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Abstract 
Rice is a globally important crop and a major staple for over two-thirds of the world’s 

population. Australian grown rice is renowned for its high and consistent quality and is the 

preferred choice in the domestic and many international rice markets. A long-established focus 

on quality in the Australian rice breeding program has led to a range of new varieties for different 

cuisines, for example sushi, long grain, medium grain and fragrant rice types. Development of new 

varieties takes up to 10 years from parental cross to a pure seed line that boasts sound agronomic, 

pest and disease resistance and the desired combination of quality traits. Selection techniques 

vary for each generation, and for each trait. This is a huge undertaking with upwards of 6500 

breeding lines assessed for physical quality each year, and more than 3000 samples assessed for 

cooking qualities. As new consumer trends emerge, new market opportunities for rice are 

uncovered such as the recent shift toward more health-conscious consumer decisions. 

Development of more varieties with lower glycaemic index is one avenue to explore further. For 

this, additional, more well-understood tools are required to measure, predict and/or actively 

select for this trait at different stages of the breeding and quality program. 

Apparent amylose content is currently the only published link available with which 

researchers can predict the digestibility characteristics of a given rice sample. While the 

correlation between these attributes is good (r2 = 0.73), it is also indicative that there are other 

drivers at play. This is highlighted in instances where glycaemic index can vary by up to 20 points 

at a given apparent amylose content. There is a gap in the understanding of which levels of starch 

structure, if any, can account for the differences observed in digestibility where apparent amylose 

content is similar. To explore this, multiple levels of starch structure were assessed in different 

rice varieties using a combination of novel and well-established characterisation methods. 

The starch structure was explored at 4 of the 6 levels of organisation at both the molecular and 

supramolecular levels. At the molecular level, the average degree of branching was determined 

using solution-state NMR spectroscopy, providing an accurate assessment of the overall 

frequency of starch branching within the rice samples. The average degree of branching was found 

to be proportional with apparent amylose content, a result of the bimodal branching distribution 

in starch, and was not intrinsically capable of individual assessments of the distributions of 

degrees of branching of amylose and amylopectin. As a result, it was determined that the average 

degree of branching did not provide significant additional value in comparison to the already well-

established measurement of AAC. 

The dynamics of the molecular structure was further characterised through the determination 

of T2 relaxation times by solid-state NMR spectroscopy. A relationship between the T2 relaxation 



xxxii 
 

times of starch CHx protons and the in vitro digestibility was observed with a correlation of r2 = 

0.93. The strength of this correlation was similar to what was found for apparent amylose content; 

however, the T2 values were found to be attributed to structures independent of amylose chains. 

The determination of T2 relaxation times was therefore determined to be a novel tool with which 

to predict digestibility characteristics in rice.  

Finally, the branching structures of starch were characterised using iodine-affinity capillary 

electrophoresis. The methodology was adapted from literature and extensively modified to 

develop an optimised methodology for the accurate and precise characterisation of branching 

structures in starch. With this optimised methodology the bimodal distributions of 

electrophoretic mobilities of starch in rice were observed, and attributed to amylose and 

amylopectin but also a third mode in some cases. This hybrid third mode was found to behave 

more like amylopectin, while still retaining characteristics of amylose. Different rice varieties 

were found to exhibit different distributions related to branching through the differences in their 

electrophoretic mobility as well as in the heterogeneity of their branching. These outcomes 

highlighted the potential to broaden thinking around diversity of amylose and amylopectin 

structures and invites a revision of relationships between AAC and functional characteristics such 

as digestibility. 

Preliminary work on the supramolecular structures in starch, including helix content, long 

range crystallinity and semi-crystalline lamellar structure was also performed to assess their 

impact on the digestibility characteristics of rice. No single level of supramolecular was found to 

be a sole driver for the digestibility characteristics, and it is rather a combination of factors at the 

supramolecular level that must be considered.  

The determination of factors of starch structure relevant to digestibility in this study was 

intended to better understand the drivers of digestibility in rice grains. And through this, attempt 

to provide new tools with which to assess samples likely to exhibit a higher or lower digestibility, 

thus allowing for better selectivity in breeding where certain digestibility characteristics are a 

grain quality goal. This was achieved through the characterisation of multiple features of starch 

structure which were found to provide valuable input to refining the understanding of rice 

digestibility. 
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Chapter 1 Background 
1.1 The value of rice in our diet 

1.1.1  A brief background of rice and rice breeding 

A major staple for two-thirds of the world, rice is an important crop in the nutrition intake of 

the global population [1]. Milled rice grains are comprised primarily of starch along with water, 

proteins and lipids [1]. Rice belongs to the genus Oryza, containing 22 to 25 recognised species of 

which only Oryza sativa (Asian Rice) and Oryza glaberrima (African Rice) are cultivated [2]. Oryza 

sativa is grown worldwide, in contrast to Oryza glaberrima which is grown only in West Africa. 

The most common species consumed is Oryza sativa, comprised of 3 subspecies: indica, japonica 

and javanica. These subspecies evolved as a result of selective breeding for desired quality traits 

and adaptation to different ecological systems. There are hundreds of thousands of rice varieties 

worldwide, though only a very small proportion of these are widely cultivated [1]. 

In Australia almost all rice grown is classified as japonica, suited to subtropical and temperate 

climates. Japonica is also found in America, Egypt, Japan and China [3]. Many commercial rice 

varieties are the result of rice breeding and varietal diversity to maximise production from limited 

resources, be pest and disease resistant and to ensure the grain quality meet domestic and 

internal market preferences [4]. Selections for rice quality include combinations of chalkiness, 

colour, gelatinisation temperature, apparent amylose content (AAC) and many other traits [4]. 

Australian rice is renowned for its high and consistent quality and success in international 

markets [5]. This stems from the development and breeding efforts by Australian rice researchers, 

culminating in varieties such as Opus for Japanese markets, Reiziq for premium Middle East 

markets, as well as the low glycaemic index (GI) Doongara varieties, marketed as CleverRice™. 

This highlights the success of the Australian rice industry in creating a diverse portfolio of high 

quality and desirable rice products. 

Development of new rice varieties is complex and time consuming, with rice breeders 

evaluating thousands of potential candidates every year, and a new variety taking 7 to 10 years to 

develop [6, 7]. There are many stages in the breeding and quality programs, each with their own 

analysis requirements and goals which are briefly summarised in Figure 1-1. Stability in local 

growing areas is also assessed, an important factor in assuring consistent quality. Thus, a suite of 

tools is necessary to inform selection of desired trait combinations. Evaluation in the F5-6 stage 

serves to confirm the marker assisted selection of earlier generations, with number of evaluated 

samples typically measuring in the thousands. It is only at this stage that enough sample is 
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available to conduct quality evaluation on additional quality traits. To build greater capacity and 

streamline the selection process, the scope of the Quality Evaluation Program is routinely 

reviewed. 

Here, the focus is on further identifying the starch structure characteristics that play a role in 

the functional properties of a rice grain. A shift to a comprehensive characterisation of starch is 

even more desirable now that capacity for marker assisted selection is even more affordable and 

accessible. Similarly, a refined explanation of consumer observed traits such as texture and satiety 

may be afforded by the reconciliation of the contributions of protein [8] and lipids with a complete 

description of the starch structure. There are a broad range of abiotic and biotic stresses that can 

also influence grain quality, such as water management and growing temperatures [9-12], 

highlighting the complexity of rice breeding, agronomic practices with the variety of evaluation 

stages, and specific design goals paramount in creating novel varieties. 

 

Figure 1-1 Generalisation of the rice breeding process (modified from [6]) 

1.1.2 The rice grain and its glycaemic properties 

Grain based foods are a major component of the modern human diet and have been a dietary 

staple for thousands of years. Over the last 3 decades, shifts in consumer trends and the evolution 

of the food industry has resulted in increased levels of food processing in creating new grain-

based products. This can range from low levels of processing seen in steam rolled oats, all the way 

to products such as breakfast cereals that can contain modified starches and added sugars. This 

shift has contributed to a greater availability of grain-based products, though primarily in the form 

of refined products [13]. While direct effects on population health cannot be confidently assigned, 

this shift in industrial practices has coincided with increased prevalence of malnutrition and 
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chronic health conditions linked to excess weight [14-16]. Carbohydrates and their influence on 

weight gain [17, 18], and insulin resistance [19, 20] has been widely studied and their impact on 

key health factors such as cardiovascular and digestive health has led consumers to take more 

notice of the amount and type of carbohydrate.  

Milled rice  is comprised primarily of starch (up to 91 % dry weight) [21] with lipids (1- 3 %) 

[22] and proteins (4-18 %) [8, 21] constituting the majority of the remaining dry mass. Despite 

the significant compositional contribution of starch, all of these components can impact the 

functional properties of milled rice grains [23-25]. 

Native starch, unmodified and measured directly in rice flour, plays an important role in grain 

quality [2]. AAC measured by iodine binding methods has routinely been linked with many grain 

quality traits such as digestibility and texture [26, 27]. This link between AAC and digestibility is 

currently the only such published link available with which researchers can predict the 

digestibility characteristics of a given rice sample. With an r2 of 0.73, the linear correlation 

indicates some relationship of relative digestibility with AAC (Figure 1-2). However, it is 

interesting to note that differences of up to 20 in predicted GI could be observed in samples with 

similar AAC, highlighting that there are likely many other drivers in the digestibility of rice grains. 

Direct evaluation of other structural parameters of starch in rice to explain quality traits, such as 

digestibility, of milled rice grains has been limited. The digestion and intestinal absorption of 

starch from rice is near complete, and is higher than that of other cereals such as wheat flour and 

tubers [28], further pointing to additional factors intrinsic to the food itself facilitating the rate of 

digestion. And while AAC has been correlated with digestibility  [26], factors such as cooking 

method [29-31] and preparative procedures [32, 33] have also been shown to have a significant 

influence on digestion.  
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Figure 1-2 The relationship of predicted GI values against AAC for a number of rices (circles) and linear fit (r2 = 0.73) from 

Fitzgerald et al. [26] 

The properties that consumers identify with are the driving force behind purchasing, and 

therefore a level of quality and consistency is expected [4]. This consistency is also an important 

factor in the context of labelling requirements. Rice varieties vary greatly in grain quality 

according to genetic background [24], growing conditions [34, 35], and processing [25, 36, 37]. As 

a result, routine quality analysis is an important component in the rice breeding process, 

maintaining consumer expectations while offering a broader range of products. A wide range of 

information is already integrated into the development process shown in Figure 1-1, though there 

are opportunities to identify additional markers that could assist in decision making during 

breeding. A more comprehensive characterisation of starch structure has potential in improving 

predictions of digestibility (and other traits), positioning such measures as possible future 

markers in rice breeding. 

1.2 Starch structure and properties 

1.2.1  (Supra)molecular structure of starch 

Starch structure can be described as a multi-level hierarchical organisation (Figure 1-3). These 

interconnected levels can differ on the basis of botanical origins, genotype and growing conditions 

[22].  
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Figure 1-3 Molecular (green) and supramolecular (purple) structural levels of starch. Adapted from Castignolles and 

Gaborieau [38] 

Starch macromolecules consist of glucose monomer units connected by linear (1, 4) 

glycosidic bonds with branch points involving (1, 6) linkages (Figure 1-3, Levels 1-2). Starch is 

comprised of two macromolecular components, amylopectin and amylose, which primarily differ 

in their degrees of branching and branch chain lengths. Amylopectin and amylose do not exist as 

single molecules, but rather as populations of molecules with different branching structures. 

These two populations of branching structures can be characterised as distributions, a term 

describing a series of possible values of a given parameter and the frequency of those values. A 

simple example of a frequency distribution  is shown in Figure 1-4, where the y-axis is simply the 

frequency of the x-axis number (X). 
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Figure 1-4 Frequency distribution of number values, highlighting frequencies for different values of x by dotted lines for x = 

4 (green), x = 5 (red) and x = 7 (blue) 
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In the case of amylopectin and amylose, distributions of degrees of branching, of branch chain 

lengths, or of branch points can be defined. Amylopectin molecules account for one of the two 

populations of  molecules in starch, characterised by a high average degree of branching (4 – 5 %) 

typically in the form of short to intermediate chain length branches (Figure 1-3, Level 2) [22]. 

Branching in amylopectin occurs not only on the initial chain, but also on the branches themselves, 

with different classes of branches named A-, B- and C- type chains [22]. A-type refer to outer 

chains linked by their reducing end to an inner chain, referred to as B-type and defined as a chain 

bearing other chains as branches. Finally, C-type chains are a single chain per molecule that carries 

all branches. These highly branched molecules are typically conformationally found in tightly 

packed clusters or double helix arrangement (Figure 1-3, Level 3) and are the building blocks of 

the crystalline regions with the semi-crystalline structure of starch granules (Figure 1-3, Levels 

4-5) [22]. Amylose molecules represent the second of the two populations of molecules in starch, 

characterised as linear or slightly branched molecules, and usually in the form of long chain 

branching (Figure 1-3, Level 2). Given the low degree of branching, amylose is often associated 

with amorphous phases of starch structure; however, it is also capable of forming single helix 

structures in the presence of lipids or other suitable inclusions.  

Due to the multiple levels of structural order present in starch, it is often referred to in terms 

of short- and long-range order. Short range order refers to the formation of helices by amylose 

and amylopectin both as individual molecules as well as with inclusions such as lipids (Figure 1-3, 

Level 3). Long-range order refers to the formation of larger scale crystalline lamellae in the semi-

crystalline lamellar structure of starch, primarily arising from arrangements of double helices of 

amylopectin molecules. These crystalline structures are further defined depending on their 

specific packing arrangements, named A-type (primarily observed in cereal starches) and B-type 

(observed in tubers and high amylose starches) crystalline polymorphs. A- and B-type crystalline 

polymorphs differ in their packing arrangements of double helices within the starch granule 

(Figure 1-3, Level 4). A-type polymorphs consist of double helices packed with space group B2 in 

a monoclinic unit cell, and B-type polymorphs consist of double helices packed with space group 

P61 in a hexagonal unit cell [22]. A third C-type polymorph (found in legumes) is also observed, 

defined as a combination of A- and B-type polymorphs. 

The packing of these starch crystallites forms the ordered and amorphous regions that make 

up the repeating semi-crystalline lamellar arrangement in starch [22]. At the highest level of this 

lamellar structure is a repeating concentric arrangement of semi-crystalline and amorphous 

lamellae (hundreds of nm). The semi-crystalline lamellae are then described as being composed 

of repeating ordered and amorphous lamellae units (≈9 nm). It is primarily in the ordered lamellae 

in which the crystalline polymorphs of starch exist.  
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1.2.2  The digestive properties of starch: Glycaemic response and satiety 

At a basic level, the glycaemic response is the effect of carbohydrate consumption and 

subsequent digestion on blood sugar levels, influenced by both the rate and extent of digestion. 

The actions of insulin are also involved in this process, and as such the glycaemic response to 

different foods can have important physiological implications. 

Starch digestion enzymes principally work by cleaving the starch chains into successively 

smaller chains until glucose monomer units are obtained. This process may be challenged by the 

molecular structures including branching and size, supported by the relation of AAC with 

digestibility [26]. Enzyme access to starch may also be a key factor in the digestibility between 

individual starches [39]. Access could be challenged by properties such as short- and long-range 

molecular order and the semi-crystalline lamellar structure. These structural characteristics often 

vary significantly between samples. 

In the context of human digestion, starch is categorised into three fractions: rapidly digestible 

starch (RDS), slowly digestible starch (SDS) and resistant starch (RS) [40]. These fractions exhibit 

different rates of starch digestion as measured by the postprandial blood glucose level of an 

individual over time (blood glucose after food consumption) [41]. This postprandial effect on 

blood glucose is known as the glycaemic response. In the digestion of RDS and SDS, the monomer 

unit, glucose, is released into the bloodstream and, via insulin, the glucose is then mobilised into 

the cells for use. RS is generally considered to escape digestion in the small intestine, and is instead 

fermented later in the colon [42]. The rate of carbohydrate digestion is dependent on a number of 

factors such as gut mobility, food matrix, the nature of the starch and the quantity of available 

carbohydrates [43]. 

Measuring starch digestibility is a point of contention in the scientific community with pros 

and cons for both in vivo and in vitro methods [44]. The concept of glycaemic index (GI) was 

introduced as a way to classify carbohydrate-containing foods according to their postprandial 

impact on blood glucose levels [45]. The GI is defined as the total glycaemic response 2 hours 

immediately after intake of a test food (usually 50 g digestible carbohydrates, RDS and SDS) 

relative to a reference carbohydrate source. This reference carbohydrate is an equal carbohydrate 

quantity of a high digestibility carbohydrate source such as glucose or white bread. Currently, in 

vivo GI measurements are limited to 10 healthy individuals, likely incurring significant variability 

simply from individual biological factors of each participant. The initial costs for this small trial 

set are significant and the cost of scaling to a greater number of participants to assess the true 

statistical variance arising from an individual’s biology (gut mobility, genetic dispositions, etc.) is 

prohibitive. Glycaemic load (GL) was introduced in 1997 in an attempt to quantify the overall 
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glycaemic response for a typical portion of food [46, 47] GL is calculated by multiplying the total 

available carbohydrate in a serving by the GI value.  

The complexity of in vivo human digestion results in great difficulties in creating precise and 

accurate in vitro methods that can be used as a substitute to human testing. However, the number 

of repeats and high cost associated with obtaining a statistically relevant dataset by in vivo 

methods makes in vitro alternatives a more attractive option for the purpose of larger scale 

analysis [26, 43]. The control over the digestive process and mechanical factors with in vitro 

methods allows for greater repeatability [48], making them ideal for comparative analysis in 

investigating digestibility. The comparatively lower cost of in vitro methods not only lends to their 

accessibility but is also a boon to their scalability. Differences between in vitro methodologies 

likely make them incomparable to one another, and similarly, in vitro digestion processes do not 

directly parallel human digestion. 

When assessing the role of digestibility in terms of weight management and general health, the 

benefits of satiety are often discussed due to its psychological relevance to self-managed nutrient 

intake [49]. The glucostatic theory of satiety states that satiety is regulated by the glycaemic and 

insulinaemic response from carbohydrates digestion [50], with continued support into recent 

decades [51, 52]. This theory states that a rise in blood glucose concentration would trigger 

satiety, while a drop would trigger hunger. In the context of GI, this theory would suggest that the 

high glycaemic response triggered by a high GI meal, and subsequent hypoglycaemic period will 

trigger hunger sooner than a low GI meal. In the long term, overeating can be detrimental to 

health, increasing the risk of developing type 2 diabetes, cardiovascular disease and 

hyperglycaemia in people living with type 1 diabetes [53]. A slower glucose release (SDS) 

increases satiety by reducing spikes in blood glucose and insulin levels [54]. This slower glucose 

release has also been associated with more stable blood glucose levels (lacking large spikes or 

drops), potentially beneficial in weight management through satiety management [55]  and, in 

animals, shown to play a role in the prevention of type 2 diabetes [56, 57]. Consumption of foods 

with higher proportions of SDS is recommended across the entire population with studies 

showing counter-regulatory hormones and free fatty acids indicative of insulin resistance were 

reduced [58, 59]. It has been suggested that RS has a strong impact on satiety by adding bulk to 

the diet, producing viscosity and slowing mobility during digestion [60], likely factors in its 

relationship with GI [60, 61]. Further studies have shown that both short [62] and long-term 

satiety [63] are increased with the addition of a fibre source to a meal. Thus, the inclusion of a 

fibre source in a meal is predicted to be beneficial in weight management through better managed 

satiety, having potential in the reduction of overall energy intake. So, by studying what features of 

starch structures are responsible for the subsequent fractions of RDS, SDS and RS, a better 

understanding of the role of starch structure in digestibility may be gained. 
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1.2.3  Processing and cooking of rice 

During manufacture of starchy food products, different types of treatment such as heat, 

mechanical stress or dehydration can significantly impact the starch structure. In rice products, 

the primary factors in processing before consumption include initial milling of the rice grains and 

the cooking method employed.  

Most consumer rice varieties available are white polished grains, where the majority of the 

pericarp layer has been removed, leaving the starchy endosperm and rice germ as the primary 

components of the grain. In brown rice, this pericarp layer is left partially intact, with only minimal 

milling to remove the rice husk. Brown rice has been reported to contain higher levels of fibre and 

in some cases exhibit lower digestibility [64, 65]. However, direct comparisons of digestibility to 

white rice  can be misleading due to different cooking behaviour of brown rice, often requiring 

longer cooking times [64]. In addition, the fibre and RS present in rice has not been shown to 

influence the digestibility of rice grains significantly [31]. As a result, the lower suggested 

digestibility of brown rice could solely arise from a difference in extent of gelatinisation, rather 

than the retention of the fibrous pericarp layer.  

Various studies have reported on the effect of conventional cooking methods, such as boiling 

and steaming, on the digestibility of rice grains [64]. These studies noted differences in 

digestibility between different cooking methods; however, also noted differences in extent of 

gelatinisation between methods accounting for the differences in digestibility [64]. However, 

when extent of gelatinisation is consistent, difference in digestibility between cooking methods 

are not observed [29, 66]. Non-conventional processing and cooking methods such as explosion 

puffing, extrusion and instantization have been shown to increase the digestibility of rice products 

[64]. 

Factors arising from varietal differences can also play a major role in the resulting properties 

of the cooked rice grain, e.g. sticky rice, long/short grain, low GI [21]. The availability of different 

varieties allows for a catalogue of products that meet different consumer preferences for traits 

such as texture, appearance, and digestibility. These properties are typically influenced by the 

starch, proteins and lipids that comprise most of the dry weight of rice grains [67, 68].  
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1.3 Measuring the multiple levels of structure in starch 

1.3.1  Molecular structure 

1.3.1.1  Non-separative methods 

In starch, it is the relative ratios of amylose and amylopectin and their associated distributions 

of degree of branching, branch chain lengths, molar mass etc. that define the molecular level of 

starch structure (Figure 1-3, level 2). The relative ratio of these molecules, referred to as AAC, is 

of great interest for starches due to its effect on properties such as digestibility [26], pasting [69] 

and texture [70] (1.1.1). AAC of starch has traditionally been measured by amperometric, 

potentiometric and spectrophotometric techniques after binding iodine to starch . The most 

popular of these approaches, spectrophotometric detection, makes use of the distinct absorption 

profiles of the two iodine bound amylose and amylopectin molecules to yield an AAC, with 

absorption maxima of 550 and 580 - 620 nm, respectively [71, 72]. The development of a method 

of analysis approved by AACCI (Cereals and Grains Association, formerly American Association of 

Cereal Chemists International) has resulted in a strong uptake in a better controlled methodology 

for this measurement on rice yielding high precision (<5 % RSD), while modification of 

methodology in each laboratory for local equipment, standards and purposes,  results in poor 

reproducibility [73]. Due to the strong overlap of absorbance bands for iodine bound amylose and 

amylopectin, errors in quantification can occur, often leading to overestimation. The absorptivity 

of the amylopectin-iodine relative to the amylose-iodine complex is quite low even at the 

maximum of absorption of the amylopectin-iodine complex [71]. The determination of AAC is 

based on a linear calibration of known AAC samples against absorbance at a given wavelength 

(usually 620 nm) [74].  As a result, the calibration and measurement of AAC is influenced by the 

absorbance of both amylopectin- and amylose-iodine complexes, resulting in the introduction of 

uncontrolled and unaccounted interference from amylopectin-iodine absorbance. It has been 

suggested that this cohesive interference can be accounted for using multi-wavelength processing 

as a corrective procedure [75]. This highlights the potential value of separation techniques prior 

to detection using UV-Vis detectors, overcoming the issues of interference between components.  

1.3.1.2  Industry standards of separation analysis of starch 

A variety of separation principles and techniques exist, with the most ubiquitous in the analysis 

of starch and food typically high performance liquid chromatography (HPLC) methods [76], while 

other novel approaches such as field flow fractionation (FFF) and capillary electrophoresis (CE) 

also show promise. However, the use of these methods requires complete dissolution of starch 

samples, which is not always possible, and isolation of starch from the sample matrix which can 
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inadvertently alter the structure [77]. Dissolution of starch typically requires the use of polar 

organic solvents [78] as well as the addition of high concentrations of salts to act as hydrogen 

bond disruptors in ensuring complete dissolution [79]. The use of such solvent systems can be 

damaging to a number of components of separation instruments, such as mechanical pumps, 

which can limit the application of ideal dissolution conditions. Where complete dissolution is not 

possible, solubilisation and/or degradation [77, 80] of starches is often required to obtain a 

complete dissolution. This is an important factor in protecting the integrity of columns in HPLC 

methods [81]. The resulting analysis of these modified starches is thus no longer representative 

of the original sample [82]. Where adequate dissolution is achieved, limitations in terms of the 

high pressures and dense stationary phases can also pose potential risks of shear scission of large 

branched chains [83-86] and/or chain deformation [87], as well as likely fouling of the stationary 

phase. This is typically undesirable; thus, filtration is commonly employed to exclude molecules 

such as this prior to analysis.  

The industry standards in food and starch analysis are HPLC, and in particular size-exclusion 

chromatography (SEC), which provide established methods to characterise food samples [76]. 

The most common application of SEC is in the determination of molar mass distributions [88], and 

in some cases the molar mass distributions of enzymatically debranched starch known as 

distributions of chain length [89]. HPLC methods can achieve separation  of analytes by a number 

of factors. For example, in SEC separation occurs as a function of hydrodynamic radius of the 

analyte, which is typically linked to molar mass and branching [90, 91]. Another HPLC method, 

ion-exchange chromatography, achieves separation as a function of the affinity of ions and polar 

analytes to an ion exchanger which can be either cationic or anionic. High performance anion-

exchange chromatography (HPAEC) has been employed in the analysis of chain length 

distributions of starch [92]. 

Choices of mobile phase and stationary phase are also factors that can influence the separation 

of analytes in any HPLC method, and forms an important component of experimental design. The 

choice of mobile phase is especially important as solubility of the starch is required, with chemical 

compatibility of instrumentation becoming a limitation. Post-separation, a variety of detectors are 

available for analysis of the separated molecules. In the analysis of starch, HPLC or SEC is often 

coupled with multi-angle light scattering (MALS), refractive index (RI) detectors [82, 93], 

ultraviolet (UV) detectors [82] or fluorescence detectors [94]. The nature of the stationary phase 

in HPLC and SEC raises inherent limitations in its application to the analysis of starch, even in 

cases where adequate dissolution is achieved, and requiring filtration of the analyte. As a result,  

in the analysis of starch by liquid chromatography, SEC often yields poor resolution between 

amylose and amylopectin [82, 95-97]. 



Page | 12  
 

1.3.1.3  Novel separation techniques for the analysis of starch 

Alternative separation techniques that do not require a stationary phase like HPLC and SEC 

include field flow fractionation (FFF) and free-solution capillary electrophoresis (CE), mitigating 

some of the issues associated with sample preparation and separation. FFF is family of techniques, 

that operate based on elution like chromatography, but separation of molecules is based on the 

application of a force field orthogonal to the direction of laminar flow in a narrow channel. A wide 

variety of applied forces are possible such as electrophoretic, thermal, magnetic and 

hydrodynamic flow. The most common of these approaches is using a crossflow, referred to as 

flow FFF (FlFFF). In FlFFF, a semi-permeable membrane is used as a channel and the combination 

of flow and differences in diffusion coefficients results in separation of analytes. FlFFF has been 

shown to improve the peak resolution between amylose and amylopectin compared to SEC [98]. 

Asymmetric flow field-flow fractionation (AsFlFFF) is one approach to FlFFF which has shown 

great potential in the characterisation of starch [99, 100]. AsFlFFF is attractive as a starch 

characterisation technique due to its large size range (2 to >800 nm), low shear forces and the fact 

that filtration is often not required [99]. By employing AsFlFFF with MALS and RI detectors, the 

molar mass and root-mean-square radius can be measured directly [100]. The determination of 

weight-average molar mass and molar mass distributions may also become possible. AsFlFFF has 

the potential to yield different types of sample information to the typical molar mass and chain 

length distributions obtained by SEC and HPAEC, and thus could serve as a complementary 

technique in obtaining a complete characterisation of amylose and amylopectin in starch. 

However, it should be noted that the use of mechanical pumps limits the chemical compatibility. 

Current research indicates that DMSO is a viable solvent for starch [78]; however, the 

compatibility of DMSO with membranes used for FFF of starch is limited, while the addition of 

salts required to increase solubility of starch [79] raises additional compatibility issues. Thus, 

dissolution may become an issue in analysis of starches, and especially of more complex matrixes 

such as rice flours by FFF techniques. 

Free solution capillary electrophoresis (CE) is a high-resolution separation technique, with 

separation occurring in free solution, thus the limitations of stationary phases are avoided [82]. 

Separation of molecules is based on their charge-to-friction ratio and is achieved by injection of 

the analyte into a fused silica capillary tube filled with a background electrolyte followed by 

application of an electric field. Analytes are then separated according to their electrophoretic 

velocity relative to the electroosmotic flow (EOF) of the background electrolyte, yielding an 

apparent velocity within the capillary (Figure 1-5) [101]. Separation is limited to charged 

analytes; however, the separation of neutral analytes is still possible by complexation with 

charged species to induce a net charge, this is referred to as affinity CE.  
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Figure 1-5 Electrophoretic migration of negatively charged analytes and of sodium from the background electrolyte  in CE 

(counter-EOF mode); EOF – Electroosmotic flow (velocity) 

CE has been shown to be a viable technique in food analysis, demonstrating the ability to 

separate sugars extracted from breakfast cereals [102], minerals in zucchini [103],  and to 

separate carbohydrate and sugar components in complex fermentation matrices [104, 105]. With 

the use of calibration curves, CE can also be used for quantitative analysis of known components 

[81, 102]. Improved quantitative determination of carbohydrates in CE versus HPLC has been 

reported in fermentation mixtures, with CE showing a higher recovery of the separated analytes 

[81]. The robustness of CE is advantageous in the analysis of complex samples such as food 

products, allowing for direct analysis with minimal sample preparation (no filtration) in contrast 

to HPLC/SEC which often requires some form of sample pre-treatment that may result in 

undesirable modifications. Additionally, the background electrolyte employed for separation is 

not required to match the analyte solvent, contrary to the requirement of matching solvents and 

mobile phase in HPLC and FFF methods. This opens the door for a variety of solvents to be 

employed for starch dissolution, which would otherwise not be ideal background electrolytes 

such as DMSO with LiBr. CE also shows greater simplicity, versatility, lower operating costs than 

traditional gel electrophoresis and even the possibility of direct sample injection with no sample 

preparation  [103, 106]. The resilience of fused-silica capillaries allows for the use of an extensive 

variety of buffers, cleaning solutions and samples which can be injected without negatively 

impacting the system. However, the use of high salt concentrations, such as those required for 

starch dissolution, can lead to excessive joule heating and affect CE performance. A variety of 

methods are also available that can improve sensitivity for dilute solutions such as electrophoretic 

pre-concentration, micelle based pre-concentration, and stacking [107, 108].  

The determination of amylose content using capillary electrophoresis has been shown, taking 

advantage of the iodine binding nature of starch which imparts a net negative charge to the starch 

molecules necessary for separation. Detection is then achieved by employing simple ultraviolet 

and visible light (UV-Vis) detectors [109]. Some improvement of the methodology was previously 

undertaken [110] and then further work performed on method modifications during this work 
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(Chapter 3). This improved methodology addresses the issues reported in the literature with 

complete and stable dissolution of starch as well as modifications to the instrument setup to 

improve resolution and repeatability.  

In addition to the determination of amylose content, further characterisation of the amylose 

and amylopectin can also be achieved. In CE when sufficiently large polyelectrolytes are 

separated, the separation becomes independent of molar mass. This is referred to as CE in the 

critical conditions (CE-CC), an analogy to liquid chromatography in the critical conditions (LC-CC) 

where conditions are sought in which a homopolymer is not separated by molar mass [104]. CE-

CC has been demonstrated experimentally in DNA  [111], poly(styrene sulfonates) [112], and 

poly(acrylic acid) [113]. In the separation by branching of poly(acrylic acid), greater branching 

was shown to yield  lower electrophoretic mobility, while a reduction in the injected volume of 

linear polymer was found to increase resolution [114]. The same trend was noted in the 

separation of starch in which the less branched amylose had a higher electrophoretic mobility 

relative to the highly branched amylopectin [109, 110].  

Polymers tend to manifest as distributions of molecular attributes such as molar mass, end 

groups, composition and branching characteristics. Currently, the most commonly assessed 

molecular attribute of polymers is the heterogeneity of molar mass [115]. This is typically 

determined by SEC; however, this approach cannot inform on the molecular attributes due to 

separation by hydrodynamic size [90]. In CE-CC the separation is sensitive to the structural 

features other than molar mass such as branching, composition and end groups. This yields 

associated distributions of mobility linked with the underlying separation mechanism from which 

heterogeneity can be assessed [116].  

Several techniques and methods are available in the literature capable of probing the 

molecular structure of starch (Figure 1-3, Levels 1 and 2). AAC is one the most popular direct 

measures of molecular starch structure, especially in food related research as a result of its 

relationship with many important properties. In exploring the additional features of molecular 

starch structure, SEC is the most ubiquitous separation approach, though suffers from an inherent 

inability to provide a true characterisation of the native structure of amylose and amylopectin 

without pre-treatment or degradation. Of FFF and CE, CE offers a much simpler experimental 

design and operation in addition to the capabilities of analysis in structural heterogeneity by CE-

CC. The complexity of FFF can make employment difficult; however, the possibility of different 

types of fields that can be applied also affords a diverse range of molecular features to be assessed. 

Given low running costs, simple experimental design and robust operation, CE exhibits valuable 

characteristics for use in routine measurements.  
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1.3.2  Supramolecular structure 

At the supramolecular level of starch structure, the amylose and amylopectin molecules are 

arranged into increasingly larger forms of ordered structure including the helical, long-range 

crystalline and the semi-crystalline lamellar structures (Figure 1-3, Levels 3-5).  

1.3.2.1  Helical structure and molecular dynamics 

The helical structures, seen in the supramolecular structure of starch arises from the 

arrangement of double helices of amylopectin with an estimated diameter of ~20 nm [117] and 

forms the underlying unit of order that forms the higher levels of order seen in starch (Figure 1-3, 

Level 3). Amylose molecules can also form helices; however, these single helix structures require 

the presence of inclusions such as lipids. As such, these tend to represent a very low proportion 

of total helix content (<5 %) [118]. Amylopectin and amylose form the basis for the crystalline 

structures observed in starch, and as such their proportions, distributions and dynamics are 

important in describing higher level structure as well as explaining starch properties. There are 

very few techniques available capable of probing the size scale necessary for directly measuring 

helix content, with solid-state nuclear magnetic resonance (NMR) spectroscopy being one of them. 

NMR spectroscopy has been used extensively to study various starch systems, investigating 

attributes such as the starch structure, effects of processing, and the comparison of starches from 

different botanical origins [118-120].  

NMR spectroscopy works on the principle of nuclear spin and resonance. Any nucleus which 

has a nuclear spin quantum number greater than zero exhibits nuclear magnetic resonance. This 

magnetic resonance arises from the angular momentum (p) of a spinning nucleus and its charge 

which result in a magnetic moment. In NMR spectroscopy, the nucleus is placed in a large magnetic 

field that induces different spin states. The nucleus is then irradiated by radiofrequency (rf) pulses 

that alter the spin state of the nuclei through energy absorption. The relaxation of nuclear spin 

magnetisation is then detected and recorded in the form of the free induction decay. The most 

commonly studied NMR active nuclei are 1H, 13C, 19F and 31P, all of which are crucial in the field of 

organic chemistry. The data obtained from simple NMR experiments can then be employed to 

identify chemical structures through well documented chemical shifts, allowing for elucidation of 

molecular structures and investigation of molecular dynamics [121]. 

A wide range of samples and sample forms can be analysed by NMR, with solution-state and 

solid-state measurements being most common. Solid-state NMR spectroscopy differentiates itself 

from solution-state NMR spectroscopy primarily in the resonance signal width, with solid-state 

signals broadened by dipolar couplings and motion. This broadness can be attributed to 

homogenous, inhomogeneous or heterogeneous broadening [122]. A homogenous signal is the 
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sum of signals exhibiting the same broadening, but no change in chemical shift. This type of 

broadening typically arises as a result of dipole-dipole couplings. An inhomogeneous signal is the 

sum of signals that are not overlapping with limited broadening. This type of broadening typically 

arises as a result of heterogeneity in local packing of the molecules within the sample. 

Heterogeneous broadening is the sum of signals that are coupled but have different chemical 

shifts. These molecular interactions then dictate how individual atoms behave within the 

magnetic field, yielding a certain degree of molecular mobility dictated by its local environment.  

The dynamics of molecules is commonly investigated through the measurement of spin-lattice 

(T1) and spin-spin (T2) relaxation times of the nuclei within the sample and depend on the strength 

of the 1H-1H dipolar interactions (both intra- and intermolecular) and its time dependence [122, 

123]. The T1 relaxation time, or longitudinal relaxation time, represents the time it takes for the 

bulk magnetisation vector (M0) of the nuclear spins to recover along the z-axis in a given magnetic 

field (B0) after pulse excitation of nuclear spins [123]. However, this spin relaxation does not occur 

strictly along the z-axis and rather nuclear spins will precess with slightly different frequencies 

around the z-axis dependant on their local field [123]. The T2 relaxation, or transverse relaxation 

time, refers to the time it takes for these precessing nuclear spins to be spread in the x-y plane in 

such a way that there is zero net transverse magnetisation (Figure 1-6). 

 

Figure 1-6 The transverse precession  of M0 in the x-y plane towards net zero magnetisation with time 

The measurement of T1 relaxation times is commonly achieved using the inversion recovery 

pulse sequence which involves applying a 180° pulse along the z-axis, then a 90° pulse after a 

suitable evolution time  (τ) to place the vector back in the x-y plane where it can be detected [123]. 

When τ is zero, the magnetisation vector results in an inverted spectrum, so repeating the 

experiment with increasing values of τ allows for the monitoring of the relaxation of the spins. 

When τ is sufficiently long, complete relaxation occurs between the two pulses and maximum 

signal positive signal is recorded. This type of experiment is typically performed to either ensure 

maximum sensitivity, or to ensure recording of quantitative spectra. 

There are two avenues in the assessment of T2 relaxation times. Due to the influence of local 

intermolecular interactions on signal broadening, and its association with T2 relaxation times, the 

width of the broadened signal can be used to interpret the molecular mobility of nuclei within a 
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sample, providing an estimate of spin-spin relaxation (T2) referred to as apparent T2 (T2
*) [123]; 

however, this does not represent the true T2 value. True T2 values can be determined using the 

Car-Purcell-Meiboom-Gill spin-echo pulse sequence [124, 125]. Signal broadening by both dipolar 

couplings and/or local molecular heterogeneity can be attributed to the lack of motion of the 

molecules with respect to the experiment time scale [123]. Thus, it can be inferred that the faster 

the molecular motion, the narrower the resulting signal. This case is especially true in the case of 

1H NMR spectroscopy. However, this broadness can hinder other types of analysis by NMR. 

Improvements in the resolution of the broad signals obtained by solid-state NMR spectroscopy 

can be achieved by a technique known as magic-angle spinning (MAS) [126]. MAS involves 

spinning the sample rotor at a specific angle to the static magnetic field during measurement. 

Resolution is improved as a result of artificially inducing movement of the molecules to minimise 

dipolar coupling. Samples are typically spun between 1 and 111 kHz in commercial probes [127]. 

The magic-angle (54.74°) is calculated from the perturbation theory, introducing a factor of 3cos2θ 

– 1 to describe the evolution of the dipolar coupling. At the magic angle this expression is equal to 

0, and the effects of the dipolar coupling reduced. Current limitations on MAS rotational speeds 

(up to 110 kHz) prevent complete neutralisation of dipolar coupling. These issues are not 

observed in solution-state NMR spectroscopy as the anisotropic interactions are usually averaged 

by Brownian motion, resulting in much narrower signal shapes [128]. 

Solid-state NMR spectroscopy has been employed extensively in the characterisation of starch 

structure. For example the determination of helix content in starch by 13C NMR has been shown, 

with agreement between double helix content and X-ray diffraction experiments [118, 129-131]. 

Additionally, investigations probing the molecular dynamics of water and starch molecules in 

starch using 1H NMR have shown the existence of different distributions and types of dynamics 

within starch [132]. Solution-state NMR spectroscopy has also provided valuable avenues to the 

analysis of starch structure, with 1H NMR capable of resolving the resonances of the individual 

protons on the polymerised monomer units of starch. This has allowed the development of a 

method to quantify branching in starch [133]. The unique ability for molecules to only be visible 

in solution-state NMR when in solution enables the rate and extent of dissolution to be monitored 

for starches in organic solvents [78, 79]. While the starch structure and dynamics can be assessed 

by investigating the 13C nuclei, other carbon-based components can also be assessed. In the 

analysis of rice this opens the door to investigation of the lipids and proteins naturally occurring 

in rice grains. Therefore, it is clear, that in the analysis of starch in rice, both solid- and solution-

state NMR spectroscopy provide a sound platform for the characterisation of multiple structural 

features. 
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1.3.2.2  Long-range crystalline structure 

The long-range molecular order in starch arises from the arrangement of helical structures into 

a repeating ordered structure (Figure 1-3, Level 4). Different types of crystal polymorphs have 

been observed in starch, named A- and B-type [22], including a combination of the two referred 

to as C-type. Another crystal polymorph arising from single helices of amylose complexing with 

lipids is also often observed, dubbed the V-type polymorph [134]. 

