DISEÑO, CONSTRUCCION E IMPLEMENTACION DE UN PROCESO OXIDATIVO AVANZADO ACOPLADO A UN PROCESO OXIDATIVO BIOLOGICO A ESCALA DE LABORATORIO, PARA EL TRATAMIENTO DE AGUA RESIDUAL

CAROLINA GOMEZ AGUILAR CARLOS ANDRES OCAMPO NARANJO

UNIVERSIDAD DEL QUINDIO

FACULTAD DE CIENCIAS BASICAS Y TECNOLOGIAS

PROGRAMA DE QUIMICA

ARMENIA, QUINDIO

2005

DISEÑO, CONSTRUCCION E IMPLEMENTACION DE UN PROCESO OXIDATIVO AVANZADO ACOPLADO A UN PROCESO BIOLOGICO OXIDATIVO A ESCALA DE LABORATORIO, PARA EL TRATAMIENTO DE AGUA RESIDUAL

CAROLINA GOMEZ AGUILAR CARLOS ANDRES OCAMPO NARANJO

Informe final de Proyecto de Grado presentado como requisito parcial para optar al titulo de Químico.

PEDRO NEL MARTINEZ YEPES, Ing. Q., M. Sc., Ph. D.

Profesor del Programa de Química

Director del Proyecto de Grado

UNIVERSIDAD DEL QUINDIO

FACULTAD DE CIENCIAS BASICAS Y TECNOLOGIAS

PROGRAMA DE QUIMICA

ARMENIA, QUINDIO

2005

AGRADECIMIENTOS

Al grupo de trabajo del Laboratorio de Investigación en Química Industrial, al Laboratorio Ambiental, al Laboratorio de Post cosecha, a los auxiliares de laboratorio y profesores por su colaboración y apoyo.

DEDICATORIA

A mis padres, a mis hermanos A mi familia

Carolina

A mi familia, y a mis padres

Carlos Andrés

INDICE GENERAL

	Pág
1. RESUMEN	
2. OBJETIVOS	1
2.1. OBJETIVO GENERAL	1
2.2. OBJETIVOS ESPECIFICOS	1
3. ANTECEDENTES	2
3.1. CICLO DEL AGUA	2
3.2. TIPOS DE CONTAMINANTES EN EL AGUA Y PARAMETROS DE	
MEDIDA	4
3.3. OXIDACIÓN AVANZADA PARA EL TRATAMIENTO DE AGUA	
RESIDUAL	13
4. METODOLOGIA	20
4.1. DISEÑO	20
4.1.1. Proceso de Oxidación Biológica (POB)	20
4.1.2. Proceso Oxidación Avanzada (POA)	21
4.2. CONSTRUCCION	22
4.2.1. POB	22
4.2.2. POA	22
4.3. IMPLEMENTACION	22
4.3.1. Activación de lodos y POB	23
4.3.2. POA	24
4.3.3. Sistema acoplado POA-POB	24
5. RESULTADOS Y ANALISIS DE RESULTADOS	26
5.1. POB	29

5.2. POA	39
5.3. SISTEMA ACOPLADO	55
5.4. BIODEGRADABILIDAD DEL FENOL	67
6. CONCLUSIONES	70
7. RECOMENDACIONES	72
8. BIBLIOGRAFIA	74
ANEXOS	78

INDICE DE TABLAS

	Pág
TABLA 1. TAMAÑO DE PARTICULA Y METODO DE SEPARACION	9
TABLA 2. POTENCIAL DE OXIDACION	16
TABLA 3. RENDIMIENTO CALCULADO POR METODO DE FEHLING	30
TABLA 4. RENDIMIENTO CALCULADO POR METODO DE ANTRONA	31
TABLA 5. CARACTERIZACION MICROBIOLOGICA DE LODOS	38

INDICE DE FIGURAS

			Pág.
FIGURA	1.	RUTA DE OXIDACION DEL FENOL	19
FIGURA	2.	RECTA DE VELOCIDAD DE SEDIMENTACION	28
FIGURA	3a.	CONCENTRACION DE ÁCIDO ACÉTICO	
		CALCULADO POR ESPECTROMETRÍA UV-VIS	32
FIGURA	3b.	COMPORTAMIENTO DEL pH	33
FIGURA	4.	PRODUCCION DE CO ₂ DEL REACTOR BIOLOGICO	34
FIGURA	5a.	CONTROL PH EN EL POB CON ACIDO ACETICO	35
FIGURA	5b.	CONTROL PH EN EL SISTEMA ACOPLADO	36
FIGURA	5c.	CONTROL PH EN EL POB ALIMENTADO CON FENOL	37
FIGURA	6	CURVA DE PROLIFERACIÓN BACTERIANA	38
FIGURA	7a.	POA DATOS TABLA V	39
FIGURA	7b.	POA DATOS TABLA VI	40
FIGURA	7c.	POA DATOS TABLA VII	41
FIGURA	7d.	POA DATOS TABLA VIII	42
FIGURA	7e.	POA DATOS TABLA IX	43
FIGURA	7f.	POA DATOS TABLA X	44
FIGURA	7g.	POA DATOS TABLA XI	45
FIGURA	7h.	POA DATOS TABLA XII	46
FIGURA	7i.	POA DATOS TABLA XIII	47
FIGURA	7j.	POA DATOS TABLA XIV	48
FIGURA	7k.	POA DATOS TABLA XV	49
FIGURA	71.	POA DATOS TABLA XVI	50
FIGURA	7m.	POA DATOS TABLA XVII	51
FIGURA	7n.	POA DATOS TABLA XVIII	52
FIGURA	70.	POA DATOS TABLA XIX	53
FIGURA	7p.	POA DATOS TABLA XX	54
FIGURA	7q.	POA DATOS TABLA XXI	55
FIGURA	8a.	LOTE 1 DEL SISTEMA ACOPLADO	56
FIGURA	8b.	LOTE 2 DEL SISTEMA ACOPLADO	57
FIGURA	8c.	LOTE 3 DEL SISTEMA ACOPLADO	58
FIGURA	8d.	LOTE 4 DEL SISTEMA ACOPLADO	59
FIGURA	9.	SEGUIMIENTO DE PH EN ALIMENTO Y PRODUCTO	
		DEL SISTEMA ACOPLADO	60
FIGURA	10a.	PORCENTAJE DE RENDIMIENTO DEL LOTE 1	62
FIGURA	10b.	PORCENTAJE DE RENDIMIENTO DEL LOTE 2	63

FIGURA	10c.	PORCENTAJE DE RENDIMIENTO DEL LOTE 3	64
FIGURA	10d.	PORCENTAJE DE RENDIMIENTO DEL LOTE 4	65
FIGURA	11a.	PORCENTAJE DE RENDIMIENTO SEMANA 1	66
FIGURA	11b.	PORCENTAJE DE RENDIMIENTO SEMANA 2	66
FIGURA	12.	BIODEGRADABILIDAD DEL CONTAMINANTE	67
FIGURA	13.	RENDIMIENTO EN EL POB CON FENOL	68

INDICE DE DIAGRAMAS

	Pág
DIAGRAMA 1. UNIDAD DE TRATAMIENTO BIOLOGICO	20
DIAGRAMA 2. UNIDAD DE OXIDACION AVANZADA	21
DIAGRAMA 3. UNIDAD ACOPLADA PARA EL TRATAMIENTO DE	
AGUA	25

INDICE DE IMAGENES

	Pág
IMAGEN 1. REACTOR DE OXIDACION BIOLOGICA	26
IMAGEN 2. SEDIMENTADOR	27
IMAGEN 3. REACTOR DE OXIDACION AVANZADA	29
IMAGEN 4. SISTEMA ACOPLADO	61

INDICE DE ANEXOS

	Pág.
ANEXO A. TABLAS DE RESULTADOS	68
ANEXO B. FIGURAS	69
ANEXO C. DETERMINACION SOLIDOS TOTALES	70
ANEXO D. VELOCIDAD DE SEDIMENTACION	71
ANEXO E. METODO DE FEHLING	72
ANEXO F. METODO DE ANTRONA	73
ANEXO G. CUANTIFICACION DE CO2	74
ANEXO H. DETERMINACION DOO	75
ANEXO I. ANALISIS MICROBIOLOGICO	76
ANEXO J. CALIBRACION BOMBA	77

1. RESUMEN

Este trabajo se realiza teniendo en cuenta la gran producción de materiales sintéticos que son difíciles de degradar y/o son tóxicos para el ambiente, una de las características de los tiempos modernos. Con el fin de mejorar el rendimiento, los compuestos han sido diseñados específicamente para tener una larga vida útil y no reaccionar con los productos químicos ambientales más comunes. Estas mismas características evitan su degradación. A pesar de que la mayoría de los compuestos orgánicos presentes en el agua residual pueden ser tratados usando métodos convencionales, en muchos de los casos, la información es escasa o nula acerca de los efectos que dichos compuestos tienen, a largo plazo, sobre el medio ambiente; la liberación incontrolada de compuestos orgánicos volátiles (COV) y compuestos orgánicos volátiles tóxicos (COVT) en las plantas de tratamiento puede conducir a la necesidad de cubrir las instalaciones de pretratamiento y tratamiento primario en las plantas, así como la implantación de tratamientos especiales para el proceso de los compuestos que se liberan. En algunos casos puede ser necesario un control previo en el origen para eliminar estos compuestos antes de incorporar los residuos a los sistemas de recolección.

Una técnica de tratamiento preliminar para aguas de desecho que poseen compuestos de este tipo son los Procesos de Oxidación Avanzada (POA), los cuales permite mediante combinación de técnicas generar compuestos biodegradables, son técnicas fotoquímicas y electroquímicas que están siendo investigadas mundialmente, para hacer más óptima su utilización. El POA tipo Fenton, ha sido uno de los más investigados, es una técnica de tratamiento que emplea como oxidante el peróxido de hidrógeno y como catalizador sales de hierro.

Por todas estas características, los POA se han acoplado a Procesos de Oxidación Biológica (POB), para asegurar un mayor rendimiento en los resultados. El estudio de los sistemas acoplados conlleva al empleo generalizado de las técnicas de tratamiento de aguas residuales de alta eficiencia.

2. OBJETIVOS

2.1. OBJETIVO GENERAL

Diseñar, construir e implementar un sistema acoplado de oxidación avanzada oxidación biológica a escala de laboratorio para el tratamiento de agua residual sintética
que contiene compuestos de difícil, o poco, biodegradabilidad.

2.2. OBJETIVOS ESPECIFICOS

- Diseñar las unidades de Proceso de Oxidación Avanzada (POA) y Proceso de Oxidación Biológica (POB), para el tratamiento de agua residual a escala de laboratorio.
- Construir las unidades experimentales para el mejoramiento de calidad de aguas residuales.
- Implementar el POB con aguas residuales sin contaminantes tóxicos.
- Ensayo de la unidad POB con sustancias no biodegradables o tóxicas, para observar el comportamiento de la unidad.
- Elegir el POA con una sustancia reconocida que permitan el funcionamiento de los lodos activados.
- Implementar el POA con una sustancia no biodegradable y/o tóxica, acoplada a la unidad POB.
- Comparar el sistema de tratamiento acoplado con los procesos individuales.

3. ANTECEDENTES

3.1. CICLO DEL AGUA

La contaminación del agua se da durante su curso y por su uso, así ésta adquiere gases, líquidos y sólidos que se disuelven pero conservan su naturaleza; otros compuestos reaccionan con el agua u otros compuestos del medio acuoso para formar nuevas sustancias. Algunos sólidos pueden permanecer en suspensión, algunos líquidos pueden ser inmiscibles e inactivos, y algunos gases solo se pueden retener mecánicamente.

La necesidad de agua de las ciudades, industrias y agricultura supera el suministro de aguas naturales, es decir, las aguas que han pasado a través del ciclo evaporación, condensación y precipitación. La purificación natural de las aguas contaminadas nunca es rápida, y las corrientes fuertemente contaminadas pueden cruzar grandes distancias durante muchos días de flujo, antes de que se alcance un grado considerable de purificación. El agua residual bruta contiene, frecuentemente, numerosos microorganismos patógenos o causantes de enfermedades que habitan en el aparato intestinal humano, o que pueden estar presentes en ciertos residuos industriales, en donde los residuos de la síntesis de productos químicos orgánicos y de la diseminación de los biocidas químicos son grandes contaminantes del ambiente; también suele contener nutrientes, que pueden estimular el crecimiento de plantas acuáticas y, por último, puede contener compuestos tóxicos. Además, la longevidad del hombre lo sujeta a los productos químicos de esta clase durante más años que antes y agravan, en tiempo y concentración, las amenazas contaminantes a que se encuentra expuesto. Por estas razones la eliminación inmediata y sin molestias del agua residual desde sus fuentes de generación, seguida de su tratamiento y evacuación, no es solamente deseable sino que es necesaria en una sociedad industrializada.

La forma en que la naturaleza purifica el agua parece permanecer fuera del alcance económico de la sociedad actual. Por otra parte, ni el tratamiento convencional de aguas residuales ni los procesos convencionales de purificación de aguas prometen alcanzar el equivalente a la evaporación y condensación de agua. La remoción de 90- 95% de los sólidos en suspensión, la DBO y la DQO de las aguas de desecho antes de la descarga de los efluentes a las aguas receptoras no se considera suficiente; tampoco la purificación natural de las aguas receptoras, para ser usada nuevamente por el hombre, es aceptada como suficientemente rigurosa para proporcionar los requisitos de seguridad y sabor, y la utilidad general de tales aguas.

Actualmente, las normas que controlan la industria en el tema de contaminación obliga a las empresas a realizar procesos más limpios, trabajando con diagramas de producción en donde el residuo es reciclado, los subproductos se recuperan y el agua se reutiliza, es decir, las únicas corrientes de entrada y salida en una planta son materias primas y productos. Idealmente, los únicos residuos limpios son hidrógeno, oxígeno, dióxido de carbono, agua y pocas cantidades de calor residual.

El objetivo general de las normas de las aguas que sirven primordialmente como receptoras de agua residual, es la prevención de molestias y la conservación de la belleza de las masas de aguas naturales. Por ello, las normas prescriben que las aguas receptoras no deberán recibir cargas muy altas que les impartan olores ofensivos, ni contengan sólidos visibles flotantes o sedimentables, aceites o depósitos de lodos. Puesto que la descomposición anaeróbica desprende olores desagradables, las descargas de residuos no deben agotar el contenido de oxígeno disuelto (OD) de las aguas receptoras.

Los organismos terrestres extraen su oxígeno de la atmósfera; los organismos acuáticos lo obtienen del OD en el agua. Debido a que el agua contiene solamente cerca de 0.8% en volumen a temperatura de 10°C aproximadamente, mientras que la atmósfera contiene alrededor de 21% en volumen, el medio acuático es inherente y críticamente sensible a las demandas de oxígeno que lo pueblan. Por consiguiente, la determinación del OD en el agua

en relación con su valor de saturación y de la cantidad y velocidad de la utilización del oxígeno por la carga microbiana presente (DBO), proporciona un medio rápido y útil para identificar el estado de contaminación del agua e indirectamente, también, la cantidad de materia orgánica sujeta a descomposición contenida en ésta en un tiempo determinado.

3.2. TIPOS DE CONTAMINANTES EN EL AGUA Y PARAMETROS DE MEDIDA

Los contaminantes de las aguas residuales son mezclas de complejos compuestos orgánicos e inorgánicos. Normalmente, no es ni práctico, ni posible obtener un análisis completo de las aguas residuales, por lo cual se han desarrollado métodos normalizados para el análisis de los niveles de contaminación de esta agua.

Los contaminantes químicos pueden ser de tipo orgánico o inorgánico, los compuestos orgánicos biodegradables demandan un consumo de oxígeno por la degradación biológica y los compuestos inorgánicos tienen gran facultad de ser tóxicos, y algunos demandan un consumo de oxígeno para su biodegradación. Si hay sulfitos y nitritos estos toman oxígeno para formar sulfatos y nitratos, respectivamente. Los iones metálicos como mercurio, arsénico, cobre, zinc, níquel, cromo, plomo y cadmio, aún en bajas concentraciones, pueden causar daños en los ecosistemas.

Dentro de los contaminantes físicos están los cambios térmicos, los colorantes, la turbidez (producida por los sólidos en suspensión), la espuma y la radiactividad. Los contaminantes biológicos son los generadores de enfermedades como el cólera, la tifoidea y otras.

Casi todas las propiedades físicas del agua, así como sus propiedades químicas y biológicas, dependen de la temperatura. Sus variaciones, con la temperatura son tan grandes que frecuentemente hablamos de la temperatura misma, en vez de las propiedades dependientes de ella, como factores que controlan el comportamiento del agua.

Las variables medibles del agua, dependen de su destino, las más importantes son Concentración de Oxígeno Disuelto (OD), Demanda Biológica de Oxígeno (DBO), Demanda Química de Oxígeno (DQO), pH, color, turbidez, dureza, Sólidos Disueltos Totales (STD), Sólidos en Suspensión (SS), concentración de productos tóxicos (o en cualquier caso especiales o en duda), olor, temperatura (T).

La OD se afecta por la temperatura, el oxígeno disminuye su solubilidad al aumentar la temperatura, y aumenta la solubilidad al disminuir la temperatura. Las especies vivas en el agua que demandan un alto contenido de oxígeno, se asfixian y se desplazan a lugares donde el OD es superior.

La demanda de oxígeno en una muestra de agua residual se puede evaluar de varias formas:

- DTeO: Demanda Teórica de Oxigeno, es la cantidad teórica estequiométrica de oxígeno, para oxidar determinado compuesto completamente. Solo puede evaluarse si se dispone de un análisis químico completo del agua residual.
- DQO: Demanda Química de Oxígeno, es el oxígeno requerido para oxidar los compuestos susceptibles de oxidación al dicromato o permanganato, en medio ácido. El método a emplear pueden ser el Método Normalizado de oxidación al dicromato, el Ensayo de Oxidación al permanganato, los Ensayos de Evaluación rápida de DQO (no requieren el tiempo del método de dicromato y arroja resultados del 65% de aproximación del método normalizado y dependiendo del tipo de agua residual) y los Métodos instruméntales son muy rápidos y de resultados reproducibles.
- DBO: Demanda Biológica de Oxígeno, es el oxígeno necesario para oxidar los materiales orgánicos carbónicos, el nitrógeno oxidable y los compuestos químicos reductores (ión ferroso, sulfitos, sulfuros, que se oxidan por OD).

La DBO es un parámetro importante empleado como una medida de la cantidad de oxígeno requerido para la oxidación, por acción biológica aeróbica, de los productos orgánicos biodegradables de naturaleza carbónica o nitrogenada, presentes en una muestra de agua.

La DBO puede valorarse por el Ensayo de dilución para evolución de la DBO, donde la dilución depende de la estimación de contaminantes responsables del consumo de oxígeno. La utilización de oxígeno en este ensayo es muy lenta y frecuentemente los ensayos alcanzan el valor máximo de DBO a los 20 días o más de incubación, conocido como DBO final. En la práctica se realiza la DBO₅, debido al tiempo requerido, donde son 5 días de incubación, y sigue involucrando demasiado tiempo.

