative contribution of
the accelerated motion which indeed led to non-degenerate eigenvalues
given by (23). We, now, compute the second order corrections to the
non-degenerate unperturbed eigenvalue = 11

(0) using standard pertur-
bation procedure However, in case of the triply degenerate eigenvalue

= 02,3,4
(0) , the standard perturbation method is not valid and is needed

to be replaced by the degenerate case. The second order corrections to
the degenerate eigenvalue can be obtained by finding the eigenvalues
of its degenerate subspace matrix Mas described in [38]. Consequently,
the eigenvalues of the perturbed density matrix k, are obtained as

= +f h f h f f h{ } { , (1 ) , 1 ( (1 ) ) , 0}.i k k k k
2 2 2 2 2 2 2

(23)

Since the trace of the perturbed density matrix is =Tr( ) 1k, and all the
eigenvalues are non-negative, k, satisfies the density matrix re-
presentation. In the similar fashion, eigenvalues of the perturbed di-
agonal matrix can be computed which are given as

= f h f h f h

f h

{ } { (1 ), (1 )(1 ), ,

(1 ) }.
i
D

k k k

k

2 2 2 2 2 2

2 2 (24)

where +f f,k k given by (21) can be re-written as

=+f E A| | ,k
p

k p
pk

0
1

2 (1)
2

(25a)

=
<

f E A| | ,k
q

k q
qk

0
1

2 (1)
2

(25b)

= + =+

=
f f f: ,k k k

p
pk
(1)

2

A

(25c)

with

E
i

b a
exp

ln ( / )
.1

1

(26)

Next, by plugging the eigenvalues given by the expressions,(23) and
(24) in (2), the relative entropy of coherence for the state (20) is given
by

=C S S( ) ( ) ( ),rel ent k k
D

k. . , , , (27)

The variation of relative entropy of coherence as a function of accel-
eration parameter < h0 1 and weight parameter is plotted in
Figs. 1 and 2. In case of parameter with fixed value of h, it can be seen
in Figs. 1 (a) and 2 (a) that the relative entropy of coherence mono-
tonically increases with the increasing values of for <0 1/2 .
Later on, the relative entropy shows monotonically decreasing trend for
increasing value of in the range <1/2 1. However, for accel-
eration parameter h, the relative entropy of coherence monotonically
decreases with the increase in h for the perturbative regime < h0 0.2.
For clear depiction of this degradation, the plots are shown at magnified
scale in Figs. 1 (b) and 2 (b). Also, for =h 0, the relative entropy of
coherence simply reduces to =C ( )rel ent k. . ,

2

log (1 )log (1 )2
2 2

2
2 .

In addition to the above analysis for parameters and h, the relative
entropy of coherence is also analyzed in Fig. 3 for full duration
(0 1) of inertial and non-inertial motion of Rob’s cavity. Since, the
functions ±fk given by the relations (21) are periodic and non-negative
over the period , the coherence between the modes in non-inertial and
inertial cavities is also periodic in the durations of the individual tra-
jectory segments. Moreover, relative entropy of coherence shows higher
magnitudes of periodic degradation with the increase in acceleration
parameter h. This behavior of coherence degradation due to accelerated

Fig. 1. (a) The plot depicts the variation of relative entropy of coherence C for
the evolved state in region III as a function of h 1 and with mode =k 1 and

=s 1
4 . (b) The plot is shown at magnified scale for greater visibility of coherence

degradation as a function of acceleration parameter h.
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motion closely resembles the entanglement degradation phenomenon
investigated in [21]. That is, the non-inertial motion of an observer in
some sense induces a certain environmental decoherence which affects
the information resources like entanglement and coherence in a similar
fashion. This degradation, in turn, limits the efficacy of certain
quantum information theoretic tasks which rely on these pivotal re-
sources. However, this degradation of coherence can be adjusted by fine

tuning the duration of inertial and non-inertial motion as described in
[21]. Moreover, the interdependence of entanglement and coherence
investigated in [23–25] for free field modes has also been confirmed
here for cavity field modes.