The size and presentation of defined unit cell crystalline units at this level of supramolecular 

starch structure lends itself well to the capabilities of X-ray diffraction (XRD) analysis. XRD is a 

ubiquitous technique in the analysis of crystalline structures, especially powerful for the 

determination of unit cells and by extension mineral classification [135]. XRD functions on the 

basis of Bragg’s law, where sample bombardment with electrons results in X-ray emission by 

electrons that have been knocked out of inner energy shells. These X-rays are then detected, and 

when the geometry satisfies Bragg’s equation a peak in intensity occurs. However, the quality of 

diffraction effects relies heavily on the strict and undisturbed periodicity of atoms. In minerals 

this is not an issue, and very sharp and unique diffraction patterns are observed [135]. In the case 

of sufficiently small crystals, or defective periodicity, constructive interference can occur, 

evidenced by diffraction peak broadening. The latter is typically the case for semi-crystalline 

polymers, where non-uniform and incomplete crystalline structure results in broad diffraction 

peaks. The same is true for amorphous and non-crystalline samples. Therefore, it is important in 

the analysis of semi-crystalline samples that both amorphous and crystalline contributions are 

described. 

XRD has been extensively applied in the analysis of starch and starch systems, with 

investigations in the role of crystallinity in a range of starch properties including retrogradation 

[136, 137], digestion [138, 139] and cooking [140, 141]. In these studies, XRD has been shown to 

be capable of both differentiation between A- and B-type packing structures, while also 

quantifying the extent of long-range A/B type and V-type crystalline order [131]. There are a 

number of approaches in the quantification of crystallinity in starch by XRD. The majority of the 

approaches are subtractive or involve fitting, with both requiring identification of the amorphous 

and crystalline contributions independent of one another. Early approaches were subtractive, 

with the assumption of a two-phase system driving the calculation [142]. Despite the 

oversimplification of the crystalline structure with this approach it has remained a commonly 

used approach [131, 143]. More recently, curve fitting approaches have become increasingly 

popular [131, 144-147], attempting to account for the complex crystalline structures in starch 

using advanced modelling techniques. These fitting methods all rely on the accurate 

decomposition of the crystalline and amorphous contributions from the total intensity profile; 
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however, modern computing has allowed for high quality fitting analysis to be performed. As a 

result, curve fitting approaches have been shown to be a more accurate approach, capable of 

accounting for the imperfect crystalline structures observed in starch [131]. 

Therefore, XRD provides a valuable avenue for the determination of crystallinity in starches. 

Curve fitting approaches are capable of accounting for the imperfect long-range order in starch 

and has been confirmed by 13C NMR spectroscopy [131]. Using this approach, the extent of A/B 

type and V-type crystallinity can be determined and the peak parameters such as peak width 

useful in exploring other aspects of the diffracting structure. The use of curve fitting approaches 

also lends itself well to analysis of complex multi-components systems, with the potential to 

identify and isolate potential interfering components. In the determination of starch crystallinity 

using peak fitting approaches, several factors need to be considered. A sufficiently thick sample is 

required (≈5 mm) to reduce the effects of background diffraction that can be significant compared 

to the relatively weak diffraction peaks given for semi-crystalline materials. The fitting software 

used is also an important factor to consider, with different software packages taking slightly 

different approaches in the fitting and refinement process [135]. 

1.3.2.3  The semi-crystalline lamellae 

Finally, the semi-crystalline lamellar structure of starch is the culmination of the different 

levels of molecular order in starch (Figure 1-3, Levels 4 and 5). It arises from repeating lamellae 

of the long-range crystalline order and amorphous lamellae forming the semi-crystalline lamellae. 

Repeating lamellae of semi-crystalline and amorphous structure then describe the overall semi-

crystalline lamellar structure. The features of this semi-crystalline structure manifest on the scale 

of 10 to 400 nm from the repeat unit d-spacing up to the thickness of repeating semi-crystalline 

and amorphous lamellae [148]. 

Small angle X-ray scattering techniques are powerful tools in the analysis of structures on the 

length scale of one to hundreds of nm, bridging the gap between crystallography and microscopy 

[148]. Scattering is characterised by a law of reciprocity giving an inverse relationship between 

the size or dimensions of the scattering object and the associated scattering angle. A variety of 

incident radiations can be employed in small angle scattering techniques, with two of the most 

common being X-rays and neutrons. For scattering to occur from a sample, a contrast difference 

between the atoms or molecules in the sample and its surroundings is required. This contrast is 

dependent on radiation source, with differences in scattering caused by chemical or physical 

differences within the sample. Small angle X-ray (SAXS) and neutron (SANS) scattering are 

complementary techniques that employ different types of radiation for scattering analysis.  

SANS works on a similar principle to SAXS with incident radiation from a beam of neutrons 

rather than X-rays. Where X-rays are scattered by electrons, neutrons are scattered by atomic 



Page | 20  
 

nuclei, thus the scattering contrast is obtained through differences in neutron scattering length 

density between different nuclei. The difference in the extent of neutron scattering between 

deuterium (-0.3742 x 10-12 cm) and hydrogen (0.6671 x 10-12 cm) is extremely valuable for the 

study of hydrogen containing materials. From this “contrast variation” emerges, whereby 

structural features of different components can be distinguished by contrast matching one via 

differences in scattering length density. A commonly used approach to obtain contrast in starch is 

deuteration by suspension in deuterium oxide, exchanging the free water within the 

supramolecular starch structure [148]. 

These techniques are fundamental for the analysis of soft condensed matter and are especially 

powerful for the analysis of biological samples. While information such as size, shape, mass and 

scattering lengths densities may be obtained from scattering curves, relevant existing knowledge 

of the system is required. A model that adequately describes the scattering measured in reciprocal 

space is difficult due to the apparently infinite number of possible solutions. Therefore, a model 

based on parameters that are physically and chemically realistic, is necessary to allow for the 

analysis of the semi-crystalline lamellar structure of starch. The lamellar structure of starch can 

be detected in both hydrated and dry states by small angle scattering; however, with much less 

intensity in the dry state. One possible explanation for this phenomenon is provided by the liquid 

crystalline model for starch where amylopectin side chains align into a lamellar register upon 

plasticisation [117, 149, 150]. Thus, it is important to completely hydrate starch samples and in 

the comparison of samples to ensure a consistency in the degree of hydration. Additionally, in the 

analysis of the lamellar structure, care must be taken in the treatment of scattering data. In the 

case of isotropically scattering samples, the scattering data can be normalised to sample 

transmission, background subtracted, and then radially averaged to a 1-dimensional scattering 

curve. However, in orientated samples, sector averaging approaches are considered to be more 

appropriate [140]. 

The characteristic lamellar peak of starch (q ≈ 0.06-0.07 Å-1, d-spacing ≈ 9-10.5 nm) has been 

well studied with SAXS in a diverse array of starches including rice starch [151, 152]. A second 

higher order diffraction peak (q ≈ 0.13 Å-1) is also often observed in starch; however, is rarely 

reported in the literature and likely to have its origin as a second order reflection from the lamellar 

peak. Information on the size of lamellar repeat unit, the average amount of repeat units in each 

lamella, and the relative amount of sample with this semi-crystalline arrangement may be 

obtained from the resulting scattering profiles [148] (Figure 1-7).  



Page | 21  
 

 

Figure 1-7 Relationship of SAXS peak parameters to lamellar structure of starch (C - crystalline, A – amorphous) [110] 

The peak parameters of starch scattering profiles are typically extracted by two approaches. 

The first is through direct least-squares fitting of the scattering data, and the second through 

correlation and interface distribution functions using a Fourier transformed intensity profile. 

Direct least-squares fitting approaches have a long history in the analysis of starch scattering 

profiles. At the most simplistic end of the scale, the paracrystalline model assumes three different 

electron densities: crystalline and amorphous for the semi-crystalline lamellae, and a further 

amorphous background [149]. However, this is often considered too simplistic, leading to more 

complex models being proposed to account for structural imperfections [153, 154]. These more 

complex models seemingly enhance the ability to fit scattering data; however, the fitting 

parameters have significant uncertainty. Combining these more complex models with additional 

scattering information obtained through other scattering methods would provide a greater 

degree of confidence in the resulting fit. 

The second approach, based on correlation and distribution functions, involves the Fourier 

transform of intensity data, and the resulting one-dimensional correlation function interpreted in 

terms of lamellar morphology. From this, structural parameters such as lamellar repeat distance 

and crystalline and amorphous lamellae thicknesses can be determined [155-157]. The lamellar 

thickness obtained by the intensity profile method was found to be consistently greater than that 

by the correlation function method [158]. This is a result of assumptions made about the 

scattering function in order to make meaningful determinations from the Fourier transform. 

However, with existing knowledge meaningful results can be obtained by this approach [158]. 

Peak parameters can also be determined by more empirical methods such as the graphical 

method [159] and by fitting equations that describe the SAXS peak and underlying interfacial 

scattering [39, 160, 161]. The latter fitting approaches employ a Gaussian/Lorentzian peak to fit 

the lamellar peak, a Gaussian peak for the second order reflection peak and a power-law function 
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to describe the underlying diffuse scattering, particularly at low q [39]. Recently, a refinement to 

this fitting equation has been developed that indicated an improved fitting of SAXS curves for 

starch [162].  

In the analysis of the structure and properties of starch, the capability of controlling scattering 

contrast in SANS, in contrast to SAXS, has provided a platform with which to investigate how the 

lamellar structures behave when subjected to external stimuli. The scattering contrast between 

deuterium and hydrogen has allowed for extensive studies in defining starch structure [163, 164], 

and assessing the role of water in starch structure [150, 165]. SANS is a versatile instrument in 

the analysis of starch under different conditions and under different conditions such as during 

pasting [166] and during digestion [39].  
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1.4 Thesis Aims 

With the background research above, it is clear that the no direct links between starch 

structure and digestibility apart from apparent amylose content (AAC) is available in the current 

literature. Given the variability seen in the correlation of AAC with digestibility, further analysis 

into starch structures, especially where AAC is similar, needs to be undertaken in explaining the 

differences in rice grain digestibility. This thesis aims to fill the gaps in the understanding of starch 

structures role in rice digestion and to refine methods in the characterisation of the complex 

multi-level starch structure. The specific aims of this thesis were to. 

• Develop effective methods to provide a comprehensive characterisation of the molecular structure 

of starch to better define what is referred to as AAC 

• Characterise multiple levels of the (supra)molecular of starch using a range of established and 

novel approaches  

• Assess the value of these different levels of starch structure in differentiating rice samples and their 

relation to digestibility 

1.5 Overarching statement 

1.5.1  Publications and chapters overview 

As identified in the background, AAC represent the only published method available to 

researchers in predicting digestibility. The strength of this correlation indicates that there are 

likely other drivers for digestibility. There is a gap in the understanding of which levels of starch 

structure, if any, can account for the differences observed where AAC is similar. The following 

publications and chapters allowed a deeper understanding in this area of research. 

The manuscript of chapter 2 presents a study of multiple levels of starch structure in a rice 

variety x temperature glasshouse trial. Current routine measures of AAC were complemented by 

measures of average degree of branching (DB) by NMR spectroscopy  and features of the semi-

crystalline lamellar structure by small angle X-ray scattering. The performance of the 

measurement of average DB was determined in comparison to determination of AAC for the first 

time. The measurement of AAC is precise (<5 % RSD), indicating a high repeatability; however, 

reproducibility can suffer (4 – 40 % RSD) as a result of factors such as standards selection and 

instrumentation, bringing into question accuracy [73]. As a novel tool for the characterisation of 

starch in rice, average DB had comparable precision to the measurement AAC, and with the nature 

of the methodology, exhibits a greater accuracy, with higher reproducibility also supported by 

data. The features of the semi-crystalline lamellar structure were found to provide a valuable 

insight into the differences of large-scale structure between samples of similar AAC.  
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The manuscript of chapter 3 presents the optimisation and development of a capillary 

electrophoresis (CE) for the separation of starch. This manuscript forms its basis on published 

methodology [109, 167] and outlines an extensive process of improvements to the methodology. 

Key features include starch dissolution and dissolution stability in the context of separation 

science are highlighted, as well as the importance of the impact of different common preparative 

procedures such as filtration. This manuscript provides the optimal experimental conditions for 

the accurate characterisation of molecular structure discussed in chapter 4. 

Chapter 4 explores the characterisation of amylose and amylopectin branching structures in 

rice flours by capillary electrophoresis. This was achieved through the novel analysis of the 

distributions of electrophoretic mobilities obtained and how these distributions are affected by 

branching structure. In addition to this was the application of dispersity calculations developed 

by our research team [116] to these distributions of electrophoretic mobility, allowing for 

assessment of the heterogeneity of branching structures present in the rice samples. The 

assessment of branching structures and heterogeneity of branching structures by CE of rice flour 

or of purified starches has, to the best of my knowledge, not been shown in the literature. This 

analysis represents a novel approach to the assessment of the distributions related to branching 

structures that exist in native starches. This raises many questions about the definition of amylose 

and amylopectin and what is measured by AAC. Molecular structure is discussed in context of 

weight-average mobilities, relating to type of branching, and the dispersity, relating to the 

heterogeneity of the branching structure such as degree of branching or branch chain lengths. It 

was found that different rice varieties could exhibit vastly different distributions, a potential 

factor in the differences in their functional properties. 

Chapter 5 explores the application of NMR relaxometry to rice research in the context of 

digestibility. The simple yet often under-utilised aspect of NMR spectrometry, spin-lattice (T1) and 

spin-spin (T2) relaxation, are tied in with the molecular dynamics of the sample being analysed. 

These molecular dynamics allow for a unique local insight into the difference environments that 

can exist within a rice grain and between different rice samples. This work found multiple 

relaxation components in both raw and cooked rice grains, similar to reports in the literature for 

other starches [168]. However, most literature in this area focuses on the dynamics and 

distributions of water within the granules, while this study explored the apparent correlation with 

in vitro digestion. This relationship between molecular dynamics and starch digestion has not 

been shown in the literature prior and represents a novel finding of this work. 

1.5.2  Contribution to personal, professional development and to the field of study 

Throughout this project I have had a variety of experiences and  opportunities that have 

contributed to both my personal and professional development. Working within a research team 
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of peers employing similar analysis techniques as well as sharing similar sample sets with one 

peer has allowed for me to experience working closely in team. This has brought with it an 

opportunity to both provide and benefit from valuable discussion between peers. 

I was also involved in the writing of a successful AgriFutures research grant aimed to towards 

supporting my project and resulting in a strong link of my research with the agricultural industry. 

Through this research grant, I was involved in managing the finances of the project, while also 

being responsible for the timely delivery of progress reports and meeting of contracted 

milestones. As a result of the industry implications of this project, along with the industry funding 

support, I was invited annually to AgriFutures Rice R&D forums held in Yanco NSW to present an 

update on my research to the members of the rice industry. The audience included famers, 

breeders, cereal chemists, agricultural chemists, and industry representatives. During these trips 

I also had the opportunity to stay on site at the Yanco Agricultural Institute and discuss my 

research and progress in depth with my NSW DPI industry supervisor, Dr Rachelle Ward. These 

opportunities provided me a valuable opportunity to experience and understand my research 

from an industry perspective while I undertook the majority of my work in an academic setting. 

1.5.2.1  Characterisation of starch branching and lamellar structure in rice flours – 

Submitted to Food Chemistry (Chapter 2) 

The experience of writing this publication was beneficial in a number of ways. It allowed me to 

experience the preparation of a publication with guidance from co-authors both in industry and 

academia. This provided me with a perspective on how to approach this research from an industry 

perspective while still maintaining a fundamental foundation that fills a gap in current literature. 

In terms of contribution, I completed the first draft of the manuscript, and collected and processed 

the majority of data presented.  

This experience contributed to my professional development in allowing me to prepare a 

manuscript for submission with co-authors covering a wide range of disciplines. This work also 

afforded me the opportunity to undertake experiments in two different professional facilities. The 

first included training and operation on new instrumentation within the Advanced Materials 

Characterisation Facility (AMCF) at Western Sydney University. During the experiments 

performed at the AMCF, I was involved in preparing a research case for the purchase of a new 

cold-stage FTIR sample stage, and as the first user, was also involved heavily in the instrument 

setup and optimisation as well as the development of the standard operating procedures. The 

second included training and operation of the small-angle X-ray scattering instrument at the 

ANSTO Lucas Heights facility, following a successful application to AINSE for a PhD scholarship 

top-up which also had provisions for access to ANSTO equipment. This work at ANSTO provided 

an opportunity to experience research in a high-pressure professional environment requiring 
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experiments to be completed in the allocated instrument time and involving repeated long days 

of intense work. 

This publication has 7 authors including Dr Patrice Castignolles, Dr Marion Gaborieau, Prof. 

Elliot Gilbert, Dr Jitendra Mata, Dr Rachelle Ward and Michelle Toutounji. Dr Patrice Castignolles, 

Dr Marion Gaborieau and Dr Rachelle Ward provided guidance and direction of the paper. Dr 

Rachelle Ward was responsible for providing the samples measured, arising from her own 

research in a variety by temperature trial at NSW DPI, rice quality data, as well as contributions 

in analysis interpretation and experimental design. Prof. Elliot Gilbert and Dr Jitendra Mata 

provided training on the SAXS instrument, guidance and experimental design on SAXS 

experiments and general guidance on the publication. Dr Marion Gaborieau provided training for 

NMR experiments and analysis and Michelle Toutounji performed early work on the assessment 

of conditions for measurement of average DB. 

1.5.2.2  Separation of amylose and amylopectin using capillary electrophoresis – 

Prepared for submission to Analytical and Bioanalytical Chemistry (Chapter 3) 

This work began during my Masters degree, and carried over heavily into my PhD. The topic 

was a driver for a large proportion of my training and experience with capillary electrophoresis 

and NMR spectroscopy. The results of this work contribute to the field of separation science by 

providing important proofs and discussion on the topic of starch dissolution and separation 

methodology. The publication shows the impact of many common steps taken in separation 

analysis, while providing recommendations on ideal protocol. These results have been presented 

multiple times as the research evolved over my PhD including at international conferences in 

Amsterdam and Hawaii, presenting to analytical chemists and separation scientists, in regional 

Australia, presenting to agricultural researchers including farmers, breeders and cereal chemist, 

and within Sydney, presenting to a range of food and polymer scientists. Earlier work was 

previously submitted for review to Food Hydrocolloids before this PhD project started;  however, 

it was deemed to be missing vital experiments and needed to be focused on the analytical 

chemistry side. Further work during my PhD has involved addressing these shortcomings to form 

a stronger evidence base for conclusions. 

In terms of professional experience, this work involved the co-writing of a successful 

application for a grant to undertake reproducibility studies. This resulted in the opportunity to 

co-supervise a number of international students studying different degrees in different countries 

while they collected and  analysed data based on my methodology. In addition to this I also had 

the opportunity to co-supervise a variety of smaller undergraduate student projects. 

This manuscript for publication has 5 authors. Dr Patrice Castignolles and Dr Marion Gaborieau 

conceptualised the ideas on which this work was based and provided the direction of the paper 
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and helped formulate experiments. Dr Rachelle Ward contributed to the discussion and 

interpretation of results. Dr Joel Thevarajah contributed to experimental work as well as to the 

discussion and interpretation of results. James Lee, Giovanni Barbosa, Dylan Andres, Oceane Fort, 

Morgan Gray and Baanu Paul Remician provided technical assistance on broader aspects of the 

project, performing measurements which allowed for different directions of progress to be 

assessed. My contribution included the data acquisition for all experimental data, which included 

guidance on method development by Dr Marion Gaborieau and Dr Patrice Castignolles. I also 

wrote the first full draft of the manuscript which was reviewed by all co-authors. After presenting 

this work at the ITP conference in September 2019 in Toulouse, we realised that this manuscript 

for publication is in need of one more experiment for confirmation of the binding conditions 

before it can be resubmitted. Based on knowledge of the method, we expect that the binding 

conditions are occurring in the ideal conditions. 

1.5.2.3  Characterisation of branching in rice flours using capillary electrophoresis – 

Chapter in preparation for publication (Chapter 4) 

This work carries on from the work of chapter 3 and represents one of the most valuable 

aspects of the developed methodology in the field of separation analysis of starch. It allowed me 

to present the application of novel concepts developed by our research team [116] on rice 

samples. Through this I was able to contribute a novel avenue for the characterisation of 

heterogeneity in starch structure.  

This work provided me the opportunity to learn and implement new concepts and theories in 

my own work. This was supported by a working knowledge of the application of this novel 

research through co-authorship a publication on its applications in chitosan  during my Masters 

[169]. 

This chapter, and the resulting manuscript, will have a total of 5 co-authors including Dr Marion 

Gaborieau, Dr Patrice Castignolles Dr Rachelle Ward and Dr Joel Thevarajah. Dr Marion Gaborieau 

and Dr Patrice Castignolles conceptualised the ideas on which this work was based and provided 

guidance and direction of the study. Dr Rachelle Ward was responsible for the selection of two 

diverse sets of rice samples from the NSW DPI (breeding lines developed by Dr Peter Snell), rice 

quality data, as well as contributions in analysis interpretation, experimental design and writing 

guidance. Dr Joel Thevarajah provided discussion and guidance on data treatment. I collected all 

experimental data and performed all analysis. I wrote the first full draft of the chapter. 
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1.5.2.4  The link between molecular dynamics and digestibility in different rice varieties 

– Chapter in preparation for publication (Chapter 5) 

This work afforded me the opportunity to expand my knowledge in a new field of NMR that I 

had no previous experience in. It was built on a refreshing but difficult investigation of the 

literature and textbook references to develop my own understanding so that I could better 

interpret the results and properly design experiments.  

This publication contributes to the field by taking a well-known but often under-utilised aspect 

of NMR spectroscopy (relaxometry) and applying it to the area of cereal chemistry. This resulted 

in the novel observation of an apparent dependence of rice grain digestibility on the molecular 

dynamics of starch in rice. 

This chapter and the resulting manuscript will have 5 total authors. Dr Patrice Castignolles and 

Dr Marion Gaborieau provided the direction of this study and the idea of initial experiments. Prof 

Chris Blanchard and Michelle Toutounji provided the digestibility data and samples (originally 

donated by SunRice), with the digestibility data formerly published [170] as well as discussion on 

the outcomes of the research. The NMR relaxometry experiments and first full draft of the 

manuscript were completed by me. 

1.5.2.5  The supramolecular features of starch and how they relate to in vitro 

digestibility (Future work) 

In addition to the chapters in this thesis, I also performed additional measurements on the 

supramolecular features of starch in a range of rice cultivars provided by NSW DPI with a 

preliminary discussion on the results in relation to digestibility, positioned as future work of this 

project. Features of starch structure characterised included helix content by solid-state NMR 

spectroscopy, long-range crystallinity by solid-state NMR spectroscopy and XRD, and semi-

crystalline lamellar structure by SAXS.  

These measurements allowed for me to develop my knowledge and skills on a variety of 

analytical instruments. Measurements of helix content and crystallinity by solid-state NMR 

spectroscopy allowed me to develop my skills in the analysis of starch by 13C NMR spectroscopy, 

requiring me to develop a deeper understanding of NMR and starch analysis. Measurements of 

long-range crystallinity by XRD were performed within the WSU AMCF, allowing an opportunity 

to work in a professional laboratory with instrument technicians, troubleshooting measurements 

and developing experimental design. As a direct result of a requirement to control the 

temperature and humidity of the sample stage, discussions with the facility manager resulted in 

the purchase of special specimen holders for this purpose. I was among the first to use these 

specimen holders, and discussions of my experience was used to guide future users in their 
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applications. Measurements of lamellar structure by SAXS were performed in ANSTO facilities and 

was the second time I had performed measurements on this instrument, allowing me to further 

develop my skills, and discuss with instrument scientists.  

These results were contributed to by a total of 8 authors, Dr Marion Gaborieau, Dr Patrice 

Castignolles, Dr Rachelle Ward, Dr Richard Wuhrer, Dr Laurel George, Prof. Elliot Gilbert, and  Dr 

Jitendra Mata.  Dr Marion Gaborieau and Dr Patrice Castignolles provided guidance and direction 

of the study. Dr Marion Gaborieau provided training on 13C NMR experiments and data analysis. 

Dr Rachelle Ward was responsible for the selection of a diverse sets of rice samples from the NSW 

DPI (breeding lines developed by Dr Peter Snell), rice quality data, as well as contributions in 

analysis interpretation, experimental design and writing guidance. Prof. Elliot Gilbert and Dr 

Jitendra Mata provided training and support for SAXS measurements, as well as in depth 

discussion on SAXS results in addition to results of other aspects of starch structure. Dr Richard 

Wuhrer and Dr Laurel George provided training and discussion for XRD measurements and 

analysis. 

1.5.3 Significance to Industry 

The Australian rice industry is known for producing high quality products and has a strong 

commitment to research and development of all aspects of rice agriculture. Ongoing research is 

integral for the development of new rice varieties, with development of a single variety taking 7-

10 years to have a pure line with the desired quality. Currently, most quality evaluation traits are 

characterised at the F5-6 stage (Figure 1-1). Starch is acknowledged as a strong driver of grain 

quality; however, only AAC and its association to functional traits are characterised in the F5-6 

stage. A broader understanding  of the role of starch structure in grain quality could uncover 

additional aspects of starch structure valuable for rice quality evaluation. in the breeding process. 

Similarly, a refined explanation of traits such as texture and satiety could be supported by a more 

sophisticated description of starch. 

A description of starch to explain these traits requires multiple characterisation approaches to 

describe the many underlying levels of structures that exist in starch. At the molecular level, AAC 

is already an important quality trait that is assessed, though in a limited scope. Further 

characterising amylose content and structure will greatly contribute to the understanding of its 

relationship to functional traits and markers by assessing the branching structures present. The 

methodology employed is straightforward, with minimal sample preparation and relatively low 

cost (AUD 1/sample) compared to other separation approaches, with the bulk of cost arising from 

initial instrumentation purchase (AUD 50-70,000) and labour. 

At the supramolecular level, more advanced instrumentation is required to characterise and 

define starch structure. Multiple levels of structural order exist in starch granules, and each has 
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the potential to impact quality in different ways. The formation of starch helices, the packing of 

molecules in crystalline arrangements, and the organisation of these structures within the starch 

granule are all contributing factors in the functional traits of rice including digestibility. The 

similar size scales of both the supramolecular structure of starch and the active enzymes in human 

digestion highlight the relevance of these structures in predicating digestibility. While 

accessibility to the required instrumentation is likely limited, the information obtained in this 

work may prove to be valuable in relating to genetic markers, and molecular structures. This 

would allow for informed decisions to be made that account for supramolecular structures, for 

example predicting heterogeneity in lamellar structure from the branching structures, thus 

forming a basis for the prediction of supramolecular structures and subsequent traits. 

Developing such relationships will allow for molecular-assisted screening to be further 

developed in the breeding process, allowing either faster development cycles or enhanced 

development of specific attributes e.g. precise predictions of digestibility. With the current trends 

in dietary advice and guidelines, the development of greater choice of low GI commercial rice 

varieties would play an important role in public health. Such products would represent a value-

add for the gross margins of growers and offer unique health related marketing opportunities. 

 

  



Page | 31  
 

Chapter 2 Characterisation of starch 

branching and lamellar structure in 

rice flours - Manuscript 

Characterisation of starch branching and lamellar structure in rice flours – 

Submitted to Food Chemistry 

Matthew Paul Van Leeuwena, Michelle Rosemarie Toutounjia, Jitendra Matab, Rachelle 

Wardc, Elliot Paul Gilbertb,d, Patrice Castignollesa, Marianne Gaborieaua,e* 

a Western Sydney University, Australian Centre for Research On Separation Science (ACROSS), School of Science, 
Parramatta, NSW 2150, Australia 

b Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas 
Heights, NSW 2234, Australia 

c Yanco Agricultural Institute, NSW Department of Primary Industries, Yanco, NSW, Australia 
d The Australian Institute for Bioengineering and Nanotechnology and Queensland Alliance for Agriculture and Food 

Innovation, The University of Queensland, Brisbane, QLD 4072, Australia 
e The University of Queensland, Centre for Nutrition and Food Sciences, St Lucia QLD 4072, Australia 

 
E-mail addresses: m.vanleeuwen@westernsydney.edu.au, mtoutounji@csu.edu.au, jtm@ansto.gov.au, 

rachelle.ward@dpi.nsw.gov.au, epg@ansto.gov.au, p.castignolles@westernsydney.edu.au, 
m.gaborieau@westernsydney.edu.au 

* corresponding author: m.gaborieau@westernsydney.edu.au 

 

Abstract 

Apparent amylose content is one of the primary parameters used to describe the composition of rice grains. 

This spectrophotometric method is the only direct measurement of starch structure in routine quality 

analysis. However,    starch exhibits 6 levels of known structure and characterisation at each level could 

allow explaining variations in other grain quality parameters, including texture and digestibility   . We 

measured the (supra)molecular starch structure in rice flours complementary to apparent amylose content: 

average degree of branching by 1H NMR spectroscopy and semi-crystalline lamellar structure by small 

angle X-ray scattering (SAXS). The suitability of these methods in routine quality analysis was assessed. 

Determination of apparent amylose content exhibit high precision (ca 5 % error) but low accuracy. 

Determination of average degree of branching exhibits similar precision to determination of apparent 

amylose content; our reproducibly test indicates good accuracy.   Sample preparation (dissolution) is the 

first source of error in 1H NMR spectroscopy and presumably also in spectrophotometry. Over narrow 

ranges of apparent amylose content (less than 2.5 % absolute difference) differences     in apparent degree 
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of branching and lamellar structure could be observed. This shows that the difference between chemical 

structures of different amyloses/amylopectins within a sample is not negligible; it is important to consider 

this aspect  , not just amylose/amylopectin content in rice. The ability of structural features to distinguish 

varieties and the impact of growing temperature was assessed. This opens a way to explore how finer details 

of molecular and supramolecular starch structure can play a role in understanding rice quality. 

Keywords 

Rice, starch, amylose, branching, SAXS, NMR 

2.1 Introduction  

Rice is an important crop providing the main nutritional intake of two-thirds of the global 

population [1]. Milled rice grains primarily comprise starch along with water, proteins and lipids 

[1]. Many commercial rice varieties are the result of rice breeding to maximise production 

efficiency, convey pest and disease resistance and to ensure the grain traits used to describe grain 

quality meet domestic and international market preferences [67]. Descriptors of rice quality 

include physical, compositional and functional properties such as chalkiness, colour, 

gelatinisation temperature, apparent amylose content (AAC), texture and digestibility [67]. 

Variation in some traits can primarily be explained by molecular markers [23, 171] and these are 

used in early generation breeding selections. Many descriptors of quality are also interdependent, 

for example, digestibility has generally been observed to decrease when AAC increases [26], but 

AAC values by themselves do not allow an accurate prediction of rice digestibility. Different factors 

can impact grain quality, for example growing conditions have been observed to affect AAC, 

gelatinisation and chalkiness [9, 11, 172]. Processing starch into foods can also strongly affect 

starch structure in some cases but not others, which in turn impacts nutritional and sensory 

properties (e.g. texture, visual aspect and flavour) [148].  From rice breeding to processing, there 

is a common need for a deeper understanding of drivers of rice quality traits [7], and 

characterising starch structure at each level of organisation is a novel approach to do that. 

The properties measured in describing grain quality often do not include any direct measures 

of starch structure outside of AAC [67, 173]. Native starch structure is complex, exhibiting a multi-

level hierarchical structure (Figure 2-1). Starch macromolecules consist of glucose monomer units 

connected by α(1, 4) glycosidic bonds with branch points involving α(1, 6) linkages. Branched 

chains are regularly arranged into tightly packed clusters of double helices that are the building 

blocks of crystalline regions within the repeating semi-crystalline lamellar structure of each 

starch granule [22].   
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Figure 2-1 Molecular (green) and supramolecular (purple) structural levels of starch. Levels 1 to 6 start on the top left 

and follow the opposite order to that indicted by the arrows. Adapted from [38] 

Native and modified starch structures have been characterised by a range of analytical 

techniques [148, 174, 175]. The molecular level of structure refers to the individual starch 

molecules and their branching structure (Figure 2-1, Levels 1 and 2). Amylose and amylopectin 

are respectively linear/slightly branched and highly branched starch. Starch has no 

chromophores, but AAC is most commonly determined by spectrophotometric methods after 

binding to iodine [73, 176]. Nuclear magnetic resonance (NMR) spectroscopy is one of the most 

versatile and informative spectroscopic techniques available for elucidation of molecular and 

supramolecular structure and dynamics (Figure 2-1, Levels 2 to 4) [123, 177]. 1H NMR 

spectroscopy can differentiate between anomeric protons involved in α(1, 4) and α(1, 6) linkages 

and has been used to estimate the average degree of branching (DB) of D-glucans [178], 

oligosaccharides [38, 179, 180] and starches [133]. NMR is the preferred choice to determine the 

average DB [67] (Figure 2-1, Level 2). The measurement of average DB by 1H NMR spectroscopy 

is one of the few established methods available for probing the branching structure of starch, with 

separation methods also available to probe other aspects of the branching structure such as the 

molar mass distribution of enzymatically debranched starch, commonly named “chain length 

distributions”  [151, 181-183].  

Characterisation of the multiple levels of crystalline structure in starch can be explored 

through a variety of techniques (Figure 2-1, Levels 3 to 5). X-ray diffraction (XRD) is capable of 

identifying and quantifying underlying A, B and C-type crystalline structures in starch [22, 131]. 

The proportions of single and double helices relative to the amorphous structure of starch can 

also be measured by 13C solid-state NMR spectroscopy, allowing for insight into the short-range 
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molecular order [131]. Fourier transform infrared spectroscopy (FTIR) has been extensively used 

to characterise starch crystallinity, particularly in the range 1300-800 cm-1 where a crystalline 

index is often referenced. Crystalline index is defined as the ratio of ‘crystalline’ and ‘amorphous’ 

absorbance band intensities [184, 185]. However, strong overlap in absorbance bands and 

sensitivity to moisture limit the ability to obtain accurate data [144].  

Lamellar starch structure can be measured by small angle X-ray scattering (SAXS) (Figure 2-1, 

Level 4 to 5) [148]. Chain length distribution (i.e., distribution of degree of polymerisation of the 

branches) and proportion of crystallinity correlate with the size and distribution of the lamellar 

structures in extracted starch [151]. This has important implications for understanding the 

activity of branching enzymes in starch synthesis, the resulting dynamic composition of amylose 

and amylopectin, and their unique branching characteristics [186]. These structural changes can 

consequently have significant impacts on the functional properties of the starch [138, 187]. SAXS 

can monitor starch processes including starch swelling [188], gelatinisation [189], retrogradation 

[190] and annealing [191].  

AAC is known to be a valuable parameter in describing grain quality relevant to certain 

consumer preferences such as texture. However, there is scope to explore other structural 

features of starch. Here, the suitability of characterisation methods in differentiating rice flour 

samples based on starch structure is assessed. This is achieved by investigating AAC by the iodine 

binding spectrophotometric method, average DB by 1H solution-state NMR spectroscopy and 

semi-crystalline lamellar structure by SAXS. 

2.2 Materials and Methods 

2.2.1 Rice samples 

Seven varieties of rice were grown at the NSW Department of Primary Industries at Yanco, 

NSW, Australia. These varieties are examples of rice with different end-quality attributes, and 

different genetic backgrounds. Rice was grown in glasshouses using a two-phase randomised 

design. The first phase was from sowing to five days after anthesis whereby 24 pots per variety 

were grown in the same glasshouse. In the second phase, between five days after anthesis and 

harvest, pots (6 per variety) were placed into replicated growth rooms with temperatures of 

26/17 °C and 36/27 °C day/night temperatures. All other growth input and conditions were 

consistent. Grain was harvested at physiological maturity, dehulled (THU35A 250V 50Hz Test 

Husker, Satake, Australia), milled (brush mill) and ground (Cyclotec 1093 Sample Mill, Tecator 

AB, Sweden) to pass through a 50 μm sieve. 
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Hot-water soluble (HWS) and hot-water insoluble (HWI) fractions from flours of the waxy rice 

varieties Hom, Makfay, Med Gnay, Laboun and Phae Savan were provided as freeze-dried powders 

by the International Rice Research Institute (Los Baños, Philippines). HWS and HWI fractions are 

specified as waxy varieties in the text. 

2.2.2 Materials 

Milli-Q® quality (Millipore, Bedford, MA, USA) water was used where specified, otherwise 

distilled water was used. Analytical grade sodium hydroxide pellets (NaOH), citric acid, potassium 

iodide and iodine were from Thermo Fisher Scientific (Scoresby, Victoria, Australia).  

Deuterium oxide (D2O) ≥99% (100 g bottles) and dimethyl sulfoxide-d6 (DMSO-d6) ≥99% were 

obtained from Cambridge Isotope Laboratories, Inc. (Andowver, MA, USA). Ethanol ≥99% and 

lithium bromide (LiBr) ≥99% were purchased from Sigma-Aldrich (Castle Hill, NSW, Australia). 

Ethylene glycol in DMSO-d6 (80 %) standard was obtained in a sealed 5 mm NMR tube from 

Bruker (Bruker Biospin Ltd, Sydney). Quartz glass tubes: 80 mm length, 2 mm outer diameter, and 

0.01 mm wall thickness were purchased from Hilgenberg GmbH (Malsfeld, Germany).  

2.2.3 Methods 

2.2.3.1 Apparent amylose content  

AAC was determined using a modified AACC approved method 61-03.01 [176]. 

Rice flour was weighed (100 mg) and transferred quantitatively to 100 mL volumetric flasks. 

To this, 1 mL of 95 % ethanol (5 % H2O) was added to wet the sample followed by vortexing, then 

9 mL of 1 M aqueous NaOH added. Samples were then left at room temperature for 15-25 h to 

disperse. After dispersion, samples were made up to 100 mL with distilled water and vortexed.  

For iodine colour measurements, 1 mL of dispersion was quantitatively transferred to a 20 mL 

test tube. To this, 2 mL of 0.1 M citric acid in water was added with mixing, followed by 1 mL of 

iodine solution (0.2 wt% aqueous I2 and 2.0 wt% aqueous KI) then made up to 20 mL with distilled 

water. The dispersion was then mixed and left to stand for 20 min. Colour absorbance was 

recorded for 2 aliquots of each sample solution at 620 nm. Measurements were made on a 

Beckman Coulter DU800 Spec (Beckman Coulter Life Sciences, Indianapolis, United States).  

Standard curve samples were prepared daily using water plus two in-house calibrated rice 

samples from NSW DPI. The absorbance at 620 nm was plotted against amylose content for each 

standard solution. The resulting standard curve was used to read amylose values for test samples.  

The AAC of each variety and temperature is reported as the average of the replicate 

measurements and replicate glasshouse samples (n=4). Error bars are the standard error of the 
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mean. Groupings of AAC were based on a range of AAC independent of error bars (<2.5 % absolute 

difference). 

2.2.3.2 Average DB  

Rice flours (10 mg) were suspended in 2.24 g D2O (5 g·L-1) in round bottom flasks (50-250 mL), 

rinsed with D2O prior to use. The flasks were sealed with Parafilm M®, mounted on an orbital 

shaker. Samples were continuously shaken (200 rpm) for 8 to 17 h at room temperature. Samples 

were then freeze-dried. This process was repeated once to ensure complete exchange of 

hydroxylic protons and minimise any resonance interference from residual solvent. The dried, 

selectively deuterated sample (4.5 mg) was dissolved in 0.45 mL of a 5 wt% LiBr DMSO-d6 solution 

(made fresh from DMSO-d6 with molecular sieves and LiBr powder stored in a desiccator) and 

heated in sealed glass vials at 80 °C overnight (approximately 15 h). 0.15 mL of D2O was 

subsequently added to give a final sample concentration of 7.5 g·L-1 in DMSO-d6/ D2O (75/25). 

Samples were kept at 80 °C and measured immediately (less than 2 min).  

The solution state 1H NMR spectroscopy measurements were performed with a Bruker 

DRX300 spectrometer (Bruker BioSpin Ltd, Sydney) equipped with a 5 mm dual 1H/13C probe, at 

a Larmor frequency of 300.15 MHz. For older measurements in the reproducibility experiment (S 

2.5.1.7), experiments were performed with the same setup but at a Larmor frequency of 300.13 

MHz (due to decommissioning and recommissioning of spectrometer to new location). 1H NMR 

spectra were recorded using a 10 000 Hz spectral width, 90° flip angle, and acquired at 90 °C (see 

section S 2.5.1.1 for temperature calibration).  