Muchos compuestos orgánicos y algunos iones inorgánicos oxidados en DQO no son biodegradables, esto conlleva a una diferencia entre el valor de DQO y el valor de DBO, de una misma muestra.

Los valores de DBO tienen, además, la interferencia del uso de cantidades insuficientes de microorganismos en las siembras. Otros problemas son la aclimatación de los lodos al medio y la presencia de algas.

También existen métodos manométricos para encontrar la DBO, estos se fundamentan en registrar cambios físicos, por ello su precisión es similar a los métodos normalizados. El ensayo también necesita 5 días de incubación a 20°C y con agitación continua.

La reacción de nitrificación es un inconveniente en la determinación de la DBO. Esta reacción se basa en la transformación del ión amónio (NH₄⁺) en nitrito por presencia de Nitrosomonas:

$$2 \ NH_4{}^+ + \ 3O_2 \quad \xrightarrow{\text{nitrosomona}} \quad 2NO_2{}^- + 2H_2O \ + \ 4H^+$$

Finalmente los nitritos se oxidan a nitratos por presencia de Nitrobacter:

$$2NO_2^- + O_2 \xrightarrow{\text{nitrobacter}} 2NO_3^-$$

Pero, aunque la reacción de oxidación de materia carbónica y de la nitrogenada puede ocurrir simultáneamente, la nitrificación normalmente no comienza hasta que la demanda de oxígeno de la materia carbónica ha sido prácticamente satisfecha.

La acción de las nitrosomonas y los nitrobacter se pueden inhibir con productos como el azul de metileno o la tiourea.

El método para determinación de DQO falla en la oxidación de algunos contaminantes (piridina, benceno, amonio), pero posee un poder oxidativo del 95- 100% en la mayoría de compuestos orgánicos.

- DTO: Demanda Total de Oxigeno, es cuantificable electrónicamente y son resultados rápidos y correlacionables. El instrumento encargado de la medición vaporiza una muestra y oxida sus componentes, la utilización de oxígeno es medida en una célula de combustión platino-plomo.

Resultados de análisis de DTO para distintos compuestos indican que las demandas de oxígeno están muy cercanas a las teóricas. Ninguno de los iones normalmente encontrados en las aguas residuales causan interferencias apreciables con el análisis de la DTO. Las relaciones entre DTO, DQO, DBO₅, dependen fundamentalmente de la composición de las aguas residuales.

 COT: Carbono Orgánico Total, es una medida de la cantidad de materia orgánica presente en una muestra. La cuantificación se hace por el método de oxidación húmeda, que es un método manual donde la generación de dióxido de carbono por una reacción química permite la valoración, pero también existen métodos instrumentales.

Para la medición de toxicidad aguda se usa un método normalizado conocido como Limite de Tolerancia Media (LTM). Este es definido como la concentración de aguas residuales en la cual el 50% de los animales de ensayo son capaces de sobrevivir durante un determinado tiempo de exposición, por lo regular, las observaciones se hacen a las 24, 48 y 96 horas.

Es importante distinguir la muerte de los organismos de ensayo debido a la falta de oxígeno, de la debida toxicidad. Entonces, deben mantenerse niveles adecuados de OD durante los ensayos de toxicidad. Generalmente, se utilizan especies como el pez mosquito (Gambusia affinis), las carpas, truchas, peje-sol (género Lepomis) y otras especies de peces. Para la evacuación de los desechos líquidos las ciudades, pueblos e industrias, están obligadas a retornar a la fuente de suministro común, los efluentes de aguas usadas y aguas residuales de calidades aceptables. Se hace entonces necesario controlar la calidad del agua tanto de abastecimiento, como de remoción, objetivo logrado con la verificación del cumplimiento de las normas de control.

La degradación de los residuos mediante microorganismos se lleva a cabo a través de una serie compleja de reacciones químicas, estas están catalizadas por compuestos orgánicos (enzimas) presentes en los microorganismos. Normalmente, las enzimas son bastante específicas en sus funciones como catalizadores, esto significa que una enzima dada cataliza, generalmente, una reacción química específica. Las bacterias contienen una gran variedad de enzimas siendo cada una de ellas responsable de una pequeña etapa en el complejo proceso de metabolismo biológico.¹

En general, las bacterias son los de tipo gram-negativas e incluyen miembros de los géneros Pseudomonas, Zooglea, Achromobacter, Flavobacterium, Nocardia, Bdello vibrio, Mycobacterium, y dos bacterias nitrificantes, Nitrosomonas y Nitrobacter. Adicionalmente,

pueden presentarse diversas formas filamentosas, tales como Sphaerotilos, Begiatoa, Thiothrix, Lecicothrix y Geotrichum.⁴ En tanto que las bacterias son los microorganismos que realmente degradan el residuo orgánico del afluente, las actividades metabólicas de otros microorganismos son igualmente importantes. Los protozoos y rotíferos actúan como depuradores de los efluentes. Los protozoos consumen las bacterias dispersas que no han floculado y los rotíferos consumen cualquier partícula biológica pequeña que no haya sedimentado.⁴

Con un amplio conocimiento del análisis de aguas, el grupo de bacterias coliformes incluye no solo a los microorganismos que se originan en el tubo intestinal de los seres de sangre caliente (coliformes fecales, principalmente a la Echerichia coli), sino también a los organismos provenientes del suelo y de la vegetación (principalmente el Aerobacter aerogenes). El grupo coliformes incluye a todas las bacterias aeróbicas y anaeróbicas facultativas, no formadoras de esporas, Gram negativas, en forma de bastón, que fermentan a la lactosa, con producción de gas a 35°C en 48 horas.¹ Por lo tanto, la adición de una muestra de agua a caldo nutritivo que contenga lactosa, incubándola y observando el desprendimiento de gas, proporciona una evidencia de que se encuentra presente algunos de los coliformes. Debido a que existen otras bacterias que pueden fermentar a la lactosa, la presencia del grupo coliforme se debe confirmar mediante reacciones verificativas.¹

TABLA 1. TAMAÑO DE PARTICULA Y METODO DE SEPARACION³

PARTICULAS	DISUELTAS	COLOIDES	SUSPENDIDAS O
			NO FILTRABLES
Ø (µm)	10 ⁻⁵ hasta 10 ⁻³	10 ⁻² hasta 10	10 ² hasta 10 ⁴
Ø (mm)	10 ⁻⁸ hasta 10 ⁻⁶	10 ⁻⁵ hasta 10 ⁻²	10 ⁻¹ hasta 10
TRATAMIENTO	Biológico	Coagulación y floculación	Sedimentables

En Estados Unidos y Gran Bretaña, el proceso de lodos activados ha sido utilizado para el tratamiento de aguas residuales industriales o urbanas desde hace aproximadamente un

siglo, el desarrollo histórico de las construcciones de ingeniería para el tratamiento biológico de las aguas residuales se inicia, principalmente, con las zanjas de aguas negras y continúa a través de los filtros intermitentes de arena y los lechos de contacto, hasta los filtros goteadores y las unidades de lodos activados. Las aguas negras de los sistemas urbanos de drenaje vertidas en los campos enriquecían los suelos sedientos de agua y hambrientos de nutrientes. El pretratamiento de las aguas de desecho mejoró los resultados de los tratamientos siguientes y permitió aumentar las cargas hidráulicas. Los procesos de tratamiento biológico de las aguas residuales tanto aerobias como anaerobias se denominan tratamiento secundario.

Igual que la purificación de aguas, el tratamiento y remoción de aguas residuales cuenta con una gran cantidad de operaciones unitarias que permiten obtener la aceptabilidad necesaria para su vertimiento. Los contaminantes en las aguas residuales son diversos en estado, concentración y tratamiento, porque los gases contaminantes pueden removerse mediante la exposición del agua al aire (burbujeo o aspersión) o a otras atmósferas bajo presiones normales, o con el uso de torres de ozonización o cloradores de gas. Por aireación, también se puede incrementar el nivel de OD para el mantenimiento de las condiciones aeróbicas en los tratamientos biológicos.

Como resultado se han desarrollado y ejecutado muchas modificaciones y nuevas operaciones y procesos, muchos de ellos por la necesidad de adecuarse a los crecientes y rigurosos requerimientos para la mejora ambiental de los cursos de agua. La investigación de laboratorio condujo a construir las unidades de lodos activados, en las que se proporcionaba aire a las aguas residuales y a los flóculos de microorganismos, no muy diferentes de las películas de los lechos bacterianos, con el doble propósito de mantener aeróbicas las unidades, a pesar de la elevada concentración de organismos vivientes, y los flóculos en suspensión, no obstante la ausencia de un medio de contacto fijo. Posteriormente se incluyeron paredes internas que permitieran una superficie de colonización por crecimientos superficiales de microorganismos.

Actualmente, el tratamiento biológico de las aguas residuales no se concibe y practica como una sola operación, sino una combinación de operaciones interrelacionadas que pueden diferir en distribución espacial, proceder a diferentes velocidades en el tiempo y llevarse a cabo por masas variadas. En el proceso de los lodos activados, la cantidad de flóculos se pueden variar a voluntad regulando el desecho y retorno de flóculos.³

La disminución de la carga residual está relacionada directamente con la cinética de tratamiento biológico, ya que los lodos actúan de acuerdo al sustrato o contaminante en las aguas residuales y al tiempo que dure el contacto entre ellos (th), debiendo ser biodegradable el contaminante empleado como sustrato.

Generalmente los lodos se recirculan durante algunos días, pero no debe permitirse que ellos se hagan demasiado grandes y pesados, porque se volverían inactivos y anaeróbicos. Las poblaciones de los organismos responsables de la purificación de las aguas residuales son grandes y variadas, los principales trabajadores biológicos son los organismos sapróbicos, incluyendo a las bacterias autotróficas. Aun cuando son variados los sistemas biológicos aeróbicos, producen casi los mismos cambios bioquímicos en un agua residual, su ecología es, con frecuencia, muy diferente.³ Las unidades de lodos activados proporcionan un medio acuático y relativamente uniforme, los flóculos son arrastrados junto con los flujos y contienen casi la misma clase y número de microorganismos.

Los lodos que provienen del tratamiento biológico se denominan lodos secundarios y se constituyen básicamente de biomasa en exceso; los lodos primarios provienen de tratamientos primarios, que involucran decantación, flotación y filtración, contienen partículas sólidas, fundamentalmente de naturaleza orgánica.

Estos lodos no deben evacuarse sin un tratamiento previo, si se someten a una digestión aerobia, o anaerobia, se reducen las cantidades de materia orgánica y volátil, y se denomina lodo estabilizado, el cual tiene menor, o ningún, olor molesto, menor volumen, para etapas siguientes; y menor carga de microorganismos patógenos.¹

La digestión aerobia consiste en someter los lodos a aireación y provocar el metabolismo endógeno, generando productos volátiles como CO₂, NH₃, H₂. Esto no implica una notoria disminución en la DBO, pero si en el volumen obtenido. Los procesos de digestión aerobia involucran t_h menores, comparados con los anaerobios.¹

Los reactores de digestión aerobia fueron patentados en 1904, conocidos como tanques Imhoff, gracias a su creador. Gran cantidad de procesos de digestión de lodos son anaerobios, con temperaturas entre 24 y 40°C que los favorecen, generando gases con alto contenido en metano; aunque el auge de los procesos aerobios va en crecimiento, pero son pequeñas unidades fundamentalmente.¹

La aireación prolongada u oxidación total es una variación del proceso de lodos activados, difiere del procedimiento convencional, porque en el la idea es disminuir la cantidad de lodo residual. Esto se consigue aumentando el th, de esta forma el volumen del reactor es comparativamente mayor que el requerido en el proceso convencional de lodos activados. Como consecuencia, esencialmente todo el lodo degradable formado se consume mediante respiración endógena. La ventaja principal de la oxidación total es que para la manipulación de lodos de desecho son más pequeñas las unidades. Esto implica otras diferencias como la concentración de más cantidad de microorganismos en el reactor y un mayor consumo de oxígeno.

Teóricamente los procesos de aireación prolongada no generan lodos, en la práctica esta hipótesis desaparece, pues parte del lodo es no biodegradable y en consecuencia se acumula. La parte no degradable por los microorganismos son las membranas celulares, que son ligeras frente al material citoplasmático, por lo que la unidad de sedimentación debe otorgar mas tiempo para que éstas precipiten, es decir, son unidades de buen tamaño, por lo regular el t_h es el doble en ésta unidad, que el t_h en la misma zona del proceso convencional.¹

El sedimentador secundario es la unidad siguiente al reactor biológico, sirve para separar al agua tratada de los lodos, es importante que el t_h en esta unidad sea el menor posible, para evitar la anaerobiosis. El tiempo de permanencia de los lodos depende de la velocidad de sedimentación de las partículas en suspensión y de la forma de recolección de los lodos sedimentados, que se recirculan.²

El desarrollo de tecnologías basadas en microorganismos para el tratamiento de aguas residuales urbanas ha proporcionado excelentes procesos para la destrucción de los constituyentes fácilmente biodegradables en condiciones aerobias, los procesos aerobios son los que se emplean normalmente como método principal para el mejoramiento de las aguas residuales domésticas, ya que las reacciones microbiológicas son rápidas, frecuentemente 10 veces más que en los procesos anaeróbios. Por lo tanto, en el tratamiento de muchas aguas residuales industriales y peligrosas se han aplicado procesos similares a los utilizados para el tratamiento convencional de aguas residuales urbanas.

3.3. OXIDACIÓN AVANZADA PARA EL TRATAMIENTO DE AGUA RESIDUAL

En los últimos años se está prestando mayor atención a la definición de las sustancias tóxicas, sus efectos sobre la salud pública y el medio ambiente, y los métodos de tratamiento aplicables para su eliminación. Los compuestos orgánicos refractarios son compuestos resistentes a la degradación microbiana, tanto en procesos de tratamiento biológicos, como en el medio natural.⁶ Los productos químicos que aparecen en aguas residuales industriales y no tratables en el diseño estándar clásico de los sistemas de tratamiento de aguas residuales han obligado a la investigación y desarrollo de nuevas o mejores tecnologías que apliquen el uso de microorganismos biodegradadores u otro tipo de tratamientos de acondicionamiento.

Dependiendo de la naturaleza de la toxicidad del agua residual se implementa el tratamiento para eliminar o reducir algunos compuestos o grupos de compuestos

específicos, tradicionalmente algunos de los procesos empleados para este fin son: la adsorción sobre carbón activado, el proceso combinado de lodos activados y carbón activado en polvo, la oxidación química y arrastre con aire.

Los Procesos de Oxidación Avanzada (POA) han sido propuestos como una alternativa de tratamiento o acondicionamiento de los residuos líquidos con contenido de compuestos no biodegradables, o poco biodegradables, con la ventaja de destruir el contaminante problema en comparación con los procesos no destructivos, donde sólo se cambia de estado el contaminante.

Es grande el conjunto de procesos que utilizan diferentes oxidantes como peróxido de hidrógeno, ozono, hipoclorito, radiación UV o la combinación de dos a más reactivos, en muchos casos, es necesario un catalizador que permita la acción del oxidante o mejore su efectividad y rendimiento. Los POA pueden operar de forma continua o no, con los reactivos de degradación en suspensión o con el catalizador inmovilizado en una superficie insoluble y tratar agua residual de industrias químicas, agroquímicas, textiles y de pinturas, entre otras; permitiendo en muchos casos la mineralización del contaminante, pero en todos mejorando al biodegradabilidad de estos desechos.

Una ventaja de la oxidación avanzada es el amplio rango de operación que presenta, porque factores de temperatura, pH, color y otros compuestos, tienen poco o nulo efecto sobre el proceso, caso que no ocurre en los procesos de tratamiento convencional, donde el cambio de una o varias de las condiciones resulta inhibitoria.

Las sustancias químicas y factores físicos involucrados en los POA son con frecuencia óxidos de metales acompañados de radiación UV; uno de los tratamientos preliminares al POB más conocidos, por su gran uso, es el foto-Fenton (hv/Fe⁺³/H₂O₂) que teóricamente se comporta de la siguiente forma: ⁹

$$hv + Fe (III) + H_2O \rightarrow Fe (II) + H^+ + HO$$
 (I)

Fe (II)
$$+ H_2O_2$$
 \rightarrow Fe (III)+ $2HO$. (II)

Fe (III)+
$$H_2O_2$$
 \rightarrow Fe (II) + H^+ + HO_2 . (III)

$$Fe (II) + HO$$
 $\rightarrow Fe (III) + HO$ (IV)

$$Fe (II) + HO_2$$
 $\rightarrow Fe (III) + HO_2$ (V)

$$2HO_2$$
· + RH \rightarrow ROH + H₂O (VI)

Otros sistemas de oxidación avanzada que han sido probados, cada uno con un compuesto particular, son:

- •hu/ H₂O₂
- • hv/O_3
- •hu/TiO₂
- •hu/Fe⁺³/O₂
- •hv/ZnO
- •h υ /TiO₂/O₂
- \bullet hv/TiO₂/ H₂O₂

Los POA permiten obtener sustancias de mayor biodegradabilidad, de forma tal que el POB tiene una eficiencia más alta sobre el agua a descontaminar.⁹

Un proceso clásico en la oxidación avanzada es el Fenton, donde por la adición de sales de hierro, como catalizador, y peróxido de hidrógeno, como oxidante, se promueve la

formación de radicales hidroxilo (·OH), los cuales son muy potentes en rango de pH de 3 a 5. Estos radicales se forman por:

$$Fe^{+2} + H_2O_2 \rightarrow Fe^{+3} + \cdot OH + OH^-$$

ó

$$Fe^{+3} + H_2O_2 \rightarrow Fe^{+2} + \cdot OOH + H^+$$

Cuando se tiene el pH inferior a 3 la reacción es autocatalítica, ya que el Fe⁺³ descompone el peróxido de hidrógeno en oxígeno molecular y agua.