Coherence for the Werner state

In the previous section, we considered pure state for relative en-
tropy of coherence. However, in realistic situations, probe states are
mixed. Therefore, we further investigate relative entropy of coherence
by considering evolution of the Werner state [34] from region I to re-
gion III. For this purpose, we consider the initial two qubit Werner state
in region I given by

= + +

+

r
r

( 0 0 1 sin 1 1 )( 0 0 1 1 1 )
1

4
,

W

m
µ

k
µ

m k

;

2 2

(28)

where the parameter r indicates the mixedness of the pure entangled
two qubit state and the maximally mixed bipartite state. Considering
the perturbed evolution of the state from region I to region III in the
similar fashion as discussed earlier, we obtain the transformed density
matrix in Region (III) basis to the order h2 with the help of (15) and
(16). Afterwards, by exploiting the unitarity of the Bogoliubov trans-
formation (8) and applying the partial trace as described in [21], the
reduced density matrix in the region III is expressed as

= +

+ + × +

+ +

+ + + + +

r f h f h

G h H c

f h f h

r g h g h

[ 0 0 {(1 ) 0 0 1

1 } 1 {( ) 0 1 0 1 . }

(1 ) 1 1 {(1 ) 1 1 0 0 }]

[( 0 0 1 1 ) {(1 ) 0 0 (1 )

1 1 }],

W k

A k III k k III

k k kk A
µ

m III k

m A
µµ

m k k III k k III

c
A m A

µµ
m k III k

k III k

; ,

2 2 2

2 (2) 2

2 2 2

2 2

A

(29)

where r c and ±gk are defined as

=r r1
4

,c
(30a)

=± ±g f f .k k k (30b)

Thus the perturbed density matrix can be expressed in the compact
form as

= + h .W k W k W k; , ; ,
(0)

; ,
(2) 2 (31)

The unperturbed eigenvalues corresponding to density matrix W k; ,
(0) are

given as

= +r r r r r{ } { , , , }.i
c c c c(0) (32)

Two explicit cases arise for =r 0 and =r 1. For =r 0, the unperturbed
density matrix represents the maximally mixed state, with standard
basis and degenerate eigenvalue of = 11,2,3,4

(0) . Here, the relative en-
tropy of coherence yields a trivial result, =C 0. For =r 1, the situa-
tion is exactly the same as elucidated in Section “Coherence for two-
mode states”. Therefore we restrict values of r, in the open interval

< <r0 1.
It can be noted that, the eigenvalues +r r c and r c of the unperturbed

part of the density matrix denote the non-degenerate and triply de-
generate cases, respectively. Therefore, following the perturbative
procedure prescribed in [38] and used in the previous section for the
non-degenerate and degenerate cases, the eigenvalues of the reduced
density matrix W k; , in the region III are

Fig. 2. (a) The plot depicts the variation of relative entropy of coherence C for
the evolved state in region III as a function of h 1 and with mode =k 1 and

=s 1
4 . (b) The plot is shown at magnified scale for greater visibility of coherence

degradation as a function of acceleration parameter h.

Fig. 3. The plot shows relative entropy of coherence C of the evolved sate in
region III (for =k 1) as a function of acceleration h 1 and b a/ln( / )1

2 1 ,
over the full period 0 1.
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= + + + +

+ + + +

+ +

r r r f f h r g g h

r r g g h r r g h rf h

r r g h rf h

{ } { ( (1 ) ) ( (1 ) ) ,

((1 ) ) , ,

(1 ) }.

i
c

k k
c

k k
c c

k k
c c

k k
c c

k k

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 (33)

From (33), it can be observed that the perturbed density matrix satisfies
the density matrix conditions, i0 ;i and = 1i i . Proceeding in
the similar fashion, we find the eigenvalues of the diagonal counterpart

W k
D

; , of the density matrix W k; , as follows.

= + + +

+ + + + +

+ +

r r r f r g h

r r r f r g h r r f r g h

r r f r g h

{ } { ( ) ,

(1 ) ( (1 ) ) , ( ) ,

( (1 ) ) }.

i
D c

k
c

k
c

k
c

k
c

k
c

k
c

k
c

k

2 2 2

2 2 2 2 2

2 2 (34)

The relative entropy of coherence (C) for the evolved Werner state can
be computed using the relation (2). The variation of C as a function of
parameter and mixing parameter r is shown in Fig. 4. As a function of
mixing parameter r, the coherence monotonically decreases with the
decreasing value of r. This decreasing behavior is justified due to fact
that the small values of parameter r reflect the increased inclination
towards the maximally mixed state whereas the large values of r reflect
inclination towards pure quantum state.