The probe was tuned and the spectrometer was shimmed for each sample to ensure optimal 

signal-to-noise and resolution, respectively. Spectra were recorded and treated using Topspin 

software. Longitudinal relaxation times (T1) of the signals of interest were estimated using the 

one-dimensional inversion recovery pulse sequence (S 2.5.1.3). Quantitative spectra were 

recorded with a 7.5 s repetition delay, which is longer than 5 times T1 for the signals of interest. 

The chemical shift scales were calibrated with respect to the signal of DMSO at 90 °C (2.526 ppm) 

[193].  

Average DB was calculated with equation 2 [194], 

𝐷𝐵 (%) =  
𝐼α(1,6)×100

𝐼α(1,4)+ 𝐼α reducing+ 𝐼α(1,6)+ 𝐼β reducing
 Equation 2-2 

where Iy is the integral of the 1H NMR signal of the anomeric proton of type y, with observed y 

signals being α(1, 4) (5.13 ppm), α reducing end (5.00 ppm), α(1, 6) (4.80 ppm) and β reducing 

end (4.45 to 4.35 ppm) [133, 180, 194, 195]. An example of the partial spectra and integration 

regions is shown in Figure S 2-5. Reported values are the average of glasshouse replicates (n=2). 
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Error is reported as the standard error of the mean, and groupings of similar DB based on error 

bars. 

For waxy rice flour fractions, the protocol above was slightly as detailed in section S 2.5.1.2.  

2.2.3.3 Semi crystalline lamellar structure 

Samples were packed into 2 mm quartz glass capillaries. Packed samples were hydrated with 

excess Milli-Q® quality water for at least 12 h prior to analysis and tubes sealed using paraffin 

wax. 

Small–angle X-ray scattering experiments were performed on a Bruker NANOSTAR SAXS 

system, employing 3 pinhole collimation for focussing, Cu Kα radiation with a wavelength of 1.541 

Å and a VANTEC1000 2D detector (resolution 68 m). The scattering vector, q, in the range of 0.01 

to 0.35 Å-1 was used with optics and sample chamber under vacuum.  

Scattering files were radially averaged using Bruker NANOSTAR software package, 

appropriately water background subtracted and scaled relative to a water filled capillary using 

the ATSAS software package [196]. Scattering curves were fitted using a power law function to 

represent large-scale structure combined with a combined Gaussian/Lorentzian function for the 

main starch peak (q ≈ 0.067 Å-1) and a Gaussian function for the secondary peak (q ≈ 0.13 Å-1) 

(Equation S 2-1). Fitting parameters were iteratively calculated to minimise chi-square using 

WaveMetrics Igor Pro software [197] and National Institute of Standards and Technology (NIST) 

Centre for Neutron Research macros [198]. An example curve and fit is shown in Figure S 2-7. 

Reported values are the average of triplicate measurements of glasshouse duplicates (n=6). 

Error bars are reported as the standard error of the mean, and groupings of similar values based 

on error bars. 

2.3 Results and discussion 

2.3.1 Performance of determination of AAC by spectrophotometry and average 

DB by NMR spectroscopy in characterising molecular structure 

The precision and accuracy of the determination of AAC and average DB are compared below. 

The reproducibility was also assessed through the measurement of the same samples by different 

operators on different instruments. Here a comparison between the two methods to characterise 

level 2 of the starch structure is provided, assessing three major points: 1) sample preparation, 2) 

the measurement itself and 3) the results obtained.  

In the first point, the sample preparation is an important aspect of both methods, both sensitive 

only to starch that is solubilised at the molecular level. Full dissolution is sometimes assumed 
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when a transparent liquid is obtained or when no precipitation occurs upon centrifugation. 

Quantitative solution-state NMR spectroscopy showed that transparency, even upon 

centrifugation, can be obtained even if starch is not fully dissolved [79]. Conditions ensuring full 

dissolution at the molecular level have been implemented in this work for the determination of 

average DB. The NMR methodology published initially [133] was modified using dry DMSO-d6 

with the addition of 5 wt% LiBr instead of D2O for dissolution of the samples (130:1 LiBr to glucose 

stoichiometry) [79, 82] to ensure complete dissolution at the molecular level. Lower LiBr 

concentrations (12.4:1 LiBr to glucose stoichiometry) were found to lower the precision of 

determined average DB (Error! Reference source not found.). This large molar excess of LiBr 

compared to glucose units is explained by the fact that LiBr does not just interact with the 

hydroxyl groups of the glucose unit (inhibiting hydrogen bonds) but it also interacts with and, in 

fact, modifies DMSO as a solvent [199]. Dry DMSO was used since even minute amounts of water 

in the DMSO have shown to slow down the dissolution [78].  D2O was added after dissolution as it 

is reported to shift the residual H2O solvent peak, yielding further improved resolution of starch 

signals [180]. The error associated with sample preparation was determined through 4 repeat 

preparations, yielding a relative standard deviation (RSD) of 2.6 % on the average DB of Doongara 

(S 2.5.1.6). In the spectrophotometric determination of AAC, the sample preparation requires 

quantitative solubilisation of the starch at the molecular level but also iodine binding to occur. 

Suspension of starch in 90 % DMSO/10 % water before iodine binding has been attempted a few 

times [72, 200]. Dissolution of starch with DMSO and LiBr has never been attempted for AAC 

determination. The AACCI method for AAC determination prescribes the use of aqueous sodium 

hydroxide for solubilisation, a protocol that is typically maintained even in modified AAC 

determination methods. However, the solubility of starch in aqueous sodium hydroxide at the 

molecular level has never been determined. The sample preparation in the accepted AAC 

determination methods could thus lead to low accuracy with especially some systematic errors.  

For the second point, the measurements clearly differ between spectrophotometry and NMR 

spectroscopy, with differences in precision and accuracy. A typical limitation of NMR spectroscopy 

is its sensitivity. The error related the signal-to-noise ratio (SNR) can be determined from an 

empirical relation [201, 202]. In this work, spectra were collected until an SNR of at least 60 was 

obtained for the α(1, 6) signal (about 700 scans, in  about 90 min), yielding an RSD of lower than 

1 % based on the aforementioned empirical relation. The error due to data processing (phasing, 

baseline correction) was deemed negligible in the case of determination of chitosan composition 

by NMR when SNR was above 50 for the least intense signal of interest [203]. The resolution of 

the signals of interest in NMR of chitosan is similar to that observed in this work. The error due to 

processing is thus likely negligible for average DB of starch in this work. Measurements by 1H NMR 

spectroscopy are not intrinsically quantitative contrary to common belief. To determine 
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quantitative conditions in this work, appropriate estimation of T1 relaxation times was performed 

for all signals of interest, ensuring that signal intensities reflect the quantities of species dissolved 

in the sample (S 2.5.1.3). The T1 assessment done in this work will apply to other instruments at 

the same magnetic field (300 MHz 1H Larmor frequency). To ensure accurate integration of the 

signals of interest, resolution was improved by the addition of D2O after dissolution [180] and 

high probe temperature (90 °C) (S 2.5.1.4). These conditions were then used to test long- and 

short-term sample aging to determine the stability of the samples (S 2.5.1.7) and the experimental 

impacts of waiting between sample preparation and measurement (S 2.5.1.9). A negligible effect 

of long-term aging (of the flour) was confirmed through repeat measurements 4 years after their 

initial measurement and storage at 4 °C in a refrigerator, with a change in operator and instrument 

giving an indication of the good reproducibility of the method. In contrast, short term aging (of 

the dispersion) was found to occur, with slow degradation after the addition of D2O if the sample 

was left to evolve over several hours, therefore measurements were consistently performed 

immediately after addition of D2O. Finally, the calculation of average DB is achieved by different 

equations in the literature, differing only in the inclusion/exclusion of  and  reducing ends [133, 

194, 195]. Due to the detection of both  and  reducing ends in the non-waxy rice flours, they 

were included in the calculated of average DB as was also previously reported [194]. In contrast, 

 and  reducing ends were considered negligible in the waxy HWS and HWI fractions, so were 

not included in the calculation. In the rest of the work, the error bars are given based on precision 

values, which likely corresponds a reasonable estimate of the accuracy in this case. In the case of 

determination of AAC using spectrophotometry, sensitivity is not an issue. However, resolution is 

a limitation: amylose and amylopectin’s UV absorption spectra are not fully resolved after iodine 

binding. Their bands are particularly broad due to branching affecting iodine binding. The 

absorbance assumed to be amylose includes some absorbance due to amylopectin [73] 

introducing some systematic error. Therefore, without corrective procedures, AAC determination 

is inherently semi-quantitative. The variability present in the methods of AAC determination has 

been assessed in a broad interlaboratory round-robin test (17 rice cultivars and 27 laboratories) 

[73]. The repeatability was found to be high, reflected in the repeat AAC measurements in this 

work (5 % RSD), and similar to that of the determination of average DB by NMR (6 % RSD). 

Reproducibility was however found to be low for AAC determination, identifying differences in 

standards and methodology as major sources of error. However, the use of rice cultivar standards 

instead of potato ones improved reproducibility. Here, an average relative difference in AAC of 6.8 

%  for this sample set was observed in reproducing measurements 4 years apart with different 

operators, instruments and methods  (S 2.5.2.1). In the rest of the work, the error bars are given 

based on precision values, which likely corresponds an underestimate of the accuracy in this case. 
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Finally, the results of the two methods were compared to assess the consistency of the data 

between them (Figure 2-2). An apparent linear relationship between the average DB and AAC 

indicates, as expected, a decrease in average DB with increasing AAC due to amylose having a 

substantially lower DB than amylopectin. Boundary conditions were plotted to detect any 

potential variations in the linear relation for either measurement. These boundary conditions 

were created by taking the extreme values measured for average DB of waxy HWS and HWI rice 

flour fractions (assuming 0 % AAC, Table S 2-2) and linearly extrapolating to 100 % AAC and 0 % 

average DB (assuming negligible branching in amylose), shown as dashed lines. Boundaries were 

also plotted based on the highest and lowest average DB reported in literature for waxy starches 

in general, irrespective of botanical origin (Table S 2-3), shown as dotted line. The linear 

correlation between the average DB and AAC, as well as their confinement within the boundary 

conditions indicates that the data are consistent. However, with the adjusted r2 of 0.93, it is 

possible that deviations as a result of different branching structures are occurring.  

 

Figure 2-2 Average DB by 1H NMR plotted against AAC for rice flours of different varieties grown at lower and higher 

temperature (black squares) showing a linear correlation (black line, adjusted r2 = 0.93). Dashed lines are linear 

extrapolations of extreme values of average DB measured for HWS (blue) and HWI (red) fractions of waxy rice flours (Table 

S 2-2). Dotted lines are linear extrapolations from the highest (blue) and lowest (red) average DB values for waxy starches 

from literature (Table S 2-3). AAC error bars represent the standard error of 4 values (2 independent replicates of 

temperature and 2 instrument readings for each replicate). Average DB error bars represent the standard error of 2 values 

(2 independent replicates of temperature). See Table S 2-5 for individual AAC and average DB values 

As a tool for rice quality assessment, the determination of AAC by iodine binding is a high-

throughput, cost-effective method with standard methods strengthening its deployment [176, 

204]. Spectrophotometry and NMR spectroscopy provide valuable data with which to assess the 

molecular structure of starch, with average DB expected to provide more accurate information. In 

contrast, while AAC and average DB methods are impacted by dissolution and branching 
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structures, the measurement of the semi-crystalline lamellar structure by SAXS is impacted 

primarily by the availability of, and competency in use of, instrumentation and the application of 

appropriate models. Given SAXS analysis is from solid samples, with excess hydration the only 

modification, sample preparation is simple and consistent. One exception is in the influence of 

sample packing density on relative intensity; however, this was observed to be adequately 

controlled in this work. 

2.3.2 Assessing molecular structure through AAC and average DB  

AAC is known to be influenced by temperature during different growth stages, with higher 

temperatures leading to a decrease in amylose synthesis for some varietals [205, 206]. Here, 

Cocodrie and I-Geo-Tze were shown to have a consistent AAC across temperature treatments 

whereas the remaining varieties had an observable decrease in AAC at higher growing 

temperatures (by 4.7 to 7.2 %) (Figure 2-3). Varieties could be grouped by their AAC values in 

each temperature treatments, displaying two groupings at the lower growing temperature, and 

three groupings at the higher temperature treatment. These observations have been explained by 

the expression of granule bound starch synthase (GBSSI) and the Waxy gene [205-208]. These 

groupings clearly indicates some similarity between certain varieties, but their responses to 

temperature also highlights their differences in other aspects. Thus, the determination of 

additional structural features here will serve to identify how the starch structure differs between 

temperature treatments and varieties. 

 

Figure 2-3 AAC measured by iodine binding (left axis, solid shapes) and average DB measured by 1H NMR spectroscopy 

(right axis, hollow shapes) for rice flours of different varieties grown at lower (blue diamonds) and higher (red triangles) 
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temperature. Error bars for AAC represent the standard error of 4 values (2 independent replicates of temperature, 2 

instrument readings for each). Error bars for average DB represent the standard error of 2 values (2 independent 

replicates of temperature). See Figure 2 for data consistency check. See Table S 2-5 for individual values 

Average DB is a metric related to AAC, with increasing proportions of less branched molecules 

generally expected to result in a decrease in the average DB (Figure 2-2). The average DB within 

the rice varieties grown at different temperatures is also shown in Figure 2-3. Average DB ranged 

from 3.4 to 4.5 % for all varieties and growing temperatures. Growing temperature did not 

influence average DB in any variety except Kyeema, where error bars indicated an apparent 

increase in average DB potentially arising from the coinciding decrease in AAC rather than a 

change in branching structure. All other varieties but Cocodrie and I-Geo-Tze displayed a 

reduction in AAC at the higher temperatures, but no significant change in average DB, counter to 

the observation in Kyeema and suggesting no direct association between AAC and average DB in 

these varieties. This is despite the general trend of decreasing average DB with increasing AAC, 

highlighting the need to report on a varietal basis (Figure 2-2). It is hypothesised that the 

reduction in the less branched amylose component had been counteracted by a decrease in DB 

primarily in the amylopectin component as a result of the higher growing temperature.  

Differences in average DB could be noted between some varieties. At lower growing 

temperature, for the first grouping of varieties by AAC (24.9 to 26.9 %), the average DB was within 

the error bars, except for Doongara. For the second grouping (AAC of 19.4 to 19.6 %), a difference 

in their average DB was observed. At higher growing temperatures, two of the groupings by AAC 

(27.5 to 28.7 %, and 17.7 to 20.1 %) displayed a different average DB between varieties. For the 

third grouping, Kyeema and Quest (13.3 to 13.7 %), the average DB was within error.  

While differences in average DB were observed between varieties, the average DB alone masks 

the distribution of α(1, 6) bonds between amylose and amylopectin. For example, the fine details 

of the branching structure such as short chain and long chain branches or the position of the 

branches, cannot be assessed. Given the multitude of possible combinations in branching and 

amylose content, it is expected that many of these can yield the same average DB despite 

displaying different branching distributions. Therefore, while the average DB may be a useful tool 

for general assessment of branching characteristics in some cases, it does not yield the fine details 

necessary to assess the potential relationships between branching structures and rice quality 

traits. 

2.3.3 Assessing semi-crystalline lamellae with SAXS 

The semi-crystalline lamellar structure of starch is the culmination of the amylose and 

amylopectin produced through starch synthesis and subsequent packing arrangements (Figure 

2-1, Levels 3 to 5) as a function of their branching and size within each starch granule (Figure 2-1). 

The characteristic lamellar peak of starch (q ≈ 0.06-0.07 Å-1, d-spacing ≈ 9-10.5 nm) has been well 
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studied with SAXS in a diverse array of starches including rice starch [151, 152]; however, to the 

best of our knowledge this is the first time it has been studied on native rice flours. This and a 

second higher q peak (q ≈ 0.13 Å-1) were observed here for all varieties (Figure S 2-7). This second 

peak is rarely reported in the literature and likely to have its origin as a second order reflection 

from the lamellar peak. The extracted parameters of the primary lamellar peak are related to the 

features of the semi-crystalline lamellar structure of starch [148], providing an additional avenue 

in assessing the subtle differences in starch nanostructure beyond information on AAC and 

average DB. 

2.3.3.1 Extent of semi-crystalline order 

The relative intensity of the primary lamellar peak (q ≈ 0.067 Å-1) relates to the extent of semi-

crystalline order present in the sample. The peak intensity of rice grown in the two temperature 

treatments is shown in Figure 2-4. It is important to note that the relative intensity in SAXS is 

sensitive to sample thickness and packing density, and that care must be taken to minimise 

differences when comparing scattering intensity from different samples [148]. In this work, the 

sample thickness and packing density in preparation were not specifically controlled, so bias in 

relative scattering intensities may be introduced. However, a general decrease in relative intensity 

with increasing amylose content has been reported in the literature [148] and has also been 

observed in this study (Figure S 2-8). This trend indicates that packing densities were adequately 

controlled. This apparent relationship of AAC with relative peak intensity has been explained by 

the accumulation of defects within the lamellar architecture [148].  
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Figure 2-4 Relative peak intensity of main lamellar peak observed in SAXS for rice flours of different varieties grown at 

lower (blue diamonds) and higher (red triangles) temperature for each variety and temperature. Average AAC of samples is 

shown adjacent to data point. Error bars represent the standard error of 6 values (2 independent replicates of 

temperature, 3 preparations for each). See Table S 2-5 for individual mean peak intensity values 

Differences in relative intensity between temperature treatments were within the error bars 

for Cocodrie and I-Geo-Tze, and given AAC and average DB were unchanged, this suggests no 

change in the extent of semi-crystalline order. IR64, IR55419-04, Doongara and Quest varieties 

exhibited a measurable increase in the relative intensity, a decrease in AAC and similar average 

DB at the higher growing temperature. These results agree with the consideration that the 

amylose component of starch contributes mainly to the amorphous regions of the semi-crystalline 

structure [209]. The extent of semi-crystalline order is thus expected to increase as a result of a 

decrease in the amorphous component. The consistency in average DB for all varieties except 

Kyeema indicates that the extent of semi-crystalline order in the semi-crystalline structure is 

independent of a change in branching frequency, reflected in the relationship of increasing 

relative intensity with increasing average DB (Figure S 2-9). At higher growing temperatures,  

Kyeema displayed no measurable increase in relative intensity despite an apparent decrease in 

AAC and increase in average DB. For Kyeema, this suggests the formation of crystalline structure 

has not been influenced by the reduced AAC and changes to branching structure. The large error 

in the relative intensity for Kyeema may indicate that intragranular packing density was 

significantly interrupted, especially at the higher temperature. 
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Differences in relative intensities could also distinguish varieties within each temperature 

treatment. The two groupings of varieties by AAC at lower growing temperatures (24.9 to 26.9 %, 

and 19.4 to 19.6 %), could be distinguished into three groups by their relative intensities. Of the 

higher AAC varieties, I-Geo-Tze and Doongara displayed the highest relative intensities and 

IR55419-04 and IR64 the lowest, while Cocodrie overlapped both. This highlights the difference 

in extent of semi-crystalline order that can occur between varieties despite a relatively narrow 

range of AAC. In contrast, the lower AAC Kyeema and Quest had both similar AAC and similar 

relative intensities. Interestingly, despite much lower AAC, the relative intensity of these varieties 

was similar to some of the higher AAC varieties at the lower growing temperature. At higher 

growing temperatures, the three groupings of varieties by AAC all displayed differences in relative 

intensity within the groupings, highlighting again how differences in the extent of semi-crystalline 

order can manifest independent of AAC. However, intergroup overlap of relative intensities was 

noted for the higher and intermediate AAC groupings, counter to the general observation of 

decreasing relative intensity with increasing AAC (Figure S 2-8).  

At both lower and higher temperatures, varieties exhibiting similar average DB could not be 

further discriminated by their relative intensity. One exception was Doongara, displaying a 

substantially higher relative intensity at higher growing temperature than I-Geo-Tze and 

IR55419-04 despite similar average DB; however, due to the large error no conclusions can be 

drawn. 

2.3.3.2 Thickness of semi-crystalline lamellae 

The position of the primary lamellar peak relates to the thickness of the lamellar repeat unit, 

one crystalline plus one amorphous lamella, in real space (Figure 2-1 and Figure 2-5). The lamellar 

repeat thickness was typical of what has been reported for starch [163], with varieties exhibiting 

sizes between 8.9 and 9.7 nm. 
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Figure 2-5 Lamellar repeat thickness measured with SAXS for rice flours of different varieties grown at lower (blue 

diamonds) and higher (red triangles) temperatures (Equation S 2-5). Average AAC of samples is shown adjacent to data 

point. Error bars represent the standard error of 6 values (2 independent replicates of temperature, 3 preparations for 

each). See Table S 2-5 for individual mean thickness values 

All varieties displayed a change in the lamellar repeat thickness, within error, between 

temperature treatments except for IR64 and Doongara (Figure 2-5). Both IR64 and Doongara also 

displayed a decrease in AAC, similar average DB and an increase in extent of semi-crystalline order 

with the higher temperature treatment. This similarity in lamellar repeat thickness strongly 

indicates that the decrease in AAC is linked primarily with a decrease in the fraction of bulk 

amorphous regions rather than in the amorphous lamellae of the semi-crystalline regions. Of the 

varieties in which higher temperature treatment impacted the lamellar repeat thickness, Cocodrie 

and I-Geo-Tze had displayed no large difference in AAC, indicating again that AAC itself is not a 

primary driver of the lamellar repeat thickness, but may play a role. Variations in lamellar repeat 

thickness have indeed been reported to coincide with increased concentration of longer chain 

lengths of debranched starch (degree of polymerisation higher than 13), with either increased 

disordered chain ends contributing to amorphous regions or production of larger crystalline 

lamellae [151]. Kyeema was the only variety with a change in both lamellar repeat thickness and 

average DB between temperature treatments, potentially indicating a change in concentration of 

longer chain lengths. However, these suggestions cannot be confirmed by the average DB as it 

does not inform on such aspects of the branching structure.  
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The lamellar repeat thickness appeared to be independent of AAC between varieties within 

each temperature treatment. An exception to this was Cocodrie and I-Geo-Tze which displayed 

similar lamellar repeat thicknesses at the higher growing temperature, reflecting the consistency 

in other measured parameters. For the remaining varieties, grouped by AAC and exhibiting similar 

average DB, differences in lamellar repeat thickness were noted within groupings. At lower 

temperature treatment, this was observed for the grouping of Kyeema and Quest varieties, as well 

as for the grouping of IR55419-04 and Doongara varieties. At higher growing temperatures this 

was observed for the grouping of IR55419-04, IR64 and Doongara varieties. These observations 

confirm that AAC or average DB are not in themselves the primary drivers of the lamellar repeat 

thickness, though it is possible these differences arise from varietal differences in chain length 

distribution, similar to observations of the temperature treatments [151]. 

2.3.3.3 Heterogeneity of lamellae 

The half width half maximum (HWHM) of the observed scattering peak for starch is related to 

the uniformity of the lamellar repeat thickness, with an increase in HWHM corresponding to a 

greater variation between the thickness of lamellae (Figure 2-1 and Figure 2-6). There is a positive 

relationship between HWHM and average lamellar repeat thickness (Figure S 2-10). This 

previously reported observation was explained by a minimum number of glucose units (degree of 

polymerisation of 10-12) required to form a helix [151].  

  

Figure 2-6 HWHM of the lamellar peak measured with SAXS for rice flours of different varieties grown at lower (blue 

diamonds) and higher (red triangles) temperatures (Equation S 2-6). Average AAC of samples is shown adjacent to data 

point. Error bars represent the standard error of 6 values (2 independent replicates of temperature, 3 preparations for 

each). See Table S 2-5 for individual mean HWHM values 
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All varieties displayed a change in lamellar heterogeneity between temperature treatments, 

except for Cocodrie (Figure 2-6). For Cocodrie this indicates a consistency in the lamellar repeat 

thickness between the lamellae, reflected in both the unchanged AAC and average DB, though an 

increase in the lamellar repeat thickness in the higher temperature treatment (Figure 2-5) 

indicates that some structural changes are still occurring. Of the other varieties where lamellar 

heterogeneity was different between temperature treatments, all except I-Geo-Tze recorded a 

decrease in AAC at higher growing temperature. Varieties displaying both positive and negative 

changes in HWHM were observed indicating an independence of lamellar heterogeneity from AAC. 

Kyeema was the only variety that exhibited a change in both the average DB between temperature 

treatments and in HWHM, which may again hint at some aspect of the branching structures 

playing a role; however, this cannot be confirmed. 

Differences in lamellar heterogeneity were also observed between varieties within each 

temperature treatment. At lower growing temperature, the grouping of higher AAC varieties (24.9 

to 26.9 %) exhibited a range of different HWHM values, indicating large differences in the lamellar 

heterogeneity between them. An exception to this was Cocodrie and IR64, for which along with 

HWHM both average DB and lamellar repeat thickness were similar. This could suggest that these 

varieties are exhibiting similar branching structures that account for the similarities observed, 

though similar HWHM of the lower AAC Kyeema suggests that AAC is not a major factor. This is 

further highlighted by the difference in HWHM between Kyeema and Quest at lower growing 

temperature despite similar AAC and average DB. At higher growing temperatures, similar 

observations were made for groupings of varieties by AAC exhibiting differences in lamellar 

heterogeneity. Where varieties also exhibited similar average DB, HWHM distinguished between 

them. An exception was Cocodrie and I-Geo-Tze, displaying similar HWHM and a narrow range of 

AAC (27.5 to 28.7 %), but an apparent difference in average DB suggests some similarity in 

branching structure that is independent of branching frequency. 

2.3.3.4 General statements on semi-crystalline structure 

When comparing groupings of varieties by AAC, the features of the semi-crystalline lamellar 

structure could be used to differentiate between varieties and the impact of growing temperature. 

Similarly, when comparing varieties of similar average DB, the lamellar features could be used to 

further differentiate samples. Drivers of such changes in the semi-crystalline structure could be 

explored at the molecular level, for example in terms of chain length distribution of debranched 

starch [151] or of distribution of branching structures [116]. FTIR may provide a more accessible 

approach to explore the crystalline structure. However, the complex non-linear relationship of the 

crystallinity index determined from FTIR with crystallinity measured by NMR or XRD [144] 

indicates that such an approach is not straightforward; this is principally associated with the 
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deconvolution of strongly overlapping signals biasing the intensity of the peaks of interest. 

Cryogenic temperatures have been suggested to improve resolution [210]; however, an adequate 

resolution could still not be obtained for starch in this work even at cryogenic temperatures 

(Figure S 2-11). 

Tentative conclusions could be drawn from the SAXS peak intensity data. The lamellar repeat 

thickness and HWHM offer valuable information to characterise differences between samples. As 

far as its association with AAC and average DB is concerned, it is apparent that the lamellar 

structure is influenced by the AAC; however, within the range of samples studied, the average DB 

does not offer any more depth than AAC when examining the lamellar structure. 

2.4 Conclusions 

Determination of AAC by spectrophotometry is a standard measurement conducted on rice 

grains as part of the assessment of grain quality and providing a valuable parameter. However, 

there is a range of characteristics in starch structure that could play a role in grain quality. 

Whereas AAC has high precision and low accuracy, determination of the degree of branching using 

NMR offers a similar precision but the accuracy may be higher. There are intrinsic errors in NMR 

is due to sampling and dissolution; however, this can be largely addressed by dissolving the starch 

in dry DMSO and then measuring the sample as soon as D2O has been added.  The accuracy of AAC 

may be investigated by employing dissolution protocols shown to effectively solubilise starch; 

however, this would also require determination of the impact on the iodine binding. In terms of 

NMR, a round-robin test would give an important assessment of the accuracy of the average DB.  

Average DB could distinguish varieties, showing groupings despite differences in other 

structural features. However, the subtle changes caused by a stressor to a single variety, in the 

current case temperature, are more challenging to detect if present.  Groupings of varieties by AAC 

could be distinguished by their average DB within a grouping. However, the contributions of 

different branching structures and their distributions are averaged into this single value. As an 

alternative approach in the characterisation of molecular structure in starch, the separation of 

different branching structures using free-solution capillary electrophoresis shows promise as a 

complementary technique [109]. Evaluation of the lamellar structure similarly was able to 

distinguish different varieties and could also indicate differences in structure as a result of 

growing temperature. The ability of SAXS to investigate the semi-crystalline lamellar structure 

yields unique insights into the crystalline structure compared to the lateral long-range crystalline 

information that can be obtained by XRD; however, SAXS instrumentation is generally less 

accessible to food materials scientists.  
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Ultimately, features of starch structure other than AAC in rice flour are also capable of 

distinguishing samples, even in some cases where AAC was unchanged. However, the relevance of 

AAC to other quality parameters such as gelatinisation temperature, texture and digestibility is a 

major reason that it has cemented its importance as a quality parameter of rice flour. The use of 

more robust statistical approaches to explore the value of different measurements of starch 

structure in distinguishing between rice varieties or rice qualities would be a valuable approach.  

While the focus of this study was on starch characteristics, it must also be acknowledged that 

proteins, lipids and other polysaccharides will contribute to rice grain quality. However, there is 

still an opportunity to explore how finer details of starch structure, including molecular 

(branching structures) and supramolecular (lamellar) structure, are linked to or can define other 

important quality traits of rice grains. Such a link would strengthen the case for inclusion of these 

alternative and complementary features of starch structure within routine rice quality analysis. 

Considering costs and accessibility, the characterisation of the lamellar structure (by SAXS) would 

be limited to selected samples, the measurement of average DB (by NMR) would be applicable to 

a larger range of samples to select the more promising ones, and the determination of the 

distribution of branching structures (with capillary electrophoresis) would be applicable as a 

high-throughput tool for the initial pre-selection.  
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2.5 Supporting information  

Supporting Information  

for  

Characterisation of starch branching and lamellar structure in 

rice flours 

Matthew Paul Van Leeuwen, Michelle Rosemarie Toutounji, Jitendra Mata, Rachelle Ward,  

Elliot Paul Gilbert, Patrice Castignolles, Marianne Gaborieau 

S 2.5.1 Determination of average DB  

 Calibration of probe temperature 

The probe temperature was calibrated using ethylene glycol (80 % in DMSO-d6) and equation 

S1 [211]: 

𝑇 =
(4.218− ∆𝛿)

0.009132
  Equation S1 

where T is the sample temperature in Kelvin and Δδ is the difference in ppm between the CH2 and 

OH singlets. 

 NMR measurement of waxy flour fractions 

The protocol detailed in the main manuscript for rice flours was slightly modified as follows 

for the waxy rice flour fractions. The quantities were multiplied by 1.5 for the suspension in D2O. 

DMSO-d6 with 0.05 wt% LiBr was used for dissolution, as it yields complete dissolution of waxy 

rice flours [79]. NMR spectra were measured on a Bruker Avance NMR spectrometer operating at 

a Larmor frequency of 500.13 MHz for 1H, equipped with a TXI5z probe (Bruker Biospin); the 

temperature calibration was carried out with a pure ethylene glycol standard (distilled, in a sealed 

tube) [79]. Quantitative 1H NMR spectra were recorded at 90 °C using a 90° flip angle, and a 

repetition delay of 20 s. The signals of α and β reducing ends were negligible in the waxy rice flour 

fractions and not taken into account in the average DB calculation.  

 

 

 Estimation of T1 for quantitative determination of average DB 

Longitudinal relaxation times (T1) of the signals of interest (in the range of 5.4 to 4.2 ppm) were 

estimated using the one-dimensional inversion recovery pulse sequence. In this experiment, a 
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signal is negative if the inversion recovery delay is shorter than T1 *ln2, and positive if the 

inversion recovery delay is longer than T1 *ln2.  Signals in this range exhibited similar T1, with T1 

determined to be between 0.5 and 1.5 s (Figure S 2-1).  

 

Figure S 2-1 Partial spectra of rice starch in DMSO-d6 at 80 °C displaying measurements to assess whether T1 values are 

shorter than 0.5 s (black), 1.0 s (red) and 1.5 s (green) seconds, with inversion recovery delay of 347 ms (black), 694 ms 

(red) and 1.042 s (green) 

 

 Effect of probe temperature on average DB measurement 

The work of Gidley employed high probe temperatures in order to maintain favourable 

conditions for a stable starch dissolution [133]. The effect of temperature was tested to ensure 

optimal resolution and sample dissolution stability. With a dissolution temperature of 80 °C, 

probe temperatures of 70 °C and 90 °C were compared on rice samples to determine if there were 

any dramatic effects on the resulting spectra. The results indicate that similar spectra are 

obtained, with a slightly improved resolution of the reducing ends afforded by the 90 °C probe 

temperature (Figure S 2-2). This improved resolution was also noted in starch standard samples, 

leading to a lower calculated average DB (Figure S 2-3). 
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Figure S 2-2 Partial spectra of I-Geo-Tze (a), Doongara (b) and Quest (c) rice samples grown at lower (black) and higher 

temperatures (red and green). 1H NMR spectroscopy measurement temperatures were 70 °C (dashed line) and 90 °C (solid 

line) 



Page | 54  
 

 Solvent choice 

The solvent was changed from pure D2O [133] to DMSO-d6 with the addition of LiBr for 

improved sample dissolution [79]. D2O was also added. The amount of LiBr was tested on waxy 

maize, with 5 wt% found to give a more consistent average DB value regardless of probe 

temperature (Figure S 2-3). This likely arises from a more stable dissolution. 

In terms of absolute value, the average DB in waxy maize (3.96 ± 0.1 %) was lower compared 

to earlier measurements of another waxy maize (4.76 %) [133].   

 

Figure S 2-3 Average degree of branching in standard starch samples, measured at 70 °C (square) and 90 °C (triangle) in 3:1 

DMSO-d6:D2O with 5 wt% LiBr (black) or 0.05 wt% LiBr (red). Error bars were estimated from the signal-to-noise ratio of 

the α(1, 6) signal [201] 

 Repeatability of sample preparation  

The error arising from the preparation of samples in the measurement of average DB was 

assessed using 5 repeat preparations of a single rice sample, from a single glass house (Table S 

2-1). This was done to minimise the influence of sampling error arising from differences between 

samples grown in separate glass houses but at the same temperature. The first measurement was 

found to be significantly higher than later measurements. This has been attributed to the 

difference in freeze drying protocol, longer time in D2O and shorter drying time, as well as the 

uncontrolled timing of measurement in regard to short term aging that was observed later (S 

2.5.1.9). For this reason, the first experiment is considered to be an outlier and is not included in 

the assessment of repeatability. Given these results, the sample preparation was determined to 

contribute a relative standard deviation (RSD) of 2.6 %. 
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Table S 2-1 Average DB of Doongara rice flour for 5 repeat sample preparations, with freeze drying protocol timing and 

date of measurement of each preparation 

Date 
Average 
DB (%) 

SNR 
Shaking 

time in D2O 
(h) 

Freeze-
drying (h) 

Shaking 
time in D2O 

(h) 

Freeze-
drying (h) 

9/04/2019 4.49 61.9 16.75 7 16.75 5.5 

30/04/2019 3.79 77.6 6 16 8 65 

4/06/2019 3.72 76.8 8.5 19 6.5 17.5 

4/06/2019 3.95 78.3 8.5 19 6.5 17.5 

4/09/2019 3.87 75.8 8.5 19 6.5 17.5 

 

 Assessing reliability of average DB through long- and short-term sample 

aging  

The reliability and reproducibility of the DB measurement were assessed to determine the 

robustness. A set of samples were prepared and measured 4 years apart by two different 

operators, in two separate laboratories due to the relocation of the spectrometer to a new campus, 

and the average degree of branching calculated from the resulting spectra (Figure S 2-4). The 

repeated experiments were in good agreement, indicating a high level of reproducibility, as well 

as a lack of any aging effect on the rice samples in the observed branching structure.  

 

Figure S 2-4 Average degree of branching (%) of rice measured in 2015 (blue triangles) and 2019 (black squares). Error 

bars were estimated from the signal-to-noise ratio of the α(1, 6) signal [201]. Data points are offset along the x-axis for 

greater clarity. HHx refers to glasshouse x listed in Table S 2-4 
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Typically, this type of measurement is only performed on pure or modified starches while, in 

the current case, rice flours contain lipids and proteins. Thus, the potential for other components 

to interfere with analysis is an issue. Neither lipids nor proteins yield signals in the same regions 

as the starch signals used for DB quantification; however, other polysaccharides could. Rice flour 

displayed typical starch signals in the 6.0 to 4.0 ppm range indicating no additional components 

from other polysaccharides. However, any convoluted signals arising from other polysaccharides 

would be difficult to isolate and would result in a bias in average DB values.  Despite this, direct 

analysis of rice flours is possible for comparative purposes.  

 Example spectrum of rice flour and integration regions for calculation of 

average DB 

Figure S 2-5 shows partial spectra of the signals of interest for the calculation of average DB. 

Figure S 2-5A shows the full range of the spectrum with baseline correction for integration of α(1, 

4) and α(1, 6) signals while Figure S 2-5B shows the zoomed and baseline corrected spectrum for 

integration of α and β reducing end signals. 

 

Figure S 2-5 Typical partial 1H NMR spectrum of rice flour with integration regions required for determination of average 

DB annotated with: A) baseline corrected for integration of α(1, 4) and α(1, 6) signals, and B) baseline corrected for 

integration of α and β reducing end signals 
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 Assessing short-term aging contribution of reducing ends  

The average DB was also monitored over a 24 h period after addition of D2O and initial 

measurement (Figure S 2-6A). An immediate increase in the average DB was observed after the 

first hour, subsequently plateauing at ~0.3 % above the initial measurement. Further analysis of 

the α and β reducing ends revealed a proportional increase with time (Figure S 2-6B). This 

indicates that the average DB increase is likely not a result of chain aggregation, but rather of some 

degradation process. All data indicate that for measurements taken immediately after addition of 

D2O, as done here, the effects of degradation are insignificant.  

 

Figure S 2-6 Evolution with time spent in the spectrometer at 90 °C after D2O addition of a) average DB (%) and b) 

percentage contribution to the total starch signal of α reducing ends (red circles), β reducing ends (black squares) and both 

α and β reducing ends (blue triangles) 

 Values of average DB for waxy flours  

Table S 2-2 Values of average DB for waxy rice flours. Individual NMR measurements of the hot-water insoluble fraction 

(HWI) and hot-water soluble fraction (HWS) are reported; HWx-1 and HWx-2 refer to repeat fractionation of the flour. n.d. 

refers to ‘not determined’ 

Variety Average DB 
(%), HWI-1 

Average DB (%), 
HWI-2 

Average DB (%), 
HWS-1 

Average DB (%), 
HWS-2 

Phae Savan 4.80 4.93 4.75 5.10 
Laboun 4.61 4.35 5.20 5.03, 4.98, 5.07, 

4.98, 4.95 
Med Gnay 4.40 4.42 n.d. 5.00 
Makfay 4.59 4.44, 4.54, 4.52, 

4.35, 4.52 
4.83 (for mixed sample  

of HWS-1+HWS-2) 
Hom 4.42 4.43 n.d. 4.92, 4.94 

 

Table S 2-3 Values of average DB by 1H NMR for different types of waxy starch samples 

Type of waxy starch Average DB (%) 

Waxy maize starch 5.00 [133], 3.80 [212], 5.26 [213] 
Potato amylopectin 4.35 [133], 3.6 [214], 4.07 [195] 

Tapioca amylopectin 5.71 [133] 
Corn amylopectin 4.77 [195] 
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S 2.5.2 Apparent amylose content by iodine binding 

 Consistency of apparent amylose content (AAC) over time 

The AAC of the samples in this work was originally measured in 2015 in the conditions cited in 

the methods section 2.2.3.1. To confirm samples had not aged at the molecular level, the AAC was 

remeasured 3 years later on 3 varieties, including four glasshouses each. Due to changes in 

instrument, methodology and operators, the 2018 measurements also give an indication of the 

reproducibility of the AAC. The original values (2015) and remeasured values (2018) are shown 

in Table S 2-4. One apparent outlier was the I-Geo-Tze variety in glasshouse 5, with a 19.1 % 

relative difference in AAC, the remaining samples had an average relative difference of 6.8 %.   

Table S 2-4 AAC for different varieties grown in different glasshouses initially measured in 2015 then remeasured in 2018 

Variety Glasshouse 
AAC (%) 
(2015) 

AAC (%) 
(2018) 

Difference (%) 

Kyeema Glasshouse 1 - Low Temp 19.63 20.61 4.9 

Doongara Glasshouse 1 - Low Temp 25.39 27.53 8.1 

I-Geo-Tze Glasshouse 1 - Low Temp 27.48 29.36 6.6 

Kyeema Glasshouse 3 - High Temp 14.58 15.70 7.4 

Doongara Glasshouse 3 - High Temp 16.76 17.79 6.0 

I-Geo-Tze Glasshouse 3 - High Temp 28.27 29.60 4.6 

Kyeema Glasshouse 5 - High Temp 14.89 15.92 6.7 

Doongara Glasshouse 5 - High Temp 18.64 19.87 6.4 

I-Geo-Tze Glasshouse 5 - High Temp 26.72 32.38 19.1 

Kyeema Glasshouse 6 - Low Temp 19.22 20.37 5.8 

Doongara Glasshouse 6 - Low Temp 24.38 26.31 7.6 

I-Geo-Tze Glasshouse 6 - Low Temp 26.01 28.96 10.7 

 

S 2.5.3 Characterisation of lamellar structure by small angle X-ray scattering 

 Fitting of small angle X-ray scattering data 

Scattering curves of rice flour samples were iteratively fitted with a power law function to 

describe the underlying small angle scattering (where β is the power law prefactor and α is the 

power law exponent) plus a Gaussian/Lorentzian function and a second Gaussian function to 

describe both the starch primary lamellar and secondary peaks (position,  𝑞max; Intensity, 𝐼max; 

full width at half maximum, ∆𝑞). 