H.J.H. Fenton descubrió en 1894 que varios metales tienen características especiales en la transferencia de oxígeno, que mejoren el uso de peróxido de hidrógeno, es decir, algunos metales tienen una energía catalítica fuerte para generar los radicales altamente reactivos del hidroxilo.¹⁴

Específicamente, los POA se basan en que cualquier metal de la primera fila de los elementos de transición, que tenga dos estados de oxidación estables separados por un electrón es capaz de catalizar la descomposición del peróxido de hidrógeno. 14

TABLA 2. POTENCIAL DE OXIDACIÓN¹⁴

OXIDANTE	POTENCIAL DE OXIDACION (V)
Flúor	3.0
Radical hidroxilo	2.8
Ozono	2.1
Peróxido de hidrógeno	1.8
Permanganato de potasio	1.7
Dióxido de cloro	1.5

Las principales sales conocidas utilizadas en este proceso de oxidación son el floruro, bromuro y cloruro. Con la concentración de peróxido de hidrógeno en los POA, se debe evitar la recombinación y la auto-descomposición de este compuesto, es decir: ¹⁴

$$2H_2O_2$$
 $\rightarrow 2H_2O + O_2$
 $\cdot OH + H_2O_2$ $\rightarrow \cdot O_2H + H_2O$

Estas reacciones se ven beneficiadas cuando el carácter oxidativo del peróxido se optimiza por radiación UV (proceso conocido como foto-Fenton). El potencial oxidativo del peróxido de hidrógeno esta calculado en 2,80 V, es un compuesto altamente oxidativo, superado solo por el flúor. Dependiendo de las condiciones del sistema, el peróxido de hidrógeno puede actuar como ácido, base, nucleófilo, electrófilo, oxidante o como reductor; pero una de las características esenciales es que en todos los casos es necesario que pase a través de intermediarios más reactivos y concretamente, la oxidación se produce a partir de la formación de radicales con un elevado potencial de oxidación. 14

El radical hidroxilo puede reaccionar de 4 formas, por ejemplo: 14

1. Adición: $\cdot \text{OH} + \text{C}_6\text{H}_6 \rightarrow (\text{OH}) \text{ C}_6\text{H}_6$

2. Abstracción del hidrogeno: ·OH + CH₃OH → CH₂OH + H₂O

3. Transferencia del electrón: \cdot OH + $[Fe(CN)_6]^{-4} \rightarrow [Fe(CN)_6]^{-3} + OH^{-1}$

4. Interacción del radical: \cdot OH + \cdot OH \rightarrow H₂O₂

Entre los compuestos más tóxicos en las corrientes de agua, se encuentran los fenoles y sus derivados fenólicos clorados, los cuales tienen un tiempo de vida media entre 2 y 72 días, son extremadamente tóxicos a la vida acuática, presentan un fuerte y desagradable olor, irritan los ojos, las membranas mucosas y la piel; por simple absorción causan convulsiones, afectan el hígado y los riñones, y en algunos casos, conducir a la muerte. 11

Existe poca información para la eliminación de compuestos especialmente aromáticos, los cuales tienen como particularidad una elevada estabilidad y toxicidad, que difícilmente pueden ser degradados mediante los procedimientos convencionales.¹²

El caso del fenol como compuesto orgánico presente en las aguas residuales es muy generalizado, debido a su uso en la producción de resinas, nylon, plastificantes, antioxidantes, aditivos de aceites, drogas, pesticidas, colorantes, explosivos, desinfectantes, biocidas, etc.; es importante conocer que la cloración de estos desechos implican un incremento en la toxicidad de ellos, por la formación de clorofenoles, cuyos niveles permitidos son menores que los del fenol. En Colombia las normas de vertimiento establecen que la concentración para el control de la carga de los compuestos fenólicos es de 0,2 ppm.¹⁸

Debido a la estabilidad y a la solubilidad del fenol en el agua, su degradación es difícil. Se pueden distinguir dos tipos de métodos para el tratamiento de efluentes fenólicos industriales: los no destructivos, que permiten la recuperación y reutilización del fenol, como la adsorción en carbón activado y extracción con solventes (estos métodos se emplean cuando la carga de fenol en el efluente es elevada); y los destructivos en los que el fenol es transformado por oxidación, ya sea biológica, química o electroquímica (utilizados para concentraciones bajas de fenol).¹⁵

El mecanismo por el que transcurre la oxidación catalítica parece establecido por radicales libres. La oxidación del grupo aromático puede comenzar por la activación de la molécula de oxigeno, o de la molécula del hidrocarburo, participando en la reacción como una especie adsorbida en la superficie del catalizador o desde su estructura. En cualquier caso, la presencia del catalizador crea un ambiente iónico que favorece las reacciones heterolíticas, aunque la reacción de apertura del anillo puede producirse tanto por un mecanismo de radicales libres (ruptura homolítica), como de tipo iónico (heterolítico). ¹³ En la oxidación del fenol se forman una gran variedad de compuestos intermediarios, debido a la oxidación parcial, entre ellos, los más observados son catecol, hidroquinona,

benzoquinona, ácidos maléico, oxálico, acético y otros. El esquema de la oxidación de fenol se bosqueja en la figura 1.13

FIGURA 1. RUTA DE OXIDACION DEL FENOL¹³

El uso de un POA como único tratamiento de remediación de un flujo residual resulta costoso comparado con un sistema de tratamiento biológico convencional. La tendencia de acoplar ambas tecnologías para minimizar costos en el tratamiento de residuos líquidos aumenta. Este tipo de procesos históricamente inician acoplando un proceso de radiación, generalmente UV, a un proceso biológico.

La elección del sistema de oxidación biológica es un punto importante en el desarrollo de sistemas acoplados, porque este depende de las características del agua residual y el objetivo del tratamiento. Los sistemas inmovilizados tienen la ventaja de manejar mas fácil una variación en el efluente (cambio de concentración de fuente alimenticia, presencia de agentes antimicrobianos y permiten recirculación de catalizadores biológicos, entre otras). Hasta procesos biológicos con hongos, han sido acoplados a un sistema inicial de fotoremediación.

4. METODOLOGIA

4.1. DISEÑO

4.1.1. Proceso de Oxidación Biológica (POB)

Un POB consta generalmente de dos unidades, la primera unidad es donde se realiza la oxidación por acción microbiana y la segunda unidad permite obtener por precipitación la masa microbiana proveniente del reactor biológico. En el diseño de un POB es importante tener en cuenta el tiempo de contacto entre el material orgánico y los lodos aireados (th), se utiliza para optimizar el funcionamiento del sistema, formando un lodo floculento activado.

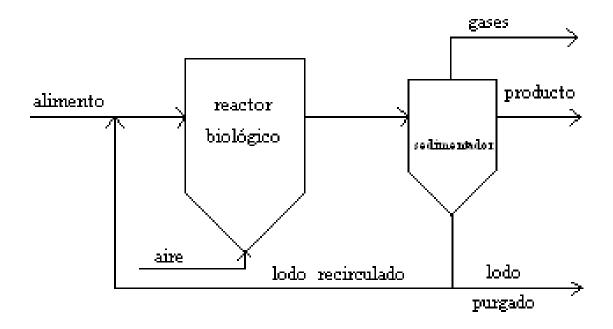


DIAGRAMA 1. UNIDAD DE TRATAMIENTO BIOLOGICO¹

34

La forma de la unidad de oxidación biológica se basa en una agitación constante con aire, con una capacidad aproximada de 5 l, alimentada por la parte superior por bombeo, con salida lateral por rebose a un sedimentador. También cuenta con accesos para el control de pH en la parte superior o tapa.

El sedimentador debe tener una capacidad de acuerdo al reactor biológico (la mitad del volumen¹), con una alimentación por gravedad, una salida por rebose y una salida inferior para purga.

4.1.2. Proceso Oxidación Avanzada (POA)

Esta unidad de reacción se diseña para ser agitada por aire, con capacidad de 5 l, salida hacia el reactor biológico en la parte inferior, con accesos en la parte superior para muestreo y toma de pH.

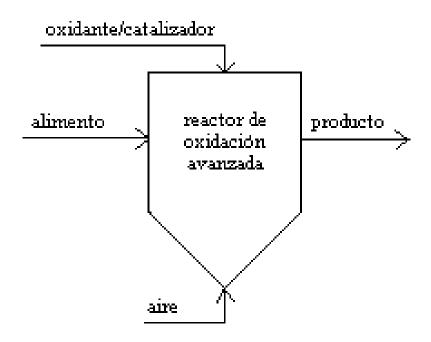


DIAGRAMA 2. UNIDAD DE OXIDACION AVANZADA

4.2. CONSTRUCCION

4.2.1. POB

El reactor biológico es un cubo (15 cm de lado x 35 cm de alto) de base piramidal en acrílico liso transparente de espesor 4,5 mm, impermeabilizado con silicona líquida, soportado en los vértices con ángulos de aluminio de 1 cm de lado y una banda de caucho, para evitar deformación por presión, tiene una capacidad de 4,7 l. Se instalan acoples de cobre para manguera en las entradas de alimento y aire, y salida al sedimentador.

El sedimentador fue adecuado a partir de un recipiente plástico (15 cm de diámetro x 18 cm de alto), con perforaciones para los acoples de cobre en la entrada de alimento, y salidas de producto y purga con control directo; con una capacidad de 2,56 l.

4.2.2. POA

El reactor de oxidación avanzada también un cubo de base triangular en acrílico liso transparente de espesor 4,5 mm, tiene dos perforaciones, una grande de 5,5 cm de diámetro y otra pequeña para entrada de aire, en la parte superior, y otra en la parte inferior con acople de cobre para salida al reactor biológico, también es impermeabilizado con silicona líquida, soportado en los vértices con ángulos de aluminio de 1 cm de lado y una banda de caucho.

4.3. IMPLEMENTACION

Un procedimiento preliminar es la calibración del caudal de la bomba. (Ver anexo J)

4.3.1. Activación de lodos y POB

Las características iniciales de los lodos son:

- pH = 8,64
- Temperatura = 21,5°C
- Densidad = 1,0412 g/ml
- Velocidad de sedimentación = 0,.47143 cm/s (ver figura 2)
- Sólidos totales = 14693 mg/l (Ver protocolo en anexo C)

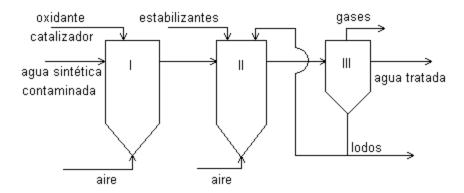
El proceso de activación de lodos se lleva a cabo alimentándolos en la unidad biológica con una solución de sacarosa a un caudal de 358 ml/h, la concentración en el afluente y efluente del POB se cuantifico por medio de las reacciones de Fehling y Antrona, y lectura por espectrometría UV-vis, a 689 nm y 620 nm respectivamente, teniendo como estándares las curvas de Absorbancia vs. Concentración de cada una de las reacciones.

Luego se inicia la etapa de adaptación de los lodos activados a otra fuente alimenticia (ácido acético), esto debido a que los productos de oxidación biológica aerobia del ácido acético son dióxido de carbono y agua, y así no pasar por alto la posible generación de otros productos de la oxidación biológica de la sacarosa. La medición por espectrometría UV-vis de concentración de ácido acético a la entrada y la salida permite comprobar el rendimiento del proceso.

Otro método para determinar si los lodos están activos, es la cuantificación de dióxido de carbono producido, esto se logra por la absorción del gas en solución de hidróxido de bario 0.10 N, durante una hora, y posterior titulación de una alícuota de 5 ml con ácido oxálico 0.05 N; el aire que entra al reactor biológico es previamente lavado en solución de hidróxido de potasio 0.10 N. simultáneamente se realiza un control del pH.

La recirculación de los lodos desde la unidad de sedimentación hacia el reactor biológico se hace cada fin de semana. Además, se realiza una caracterización de los lodos, inoculando muestras en los medios de cultivo apropiados para bacterias aerobias, hongos y levaduras, y coliformes, con lo cual se pretende determinar la presencia de estos microorganismos.

4.3.2. POA


Inicialmente se hace la elección del compuesto a degradar, los ensayos de oxidación avanzada del compuesto elegido se realizan con diferentes concentraciones de oxidante y catalizador, las mediciones de la concentración de contaminante se realizan por espectrometría UV-vis, en base a los espectros individuales de cada uno de los compuestos (ver anexo A, tablas XXII a XXIV). Se escogen los mejores comportamientos y se realizan replicas de estas combinaciones, para corroborar los resultados y hacer la elección del mejor proceso para poner en marcha el sistema acoplado.

4.3.3. Sistema acoplado POA-POB

El sistema acoplado funciona por lotes, cada uno de 5 l de solución de contaminante, catalizador y oxidante en el reactor de oxidación avanzada, en esta unidad se realiza un tratamiento durante 2 horas mientras se estabiliza la concentración, antes de alimentar el reactor biológico a razón de 358 ml/h.

El t_h en la unidad biológica es 13 horas 7 minutos aproximadamente, y el t_h en el sedimentador es aproximadamente la mitad de éste.

El afluente y efluente del proceso acoplado son analizados por espectrometría UV-vis, cuantificando la concentración del contaminante en estos flujos. Además, se trata de hacer una correlación de estos resultados con los obtenidos por otros métodos de cuantificación como la titulación volumétrica y potenciométrica, y análisis de DQO. Simultáneamente, se realiza un seguimiento en el pH de ambas corrientes.

I: Tanque agitado de oxidación avanzada

II: Tanque de oxidación biológica aerobia

III: Tanque de sedimentación de lodos

DIAGRAMA 3. UNIDAD ACOPLADA PARA EL TRATAMIENTO DE AGUA

También se cuantifica la producción de dióxido de carbono durante los procesos por lotes del sistema acoplado (ver figura 4) y se mantiene el pH en la unidad biológica alrededor de 7 (ver figuras 5a hasta 5c).

Al finalizar el muestreo en el sistema acoplado, se procede a cuantificar la biodegradabilidad del contaminante en el POB, esto se logra utilizando la Absorbancia obtenida por espectrometría UV-vis, titulaciones volumétricas y potenciométricas, en las corrientes de entrada y salida. El control del pH en el reactor biológico y el seguimiento en la producción del dióxido de carbono de los lodos activados son parámetros importantes en el buen funcionamiento en este sistema.

5. RESULTADOS Y ANALISIS DE RESULTADOS

Las imágenes 1 y 2 muestran las unidades construidas del POB, el rendimiento de estos procesos está entre 85 y 95% para compuestos biodegradables¹, para los no biodegradables depende de la toxicidad y el poder de inactivación de la masa microbiana. La materia orgánica consumida en un reactor biológico es utilizada como energía, para actividades metabólicas y movilidad, produciendo dióxido de carbono y otra parte se destina en la generación de biomasa, ésta última se cree que es la tercera parte del consumo total.

Imagen 1. Reactor de Oxidación Biológica

Imagen 2. Sedimentador

La unidad de sedimentación debe otorgar las condiciones para que los lodos sedimenten, es decir, permitir un th suficiente. Sin embargo, los th no deben generar un metabolismo endógeno, motivado por la baja concentración de sustrato ya que las células contienen un material citoplasmático rico en proteínas y ARN, los cuales son los primeros en metabolizar, quedando de residuo la pared celular que es muy ligera y resiste la sedimentación. En el sedimentador el tiempo de permanencia de los lodos depende de la velocidad de sedimentación de las partículas en suspensión y de la forma de recolección de los lodos sedimentados, que se recirculan. Generalmente los lodos se recirculan durante algunos días, pero no debe permitirse que ellos se hagan demasiado grandes y pesados, porque se volverían inactivos y anaeróbicos. ¹

La velocidad de sedimentación de los lodos es una característica importante a tener en cuenta para el diseño de la unidad de sedimentación secundaria, debido a que lodos de alta velocidad de sedimentación significan un mayor peso de los flóculos, necesitando sistemas de agitación más efectivos en el reactor biológico, lo cual no permite la formación de un tamaño de floc adecuado y aumenta el nivel oxígeno generando muerte microbiana; y las

bajas velocidades de sedimentación de lodos obligan a diseñar unidades de sedimentación de mayor capacidad para permitir un t_h adecuado, el flujo de recirculación disminuye su frecuencia y caudal, y puede exigir la adición de sustancias químicas que faciliten la precipitación. La figura 2 muestra esta característica de los lodos en la unidad biológica:

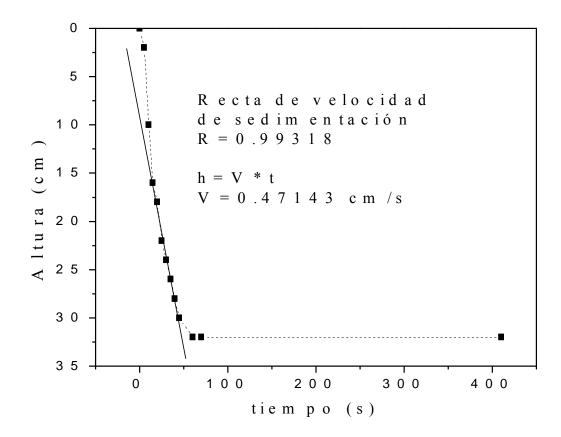


FIGURA 2. RECTA DE VELOCIDAD DE SEDIMENTACION (ver protocolo y tabla en el anexo D)

El tratamiento que antecede al POB es el POA, el cual consta de una única unidad, la base triangular de la unidad de oxidación avanzada es necesaria para garantizar una homogenización de la solución por agitación con aire, la imagen 3 muestra el reactor donde se lleva a cabo la oxidación avanzada:

IMAGEN 3. REACTOR DE OXIDACION AVANZADA

5.1. POB

Los resultados obtenidos en la activación con sacarosa de los lodos, son las concentraciones calculadas a partir de la absorbancia obtenida por espectrometría UV-vis, después de una determinación de la presencia de azúcares por los métodos de Fehling y Antrona (ver tablas 3 y 4). La sacarosa y la lactosa son compuestos de alta biodegradabilidad empleados en los sistemas biológicos para cuantificar su capacidad de degradación. 1

TABLA 3. RENDIMIENTO CALCULADO POR MÉTODO DE FEHLING 689 nm (ver protocolo Anexo E)

Tiempo	aliment	alimento	product	product	pН	pН	Rendto.
(d)	o Abs	(ppm)	o Abs	o (ppm)	aliment	product	(%)
					0	0	
0	0,20073	1,273	0,19099	1,108	6,48	4,37	13,0
2	0,16428	1,103	0,16145	1,103	7,15	4,16	0,0
5	0,14325	1,100	0,12473	1,097	6,04	4,12	0,3
6	1,84500	1,379	1,21690	1,276	6,29	4,12	7,5
15	0,99190	1,239	0,98425	1,238	6,19	4,54	0,1
20	1,20240	1,274	1,12570	1,261			1,0
21	1,05440	1,249	0,97859	1,237			1,0
22	0,98945	1,239	0,96342	1,234	5,91	4,38	0,3
23	0,99612	1,240	0,97886	1,237	5,81	4,59	0,2
29	0,95462	1,233	0,95428	1,233	5,78	5,24	0,0
34	0,96375	1,234	0,95691	1,233	6,13	5,70	0,1
35	0,97253	1,236	0,94860	1,232	6,50	5,63	0,3
37	0,99521	1,240	0,97986	1,237	6,60	6,54	0,2
38	0,96899	1,235	0,96363	1,234	6,80	5,20	0,1
43	0,11174	1,094	0,11067	1,094	6,34	4,92	0,0
44	0,11085	1,094	0,11079	1,094	6,27	4,96	0,0
47	0,11154	1,094	0,11129	1,094	6,05	4,92	0,0

TABLA 4. RENDIMIENTO CALCULADO POR MÉTODO DE ANTRONA 620 nm (ver protocolo Anexo F)

Tiempo	alimento	Alimento	producto	producto	pН	pН	Rendto.
(h)	Abs	(ppm)	Abs	(ppm)	alimento	producto	(%)
0	1,12720	2,972	0,89484	2,578	5,70	4,25	13,2
3	1,21750	3,124	1,11880	2,957	5,91	4,38	5,4
5	1,23820	3,160	1,13220	2,980	5,49	4,47	5,7
8	0,52006	1,943	0,38644	1,716	6,05	4,87	11,6
12	0,98802	2,736	0,98076	2,723	5,96	5,50	0,4
15	0,53654	1,971	0,45798	1,837	6,13	5,70	5,2
16	0,61975	2,112	0,57368	2,034	6,50	5,63	3,7
19	1,29670	3,259	0,62330	2,118	6,80	5,20	35,0
25	0,66880	2,195	0,63241	2,133	6,27	4,96	2,8
28	0,91542	2,613	0,87035	2,536	6,05	4,92	2,9
30	1,03230	2,811	0,97360	2,711	5,07	4,54	3,5

La alta efectividad reportada de un POB para un sustrato de alta biodegradabilidad no es compatible con los resultados obtenidos, debido a los métodos cualitativos empleados para observar la presencia de azúcares, a parte de la presencia de productos de oxidación parcial de la sacarosa, por ello, la activación de los lodos en la unidad biológica finaliza.