Further, for a given value of r, the coherence with respect to ex-
hibits first increasing and then decreasing behaviors for <0 1/ 2
and <1/ 2 1, respectively. The initial increase and then sub-
sequent decline of quantum coherence with respect to superposition
parameter can be justified and explained as follows. The super-
position parameter, , signifies the degree of entanglement via Schmidt
decomposition as given by (18). Therefore, as value of approaches
1/ 2 from either side, the correlation among the quantum states in
Alice and Rob regions approaches its maximum value (maximally en-
tangled state). It, therefore, can be observed that increasing trend in
entanglement corresponds to increasing trend in quantum coherence as
approaches 1/ 2 from either side. On the other hand, as moves

away from its value 1/ 2 , from either side, the correlation decreases
which is reflected in the respective decrease in quantum coherence.

In order to investigate the similarity in the dynamics of quantum
coherence and quantum entanglement for Werner state, we resort to
finding concurrence [39] using the same setting. In contrast to several
measures of entanglement such as logarithmic negativity, entropy of
entanglement and distillable entanglement, concurrence is more effec-
tive measure in operational sense and simplicity, in particular, for two
qubit mixed states. The concurrence is also related to entanglement of
formation (EoF) which can also be used to quantify entanglement based
on the separability criterion [39]. For two qubit mixed state , con-
currence is defined as

=Con ( ) max(0, ),1 2 3 4 (35)

where =i( 1, 2, 3, 4)i denote the eigenvalues of matrix,
=M , arranged in descending order. Here
= ( ) ( )y y y y where y is pauli spin matrix. From Figs. 4

and 5, it can be observed that relative entropy of quantum coherence
and concurrence for the evolved Werner state exhibit similar behavior.
This analysis, therefore, confirms the similarity in the behavior of
quantum entanglement and quantum coherence as investigated in
[21,23–25]

Loss of quantum coherence due to mixing parameter r can also be
explained from the perspective of Halevo bound [40]. Holevo bound
quantifies the classical capacity of quantum channel. It has been re-
cently found that the loss in classical channel capacity corresponds to
respective loss in quantum coherence due to mixing and vice versa
[41]. This correspondence in loss relies on the close resemblance of
expressions for measuring quantum coherence and channel capacity
based on well-known Shanon entropy. Based on this argument, loss of
quantum coherence due to mixing parameter r can be related to channel
capacity where the uniform acceleration may be viewed as a cause of
noise in the quantum channel defined by Bogoliubov transformation.

Conclusion and discussion

We investigated the effect of accelerated motion on the quantifica-
tion of quantum coherence of the +(1 1) of fermionic modes localized
in a cavity from the resource theoretic perspective. In our scenario, the
Dirac field modes were localized in two cavities with Dirichlets
boundary conditions, where one of the observers remained inertial,
while the other underwent the segments of inertial and non-inertial
motion with uniform acceleration. The acceleration parameter h was
assigned very small values and its effects were studied using a pertur-
bative scheme. We considered an parameterized two-qubit pure en-
tangled state and a Werner state. In former case, with fixed value of ,
the coherence shows periodic degradation due to segments of inertial
and accelerated motion induced by acceleration parameter h. This be-
havior of degradation can be justified due to mixing of cavity modes
due to accelerated motion. However, by carefully adjusting the dura-
tion of accelerated and inertial segments of motion, degradation in
coherence can be avoided. We also observed the effect of parameter
with fixed value of parameter h. In this situation, the coherence in-
creases monotonically for <0 1

2 and achieves maximum value at
= 1

2 (maximally entangled state). Afterwards, quantum coherence
decreases monotonically for < 11

2 . This behavior of coherence
with respect to confirms the correlation and similarity between
quantum coherence and quantum entanglement. In later case (Werner
state), quantum coherence is investigated with respect to mixing
parameter r, in addition to the parameters and h. We observed the

Fig. 4. The plot shows the relative entropy of coherence C of the evolved state
for different values of mixedness parameter r as a function of h 1 and with
mode =k 1 and =s 1

4 .

Fig. 5. The plot shows the concurrence Con ( ) of the evolved state for different
values of mixedness parameter r as a function of h 1 and with mode =k 1
and =s 1

4 .
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similar behavior for parameters and h as discussed in former case.
However, for mixing parameter, r, quantum coherence monotonically
decreases for r0 1. This monotonic degradation can be justified due
to the fact that the higher values of mixing parameter r reflect the
higher degree of mixedness in quantum states. Consequently, the higher
degree of mixedness results in degradation of the quantum coherence.

From the above discussion, we also observed that dynamics of
quantum coherence closely resembles that of entanglement under the
same settings. This similarity confirms the recent attempts to relate the
resource theories of coherence and entanglement in a relativistic re-
gime.
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