𝐼(𝑞) = (𝑟(𝐼max1(1 + 𝐴1)−1) + (1 − 𝑟)𝐼max1𝐴2) + 𝐼max2𝐴3 + (𝛽𝑞−𝛼) Equation S 2-1 

𝐴1 = [
2(𝑞−𝑞max1)

∆𝑞1
]

2
 Equation S 2-2 
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𝐴2 = [𝑒
−(

𝑞−𝑞max1
∆𝑞1

)
2

] Equation S 2-3 

𝐴3 = [𝑒
−(

𝑞−𝑞max2
∆𝑞2

)
2

] Equation S 2-4 

Where, q is the modulus of the scattering vector equal to (4π/λ)sinθ where λ is the X-ray 

wavelength (0.1542 nm) and 2θ is the scattering angle. r is the ratio of Lorentzian to Gaussian 

characteristics to the primary peak. 

Figure S 2-7 shows an example scattering curve of a rice flour and its fit overlaid (red) after 

iterative calculation to minimise chi-squared. 

 

Figure S 2-7 Small angle X-ray scattering curve of Cocodrie rice flour grown at a higher temperature (black crosses) with an 

iteratively calculated fit with equation S1 (red line) 

The real space lamellar repeat distance was calculated from the peak position by equation S 2-

5. HWHM maximum was converted to real space units by equation S 2-6. 

Average repeat distance (real space) =  
2𝜋

𝑞max
 Equation S 2-5 

HWHM (real space) =
2𝜋

𝑞max
2  ×  

∆𝑞

2
 Equation S 2-6 

 

 Relationship of peak intensity with AAC and average DB 

A general trend of decreasing lamellar peak intensity with increasing amylose content has been 

reported in the literature [148]. This has been explained by the accumulation of defects within the 

lamellar structure. A similar trend was observed in the rice samples in this study, with the data 

shown in Figure S 2-8. 
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Figure S 2-8 Relation between SAXS peak intensity and AAC for rice flours of different varieties grown at lower or higher 

temperatures. SAXS peak intensity error bars represent the standard error of 6 values (2 independent replicates of 

temperature, 3 preparations for each replicate). AAC error bars represent the standard error of 4 values (2 independent 

replicates of temperature, 2 instrument readings for each). See Table S5 for individual AAC and average DB values 

The peak intensity and average DB were loosely correlated, indicating an increased extent of 

semi-crystalline order with increasing average DB (Figure S 2-9). However, given the poor 

correlation, it is unlikely that the branching frequency is the primary driver for changes in the 

extent of semi-crystalline order. It is possible that other aspects of the branching structure such 

as chain length distribution play a larger role, thus peak intensity and average DB are both 

relevant in reporting on different aspects in the overall starch structure.  
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Figure S 2-9 Relation between SAXS peak intensity and average DB for rice flours of different varieties grown at lower (blue 

diamonds) or higher (red triangles) temperatures. SAXS peak intensity error bars represent the standard error of 6 values 

(2 independent replicates of temperature, 3 preparations for each replicate). Average DB error bars represent the standard 

error of 2 values (2 independent replicates of temperature). See Table S5 for individual AAC and average DB values 

 Relationship of repeat unit thickness with HWHM 

The HWHM and lamellar repeat thickness are positively correlated (Figure S 2-10). This was 

previously observed on extracted starches of various botanical origin and thought to be due to a 

conserved distribution of lamellar sizes limited by the minimum number of glucose units (degree 

of polymerisation of 10-12) required to form a helix [151]. 
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Figure S 2-10 Relation between HWHM and lamellar repeat unit thickness for rice flours of different varieties grown at 

lower (blue diamonds) or higher (red triangles) temperatures. Error bars represent the standard error of 6 values (2 

independent replicates of temperature, 3 preparations for each replicate) 
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S 2.5.4 Mean values of AAC, average DB, SAXS intensity of main lamellar peak, SAXS lamellar repeat unit thickness, SAXS 

half-width half-maximum (HWHM) of main lamellar peak 

Table S 2-5 Individual values of AAC, average DB, SAXS intensity of main lamellar peak, SAXS lamellar repeat unit thickness, SAXS half-width half-maximum (HWHM) of main lamellar peak. 

Mean values are reported for samples grown at lower and higher temperatures, with their standard error (Std error) for 4 measurements for AAC (2 independent replicates of temperature, 2 

instrument readings for each), 2 measurements for average DB (2 independent replicates of temperature), 6 measurements for SAXS (2 independent replicates of temperature, 3 preparations 

for each) 

Variety AAC (%) Average DB (%) SAXS peak intensity (a.u.) SAXS thickness (nm) SAXS HWHM (nm) 

Mean Std error Mean Std error Mean Std error Mean Std error Mean Std error 

Cocodrie, lower T 26.88 0.01 3.52 0.14 2344 305 9.33 0.02 1.75 0.06 

Cocodrie, higher T 28.68 0.70 3.4 0.07 2568 302 9.47 0.03 1.70 0.06 

I-Geo-Tze, lower T 26.75 0.52 4.05 0.64 2924 226 9.24 0.02 1.58 0.04 

I-Geo-Tze, higher T 27.50 0.54 3.84 0.14 3376 148 9.4 0.05 1.74 0.02 

IR64, lower T 25.92 0.06 3.53 0.03 1773 302 9.34 0.07 1.78 0.09 

IR64, higher T 19.16 1.25 3.67 0.09 3746 671 9.24 0.03 1.65 0.02 

IR55419-04, lower T 25.81 0.20 3.70 0.10 1840 449 9.63 0.03 2.18 0.08 

IR55419-04, higher T 20.11 0.05 3.88 0.17 2904 436 9.54 0.03 2.01 0.04 

Doongara, lower T 24.88 0.36 3.92 0.06 2961 160 9.14 0.03 1.44 0.05 

Doongara, higher T 17.70 0.67 4.11 0.32 5041 382 9.15 0.06 1.58 0.03 

Quest, lower T 19.56 0.13 4.47 0.33 3284 147 9.32 0.05 1.74 0.04 

Quest, higher T 13.29 0.09 4.3 0.24 6338 262 9.58 0.03 1.53 0.02 

Kyeema, lower T 19.43 0.14 4.01 0.12 3529 486 8.95 0.03 1.49 0.02 

Kyeema, higher T 14.74 0.11 4.27 0 4552 1141 9.06 0.04 1.37 0.03 

 



Page | 64  
 

S 2.5.5 Fourier transform infrared spectroscopy at cryogenic temperatures 

 Materials and Methods 

FTIR spectroscopy was performed on a Bruker Vertex 70 spectrometer. All spectra were 

acquired with 64 scans, at a resolution of 1 cm-1 in a transmission mode arrangement using a 

Specac variable temperature cell holder under vacuum. Samples were pressed into KBr pellets 

with a sample concentration of 2 wt% (200 mg total mass). Powder for pressing was prepared by 

combining sample and KBr powder and grinding together into a fine powder using an agate 

mortar and pestle. The powder was then transferred to the die and spread with light tapping. 

Pellets were pressed using a PIKE Technologies CrushIR digital hydraulic press. The pressure 

sequence was: 3 tonnes followed by immediate release, 7 tonnes for 30 s, then ramp from 7 to 10 

tonnes and hold for 2 min. Pressed pellets were analysed on the day of pressing and stored in a 

desiccator until analysis.  

Three types of commercial maize starches with different amylose contents: waxy maize (3.4 % 

amylose), regular maize (24 % amylose) and Gelose 80 (83 % amylose) [118] were from Penford 

Australia Limited (Lane Cove, NSE, 2066, Australia). All starch samples were conditioned to 44 % 

relative humidity for at least 1 week prior to analysis. Sample environments at 44 % relative 

humidity was created by placing a saturated solution of potassium carbonate (K2CO3) in a 

desiccator [215].  

All spectra were processed with Bruker OPUS 7.5 [216]. All FTIR spectra were baseline 

corrected by 1 step (minimum amount) in the software’s interactive mode using a rubber band 

based correction algorithm. All FTIR spectra were then normalised to an absorbance range of 0 to 

2.0 based on min-max calculations.  

 Effects of cryogenic temperatures on FTIR spectra 

Cryogenic temperatures have been used widely over the life of infrared technology, across an 

extremely broad range of applications, and leading to data exhibiting reduced peak width and 

improved resolution [210, 217]. This has been explained by weaker intermolecular interactions 

and lower intensity of bands corresponding to excited-state energy levels [218-220]. 

Figure S 2-11 displays the FTIR spectra of the three model starches at both 25 °C and -170 °C. 

Slight improvements in resolution were noted for all three starch samples; however, these 

improvements were minimal and still did not result in clearly resolved signals. As a result, the 

investigation of crystalline order by FTIR spectroscopy was not explored in this work.  
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Figure S 2-11 Transmission mode FTIR spectra of A) Gelose 80, B) Regular maize and C) Waxy maize, conditioned at 44 % 

relative humidity and measured at different temperatures. Bands of interest are noted by vertical black lines and labelled 

with the wavelength 
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Abstract  

Amylose content is recognized as a key molecular feature of starch and is commonly used in 

agriculture (breeding programs, grain quality), food and nutrition (relation with glycaemic index) 

or materials science (paper coating, bioplastics). There is, however, no method yet with high 

accuracy for the determination of amylose content, with reproducibility strongly dependant on 

standards and methodology and no established standards. Last but not least, amylose (and 

amylopectin) consist of thousands of different macromolecules. Iodine-affinity capillary 

electrophoresis (IA-CE) was shown in this work to separate amylose from amylopectin (in two 

populations) and also to separate the amyloses and amylopectins into continuous and broad 

distributions of electrophoretic mobilities. Distributions of electrophoretic mobilities were used 

rather than raw electropherograms as the former are more repeatable and reproducible. One key 

advantage of IA-CE is the minimal sample preparation. IA-CE does not require sample filtration, 

something typically required in liquid chromatography methods. Comparison of filtered and 

unfiltered samples showed that starch filtration can lead to massive sample loss and thus very 

poor accuracy of any measurement requiring filtration. Reducing sample concentrations also 

limits sample loss. Maximising starch dissolution requires the use of dimethyl sulfoxide with 

additional lithium bromide in more challenging cases such as high amylose starches. IA-CE was 

mailto:m.gaborieau@westernsydney.edu.au
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shown to separate amylose and amylopectin even in these conditions. An in-situ incubation time 

with iodine was tested for the first time and is shown to be required to allow for complete starch-

iodine binding. IA-CE shows a strong potential for alternative measurements of amylose content. 

Keywords 

starch, amylose, amylopectin, dissolution, iodine, capillary electrophoresis  

3.1 Introduction 

Starch is a highly abundant biopolymer, acting as the primary energy storage in plants and 

used widely in a variety of industrial applications other than food such as paper [221] and 

biodegradable plastics [222]. Starch is comprised of two macromolecular components: amylose 

and amylopectin. These glucose homopolymers are compositionally identical but differ in their 

branching structure and their role in the semi-crystalline structure of native starch. Amylose 

forms a minor component of starch in plants and exhibits only a few long branches [22]. 

Amylopectin represents the major component of most starches. Amylopectin differs from amylose 

primarily in the degree of branching and length of branches, with smaller branches occurring 

approximately every 24 glucose units [22].  

The branching structure of starch and the relative proportions of amylose and amylopectin in 

starch play an important role in the supramolecular structure of starch and influence many of 

starch’s physicochemical properties. The amylose content can influence properties [35] such as 

solubility [223], gel formation [224], digestibility [26] and texture [225, 226], all important 

measures in the quality of food products. Structural characteristics such as molar mass 

distribution and heterogeneity of branching can also have an impact on these physicochemical 

and mechanical properties [70, 224, 227]. This highlights the importance of accurate and robust 

methods for the characterisation of starch structure as tools for assessing the properties of 

starches and by extension starch containing products.  

Colorimetric approaches are currently the most popular methods to quantify amylose content 

due to their simple methodology, high repeatability and availability of standard methods [74, 204, 

228]. This relies on the well-documented ability of starch to form a complex with polyiodides in 

solution characterised by strong absorption of visible light. Amylose- and amylopectin-iodine 

complexes have different colorimetric profiles with absorption maxima at 620 and 540 nm, 

respectively [72]. The overlap of these broad absorption bands results in overlapping absorption 

bands which commonly causes interference in colorimetric methods [229], and thus can lead to 

overestimation of the amylose content. As a result, correction processes are required such as 

multi-wavelength processing [75]. Sample preparation for the colorimetric approaches always 

requires several steps and these steps differ between publications and standards [74, 75, 80]. 
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After sample “dissolution” filtration or centrifugation are commonly used to avoid interferences 

due to light scattering by aggregates [84, 230], but the impact of the sample preparation is usually 

not discussed. The repeatability of apparent amylose content (AAC) in rice flours has been 

reported to be high, with reproducibility being poor and  dependent on methodology and 

standards [73]. 

A major hurdle in the starch preparation is the complete dissolution of starch and flours 

without degradation. DMSO is the most frequently used polar aprotic solvent in the dissolution of 

starch [223, 224], with the both the kinetics and extent of dissolution quantified in the literature 

[78, 79]. Aqueous solvents such as NaOH are also popular, commonly employed in the 

determination of AAC for starches and flours. However, dissolution has not been quantified with 

this solvent, with dissolution typically assessed based on solution ‘transparency’. Solution 

transparency for starch suspensions has been shown to not always be indicative of complete 

dissolution [79]. 

DMSO/water mixtures are commonly used (as in the pioneering work of Herrero-Martínez, 

Schoenmakers [109] on iodine-affinity capillary electrophoresis), with the addition of water 

thought to speed the dissolution of starch granules. It was shown by time-resolved NMR 

spectroscopy that the actual dissolution (rather than gelatinization of starch) occurs faster in 

anhydrous DMSO than in hydrated DMSO [78]. The use of water as a solvent, and its addition to 

other solvents is known to produce unstable solutions, with significant precipitation of the starch 

common [231]. To minimise this random precipitation, water as part of the solvent is avoided for 

reproducible dissolution in this study.  

Temperature also plays an important role in the rate and extent of dissolution, with increasing 

temperatures improving the rate of dissolution in both anhydrous and ‘wet’ DMSO [78]. Addition 

of a hydrogen bond disruptor can further improve the dissolution of dense amylose structures in 

starch where hydrogen bonding and clustering [202] impedes dissolution. Lithium bromide is one 

such salt that has successfully been shown by quantitative NMR spectroscopy to improve the 

extent of dissolution of high amylose starches, increasing the extent of dissolution by up to 15 % 

[79]. 

The colorimetric (iodine binding) method is however, not performed in anhydrous DMSO with 

lithium bromide in the literature. For solubility reasons, it would be ideal to use only DMSO with 

lithium bromide. The formation of polyiodide ions (I3
-) necessary for starch-iodine complexation 

has been shown in DMSO/water solutions [71] though the addition of lithium bromide is likely to 

inhibit starch-iodine complexation while water will likely impact dissolution.  

Amylose is one of the two populations in starch; however, it still represents thousands of 

different molecules. This can be seen in molecular weight distributions of amylose, where the 
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ranges of molecular weight can already indicate >14,000 different amylose molecules based on 

just degree of polymerisation [232]. Thus, the physical separation of starch, both amylose and 

amylopectin, has been extensively attempted. Size-exclusion chromatography (SEC/GPC) can 

however, not fully resolve the amylose population from amylopectin [90], while field flow 

fractionation does [98]. Samples are commonly filtered prior to analysis, particularly in cases 

where light scattering may occur, interfering with light-based detection (ultraviolet, refractive 

index or light scattering) [230]. In the case of starch this presents a problem in terms of obtaining 

a filtered sample that is representative of the original one. A robust separation technique for 

which sample filtration is not required is free solution capillary electrophoresis (CE) [103, 105, 

203]. The resilience of fused-silica capillaries also allows for a broad range of solvents and 

cleaning solutions to be used without negatively impacting the system.  

The separation of amylose and amylopectin by iodine-affinity capillary electrophoresis (IA-CE) 

has been reported [109, 167]. In IA-CE the separation of amylose from amylopectin is due to 

differences in their iodine binding capacity which leads to a difference in the effective charge 

experienced, allowing separation by their charge-to-friction ratio. This method enables the 

complete separation of amylose from amylopectin, and thus quantification of the individual 

components, removing the absorbance interference seen in traditional colorimetric approaches. 

In this work, separation of amylose and amylopectin in starches of different biological origins 

was achieved by IA-CE with careful consideration of sample preparation: dissolution conditions, 

concentration or filtration. Through optimisation of dissolution conditions, reproducible 

characterisation is possible thus providing more information with which to aid the development 

of quality traits in food processing. 

3.2 Materials and Methods 

3.2.1 Materials 

Milli-Q® quality (Millipore, Bedford, MA, USA) water was used throughout the analysis. 

Sodium hydroxide (NaOH) pellets, glacial acetic acid, and anhydrous sodium acetate were sourced 

from Ajax Chemicals (Auburn, NSW, Australia). Boric acid (≥ 98 %) was purchased from BDH 

AnalaR, Merck Pty Limited. Analytical grade potassium iodide was obtained from Chem-Supply 

Pty Ltd (Gillman, SA, Australia). Analytical grade iodine was obtained from Univar (Downers 

Grove, IL, USA). Dimethyl sulfoxide (DMSO, ≥ 99.5 %), DMSO-d6 (≥ 99.5 %), and lithium bromide 

(LiBr, ≥ 99 %) (all stored in a desiccator) were sourced from Sigma-Aldrich (Castle Hill, NSW, 

Australia). Millipore Millex-LCR hydrophilic poly(tetrafluoro ethylene) PTFE 0.45 µm filters (for 

sample filtration) and poly(ether sulfone), PES 0.22 µm filters (for buffer filtration) were sourced 

from Millipore (Bedford, MA, USA).  



Page | 70  
 

Two types of commercial maize starches were obtained in powder form from Penford Australia 

Limited (Lane Cove, NSW, Australia): waxy maize (3.4 % amylose) and Gelose 80 (83 % amylose) 

[118]. The apparent amylose content reported by Tan, Flanagan [118] was determined by a 

spectrophotometric iodine binding method. Waxy corn (S9679, batch: SLBJ1581V), potato 

amylose (A0512, batch: 070M7025V), potato amylopectin (A8515, batch: 049K3775V), corn 

(S4126, batch: MKBQ4397V) and rice starches (S7260, batch: BCBP5455V) were obtained from 

Sigma Aldrich in powder form (Castle Hill, NSW, Australia).  

3.2.2 Sample preparation 

Samples were stored at room temperature, 44 % relative humidity in a desiccator containing 

a saturated solution of potassium carbonate [215], and left for moisture content to equilibrate for 

at least a week prior to dissolution and analysis. Samples were prepared by one of two dissolution 

methods and modified as discussed in the results. The first employs the dissolution conditions of 

Herrero Martinez et al. [109], with samples prepared at a concentration of 10 g·L-1 in 90 % DMSO 

(10 % water by volume) and heated to 100 °C for 1 hour. This is referred to as the conditions of 

Herrero-Martinez et al. The second employs the dissolution conditions of Schmitz et al. [79] with 

a modified sample concentration. Samples were prepared at a concentration 1 g·L-1  in anhydrous 

DMSO containing 0.05 to 5.0 % w/v LiBr (where specified) and heated to 80°C with shaking at 

300 rpm in an Eppendorf Thermomixer C (North Ryde, NSW, Australia) for at least 8 hours unless 

otherwise indicated. This is referred to as the conditions of Schmitz et al. All results shown in this 

manuscript are obtained from samples which gave clear and transparent “solutions”.   

3.2.3 Iodine-affinity capillary electrophoresis and pressure mobilisation 

For CE separations, 20 mM acetic acid buffer (7.3 mM acetic acid and 12.7 mM sodium acetate, 

pH 5.0) with 7.2 mM potassium iodide and 1.2 mM iodine metal was prepared according to 

Herrero-Martínez, Schoenmakers [109] and 25 mM sodium borate buffer (pH 9.2) was prepared 

according [233]. The acetic acid buffer was prepared on the day of use, and sonicated for 5 min to 

ensure complete dissolution of iodine and degassing, and then filtered. The 1M NaOH was 

prepared and used within 24 h.  

Experiments were performed on an Agilent 7100 (Agilent Technologies Waldbronn, Germany) 

with a Diode Array Detector (DAD) monitoring at 560 nm with a bandwidth of 20 nm. The total 

capillary length was 37.0 cm (28.5 cm effective length), using fused-silica capillaries including a 

standard capillary (75 µm i.d., Polymicro, Phoenix, AZ, USA) and an extended light-path capillary 

(75 µm i.d., bubble factor 2.7, Agilent Technologies Waldbronn, Germany). The capillary was 

preconditioned before use by flushing with 1 M NaOH (4 min), 0.1 M NaOH (4 min), water (4 min) 

and acetic acid buffer (12 min). All injections were preceded by flushing with 1 M NaOH for 24 s 
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(82 % capillary volume) and running buffer for 2 min. Samples were injected hydrodynamically 

by applying 17 mbar of pressure for 4 s (0.25 % capillary volume) followed by the injection of 

running buffer by applying 5 mbar of pressure for 5 s. All separations were performed at 20 kV 

(ramped from 0 kV over 1 min) and 25 °C, with samples kept at 80°C until placed in an 

autosampler at room temperature just before injection (<1 min), unless otherwise specified. All 

measurements had a total separation time of 15 min (applied electric field) and were performed 

in triplicate from a single sample preparation. Data was acquired using Chemstation A10.01 and 

data treatment conducted with OriginPro 9.0. Raw electropherograms were transformed into 

weight distributions of electrophoretic mobilities as shown in supplementary material (equations 

S 3-1 to S 3-6), with the electroosmotic flow determined at a wavelength of 560 nm. Average 

electrophoretic mobilities were calculated according to equations S 3-7 and S 3-8. The 

distributions were not normalised to allow for investigation into differences in peak areas in 

relation to concentration.  

The CE hardware and capillary were validated before each experiment through the separation 

of a standard oligoacrylate solution in sodium borate buffer [113, 234]. The standard was 

qualitatively compared to previous separations for repeatability of electro-osmotic flow and 

mobility of oligoacrylate species (S 3.5.4). 

Pressure mobilisation experiments were carried out in an identical fashion to CE separations 

up to the sample injection. After the sample injection, an internal pressure of 13 mbar was 

continuously applied, with initial mixing of the sample with the buffer through the application of 

voltage (ramping up to 20 kV over 1 min, then ramping down to -20 kV over 2 min then ramping 

up to 0 kV over 1 min) [203]. 

3.2.4 1H solution state nuclear magnetic resonance spectroscopy 

Samples were prepared at a concentration of 1 g·L-1 in anhydrous DMSO-d6 with 0.5 % w/w 

LiBr unless otherwise stated. A setup sample was prepared by dissolution in a glass vial using a 

thermomixer at 80 °C and 300 rpm for at least 8 hours. The sample was then inserted into the 

preheated NMR probe (80 °C) and allowed to equilibrate for 10 minutes before setup. Locking, 

shimming and tuning of the probe were performed on this setup sample.  

Samples for dissolution kinetics were prepared by weighing sample directly into the NMR tube. 

Once the solvent was added, the tube was inserted into the preheated probe (80 °C) and recording 

of spectra immediately started. Samples for filtration experiments were prepared in the same way 

as the setup sample, followed by filtration of the sample with a 0.45 µm hydrophilic PTFE filter 

immediately prior to measurement.  Lock, shim and tuning parameters from setup samples run 

the same day were in place for each test sample. 
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Measurements were performed with a Bruker DRX300 spectrometer (Bruker BioSpin Ltd, 

Sydney) equipped with a 5mm dual 1H/13C probe at Larmor frequency of 300.15 MHz. 1H NMR 

spectra were recorded using a 5000 Hz spectral width, 90° flip angle and were acquired at a 

temperature of 80 °C. The probe temperature was calibrated using ethylene glycol (80 % in DMSO-

d6) and equation 3-1 [192], 

𝑇 =
(4.218− ∆𝛿)

0.009132
  Equation 3-1 

Where T is the sample temperature in Kelvin and Δδ is the difference in ppm between the CH2 

and OH singlets. 

Spectra were recorded and treated using Topspin software. Longitudinal relaxation times (T1) of 

the signals of interest were estimated using the one-dimensional inversion recovery pulse 

sequence (S 3.5.7). Quantitative spectra were recorded with a 20 s repetition delay, which is 

longer than 5 times T1 for the signals of interest. Non-quantitative spectra were recorded with a 

10 s repetition delay where specified (this provided enough relaxation between scans to observe 

more than 90 % of the total signal intensity). The chemical shift scales were calibrated with 

respect to the signal of DMSO at 90 °C (2.526 ppm) [193].  

Dissolution kinetics and effects of filtration were assessed through the integration of starch 

signals in the range of 6 to 4 ppm, correlating to CH groups. These integrals are indicative of the 

amount of starch in solution and used here to qualitatively assess differences in the amount of 

starch present. 

3.3 Results and Discussion 

3.3.1 Impact of dissolution on separation of amylose and amylopectin 

Complete dissolution of the sample is required for a meaningful and  reproducible separation 

and characterisation of amylose and amylopectin in starch. Here the concentration, filtration and 

temperature conditions were explored, as well as a direct comparison of the dissolution 

conditions of Herrero-Martinez et al. [23] to Schmitz et al. [20]. While dissolution is discussed in 

this work, the extent of dissolution was not quantified. 

3.3.1.1 Concentration 

Aggregation is a major problem in solutions of very large polymers and is linked to their low 

‘critical concentration’ (C*). Below C* the solution is dilute and individual macromolecules do not 

significantly interact [235]. Above C* the domains occupied by polymer molecules in solution 

begin to overlap  and macromolecules begin interacting with each other. In some cases, this 

overlap can result in aggregation or precipitation. In this study, the impact of sample 

concentration on the separation of amylose and amylopectin by the otherwise unmodified method 
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of Herrero-Martinez et al. [109] was explored, with a maximal reported concentration of 10 g·L-1. 

This was compared to a concentration of 1 g·L-1, a 10-fold decrease expected to have an observable 

impact. 

Samples prepared at both 1 and 10 g·L-1 in 90 % aqueous DMSO exhibited large sharp peaks 

on the amylopectin peak (Figure 3-1A). In CE these large sharp peaks are typical of light scattering 

effects caused by large particles, and thus are likely due to the presence of aggregates [236]. This 

is typically a result of incomplete dissolution, thus may be a by-product of the dissolution 

conditions of Herrero-Martinez et al. [109]. An apparent shift of the amylose mobility at the peak 

maximum at 1 g·L-1 suggest a difference in amylose detected, indicative of some differences in the 

dissolution. This is supported by an apparent 23 % greater amylose peak area at 1 g·L-1 than at 10 

g·L-1
 despite the lower concentration of starch (Figure 3-1A). However, this shift may also arise 

due to other factors. The first is altered starch/iodine ratios leading to a change in the net charge 

of the iodine complexed amyloses, while the second is through possible differences in injection 

volume impacting on peak shapes. The experiments in this work cannot confirm or disprove these 

suggestions. 

Y-axis of the electropherograms at 1 g∙L-1 were multiplied by a factor of 10 to compare to the 

experimental 10 g∙L-1 data (Figure 3-1B). The disparity in relative peak area of amylose and 

amylopectin was large, with larger peak areas for amylose and amylopectin in the scaled 1 g∙L-1 

results compared to 10 g∙L-1 results. This disparity could be due to differences in injection 

volumes, differences in solubility or to non-linear relation between peak area and concentration. 

Herrero-Martinez et al. [109] obtained a linear calibration curve up to only 5 g·L-1, therefore at 

higher concentrations it is possible that this relationship is non-linear.  No significant differences 

in viscosity were observed in pressure mobilisation experiments, with 1 g∙L-1 and 10 g∙L-1 sample 

solutions yielding very similar migration times (see Figure 3-7, and the text associated to it later 

in the manuscript), thus injection volumes are likely very similar and no bias should be observed. 

Lower relative peak areas at 10 g∙L-1 should then indicate a reduced concentration and thus an 

incomplete dissolution. Though a greater absolute peak area at 10 g∙L-1 indicates improved 

sensitivity, incomplete dissolution significantly impacts on accuracy of the results. Therefore, a 

compromise is necessary, and given no issues of sensitivity, a concentration of 1 g·L-1 was deemed 

appropriate for sample preparation. While a series of experiments of additional concentrations 

between 1 and 10 g·L-1 could be performed, this would likely bring limited additional information 

and was therefore not explored. 
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Figure 3-1 Weight distributions of electrophoretic mobilities of rice starch prepared according to Herrero-Martinez et al. 

[109] (90 % DMSO),  at A) 1 g.L-1 (black) and 10 g.L-1 (red) and B)  additionally showing the 1 g.L-1 with the y-axis  multiplied 

by a factor of 10 (green). Amylopectin is in the range of 0.25 to 1.25 ×10-8 m2·V-1·s-1 and amylose is in the range of 1.5 to 2.5 

×10-8 m2·V-1·s-1. Large sharp peaks in the range of 0.75 to 1.25×10-8 m2·V-1·s-1 correspond to aggregates 

3.3.1.2 Filtration 

Sample filtration prior to analysis with chromatography is often not mentioned in the literature 

but is common, particularly in cases where light scattering may occur [104, 230] and to prevent 

expensive maintenance and repair. Filtration has been shown to lead to poor recovery and sample 

degradation through shear stresses of large polymers leading to the analysis results not accurately 

representing the original sample [84, 237]. CE is a robust technique for which sample filtration is 

not needed [104, 203]. CE was especially shown to lead to the robust separation of carbohydrates 

in complex matrices [81, 102]. This provides an opportunity to confirm the effects of filtration on 

the starch structure by CE. 

The effects of filtration were explored again with the conditions of Herrero-Martinez et al. 

[109] with sample concentration now decreased to 1 g·L-1. A hydrophilic PTFE membrane filter 

was chosen for its chemical compatibility with the solvents used and its adequate interactions 

with the naturally hydrated starch samples. A significant impact of filtration was observed for all 

starch samples (Figure 3-2), with a complete or near-complete loss of the amylopectin peak in all 

samples and partial or complete loss of amylose after filtration. The weak broad signal of the corn 

starch (Figure 3-2B) may arise from the degradation of amylopectin by shear forces [83, 84, 237, 

238]; however, the comparatively low peak area still indicates significant sample loss. These 

results thus support the suggestion that amylopectin cannot be filtered, and rather is retained on 

the filter, degraded [85] or deformed [87] and that amylose can be filtered in some cases [86]. 

Similar effects were observed at 10 g.L-1 (Figure S 3-4) It is possible that degradation of 

amylopectin and/or amylose could yield short chains unable to complex iodine, which would 

appear similar to sample loss; however, it this is unlikely. 
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Figure 3-2 Weight-distributions of electrophoretic mobilities of both filtered (red) and unfiltered (black) A) rice starch at 1 

g∙L-1 and B) corn starch at 1 g∙L-1 prepared following otherwise unmodified Herrero-Martinez [109] 

The effect of filtration was also assessed by 1H solution-state NMR, using the signals in the 

range of 4-6 ppm to assess the amount of dissolved starch present (Figure 3-3). An average 

decrease in signal area of 35 % over this range was observed as a result of starch filtration (Figure 

3-3) The appearance of a small signal at 2 ppm and increasing signal areas at 1.4 and 0.9 ppm was 

also indicative of an increased concentration of short chain alkyl groups, possibly a result of the 

creation of short chain degradation products.  

6 5 4 3 2 1 0
 (ppm)  

Figure 3-3 Solution-state 1H NMR spectra of sigma rice flour without (black) and with (red) sample filtration prior to 

measurement (10 s repetition delay) 

The stability of filtered starch solutions over time was also monitored to determine the 

aggregation kinetics of a filtered starch solution (see Figure 3-4 and Figure S 3-3). The potential 

for deformation of starch molecules due to filtration [87] may influence both iodine binding 

capacity as well as electrophoretic mobility but the effect should fade with time after filtration. 

The weight distributions of electrophoretic mobilities did not reveal any  trend in peak area, 
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average mobility (Figure 3-4) and presence of aggregates (Figure S 3-2).  

 

 

Figure 3-4 Change with time of peak parameters of amylose (circle) and amylopectin (square) from weight distributions of 

electrophoretic mobilities of rice starch: A) µ at the maximum (black), moment-average µ (red) and weight-average µ 

(green); B) peak area. Distributions are shown in Figure S 3-2. Moment-average and weight-average µ calculated by 

equations S 3-7 and S 3-8 

Filtered samples exhibited less signs of aggregation as was noted by the sharp peaks in 

unfiltered samples; however, this was also accompanied by an apparent loss of most of the 

amylopectin (Figure S 3-2). Additionally, the effect of filtration on amylose content appeared to 

be more significant than is sometimes assumed. Filtration of amylose is believed to be possible; 

however, the results presented here suggested that its concentration is likely decreased through 

filtration (Figure 3-2). Therefore, it was concluded that filtration of starch samples should be 

avoided. 

3.3.1.3 Comparing the dissolution conditions of Herrero-Martínez, Schoenmakers 

[109] and Schmitz, Dona [79] 

Both the solvent and temperature play an important role in starch dissolution. High 

temperatures are essential in obtaining a complete dissolution and thus essential in quantitative 

analysis. However, heating starch can also initiate other processes such as gelatinization when 

water or water-containing solvents are used. The dissolution conditions employed by Herrero-

Martinez et al. [109] and Schmitz et al. [79] were directly compared, with concentrations modified 

to 1 g∙L-1 and no sample filtration. The conditions of Herrero-Martinez et al. [109] refers to 

dissolution of samples in 90 % DMSO at 100 °C for 1 hour. The conditions of Schmitz et al. [79] 

refers to dissolution of samples in anhydrous DMSO at 80 °C with shaking for at least 8 h (up to 
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16 h). The addition of 0.05 to 5 % w/v LiBr is suggested to improve dissolution of resisting starch 

components [79], with 0.05 % LiBr tested in this section.  

For both corn and rice starch the conditions of Herrero-Martinez et al. [109] displayed a lower 

amylopectin peak area compared to the conditions of Schmitz et al. [79] (Figure 3-5), while 

amylose was only significantly affected in the rice starch (Figure 3-5B). However, Herrero-

Martinez et al. [109] do not specify the injection temperature, while Schmitz et al. does indicate 

maintenance of high temperature for dissolution stability. Thus, this low recovery in 90 % DMSO 

may be a result of the unpredictable effects of sample cooling. These results also  suggest a higher 

starch concentration and thus a more complete dissolution of starch in anhydrous DMSO, with the 

addition of LiBr further increasing the peak area of amylose and reducing the amount of 

aggregates. However, some level of aggregation, identified by apparently random sharp peaks, 

was still present in all samples prepared in anhydrous DMSO both with and without LiBr. This 

may be related to cooling during the time (<1 min) between dissolution and time of injection. 

Maintenance of high sample temperature was attempted by heating of the autosampler (60 °C); 

however, simultaneous heating of the buffer vials resulted in issues with buffer stability, 

discolouration and non-reproducible current values. The consistency of the amylose peak across 

preparation conditions in corn starch, in contrast to the rice starch, highlights that required 

dissolution conditions can vary between starches. This can arise from factors such as botanical 

origin and processing involved in commercial starch production that can play a role in the starch 

structure, and by extension the physicochemical properties.  

 

Figure 3-5 Weight distributions of electrophoretic mobilities of A) corn starch and B) rice starch prepared according to 

different methodologies modified to a sample concentration of 1 g·L-1 ; Herrero-Martinez et al. [109](black), Schmitz et al. 

[79] without LiBr (red) and with 0.05 % LiBr (green) 

From the results discussed here, the dissolution conditions determined to provide the most 

accurate representation of the sample in IA-CE included a sample concentration of 1 g.L-1 and no 

filtration after dissolution. The dissolution in anhydrous DMSO at 80 °C with shaking for at least 

8 hours was also deemed the most appropriate, shown in the literature to provide a complete 

dissolution of starch, with the addition of LiBr required in some cases [79], and reflected in the 
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results discussed here. These are referred to as the “optimal conditions” hereon, with 

concentration of LiBr specified as % LiBr. 

3.3.1.4 Assessing dissolution kinetics 

The optimal conditions were tested by solution-state NMR spectroscopy to validate the 

suitability of sample preparation for reliable and accurate characterisation by capillary 

electrophoresis. Initial experiments demonstrated a plateau after 150 minutes of dissolution; 

however, time resolution was not high enough to observe the initial dissolution (Figure 3-6, black 

squares). Measurement with a higher time resolution revealed similar kinetics, with a plateau 

reached after approximately 150 minutes of dissolution (Figure 3-6, red triangles). This plateau 

remained for at least 8 hours total dissolution time, suggesting the dissolution time of at least 8 

hours employed for dissolution conditions in CE experiments is appropriate. 

 
Figure 3-6 Integrals of 1H NMR signals of starch from 6 to 4 ppm plotted against time and normalised to the asymptote of an 

exponential fit for series recorded with a repetition delay of 20 s, 16 scans (6 min 5 s per point) and r2=0.86 (black squares) 

or a repetition delay of 10 s, 8 scans (1 min 45 s per point) and r2=0.77 (red triangles). Both samples prepared at 1 g.L-1 in 

DMSO-d6 with 0.5 % w/w LiBr 

3.3.2 Separation of starch 

In the separation of analytes by CE two properties are required: a net charge of the analytes 

and a way to detect the analytes. Amylose and amylopectin molecules are not natively charged; 

however, taking advantage of the well-studied and documented iodine binding phenomenon, both 

a charge and characteristic absorbance are obtained for starch [71]. The mechanism of 

complexation was not explored in this work, with the methodology being adapted from the work 

of Herrero-Martínez, Schoenmakers [109], modifying only the dissolution conditions to those 

determined in Section 3.1. This resulted in an effective change in the stoichiometry of available 

iodine to glucose monomer units from approximately 0.17:1 at 10 g·L-1 to 1.73:1 1 g·L-1. This 



Page | 79  
 

method involves the complexation of both amylose and amylopectin with iodine, in situ rather 

than prior to injection. This is possible through a potassium iodide/iodine equilibrium within the 

acetic acid buffer producing polyiodide ions that allow complexation. The amylose content 

determination through spectrophotometric methods typically involves up to 20 minutes of 

‘reaction’ time for complexation. Using the CE method employed in this study, the complexation 

time is reduced, thus its effect on the separation and detection of both amylose and amylopectin 

requires investigation. It is important to note that the detection occurs during the separation and 

not after it (post-column) as is the case in HPLC.  

3.3.2.1 Pressure mobilisation 

In CE, adsorption of the analyte onto the untreated silica capillary walls is common in the 

analysis of proteins, leading to peak tailing and loss of resolution [239]. This adsorption has a 

significant impact on the separation mechanism and the subsequent detection of analytes. The 

kinetics of this phenomenon has been successfully simulated [240], emphasising the importance 

of mitigating this effect through approaches such as capillary coatings [241, 242] or extreme pHs 

to invert the coulombic forces. In some cases, this adsorption can also result in tailing that never 

returns to the baseline [243], significantly complicating analysis. This effect is not limited to only 

proteins and can occur in any case where coulombic forces are strong enough to create significant 

interaction between the analytes and the capillary wall such as some polysaccharides [203]. In 

pressure mobilisation, the sample is pushed through the capillary using only pressure allowing 

for the interaction between the negatively charged capillary wall and the charged analytes to be 

investigated directly. It is important to note that without an electric field there is no separation of 

the analytes. 

The complexation of amylose and amylopectin with iodine produces a negatively charged 

complex. Electrostatic repulsion may thus limit interactions with the silica capillary walls. 

Pressure mobilisation experiments were performed on samples prepared in optimal conditions 

(see section 3.1). No adsorption of the starch complex to the wall was observed, supported by the 

absence of tailing relative to a pure DMSO marker (Figure 3-7A). The broader, symmetric peak 

observed at 7.5 min is indicative of the presence of a larger component compared to the relatively 

sharp peak observed for pure DMSO and for starch samples dissolved in DMSO. There is an inverse 

relationship between the peak width and the diffusion coefficient [244]. The broad symmetrical 

peak was assigned to the iodine complexed starch components amylose and amylopectin. The 

sharp peaks observed before 6 min might be due to aggregates in a hydrodynamic 

chromatography separation mechanism and scattering light. The effects of increased viscosity and 

addition of LiBr were also assessed, finding no impact on adsorption (Figure S 3-5). 
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Figure 3-7 Pressure mobilisation elugrams of potato amylopectin (red) and amylose (green) prepared in optimal 

conditions at 1 g∙L-1 and of DMSO (black) 

In the CE separation of amylose and amylopectin the role of adsorption appeared to be 

insignificant, indicating that there is very little affinity between the iodine bound starch and glass, 

and thus recovery is likely high. This is in stark contrast to the characterisation of starch by SEC, 

where the methodology is often plagued by low recovery likely a result of adsorption to the 

organic stationary phases often employed [90]. 