El cambio a ácido acético como fuente alimenticia para los lodos, permite obtener nuevos resultados de la concentración de ácido en el afluente y el efluente del POB, calculados en base a la curva de calibración del compuesto (en el anexo A la tabla II muestra los datos de la curva de calibración y en el anexo B la grafica I muestra la curva de calibración y la grafica II muestra el espectro UV-vis del compuesto). La degradación biológica aireada del ácido acético genera principalmente dióxido de carbono y agua, lo cual permite utilizar otros métodos, además de la espectrometría UV-vis, para la comprobación del proceso.

Algunos datos de titulación volumétrica con hidróxido de sodio estandarizado 0.1071 N a los flujos de entrada y salida del proceso se reportan en la tabla III del anexo A.

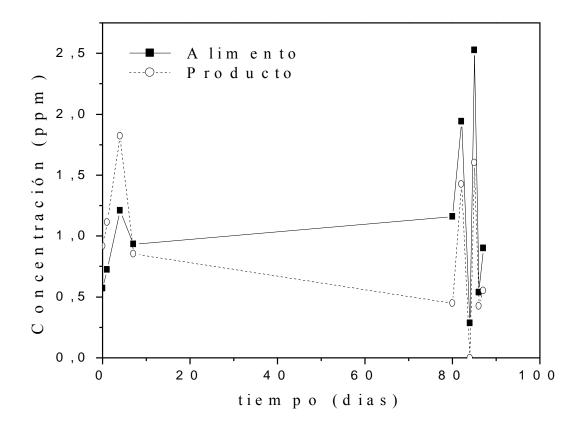


FIGURA 3a. CONCENTRACION DE ÁCIDO ACÉTICO CALCULADO POR ESPECTROMETRÍA UV-VIS. (ver tabla III del anexo A)

El incremento en el rendimiento se debe al control del pH en el reactor biológico, con soluciones tampón. Las poblaciones de los organismos responsables de la purificación de las aguas residuales son grandes y variadas, los principales trabajadores biológicos son los organismos sapróbicos, incluyendo a las bacterias autotróficas. Aun cuando son variados los sistemas biológicos aeróbicos, producen casi los mismos cambios bioquímicos en un agua residual, su ecología es, con frecuencia, muy diferente.³ La disminución en la

concentración de ácido acético en el flujo de salida es más notoria cuando se inicia el control de pH en la unidad biológica, el rendimiento más alto es motivado, posiblemente, por una concentración de ácido acético baja y/o un pH mayor de 7.

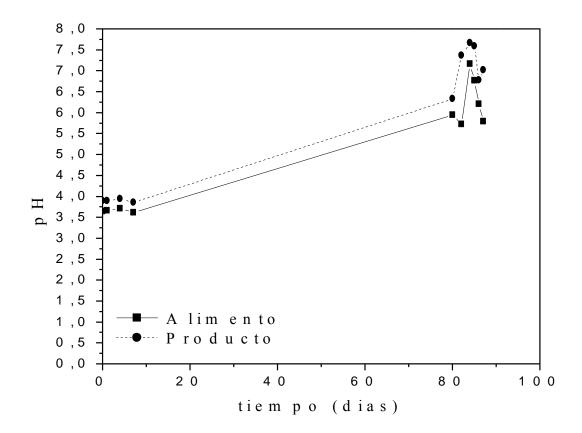


FIGURA 3b. COMPORTAMIENTO DEL pH (ver tabla III del anexo A)

La actividad óptima de las bacterias se presenta a valores de pH entre 6 y 8. En las aguas residuales alcalinas se toma como regla general que se consume hasta 0,5 Kg de alcalinidad (como CaCO₃) por Kg de DBO₅ asimilada. Esto se debe a que el dióxido de carbono producido en la degradación bacteriana reacciona con la alcalinidad (OH-) presente en el agua residual, para formar bicarbonato (HCO₃-) que hace de tampón del sistema a un pH aproximado de 8. Por ello, para algunas aguas alcalinas el tratamiento de neutralización

previo al biológico puede resultar innecesario. El mantenimiento del pH en el rango óptimo para la supervivencia de las bacterias permite aumentar el rendimiento, al parecer la concentración de ácido acético en el afluente no se relaciona directa con el rendimiento.

Los resultados de la producción de dióxido de carbono y lecturas de pH en el reactor biológico se grafican en las figuras 4 y 5 respectivamente co2 0,4138

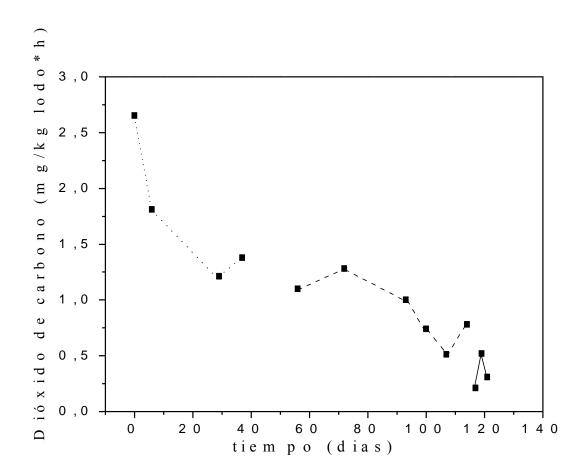


FIGURA 4. PRODUCCION DE CO₂ DEL REACTOR BIOLOGICO (ver tabla y protocolo en el anexo G)

La reducción en la producción de dióxido de carbono, puede ser motivada por la morbilidad y mortandad microbiana, una posible acumulación de compuesto tóxico en el sistema y factores externos, que pueden actuar en conjunto o individualmente.

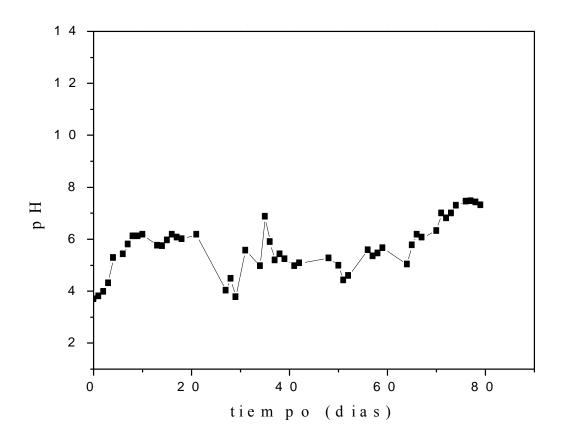


FIGURA 5a. CONTROL PH EN EL REACTOR BIOLÓGICO ALIMENTADO CON ACIDO ACETICO (ver tabla IVa del anexo A)

En la figura 5a las fluctuaciones en los valores de pH se deben básicamente al control de la acidez directamente en el alimento, esto se reduce haciendo un control directo en la unidad de oxidación biológico, lo cual se refleja en los últimos días de la alimentación con ácido acético.

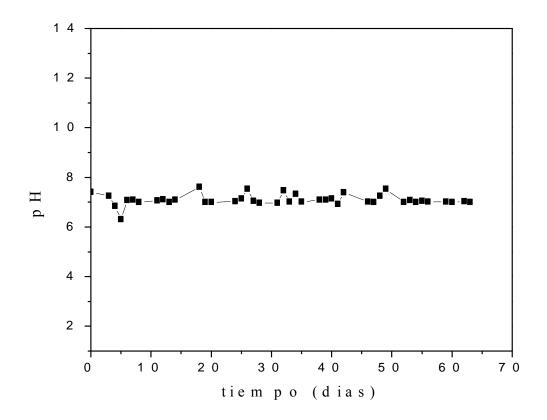


FIGURA 5b. CONTROL PH EN EL REACTOR BIOLÓGICO DEL SISTEMA ACOPLADO ALIMENTADO CON FENOL (ver tabla IVb del anexo A)

La figura 5b muestra el control directo del pH en el reactor de oxidación biológica con una varianza pequeña (0,0481), lo cual refleja una diferencia significativa despreciable de los datos, es decir, la reproducibilidad de un dato es alta. Igualmente ocurre en la figura 5c, donde la varianza es mas baja (0,0086).

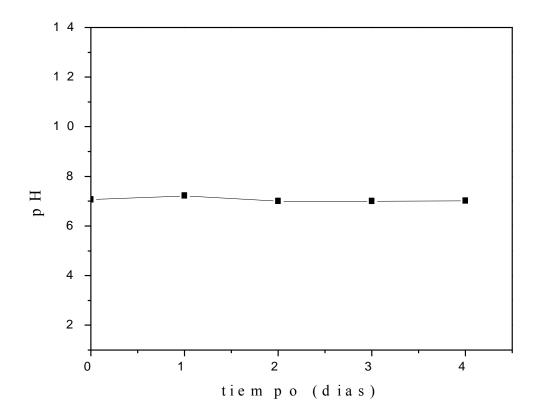


FIGURA 5c. CONTROL PH EN EL REACTOR BIOLÓGICO ALIMENTADO CON FENOL (ver tabla IVc del anexo A)

Teniendo en cuenta que los lodos no son un cultivo puro, su crecimiento se aproxima al comportamiento normal de la curva de crecimiento bacteriano, tiene todas las fases que la componen, y lo ideal para un POB es mantener constante la fase estacionaria. La figura 6 muestra el comportamiento típico.³

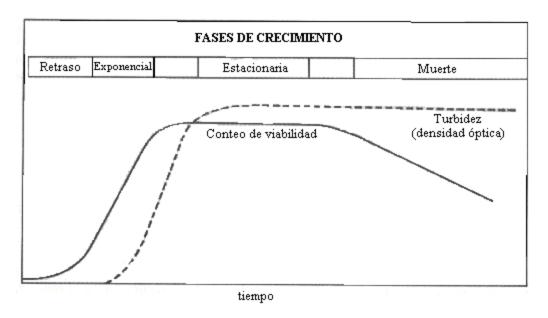


FIGURA 6. CURVA DE PROLIFERACIÓN TÍPICA DE UNA POBLACIÓN BACTERIANA

La caracterización microbiológica de los lodos, donde se busca fundamentalmente comprobar la presencia de bacterias, hongos y levaduras, y coliformes totales; arroja los resultados reportados en la tabla 5. Las siembras de mesófilos aerobios realizadas con las diluciones de 10^{-5} y 10^{-6} muestran poca igualdad entre los duplicados, pero en comparación con las pruebas para la presencia de hongos y levaduras, a iguales concentraciones, se observan un poco superiores.

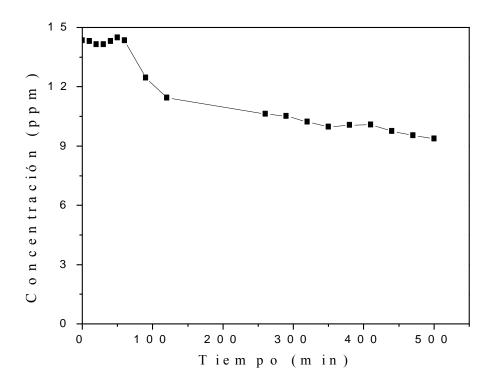
TABLA 5. CARACTERIZACIÓN MICROBIOLÓGICA DE LODOS ACTIVADOS (ver protocolo Anexo J)

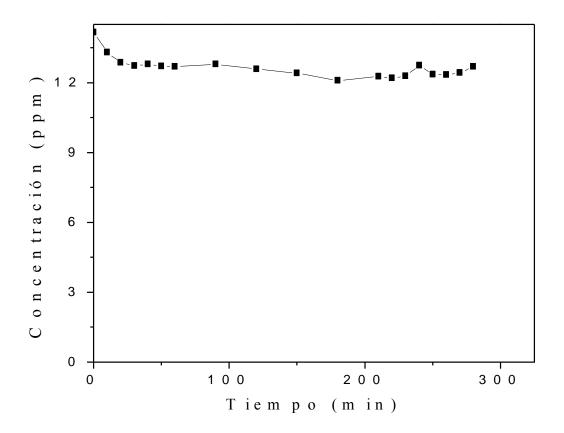
Cultivos a 24 h	Dilución 10 ⁻⁴		Dilución 10 ⁻⁵		Dilución 10 ⁻⁶		
Mesof. aerobios	240 ufc	272 ufc	176 ufc	208 ufc	216 ufc	168 ufc	
Hongos y lev.	287 ufc	384 ufc	160 ufc	184 ufc	168 ufc	160 ufc	
Colif. totales	No se observó producción de gas, no se hace prueba confirmativa para coliformes fecales						

La microbiología del proceso es de gran importancia para garantizar el buen funcionamiento del tratamiento. En el proceso las bacterias son los microorganismos más importantes, por ser los causantes de la descomposición de la materia del afluente.

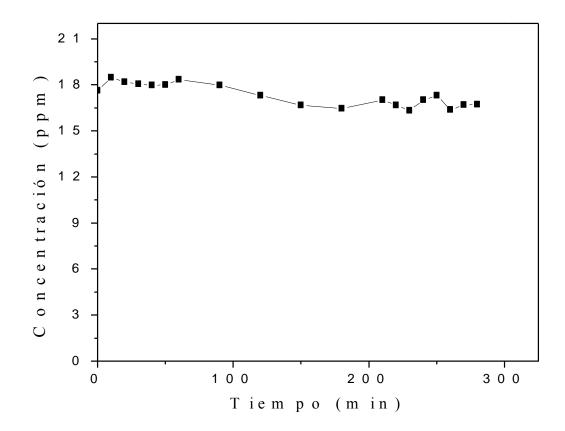
5.2. POA

La oxidación avanzada del contaminante realizada con las diferentes mezclas de oxidante y catalizador, permiten obtener las concentraciones tabuladas en el anexo A, tablas V a XXI. En el anexo B la grafica III muestra la curva de calibración y la grafica IV muestra el espectro UV-vis del contaminante. Las figuras 7a hasta 7q muestran los mejores tratamientos, agitados mecánicamente en volúmenes de 100 ml de solución a condiciones ambientales, la concentración es calcula por la absorbancia a una longitud de onda encontrada a partir de su espectro UV-vis, y con registro de pH en el tiempo.

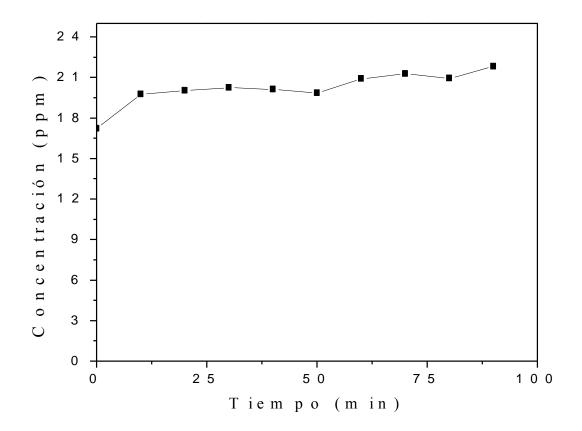



FIGURA 7a. POA DATOS TABLA V DEL ANEXO A

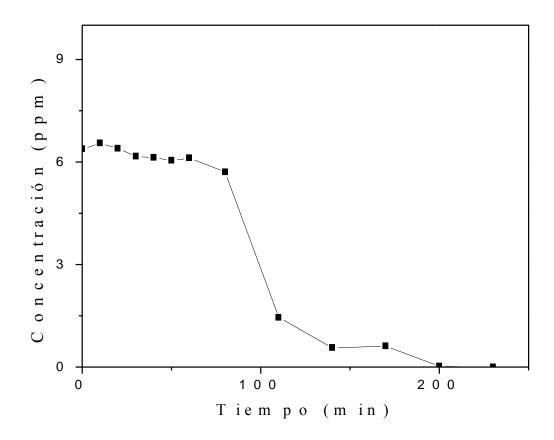
La figura 7a muestra un estado de estabilización muy lento, con una etapa de descenso rápido, logrando un valor, casi constante, al cabo de dos horas aproximadamente. La combinación oxidante/catalizador empleada es 1 mg de Fe⁺²/0.05 ml H₂O₂ (5%). El rendimiento alcanzado en esta oxidación es 34.6%.


FIGURA 7b. POA DATOS TABLA VI DEL ANEXO A

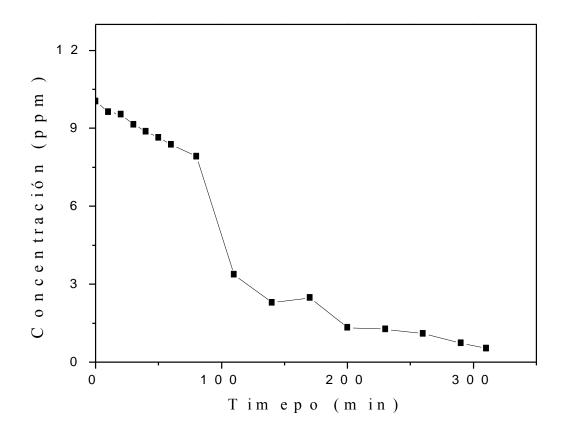
La figura 7b muestra un descenso poco estable en la oxidación del fenol, para lograr un valor casi constante a partir de los 80 minutos aproximadamente. La combinación oxidante/catalizador empleada es 2 mg de Fe⁺²/0.05 ml H₂O₂ (5%). El rendimiento alcanzado en esta oxidación es 30.3%


FIGURA 7c. POA DATOS TABLA VII DEL ANEXO A

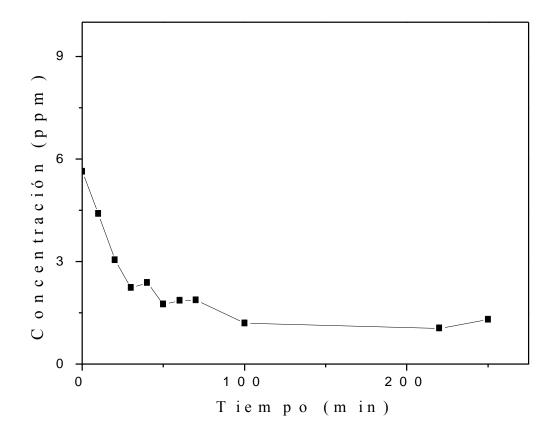
En la figura 7c el rendimiento alcanzado en la oxidación es 10.4%, lo cual muestra que no hay un cambio apreciable en la concentración del contaminante. La combinación oxidante/catalizador empleada en este ensayo es 3 mg de $Fe^{+2}/0.05$ ml H_2O_2 (5%).


FIGURA 7d. POA DATOS TABLA VIII DEL ANEXO A

En la figura 7d el rendimiento alcanzado en la oxidación es 5.1%, lo cual muestra un comportamiento no deseado en la oxidación del fenol. La combinación oxidante/catalizador empleada en este tratamiento es 4 mg de Fe⁺²/0.05 ml H_2O_2 (5%).


FIGURA 7e. POA DATOS TABLA IX DEL ANEXO A

En la figura 7e el rendimiento alcanzado en la oxidación es de 0%, indicando un tratamiento inútil en la oxidación del contaminante. La combinación oxidante/catalizador empleada en este ensayo es 5 mg de $Fe^{+2}/0.05$ ml H_2O_2 (5%).


FIGURA 7f. POA DATOS TABLA X DEL ANEXO A

En la figura 7f se muestra una reducción total del fenol al cabo de 3.3 horas en la oxidación indicando un rendimiento en la reacción de 100%, este comportamiento no deseado, debido al tratamiento biológico siguiente. La combinación oxidante/catalizador empleada en este ensayo es 1 mg de $Fe^{+3}/0.05$ ml H_2O_2 (5%).

FIGURA 7g. POA DATOS TABLA XI DEL ANEXO A

En la figura 7g la combinación oxidante/catalizador empleada es 2 mg de Fe⁺³/0.05 ml H₂O₂ (5%) y logra una reducción casi total del fenol (94.7%), al cabo de 5 horas aproximadamente en la oxidación, provocando problemas para el tratamiento biológico que lo sucede.

FIGURA 7h. POA DATOS TABLA XII DEL ANEXO A

El POA que muestra la figura 7h se realiza con una combinación oxidante/catalizador de 3 mg de $Fe^{+3}/0.05$ ml H_2O_2 (5%), ella logra una oxidación del fenol de 76.8%, al cabo de 1.7 horas aproximadamente muestra una estabilización casi constante.

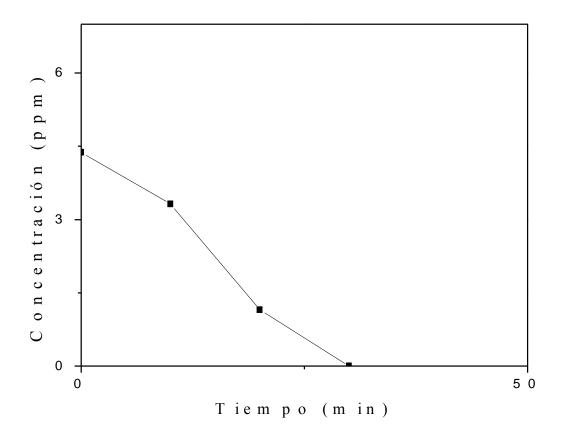
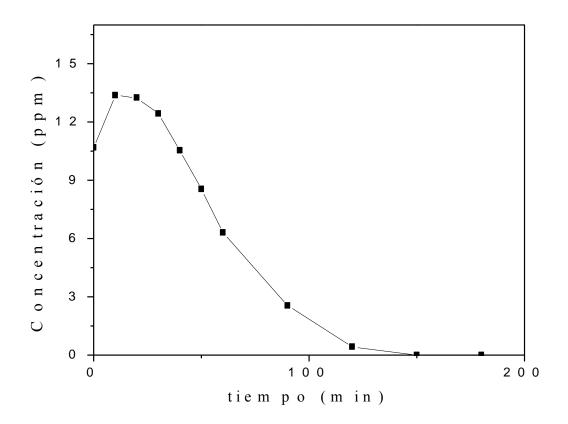
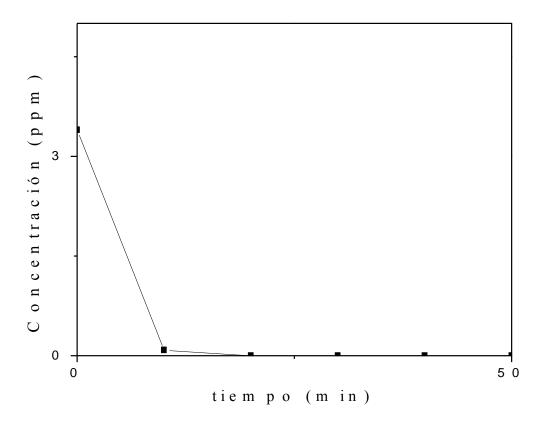
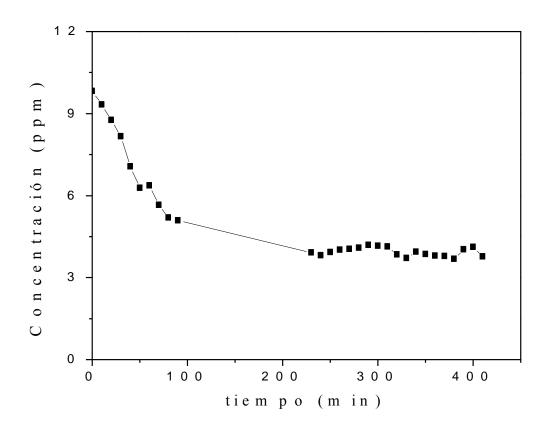


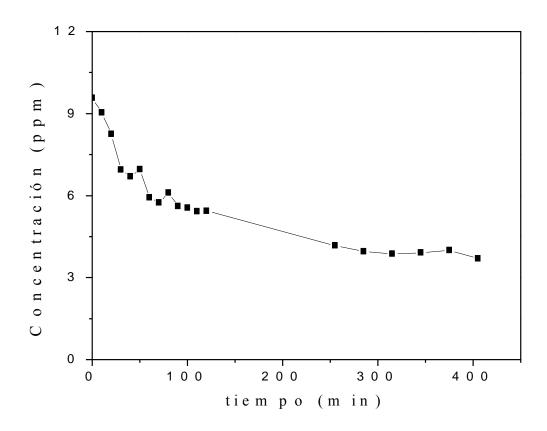
FIGURA 7i. POA DATOS TABLA XIII DEL ANEXO A

La oxidación en la figura 7i muestra una reducción total del fenol después de 0.5 horas. La combinación oxidante/catalizador empleada en este ensayo es 4 mg de $Fe^{+3}/0.05$ ml H_2O_2 (5%).

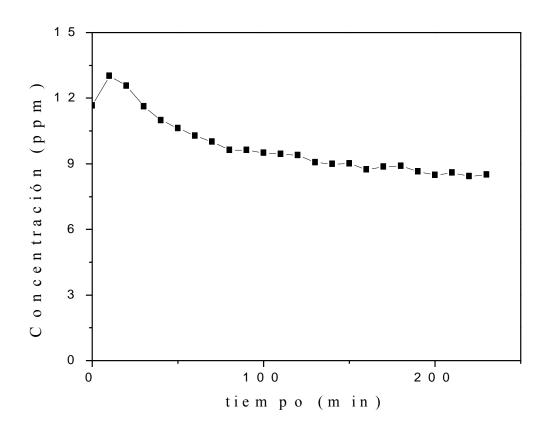




FIGURA 7j. POA DATOS TABLA XIV DEL ANEXO A

La oxidación en la figura 7j muestra una reducción total del fenol después de 2.5 horas. La combinación oxidante/catalizador empleada en este ensayo es 5 mg de $Fe^{+3}/0.05$ ml H_2O_2 (5%).


FIGURA 7k. POA DATOS TABLA XV DEL ANEXO A

La figura 7k muestra que la oxidación del fenol después de 0.3 horas es total. La combinación oxidante/catalizador empleada en este ensayo es 6 mg de $Fe^{+3}/0.05$ ml H_2O_2 (5%).


FIGURA 71. POA DATOS TABLA XVI DEL ANEXO A

La combinación oxidante/catalizador, para la oxidación en la figura 7l, es 1 mg de $Fe^{+3}/0.05$ ml H_2O_2 (15%) y muestra una reducción del fenol de 61.6%. A partir de 1.5 horas, de iniciado el proceso, se nota una estabilización en el valor final de la concentración final del fenol. Este tratamiento es muy bueno para lo que se pretende.

FIGURA 7m. POA DATOS TABLA XVII DEL ANEXO A

En la figura 7m se muestra la combinación oxidante/catalizador 2 mg de $Fe^{+3}/0.05 ml$ H_2O_2 (15%) y logra una reducción del fenol de 61.4%. 5 horas, después de iniciado el proceso, se nota una estabilización en el valor final de la concentración final del fenol. Este tratamiento no es bueno, debido al tiempo que demora su estabilización.

FIGURA 7n. POA DATOS TABLA XVIII DEL ANEXO A

En la figura 7n se muestra una oxidación de 27.0% del contaminante. La combinación oxidante/catalizador es 1 mg de $Fe^{+3}/0.05$ ml H_2O_2 (30%), por su rendimiento no es adecuada.

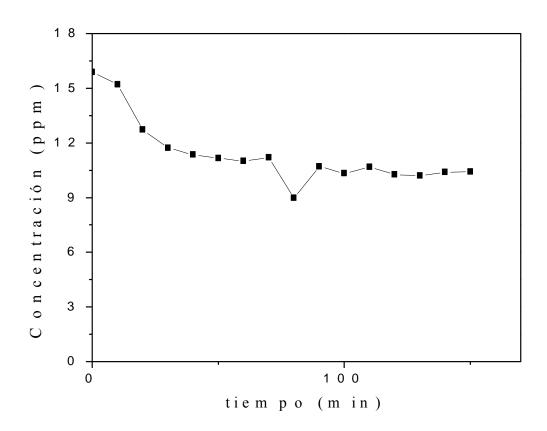


FIGURA 70. POA DATOS TABLA XIX DEL ANEXO A

La combinación oxidante/catalizador de 2 mg de $Fe^{+3}/0.05$ ml H_2O_2 (30%) muestra en la figura 70 una oxidación de 34.4% del contaminante., y tampoco es adecuada.

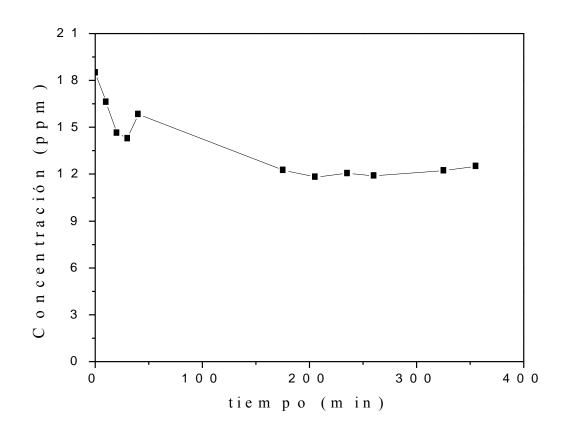
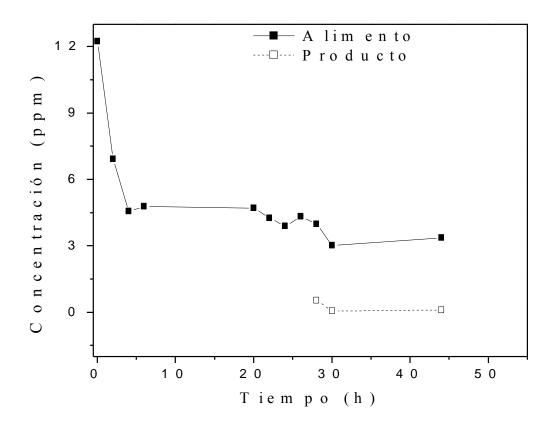


FIGURA 7p. POA DATOS TABLA XX DEL ANEXO A

En la figura 7p se logra una oxidación de 32.4% del contaminante, un bajo rendimiento. La combinación oxidante/catalizador es 3 mg de $Fe^{+3}/0.05$ ml H_2O_2 (30%).


FIGURA 7q. POA DATOS TABLA XXI DEL ANEXO A

La combinación oxidante/catalizador de 3,5 mg de Fe⁺³/0.05 ml H₂O₂ (30%) se muestra en la figura 7q, corresponde al POA elegido para el sistema acoplado, la degradación alcanzada es de 66.2% del fenol; 0.5 horas después de iniciado el proceso se halla una concentración estable, que perdura, esta característica es bastante importante para el POB.

5.3. SISTEMA ACOPLADO

Los muestreos de afluente y efluente del tratamiento acoplado se analizan por espectrometría UV-vis (ver tablas XXV a XXVIII del anexo A), también se reportan los resultados obtenidos por titulación volumétrica, titulación potenciométrica y algunas de las muestras medidas por DQO (ver tablas de XXIX a XXXVII del anexo A). Las figuras 8a a 8d muestran la concentración calculada por absorbancia UV-vis, para cada uno de los lotes (la línea continua corresponde al alimento y la línea punteada al producto).

En general, se nota que la concentración de fenol en el alimento a través del tiempo logra una estabilidad, para las mediciones por absorbancia UV-vis, para cada uno de los lotes; los resultados por titulación volumétrica, titulación potenciométrica y las mediciones por DQO no se comportan de igual forma.

FIGURA 8a. LOTE 1 DEL SISTEMA ACOPLADO

La figura 8a muestra el comportamiento de los flujos de alimento y producto, con diferencias no significativas, después de 2 horas de arrancado el lote (varianza del alimento de 1.1193, varianza del producto de 0.0686). Los datos de rendimiento se muestran muy dispersos, lo cual muestra diferencias significativas.

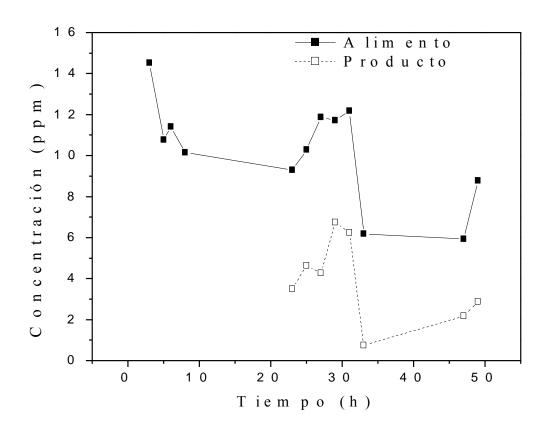


FIGURA 8b. LOTE 2 DEL SISTEMA ACOPLADO

En la figura 8b los flujos de alimento y producto muestran diferencias significativas entre las concentraciones de las muestras, el rendimiento también muestra este comportamiento.

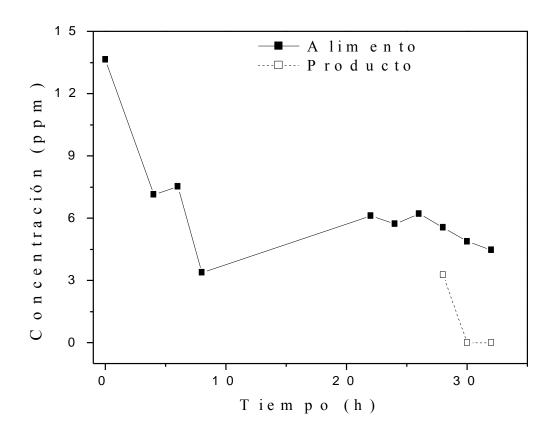
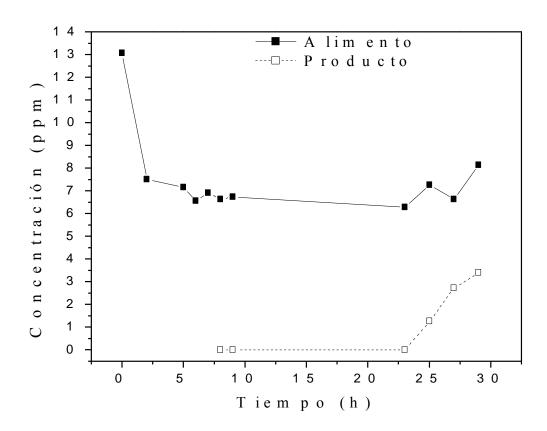



FIGURA 8c. LOTE 3 DEL SISTEMA ACOPLADO

Las corrientes de alimento y producto no muestran diferencias significativas en la figura 8c (1.6749 y 3.5687, respectivamente), en cambio, las concentraciones de las muestras permiten calcular un rendimiento que no se comporta de igual forma.

FIGURA 8d. LOTE 4 DEL SISTEMA ACOPLADO

Las diferencias no son significativas en las corrientes de alimento y producto mostradas en la figura 8d. El rendimiento muestra diferencia significativa, sin embargo, igual que los rendimientos anteriores, se aprecia una buena diferencia entre las concentraciones de los flujos.

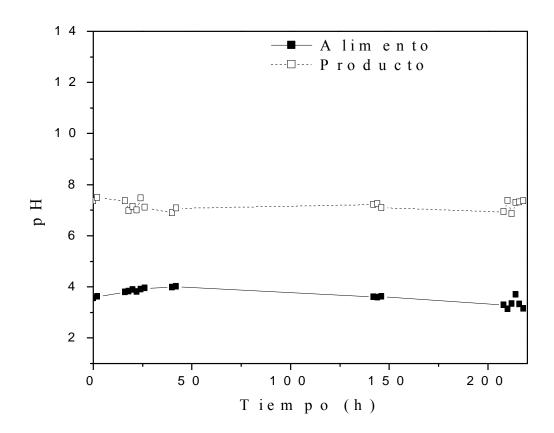
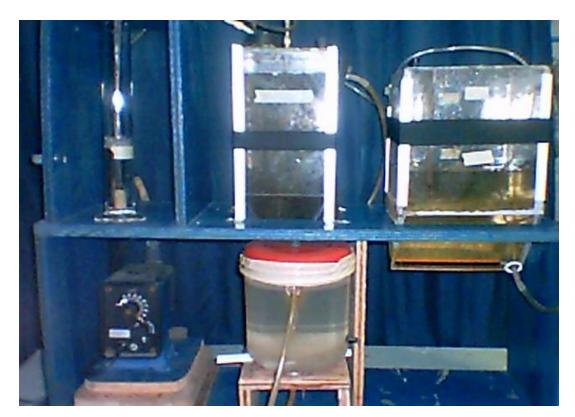



FIGURA 9. SEGUIMIENTO DE PH EN ALIMENTO Y PRODUCTO DEL SISTEMA ACOPLADO

El seguimiento de pH en los flujos de alimento y producto durante el proceso acoplado se muestran en la figura 9, correspondiente a la tabla XLI del anexo A. Los valores de pH en el alimento, igual que en el producto, no poseen diferencia significativa apreciable, lo cual significa concentraciones semejantes entre los lotes, en las corrientes de entrada y salida del sistema.