3.3.2.2 Starch-iodine incubation and the effect of LiBr concentration 

The nature of this method relies on the binding of amylose and amylopectin chains with iodine 

in solution to form starch-iodide complexes. Optimisation studies on the composition of the iodine 

solution were performed in the work of Herrero-Martínez, Schoenmakers [109], therefore only 

complexation incubation times and effect of LiBr concentration have been explored in this work. 

This complexing reaction is often used in the determination of amylose content. Measurements 

are traditionally completed by simple colorimetric and spectrophotometric methods involving 

standing time for full complexation (typically 20 min). This approach is quick and simple, thus its 

high prevalence as an amylose determination technique. The extent of starch-iodine complexation 

was not reported in the work of Herrero-Martinez et al. [109]. The extent of complexation is likely 

to be a significant factor for the in situ complexation employed in this method. The impact of 

incubation time on in situ complexation was therefore assessed. 

Samples were injected hydrodynamically (3.2.3) and a mixing procedure achieved in the acetic 

acid buffer by ramping the voltage up to 20 kV over 1 min, holding it for 30 sec and then setting it 

to 0 kV for the specified incubation time before setting back to 20 kV. The initial application of an 

electric field allows for the analyte to be mixed with the iodine-containing background electrolyte 

while also separating Li+ and Br- ions away from the analyte. The use of LiBr as a hydrogen bond 
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disruptor for dissolution impacts on the starch-iodine complexation. This was visually confirmed 

by lack of colourimetric reaction with addition of background electrolyte to starch in DMSO with 

LiBr (data not shown).  

With 0.05 % w/w LiBr in the DMSO for dissolution, increasing incubation times generally 

resulted in an increase in peak area, as well as a reduction in presence of aggregates indicated by 

the lack of observed intense sharp peaks (Figure 3-8). Of note was the unexpected observation of 

an amylose peak (2x10-8 m2∙V-1∙s-1) in waxy corn starch, with increasing incubation time yielding 

a significant increase in peak area, and additional populations appearing (Figure 3-8A). This effect 

was not observed to the same extent in the high amylose Gelose 80, with only an increase in total 

peak area observed (Figure 3-8B). This may arise from differences in the type of amylose present 

in each sample facilitating different iodine binding rates, or possibly a result of the incomplete 

dissolution of Gelose 80 only allowing for binding of certain populations of amylose. 

 

Figure 3-8 Weight distributions of electrophoretic mobilities at  0 min (black), 0.01 min (red), 1 min (green), 5 min (blue) 

and 10 min (light blue) incubation time in background electrolyte for A) Waxy corn starch and B) Gelose 80 prepared in the 

optimal conditions at 1 g∙L-1 with 0.05 % LiBr 

For high amylose starches, a higher salt content is typically required for dissolution. With a 

higher LiBr concentration (5 %) in the dissolution of Gelose 80, a significant loss in signal and 

increased signs of aggregation was observed where no incubation period was used (Figure 3-9A). 

Increasing the incubation time significantly increased peak area, with a reduction in the presence 

of sharp aggregate peaks observed. Notably, an improved separation of the populations was 

observed, closely aligning with the shoulder peaks observed in Gelose 80 samples with 0.05 % 

LiBr and 10 min incubations (Figure 3-8). This indicates that there is a need to balance the 

dissolution benefits of LiBr with the impact it has on iodine binding potential. Increasing 

incubation time further to 30 minutes yielded further changes to the separation with a reduction 

in observable sharp aggregate peaks as well as a shift in the distribution towards lower mobility. 

Due to the high salt content, it is suspected that interference of LiBr with iodine binding is so great 

that the resulting distributions are not truly reflective of the true distribution within the scope of 
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incubation times tested here. At 5 % LiBr, the molar concentration is in excess of the concentration 

of available iodine (666 mM LiBr to 7.2 mM KI and 1.2 mM I2), indicating much longer incubation 

times would likely be required. 

 

 
Figure 3-9 Weight distributions of electrophoretic mobilities at A) 0 min (black), 1 min (red), 5 min (green) and 10 min 

(blue) and B) 10 min (blue), 15 min (light blue), 20 min (purple) and 30 min (olive) incubation time in background 

electrolyte for Gelose 80 prepared in the optimal conditions at 1 g∙L-1 with 5 % LiBr 

Due to the binding issues associated with using very high salt contents, a middle ground of 0.5 

% LiBr was assessed with an incubation time of 30 minutes to allow for more complete binding. 

At a concentration of 64 mM, the disruption of LiBr to the binding process should be significantly 

reduced. Interestingly, a waxy maize containing no amylose displayed increases in peak area with 

0.5 % LiBr compared to both 0.05 % and 5 % LiBr with no observed changes in the distribution 

(Figure 3-10A). In Gelose 80, the change from 5 % to 0.5 % LiBr yielded a significant increase in 

the total peak area with minimal signs of aggregates (Figure 3-10B). However, while 0.05 % LiBr 

gave greater peak area, the aggregate peaks observed significantly contribute to these regions, 

indicating a poor dissolution.  

 
Figure 3-10 Weight distributions of electrophoretic mobilities with 30 min incubation time in background electrolyte and 

with 0.05 % (black), 0.5 % (red) and 5 % (green) LiBr for A) Gelose 80 prepared in optimal conditions at 1 g∙L-1 and B) Waxy 

Maize prepared in optimal conditions at 1 g∙L-1 
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It is evident from this study that extended incubation times are important to allow for optimal 

iodine binding of starch for electrophoretic separation. Extended incubation times typically 

yielded increased peak areas, while also significantly decreasing the presence of starch 

aggregates. However, extended incubation times also resulted in significant baseline drift. To 

mitigate this, alternating pressure was applied during incubation to keep the sample plug mobile 

and mitigate adsorption and diffusion of the sample plug (S 3.5.6). Another important aspect of 

this incubation was the ability to offset the impact of increased LiBr content on iodine-starch 

binding; however, the best compromise was found here to be a LiBr concentration of 0.5 % w/w 

offering improved dissolution, minimised aggregation and negligible impact on iodine binding. 

3.4 Conclusions 

CE has been shown to separate amylose and amylopectin in starch samples by taking 

advantage of iodine complexation. Literature had shown that quantification is possible under 

these conditions, with a low limit of detection (0.1 g∙L-1) [109]. However, obtaining a complete 

dissolution is essential in accurate quantitative analysis.  

A number of parameters of dissolution were investigated in the dissolution conditions 

presented by Herrero-Martínez, Schoenmakers [109]. This assessment carried out by capillary 

electrophoresis was aided by 1H solution-state NMR experiments. The most significant aspect of 

improvement to dissolution conditions was dissolution concentration, with lower concentrations 

resulting in an apparent greater extent of dissolution. This is supported by the knowledge of 

aggregation and poor dissolution in polysaccharide solutions at higher concentrations. Filtration 

of starch solutions was shown to result in significant signal loss for both amylose and amylopectin, 

suggesting a significant sample loss. Potential signs of degradation were also observed as a result 

of filtration. The high temperatures necessary for dissolution and dissolution stability should 

ideally be maintained up to and during sample injection. This could be achieved with equipment 

that allows for isolated sample temperature control, with the potential to greatly improve 

repeatability. 

Improved dissolution conditions were found to yield a greater amylose peak area, indicative of 

a greater concentration. However, the presence of LiBr in the solution was shown to impact on 

the binding of iodine to amylose and amylopectin. This effect was significant at higher 

concentrations (5 %) but not at lower concentrations (0.05 %). These higher LiBr concentrations 

are essential for the complete dissolution of amylose in high amylose starches, thus modifications 

to the CE method were necessary to accommodate, with extended complexation time resulting in 

increased peak area and apparently greater extent of binding. Given a longer complexation time, 

a LiBr concentration of 0.5 % was found to be optimal. While optimal dissolution conditions are 
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likely to vary across samples, the use of samples covering a broad range of amylose contents 

allowed for confidence in dissolution conditions to be effective for similarly broad range of 

samples. 

Further work will be required to assess the impact of joule heating on this binding reaction, as 

temperature fluctuations have been reported to influence binding constants in CE of proteins 

[240]. In addition to this, modification of the background electrolyte to an iodine containing 

DMSO/water mixture could reduce any interference of the buffer with solubility, with as little as 

1 % DMSO likely to provide ample sensitivity [71].  

The dissolution conditions tested in this work may also be applied to other types of 

characterisation of starch in solution such as field flow fractionation. It should also be used to 

investigate the effect of isolation of starch from grain and cereal flours (for plant breeding 

purposes for example) and the effect of cooking and how much change these important processes 

bring to starch content and structure.  The dissolution and CE separation presented in this work 

may allow a more accurate determination of the amylose content of starches. The distributions of 

electrophoretic mobilities obtained by this method may also be explored to develop new ways to 

interpret amylose content and starch branching, as done in a recent study on chitosan’s 

composition [169]. Through such characterisation a better understanding of the role of the 

components of starch and their structure in their physicochemical properties may be gained. This 

would prove to be especially useful in food, where a better understanding of amylose content and 

its role in starch digestibility could help to develop healthier products. 
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S 3.5.1 Transformation of raw data 

The raw data was transformed following the procedure of Chamieh, Martin [245]. Migration 

time of analytes is dependent on both the electrophoretic mobility (µ) of the analyte and the 

electroosmotic flow (EOF). Therefore, the migration time tm was converted to the electrophoretic 

mobility μ so that it does not depend on the electroosmotic flow, using Equation S 3-1: 

 µ = 
𝑙d𝑙t

𝑉
(

1

𝑡m
 −  

1

𝑡eof
) Equation S 3-1 

where ld is the capillary length to the detector, lt is the total capillary length, V is the voltage, and 

teof is the migration time of the EOF marker. 

The absorbance was corrected to account for the analyte velocity through the detection 

window, correcting absorbance as a function of time spent in the detection window and 

accounting for the transformation from time scale to mobility scale of the x-axis. It is important to 

note that the detection occurs during the separation and not after it (post-column) as is the case 

in HPLC. This is shown in Equations S 3-2 to S 3-6, where absorbance is first corrected for velocity, 

 𝑈𝑉 𝑆𝑖𝑔𝑛𝑎𝑙 =
𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒

𝑡m
 Equation S 3-2 

Transformation to weight distribution of electrophoretic mobilities W(μ) is then completed,  

 𝑊(µ) =
𝑈𝑉 𝑆𝑖𝑔𝑛𝑎𝑙

dµ

d𝑡m

 Equation S 3-3 

where 
dµ

d𝑡m
 is the derivative of µ with respect to tm, 

 
𝑑µ

𝑑𝑡m
= −

𝑙d𝑙t

𝑉
 

1

𝑡m
2 Equation S 3-4 
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Therefore, 

 
𝑑µ

𝑑𝑡m
∝

1

𝑡m
2 Equation S 3-5 

Simplifying Equation S3 according to Equations S 3-2 and S 3-5, 

 𝑊(µ) = 𝐴𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 ∗ 𝑡m Equation S 3-6 

Using equation S 3-6, raw absorbance data was corrected according to analyte velocity and 

transformed from time-scale absorbance to mobility-scale absorbance. These corrections are 

essential in determining molecular property-based distributions. The transformation’s effect on 

data is shown in Figure S 3-1, comparing the same data plotted in raw data form (Figure S 3-1A) 

and after corrective transformations (Figure S 3-1B).  

 

Figure S 3-1 A) Electropherograms and B) Weight-distributions of electrophoretic mobilities of amylose (red) and 

amylopectin (black) A) Before and B) After correction and transformation 

S 3.5.2 Calculation of average mobilities 

Weight-average electrophoretic mobility (µw) and moment-average electrophoretic mobility 

(µm) are calculated through Equation S 3-7 and S 3-8, respectively 

 µw =
[∑ 𝑊(µz)z µz(µz+1−µz)]

[∑ 𝑊(µz)(µz+1−µz)z ]
 Equation S 3-7 

 µm =
[∑ 𝑊(µz)z (µz+1−µz)]

[∑ 𝑊(µz)µz
−1(µz+1−µz)z ]

 Equation S 3-8 

where µz is the electrophoretic mobility of the zth molecule. 
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S 3.5.3 Filtration – Aggregation kinetics 

 

Figure S 3-2 Evolution with sample ageing of the weight-distributions of electrophoretic mobilities of A) filtered rice starch 

and B) filtered corn starch, prepared at 10 g∙L-1 in 90 % DMSO by magnetic stirring at room temperature 
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Figure S 3-3 Evolution with time of peak parameters of amylose (circles) and amylopectin (squares) from weight-

distributions of electrophoretic mobilities of corn starch: the A) µ at the peak maximum (black), moment-average µ (red) 

and weight-average µ (green); B) peak area. Distributions are shown on Figure S 3-2B. Calculation of moment-average and 

weight-average µ is done through equations S 3-7 and S 3-8 

Figure S 3-4 shows the effect of sample filtration prior to injection on the separation of starch 

by capillary electrophoresis. The sample was prepared at a concentration of 10 g·L-1 in the 

conditions of Herrero-Martinez et al. [109], and displayed very low signal for the amylopectin 

peak (Figure S 3-4, red). The separation is compared to the same sample prepared at 1 g·L-1 in the 

conditions of Schmitz et al. [79] with 0.05 % LiBr (Figure S 3-4, black), highlighting the clear loss 

of amylopectin signal in filtration even with 10-fold higher concentration. 
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Figure S 3-4 Rice starch at 1 g∙L-1 without filtration (black) (sample preparation of Schmitz et al. [79] with 0.05 % LiBr) and 

at 10 g∙L-1 with filtration (red) (unmodified sample preparation of Herrero-Martinez et al. [109] 

S 3.5.4 Validation of CE hardware 

The standard was qualitatively compared to previous separations [233] for repeatability of 

electro-osmotic flow and electrophoretic mobility of oligoacrylate species. Initial assessment is 

based on visual reproducibility of the oligoacrylate solution with previous experiments, followed 

by determination of the repeatability of electro-osmotic flow, current and mobility of the AA1, 

RAFT and AA2 RAFT species present. Electrophoretic mobilities had a relative standard deviation 

(RSD) of 3.5 to 6.5 % for the species used to validate the capillaries and hardware used in this 

work (Table S 3-1). When EOF, current or electrophoretic mobilities were outside the range given 

in Table S 3-1 then the data was not used and the experiment repeated.  
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Table S 3-1 CE experiment data and calculated electrophoretic mobilities for separations of oligoacrylate solutions used to 

validate capillaries and hardware 

Year Month 
Current 

(µA) 
EOF (min) 

Electrophoretic mobility (x10-8 
m2·V-1·s-1) 

PAA1  RAFT PAA2 RAFT 

2015 May 25 1.700 1.114 1.446 1.821 

2015 May 23 1.696 1.105 1.447 1.783 

2015 Sep 33 1.680 1.128 1.413 1.960 

2016 Mar 24 1.648 1.116 1.301 2.000 

2016 May 24 1.648 1.116 1.301 2.000 

2016 Sep 25 1.700 0.993 1.195 1.916 

2016 Sep 26 1.675 1.072 1.281 1.992 

2017 Jun 24 1.640 1.072 1.281 1.894 

2017 Oct 27 1.700 1.063 1.298 1.926 

2017 Nov 28 1.600 1.043 1.226 1.886 

2017 Nov 30 1.647 1.049 1.254 1.922 

2017 Nov 30 1.653 1.085 1.294 2.008 

2017 Nov 31 1.613 1.010 1.203 1.867 

2018 Feb 33 1.630 1.019 1.187 1.936 

2018 Mar 37 1.602 0.967 1.124 1.813 

2018 Apr 27 1.630 1.052 1.226 1.918 

2018 Nov 31 1.585 1.047 1.234 1.966 

2018 Dec 28 1.681 1.043 1.262 2.006 

2019 Jan 33 1.645 1.074 1.259 1.974 

2019 Jan 34 1.632 1.112 1.312 2.009 

 

S 3.5.5 Pressure mobilisation 

Pressure mobilisation was evaluated at different concentrations and in different solvents in a 

comparative study to investigate whether the increased viscosity or addition of LiBr to the solvent 

had any significant effects on adsorption to the capillary wall. No significant signs of adsorption 

were observed related to either viscosity at higher concentration (Figure S 3-5, black and red) or 

addition of LiBr (Figure S 3-5, green) relative to a 50/50 volume DMSO/running buffer standard 

marker. 
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Figure S 3-5 Corn starch prepared at 10 g∙L-1 in 90 % DMSO following Herrero-Martínez, Schoenmakers [109] (black), rice 

starch prepared at 1 g∙L-1 in the optimal conditions (green), rice starch prepared at 10 g∙L-1 following Herrero-Martínez, 

Schoenmakers [109] (red) and running buffer with 50 % v/v DMSO (blue) 

S 3.5.6 Pressure mobilised incubation 

Increasing incubation times was found to improve in situ binding of iodine with amylopectin 

and amylose molecules, resulting in both greater peak area as well as reduced incidence of large, 

sharp starch aggregate peaks. This was especially beneficial with the presence of LiBr in the 

anhydrous DMSO used for dissolution. However, longer incubation times resulted in significant 

baseline drift during the incubation period, which also affected the baseline in the region where 

starch migrates in some cases (Figure S 3-6). To mitigate this, a pressure mobilised incubation 

period was implemented, whereby upon initial injection of sample and electrokinetic mixing, the 

sample plug would be mobilised by low pressure of 5 mbar and -5 mbar alternating for 5 min each, 

for a total of 30 min incubation time (6 x forward/backward sample movements). This was done 

to minimise adsorption as well as diffusion of the sample plug. Figure S 3-6A demonstrates this 

effect in an electrophoresis experiment, as well as the effect of the method changes to mitigate 

this effect. Figure S 3-6B demonstrates this effect on pressure mobilisation experiments, as well 

as the impact of the method changes to mitigate this effect.  
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Figure S 3-6 A) A) Electropherograms of capillary electrophoresis experiments with incubation times of 10 min (black), 20 

minutes (red), 30 minutes (green) and 30 minutes with mobilised incubation (blue) B) Elugrams of pressure mobilisation 

experiments with incubation times of 10 minutes (black), 20 minutes (red), 30 minutes (green) and 30 minutes with 

mobilised incubation (blue) 

S 3.5.7 Estimation of T1 for quantitative determination of average DB 

Longitudinal relaxation times (T1) of the signals of interest (in the range of 5.4 to 4.2 ppm) were 

estimated using the one-dimensional inversion recovery pulse sequence. In this experiment a 

signal is negative if the inversion recovery delay is shorter than T1 * ln2 and positive if the 

inversion recovery delay is longer than T1 * ln2.  Signals in this range exhibited similar T1, with T1 

determined to be between 3 and 4 s  (Figure S 3-7).  

6 5 4 3 2 1 0
 (ppm)

 2 s

 3 s

 4 s

 10 s

 

Figure S 3-7 Partial spectra of rice starch in DMSO-d6 with 0.5 % w/w LiBr at 80 °C displaying measurements to assess 

whether T1 values are shorter than 2 (black), 3 (red) and 4 (green) and 10 (blue) seconds, with inversion recovery delay of 

1.386 s (black), 2.079 s (red), 2.773 s (green) and 6.931 s (blue) 
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Chapter 4 Characterisation of 

branching in rice flours using 

capillary electrophoresis 
4.1 Introduction 

Starch is a highly abundant biopolymer, acting as the primary energy storage in plants [222] 

and a major dietary source of energy for humans [246]. Modified forms of starch are also used 

widely in a variety of industrial applications such as food and adhesives [222]. At the simplest 

level, starch is comprised of two macromolecular components, amylose and amylopectin that 

differ in their role in the semi-crystalline structure of native starch. Amylose and amylopectin are 

both comprised of the same linear backbone of glucose monomers linked by α(1-4) glycosidic 

linkages, though differ in their degree of branching through α(1-6) glycosidic linkages [22]. 

Amylopectin exhibits a much greater degree of branching (5 – 6 %) and shorter branch chain 

lengths than amylose [22].  

Within a granule, starch is synthesised by a concert of four classes of enzymes including ADP-

glucose pyrophosphorylase (ADPG), starch synthase (SS), starch branching enzyme (BE) and 

starch debranching enzyme (DBE) [247]. With ADPG providing the substrate, ADP-glucose, SS, BE 

and DBE are then the architects defining the starch structure within the granule. SS acts to 

polymerise glucose through the formation of α(1, 4) glycosidic linkages, while BE catalyses the 

formation of the α(1, 6) linkages that form the branching structure of starch [247, 248]. However, 

multiple isomers of SS and BE exist across different cereals acting on different substrates and with 

different activity. In rice, there are 10 isomers of SS, divided into 5 types; SSI, SSII, SSIII, SSIV 

responsible for activity in the soluble fraction of the amyloplast, and granule bound SS (GBSS), 

with activity tightly bound to starch granules. Of these, three specific isomers; SSI, SSIII and SSIIIa, 

have been associated with amylopectin synthesis in rice [249], with their activities linked to 

amylopectin chain length distributions [250, 251] and accounting for major differences between 

indica and japonica varieties [251]. Meanwhile only one isomer, granule bound starch synthase 

(GBSSI) has been linked to the production of amylose, with its activity and presence correlating 

to amylose content [207, 247]. This has been theorised to arise from a number of factors including 

substrate availability [247] as well as steric hinderance [252]. Interestingly, while GBSSI appears 

to be the sole producer of amylose, it has also been observed to participate in elongation of 

amylopectin chains [250, 253, 254]. This is likely a contributing factor to the apparent “third” type 
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of starch that has been observed in rice [255], and also reported in Arabidopsis thaliana [256], 

which have been described as long-chain branched amylopectins.  

The multiple isoforms of BE also impart different branching production behaviours such as in 

branches chain lengths, branching frequency and substrate preferences [247]. Typically, two 

isoforms are present in a given cereal, denoted A and B. In rice, the primary isoforms are BEIII(a) 

and BEI(b) [257], reported to preferentially branch amylose and amylopectin respectively [258, 

259]. Thus have been suggested to participate preferentially in long- (degree of polymerisation 

(DP) > 36) or short-chain (DP < 10) branching [247, 259, 260].  

Finally, DBE acts to cleave and relocate branches, suggested to work in concert with SS an BE 

to give rise to the organised supramolecular structure of starch [247]. The exact function of DBE 

is still unknown, however theories ranging from spatial management to allow for efficient packing 

[247] and chain elongation [261] as well as management of competing glucan substrates [247] 

have been suggested. It is clear then that while the basic molecular structure of starch can be 

viewed as quite simple, the various enzymatic pathways responsible for synthesis are very 

complex. As a result, the populations of different structures within a given starch granule can be 

similarly complex and diverse and the genetic drivers thus indirectly accountable for many of the 

resulting properties [262, 263]. 

The resulting compositional, structural and spatial arrangements within the starch granules 

(Figure 1-3) such as distributions of molar mass and branch chain length (discussed in 1.2.1), then 

play an important role in the functional properties of starch, ultimately impacting the properties 

of the starch containing grain [70, 224, 227]. For example, amylose content and structural 

heterogeneity have been shown to significantly impact properties such as solubility, viscosity and 

digestibility [26, 35, 223, 224, 264, 265].  

Colorimetric approaches are currently the most popular high throughput methods for 

determining apparent amylose content [228], based on the formation of the dark blue starch-

iodine complex that absorbs in the UV-VIS spectrum, and supported by the existence of standard 

methods of analysis [74, 204]. However, the complexation of amylose and amylopectin with iodine 

yields a colorimetric profile with a maximum absorption at 620 and 540 nm respectively [71, 72]. 

This results in overlapping absorption bands [229], and thus can lead to overestimation of 

amylose content, requiring correction processes such as multi-wavelength processing [75] or by 

appropriate selection of standards. The frequency of branches and distribution of branch points 

throughout the starch can interrupt iodine binding, and so any macromolecules that do not fit the 

‘classic’ definition of amylose and amylopectin will further accentuate to this overlap [255, 256]. 

For this reason, the determination of amylose content by colourmetric approaches is 

appropriately referred to as apparent amylose content. 



Page | 95  
 

Although amylose is one of the two populations in starch, it still represents thousands of 

different molecules that have the potential to overlap with populations of amylopectin molecules 

in native starch. Many instruments have been used to separate amylose and amylopectin in starch 

with varying success. Size-exclusion chromatography (SEC/GPC) cannot fully resolve the 

populations of amyloses  from amylopectins, [90] while field flow fractionation (FFF) [98], and 

free solution capillary electrophoresis (CE) can [109]. The complete separation of amylose and 

amylopectin populations was also shown for CE in Chapter 3. However, despite its limitations in 

whole starch analysis, SEC has been thoroughly employed in the analysis of enzymatically 

debranched starches [90],  with subsequent correlations of apparent chain length distributions to 

different aspects of starch structure [151, 266]. However, the determination of these distributions 

has required important work into understanding the limitations of separation by SEC, most 

notably in the stationary phase which often requires debranching of starch prior to analysis. 

Enzymatic debranching of starch inherently results in an indirect assessment of the original 

branching structure, with information on the complete branching structures, such as the positions 

of the branches on the backbone lost as a result. and more information is available if separation 

of whole starch can be achieved. The current limitation for FFF is the limited chemical 

compatibility of the mechanical pump hardware, unsuitable for the high salt content, high 

temperature and organic solvents required to keep starch in solution. In contrast, CE does not 

employ a mechanical pump for injection, as there is no need for high pressures, and therefore has 

a much greater range of chemical compatibility. Additionally, due to the lack of a stationary phase, 

sample filtration is not required, increasing sample compatibility as well [267] as was shown in 

3.3.1.2. The separation of amylose and amylopectin by iodine-affinity capillary electrophoresis 

(IA-CE) has been reported [109, 167] and an improved methodology developed (Chapter 3). By 

employing the IA-CE method, problems associated with overlap of absorption bands can be 

overcome. This allows for a more accurate characterisation and quantification of amylopectin and 

amylose individually to be performed. 

While many studies have been performed on modified and/or extracted starches, altering the 

native starch structure [266, 268], they are rarely performed on whole grains or whole grain 

flours, which contain additional components including lipids (1 – 3 %) [22] and proteins (4 – 18 

%) [269]. While phospholipids and fatty acids can form complexes with amylose chains [270], and 

proteins may undergo iodine binding [271], neither are likely to play a major role in the formation 

of the starch-iodine complex due to their low concentrations.  A complete dissolution of starch 

would also prevent these starch-lipid complexes from forming.  

In CE, when the DP of a polyelectrolyte is sufficiently high,  the effects of DP on separation 

become negligible, in contrast to other structural factors such as branching or composition [104, 

243]. As a result, the molar mass of polyelectrolytes for which critical conditions occurs will vary 
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greatly, dependant on the size of the monomer unit.  CE of polyelectrolytes with a sufficiently high 

DP is thus referred to as “capillary electrophoresis in the critical conditions” (CE-CC) [116]. This 

is an analogy to liquid chromatography in the critical conditions (LC-CC) where conditions are 

sought in which a homopolymer is not separated by molar mass , for example in the 

characterisation of branching in poly(styrenes) [272]. CE-CC has been demonstrated 

experimentally in DNA [111], poly(sodium acrylates) [113, 234] and poly(styrene sulfonates) 

[112]. Most polymers are not simple and are composed of many molecules with different molar 

masses, end groups, composition distributions and branching characteristics. Currently the most 

commonly assessed molecular attribute of polymers is the average molar mass (Mn) with 

heterogeneity of molar mass also assessed, and calculated as the ratio of the weight-average molar 

mass and number-average molar mass. Typically these values are determined by size-exclusion 

chromatography [115]. Separation by CE-CC allows for separation by one or more of these 

characteristics with a negligible influence of DP, enabling the characterisation of complex 

polymers.   

In CE-CC, the electrophoretic mobility is sensitive to structural and compositional features 

other than DP. The tendency of such features to exist as distributions related to possible structures  

yields an electrophoretic mobility distribution dependent on the separation factors. Recently it 

has been shown theoretically that in CE-CC a calculation of average mobilities, analogous to those 

used in SEC on molar mass distributions,  can be made on distributions of electrophoretic mobility 

[104]. These mobilities include the weight-average electrophoretic mobility, analogous to weight-

average molar mass, and moment-average electrophoretic mobility, analogous to number-

average molar mass (though is not a number-average). The ability to calculate these average 

mobilities provides a wealth of knowledge on the polyelectrolytes being analysed, similar in scope 

to the importance of weight-average and number-average molar masses with regards to polymer 

properties. For example, the dependence of starch viscosity and resistant starch digestibility on 

molecular weight [273]. 

The calculation of dispersity and standard deviation for distributions of electrophoretic 

mobility has also been shown theoretically, analogous to those in SEC [116, 274]. As dispersity is 

calculated using a mobility of zero as a reference, two distributions could have identical 

dispersities, yet different absolute standard deviations. This is because standard deviation is 

calculated using the weight-average mobility as a reference. Thus, reliance on dispersity can result 

in the underestimation of variance, and in cases of narrow distributions where this is most 

pronounced the use of standard deviation is more appropriate [274]. 

Determinations of average mobilities and dispersity for distributions of electrophoretic 

mobility has been shown experimentally following the separation by branching in poly(acrylic 

acid) [116], degree of acetylation in chitosan [169] and composition in block copolymers [243]. In 
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the separation by branching of poly(acrylic acid), greater branching was shown to yield lower 

electrophoretic mobility [114]. The same trend was noted in the separation of starch in which the 

less branched amylose had a higher electrophoretic mobility relative to the highly branched 

amylopectin [109, 110], and was shown in Chapter 3.  

The high DP of starch macromolecules results in the separation of amylose and amylopectin 

based on branching structure using the IA-CE methodology that was described in Chapter 3. The 

average mobilities of amylose and amylopectin were calculated to assess the differences in 

electrophoretic mobility distributions. Dispersity and standard deviation of the distributions of 

electrophoretic mobility was also calculated and used to assess the heterogeneity of starch 

molecules analysed.   

4.2 Materials and Methods 

4.2.1 Materials 

Milli-Q® quality (Millipore, Bedford, MA, USA) water was used throughout the analysis unless 

stated otherwise. Sodium hydroxide (NaOH) pellets, glacial acetic acid, and anhydrous sodium 

acetate were sourced from Ajax Chemicals (Auburn, NSW, Australia). Boric acid (≥ 98 %) was 

purchased from BDH AnalaR, Merck Pty Limited. Analytical grade potassium iodide was obtained 

from Chem-Supply Pty Ltd (Gillman, SA, Australia). Analytical grade iodine was obtained from 

Univar (Downers Grove, IL, USA). Dimethyl sulfoxide (DMSO, ≥ 99.5 %), and lithium bromide 

(LiBr, ≥ 99 %) (both stored in a desiccator) were sourced from Sigma-Aldrich (Castle Hill, NSW, 

Australia). Deuterium oxide (D2O) ≥99% and was obtained from Cambridge Isotope Laboratories, 

Inc. (Andowver, MA, USA). 

Flours of different rice cultivars were provided by NSW DPI. Grain was harvested at 

physiological maturity, dehulled (THU35A 250V 50Hz Test Husker, Satake, Australia), milled 

(MacGill #2 mill) and ground (Cyclotec 1093 Sample Mill, Tecator AB, Sweden) to pass through a 

50 μm sieve. Samples in flour form were stored in closed paper envelopes within a sealed plastic 

bag in a refrigerator (4 °C). 

4.2.2 Iodine-affinity capillary electrophoresis and pressure mobilisation 

4.2.2.1 Sample preparation 

Samples were prepared at a concentration of 1 g∙L-1 in anhydrous DMSO containing 0.05 % w/v 

LiBr at 80 °C with shaking at 300 rpm in an Eppendorf Thermomixer C (North Ryde, NSW, 

Australia) for at least 8 hours [79]. DMSO containing LiBr is referred to as ‘DMSO with % LiBr’, 

units are % w/v. All results were obtained from samples which gave clear and transparent 
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“solutions”. The extent of dissolution is not quantified in this work.  The sample preparation has 

been investigated and optimised previously (Chapter 3). Due to the chronology of experiments, 

0.5 % w/w LiBr was not employed for dissolution in this work. 

4.2.2.2 Methodology 

For CE separations, 20 mM acetic acid buffer (7.3 mM acetic acid and 12.7 mM sodium acetate, 

pH 5.0) with 7.2 mM potassium iodide and 1.2 mM iodine metal was prepared according to 

Herrero Martinez et al. [109] and 25 mM sodium borate buffer (pH 9.2) was prepared according 

to Castignolles et al. [233]. The acetic acid buffer was sonicated for 5 min to ensure dissolution of 

iodine and degassing, and then filtered before use. Acetic acid buffer was stored in a foil wrapped 

glass bottle away from direct light when not in use. The 1 M NaOH was prepared fresh and used 

within 24h.  

Experiments were performed on an Agilent 7100 CE instrument (Agilent Technologies 

Waldbronn, Germany) with a Diode Array Detector (DAD) monitoring at 560 nm with a bandwidth 

of 20 nm. The total capillary length was 37.0 cm (28.5 cm effective length), using an extended 

light-path fused-silica capillary (75 µm i.d., bubble factor 2.7, Agilent Technologies Waldbronn, 

Germany). The capillary was preconditioned before use by flushing with 1 M NaOH (4 min), 0.1 M 

NaOH (4 min), water (4 min) and running buffer (12 min). All injections were preceded by flushing 

with 1 M NaOH for 24 s and running buffer for 2 min. Samples were injected hydrodynamically by 

applying 17 mbar of pressure for 4 s (0.25 % capillary volume) followed by the injection of 

running buffer by applying 5 mbar of pressure for 5 s. Before separation a voltage of 20 kV is 

applied (ramped from 0 kV over 1 min), then set to 0 kV after 1.5 min. Following this, a period of 

active incubation is performed, with a pressure of 5 mbar and -5 mbar alternating for 5 min each, 

for a total of 30 min incubation time (6 x forward/backward sample movements) (see S 3.5.6). 

Following this, pressure was set to 0 mbar, and separation performed at 20 kV and 25 °C. The CE 

methodology was previously investigated and optimised (Chapter 3). 

Data was acquired using Chemstation A10.01 and data treatment conducted with OriginPro 

9.0. Raw electropherograms were transformed into weight distributions of electrophoretic 

mobilities as shown in supporting information of Chapter 3 (S 1), with the electroosmotic flow 

determined at a wavelength of 560 nm. For determination of peak areas with respect to 

concentration W(µ) was divided by µ (discussed in 4.3.2).  Calculations of weight-average mobility 

(µw), dispersity (D(1,0)) and standard deviation were performed on the W(µ) of starch based on 

the work of Thevarajah et al. [116]. Calculations of µw, dispersity and standard deviation are 

shown in supporting information (S 4.6.1). 

The CE hardware and capillary were validated before each experiment through the separation 

of a standard oligoacrylate solution in sodium borate buffer [113, 234]. The standard was 
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qualitatively compared to previous separations for repeatability of electro-osmotic flow and 

mobility of oligoacrylate species (Chapter 3). 

4.2.3 Apparent amylose content 

4.2.3.1 Sample preparation 

Rice flour was weighed (100 mg) and transferred quantitatively to 100 mL volumetric flasks. 

To this, 1 mL of 95 % EtOH (5 % H2O) was added to wet the sample followed by vortexing, then 9 

mL of 1 M NaOH (in water) added. Samples were then left at room temperature for 15-25 h to 

disperse. After dispersion, solutions were made up to 100 mL with distilled water and vortexed.  

4.2.3.2 Methodology 

AAC was determined using a modified AACC approved method 61-03.01 [74]. 

For iodine colour measurement, 1 mL of solution was quantitatively transferred to a 20 mL test 

tube. To this, 2 mL of 0.1M citric acid in water was added with mixing, followed by 1 mL of iodine 

solution (0.2 % I2 and 2.0 % KI by weight in distilled water) then made up to 20 mL with distilled 

water. The solution was then mixed and left to stand for 20 min. Colour absorbance was recorded 

for 2 aliquots of each sample solution at 620 nm. Measurements were made on a Mettler Toledo 

UV5 Bio (Mettler Toledo Ltd., Victoria, Australia)  

Standard curve samples were prepared daily using water plus calibrated rice samples of 

known AAC from NSW DPI. The absorbance at 620 nm was plotted against amylose content for 

each standard solution. The resulting standard curve was used to read amylose values for test 

samples. 

4.2.4 13C solid-state NMR spectroscopy  

4.2.4.1 Sample preparation 

Amorphous rice flour samples were obtained by heating 1 % w/v rice flour distilled water 

solution at 95 °C for 30 min. Dispersions were then freeze dried to remove the excess water. Dried 

samples were then stored at 44 % RH for at least 1 week to ensure consistent water content.  

4.2.4.2 Methodology 

The solid-state 13C CP/MAS NMR spectroscopy experiments were performed at a 13C frequency 

of 75.46 MHz on a Bruker DRX-300 spectrometer. Approximately 200-300 mg of starch samples 

were packed in a 4-mm diameter, cylindrical, partially stabilized zirconium oxide rotor with a KelF 

end cap. The rotor was spun at 6 kHz at the magic angle (54.7°). The 90° pulse was optimised each 

day by adjusting the pulse power at a constant pulse width (5 s). A contact time of 1 ms was used 
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for all starch and rice samples with a recycle delay of 3 s. The spectral width was 20 kHz, 

acquisition time 50 ms, time domain points 2048, transform size 4096, and line broadening 50 Hz. 

The number of accumulated scans was dependant on the minimum number required for a signal-

to-noise ratio of at least 30 for the C4 signal at ≈82 ppm. Spectra were referenced to external 

adamantane. The rate of cross-polarization was determined in a variable contact time experiment 

by Tan et al. [118] and confirmed here experimentally (S 4.6.2.1). The deconvolution of spectra 

for the determination of helix content is described in supporting information (S 4.6.2.2)  

Peak fitting was performed using OriginPro 2016, with a least-squares Levenberg-Marquart 

algorithm to minimise chi squared. 

4.3 Results and Discussion 

4.3.1 The weight-distributions of electrophoretic mobilities of amylose and 

amylopectin in rice flour 

The composition of starch is typically defined by two distinct populations of molecules, 

differentiated by their branching structures: amylose and amylopectin. These two populations of 

branching structure in starch exists as distributions of branch length, degree of branching and 

more, and can have a major impact on the subsequent properties of the starch, such as viscosity 

and swelling power. Yet there is also no absolute evidence that these molecules do not exists as a 

continuous, yet multimodal, population of branching structures. 

In this chapter the CE method developed in Chapter 3 is employed to investigate the separation 

of amylose and amylopectin in rice flour, allowing for investigations into the populations of 

branching structure of starch. This is hypothesised to arise from the ability of the chains of 

amylose and amylopectin to bind with iodine, with the presence of branch points interrupting the 

binding, thus lowering the overall effective charge of the molecule. As a result, the mobility of 

amylopectin is observed to be lower (< 1.5 x10-8 m2·V-1·s-1) than amylose (> 1.5 x10-8 m2·V-1·s-1) 

(Figure 4-1). 
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Figure 4-1 Weight distributions of electrophoretic mobilities for different rice samples 

The electrophoretic mobility distributions of 9 different types of rice are shown in Figure 4-1. 

From these electrophoretic mobility distributions, it is clear that different rices exhibit different 

starch structures. This is highlighted by the difference in relative areas of the amylose and 

amylopectin peaks, width of the peaks, and most importantly, the presence of additional 

intermediate populations in the range of 1 to 1.75 x10-8 m2·V-1·s-1. These major compositional and 

structural differences are likely an important driver in some of the key properties of rice grains, 

while also providing scope to complement current understandings of correlations of  AAC  with 

rice properties. 

4.3.2 Defining amylose and amylopectin by their electrophoretic mobilities 

The electrophoretic mobility distributions shown in Figure 4-1, exhibit an intermediate 

population between amylose and amylopectin in some rice samples (≈1 to 1.5 x10-8 m2·V-1·s-1). 

There then arises a need to determine if this intermediate population of branched molecules is 

more amylopectin- or more amylose-like in its structure and function. In addition, clear ranges of 

mobility need to be defined and assigned if an accurate analysis of the electrophoretic mobility 

distributions is to be performed. 

To determine an appropriate range of mobility to define both amylose and amylopectin, the 

mobility normalised electrophoretic distributions were integrated over two ranges, where the 

intermediate peak is included as either amylose or amylopectin. This corresponded to a mobility 

switching point of either 1 or 1.5 (x10-8 m2·V-1·s-1). The relationship of starch branching with 

iodine binding capacity and by extension, electrophoretic mobility (µ), suggests that the 
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absorbance of molecules at any given µ will be affected by the associated branching structure. This 

supported by the higher absorptivity of amylose-iodine complexes compared to amylopectin-

iodine complexes [72]. So, if we assume a linear correlation between the Beer-Lambert coefficient 

and the mobility, we can account for this by dividing W(µ) by µ to account for the differences in 

branching structure of any given µ.  