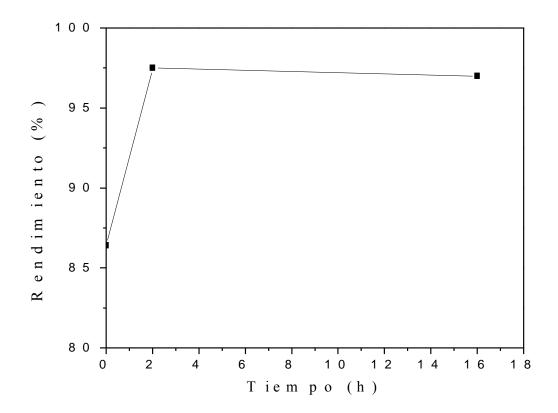
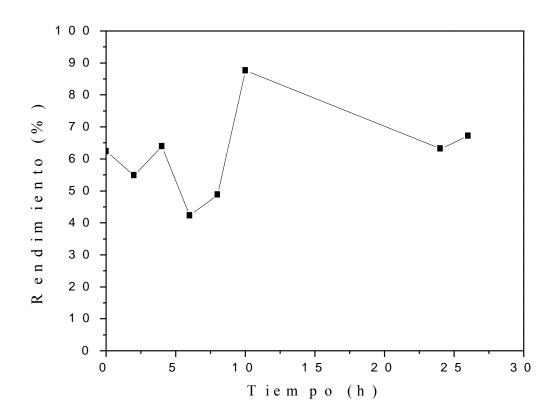

El sistema acoplado donde se lleva a cabo el tratamiento por lotes del agua residual sintética se muestra en la imagen 4.

IMAGEN 4. SISTEMA ACOPLADO


La corriente de producto arroja unos resultados dispersos de concentración de fenol, calculados a partir de la absorbancia UV-vis (figuras 8a hasta 8d), que permiten argumentar diferentes motivos de ocurrencia, como la presencia de material celular muerto no precipitado en el sedimentador, los sólidos disueltos debido al control de pH en el reactor biológico, la presencia de los intermediarios no biodegradables de la oxidación parcial del fenol, e igualmente no se pueden descartar el fenol no oxidado, por ambos tratamientos, ni el peróxido adicionado en exceso en el POA. Sin embargo, los cálculos del rendimiento para cada una de las muestras en cada lote, brinda un rango amplio desde 40 hasta 100%, reportados en las tablas XXV a XXVIII del anexo A.

Las figuras 10a hasta 10d pertenecen al porcentaje de rendimiento de cada uno de los lotes, las cuales pueden analizarse con la curva de proliferación típica de una población bacteriana figura 6.

FIGURA 10a. PORCENTAJE DE RENDIMIENTO DEL LOTE 1

La figura 10a, correspondiente al lote 1 (ver datos en la tabla XXV del anexo A), alcanza un alto rendimiento después de dos horas de adaptación del POB al sustrato, posteriormente se observa un leve descenso, hasta finalizar el volumen total del POA.

FIGURA 10b. PORCENTAJE DE RENDIMIENTO DEL LOTE 2

Los resultados del lote 2 en la figura 10b (ver datos en la tabla XXVI del anexo A), permiten observar una primera etapa (ocho horas), algo parecida a la adaptación; luego del sistema alcanzar un máximo desempeño empieza a disminuir su eficiencia.

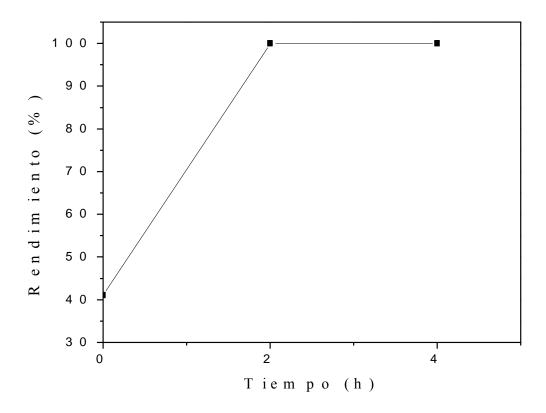
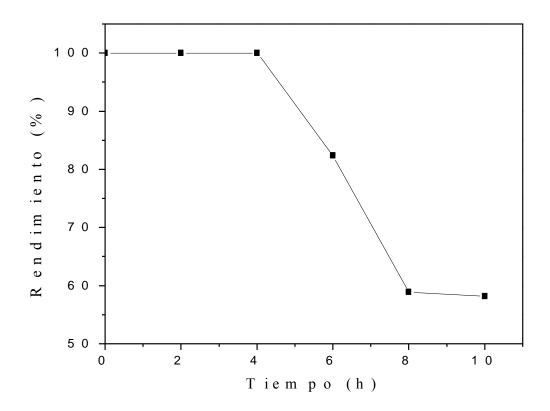



FIGURA 10c. PORCENTAJE DE RENDIMIENTO DEL LOTE 3

La figura 10c, correspondiente al lote 3 (ver datos en la tabla XXVII del anexo A), alcanza un máximo rendimiento después de dos horas de adaptación del POB al sustrato.

FIGURA 10d. PORCENTAJE DE RENDIMIENTO DEL LOTE 4

La figura 10d del lote 4 (ver datos en la tabla XXVIII del anexo A), muestra un alto rendimiento al inicio, que permanece durante cuatro horas, luego inicia su etapa de descenso.

Al analizar el comportamiento por semana del tratamiento acoplado, figuras 11a y 11b al comienzo se comporta con una etapa ascendente, de una posible adaptación de los lodos al sustrato, seguida de un máximo alcanzado muy rápidamente (dos horas). Los comportamientos, sólo son comparables de nuevo en la etapa de descenso del desempeño, lo cual se puede justificar por una posible mortandad microbiana.

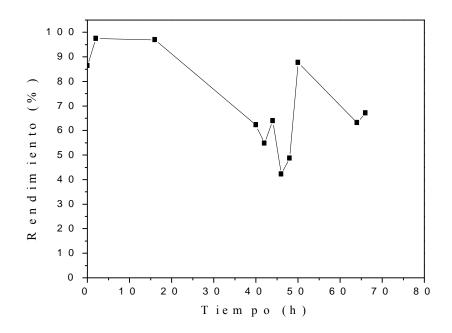


FIGURA 11a. PORCENTAJE DE RENDIMIENTO SEMANA 1

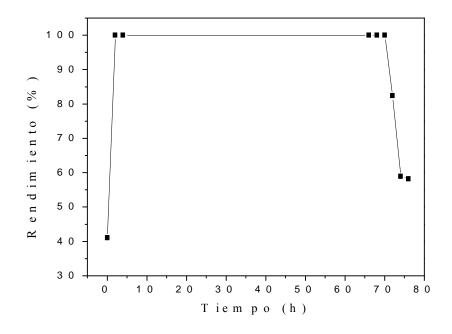


FIGURA 11b. PORCENTAJE DE RENDIMIENTO SEMANA 2

5.4. BIODEGRADABILIDAD DEL FENOL

La capacidad de biodegradación del POB del contaminante se visualiza en la figura 12, la cual es el resultado de los datos de la tabla XXXVIII del anexo A, estos datos no son comparables con los obtenidos por titulación volumétrica y potenciométrica (ver tablas XXXIX y XL del anexo A, respectivamente).

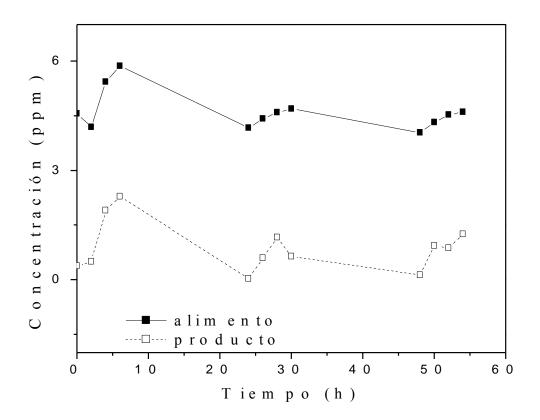


FIGURA 12. BIODEGRADABILIDAD DEL CONTAMINANTE CALCULADO POR ESPECTROMETRÍA UV-VIS

El rendimiento en el POB del fenol oscila entre 60 y 100%, calculado con el método de espectrometría UV-vis (ver datos en al tabla XXXVIII del anexo A). El alto porcentaje de rendimiento es posible, teniendo en cuenta que las concentraciones en decenas de ppm de fenol son asimilables por los microorganismos.¹³

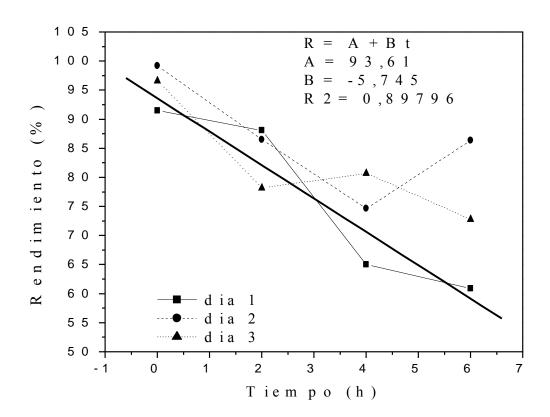


FIGURA 13. COMPORTAMIENTO DEL RENDIMIENTO EN EL POB CON FENOL DIA A DIA

En el comportamiento del rendimiento en el día (figura 13), se nota la tendencia lineal decreciente del sistema biológico, debido posiblemente a la inhibición de los microorganismos por la acumulación de fenol y factores externos, como el aumento de temperatura (de la mañana a la tarde) y la intensidad de luz en el espacio del laboratorio.

El POA del fenol tiene una eficiencia en la oxidación de 58 a 67% (ver tabla XXI del anexo A). La comparación del tratamiento acoplado con los sistemas individuales (POA y POB) tiene un rango más amplio de efectividad en la degradación del fenol, predominando los valores altos o cercanos a 100%. Es posible cerrar el rango de

rendimiento, disponiendo de instrumentos, métodos y equipos, de comprobación de lecturas en el espectrómetro UV-vis, que permitan realizar una correlación de los datos.

6. CONCLUSIONES

Se diseña una unidad de tratamiento biológico a escala de laboratorio para un caudal de 358 ml/h. El reactor biológico, tiene un volumen de 4,7 litros y el sedimentador 2,56 litros. La construcción del reactor y sedimentador permiten obtener un tiempo hidráulico de retención de 13 y 7 horas aproximadas, respectivamente.

La implementación del tratamiento biológico aireado se logra iniciando la activación de los lodos contenidos en el reactor biológico. La fuente alimenticia de reemplazo (ácido acético) permite obtener resultados de mejor interpretación, también, se cuantifican los productos del tratamiento biológico por diferentes métodos.

La medición de la biodegradabilidad del compuesto tóxico, a bajas concentraciones, demuestra ser buena, los resultados obtenidos por el método de espectrometría UV-vis no son comparables con los obtenidos por otros procedimientos.

Se elige el procedimiento de oxidación avanzada, a partir de una serie de ensayos, donde se degrada el fenol hasta un valor constante adecuado, permitiendo la oxidación biológica, sin inhibición.

Las combinaciones de oxidante/catalizador en las oxidaciones del compuesto tóxico, sugieren la posibilidad de ampliar el número de pruebas, para ubicar las mezclas óptimas que permitan un alto desempeño del tratamiento oxidativo.

El tratamiento de agua residual toxica en el sistema acoplado, logra una efectividad de remoción importante. Los resultados obtenidos pueden ser comprobados o mejorados con sistemas de análisis especializados.

Los procesos individuales de tratamiento logran un alto grado de rendimiento en la reducción del contenido de fenol, al compararlos con el sistema acoplado, donde predominan los altos rendimientos dentro de un rango de eficiencia, se observa la gran viabilidad que otorga el sistema conjunto para el tratamiento de este tipo de desechos.

7. RECOMENDACIONES

La producción de dióxido de carbono o cuantificación de respiración de lodos no es una medición aislada, debido a que puede relacionarse con el consumo de sustrato, la activación y cantidad de masa microbiana. Luego, es necesario realizar análisis, por ejemplo cromatografía de gases (GC), que permitan una determinación precisa en la producción de este compuesto.

En la determinación de la concentración de fenol en un flujo, se sugiere la utilización de técnicas de cromatografía liquido-gas (LGC), al igual que, la destilación, para la comprobación de los datos arrojados por la espectrometría UV-vis. Sin embargo, si se cuenta con equipos que permitan determinar cantidad de compuesto en una mezcla, lo más importante es tratar de correlacionar las diferentes lecturas.

Dado que el sistema acoplado de tratamiento de aguas residuales con contenido tóxico, es solo una de las posibles agrupaciones de POA-POB, es importante continuar con la investigación, para determinar los límites de concentración y tipo de contaminante oxidable.

Existen varios factores que deben considerarse cuando se desarrolla una propuesta para el uso de la biodegradación. Aunque existen algunos materiales residuales que resisten (al menos a efectos prácticos) la degradación microbiana, en general se pueden obtener

organismos capaces de atacar la mayoría de los residuos. Puede ser necesario potenciar a los organismos en términos de densidad celular o actividad metabólica, otra consideración a tener en cuenta es la necesidad de un cosustrato u otra sustancia inductora, para mejorar el metabolismo de un residuo específico; si se trata de una sustancia costosa o tóxica, quizás no sea factible utilizarla.⁶

8. BIBLIOGRAFIA

- 1. RAMALHO, R. S. 1996. "Tratamiento de aguas residuales". Reverté S.A. España. Pág. 253-409
- 2. DEGREMONT. 1979. "Manual técnico del agua". 4ª. Edición. Grafo, S.A. Bilbao. España. Pág. 220
- 3. FAIR, G.M., et. al. 1971. "Purificación de aguas y tratamiento y remoción de aguas residuales". Volumen II. Limusa Wiley. México.
- 4. METCALF-EDDY INC. 1994. "Ingeniería sanitaria. Tratamiento, evacuación y reutilización de aguas residuales". 3° Edición. Labor S.A. Barcelona. España.
- 5. METCALF-EDDY INC. 1991 "Ingeniería de agua residuales. Tratamiento, vertido y reutilización". 3° Edición. Volumen II. McGraw Hill. México.
- 6. LEVIN M., GEALT M. A. 1993. "Biotratamiento de residuos tóxicos y peligrosos. Selección, estimación, modificación de microorganismos y aplicaciones". McGraw Hill. España.

7. ANÁLISIS DEL AGUA. 2000. "Procesos aeróbicos en el tratamiento de aguas residuales".

http://www.monografias.com/trabajos5/anagua/anagua.shtml

- 8. <u>ESTRUCPLAN ON LINE. SALUD, SEGURIDAD Y MEDIO AMBIENTE EN LA INDUSTRIA. 2000.</u> "Combinación de procesos biológicos y de oxidación avanzada para el tratamiento de una corriente de proceso de la industria de curtiembre". http://www.estrucplan.com.ar/articulos/verarticulo.asp?IDArticulo=592
- 9. ÉCOLE POLYTECHNIQUE FEDERALE DE LAUSANNE, EPFL. SARRIA, V.M. 2003. "Coupled advanced oxidation and biological processes for wastewater treatment".

http://library.epfl.ch/theses/?display=detail&nr=2785

10. MARTÍNEZ E. C., LÓPEZ G. D. Instituto de Desarrollo y Diseño y Universidad Tecnológica Nacional. 2004. "Tratamiento químico de contaminantes orgánicos-el proceso fenton".

www.fundacionypf.org.ar/premios/Fenton_paper.pdf

- 11. BLANCO J. L. M. Universidad Autónoma Nuevo León. 2002. "Ultrasonido y ambiente: destrucción sonoelectroquímica de derivados fenólicos clorados". http://www.conacyt.mx/fondos/sepgog/sep-cientifica
- 12. HERNANDEZ I, AGUILAR J, LOPEZ E, SCHIFTER I. Universidad Autónoma Metropolitana. 2001. "Descomposición de fenol en medio acuoso con peróxido de hidrógeno catalizada por cenizas provenientes de la combustión de carbón mineral". http://www.azc.uam.mx/

13. BRAVO S. J. J., GIRALDO S. A., CENTENO A., PÁEZ M. E., Centro de Investigaciones en Catálisis. Universidad Industrial de Santander. 2001. "Catalizadores para purificación de aguas industriales que contengan compuestos resistentes a la biodegradación".

www.icp.csic.es/cyted/Monografias/ Monografias2001/B2-265.pdf

14. LENNTECH. 1998-2005. "Peróxido de hidrógeno". http://www.lenntech.com/espanol/peroxido-de-hidrogeno.htm

15. INSTITUTO DE CATALISIS Y PETROLEOQUIMICA. 1998. "Catalizadores para purificación de aguas industriales que contengan compuestos resistentes a la biodegradación".

http://www.icp.csic.es/cyted/Monografias/Monografias1998/B2_NDICE.html

- 16. VARGAS O. W.; 1991; "Fundamentos de la ciencia alimentaría". 2° edición; Servigraphic Ltda.; Bogota D.C.
- 17. APHA, AWWA, WPCF. 1992. "Métodos normalizados para el análisis de aguas potables y residuales". 17° Edición. Díaz de Santos S.A. España.
- 18. REPUBLICA DE COLOMBIA. Ministerio de Desarrollo Económico. Dirección de Agua Potable y Saneamiento Básico. 2000. "Reglamento técnico del sector de agua potable y saneamiento básico. Tratamiento de aguas residuales". Sección II. Titulo E. Mindesarrollo. Bogotá D.C.
- 19. RAMALHO R.S. 1978."Principles of activated sludge treatment". Hydrocarbon Processing; 57. (10). 112-118. (11). 275-280. (12). 147-151.
- 20. RAMALHO R.S. 1979. "Design of aerobic treatment units". Hydrocarbon processing. 59. (10). 185-193. (11). 285- 292.

- 21. ROMERO R. J.A. 1996. "Acuiquímica". Escuela Colombiana de Ingeniería. Colombia.
- 22. DAVIS M. 1994. "Use advanced methods to treat wastewater". Hydrocarbon Processing; 73. (8). 43-46.
- 23. VORONTSOV A. V. et al. 2002. "Photocatalitic degradation of 2-phenethyl-2-chloroethyl sulphide in liquid and gas phases". Environmental Science & Technology. Easton. 36. (23). 5261-5269.
- 24. Mc MARTIN D. W. 2004. "Two is better than one". Resource. St. Joseph. <u>11.</u> (1). 13-14.
- 25. LE PATOUREL G. SMITH F. 2003. "Implementation of primary UV disinfection at the Mannheim Water Treatment Plant: procurement installation and validation challenges". American Water Works Association Journal. Denver. 95. (10). 57.
- 26. WEGELIN M. 1998. "Desinfección solar del agua (SODIS)- en le camino a su uso en todo el mundo". Department Water Supply and Sanitation in Developing Countries (SANDEC). Conferencia Internacional Agua y Sostenibilidad. 316-323.

ANEXO A. TABLAS DE RESULTADOS

Tabla I. Curva de ácido acético (ver grafica I del anexo B)

Concentración (g/l)	Abs (202nm)	Abs (202nm)	Abs (202nm)
17,8	2,22450	2,16590	2,15980
13,4	1,91500	1,78460	1,77690
8,9	1,30280	1,28550	1,26640
4,5	0,71671	0,67058	0,70083
0,0	0,00000	0,00000	0,00000

Tabla II. Rendimiento calculado por titulación volumétrica del POB con NaOH 0.1N

Tiempo	V NaOH	C Ac. ac	V NaOH	Conc. Ac. ac	Rendimiento
(día)	alim. (ml)	alim. (g/l)	prod. (ml)	prod.(g/l)	(%)
0	0,43	0,258	0,35	0,210	18,6
1	0,43	0,258	0,32	0,192	25,6
2	0,10	0,060	0,33	0,198	0
3	0,05	0,030	0,20	0,120	0

Tabla III. Rendimiento calculado por espectrometría uv-vis del POB con ácido acético 202 nm.