The obtained mobility normalised peak areas of the different ranges were then compared to 

other measured structural aspects of the rice samples to determine which most closely correlated. 

For the determination of the amylopectin range, the peak area was plotted against the double helix 

content determined by 13C NMR spectroscopy (Figure 4-2), due to the exclusivity of amylopectins 

ability to form these double helices in starch. The relation of both integration ranges to double 

helix content was high, reporting r2 values of 0.95 and 0.93 for the range ≤1.0 and ≤1.5 x10-8 m2·V-

1·s-1, respectively. The similarity of these fits also indicates that the electrophoretic mobility 

distribution of amylopectin molecules that participate in the formation of double helices is quite 

broad in some cases. 
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Figure 4-2 Electrophoretic mobility normalised peak areas of amylopectin peak integrated from the leading peak minimum 

to 1.0 (black) and 1.5 (red) x10-8 m2·V-1·s-1 plotted against the double helix content determined by 13C solid-state NMR 

spectroscopy. Linear fits are shown for the 1.0 (black, r2 = 0.95) and 1.5 (red, r2 = 0.93) x10-8 m2·V-1·s-1 data. Normalised area 

error bars are the standard deviation of 3 instrumental repeats  

The electrophoretic mobility range for the amylose molecules was then confirmed by relation 

of the mobility normalised peak areas against the apparent amylose content (AAC). Given the 

similarity of measurement protocols (absorbance of iodine-amylose complexes), this relationship 

is expected to be highly linear; however, this was not observed (Figure 4-3). In the choice between 

mobility ranges, only the turning point of 1.5 x10-8 m2·V-1·s-1 displayed an appropriate relationship 

with the AAC, though the correlation was poor, yielding an r2 of 0.72. It is fairly well known that 



Page | 103  
 

AAC methods can both under- and overestimate true amylose content [73]; however, it is not yet 

clear if this arises from differences in branching structures, in size or from the presence of this 

third type of starch; commonly dubbed amylopectin-like-amylose. Conversely, this may also arise 

from incomplete dissolution of cultivars with high AAC in either the IA-CE or AAC methodologies, 

with higher amylose starches suggested to have reduced solubility [79].  
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Figure 4-3 Electrophoretic mobility normalised peak areas of amylose peak integrated from 1.0 (black) and 1.5 (red) x10-8 

m2·V-1·s-1 to the trailing peak minimum plotted against the AAC determined by spectrophotometry. Linear fits are shown for 

the 1.0 (black, r2 = 0.25) and 1.5 (red, r2 = 0.72) x10-8 m2·V-1·s-1 data. Normalised area error bars are the standard deviation 

of 3 instrumental repeats 

Thus, this intermediate peak is assumed to behave more like an amylopectin, confirmed by 

both its lack of correlation with AAC, and its strong correlation with double helix content. As a 

result, the appropriate range delineation for amylopectin to amylose was determined to be 1.5 x 

10-8 m2·V-1·s-1. This  delineation point was suitable for most rice samples, correlating to a point 

between baseline resolved peaks (Figure 4-1), though still intersected intermediate populations 

in some samples. This is an important observation in pointing to the presence of intermediate 

populations that may not exist in all rice samples. Therefore, to allow direct comparison in the 

case of these samples, a consistent  delineation point was deemed appropriate, while future work 

should involve a direct assessment of these intermediate populations. Such intermediate starch 

structures have not been explicitly studied in the literature [229, 275]; however, there is some 

indirect evidence suggesting that such structures arise from long chain branching on 

amylopectins [255, 256]. This methodology then provides an evidence-based approach to define 

and characterise accepted definitions of amylose and amylopectin, providing confidence in the 

analysis and reporting of the weight distributions of electrophoretic mobilities. 
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4.3.3 Characterising the weight-distributions of electrophoretic mobility of rice 

flours 

As shown here, and in Chapter 3, starch is separated in IA-CE based on branching structure. 

This yields a weight distribution of electrophoretic mobilities that allows for the assessment of 

branching structures in starch. Analysis of the weight-distribution of electrophoretic mobilities 

can describe two key features of starch. 

The first is the sensitivity of the electrophoretic mobility to the degree of branching present as 

well as within each weight-distribution of electrophoretic mobilities (i.e. degree of branching 

above and below 1.5 x10-8 m2·V-1·s-1). A higher mobility indicates a lower amount of branching 

and/or longer average chain length. Thus, amylose has a higher weight-average mobility. The 

second feature describes the heterogeneity of branching structures. A broader electrophoretic 

mobility distribution is inclusive of a range of branching structures (more heterogeneous), 

whereas a narrow distribution suggests a limited range of branching structures (less 

heterogeneous). Here this is calculated and reported as dispersity.  

4.3.3.1 The overall weight-average mobility and how it relates to AAC 

The apparent amylose content (AAC) of rice covers a broad range of defined classes, including 

waxy (0 – 5 %), very low (5– 12 %), low (12 – 20 %), intermediate (20 – 25 %) and high (>25 %) 

[276]. The primary driver for differences of AAC arises from the genetic makeup of a given rice 

cultivar, with environmental influences also playing a minor role [67]. It is an important measure 

in rice grain quality, and thus a relevant parameter against which to explore further the structures 

of amylopectin and amylose. 

The weight-average electrophoretic mobility (µw) for the total W() of the starch (both 

amylopectin and amylose) was calculated for the rice samples (Figure 4-4). As a result of 

separation occurring as a function of branching structure, the µw  of the total W()  can be stated 

to relate to the relative proportions of branching structures within the sample, for example a 

higher total µw would indicate a decreased amount of branching than a lower total µw. A simple 

interpretation of this would be a relative increase in amylose content corresponding with 

increasing total µw. Therefore, if we were to assume that each of the rice samples in Figure 4-1 had 

similar starch contents, then we could expect AAC to increase with increasing µw; however, this 

was not observed. The independence of total µw  from AAC was highlighted by the observation of 

three clusters at 1.1, 1.3 and 1.5 x 10-8 m2.V-1.s-1 for the non-waxy rice samples. This may arise 

from differences in total starch content, which was not quantified in this work, or from differing 

dissolution protocols for the AAC and IA-CE methods, especially for the higher amylose rice 



Page | 105  
 

samples. Despite this the implications of differences in the populations of branching structures 

are still quite clear for the intermediate AAC rice samples. 
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Figure 4-4 Calculated total weight average mobility (µw) of the weight distribution of electrophoretic mobility for different 

rices from the initial minimum of the amylopectin peak (~2.7 x 10-9 m2·V-1·s-1) to the ending minimum of the amylose peak 

(~2.3 x 10-8 m2·V-1·s-1) plotted against AAC. Error bars are the standard deviation of three instrumental repeats 

Much research has related AAC to the functional properties of rice grains [26, 67, 69], allowing 

for the different AAC classes to be used as indicators of functional properties, with variation 

expected within each AAC class and even AAC. The apparent disconnect between total µw and AAC 

highlights the fact that a given measure of AAC is not strictly measuring one type of amylose but 

rather a wide range of amyloses, and this may be a driver for the variability of properties seen in 

rice grains of similar AAC. A key point is the spread of total µw reported for the three rice samples 

with AAC of 25-26 %, which indicates that while AAC was quite similar, the overall branching 

profile is broader than would be expected. For example, a greater proportion of more or less 

branched amylose would influence the total µw relative to samples of similar AAC. The same can 

be said of changing proportions of more or less branched amylopectins. A similar situation was 

also observed in the high amylose rices (Figure 4-4, > 30 % AAC), with a large apparent difference 

in total µw indicating that while both high amylose rices in terms of AAC, there is a difference in 

either actual amylose content or the amyloses and/or amylopectins simply exists as more or less 

branched populations of molecules. The only waxy rice variety measured (<10 % AAC), displayed 

the lowest total µw, clearly differentiating from the other cultivars as containing a larger 

proportion of highly branched structure, in agreeance with its low AAC, a characteristic of waxy 

rice grains.  
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4.3.4 Investigation of the weight-average mobilities of amylose and amylopectin 

The synthesis of starch is complex, with multiple families of enzymes working in a concerted 

fashion to produce both amylopectin and amylose [250], resulting in multifaceted distributions of 

branching chain length, size and composition [22]. This is complexity is highlighted in the distinct 

µw of both amylopectin and amylose (Figure 4-5). The lack of linear correlation between the µw of 

amylose and amylopectin  suggests that there is little influence of the branching of amylopectin 

and amylose on each other, strongly supporting the notion that amylose and amylopectin are 

produced by distinctly different pathways or experience different kinetics during action of SBE. 

1.8 1.9 2.0 2.1 2.2 2.3

0.6

0.7

0.8

0.9

1.0

26.83

23.5520.41

20.75

31.02

32.73

9.35

25.77

25.05

A
m

y
lo

p
e

c
ti
n

 
w
 (

x
1

0
-8
 m

2
V

-1
s

-1
)

Amylose 
w
 (x10

-8
 m

2
V

-1
s

-1
)

 

Figure 4-5 Calculated weight average mobilities (µw)  of both amylopectin and amylose weight distributions of 

electrophoretic mobility for different rices where amylose and amylopectin are differentiated at 1.5 x10-8 m2·V-1·s-1. Labels 

beneath each data point display the respective AAC. Error bars are the standard deviation of three instrumental repeats 

By assessing the µw of both amylose and amylopectin with respect to one another, a unique 

identifying fingerprint can be obtained for each rice sample based on their branching structures. 

It was observed that significant differences in the branching structures of amylose and 

amylopectin could be identified between samples of similar AAC. For the two similar high AAC 

rice samples (>30 % AAC), the µw of the amylose peak was similar, indicating a similar branching 

structure of amyloses; however, a significant difference was observed in the µw of amylopectin 

indicating a significant shift in the branching structure. Interestingly, these high amylose cultivars 

also exhibited amylose µw values on the lower mobility end of the sample range indicating an 

increase in branching of amylose. Another outstanding case was the apparent difference in µw of 

both amylose and amylopectin in two of the intermediate AAC rice samples (20.75 and 20.41 %), 

showing opposite characteristics in both amylose and amylopectin branching. In this case, one 

rice (20.41 % AAC) was observed to have a high µw amylose (indicating low branching) and a low 

µw amylopectin (indicating high branching), while the other (20.75 % AAC) displayed a low µw 
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amylose and a high µw amylopectin. Groupings of rice cultivars with similar branching structures 

were also noted. Most interestingly, the similarity of amylopectin and amylose µw for the waxy 

(9.35 % AAC) and a high amylose (32.73 % AAC) rice, suggested the branching structures present 

are quite similar, despite a vast difference in proportions. Similarities of µw of amylopectin and 

amylose were also noted for two groupings of intermediate AAC rice cultivars, with both 

groupings having similar AAC, suggesting that these rices are likely to exhibit similar functional 

properties where molecular structure is key a driver. 

These differences in branching characteristics of amylose and amylopectin, identified through 

analysis of the W() distributions, have the potential to be a strong factor in further explaining 

the role of starch structure in some rice properties. The fact that branching populations differ for 

cultivars of similar AAC may in turn explain why different functional properties can arise from 

cultivars with the same AAC, for example the relationship of AAC with digestibility in rice [26]. 

4.3.4.1 The relationship of the individual weight-average mobilities of amylose and 

amylopectin to AAC 

The determination of AAC in rice is one of the only direct measurements of starch structure 

employment in routine analysis of rice samples. The quantity of AAC is known to play a major role 

in many of the functional and sensory properties of rice grains [67]. However, AAC typically 

represents the minor compositional macromolecular component of the starch present within the 

rice grain (≈ < 35%) compared to the highly branched amylopectin molecules. Given this, it is no 

surprise that amylopectin and its branch chain length distributions also play a role in properties 

of rice such as gelatinisation temperature and pasting properties [69]. This represents an 

opportunity to potentially further discriminate rice samples where similar AAC has been reported 

by the individual branching structures of not just amylopectin, but also of amylose. An example of 

this is the apparent relationship of in vitro digestibility of rice grains with AAC [26]. This 

relationship yields a general trend of increasing amylose resulting in lower digestibility; however, 

at any point along the curve varieties of given AAC can be observed to exhibit significantly different 

digestibility. It is examples like this, where AAC does not give the complete picture, that additional 

characterisations of the different levels of starch structures can benefit our understanding of rice 

and starch properties.  

The differences observed in amylopectin and amylose branching structures in rice samples 

were explored through the relationship of w to AAC (Figure 4-6). This allowed for an investigation 

into both the range of values that may exists across rice samples as well as the ability to 

discriminate between cultivars of different and similar AAC. A broad range of w were observable 

for amylopectins in rice, indicating differences in their branching structures towards higher 

branching/shorter chain lengths or lower branching/longer chain lengths at lower or higher w, 
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respectively (Figure 4-6). However, this range was narrow (≈0.3 m2·V-1·s-1). Despite this, the 

extremes of the range could distinguish clearly differences in amylopectin branching structure 

between samples with a similar AAC, a potential insight to the differences in BE activity during 

synthesis between the different rice cultivars. This was most profound in two of the intermediate 

AAC cultivars (≈20 % AAC), where a significant difference in their amylopectin w would indicate 

a significant difference in their amylopectin branching structure. A similar observation was also 

made for the high amylose rice samples (>≈ 30 % AAC). Interestingly, the only waxy variety 

measured (≈ 10 % AAC) displayed a w on the low end of the range of w observed (Figure 4-6). 

This would indicate a higher amount of branching/shorter chain lengths in general, something 

that has been noted for waxy varieties. However, the measurement of additional waxy varieties 

would be required to confirm if this low w is a characteristic of waxy varieties. If it is, this may 

suggest that the action of amylose synthesis plays some role in the branching structure of 

amylopectin, more likely in chain elongation than in extent of branching based on current 

understandings in the literature [247]. 
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Figure 4-6 Calculated weight average mobilities (µw) of amylopectin weight distributions of electrophoretic mobility for 

different rices plotted against AAC. Error bars are the standard deviation of three instrumental repeats 

The w of amylose has an interesting relation to the AAC, as a given (unknown) mobility  of 

amylose essentially represents the specific molecule measured by the colorimetric determination 

of AAC while w identifies the weight average amylose that actually comprises the sample. These 

amyloses can be two very different molecules in theory. Standard methods for the determination 

of AAC  employs calibration curves prepared from standards that can be of different or similar 

botanical sources to the analyte being measured, as well as from purified starches or starches 

from flour. This has the potential to introduce significant error relative to true amylose content. 

In the measurement of AAC in rice it has been shown that calibrations based on the use of 
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calibrated rice samples yields highly repeatable AAC values [73], which is the method employed 

in this work. However, a repeatable valuable may still contain a bias, and given that AAC can both 

under and overestimate amylose content, the bias is likely not systematic and thus it would be 

difficult to correct for a true amylose content. 

By exploring the w of amylose for different rice samples relative to their AAC it is clear that 

rice can contain a range of different amylose structures, even at similar amylose contents (Figure 

4-7). The w of the amylose molecules is a function of their iodine binding capacity, influenced by 

both their chain length and branching structures. Thus, it can be theorised that for any given w 

the determination of a true amylose content for that molecule should be based on a calibration 

produced using samples of similar w. This would yield a calibration curve that is based 

specifically off the iodine binding behaviour of a narrow range of molecules and should therefore 

allow for a closer approximation of the true amylose content. 
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Figure 4-7 Calculated weight average mobilities (µw) of amylose weight distributions of electrophoretic mobility for 

different rices plotted against AAC. Error bars are the standard deviation of three  instrumental repeats 

The specific differences in the w of amyloses for each rice samples covered a narrow mobility 

range (1.8 to 2.2 m2·V-1·s-1, Figure 4-7); however, the differences between w of different samples 

was typically larger than was seen in the w of amylopectins (Figure 4-6). The rice samples of 

intermediate to high AAC (20 – 28 % AAC) displayed the greatest range of w highlighting the 

difference in amylose structure that can exist even in a narrow range of AAC. The rice samples in 

this range also typically exhibited higher w indicative of less branched structure, while higher 

and lower AAC rice samples display significantly lower w, indicating an increase in branching 

structure. These differences may be a driver in differences in the properties of these rice samples, 
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especially those apparently linked to AAC. However, the lack of sample diversity at higher and 

lower AAC makes it difficult to make any inferences based on this apparent phenomenon.  

4.3.5 Assessing the dispersity of starch in rice flours relative to AAC 

The heterogeneity of branching structures was assessed through the calculation of dispersity 

and standard deviation values for the weight-distributions of electrophoretic mobilities. The 

calculated dispersity and standard deviation values for the amylopectin and amylose W() are 

shown in Figure 4-8. In examining them against one another, it is immediate clear that the 

dispersity values for amylose were much lower than that of amylopectin (Figure 4-8A). However, 

this is a result of the dispersity calculation taking w = 0 as a reference resulting in decreasing 

dispersity values with increasing w. However, the relative values of each can still be noted to 

display clear differences in the heterogeneity of both amylopectin and amylose branching 

structure (Figure 4-8A). Additionally, the heterogeneity of both amylopectin and amylose 

appeared to be independent of one another, indicated by the spread of data points showing no 

real correlation. For a more local assessment of the broadness of the W() distributions of both 

amylopectin and amylose, the standard deviation of the W() distributions was calculated as a 

measure of dispersity. The calculated standard deviation of amylopectin was observed to typically 

be higher than that of amylose (Figure 4-8B)[116]. Only one rice sample displayed an amylose 

standard deviation similar to that of the amylopectins of other rice samples, and interestingly was 

similar to the standard deviation of its own amylopectin. This lower standard deviation observed 

for the amylose W() distribution is influenced by the selected  ranges of electrophoretic mobility 

for analysis that were determined in 4.3.2, with the range of amylopectin determined to be quite 

broad (1.25 – 1.30 m2·V-1·s-1 wide) compared to amylose (<0.8 m2·V-1·s-1 wide). The higher 

standard deviations seen in the amylopectin is also counter to current understandings of 

branching of statistical polymers in the literature, where increased degree of branching has been 

correlated with decreasing dispersity, due to an apparent effect of saturation of heterogeneity 

[116]. Similar to the dispersity values, the standard deviation values of both amylopectin and 

amylose displayed no apparent correlation, indicating an apparent independence in the 

mechanisms of the heterogeneous branching. These findings highlight the complexity of starch 

synthesis, and lend support to the notion of differing pathways for branching in amylopectin and 

amylose as has been suggested in the literature [247, 250].   
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Figure 4-8 Calculated A) dispersity (D(1, 0)) and B) standard deviation of amylopectin and amylose weight distributions of 

electrophoretic mobility for different rices plotted against each other. Labels beneath each data point display the 

respective AAC. Error bars are the standard deviation of three instrumental repeats 

In the assessment of heterogeneity, dispersity values of amylopectin and amylose were 

observed to be  higher than for any other polymer reported using this methodology, while amylose 

displayed only slightly higher dispersities (Figure 4-8A) [116]. In the case of branching in 

poly(sodium acrylate acid)(PNaA), dispersity values reported range from ~1.0000 for linear to 

~1.0015 for a 3-arm star, with SDev values an order of magnitude smaller than those reported 

here (Figure 4-8B) [116]. The calculated dispersity and standard deviation values for the entire 

W()were predictably much higher than the values of either amylopectin or amylose individually 

(S 4.6.3).  

The heterogeneity of branching seen in the literature shows that as degree of branching 

increased in PNaA, dispersity increased [116]. However, when the degree of branching continues 

to increase, a point is reached where branching is so abundant that the heterogeneity of branching 

decreases [116]. This is essentially explained as a saturation in the degree of branching that 

results in a plateau or reduction in the possible branching arrangements. In contrast, less 

branched polymers have the potential to have a greater degree of randomness in their branching 

structures, dependant of course on the heterogeneity of the branching synthesis. This has been 

shown in the local dispersity values of poly(alkyl acrylates) by multiple detection SEC [90]. 

Therefore, it is theorised that amylose would display a higher dispersity than amylopectin, given 

its lower degree of branching. Of course, given that starch is a natural polymer, it is likely that the 

complex enzymatic pathways of starch biosynthesis exercise some degree of control of over how 

heterogenous branching can be; however, this would likely be on a per cultivar basis and so 

difficult to recognise.  

4.3.5.1 Relation of dispersity of amylopectin and amylose to the AAC of starch 

The heterogeneities of both the amylopectin and amylose individually was shown in the 

previous sections to vary substantially between different rice samples. Similar to the expectations 
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of different distributions of w of amylopectins and amyloses, the heterogeneity of these 

distributions may also impact on their behaviour as polymers. 

The heterogeneity of the W() for amylopectin and amylose was explored in relation to the 

AAC of the rice samples through both dispersity (D(1,0)) and standard deviation (Figure 4-9). As 

mentioned in the previous section, dispersities of amylopectin were quite high and covered a 

broad range compared to what has been reported in the literature for synthetic polymers [116]. 

Dispersity values for amylopectin spanned the range of 1.10 to 1.30, indicating a significant range 

of heterogeneity within the branching structures of amylopectins in the different rice cultivars 

(Figure 4-9A). While most of the rice cultivars, including the waxy and intermediate AAC (< 27 % 

AAC) samples, occupied the range of 1.10 to 1.15 with overlapping error bars, the high amylose 

samples (> 30 % AAC) displayed dispersity values on the higher end of the range. This may be 

indicative of a contributing relationship of amylose to a more heterogenous amylopectin 

branching structure. Higher amylose contents are typically a result of increased GBSSI activity, 

and it may be possible that the increased activity has knock-on effects on amylopectin production.  

Such disruptions may be a factor in the amount of heterogeneity observed in the starch structure. 

The measurement of heterogeneity through the standard deviation (Figure 4-9B) did not display 

any significant differences in the observed heterogeneity of the W() of amylopectin to those 

observed by dispersity (Figure 4-9A). This is likely a result of the low mobility of the amylopectin 

population, where the reference (w = 0) is not far enough from the w of the amylopectin to show 

a significant difference in the apparent trends of relative heterogeneity. 
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Figure 4-9 Calculated A) dispersity (D(1, 0)) and B) standard deviation of amylopectin weight distributions of 

electrophoretic mobility for different rices plotted against AAC. Error bars are the standard deviation of three instrumental 

repeats 

Dispersities of amylose in the rice cultivars were lower than those reported for amylopectin 

(Figure 4-8), though were still high compared to literature [116]. Thus, even though amyloses are 

generally considered to exhibit a very low degree of branching, there appears to be a high degree 

of heterogeneity of branching structure (Figure 4-10). The amylose W() dispersity values of the 
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rice samples covered a range of 1.004 to 1.012 (Figure 4-10A). This appears to represent narrow 

range; however, substantial differences in dispersity could still be noted between some samples 

with respect to their error bars. While most rice samples occupied a narrow range of dispersity 

values, one intermediate amylose sample (≈22.5 % AAC) displayed a significantly higher 

dispersity than the other samples. This is indicative of a much greater degree of heterogeneity of 

amylose structure and has the potential to be a property defining feature amidst samples of 

similar AAC. Smaller differences in heterogeneity could also be noted in the dispersity values of 

intermediate AAC samples (20 – 27 % AAC) which may also be an indicator for differences their 

molecular behaviour, and by extension rice sample properties. As a local determination of 

heterogeneity, the standard deviation of amylose allowed for a direct comparison of the 

heterogeneity of the amylose molecules, independent of branching structure (Figure 4-10B). 

Despite this, similar trends in standard deviation relative to AAC were observed as for dispersity. 

The exception to this were two intermediate AAC rice samples (≈20 % AAC) which displayed a 

significant different in their standard deviation (Figure 4-10B) in contrast to their dispersity 

(Figure 4-10A). This clearly indicates a difference in the heterogeneity of the amylose structures 

between these samples that could not be observed through dispersity, and with the addition of 

their large differences in mobility (Figure 4-7), both are likely to exhibit vastly different molecular 

behaviours. This highlights the usefulness of using multiple approaches in the investigation of 

heterogeneity.  
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Figure 4-10 Calculated A) dispersity (D(1, 0)) and B) standard deviation of amylose weight distributions of electrophoretic 

mobility for different rices plotted against AAC. Error bars are the standard deviation of three instrumental repeats 

The significance of differences in heterogeneity is analytically dependent on the error of 

dispersity and standard deviations values, closely linked to the repeatability of W(µ). The 

heterogeneity of structure distributions such as molar mass, branching or substitution could 

significantly affect physicochemical properties in synthetic and natural polymers [90]. However, 

it remains to be seen how the heterogeneity in starch structure impacts on the functional 

properties of the starch, and indeed the cereal it is contained in. Further to this, the existence of a 

well organised multi-level structure defined by a cocktail of overlapping and co-acting enzymes 
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further complicates how significant an amount of heterogeneity can be managed in this well-

defined structure. Despite this, identifying differences in dispersity between samples can be used 

as indicator of consistency in branching structures seen in different rice samples, and indeed 

starch in general, while also serving to exemplifying the heterogeneous nature of starch structure. 

The determination of heterogeneity by CE is a powerful tool, that has the potential to further our 

understanding of how the structures of amylose and amylopectin can influence both higher levels 

of structure as well as overall starch properties. 

4.4 Conclusion  

The complete separation of starch by branching structures in rice flour was shown by capillary 

electrophoresis. The separation yielded two apparent populations of branching structure 

corresponding to amylopectin and amylose macromolecules. However, a third type of branching 

structure was also observed in some rice samples, indicating a macromolecule of intermediate 

branching structure. This third type of starch has been theorised in the literature to arise from the 

long chain branching on amylopectins [255, 256], and is especially relevant in the measurement 

of AAC, as it can lead to overestimation of the AAC. However, this third type of starch has not been 

explicitly observed or discussed [229, 275], typically assumed to co-elute with amylose in SEC. 

This work has shown for the first time, separation of starch in rice flour by capillary 

electrophoresis and successfully identified a third type of branching structure that may be linked 

to the long chain amylopectins theorised in the literature. For the purposes of this work, this 

intermediate starch structure was thus treated as an amylopectin, allowing for comparisons with 

samples that did not contain this type of starch. In future work this intermediate starch structure 

should be explored as an independent structural population of starch. 

The distributions of electrophoretic mobility obtained by separation were then analysed 

further, employing methodology developed for the characterisation of the W() of polymers 

obtained by capillary electrophoresis [116]. With this method, the weight-average mobility of the 

of the W() for different rice flours revealed significant differences in the relative amounts of 

branching in different rice samples. This finding is similar to the physical basis of AAC; however, 

the w is more closely representative of the ratio of each type of branching structure. For example, 

a higher w would likely be indicative of a higher AAC; however, the difference in what these 

techniques measure means there is no real correlation.  

The individual w of the amylopectin and amylose populations were also observed to vary 

between rice samples. The differences observed in w of amylopectin populations towards higher 

or lower w are very likely closely linked to the differences in BE activity during starch synthesis, 

preferentially catalysing short, intermediate and long chain branching. This is a phenomenon that 
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has been seen to vary between different starches and indeed rice starch in molecular weight 

distributions of enzymatically debranched starches by SEC [90]; however, is shown here in native 

unmodified starch in whole rice flour. The differences in w of amylose populations also 

highlighted the broad range of apparent branching structures of amylose that exists within and 

between rice samples. The function of branching during amylose synthesis is not clearly 

understood, and due to its low degree of branching is often referred to as functionally linear. 

However, it has been shown that the branching in amylose can vary significantly between rice 

samples. This could lend itself as an important property regarding AAC. Given the sensitivity of 

the iodine binding capacity of starch to the branching structures, the most ideal samples for 

calibration should be those exhibiting similar branching structures, and so w could prove to be a 

means by which to identify appropriate standards. 

The heterogeneity of the W() of different rice samples was assessed through the dispersity 

and standard deviation. The total heterogeneity of the starch was observed to be very high 

compared to literature values for a number of synthetic and natural polymers [116]. This is likely 

due to the inherent multi-modal branching nature of the system, with between 2 and 3 distinct 

populations observed. The dispersity of the individual amylopectin and amylose W()  was also 

significantly higher than other polymers employing this method [116], highlighting the highly 

heterogenous nature of starch structure. This especially exemplifies the complexity of the 

synthesis pathways that lead to this heterogeneity. Within these high levels of heterogeneity, rice 

cultivars could still be noted to exhibit different levels of heterogeneity, which is likely to play a 

role in their individual functional properties. 

This work has shown a new avenue to assess the differences in branching structure of starch 

in rice flours This contrasts with literature analysis of branching through molecular weight 

distributions of enzymatically debranched of starches by SEC. The analysis of unmodified starch 

directly in rice flour has allowed for insight into the native unmodified branching structures 

present, as opposed to typical analysis of starch fragments, where substantial information on the 

native structure is lost. 

4.5 Future work 

As the methodology currently stands, the data obtained by this unique characterisation method 

provides an interesting new approach in assessing differences in starch structure between 

different rice cultivars. Further analysis of a greater range of intermediate AAC class varieties 

(where most commercial varieties exist) would allow for an improved confidence in the existence 

of variability and groupings of mobilities (and by inference branching structures) that were 

observed for the small set of rice cultivars examined here. In addition, due to the small sample 
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volumes (≈< 10 nL), lower sensitivity can be an issue with dilute starch dissolutions; however, 

there are methods available that can improve sensitivity such as electrophoretic pre-

concentration and stacking [107, 108].  

Due to the chronology of experiments, dissolution in this chapter employed 0.05 % w/w LiBr 

rather than the 0.5 % w/w LiBr that was determined as optimal in Chapter 3. Therefore, the 

analysis of rice flours needs to be revisited to assess the role of improved dissolution conditions 

on the characterisation. This is especially important in the cases of the high amylose rice samples, 

as an incomplete dissolution will significantly bias the resulting W(). Subsequent confirmation 

of ideal dissolution conditions for rice flours would then allow for an analysis of a larger set of 

samples and subsequent investigations into potentially linking the role of the identified branching 

characteristics with both the functional properties of the rice grain, such as digestibility, and even 

other levels of starch structure. The application of sound correlations and robust methodology 

may then become a valuable tool for rice researchers in breeding for key rice grain characteristics 

through the identification of specific starch structures on the molecular level. This could be 

explored through a number of avenues, for example, the correlation of average mobilities of 

amylopectins and amyloses with digestibility parameters. 

The availability of additional methodologies using capillary electrophoresis also allows for 

further analysis. Taylor dispersion analysis allows for an analysis of the size distribution using 

capillary electrophoresis instrumentation, eliminating many of the drawbacks of size analysis by 

SEC or FFF [277]. Additional separation mechanisms could also be explored, with the use of high 

pH buffers likely to allow for conditions such that separation of starch by other factors can occur 

[267]. 

4.6 Supporting information 

S 4.6.1 Calculating average mobilities, dispersity and standard deviation values 

Methodology for the determination of average mobilities, dispersity and standard deviation of 

distributions of mobilities in CE has recently been published by our research team [116]. 

Calculations in this work are based on the ratio of moments in a distribution, specifically the 

weight-distribution of electrophoretic mobilities with W(µ) representing the weight fraction of 

polyelectrolyte chains with electrophoretic mobility µ. A mass sensitive detection such as UV is 

required for this. The transformation of raw data to W(µ) is achieved using equations S 3-1 and S 

3-6 in Chapter 3 S 3.5.1.  

The specifics of these calculations will not be discussed here, and the reader is referred to [116] 

for further information. The equations used in the calculation of weight-average mobility (µw), 



Page | 117  
 

Dispersity (D(1,0)), and standard deviation (SDev) of electrophoretic mobility distributions are 

presented in equations S 4-1 to S4-3. 

 𝐷(1,0) = 𝐷(𝑊(µ), 1,0) =
[∑ 𝑊(µz)µz(µz+1−µz)][z ∑ 𝑊(µz)µz

−1(µz+1−µz)]z

[∑ 𝑊(µz)(µz+1−µz)]z
2  Equation S 4-1 

 𝑆𝐷𝑒𝑣 =  𝐷𝜎 = [
∑ 𝑊(µ𝑧)(µ𝑧−µ𝑤)2

𝑧 (µ𝑧+1−µ𝑧)

∑ 𝑊(µ𝑧)(µ𝑧+1−µ𝑧)𝑧
]

0.5

 Equation S 4-2 

 µ𝑤 =
[∑ 𝑊(µ𝑧)(µ𝑧)𝑧 (µ𝑧+1−µ𝑧)]

[∑ 𝑊(µ𝑧)(µ𝑧+1−µ𝑧)𝑧 ]
 Equation S 4-3 

In the first approach (D(1,0)) an analogy with weight-average molar mass divided by number-

average molar mass is employed. D(1,0) is calculated as the ratio of the first and zeroth order 

moments divided by the ratio of zeroth and negative first order moments of the distribution. In 

the second approach (Equation S 4-2), the standard deviation is calculated as a measure of 

dispersity, taking the µw as a reference.  

S 4.6.2 Determination of helix content by 13C solid-state NMR spectroscopy 

 Testing contact times  

An appropriate rate of cross polarisation for determination of helix content by 13C NMR 

spectroscopy has been reported by Tan et al. [118] to be approximately 0.5 to 2 ms. The rate of 

cross polarisation required for quantitative conditions was therefore confirmed for quantitative 

conditions through a variable contact time experiment (Figure S 4-1). 0.5 to 2 ms yielded similar 

intensities for the C1 peak (103 ppm), though both 0.5 and 2 ms yielded lower intensities for the 

C2, 3 and 5 (73 ppm), C4 (82 ppm) and C6 (61 ppm) signals. Therefore, it the optimal rate of cross 

polarisation was determined to be a contact time of 1 ms.  
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Figure S 4-1 Variable contact time experiment on Doongara rice flour testing contact times of 0.5 ms (black), 1 ms (red), 2 

ms (green) and 3 ms (blue) 

 Peak fitting process for determination of helix content 

For the determination of double helice and single helice content, the contribution from the 

amorphous component was determined by adjusting the intensity of a separately determined 

amorphous sub-spectrum (amorphous Doongara rice flour) with a scaling factor so that zero 

intensity was obtained at a chemical shift of 84 ppm (Figure S 4-2) [118].  

110 100 90 80 70 60 50 40

 (ppm)

 Raw flour D25

 Amorphous Doongara

 Crystalline sub spectrum

 

Figure S 4-2 Deconvolution of raw rice flour spectrum (black) by subtraction of the spectrum of a prepared amorphous 

Doongara flour (red) with the resulting crystalline sub spectrum for fitting in the region 90 to 110 ppm (green) 

The C1 peak of resulting crystalline sub spectra (Figure S 4-3, red line)  was then fitted with 

three Gaussian/Lorentzian (50/50) peaks at ~98, 99 and 100 ppm corresponding to the triplet 
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signal of the A-type polymorph (Figure S 4-3, blue dashed lines) in addition to a fourth broad 

underlying peak at ~95 ppm (Figure S 4-3, green dashed line). A fifth Gaussian/Lorentzian peak 

(50/50) is also fitted at approximately 102 ppm corresponding to the V-type polymorph (Figure 

S 4-3, pink dashed line). The relative ratio of the A-type triplet and V-type signal area to the 

original C1 peak area (Figure S 4-3, black solid line) is then used to calculate the proportions of 

single and double helix content in the samples.  

 

110 108 106 104 102 100 98 96 94 92 90
 (ppm)  

Figure S 4-3 Example of the peak fitting process of a 13C spectrum of rice flour, displaying the original C1 signal (solid black 

line), the crystalline sub spectra (solid red line), the fitted A-type (dashed blue lines) and V-type (dashed pink line) 

polymorph signals, as well as a fifth underlying signal (dashed green line). The combined fit of all signals is shown as a 

black dotted line 

S 4.6.3 The measurement of total dispersity for the entire W(µ) of rice flour 

samples 

Calculated dispersities values for the entire range of the W() of rice flours were between 1.3 

and 1.6, a significantly higher dispersity of branching than has been seen in any other polymers 

using this capillary electrophoresis method (Figure S 4-4A). This high dispersity is heavily 

influenced by the sample composition in the case of starch, generally comprising of two very 

different branching populations. The presence of significant proportions of both highly branched 

amylopectin and slightly branched amylose, each with their own high dispersities, results in an 

understandably highly disperse branching distribution. However, the calculation of dispersity 

used here is referenced to a w of 0 inherently minimises the weighting of higher mobility 

dispersity in the dispersity value. Therefore, a measure of dispersity through standard deviation 

can also be employed to assess the overall heterogeneity. The standard deviation of the total W() 
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was predictably high, displaying values 2-4x higher than amylopectin or amylose alone (Figure S 

4-4B). These results highlight the extremely high dispersity of branching structures within native 

unmodified starch, a result of seemingly non-random branching as a result of the highly complex 

in vivo synthesis of starch. 
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Figure S 4-4 Calculated by A) Dispersity D(1,0) and B) standard deviation of the total weigh distribution of electrophoretic 

mobility for different rices from the initial minimum of the amylopectin peak (~2.7 x 10-9 m2·V-1·s-1) to the ending minimum 

of the amylose peak (~2.3 x 10-8 m2·V-1·s-1). Error bars are the standard deviation of at least two instrumental repeats 
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Chapter 5 The link between 

molecular dynamics and 

digestibility in different rice 

varieties 
5.1 Introduction 

Starch, a highly abundant biopolymer, is the major component of rice (~90 %) and its structure 

is known to affect rice digestibility [26]. However, starch is one of the most complex materials 

found in nature with six known hierarchical levels of structure [22]. The supra(molecular) 

structure of starch has been extensively researched for many years using a variety of techniques 

such as X-ray diffraction, small angle scattering and NMR spectroscopy. This has resulted in a deep 

understanding of the various features of the complex multiscale structure of starch [22, 174, 227]. 

As a result, there has been a wide range of research into the role of different structural levels in 

functional properties such as gelatinisation [278, 279], retrogradation [280], texture [225] and 

digestion [145, 161]. However, these models rarely mention the role of the dynamics and 

distribution of water or the dynamics of amylose and amylopectin molecules within the starch 

granule. Given the major role of water in many common starch processing treatments such as 

cooking, retrogradation and chemical processing, investigating these dynamic features has the 

potential to allow a better understanding of how their variation relates to changes in starch 

properties.  

The unique ability of NMR spectroscopy to explore the molecular mobility of nuclei within a 

magnetic field has been an invaluable tool in the research of many materials [281, 282]. The 

dynamics are commonly investigated through the measurement of spin-lattice (T1) and spin-spin 

(T2) relaxation times of the nuclei within the sample and depend on the strength of the 1H-1H 

dipolar interactions (both intra- and intermolecular) and its time dependence [122, 123]. Thus, in 

the case of starches, the heterogeneity of the (supra)molecular structure would give rise to a 

distribution of dipolar interaction strengths, internal motions and tumbling motions resulting in 

multiple types of relaxation for the nuclei present [122]. The resulting spin-spin relaxation times 

along with magnetic field inhomogeneity are responsible for the majority of broadening observed 

in solid-state NMR spectra. This allows for an estimation of spin-spin relaxation (T2
*) from 

resonance full width at half maximum (FWHM) in 1H NMR [283]. However, significant signal 

broadening due to dipolar coupling effects, even whilst undertaking magic angle spinning, can still 
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convolute the resonances of interest. As a result, the majority of investigations into molecular 

dynamics will make use of variations of spin-echo pulse sequences to determine relaxation 

parameters. One of the most common is the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence 

[124, 125], a now fundamental component of many pulse programs that are aimed at 

investigations of dynamics processes. The primary advantages of this approach are the 

suppression of the effects of diffusion, a major issue in early NMR magnet, as well as its ability to 

obtain a complete set of T2 data for individual resonances in a single experiment [132, 284]. This 

approach is common, with decays in the range of 1 ms to 1 s reported [132, 168] and measurement 

of faster decays limited by ability to shorten pulse widths. For investigation into faster decays, a 

wide range of studies have reported the relaxation times determined from the free induction 

decay (FID) (4 to 1000 µs) [132, 285, 286], possible due to the dependence of the decay on spin-

spin relaxation and yielding an apparent T2 as with estimations from FWHM. 