Tiempo	alimento	alimento	producto	producto	pН	pН	Rendto.
(día)	Abs	(ppm)	Abs	(ppm)	alimento	producto	(%)
0	0,17210	0,572	0,21614	0,919	3,65	3,90	0
1	0,19154	0,725	0,24082	1,114	3,67	3,90	0
4	0,25325	1,212	0,33062	1,821	3,71	3,95	0
7	0,21806	0,934	0,20804	0,855	3,62	3,86	8,4
80	0,24679	1,160	0,15630	0,448	5,95	6,34	61,4
82	0,34592	1,942	0,28053	1,426	5,73	7,37	26,5
84	0,13576	0,286	0,09727	0,000	7,17	7,67	100,0
85	0,42029	2,527	0,30310	1,604	6,77	7,59	36,5
86	0,16772	0,538	0,15364	0,427	6,21	6,78	20,6
87	0,21389	0,902	0,16943	0,551	5,79	7,02	38,8

TABLA IVa. CONTROL DE pH EN EL REACTOR BIOLOGICO

	Tiempo	pН	Tiempo	pН	Tiempo	pН
	(d)		(d)		(d)	
	0	3.70	27	4.04	57	5.36
	1	3.82	28	4.49	58	5.46
	2	3.98	29	3.78	59	5.67
	3	4.31	31	5.57	64	5.04
	4	5.29	34	4.98	65	5.78
	6	5.43	35	6.88	66	6.18
DOD	7	5.81	36	5.90	67	6.08
POB alimentado	8	6.12	37	5.20	70	6.33
con ácido	9	6.13	38	5.44	71	7.00
acético	10	6.18	39	5.24	72	6.81
acctico	13	5.76	41	4.98	73	7.00
	14	5.74	42	5.08	74	7.30
	15	5.96	48	5.27	76	7.46
	16	6.19	50	5.00	77	7.48
	17	6.08	51	4.43	78	7.34
	18	6.02	52	4.60	79	7.32
	21	6.19	56	5.59		

TABLA IVb. CONTROL DE pH EN EL SISTEMA ACOPLADO

	Tiempo	pН	Tiempo	pН	Tiempo	pН
	(d)		(d)		(d)	
	0	7.41	26	7.54	49	7.54
	3	7.26	27	7.05	52	7.01
	4	6.84	28	6.98	53	7.09
	5	6.31	31	6.97	54	7.00
	6	7.09	32	7.48	55	7.05
	7	7.10	33	7.02	56	7.02
Sistema	8	7.00	34	7.33	59	7.02
acoplado	11	7.06	35	7.02	60	7.00
alimentado	12	7.11	38	7.10	62	7.03
con fenol	13	7.00	39	7.10	63	7.01
	14	7.10	40	7.14		
	18	7.62	41	6.93		
	19	7.00	42	7.39		
	20	7.00	46	7.02		
	24	7.04	47	7.00		
	25	7.14	48	7.25		

TABLA IVc. CONTROL DE pH EN EL POB ALIMENTADO CON FENOL

	Tiempo	pН
	(d)	
	0	7.06
POB	1	7.22
alimentado	2	7.00
con fenol	3	7.00
	4	7.02

Tabla V. Adición de 0,05 ml de oxidante a 5%

Fenol: Abs(210,5 nm)=0,15654

Fenol + 1 mg Fe(II); Abs(210,5 nm)=0,15654 (ensayo 1)

Fenol + 1 mg Fe(II); Abs(210,5 nm)=0,24918 (ensayo 2)

t	Abs	Abs	Conc***	Abs	Abs	Conc***	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(°C)
0	0,50543	0,50543	14,339	0,51356	0,51356	14,600	4,89	26,80
10	0,50473	0,50473	14,316	0,46584	0,46584	13,065	4,60	23,00
20	0,49972	0,49972	14,155	0,43315	0,43315	12,012	4,64	23,20
30	0,49937	0,49937	14,144	0,44312	0,44312	12,333	4,64	23,40
40	0,50478	0,50478	14,318	0,43098	0,43098	11,943	4,60	23,70
50	0,51007	0,51007	14,488	0,44035	0,44035	12,244	4,51	24,10
60	0,50544	0,50544	14,339	0,47137	0,47137	13,243	4,52	24,30
90	0,44699	0,44699	12,458	0,48901	0,48901	13,810	4,54	25,10
120	0,41580	0,41580	11,454	0,45022	0,45022	12,562	4,56	25,50
260	0,39008	0,39008	10,626	0,42390	0,42390	11,715	4,51	26,20
290	0,38702	0,38702	10,528	0,45789	0,45789	12,809	4,51	26,40

Continuació	ón tabla V							
320	0,37796	0,37796	10,236	0,44607	0,44607	12,428	4,49	26,50
350	0,37006	0,37006	9,982	0,42907	0,42907	11,881	4,48	26,60
380	0,37242	0,37242	10,058	0,42225	0,42225	11,662	4,48	26,60
410	0,37332	0,37332	10,087	0,43567	0,43567	12,093	4,47	26,60
440	0,36318	0,36318	9,760	0,41587	0,41587	11,456	4,47	26,40
470	0,35637	0,35637	9,541	0,42371	0,42371	11,709	4,46	26,40
500	0,35119	0,35119	9,374	0,41698	0,41698	11,492	4,47	26,50
Rendimiento (%)		34,6	Rendimiento (%)		21,3			

^{*}Abs contaminante + Abs catalizador + Abs oxidante

^{**(}Abs contaminante + Abs oxidante) sin consumir

^{*** (}Abs fenol**-0,059925)/0,03107, en todas las tablas siguientes se calcula de igual forma.

Tabla VI. Adición de 0,05 ml de oxidante a 5%

Fenol: Abs(210,5 nm)=0,12468; Fenol + 2 mg Fe(II); Abs(210,5 nm)=0,29475 (ensayo 1)

Fenol: Abs(210,5 nm)=0,15654; Fenol + 2 mg Fe(II); Abs(210,5 nm)=0,27708 (ensayo 2)

t	Abs	Abs	Conc	Abs	Abs	Conc	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(°C)
0	0,65330	0,48323	13,624	0,68009	0,55955	16,081	4,15	22,80
10	0,61545	0,44538	12,406	0,59336	0,47282	13,289	4,11	22,90
20	0,61263	0,44256	12,315	0,55908	0,43854	12,186	4,09	23,00
30	0,58455	0,41448	11,411	0,58805	0,46751	13,118	4,08	23,30
40	0,59967	0,42960	11,898	0,55069	0,43015	11,916	4,08	23,50
50	0,60644	0,43637	12,116	0,53580	0,41526	11,437	4,08	23,70
60	0,57061	0,40054	10,963	0,54250	0,42196	11,652	4,08	23,90
85	0,55546	0,38539	10,475				4,07	24,30
90				0,52959	0,40905	11,237		
115	0,56681	0,39674	10,841				4,07	24,60
120				0,54668	0,42614	11,787		
230	0,54714	0,37707	10,207				4,06	25,20

Continuació	n tabla VI							
260	0,53663	0,36656	9,869	0,49185	0,37131	10,022	4,07	25,20
290	0,53698	0,36691	9,880	0,51572	0,39518	10,790	4,07	25,40
320	0,53399	0,36392	9,784	0,52385	0,40331	11,052	4,07	25,60
350	0,54309	0,37302	10,077	0,51713	0,39659	10,836	4,07	25,80
380	0,54382	0,37375	10,101	0,53298	0,41244	11,346	4,07	25,90
410	0,53253	0,36246	9,737				4,06	26,00
440	0,52523	0,35516	9,502				4,07	26,10
Re	Rendimiento (%)			Rendimiento (%)		29,4		

Tabla VII. Adición de 0,05 ml de oxidante a 5%

Fenol Abs(210,5 nm)=0,12359; Fenol + 3 mg Fe(II); Abs(210,5 nm)=0,13235 (ensayo 1)

Fenol Abs(210,5 nm)=0,15396; Fenol + 3 mg Fe(II); Abs(210,5 nm)=0,16508 (ensayo 2)

t	Abs	Abs	Conc	Abs	Abs	Conc	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(°C)
0	0,50899	0,50023	14,171	0,59616	0,58504	16,901	4,17	24,60
10	0,48226	0,47350	13,311	0,54969	0,53857	15,405	3,96	24,70
20	0,46840	0,45964	12,865	0,56176	0,55064	15,794	3,94	24,80
30	0,46392	0,45516	12,721	0,62028	0,60916	17,677	3,93	24,90
40	0,46622	0,45746	12,795	0,57823	0,56711	16,324	3,93	25,10
50	0,46336	0,45460	12,703	0,56586	0,55474	15,926	3,94	25,20
60	0,46324	0,45448	12,699	0,57225	0,56113	16,131	3,94	25,40
90	0,46632	0,45756	12,798	0,58650	0,57538	16,590	3,93	25,90
100				0,58455	0,57343	16,527		
110				0,60947	0,59835	17,329		
120	0,46008	0,45132	12,597	0,58780	0,57668	16,632	3,93	26,20
130				0,58580	0,57468	16,568		

Continuación	tabla VII							
140				0,57528	0,56416	16,229		
150	0,45418	0,44542	12,407	0,60398	0,59286	17,153	3,93	26,50
180	0,44433	0,43557	12,090				3,94	26,70
210	0,45017	0,44141	12,278				3,95	26,80
220	0,44775	0,43899	12,200				3,95	26,80
230	0,45048	0,44172	12,288				3,95	26,90
240	0,46478	0,45602	12,748				3,95	26,90
250	0,45287	0,44411	12,365				3,95	26,90
260	0,45203	0,44327	12,338				3,94	26,90
270	0,45517	0,44641	12,439				3,95	26,90
280	0,46313	0,45437	12,695				3,95	26,90
Re	endimiento (%	(o)	10,4	Rendimi	ento (%)	0,0		l

Tabla VIII. Adición de 0,05 ml de oxidante a 5%

Fenol Abs(210,5 nm)=0,15396; Fenol + 4 mg Fe(II); Abs(210,5 nm)=0,20544 (ensayo 1)

Fenol Abs(210,5 nm)=0,12359; Fenol + 4 mg Fe(II); Abs(210,5 nm)=0,15875 (ensayo 2)

T	Abs	Abs	Conc	Abs	Abs	Conc	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(°C)
0	0,65379	0,60231	17,457	0,64313	0,60797	17,639	3,90	23,40
10	0,67971	0,62823	18,291	0,66918	0,63402	18,477	3,78	23,50
20	0,69280	0,64132	18,712	0,66002	0,62486	18,183	3,76	23,60
30	0,69426	0,64278	18,759	0,65598	0,62082	18,053	3,76	23,80
40	0,73929	0,68781	20,209	0,65416	0,61900	17,994	3,76	24,20
50	0,73421	0,68273	20,045	0,65501	0,61985	18,021	3,77	24,40
60	0,69564	0,64416	18,804	0,66506	0,62990	18,345	3,77	24,70
90	0,70396	0,65248	19,072	0,65371	0,61855	17,980	3,77	25,20
100	0,69836	0,64688	18,891				3,77	25,40
110	0,73009	0,67861	19,913				3,78	25,60
120	0,68332	0,63184	18,407	0,63331	0,59815	17,323	3,78	25,70
130	0,73782	0,68634	20,161				3,78	25,80
140	0,71467	0,66319	19,416				3,78	25,90

Continuación tabla VIII											
150	0,71874	0,66726	19,547	0,61348	0,57832	16,685	3,78	26,00			
180				0,60632	0,57116	16,454					
210				0,62416	0,58900	17,028					
220				0,61314	0,57798	16,674					
230				0,60266	0,56750	16,336					
240				0,62415	0,58899	17,028					
250				0,63315	0,59799	17,318					
260				0,60451	0,56935	16,396					
270				0,61411	0,57895	16,705					
280				0,61537	0,58021	16,746					
Rendimiento (%)		0,0	Rendimiento (%)		5,1						

Tabla IX. Adición de 0,05 ml de oxidante a 5%

Fenol Abs(210,5 nm)=0,11753

Fenol + 5 mg Fe(II); Abs(210,5 nm) = 0,11603 (ensayo 1)

Fenol + 5 mg Fe(II); Abs(210,5 nm)=0,10723 (ensayo 2)

t	Abs	Abs	Conc	Abs	Abs	Conc	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(°C)
0	0,70025	0,70025	20,609	0,59507	0,59507	17,224	3,79	24,80
10	0,92002	0,92002	27,682	0,67456	0,67456	19,782	3,65	24,60
20	0,90298	0,90298	27,134	0,68279	0,68279	20,047	3,64	24,60
30	0,89514	0,89514	26,882	0,68962	0,68962	20,267	3,62	24,50
40	0,91008	0,91008	27,363	0,68517	0,68517	20,124	3,62	24,60
50	0,91680	0,91680	27,579	0,67735	0,67735	19,872	3,63	24,60
60	0,88291	0,88291	26,488	0,70976	0,70976	20,915	3,62	24,70
70	0,92971	0,92971	27,994	0,72086	0,72086	21,272	3,62	24,80
80	0,94615	0,94615	28,523	0,71101	0,71101	20,955	3,62	25,00
90	0,93045	0,93045	28,018	0,73844	0,73844	21,838	3,63	25,20
Re	endimiento (%)	0,0	Rendimi	ento (%)	0,0		I

Tabla X. Adición de 0,05 ml oxidante a 5%

Fenol Abs(210,5 nm)=0,13930; Fenol + 1 mg Fe (III); Abs(210,5 nm)=0,16062; (ensayo 1)

Fenol Abs(210,5 nm)=0,13930; Fenol + 1 mg Fe (III); Abs(210,5 nm)=0,16004 (ensayo 2)

Fenol Abs(210,5 nm)=0,15676; Fenol + 1 mg Fe (III); Abs(210,5 nm)=0,24087 (ensayo 3)

t	Abs	Abs	Conc	Abs	Abs	Conc	Abs	Abs	Conc	pН
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)	total*	fenol**	(ppm)	
0	0,27959	0,25827	6,384	0,23959	0,21885	5,115	0,30501	0,22090	5,491	3,79
10	0,28488	0,26356	6,554	0,24429	0,22355	5,266	0,31464	0,23053	5,342	3,78
20	0,28006	0,25874	6,399	0,24551	0,22477	5,306	0,31000	0,22589	5,342	4,04
30	0,27294	0,25162	6,170	0,23742	0,21668	5,045	0,29917	0,21506	4,993	4,18
40	0,27158	0,25026	6,126	0,23738	0,21664	5,044	0,27973	0,19562	4,367	4,30
50	0,26894	0,24762	6,041	0,25046	0,22972	5,465	0,27166	0,18755	4,108	4,44
60	0,27126	0,24994	6,116	0,23731	0,21657	5,042	0,26575	0,18164	3,917	4,57
80	0,25841	0,23709	5,702	0,23428	0,21354	4,944				
90							0,25554	0,17143	3,589	4,72
110	0,12631	0,10499	1,450	0,10352	0,08278	0,736				
130							0,24220	0,15809	3,159	5,13
140	0,09886	0,07754	0,567	0,09443	0,07369	0,443				

Re	endimiento (%)	100	Rendimie	nto (%)	100	Rendt	0. (%)	59,2	
310	0,07020	0,04888	0,000	0,05702	0,03628	0,000				
290	0,06511	0,04379	0,000	0,07673	0,05599	0,000				
280							0,21360	0,12949	2,239	6,35
270							0,21184	0,12773	2,182	6,36
260	0,07182	0,05050	0,000	0,06144	0,04070	0,000				
230	0,07683	0,05551	0,000	0,06972	0,04898	0,000				
200	0,08219	0,06087	0,030	0,07768	0,05694	0,000				
170	0,10025	0,07893	0,612	0,07739	0,05665	0,000				
150							0,24314	0,15903	3,190	5,44
Continuación	tabla X									

Tabla XI. Adición de 0,05 ml oxidante a 5%

Fenol Abs(210,5 nm)=0,13930; Fenol + 2 mg Fe (III); Abs(210,5 nm)=0,18194 (ensayo 1)

Fenol Abs(210,5 nm)=0,14939; Fenol + 2 mg Fe (III); Abs(210,5 nm)=0,37186 (ensayo 2)

Fenol Abs(210,5 nm)=0,13500; Fenol + 2 mg Fe (III); Abs(210,5 nm)=0,26686 (ensayo 3)

t	Abs	Abs	Conc	Abs	Abs	Conc	Abs	Abs	Conc	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(°C)
0	0,41474	0,37210	10,047	0,44876	0,22629	5,355	0,39179	0,25993	6,437	3,84	23,80
10	0,40180	0,35916	9,631	0,42756	0,20509	4,672	0,36400	0,23214	5,543	3,82	23,80
20	0,39905	0,35641	9,542	0,40536	0,18289	3,958	0,31744	0,18558	4,044	3,82	23,70
30	0,38689	0,34425	9,151	0,37886	0,15639	3,105	0,32658	0,19472	4,338	3,52	23,70
40	0,37850	0,33586	8,881	0,36103	0,13856	2,531	0,32868	0,19682	4,406	3,81	23,80
50	0,37130	0,32866	8,649	0,34755	0,12508	2,097	0,33876	0,20690	4,730	3,80	23,90
60	0,36275	0,32011	8,374	0,35583	0,13336	2,364	0,32909	0,19723	4,419	3,80	24,00
70				0,34987	0,12740	2,172					
80	0,34883	0,30619	7,926							3,78	24,30
90							0,30326	0,17140	3,588		
100				0,32206	0,09959	1,277					

Re	ndimiento (%	(o)	94,7	Rendimie	nto (%)	64,7	Rendt	0. (%)	60,2		
310	0,11901	0,07637	0,529							3,75	26,00
290	0,12567	0,08303	0,744							3,75	25,90
280				0,34107	0,11860	1,888					
260	0,13677	0,09413	1,101							3,76	25,80
250				0,32968	0,10721	1,522					
230	0,14210	0,09946	1,272							3,76	25,60
220				0,32204	0,09957	1,276	0,27146	0,13960	2,564		
210							0,25862	0,12676	2,151		
200	0,14403	0,10139	1,335							3,75	25,40
180							0,26206	0,13020	2,262		
170	0,17973	0,13709	2,484							3,76	25,40
150							0,28118	0,14932	2,877		
140	0,17372	0,13108	2,290							3,76	25,10
120							0,29156	0,15970	3,211		
110	0,20766	0,16502	3,383							3,77	24,70

Tabla XII. Adición de 0,05 ml oxidante a 5%

Fenol Abs(210,5 nm)=0,14939; Fenol + 3 mg Fe (III); Abs(210,5 nm)=0,41443 (ensayo 1)