The dynamics of starch biopolymers and water is an established area of the application of NMR 

spectroscopy to starch-based foods. Recent research in this field can be categorised into studies 

on the effects of gelatinisation, and retrogradation on dynamics and the specifics of starch-water 

interactions. Studies into the investigation of gelatinisation through time domain NMR date as far 

back as the 1960s [287].  These early studies investigated the gelatinisation through the signal 

widths of 1H NMR spectra [287, 288], while later studies began reporting on CPMG measurements 

through the 1970s [289-291]. These early studies typically measured a single T2, implying that 

water behaves as a single phase during gelatinisation [289, 291, 292], especially at low moisture 

contents [290], though the presence of multiple components was acknowledged [292]. More 

recent  studies have also explored the gelatinisation behaviour of potato starches, with the work 

of Tang et al. [168] providing a comprehensive investigation and analysis of the relaxation 

distributions from both FID and CPMG decays. Signal assignments based on measurements of 

amylopectin allowed for assessments of the independent relaxation behaviour of both the OH and 

CHx groups using D2O exchange . The authors reported the presence of three relaxation times for 

water using CPMG assigned to 1) water in the semi-crystalline lamellae, 2) water inside the starch 

granule and 3) free water outside the starch granule [168, 293]. For the non-exchangeable 

protons, CHx groups, T2 relaxation times were reported from both FID and CPMG decays. The 

faster decays of the FID were assigned to the CHx of crystalline (10 µs) and amorphous (500 to 

700 µs) amylopectin. Three decays observed by CPMG were attributed to amorphous amylopectin 

(1 ms), mobile amylopectin CH protons (20 ms) and amylose CHx protons (80 ms). However, the 

mobilities of amylopectin and amylose protons in the native granule are unlikely to be 

significantly different within a semi-crystalline packed arrangement. Thus, the assignment of 

specific signals to amylopectin based on observations in waxy maize is a major weakness in this 

study. Despite this, this study found significant changes to the relaxation distributions that could 
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be attributed to the gelatinisation and its resulting impact on molecular mobility. Comparable 

CPMG relaxation decays were noted in a later study [294], with assignment of the 32 and 85 ms 

T2 values to non-exchangeable hydrogens, while the presence of bound and trapped water was 

also reported. Other studies using the CPMG decay had similar findings on water mobility [295, 

296] and the interactions of water with starch [297, 298], where the assignments of T2 

distributions and the dynamics of water are comparable with the work of Tang et al. [168, 293]. 

Further studies on hydrations states in other polysaccharide materials including paper [286], 

rayon fibres [285] and saturated wood fibers [299] have similarly reported rapid FID derived T2 

values attributed to solid polymer, while slower decays are attributed to water. 

Retrogradation is also an area of great industrial significance for starch products with a wide 

array of studies involving the use of NMR spectroscopy to monitor the molecular dynamics of 

starch and water during this process [132, 295, 300, 301]. The outcomes of these studies have 

significantly exposed the impact of retrogradation on molecular dynamics, with increases in 

starch rigidity, decrease in water mobility and increases in dipolar coupling reported.  

Magnetic resonance imaging (MRI) [302], commonly employed for medical imaging has also 

been employed in studies of unique relaxation behaviours of water in polysaccharides. Many of 

these studies employ spin-echo imaging sequences combined with the determination of per pixel 

spin-spin relaxation time and the relationship of T2 with moisture content [303, 304]. This allows 

for quantitative spatial investigations into water distribution in a variety of polysaccharide 

systems including rice [303], wheat [304, 305] and wood [299]. In general these studies attributed 

very fast decays determined from the FID to the non-exchangeable protons of the polysaccharide 

and bound water [285, 299], while the slower decays observed through CPMG or spin-echo decays 

were attributed exclusively to a single [303, 305] or multiple [299] water components. It is 

interesting to note that while multiple types of bound and unbound water are generally accepted 

to exist within starch granules [293], many MRI studies commonly assume a single type of water 

in biological systems, and do not typically investigate the other types of water present in the 

sample matrix [306-308]. This is likely a result of the longer echo times (~10 ms) in MRI 

experiments, and so faster relaxing components may not be observed. 

Typical MRI scanners operate at magnetic field strengths from 0.15 to 3.0 T (8.5 to 128 MHz 

for 1H Larmor frequency) with research grade MRI (11.7 to 17.2 T, 500 to 730 MHz 1H Larmor 

frequency) and analytical NMR spectrometers (up to 28.2 T, 1.2 GHz 1H Larmor frequency) 

capable of much higher field strengths; however, this comes at a high cost, and smaller bore size, 

thus limiting sample sizes. The relatively low field strength of MRI instruments typically results 

in decreased sensitivity and resonance resolution. In the analysis of relaxation times, this can 

hinder the resolution of different types of water that may exhibit different relaxation behaviours. 
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This lack of resolution may be a possible reason for the relatively low number of studies that 

explore water distributions by MRI. 

It is clear then from the different populations of water reported in the literature that the effects 

of supramolecular structure leading to confining geometries or motion bound states results in a 

reduction of T2 of water protons from their bulk state in polymer systems [309]. It is also well 

accepted that the OH groups of polysaccharides tend to have very short T2 relaxation times (< 1 

ms), attributed to the strong hydrogen bonding network present. What is less clear, is the 

assignment of the different populations of non-exchanging protons, with a variety of literature 

reporting both similar and dissimilar assignments of various T2 relaxation times.  

The molecular dynamics was assessed in different rice varieties through NMR relaxometry. 

Multiple transverse relaxation times were measured, reporting on the hydroxyl groups as well as 

the non-exchangeable protons (CHx). The interpretation of relaxation times was discussed in the 

context of starch structure and moisture content. The samples had been selected to have a known 

digestibility [170], and the relaxation results were related to digestibility. 

5.2 Materials and Methods 

Materials 

Six commercial rice varieties and one waxy rice cultivar were obtained from the NSW 

Department of Primary Industries at Yanco, NSW, Australia. Grain was harvested at physiological 

maturity, dehulled (THU35A 250V 50Hz Test Husker, Satake, Australia), milled (brush mill) and 

ground (Cyclotec 1093 Sample Mill, Tecator AB, Sweden) to pass through a 50 μm sieve. Both 

milled and ground rice samples were received. 

Samples were conditioned at 44 % relative humidity and 20 °C for at least 2 weeks prior to 

analysis. Sample environment at 44 % relative humidity was created by placing a saturated 

aqueous solution of potassium carbonate (K2CO3) in a desiccator and adequately sealing [215].  

Methods 

Digestibility data in the form of percent starch hydrolysed after 60 min of digestion (SH-60) is 

reported from the work of Toutounji et al.[170], with measurements reported here made on the 

same samples. One exception is the ‘waxy’ variety, which has been substituted in this work with 

another waxy variety due to sample unavailability. 

1H single pulse excitation (SPE) and T2 experiments were performed on a Bruker DRX300 

(Bruker Biospin Ltd, Sydney) operating at a Larmor frequency of 300.15 MHz. 1H SPE experiments 

were also performed on a Bruker DPX200 (Bruker Biospin Ltd, Sydney) operating at a Larmor 
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frequency of 200.13 MHz. A commercial double resonance probe supporting zirconia rotors with 

4 mm O.D. and 3 mm I.D. was used. 1H SPE NMR spectra were recorded using a 50 000 Hz spectral 

width, 3.50 (DRX300) or 3.55 (DPX200) µs 90° pulse length, 5 s repetition delay and 8 scans.  

Measurements were performed on raw or cooked whole rice grains where specified, with at least 

3 full grains packed in the rotor for each measurement. 

1H transversal relaxation times (T2) were determined with a 2D-CPMG experiment [124, 125] 

at 25 °C. The spectra were recorded with no spin (static) at the magic angle (54.8°) with a 5.95-

6.20 µs 90° pulse, a 11.95-12.35 µs 180° pulse, a 595-620 µs delay between pulses, a time-domain 

size of 64,000, a 5 s repetition delay, and 32 scans. The number of loops (of inter-pulse delay + 

180° pulse) was incremented in the indirect dimension as follows: 1, 2, 3, 4, 5, 6, 10, 20, 30, 40, 60, 

80, 120, 200, 400, 600, 1000, 2000 and the signal was fully decayed by the end of it. The data set 

was then phase-corrected, and baseline-corrected in TopSpin 4.0.1 software. The data (signal 

integral vs relaxation period) was then linearized and fitted using a multiple-step Levenberg-

Marquardt linear fit to a multicomponent, single-exponential decay in Origin 2016 software 

(discussed in 5.3.2). Temperature was not controlled due to probe limitations with static 

measurements; however, it was determined that small variations of temperature would not affect 

the sample due to the typically high enthalpy of major structure transitions in starch. 

For cooked rice samples, rice grains were cooked using the excess water method with a 

minimum of 200 mL of deionised water per rice grain. A maximum of 30 rice grains was placed in 

a stainless-steel mesh tea ball and suspended in boiling water (97-100 °C) until the minimum 

cooking time had elapsed. Five grains were then tested using a “squash” test to confirm that the 

rice was cooked. The minimum cooking times and specifics of the squash test are shown in 

supporting information (S 5.5.1). 

Moisture was assessed on some samples, with moisture contents of 10-13 % for raw rice and 

67 – 75 % for cooked rice (S 5.5.4). 
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5.3 Results and Discussion 

5.3.1 The component of the 1H NMR spectrum of cooked rice grains 

Typical solid-state 1H spectra of uncooked rice grains exhibited a broad featureless signal 

between chemical shifts of 0 to 10 ppm (Figure 5-1, brown). Measurements were taken on static 

samples, and as a result, broadening from dipolar coupling was strong. However, this was a 

conscious choice, ensuring that the methodology employed was transferable to benchtop NMR 

instrumentation that would be more accessible to industry researchers. The broad signal of rice 

grains contains contributions of all the proton containing components present within the rice 

grain including water, starch, proteins and lipids; however, a high level of convolution makes 

signal assignment impossible. When the rice grain is cooked, the starch within the rice grain is 

swelled with water, resulting in an increase in the water content of the grain, approximately ≈70 

% w/w ( 

Table S 5-3) compared to 10 to 13 % w/w in raw grains (Table S 5-2). This results in a 

significant increase in intensity of the OH signal from water (≈5.0 ppm), a result of the water now 

accounting for approximately 93 % of the total OH in the sample (Figure 5-1). Shoulders became 

observable on the broad signal after cooking, attributed to different components within the 

sample; however, were still highly convoluted (Figure 5-1, Black trace). Suspending the cooked 

rice grain in water for an additional 30 minutes after cooking resulted in further absorption of 

water, though the resulting increase in the OH signal (5.0 ppm)  almost entirely masked the 

contributions of other signals (Figure 5-1, Green). Therefore, in order to investigate the 

underlying non water components, the cooked rice grains were suspended in D2O to mitigate the 

contributions of the free water OH signal at ≈5.0 ppm. After suspension for both 30 and 120 

minutes, the intensity of the OH signal (≈5.0 ppm) was significantly reduced, with a residual OH 

signal still apparent, and the observation of an underlying signal at ≈3.5 ppm (Figure 5-1, red and 

blue). Due to the chemical shift of this signal, this signal was attributed to the non-exchangeable 

CHx protons of the starch; however, due to the broadness, it is likely a convolution of signals from 

the C2 to C6 protons, while anomeric protons of C1 for the α(1,4) and α(1,6) linkages come at 5.4 

and 5.0 ppm, respectively  [133, 195]. Interestingly, after 120 minutes of suspension in D2O, an 

additional signal was observed at a chemical shift of ≈1.0 ppm, assigned to lipids based on prior 

solid-state 1H MAS NMR experiments (Figure 5-1, blue) and also shown in solution-state NMR of 

starch [79]. While the partial exchange of protons using D2O was intended to minimise the water 

OH peak only, starch bound water, and starch hydroxyl groups likely also experienced some 

degree of exchange. This effect was most noticeable after 48 hours of suspension, with a 

significant decrease in signal intensity for all observed signals (Figure 5-1, pink). From these 
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results the signal <4.0 ppm was assigned as corresponding to most CHs, except for CH on the C1 

(anomeric) at ≈5.5 ppm, and both water and starch OH groups assigned to the signal at ≈5.0 ppm. 

The signal assignments of CHx and OH signals for the spectra of cooked rice grains were also 

supported by findings on raw waxy maize starch samples (S 5.5.6). 
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Figure 5-1 Static 1H NMR spectra of raw (brown) and cooked Doongara grains, recorded immediately after cooking (black) 

followed by suspension in H2O for 0.5 h (green) or in D2O for 0.5, 2 or 48 h (red, blue and pink, respectively) 

5.3.2 Extracting T2 relaxation times for multiple components from a single peak 

using the CPMG pulse sequence 

Over the first 4 spectra of the CPMG sequence, corresponding to a range of ≈1.5 to 5.0 ms, the 

OH signal (5.0 ppm) was observed to decrease significantly in intensity (shorter T2), with the main 

CHx signal (3.5 ppm) decreasing at a slower rate (longer T2) (Figure 5-2). Additional populations 

were also observed at higher chemical shifts (8.0, 11.0 and 14.0 ppm). These may arise from 

populations of hydroxyls that are experiencing higher levels of dipolar coupling through stronger 

hydrogen bonding [310] relative to the water and starch hydroxyls identified at 5.0 ppm. 

However, higher levels of dipolar coupling should also result in much shorter relaxation, so it is 

unlikely that these are hydroxyls and these signals likely arise from carboxylic groups of the 

proteins present. Other functional groups of the proteins would likely be present in a similar 

region to the starch CHx groups, and unlikely to be resolved. (Figure 5-2). Additionally, the CHx 

signal is likely dominated by the CHx groups of the starch, rather than the proteins (3-9 %), which 

would typically be at higher field, or lipids (1-3 %) given their negligible concentration in rice 

grains. Thus, the two major components observed in this decay were assumed to be attributed to 

both the combined OH of both water and starch (5.0 ppm) and to the starch CHx protons (3.5 ppm), 

while the remaining signals were not explored. Due to almost equal ratios of OH protons from 
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water and starch in the raw rice grain (49/51), given 13 % moisture and 78 % starch, as well as a 

similar chemical shift, it cannot be determined by the CPMG sequence if the two OH sources 

exhibit different relaxation behaviours. This may arise from the time scale limitations of the CPMG 

approach, in which case determinations of relaxation parameters from the FID may be relevant, 

or it may arise from exchange of protons between the two groups resulting in similar average 

relaxation times. Due to the broadness of the signal at 3.5 ppm, the resolution of the CHx signal for 

specific carbons was not possible. Additionally, the apparently slower decay of the CHx relative to 

the OH indicates a higher mobility and likely lower degree of dipolar coupling. Therefore, the CHx 

signal is expected to arise from starch molecules that are not participating in helical confirmations 

that involve strong hydrogen bonding networks. Literature studies have suggested that the 

relaxation of these CH protons in these arrangements can only be measured on the time scale of 

the FID (4 to 1000 µs), with relaxation times in the order of tens of µs reported in the literature 

[168, 293]. Due to its high degree of short chain branching, amylopectin primarily exists in a 

double helix conformation, while the formation of amylose single helices is typically less common 

(<5 % total order), due to the necessity of inclusions to form. Thus, it is likely that the CHx signal 

being observed arises from the unordered or amorphous chains or regions of chains of both 

amylose and amylopectin. 
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Figure 5-2 Spectra with increasing echo delays from Carr-Purcell-Meiboom-Gill experiment on raw rice grain showing the 

evolution of the signal with increasing number of repeat cycles. Echo delay lengths are as follows 1.25 (black), 2.5 (red), 

3.75 (green), 5 (dark blue), 7.5 (light blue), 25 (pink), 50 (yellow), 75 (olive), 150 (navy) and 750 (maroon) ms 

5.3.2.1 Fitting the CPMG decay to obtain T2 parameters 

From the exponential decay of signal area obtained by the CPMG sequence, the T2 relaxation 

time of the signal can be determined from the rate constant of the decay. Built-in processing in the 

TopSpin software allows for the determination of T2 relaxation times; however, the fitting options 
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available were found to have some limitations in determining T2 values in systems with multiple 

relaxing components. First, the most typical fitting function, “uxnmrt2”, allows for only one 

component to be fitted and therefore did not yield a good fit of the relaxation decay (S 5.5.7).  The 

second likely candidate was “expdec”, a simple function fitting the sum of exponential decays and 

allowing multiple T2 values to be determined at once. However, this proved to be an inconsistent 

approach with little control over the fitting process sometimes resulting in unrealistic values. 

Therefore, to better control the fitting process, the concept of the “expdec” function was employed 

in an iterative manual extraction approach. 

T2 relaxation times were determined in this work through linear fits of the log transformed 

exponential decay, allowing for an assessment of the overall decay profile of the signal and the 

multiple components present. This similar to the built-in “expdec” function but is iterative rather 

than cumulative which allowed for greater consistency in fitting across all samples. The procedure 

for this determination is outlined in this section, with the exponential decay obtained by the CPMG 

sequence defined as, 

𝑦 = 𝐴0𝑒
−𝑡

𝑇2  Equation 5-1 

Where A0 is the pre-exponential factor, 𝑡 is the delay time in ms, and 𝑇2 is the relaxation time 

in ms. In a single relaxation component system, the 𝑇2 can be determined from the inverse 

relationship of the rate coefficient (
−𝑡

𝑇2
) with 𝑇2 by plotting the natural log of 𝑦, yielding the linear 

equation, 

ln 𝑦 =
−𝑡

𝑇2
+ ln 𝐴0  Equation 5-2 

And determining the slope ( 
−1

𝑇2
 ). 

However, in a system where multiple components are present, multiple exponential decays are 

additively observed in the form, 

𝑦 = ∑  𝐴0𝑘
𝑒

−𝑡

𝑇2𝑘𝑛
𝑘=1   Equation 5-3 

where 𝑛 is the number of unique components in the exponential decay. 

An example experimental exponential decay of peak area for a raw rice grain is shown in Figure 

5-3A, where the majority of protons can be seen to have completely relaxed by the 250 ms echo 

delay stage of the sequence. It is not clear from this decay that there are multiple relaxing 

components present, so the plot is transformed to ln 𝑦 (Figure 5-3B). This transformation reveals 

the presence of three unique linear slopes underlying the initial function at an echo delay of less 

than 300 ms. At higher echo delays the integrals are more affected by background noise due to 

low signal area and were not included in fitting. In this case only two components were fitted for 

both raw (Figure 5-3) and cooked (Figure S 5-3) rice grains. 
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Figure 5-3 Decrease of signal area with increasing echo delay in CPMG experiment on a raw rice grain, plotted as the peak 

area (A) or its natural logarithm (B). Dotted red lines show the presence of multiple slopes, representing multiple T2 

relaxation times in the decay profile 

In order to determine the T2 of these components, each linear segment is fitted to determine 

the regression equation parameters (Figure 5-4A and 5-4B). First, the faster decaying initial linear 

segment, referred to as component 1 (OH signal), is fitted and the determined linear equation of 

the form of Equation 5-2,  

is transformed back to an exponential form, 

𝑦 = 𝑒
−𝑡

𝑇2 + 𝑒𝐴0    Equation 5-4 

then subtracted from the initial exponential decay to yield an exponential decay unbiased by the 

first component. The natural logarithm of the resulting exponential is then fitted with a linear fit 

of the slower decaying second linear section, referred to as component 2 (CHx signal). 
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Figure 5-4 Linear fits of transformed data in Figure 5-3B for a) the first component (number of points (n) = 3 and r2 = 0.98) 

then b) the second component of after subtraction of the initial linear fit (n = 5 and r2 = 0.98) 

With the linear regressions of both components of the linearized exponential, the T2 can be 

determined as the absolute value of the inverse of the slopes. The above methodology was applied 

for all raw rice samples. For cooked rice grain samples, methodology differed only in the range of 
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echo delays included in the fits for each component. The T2 values and linear regressions for each 

component are shown in supporting information (S 5.5.5). 

5.3.2.2 The determination of pre-exponential factors of individual T2 decays  

From the determined T2 values of relaxing components the pre-exponential factors of the two 

exponential decays were also calculated through an iterative fitting approach. With a known set 

T2 for both the fast decaying OH (𝑇21
) and slower decaying CHx (𝑇22

) components, equation 5-3 

was employed as a bi-exponential decay fitting function. Given  𝐴0 represents the pre-exponential 

factor of the OH component; the pre-exponential factor of the CHx component was then defined as 

 (1 − 𝐴0) yielding the fitting equation, 

𝑦 =  𝐴0𝑒
−𝑡

𝑇21  +   (1 − 𝐴0)𝑒
−𝑡

𝑇22   Equation 5-5 

Equation 5-5 was then applied to the exponential decays of all samples, iteratively fitting 𝐴0 

using a Levenberg–Marquardt approach to minimise chi squared, with adjusted r2 values in the 

range of 0.84 to 0.94. With𝐴0 determined, the relative contributions of the OH and CHx 

components to the total signal area of the initial CPMG echo spectrum could be assessed.  

5.3.3 The link between molecular dynamics and digestibility 

5.3.3.1 The relation of apparent amylose content with digestibility 

The literature has shown a correlation between the in vitro digestibility of rice and the 

apparent amylose content on a diverse range of samples [26] and along with its importance as a 

marker for other rice properties integral to rice quality, this cements AAC as a valuable attribute 

in rice quality analysis. However, the statistical significance of the relationship of AAC with 

digestibility (r2 = 0.73) indicates that there are likely additional drivers of digestibility. This is 

highlighted where predicted GI was observed to differ significantly at a similar AAC [26].  

The digestibility of the rice varieties analysed in this study have been previously published 

[170], with a negative correlation observed between AAC and the in vitro digestibility, as expected 

(Figure 5-5). The correlation was good given the small sample size, yielding an adjusted r2 of 0.92. 

Values of starch hydrolysed after 60 minutes of digestion (SH-60), determined by glucose 

concentration relative to the initial starch amount,  are those reported by Toutounji et al. [170]. 

SH-60 values have been reported to be manifesting on a similar scale to glycaemic index (GI, 0-

100), with the reference point, Doongara, at an SH-60 value of ~50 % lining up with its 

commercially published GI value of 55.  
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Figure 5-5 Mean SH-60 plotted against AAC  adapted from Toutounji et al. [170]. Red line represents a linear fit of the data 

(n = 8 and r2 = 0.92). Error in SH-60 is reported as the standard deviation of 6 repeats, and type of error and n is not 

reported for AAC 

While an apparent link between the AAC and SH-60 is reported, the similarity of AAC for some 

varieties exhibiting small differences in their digestibility is an indicator that other factors are at 

play. This may arise simply from the possibility that AAC is not the only driver of digestibility, with 

other features of starch structure potentially also playing a role such as the molecular dynamics 

and spatial distribution. Thus, there are multiple avenues to explore in refining the understanding 

of the role of starch structure in digestibility. It should be noted that starch digestion is a complex 

multi-enzyme system, and while digestibility is often reported in the form of extent of digestion, 

the kinetics can also play a role. However, given the lack of an appropriate model for starch 

digestion, the kinetics is often not reported on, and as a result a reliable determination could not 

be made on the samples in this study.  

5.3.3.2 The link of CPMG decay components in raw rice grains with digestibility 

5.3.3.2.1 Relating T2 relaxation times to digestibility 

In the discussion of T2 and its relation to digestibility, the relaxation time is displayed on the x-

axis as the independent variable. This was deemed to be appropriate as this work was intended 

to employ any T2-digestibility relationship as a screening tool for the digestibility of unknown rice 

samples. The T2 relaxation of the first component  in the CPMG decay of raw rice grains, assigned 

to OH protons, is shown against the respective SH-60 in Figure 5-6. The relaxation time of the first 

component of the CPMG decay is short, on the scale of ≈1.5 to 2.5 ms, and is associated with a 

convoluted combination of hydroxyls of both water and starch molecules within the rice grain. 

Thus, it may be influenced by the local availability of hydrogen bonding networks within the 
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starch and relating to either amorphous or ordered regions of the supramolecular structure. 

Despite the short T2 times, a difference could still be noted between the T2 of different varieties. 

For varieties with an SH-60 of 75 or lower, the SH-60 displayed an apparent relationship with the 

T2; however, the highly digestible waxy variety (SH-60 = 90) did not follow this trend (Figure 5-6). 

Given the limitations of the CPMG sequence in terms of effective range (1 to 1000 ms), the 

closeness of the OH signal T2 to the lower limit of the CPMG sequence may introduce significant 

limitations in the calculation of the T2. Thus, it is possible that inaccuracies in the calculation of T2 

from experimental limitations could be the drivers for the apparent differences observed. If in fact 

these T2 values are accurate, then they may be assigned to differences in structural features 

between the varieties. As the contributions of both water and starch to the OH T2 are unknown, it 

is possible that this T2 is arising from small differences in the distributions of either water and 

starch (or both) throughout the starch granules within the rice grains. 
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Figure 5-6 Mean SH-60 (n=6) as reported by Toutounji et al. [170]  plotted against T2 of OH signal . Error in SH-60 is 

reported as the standard deviation of 6 repeats, and error in T2 is reported as the standard error of n=3 repeats 

The relaxation of the second component of the CPMG decay is an order of magnitude slower 

than that the OH signal and is attributed to the relaxation of the CH protons (except for anomeric 

protons) of the starch molecules. A negative correlation was observed between the T2 relaxation 

of the main CHx signal in the CPMG experiment of raw rice grains and the respective SH-60 [170] 

(Figure 5-7). T2 values in the range 40 to 60 ms as reported here have been assigned in the 

literature to the more mobile CH protons of amylose molecules and amylopectin branches existing 

in amorphous regions where dipolar coupling should be minimised. It is apparent that the 

structures represented by the CHx signal exist in unique environments between the different rice 

varieties, displaying a range of T2 relaxation times even where AAC was similar (Figure 5-7). The 

linear relationship between the CHx T2 and SH-60 (adjusted r2 = 0.93) indicates that the underlying 
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structures being measured are likely important factors in digestibility. Given the assignment of 

the CHx signal of the CPMG decay to amorphous regions, it appears that these amorphous regions 

have some role in digestibility. In the context of AAC, it may then be the link between AAC and 

amorphous structure that enables it to serve as a proxy for digestibility. Therefore, it may be 

possible that a more direct assessment of these amorphous regions through the T2 could allow for 

an improved prediction of digestibility, and possibly also in cases where AAC is similar. 
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Figure 5-7 Mean SH-60 (n=6) as reported by Toutounji et al. [170]  plotted against T2 of main CHx signal. Red line represents 

a linear fit of the data (n = 6 and adjusted R2 = 0.93). Error in SH-60 is reported as the standard deviation of 6 repeats, and 

error in T2 is reported as the standard error of n=3 repeats 

5.3.3.2.2 Assessing the contributions of relaxing components  

The pre-exponential factors of the CPMG decays of each component were calculated for the raw 

rice grains to investigate the contributions of the two decaying components to the total signal 

observed (Table 5-1, as described in Section 5.3.2.2). The pre-exponential factors displayed a 

significant contribution of the faster relaxing OH component to the total peak area (≈ 70 %) 

compared to the slower relaxing CHx component (≈ 30 %).  

Table 5-1 Pre-exponential factors for the bi-exponential decay function defining the T2 decay for raw rice grains 

 Variety Average A0 Std. Dev. RSD (%) Average (1-A0) 

Doongara 0.661 0.051 7.66 0.329 

Koshihikari 0.698 0.015 2.13 0.294 

Topaz 0.673 0.011 1.53 0.304 

Opus 0.677 0.011 1.51 0.301 

Reiziq 0.711 0.033 4.55 0.265 

Sherpa 0.707 0.028 3.93 0.279 

Waxy (D25) 0.646 0.001 0.09 0.354 
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If the entire sample was present within the first spectrum of the CPMG sequence, almost equal 

ratios of 1H from the OH and CHx groups of the starch and water components would be expected 

for the raw rice grains (49/51) given 13 % moisture and 78 % starch. However, this was not 

observed, with the pre-exponential factors of the OH indicating a much higher contribution to the 

signal than the CHx signal (Table 5-1). This is consistent with observations from the first spectrum 

of the CPMG sequence (Figure 5-2), and highlights the fact that different relaxation times can 

represent very different regions of starch structure in varying proportions. Due to the nature of 

the CPMG sequence, the first recorded spectrum is only representative of molecules with a T2 

greater than 1 ms. Therefore, the total contribution of the OH and CHx signals with T2 > 1 ms can 

be assessed with respect to the total protons in the sample by the corresponding 1H SPE spectrum 

with the same acquisition parameters (Figure 5-8). The first spectrum of the CPMG sequence was 

found to represent a small percentage of the total protons present in the sample, an interesting 

observation given the differences in T2 between varieties even for such a small structural 

component (Figure 5-8). With a typical starch content of 78 % at a moisture content of 13 %, the 

remaining mass of the sample (9 %) consists primarily of proteins and lipids. This means that 

some percentage of the 1H SPE signal arises from proteins and lipids; however, these were not 

observed and/or resolved in the CPMG sequence. This suggests that the ratio of the two areas is 

inadvertently biased by the proteins and lipids present in each variety, which cannot be 

determined in a static 1H SPE experiment. 

40 30 20 10 0 -10 -20 -30

 (ppm)  

Figure 5-8 The 1H SPE spectrum (black) and first spectrum of the CPMG sequence (red) for raw Doongara rice grains. The 1H 

SPE spectrum has been scaled by a factor 4 to account for difference in number of scans (NS=8 to NSeff=32) 

Despite the uncertainty of the exact composition of the 1H SPE spectrum, the relative 

proportions of the CPMG sequence were related to the total area of the 1H SPE spectrum (Table 

5-2). The first spectrum of the CPMG was found to represent between 8 and 14 % of the total 1H 
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present in the samples, indicating that the components with a T2 > 1 ms account for a small 

fraction of the composition in raw rice grains. Comparing the individual contributions of both OH 

and CH signals in the CPMG sequence displays the same trends, with the OH dominating the 

contribution. However, given the relatively large errors in these calculations, differences between 

these values were deemed insignificant. This is an interesting observation, given that the CHx 

component represents such a small percentage of the total structure, yet the T2 relaxation time 

yields a relationship with the digestibility. This then leads to two possible explanations: 1) the 

relationship with digestibility arises purely from those specific CHx structures, or 2) the specific 

CHx structures are a function of the surrounding structure which is much more abundant, and the 

CHx component simply serves as a proxy in this situation.  

Table 5-2 Percentage contributions of the first spectrum of the CPMG sequence for raw rice grains  to the corresponding  

total area of a 1H SPE spectrum 

  Variety 

Area of CPMG relative to 
SPE 

OH relative to total 
SPE 

CH relative to total 
SPE 

Average 
(%) 

Std. Dev. 
(%) 

Average 
(%) 

Std. 
Dev. (%) 

Average 
(%) 

Std. 
Dev. (%) 

Doongara 9.99 0.36 6.78 0.33 3.36 0.63 

Koshihikari 10.45 0.67 7.86 0.24 3.17 0.43 

Topaz 9.21 0.06 6.43 0.12 3.07 0.06 

Opus 10.91 1.51 7.28 0.98 3.61 0.54 

Reiziq 13.62 0.81 10.04 0.49 4.24 0.32 

Sherpa 9.91 1.29 7.48 1.33 2.92 0.04 

Waxy 
(D25) 

7.80 0.12 5.03 0.33 2.77 0.23 

 

T2 relaxation times of 20 – 80 ms in starch have been suggested in the literature as arising from 

the mobile CHx protons of amylopectin and amylose. In this work, only one clear CHx relaxation 

was observed for rice samples with a T2 of 30 to 50 ms, within the range observed in literature. 

Therefore, it is not immediately clear if these protons can be attributed to amylose or amylopectin. 

Amylose molecules have generally been noted to exist in and contribute to the amorphous regions 

of starch structure. Therefore, to assess this, the relative proportions of the CHx CPMG signal to 

the total area of the corresponding 1H SPE were compared to the AAC of the sample (Figure 5-9). 

No clear correlation was observed between the CHx signal area and the AAC, indicating that the 

observed CHx signal does not solely arise from amylose. This is especially evident for varieties 

with an AAC of 20-22.5 % where different relative areas were observed despite similar AAC. In 

addition, the relative contribution of the CHx represents a significantly smaller proportion of the 

sample than what would be expected if solely driven by AAC. This indicates that even if the CHx 

signal is linked to amylose molecules, it is not influenced by the amount of amylose present but 

rather other factors. Based on literature this may then arise from a combination amylose and 
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amylopectin CHx with similar T2 relaxation times, possibly a result of their location within similar 

regions. Additionally, it should be noted these differences in relative area may also be a bias 

introduced by different protein and lipid concentrations which were not measured for these 

samples. 
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Figure 5-9 The average area of the CHx in the first spectrum of CPMG sequence relative to the total area of the 

corresponding 1H SPE spectrum. Error bars are the standard deviation of 3 repeat samples and instrument setups 

It is evident that the observation of the OH and CHx signal in the CPMG decay, and the associated 

relaxation times, correspond to a minor proportion of the total starch present within the sample. 

Relaxation times of 20 – 80 ms for the CHx in starch have been reported in the literature to amylose 

chains and mobile amylopectin, due to their higher mobility relative to the typically highly 

coordinated CHx of amylopectin in the form of double helices within crystalline lamellae. In this 

work, the CHx was observed not to arise solely from amylose, and so is assumed to be a 

combination of both amylose and mobile regions of amylopectin. These results may then indicate 

that this CHx decay component is a result of defects in the crystalline structure due to amylose 

molecules or a concentration of chain ends and branching points resulting in defects that allow 

more local mobility within the semi-crystalline structure. With this in mind, it is clear that 

different varieties of uncooked rice grains manifest these structures in unique ways, with a range 

of T2 relaxation times highlighting difference in the local arrangements, as well as differences in 

the amount of the sample present in this arrangement.  
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5.3.3.3 The link of CPMG decay components in cooked rice grains with digestibility 

5.3.3.3.1 Relating T2 relaxation times to digestibility 

2D CPMG experiments were also performed on cooked rice grains, with the T2 relaxation time 

determined for the two observed components in the CPMG decay (S 5.5.2). Based on visual 

observations of the decay, neither the OH or CHx signal could be assigned to either the faster or 

slower decay and therefore are discussed as component 1 and component 2. The T2 relaxation 

times of the both components measured in the cooked rice grains were in the range of 20 – 100 

ms, indicating a similar degree of mobility for both the OH and CHx being measured (Figure 5-10). 

This was in contrast to raw rice grains, where the T2 two components differed by an order of 

magnitude (Figure 5-6 and Figure 5-7).  

The cooking rice grains in water results in the gelatinisation of the starch component, a process 

that swells the starch granules with water, disrupting the helical structures of starch. This 

gelatinised state is typically assumed to be highly amorphous as opposed to the semi-crystalline 

structure observed in raw starch. With respect to the T2 relaxation times, this is likely to result in 

longer decays and higher T2 relaxation times as a result of increased molecular mobility in the 

absence of ordered structure. The T2 relaxation times of component 1 in the CPMG decay of the 

cooked rice grains (20 – 40 ms, Figure 5-10A) were found to be in the same range as the T2 values 

reported for the CHx signal in the raw rice grains (20 – 50 ms, Figure 5-7). This similarity supports 

the notion that the CHx signal of the raw rice grains likely arises from some form of amorphous 

structure. The second component of the CPMG decay for the cooked rice (Figure 5-10B) displayed 

relaxation times slightly higher than was observed for the CHx signal in the raw rice grain (Figure 

5-7), indicating a higher degree of mobility. The higher T2 relaxation times in cooked rice grains 

compared to the raw rice grain agrees with the notion that the helical structures of starch have 

become unwound, therefore previously strongly bound OH and CH groups of starch and OH 

groups of water are allowed less restricted mobility. However, it should be noted that the much 

higher moisture content of cooked rice grains (≈70 %) means that the majority of the OH signal 

likely arises from water rather than starch OH groups. Therefore, from the data here, it is 

impossible to conclude if the observed increase in the T2 value with cooking is a result of 

gelatinisation, the increased water content, or both. 
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Figure 5-10 Mean SH-60 (n=6) as reported by Toutounji et al. [170] plotted against T2 of A) component 1 T2 and B) 

component 2 of cooked rice grains. Error in SH-60 is reported as the standard deviation of 6 repeats 

No correlations of the T2 relaxation times in cooked rice grains with the SH-60 were observed 

(Figure 5-10). In the case of one of these components, the T2 likely primarily represents a 

distribution of water OH throughout the cooked rice grain rather than starch itself, a result of the 

high moisture content. The T2 of the other component would then likely represent the distribution 

of starch CHx throughout the grain, expected to represent contributions of both amylose and 

amylopectin as a result of gelatinisation essentially most chains into a similar amorphous state.  

It is apparent that the driver for the differences in digestibility of cooked rice grains cannot be 

observed in the CPMG decay of cooked rice grains. This may be a result of an inappropriate 

relaxation time range of the CPMG sequence, with relevant structures potentially having much 

shorter T2, for example tightly bound resistant starch. It may also be a result of relevant structures 

being masked by the major contributions of gelatinised starch and water, making it difficult to 

assess these structures in cooked rice. 

5.3.3.3.2 Assessing the contributions of relaxing components  

The pre-exponential factors of the CPMG decays of each component were calculated for the 

cooked rice grains to investigate the contributions of the two decaying components to the total 

signal observed (Table 5-3, as described in Section 5.3.2.2). The pre-exponential factors displayed 

a significantly greater contribution of the first relaxing component to the total peak area (≈ 90 %) 

compared to the second component (≈ 10 %).  
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Table 5-3 Calculated pre-exponential factors for the bio-exponential decay function defining the T2 decay for cooked rice 

grains 

  A0 A0 -1 

Doongara 0.908 0.092 

Koshihikari 0.922 0.078 

Topaz 0.851 0.149 

Opus 0.880 0.120 

Reiziq 0.885 0.115 

Sherpa 0.888 0.112 

 

Given the high moisture content, it was determined that the first component (faster decaying) 

is likely attributed to the OH signal, visually confirmed by greater signal intensity at 5.0 ppm in 

compared to the CHx shoulder at 3.5 ppm (Figure 5-11, red line). Therefore, the second component 

was assigned to the CHx signal (slower decaying).  

Given this assignment, the relative contribution of the OH and CHx signals were then compared 

to the total 1H in the sample (Figure 5-11). In contrast to the raw rice grains (Figure 5-8), the 

majority of the total 1H in the cooked rice grain was present in the first spectrum of the CPMG 

sequence (Figure 5-11). This finding indicates that the mobility of the majority of the 1H in the 

sample has increased significantly, with T2 values of >1.5 ms apparently characterising the 

majority of structure present. This is logical given the  disruption of order as result of 

gelatinisation significantly altering the degree of dipolar coupling compared to ungelatinized 

starch and its helical structures As a result of the high moisture content of the cooked rice grains 

(70 % w/w), result the majority of protons in the sample are solely from water. The higher relative 

contribution of OH than CHx to the intensity of CPMG spectrum, and the subsequent relative 

contribution to the total 1H observed in the SPE, indicates that the majority of the water present 

is accounted for in the OH signal of the CPMG sequence (Figure 5-11). Thus, the majority of the 

water molecules has likely become bound to some degree within the gelatinised starch matrix, 

hence its relatively low T2 relaxation time compared to what would be expected for unbound or 

free water. The fact that this is occurring for the majority of the OH signal further indicates that 

the process of gelatinisation has created a largely homologated distribution of bound water within 

the starch structure, as opposed to the different types of bound water that are typically reported 

in raw starches. Free water in these samples would likely be highly mobile, and therefore not 
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expected to be well resolved in the solid state 1H spectrum, and so given its apparently low 

contribution has not been discussed.  

8 7 6 5 4 3 2 1
 (ppm)  

Figure 5-11 The 1H SPE spectrum (black) and first spectrum of the CPMG sequence (red) for cooked Doongara rice grains. 

The 1H SPE spectrum has been scaled by a factor 4 to account for difference in number of scans (NS=8 to NSeff = 32) 

These findings were then confirmed by the calculation of the relative contributions of the 

CPMG sequence to total area of the 1H SPE spectrum (Table 5-4). The first spectrum of the CPMG 

sequence was found to represent ≈80 % of the total 1H present in the samples, confirming that 

much of the sample has become increasingly mobile as a result of gelatinisation. Comparing the 

individual contributions of both OH and CHx signals in the CPMG sequence, the OH dominates the 

contribution, making up approximately 68-75 % of the total 1H, supported by the high moisture 

content, while the CHx contributes 6 to 12 %. The calculated contribution of the CHx signal (6- 12 

%) is similar to the expected contribution (≈12 %) given starch concentration of 27 % w/w (given 

70 % moisture content); however, the range of values observed indicate that varying levels of 

starch CHx are not experiencing the same effects due to gelatinisation in different varieties. This 

variation may also be indicative of different concentrations of proteins or lipids, though these only 

represent a small fraction of the sample after cooking (3 % given 70 % moisture content). The 

differences in contributions of CHx with T2 measurable by the CPMG sequence maybe a factor in 

some differences between the varieties; however, was not found to correlate with either SH-60 or 

AAC. This lack of relationship of the CHx signal with AAC shows that the observed CHx signal in 

cooked rice grains likely arises from the contributions of both amylose and amylopectin, rather 

than just either individually. 

The contribution of the starch OH is expected to be convoluted with water, likely dominated 

by exchange between the two and so is not expected to be a defining feature. However, the 

disparity between the total expected contribution of OH from water (≈80 %) and starch (≈5 %) to 

the total 1H content and the contribution of OH in the CPMG spectrum (≈70 %, Table 5-4) indicates 
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that some combination of starch or water molecules are not detected in the CPMG sequence, 

potentially exhibiting much shorter or longer T2 relaxations. These unaccounted molecules 

components may relate to structures such as resistant starch structures or helices that either 

escaped gelatinisation or were formed as a result of gelatinisation. Such tightly bound starch 

structures could also be responsible for unaccounted regions of trapped water with very low 

mobility; however, water in unbound form could also account for the unaccounted OH signal. 

Despite the potential for the disparity in the contribution of OH to be attributed to resistant starch 

formations, no correlation was observed with the SH-60 or AAC. This may indicate that the 

unaccounted signal area is in fact very slowly relaxing unbound water (> 1000 ms); however, 

investigation of the relaxation components of the FID may allow for assessment of faster relaxing 

components that can also account for this. 

Table 5-4 Percentage contributions of the first CPMG spectra of cooked rice grains to the corresponding total area of a 1H 

SPE spectrum 

Variety 
Area of CPMG 
relative to SPE 

(%) 

OH to 
relative total 

SPE (%) 

CH relative 
to total SPE 

(%) 

Doongara 82.01 74.49 7.52 

Koshihikari 82.21 75.83 6.37 

Topaz 80.55 68.58 11.97 

Opus 81.95 72.08 9.87 

Reiziq 81.93 72.54 9.38 

Sherpa 79.51 70.58 8.93 

 

 

5.4 Conclusions and Future Work 

The molecular dynamics of starch in raw rice grains were found to be an indicator of the in 

vitro digestibility of cooked rice grains. This was specifically attributed to the T2 relaxation time of 

the CHx signal in the CPMG sequence, a component which represented only ≈3 % of the total 

sample. It was hypothesised that while the contribution of these arrangements to the total sample 

is low, it is possible that it is the spatial distribution in conjunction with the factors that dictate its 

T2 relaxation time that are responsible for this apparent trend. The lack of correlation of the OH 

component in raw rice grains is expected to arise from two major factors, being the convolution 

of OH arising from water and starch making it unclear, as well as the likelihood of the majority of 

OH groups participating in dipolar coupling as a result of double helix structures. Given the 

disruption of helical structure during cooking, it would not be expected to be factor in the 

digestibility of cooked rice grains.  
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Interestingly, no link between the T2 of the CHx in cooked rice grains the digestibility was 

observed. The contributions of the OH and CHx signals in the CPMG of cooked rice represented 

≈90 % of the total sample, highlighting the impacts of gelatinisation in increasing the total mobility 

within the sample. Given the strong “normalisation” of the underlying starch structure to an 

apparently amorphous state as a result of gelatinisation, it is expected that any smaller 

contributions of other structures may be dominated by the other major CHx and OH components. 

This was likely compounded further by the high moisture content, with water become the major 

component of the rice grain after cooking. Thus, further work would be required to assess if 

different regions of structures can still be observed in cooked rice grains, with possible avenues 

including investigations of shorter time scale FID relaxation analysis or water suppression 

protocols. Due to the use of static measurements for NMR experiments, the methodology and 

outcomes are also transferable to benchtop NMR instrumentation, an important aspect in making 

this a usable tool for rice researchers. Specific NMR relaxometer instruments are available, 

providing faster CPMG acquisitions along with access to shorter T2 times; however, these 

instruments would also require a different data analysis process to that discussed here. 

Relaxometers are a platform that should be explored in transferring the outcomes of this study to 

a more accessible platform. 

Given the apparent link between molecular dynamics, it would be interesting to assess the 

strength of this trend on a larger sample set, given the small sample size here no strong 

conclusions could be drawn. Further to this, if the trend can be confirmed by further testing, the 

link to in vivo digestion would be another interesting avenue to explore in understanding the role 

of starch structures in digestibility. While this study focussed solely on the starch hydrolysed after 

60 minutes as an assessment of digestibility, this is an arbitrary measure. The digestion of rice is 

complex involving multiple enzymes and stages; thus, it would be interesting to evaluate the role 

of molecular dynamics on the kinetics of digestion as an additional avenue in understanding 

digestibility. 

5.5 Supporting Information 

S 5.5.1 Determination of minimum cooking time and assessing degree of cooking 

The cooking time of all varieties with the excess water method was tested by a staggered 

sequence cooking trial where 5 grains were tested using the squash test every 30 seconds over a 

period of time. The squash test involves placing the rice grains between two transparent glass 

slides and applying pressure to ‘squash’ to rice grains (Figure S 5-1). The presence of small white 

dots, or non-gel-like material, in the centre of the grain indicates that the grain is not completely 

cooked. This is clearly visible from 14-17 minutes in Figure S 5-1. Once cooking is complete, the 
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embryo of the rice grain can sometimes still be visible on the periphery of the cooked grain, this 

is not considered a factor in the cooking of the grain. The minimum cooking time was determined 

as the time it takes for 5 grains to be completely cooking as confirmed by the squash test. 

 

Figure S 5-1 Example of the “squash” test, showing rice grains cooked for different lengths of time in boiling water and 

compressed by hand between two glass microscope slides  

The minimum cooking times determined were then used as a guide for experiments involving 

cooked grains, with the degree of cooking confirm for each variety via the squash test before 

experiments were performed. If the grain was undercooked, it was left to cook for longer in the 

boiling water. The average cooking times reported in Table S 5-1, represent multiple cooking 

experiments on the same samples in this study but for unrelated studies. The statistics indicate a 

standard deviation in cooking time of approximately 1 minute for most varieties, highlighting the 

importance of checking via the squash test before analysis.   

 

 

Table S 5-1 The average cooking times of commercial rice varieties using the excess water method 

Variety Repeats 
Average 
Cooking 

time (min) 

Std Dev 
(min) 

Std Err (min) 

Doongara 9 18.5 0.9 0.3 

Koshihikari 7 17.6 1.0 0.3 

Topaz 6 15.2 0.9 0.3 

Opus 3 17.5 1.2 0.5 

Reiziq 3 18.0 1.3 0.5 

Sherpa 3 19.2 0.4 0.2 

 

S 5.5.2 Determination of T2 components for cooked rice grains 

A partial experimental set of spectra for a cooked rice grain showing the signal decay using the 

CPMG sequence with a spin-echo delay ranging from an initial delay of ~1.2 ms to a final delay of 

~500 ms is shown in Figure S 5-2. Compared to the CPMG decay of the raw rice grain spectra 
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(Figure 2), the OH (4.8 ppm) and CH (3.8 ppm) signals are not clearly resolved in the CPMG decay 

of cooked rice grains, with both appearing to decay at a similar rate. This poor resolution is likely 

a result of the higher water content of the cooked grain (≈70 % moisture content) resulting in 

water becoming the dominating source of protons in the sample. Closer visual inspection at higher 

delay times indicates the CH shoulder at 3.8 ppm is still present with the OH signal. Therefore, 

assignment of the relaxing components was not possible by visual means. 
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Figure S 5-2 Spectra with increasing echo delay from Carr-Purcell-Meiboom-Gill experiment on cooked rice grain showing 

the evolution of the signal with increasing number of repeat cycles. Echo delay lengths are as follows 1.2 (black), 6.1 (red), 

12.2 (green), 36.6 (dark blue), 73.3 (light blue), 146.6 (pink) and 488.8 (orange) ms. Covers the range of ~ 1 to 500 ms echo 

delay 

An example experimental exponential decay of peak area for a cooked rice grain is shown in 

Figure S 5-3A, where the majority of signal can be seen to have completely relaxed by the 250 ms 
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echo delay stage of the sequence. Similar, to the observations for the raw rice grains (Figure 5-

3B), multiple components were observed for the cooked rice grains (Figure S 5-3B).  

 

0 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

1.0

S
ig

n
a

l 
a

re
a

Delay time (ms)  
0 500 1000 1500 2000 2500

-10

-8

-6

-4

-2

0

ln
 S

ig
n
a
l 
a
re

a
Delay time (ms)  

Figure S 5-3 A) Exponetial decay of signal area with increasing echo delay time and B) Natural logarithm of signal area for 

each spectrum of CPMG sequence plotted against the calculated delay time from a CPMG experiment on a raw rice grain. 

Dotted red lines show the presence of multiple slopes, representing multiple T2 relaxation times in the decay profile 

The two observed decaying components were then fitted using the same approach described 

in Section 5.3.2. Example fits for both components are shown in Figure S 5-4. 
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Figure S 5-4 Linear fits of transformed data in Figure S 5-3A for a) the first relaxing component of Figure S2 (n= 9 and 

adjusted R2 = 0.99) and b) the second relaxing component of Figure S2 after subtraction of the initial linear fit (n = 4 and 

adjusted R2 = 0.99) 

S 5.5.3 Example overlay of the decays of different rice varieties 

The T2 relaxation times of the first component in the CPMG sequence of the raw rice grains 

were similar, while the second component displayed substantial differences in T2 between 

varieties. A visual observation of the difference is shown in Figure S 5-5, where the apparent 

slopes of Doongara (red line) and waxy (blue line) are shown to differ significantly. The remaining 

varieties appear to have an average slope somewhere between that of the Doongara and Waxy 

varieties, in line with the intermediate T2 values that were determined for their second component 

decays. 



Page | 147  
 

0 10 20 30 40

-3

-2

-1

0  Doongara

 Koshi

 Opus

 Reiziq

 Sherpa

 Topaz

 Waxy

L
n

 S
ig

n
a

l 
A

re
a

Delay time (ms)
 

Figure S 5-5 The natural log of the signal area plotted against delay time for spectra of the CPMG experiment up to ≈40 ms. 

The apparent slopes of the second relaxing component of Doongara (red) and Waxy (blue) are shown, along with a general 

apparent slope for the remaining overlapping varieties (black) 

S 5.5.4 Moisture contents of rice samples 

The moisture content of raw rice flours and cooked rice grains measured by thermogravimetric 

analysis is shown in Table S 5-2 and 

Table S 5-3. Moisture content was measured on a TGA/DSC- Netzsch STA449C Jupiter using an 

argon atmosphere (25 mL·min-1). Temperature was ramped from 25 to 120 °C at a rate of 10 

K·min-1, and held at 120 °C until constant mass (approx. 2 hours) and moisture determined from 

the difference of initial and final mass. A pre-run measurement of an empty crucible was used as 

a baseline. Flour samples were weighed directly into crucibles, while cooked rice grains were cut 

lengthways and placed flat side down in the crucible. 

Table S 5-2 Moisture contents of raw rice flours and starches determined by thermogravimetric analysis.  
a Sample equilibrated at 44 % relative humidity 

Variety Moisture Content (% w/w) 

Amorphous Doongara flour a  11.12 

Amorphous Doongara flour a in rotor for 12 days 10.52 

Raw Doongara flour a 12.88 

Waxy Maize a 11.67 

Waxy Maize (after NMR) 12.25 

Amorphous Waxy Maize a 10.54 

Amorphous Waxy Maize (after NMR) 10.96 

Gelose 80 a 12.63 

Gelose 80 (after NMR) 13.32 

Amorphous Gelose 80 (after NMR) 12.07 

Regular Maize a 12.75 

Regular Maize (after NMR) 12.52 

Amorphous Regular Maize a 11.29 

Amorphous Regular Maize (after NMR) 11.83 
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Table S 5-3 Moisture contents of cooked rice grains determined by thermogravimetric analysis 

Variety Moisture Content (% w/w) 

Cooked Doongara 75.82 

Cooked Doongara rice grain (24 hours in sealed rotor) 67.42 

Cooked Koshihikari 70.10 

Overcooked Koshihikari 74.38 

Cooked Koshihikari (2 hours in sealed rotor) 68.94 

 

 

S 5.5.5 T2 values and fitting statistics for raw and cooked rice grains 

The T2 values and linear fitting statistics are shown for raw rice (Table S 5-4 and Table S 5-5) 

and cooked rice (Table S 5-6). 

Table S 5-4 T2 and linear fit statistics from triplicate measurement of T2 for raw rice grains of each variety for the first 

component of the CPMG decay 

Variety 
Rep 1 Rep 2 Rep 3 

T2 (ms) Points r2 T2 (ms) Points r2 T2 (ms) Points r2 

Doongara 2.45 3 0.998 2.12 3 1.000 2.78 3 0.965 

Koshihikari 1.74 3 1.000 1.77 3 0.987 1.79 3 0.977 

Opus 1.72 3 0.983 2.09 3 0.989 1.85 3 0.984 

Reiziq 1.40 3 0.994 1.84 3 0.971 1.64 3 0.970 

Sherpa 1.86 3 0.997 1.71 3 0.969 1.71 3 0.998 

Topaz 1.71 3 0.988 1.72 3 0.979 1.80 3 0.972 

Waxy 2.04 3 0.986 2.24 3 0.991 1.87 3 0.991 

 

Table S 5-5 T2 and linear fit statistics from triplicate measurement of T2 for raw rice grains of each variety for the second 

component of the CPMG decay 

Variety 
Rep 1 Rep 2 Rep 3 

T2 (ms) Points r2 T2 (ms) Points r2 T2 (ms) Points r2 

Doongara 48.53 4 0.996 38.85 5 0.996 44.16 5 0.977 

Koshihikari 36.66 5 0.992 35.92 5 0.981 34.49 5 0.986 

Opus 33.87 5 0.983 34.33 5 0.989 33.46 5 0.995 

Reiziq 29.71 5 0.972 32.54 5 0.989 33.09 5 0.989 

Sherpa 32.29 5 0.988 33.14 5 0.978 33.86 5 0.982 

Topaz 29.43 5 0.966 29.37 5 0.991 29.56 5 0.983 

Waxy 24.25 4 0.998 24.65 4 0.995 24.05 4 0.996 
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Table S 5-6 T2 and linear fit statistics from a single measurement of T2 for cooked rice grains of each variety for the first and 

second components of the CPMG decay 

Variety 
Component 1 Component 2 

T2 Points r2 T2 Points r2 

Doongara 31.85 8 0.998 90.36 4 0.995 

Koshihikari 36.00 9 0.996 85.59 4 0.995 

Opus 27.80 8 0.998 64.12 4 0.999 

Reiziq 31.45 8 0.993 77.75 4 0.999 

Sherpa 24.09 8 0.997 61.35 4 0.996 

Topaz 28.79 8 0.991 68.33 4 1.000 

Waxy             

 

S 5.5.6 Signal assignment in raw starches 

Two waxy maize samples were prepared, one deuterated (d-waxy) by suspension in D2O and 

freeze drying twice and one unmodified (h-waxy), with both stored in a desiccator over a 

saturated aqueous solution of K2CO3 in D2O. An aliquot of each sample (d-waxy-FD and h-waxy-

FD) was also freeze dried overnight shortly before measurement (rotor packed within 1 hour). 

1H NMR spectra were recorded on Bruker DRX700 spectrometer with low-range [N-C] probe, 

2.5 mm rotors, at 700 MHz, 25 kHz MAS. 

 Effect of deuteration and freeze drying on 1H SPE spectrum 

The 1H NMR spectrum of the unmodified waxy maize starch shows a sharp peak at ≈4.3 ppm 

(Figure S 5-6, black), likely to be attributed to the OH peak of water and possibly starch. This was 

confirmed by the spectrum recorded for the waxy maize immediately after freeze drying, where 

the sharp signal is no longer observed at 4.3 ppm, leaving only a broad signal (Figure S 5-6, green). 

The maximum of this broad underlying signal lined up with the shoulder of the unmodified trace 

(Figure S 5-6), and is expected to be attributed to non-exchangeable protons of CHx groups of 

starch. 
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Figure S 5-6 1H SPE NMR spectrum of waxy maize (h-waxy) before (black) and immediately after (green) freeze drying 

The 1H NMR spectrum of the deuterated waxy maize starch also displayed a sharp signal at 

≈4.3 ppm (Figure S 5-7, black), and given the previous assignment in Figure S 5-6, this is likely to 

be attributed to the residual OH of water. This was confirmed by the spectrum recorded for the 

deuterated waxy maize immediately after freeze drying, where the sharp signal is no longer 

observed at 4.3 ppm, leaving only a broad signal (Figure S 5-7, green). The maximum of this broad 

underlying signal lined up with the shoulder of the unmodified trace (Figure S 5-7), and is 

expected to be attributed to non-exchangeable protons of CHx groups of starch. 

 

10 8 6 4 2 0 -2
 (ppm)

 Deuterated

 Freeze dried 

 

Figure S 5-7 1H SPE NMR spectrum of deuterated waxy maize (d-waxy) before (black) and immediately after (green) freeze 

drying  
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S 5.5.7 Examples of TopSpin fitting functions 

The extraction of  T2 values from CPMG experiments on rice grains was first explored through the 

use of the built-in TopSpin dynamics centre, where a variety of functions are available to assess 

various aspects of the dynamics of a system. The functions of interest for T2 relaxation times are 

“uxnmrt2” and “expdec”, both of which were assessed. The first, “uxnmrt2” is the most common 

function to extract T2 values; however, the software allows for only one value to be determined 

from the data. The resulting fit was of poor quality (Figure S 5-8), and therefore was not deemed 

to be useful in the multi-component systems being examined. 

 

 

Figure S 5-8 Fit of a single relaxing component using the “uxnmrt2’ function on the exponential decay of signal area with 

increasing echo delay time from a CPMG experiment on a raw rice grain 

The second function “expdec”, allowed for the fitting of multiple components, resulting in a 

much better fit of the data and thus improved determination of individual T2 values. Though the 

fit was improved, the lack of control over the fitting process resulting in poor repeatability of the 

fitting process across samples. In addition, the fitting of more than 3 components at once resulted 

in poor fits, even in samples where more than 2 decaying components were observed in the 

linearized exponential (not shown). 
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Figure S 5-9 Fit of two relaxing components using the “expdec’ function on the exponential decay of signal area with 

increasing echo delay time from a CPMG experiment on a raw rice grain 

An example of the T2 values obtained by each of the methods is shown in Table S 5-7 for 3 

repeats of a single variety of rice. The limitations of the “uxnmrt2” function are clear only allowing 

determination of a single T2 and displayed little consistency between repeats. The “expdec” and 

iterative manual approach that was used in this study yielded similar values; however, the manual 

approach yielded a greater consistency across experimental repeats, and allowed for visualisation 

of the components present in each sample through the log transformations. 

Table S 5-7 Relaxation times of both components observed in CPMG experiments of raw Koshihikari rice grains using 

different T2 extraction methods 

Run 

Manual Approach 
(5.3.2) "uxnmrt2" 

"expdec" 

Comp. 1 Comp. 2 Comp. 1 Comp. 2 

1 1.741 36.664 3.617 0.998 36.159 

2 1.771 35.9151 3.411 1.296 37.268 

3 1.793 34.494 3.745 1.772 21.874 
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Chapter 6 Conclusions and future 

work 
6.1 Fulfilled aims 

The overall aim of this work was to determine what features of starch structure are capable of 

distinguishing different rice cultivars and better understand their digestibility. Starch is a natural 

polymer with a complex multi-level hierarchical structure ranging from molecular to 

supramolecular. Knowing the starch structures that best describes functional properties is useful 

for many purposes and research fields. While the methods in the literature for characterisation of 

supramolecular structures are well researched, current methods to analyse the molecular 

structures do not allow a complete characterisation of the molecular structures. This especially 

applies to analysis of native starch as present in rice flours. 

At the molecular level, methods including capillary electrophoresis in the critical conditions 

(CE-CC and) and nuclear magnetic resonance (NMR) spectroscopy were used to explore the 

dissolution conditions of starch, finding that commonly used solvents such as DMSO/water 

mixtures and aqueous NaOH are not appropriate for accurate characterisation due to incomplete 

dissolution or potential sample degradation. In addition, it was determined that filtration 

significantly degrades the fragile branching structure of amylopectin, an important factor that 

should be considered in separation methods where stationary phases are employed. It was 

determined that anhydrous DMSO with some proportion of LiBr (0.5 to 5.0 %) resulted in faster 

and greater extent of dissolution, with the absence of water reported to result in an altered 

dissolution mechanism [78]. Further modifications in CE-CC experiments, including the use of 

lower concentrations (1 g.L-1) than in the literature (>10 g.L-1), as well as the maintenance of high 

dissolution temperatures (80 °C) resulted in minimised aggregation, greater extent of dissolution 

and greater dissolution stability.  

With reliable dissolution conditions determined, the accurate characterisation of the 

branching structures in starch was achieved by NMR spectroscopy and CE-CC. The average DB 

was determined by NMR spectroscopy; however, the nature of this measurement does not allow 

for individual assessments of the distributions of DBs of amylose and amylopectin. Average DB 

was observed to be proportional with AAC, a result of the bimodal nature of the branching 

structure in starch, where increasing proportion of the less branched population appears to have 

dominating effect of decreasing the average DB. Therefore, it was determined that average DB by 

NMR spectroscopy did not provide significant additional value in comparison to the already well-

established measurement of AAC. 
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The assessment of branching structures was undertaken through the characterisation of 

distributions of electrophoretic mobility distributions by CE-CC. Successful separation of the two 

branching populations, amylose and amylopectin, in native, unmodified rice flours allowed for 

individual assessment of their branching structures. A third, intermediate branching population, 

between amylopectin and amylose, was also observed in some rice cultivars, assigned to the 

theoretical third type of starch mentioned in literature [255], and assumed to be amylopectin with 

long chain branching due to the correlation of its average mobility with the double helix content. 

By relation to other structural factors, the mobility ranges of amylopectin and amylose were 

defined allowing for a reliable interpretation of analysis results. Weight-average mobilities 

revealed that rice cultivars exhibit different branching structures for amylopectin; this was also 

observed for amylose. The width of the distributions of electrophoretic mobility was found to vary 

between varieties, indicating differences in heterogeneity of branching structures. These 

outcomes highlighted the potential to broaden thinking around diversity of amylose and 

amylopectin structures and invites a revision of relationships between AAC and functional 

characteristics such as digestibility and texture. The ability for automation and parallelisation 

(multi-capillary operation) of the method have the potential to minimise labour costs associated 

with measurement and increase throughput. Initial setup costs are moderate ($70,000+), though 

running costs are relatively low with the major costs being consumables including vials and 

solvent (≈$1/sample) and reusable capillaries (≈$6/capillary). Current data analysis protocols 

have also largely automated processing; however, manual inputs are still required at some stages. 

Given the current costs and throughput of the methodology, if the data obtained proves 

meaningful it has promise as a potential candidate in routine analysis. 

Further characterisation at the molecular level was through the measurement of the molecular 

dynamics by solid-state NMR spectroscopy, a property that is influenced by the supramolecular 

structures in starch. Multiple spin-spin relaxation components were observed for whole rice 

grains in the range of 1 – 1000 ms. The first two components were assigned to OH and CHx protons 

within the sample. For the raw rice grains, the OH component was determined to be dominated 

by a convolution of starch and water, exhibiting low spin-spin relaxation times, at the limit of the 

CPMG sequence and similar between varieties. The T2 relaxation times of the CHx component were 

found to differ between the raw grains and display an apparent relationship with the cooked in 

vitro digestibility. The raw grains of the commercial low GI Doongara, and high GI waxy varieties 

displayed significantly different CHx T2 relaxation times. Interestingly, these relaxing components 

represented a very small percentage of the total hydrogen containing structures within sample 

despite their apparent relationship with digestibility.  

Similar work on the cooked grains noted higher T2 relaxation times, likely a direct result of the 

increased molecular mobility due to disruption of ordered structure as a result of gelatinisation; 
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however, no correlation with digestibility was found. In the cooked varieties, the relaxing 

components represented a large proportion of the total sample, and so it is likely that as a result 

of gelatinisation the majority of structure has somewhat normalised, potentially hiding the 

contribution of the relevant component observed in the raw grains. Despite this, the assessment 

of molecular mobility in raw rice grains by solid-state NMR spectroscopy shows promise as a tool 

in the prediction of digestibility. Significant costs would arise from instrumentation ($100,000 - 

$1,000,000+), with consumable costs much lower (reusable sample rotors, $500 each) and no 

sample preparation required. Automation of sample measurement is currently very cost 

prohibitive, increasing labour requirements, while data processing itself can be largely automated 

in software resulting in a current sample throughput of ≈10 samples/day. The potential for 

application on benchtop instrumentation (>$100,000) increases the accessibility of the 

methodology, aligning it well as a potential candidate for routine analysis. While current benchtop 

instrumentation does not allow for sample measurement at the magic angle, the relaxometry work 

in this thesis was done with a static sample, therefore the angle at which it is placed is irrelevant. 

In addition to this, specific relaxometry instrumentation is commercially available, offering faster 

acquisitions and access to a wider range of relaxation times than was possible with 

instrumentation in this study.  

The results from this thesis also identified key areas requiring further study, including 

additional assessment of the iodine binding conditions of the CE-CC method, as well as 

confirmation of dissolution conditions in high amylose (>30% AAC) rice flours. In the 

measurement of molecular mobility, future work is needed to explore the potential of extracting 

additional components of the CPMG relaxation sequence for a complete analysis of the relaxing 

components on this time scale, as well as an investigation into faster decaying components (<1 

ms). 

6.2 Further investigation of starch structure and relation 

to digestibility 

The previous chapters of this study explored the accurate analysis of molecular starch 

structure in rice. And while correlations of molecular structure were observed with the 

digestibility, the supramolecular structures are also a major component of the starch structure. 

Therefore, in the exploring the aims of this thesis, the supramolecular structure must also be 

assessed to obtain a more thorough assessment of  the role of starch structure in rice digestibility. 

From the assessment of multiple levels of starch structure, a wider range of potential tools to 

predict digestibility could be explored, with the potential for translation to other rice grain 

properties. The link between AAC and digestibility is currently the only published link available 
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with which researchers can predict digestibility characteristics of a given rice sample [26]. A 

major study including over 200 unique rice cultivars, reported a negative apparent correlation 

with r2 of 0.73, while much smaller studies with a limited range of AAC observed an r2 of 0.92 (n= 

8) [170], or no link at all (n=8) [311], indicating the likelihood of additional drivers at play. In vitro 

digestion and AAC data for a diverse set of 10 raw rice flours (AAC of 10 – 35 %) was provided by 

The University of Sydney and NSW DPI.  While no clear link has been reported between 

digestibility of raw and cooked rice, an assessment of the impact of starch structure on enzymatic 

digestion can still be made. A preliminary investigation of the role of supramolecular structures 

of starch in raw rice grains with the digestibility was undertaken. 

6.2.1 Short-range molecular order 

The short-range molecular order was assessed through the determination of double and single 

helix content by solid-state 13C NMR spectroscopy [118]. The arrangement of double helices arises 

from highly branched amylopectin molecules, and single helices from less branched amylose 

molecules. Single helices typically form in the presence of lipids or other suitable inclusions, so 

their abundance depends on several factors. The helices represent the smallest unit of molecular 

organisation in starch structure and are the building blocks of the higher levels of organisation.  

No clear correlation between the glucose concentration and either double helix (Figure 6-1A) 

or single helix (Figure 6-1B) contents was observed. The lack of correlation with double helix 

content is interesting; however, given the size scale of helical structure (4-6 nm) it is possible that 

it is rather the spatial distribution and packing of helices that is a more important factor than the 

helix content itself. The weakly trending increase in digestibility with increasing single-helix 

content was counterintuitive, as single helix content for these varieties was positively correlated 

with AAC (data not shown). However, it has been suggested that rearrangements of amylose into 

helices during digestion are responsible for its apparent rate limiting behaviour [161], though this 

does not appear to be linked to the initial single helix content (Figure 6-1B). 
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Figure 6-1 Glucose concentration after 90 minutes of enzymatic digestion of raw rice flour plotted against A) Double helix 

content and B) Single helix content for different rice flours. Error bars for glucose concentration are the standard error of 4 

repeat digestions. Error bars for helix content are an estimated relative standard deviation of 2.4% [118]. Solid circles are 

non-waxy and open circles waxy varieties 

Despite a lack of ability in predicting the digestibility, the double and single helix content was 

capable of distinguishing varieties, potentially a descriptor or factor influencing properties of rice 

other than digestibility. It would be interesting to further explore if the initial concentration of 

single helices is a factor in the apparent rate limiting effect of amylose chains on digestion in 

cooked rice. In contrast, the phase transformations of amylopectin and double helix structure 

during gelatinisation suggest that initial double helix content is likely not a strong driver of cooked 

rice properties, but the individual characteristics of the helices may be [312].  

6.2.2 Long-range molecular order 

The long-range molecular order was assessed through the determination of the extent of A-

type and V-type crystalline structure by powder X-ray diffraction [131]. This long-range A-type 

crystalline order arises from the packing of double helices while the V-type polymorph is 

analogous to single helix content, though only those arranged in crystalline form. The remaining 

structure is typically deemed to be amorphous, though can still include single and double helix 

content.  

The relation of digestibility to A-type crystallinity provided an interesting observation, 

indicating that increasing crystallinity of the starch resulted in decrease susceptibility to digestion 

of the raw rice flours (Figure 6-2A). However, a waxy variety goes against this apparent trend, by 

displaying the highest crystallinity and highest digestibility. This may be an outlier, potentially a 

result of significant differences in enzyme accessibility on the macroscopic scale compared to the 

other varieties, resulting in greater accessibility and thus greater digestibility. However, data on 

the macroscopic scale was not obtained and so this cannot be confirmed. The V-type crystalline 

structure also yielded an interesting observation, with digestibility apparently increasing with the 

concentration of V-type polymorph (Figure 6-2B). This relationship was similar to observations 
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on single helix content (Figure 6-1B), and again the opposite of the expected trend, given the 

positive correlation of V-type crystallinity with AAC (data not shown). Again, factors such as lipid 

content and spatial distribution, or branching structures may be factor in this. The highly 

digestible waxy variety appeared to go against this trend, indicating that this level of structure is 

likely not a sole factor in explaining its high digestibility.  
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Figure 6-2 Glucose concentration after 90 minutes of enzymatic digestion of raw rice flour plotted against extent of A) A-

type crystallinity and B) V-type crystallinity for different rice flours.  Error bars for glucose concentration are the standard 

error of 4 repeat digestions. Error bars for helix content are an estimated relative standard deviation of 3.9% for A-type 

and 16.8 % for V-type [131]. Solid circles are non-waxy and open circles waxy varieties 

While some link of the long-range crystalline order with the digestibility was observed, this did 

not hold true for all varieties, with the waxy variety exhibiting an apparently opposite behaviour. 

Despite this, the long-range crystalline structure was still capable of distinguishing varieties and 

may be relevant to properties other than digestibility. It would also be interesting to explore the 

role of these structures in cooked rice, as while long-range order will likely be mostly gelatinised, 

the V-type crystalline structure may in fact serve as a seed in the formation of resistant starches 

observed through cooking [31]. 

6.2.3 Semi-crystalline lamellar structure 

The features of the semi-crystalline lamellar structure of starch were assessed by small angle 

X-ray scattering. The semi-crystalline structure of starch is composed of repeating rings of semi-

crystalline and amorphous lamellae that form the starch granule. These semi-crystalline lamellae 

are then comprised of repeating crystalline and amorphous lamellae. Through fitting of the SAXS 

lamellar peak of starch, the relative extent of semi-crystalline structure, lamellar repeat thickness 

and heterogeneity of lamellar spacing was assessed. 

The relative intensity of the SAXS lamellar peak serves as an indicator of the extent of semi-

crystalline structure in the starch, with higher intensity indicative of a greater extent of semi-

crystalline structure. Due to the influence of packing densities on the relative intensity in SAXS 

care must be taken in packing and hydration of samples. Unfortunately, consistent packing can be 
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difficult to perform, and in these measurements the error in relative intensities was quite high. 

Regardless, an apparent decrease in the digestibility was seen at higher peak intensities (Figure 

6-3), similar to observations of increased crystallinity (Figure 6-2A) and in line with the 

relationship of peak intensity with AAC (Chapter 2). The waxy variety was an outlier again, 

exhibiting the highest extent of semi-crystalline structure and the highest digestibility, 

highlighting that there are clearly additional factors affecting digestibility.  
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Figure 6-3 Glucose concentration after 90 minutes of enzymatic digestion of raw rice flour plotted against the relative 

intensity of the SAXS lamellar peak of starch for rice flours. Error bars for glucose concentration are the standard error of 4 

repeat digestions.  Error bars for relative intensity are the standard error of 3 repeats. Solid circles are non-waxy and open 

circles waxy samples 

From the lamellar peak position and peak width, the lamellar repeat thickness and the 

uniformity of the lamellar repeat thickness could be determined. The lamellar repeat thickness 

refers to the length of one crystalline plus one amorphous lamella within the semi-crystalline 

lamellae and is typically confined to the range of 9-10 nm in starch. The rice varieties exhibited 

lamellar repeat thicknesses within this range which also clearly differed between varieties (Figure 

6-4A). A smaller lamellar repeat thickness appeared to be linked with a lower digestibility in non-

waxy varieties, with a plateau of the  increasing glucose concentrations after 9.4 nm. The exception 

to this was the waxy variety, displaying a higher digestibility, above the range of the plateau. It 

appears that the lamellar repeat thickness plays some role in digestibility, but is not a sole driver, 

likely a result of the very small differences in size (<1 nm) playing a smaller role in the grand 

scheme of the semi-crystalline structure. The uniformity of the lamellae was assessed by the half-

width at half-maximum (HWHM) of the lamellar peak (Figure 6-4B). Given the close relationship 

of lamellar repeat length with HWHM, similar trends were observed as were for lamellar repeat 

length. Digestibility was observed to increase between a HWHM of 1.6 to 2.0, before plateauing, 

while the waxy variety did not follow this trend again reporting much higher digestibility despite 

similar lamellar structure (Figure 6-4B).  
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Figure 6-4 Glucose concentration after 90 minutes of enzymatic digestion of raw rice flour plotted against A) Average 

lamellar repeat thickness and B) Average HWHM of the SAXS lamellar peak for rice flours. Error bars for glucose 

concentration are the standard error of 4 repeat digestions.  Error bars for lamellar repeat thickness and HWHM are the 

standard error of 3 repeats. Solid circles are non-waxy and open circles waxy varieties 

6.2.4 Future assessment of supramolecular structures role in digestibility of rice 

grains 

A clear role of the investigated levels of crystalline structure as rate defining factors in the 

digestibility of rice flour was not observed for the rice varieties measured, with the waxy variety 

always yielding the opposite behaviour to the non-waxy varieties. This could arise from 

differences in waxy varieties that are separate from the starch structures in this preliminary work. 

This raises the question of whether waxy samples should be treated as a separate class of grains 

in analysis, though further work would be required. It is possible that these structures have some 

role in the digestibility but is clear that no one level of structure is a definitive driver for 

digestibility. For example, the act of digestion itself changes the structure in some way that is not 

directly linked to the initial structures present but may be influenced by them. It is then necessary 

to expand the study of these structures to a greater range of rice varieties to confidently assess 

their role, whether significant or not. It should be noted that the opportunity to perform this study 

on non-commercial breeding samples provides a unique opportunity to analyse a very diverse 

sample set not available with commercial varieties. So, while only 10 varieties were analysed in 

this preliminary study, the high diversity still allows for valuable insights to be gained on the 

influence of starch structure on digestibility. This diversity is highlighted by the broad range of 

AAC (10 to 35 %), in addition to the clear ability to distinguish varieties by their crystalline 

structures, both areas where commercial samples typically show much less diversity. As a result, 

the relationship of these structures on other properties of rice may also be confidently explored. 

Future directions for this data could also explore its relation to the digestibility of cooked rice 

grains, determining if some pre-existing factors of the supramolecular structure are catalysts for 

the differences in digestibility after cooking. This is supported by the knowledge that, above the 
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gelatinisation temperature, the rate of water ingress into the grain becomes the limiting factor 

[313]. This means that physical grain dimensions and porosity are likely to be the more dominant 

factors in cooking time when gelatinisation temperature is exceeded, properties that may be a 

product of the supramolecular starch structure.  The topic of cooking is an issue that is present in 

many studies of starch and starchy cereal digestion, as realistically, the sample matrix should 

mimic what is native to the in vivo mechanism. This is further complicated by the variability 

observed in vivo as well as the attempts to develop a proxy for in vivo using in vitro methods. For 

direct assessments of human digestion, in vivo digestion studies would be most appropriate; 

however, in vitro studies offer some valuable insight in initial investigations [26]. The challenge 

for the field of research then becomes defining appropriate cooking protocols that standardise the 

method of cooking and clearly define a point at which cooking is complete. These two factors can 

be difficult to reconcile, as differences between varieties such as physical size and gelatinisation 

temperature can result in variability in minimum cooking times. Avoiding this could be achieved 

by overcooking all samples; however, the impacts of this on digestibility are not clear. This is 

further complicated by the decisions and requirements of manufacturers, especially when 

considering labelling which would require not only determination of individual cooking 

recommendations but also assessments of consistency and adherence to allowed variations. This 

is a huge undertaking, and an important aspect of the rice research field that needs to be 

addressed. 

Therefore, in assessing the relationships of supramolecular structures, and indeed of 

molecular structures to digestibility in cooked rice grains, further research in the field needs to be 

undertaken in defining consistent conditions in which the digestibility can be assessed. This is a 

significant undertaking, requiring extensive study of the effects of cooking on starch structure and 

clear definitions of what constitutes as “cooked” for rice grains. 

6.3 A brief discussion on development of tools for use in 

routine testing 

A wide array of tools is already employed in the routine testing of rice grains, yielding 

important information on parameters relevant to the grain quality. The scope of breeding 

programs is broad, with development of new varieties taking up to 10 years and involving the 

assessment of thousands of candidates every year. This time span can be impacted by factors such 

as the limitations of seasonal growing cycles, especially where glasshouses are not available or 

are not appropriate, as well as throughput of phenotyping capabilities. While glasshouses can 

provide greater throughput in early stages, greater space requirements in later stages as well as 

the necessity of testing local growing conditions make them unfeasible. As a result, the parameters 
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measured as part of routine testing need to be high quality, provide meaningful and useful data 

relevant to the goals of the breeding program, as well as be high throughput to allow multiple 

traits to be measured and analysed before the next sowing date. Therefore, the inclusion of new 

parameters as part of routine testing must then be thoroughly assessed in its value relative to the 

tools already available and to the desired outcomes. 

The determination of factors of starch structure relevant to digestibility here was intended to 

better understand the drivers of digestibility in rice grains. This is not intended to replace direct 

measurements of digestibility, but rather act as a tool with which to assess samples likely to 

exhibit a higher or lower digestibility, allowing a better selectivity in breeding where certain 

digestibility characteristics are a grain quality goal. The assessment of branching structures by 

CE-CC provides an abundance of information on the amylose and amylopectin molecules in starch. 

The differences observed between varieties on the molecular level show promise in defining the 

role of different branching structures in digestibility, expected to be a complementary factor with 

AAC. The use of CE-CC as a tool for routine testing shows promise due to the potential for not only 

automation, but also parallelisation given recent advances in instrumentation, allowing for high 

throughput operation. Using the same CE instrumentation, Taylor Dispersion Analysis could also 

be employed in further characterisation of starch molecules, allowing for a size-based 

characterisation of starch molecules [277]. 

Additionally, the apparent link between molecular dynamics in NMR spectroscopy and 

digestibility provides a simple method with which digestibility could be predicted. While 

measurements in this work were performed on large and expensive spectrometers, the method is 

also applicable on smaller and cheaper benchtop spectrometers, increasing accessibility to 

instrumentation. While assessments of molecular mobility are simple and can be optimised for 

higher throughput, there does not yet exist methods to allow for parallelisation. Automation is 

possible but is generally not a time saver in the case of this method.  

The methods employed in the measurement of supramolecular structures as discussed in 

Section 2 yield an abundance of information on the large-scale structural differences between 

starch in rices. However, with current instrumentation, these approaches are unsuitable for most 

routine testing programs as a result of limitations of access to instrumentation, of their high costs 

and associated expertise required for operation and maintenance. In addition, data analysis can 

be highly time consuming and its reliability heavily depends on the skills of the operator. Thus, 

while supramolecular structure may be found in the future to be a strong driver in the digestibility 

of cooked rice grains, it is not expected that the methods employed will be appropriate in routine 

testing with the current climate of instrumentation and analysis, serving more as a fundamental 

analysis in understanding digestibility rather than a predictive tool. 
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6.4 Future possibilities: Incorporation of structural 

characterisation in other aspects of rice grain quality 

Given the high starch content of most rices (≈90 %) the impact of starch structure on 

digestibility was a strong starting point for understanding how digestibility can vary. In addition, 

the protein and lipid contents of rice need to be considered, as they are known to influence 

properties such as texture. While starch structure was found to differ substantially between rice 

varieties, not all types of structure could explain differences in digestibility. Given the complexity 

of starch structure, and indeed of rice grain properties, it is likely that differences in starch 

structure can also impact on the other important properties of rice such as texture. Therefore, 

future work could involve the assessment of the multiple levels of structural with respect to other 

facets of rice besides digestibility. Crystalline structures are especially expected play a role in 

many of the textural and cooking properties, given their positioning as a factor controlling water 

ingress into the starch.  

Beyond the relation to other properties of rice grains, the structural characterisation of starch 

may also be applied to other starchy cereals and grains, especially in cases where the starch 

content is lower. Such a cross-species assessment would provide further insight into the role of 

starch structure for cereal/grain properties in general. It is expected that the methodologies 

applied in this work are applicable to other types of cereals/grains with minimal to no 

modification, a predetermined goal in the selection and development of methods employed in this 

work. 
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