Fenol Abs(210,5 nm)=0,14939; Fenol + 3 mg Fe (III); Abs(210,5 nm)=0,42519 (ensayo 2)

Fenol Abs(210,5 nm)=0,13858; Fenol + 3 mg Fe (III); Abs(210,5 nm)=0,27349 (ensayo 3)

t	Abs	Abs	Conc	Abs	Abs	Conc	Abs	Abs	Conc	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(° C)
0	0,50001	0,23497	5,634	0,52188	0,24608	5,991	0,39716	0,26225	6,512	3,49	24,50
10	0,46166	0,19662	4,400	0,47468	0,19888	4,472	0,35883	0,22392	5,278	3,46	24,50
20	0,41951	0,15447	3,043	0,42956	0,15376	3,020	0,34304	0,20813	4,770	3,59	24,40
30	0,39464	0,12960	2,243	0,42521	0,14941	2,880	0,36157	0,22666	5,366	3,76	24,40
40	0,39891	0,13387	2,380	0,42743	0,15163	2,952	0,35801	0,22310	5,252	3,86	24,50
50	0,37926	0,11422	1,748	0,42156	0,14576	2,763	0,35767	0,22276	5,241	4,16	24,60
60	0,38291	0,11787	1,865	0,43289	0,15709	3,127	0,35366	0,21875	5,112	4,40	24,70
70	0,38331	0,11827	1,878	0,43183	0,15603	3,093					
90							0,32461	0,18970	4,177	5,00	24,70
100	0,36209	0,09705	1,195	0,41574	0,13994	2,575					
120							0,31000	0,17509	3,707	5,39	24,70

Continuación	tabla XII										
150							0,30678	0,17187	3,603	5,67	24,70
180							0,29106	0,15615	3,097	5,86	24,70
210							0,27411	0,13920	2,551	6,00	24,70
220	0,35781	0,09277	1,057	0,39978	0,12398	2,062	0,28515	0,15024	2,907	6,03	24,80
250	0,36566	0,10062	1,310	0,42380	0,14800	2,835					
Re	ndimiento ((%)	76,8	Rendimient	0 (%)	52,7	Rendt	0. (%)	55,4		

Tabla XIII. Adición de 0,05 ml oxidante a 5%

Fenol Abs(210,5 nm)=0,14444; Fenol + 4 mg Fe (III); Abs(210,5 nm)=0,56656 (ensayo 1)

Fenol Abs(210,5 nm)=0,14346; Fenol + 4 mg Fe (III); Abs(210,5 nm)=0,44883 (ensayo 2)

Fenol Abs(210,5 nm)=0,13746; Fenol + 4 mg Fe (III); Abs(210,5 nm)=0,38727 (ensayo 3)

t	Abs	Abs	Conc	Abs	Abs	Conc	Abs	Abs	Conc	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(° C)
0	0,61803	0,19591	4,377	0,52359	0,21822	5,095	0,49449	0,24468	5,946	3,47	23,60
10	0,58509	0,16297	3,317	0,47914	0,17377	3,664	0,42777	0,17796	3,799	3,44	23,60
20	0,51783	0,09571	1,152	0,40649	0,10112	1,326	0,44197	0,19216	4,256	3,42	23,70
30	0,41865	0,00000	0,000	0,36529	0,05992	0,000	0,45816	0,20835	4,777	3,39	23,70
40	0,39715	0,00000	0,000	0,33217	0,02680	0,000	0,44146	0,19165	4,240	3,40	23,90
50	0,38518	0,00000	0,000	0,33960	0,03423	0,000	0,44116	0,19135	4,230	3,41	24,00
60	0,38083	0,00000	0,000	0,33304	0,02767	0,000	0,42679	0,17698	3,767	3,40	24,20
90	0,36332	0,00000	0,000	0,35828	0,05291	0,000	0,36647	0,11666	1,826	3,39	24,60
120	0,35829	0,00000	0,000	0,35829	0,05292	0,000	0,34734	0,09753	1,210	3,40	24,90
150							0,32659	0,07678	0,542		
180							0,30481	0,05500	0,000		

Continuación	tabla XIII									
250	0,38929	0,00000	0,000	0,37547	0,07010	0,327			3,40	25,70
280	0,40608	0,00000	0,000	0,37626	0,07089	0,353			3,40	25,80
310	0,39940	0,00000	0,000	0,39804	0,09267	1,054			3,40	25,80
340	0,40709	0,00000	0,000	0,37689	0,07152	0,373			3,39	25,90
370	0,42265	0,00000	0,000	0,37631	0,07094	0,355			3,39	26,00
400	0,43182	0,00970	0,000	0,36939	0,06402	0,132			3,40	26,00
430				0,37871	0,07334	0,432				
R	endimiento (%)	100	Rendimier	nto (%)	91,5	Rendto. (%	90,9		

Tabla XIV. Adición de 0,05 ml oxidante a 5%

Fenol Abs(210,5 nm)=0,13614; Fenol + 5 mg Fe (III); Abs(210,5 nm)=0,51685 (ensayo 1)

Fenol Abs(210,5 nm)=0,13128; Fenol + 5 mg Fe (III); Abs(210,5 nm)=0,56847 (ensayo 2)

Fenol Abs(210,5 nm)=0,18421; Fenol + 5 mg Fe (III); Abs(210,5 nm)=0,46277 (ensayo 3)

t	Abs	Abs	Conc	Abs	Abs	Conc	Abs	Abs	Conc	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(° C)
0	0,54762	0,16691	3,443	0,64407	0,20688	4,730	0,67052	0,39196	10,687	3,22	23,0
10	0,53541	0,15470	3,050	0,61408	0,17689	3,765	0,75396	0,47540	13,372	3,01	23,1
20	0,46738	0,08667	0,861	0,53440	0,09721	1,200	0,75064	0,47208	13,265	3,11	23,1
30	0,42292	0,04221	0,000	0,47442	0,03723	0,000	0,72488	0,44632	12,436	3,23	23,2
40	0,41258	0,03187	0,000	0,48367	0,04648	0,000	0,66592	0,38736	10,539	3,33	23,2
50	0,42345	0,04274	0,000	0,47085	0,03366	0,000	0,60400	0,32544	8,546	3,53	23,4
60	0,41217	0,03146	0,000	0,46054	0,02335	0,000	0,53483	0,25627	6,319	3,71	23,5
90	0,41489	0,03418	0,000	0,47546	0,03827	0,000	0,41779	0,13923	2,552	4,15	23,7
120				0,46774	0,03055	0,000	0,35160	0,07304	0,422	4,75	23,9
150							0,31864	0,04008	0,000	5,13	24,0
180	0,39971	0,01900	0,000				0,29478	0,01622	0,000	5,35	24,1

Continuación	tabla XIV									
190	0,39242	0,01171	0,000							
200	0,39848	0,01777	0,000							
210	0,38979	0,00908	0,000							
220	0,39825	0,01754	0,000							
250				0,46830	0,03111	0,000				
280				0,46716	0,02997	0,000				
R	endimiento	(%)	100	Rendimien	to (%)	100	Rendte	0. (%)	100	

Tabla XV. Adición de 0,05 ml oxidante a 5%

Fenol Abs(210,5 nm)=0,16551; Fenol + 6 mg Fe (III); Abs(210,5 nm)=0,80927 (ensayo 1)

Fenol Abs(210,5 nm)=0,13083; Fenol + 6 mg Fe (III); Abs(210,5 nm)=0,76827 (ensayo 2)

t	Abs	Abs	Conc	Abs	Abs	Conc
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)
0	0,80927	0,16551	3,398	0,76827	0,13083	2,282
10	0,70627	0,06251	0,083	0,73148	0,09404	1,098
20	0,66448	0,02072	0,000	0,64105	0,00361	0,000
30	0,67852	0,03476	0,000	0,62176	0,00000	0,000
40	0,68763	0,04387	0,000	0,64343	0,00000	0,000
50	0,69233	0,04857	0,000	0,61715	0,00000	0,000
60	0,66552	0,02176	0,000	0,62609	0,00000	0,000
90	0,66800	0,02424	0,000	0,63555	0,00000	0,000
180	0,60130	0,00000	0,000	0,55055	0,00000	0,000
190	0,63694	0,00000	0,000	0,55403	0,00000	0,000
Re	endimiento (⁰ / ₀)	100	Rendimi	ento (%)	100

Tabla XVI. Adición de 0,05 ml oxidante a 15%
Fenol Abs(210,5 nm)=0,14568; Fenol + 1 mg Fe (III); Abs(210,5 nm)=0,26291 (ensayo 1)

Fenol Abs(210,5 nm)=0,14039; Fenol + 1 mg Fe (III); Abs(210,5 nm)=0,17804 (ensayo 2)

t	Abs	Abs	Conc	Abs	Abs	Conc	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(°C)
0	0,48256	0,36533	9,830	0,38170	0,34405	9,145	4,04	24,50
10	0,46705	0,34982	9,330	0,39595	0,35830	9,603	4,02	24,20
20	0,44926	0,33203	8,758	0,38101	0,34336	9,122	3,99	24,00
30	0,43078	0,31355	8,163	0,37997	0,34232	9,089	3,96	24,00
40	0,39664	0,27941	7,064	0,37596	0,33831	8,960	3,95	24,10
50	0,37220	0,25497	6,278	0,35900	0,32135	8,414	3,93	24,20
60	0,37498	0,25775	6,367	0,36013	0,32248	8,450	3,93	24,30
70	0,35296	0,23573	5,658	0,35407	0,31642	8,255	3,93	24,50
80	0,33844	0,22121	5,191	0,35706	0,31941	8,352	3,93	24,70
90	0,33527	0,21804	5,089	0,34584	0,30819	7,991	3,93	24,80
100				0,34474	0,30709	7,955		
110				0,33504	0,29739	7,643		

Continuaci	ión tabla XVI							
120				0,33062	0,29297	7,501		
230	0,29905	0,18182	3,923				3,91	25,80
240	0,29574	0,17851	3,817				3,91	25,90
250	0,29933	0,18210	3,932				3,91	26,00
255				0,28785	0,25020	6,124		
260	0,30209	0,18486	4,021				3,92	26,10
270	0,30302	0,18579	4,051				3,92	26,10
280	0,30417	0,18694	4,088				3,90	26,10
285				0,27856	0,24091	5,825		
290	0,30761	0,19038	4,199				3,91	26,10
300	0,30633	0,18910	4,158				3,91	26,10
310	0,30558	0,18835	4,133				3,91	26,10
315				0,28348	0,24583	5,983		
320	0,29674	0,17951	3,849				3,92	26,00
330	0,29261	0,17538	3,716				3,92	26,00
340	0,29993	0,18270	3,952				3,91	26,00
345				0,28978	0,25213	6,186		
350	0,29707	0,17984	3,860				3,91	26,10
360	0,29543	0,17820	3,807				3,93	26,10

0,29434	0,17711	3,772				3,91	25,90
		2.772				2.01	25.00
			0,28541	0,24776	6,046		
0,30497	0,18774	4,114				3,91	25,80
0,30248	0,18525	4,034				3,91	25,90
0,29171	0,17448	3,687				3,91	26,00
			0,28453	0,24688	6,017		
0,29467	0,17744	3,782				3,91	26,10
	0,29467 0,29171 0,30248	0,29171 0,17448 0,30248 0,18525	0,29467 0,17744 3,782 0,29171 0,17448 3,687 0,30248 0,18525 4,034	0,29467 0,17744 3,782 0,29171 0,17448 3,687 0,30248 0,18525 4,034 0,30497 0,18774 4,114	0,29467 0,17744 3,782 0,28453 0,24688 0,29171 0,17448 3,687 0,30248 0,18525 4,034 0,30497 0,18774 4,114	0,29467 0,17744 3,782 0,28453 0,24688 6,017 0,29171 0,17448 3,687 0,30248 0,18525 4,034 0,30497 0,18774 4,114 0,30497 0,18774 4,114 0,30497 0,18774 4,114 0,30497 0,18774 4,034 0,30497 0,18774 4,034 0,0046<	0,29467 0,17744 3,782 3,91 0,29171 0,17448 3,687 0,24688 6,017 0,30248 0,18525 4,034 3,91 0,30497 0,18774 4,114 3,91

Tabla XVII. Adición de 0,05 ml oxidante a 15%

Fenol Abs(210,5 nm)=0,18379; Fenol + 2 mg Fe (III); Abs(210,5 nm)=0,26567 (ensayo 1)

Fenol Abs(210,5 nm)=0,18016; Fenol + 2 mg Fe (III); Abs(210,5 nm)=0,37524 (ensayo 2)

t	Abs	Abs	Conc	Abs	Abs	Conc	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(°C)
0	0,43943	0,35755	9,579	0,51980	0,32472	8,523	4,14	24,20
10	0,42290	0,34102	9,047	0,49685	0,30177	7,784	4,16	24,10
20	0,39834	0,31646	8,257	0,44242	0,24734	6,032	4,08	24,10
30	0,35772	0,27584	6,949	0,40566	0,21058	4,849	4,04	24,20
40	0,35023	0,26835	6,708	0,39212	0,19704	4,413	4,03	24,30
50	0,35825	0,27637	6,966	0,38243	0,18735	4,101	4,03	24,30
60	0,32629	0,24441	5,938	0,39022	0,19514	4,352	4,03	24,50
70	0,32034	0,23846	5,746				4,01	24,70
80	0,33155	0,24967	6,107				4,01	24,80
90	0,31632	0,23444	5,617				4,02	25,00
100	0,31435	0,23247	5,553				4,02	25,00
110	0,31032	0,22844	5,424				4,01	25,20

Continuació	n tabla XVI	I						
120	0,31100	0,22912	5,446				4,03	25,20
255	0,27162	0,18974	4,178	0,37103	0,17595	3,734	4,03	25,80
285	0,26510	0,18322	3,968	0,38396	0,18888	4,150	4,03	25,80
315	0,26202	0,18014	3,869	0,37696	0,18188	3,925	4,02	25,70
345	0,26349	0,18161	3,916	0,38549	0,19041	4,200	4,01	25,70
375	0,26638	0,18450	4,009	0,38152	0,18644	4,072	4,01	25,70
405	0,25659	0,17471	3,694	0,37590	0,18082	3,891	4,01	25,80
Re	endimiento (%)	61,4	Rendimi	ento (%)	54,3		

Tabla XVIII. Adición de 0,05 ml oxidante a 30% Fenol Abs(210,5 nm)=0,11152; Fenol + 1 mg Fe (III); Abs(210,5 nm)=0,19412 (ensayo 1)

Fenol Abs(210,5 nm)=0,17459; Fenol + 1 mg Fe (III); Abs(210,5 nm)=0,23910 (ensayo 2)

t	Abs	Abs	Conc	Abs	Abs	Conc	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(° C)
0	0,50500	0,42240	11,666	0,66516	0,60065	17,403	4,08	23,70
10	0,54698	0,46438	13,018	0,64773	0,58322	16,842	4,07	23,50
20	0,53333	0,45073	12,578	0,64371	0,57920	16,713	4,03	23,30
30	0,50396	0,42136	11,633	0,61032	0,54581	15,638	4,00	23,30
40	0,48429	0,40169	11,000	0,59717	0,53266	15,215	3,99	23,30
50	0,47278	0,39018	10,629	0,57986	0,51535	14,658	3,99	23,30
60	0,46211	0,37951	10,286	0,56831	0,50380	14,286	3,98	23,40
70	0,45385	0,37125	10,020	0,54765	0,48314	13,621	3,98	23,60
80	0,44162	0,35902	9,626	0,54538	0,48087	13,548	3,98	23,70
90	0,44186	0,35926	9,634	0,54258	0,47807	13,458	3,97	23,90
100	0,43806	0,35546	9,512				3,98	24,00
110	0,43596	0,35336	9,444				3,98	24,10

Continuacio	ón tabla XVI	II						
120	0,43436	0,35176	9,393				3,97	24,40
130	0,42419	0,34159	9,065				3,97	24,40
140	0,42188	0,33928	8,991				3,97	24,50
150	0,42257	0,33997	9,013				3,97	24,70
160	0,41412	0,33152	8,741				3,97	24,80
170	0,41808	0,33548	8,869				3,97	24,90
180	0,41918	0,33658	8,904				3,97	25,00
190	0,41156	0,32896	8,659				3,97	25,10
200	0,40635	0,32375	8,491				3,97	25,20
210	0,40960	0,32700	8,596				3,96	25,20
220	0,40450	0,32190	8,432				3,96	25,20
230	0,40701	0,32441	8,513	0,50314	0,43863	12,189	3,96	25,20
240				0,50077	0,43626	12,112		
250				0,50487	0,44036	12,244		
260				0,50828	0,44377	12,354		
270				0,50607	0,44156	12,283		
280				0,51070	0,44619	12,432		
290				0,51053	0,44602	12,427		
R	endimiento (%)	27,0	Rendimi	ento (%)	29,2		

Tabla XIX. Adición de 0,05 ml oxidante a 30%

Fenol Abs(210,5 nm)=0,15155; Fenol + 2 mg Fe (III); Abs(210,5 nm)=0,39380 (ensayo 1)

Fenol Abs(210,5 nm)=0,11490, Fenol + 2 mg Fe (III); Abs(210,5 nm)=0,28699 (ensayo 1)

t	Abs	Abs	Conc	Abs	Abs	Conc	pН	T
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)		(°C)
0	0,70095	0,45870	12,835	0,72546	0,55337	15,882	3,71	24,00
10	0,68486	0,44261	12,317	0,70469	0,53260	15,213	3,68	23,90
20	0,59962	0,35737	9,573	0,62740	0,45531	12,726	3,65	23,80
30	0,56080	0,31855	8,324	0,59654	0,42445	11,732	3,63	23,80
40	0,54938	0,30713	7,956	0,58482	0,41273	11,355	3,63	23,80
50	0,52749	0,28524	7,252	0,57926	0,40717	11,176	3,62	23,90
60	0,52364	0,28139	7,128	0,57414	0,40205	11,011	3,62	24,00
70	0,52412	0,28187	7,143	0,58004	0,40795	11,201	3,62	24,10
80	0,49050	0,24825	6,061	0,51100	0,33891	8,979	3,62	24,20
90	0,51743	0,27518	6,928	0,56478	0,39269	10,710	3,62	24,30
100	0,51116	0,26891	6,726	0,55335	0,38126	10,342	3,62	24,50
110	0,50411	0,26186	6,499	0,56399	0,39190	10,685	3,62	24,60

Continuación tabla	XIX					
120			0,55089	0,37880	10,263	
130			0,54931	0,37722	10,212	
140			0,55529	0,38320	10,405	
150			0,55585	0,38376	10,423	
Rendimie	nto (%)	49,4	Rendimi	ento (%)	34,4	

Tabla XX. Adición de 0,05 ml oxidante a 30%

Fenol Abs(210,5 nm) = 0,12923; Fenol + 3 mg Fe (III); Abs(210,5 nm)=0,35813 (ensayo 1)

Fenol Abs(210,5 nm) = 0,12923; Fenol + 3 mg Fe (III); Abs(210,5 nm)=0,39057 (ensayo 2)

t	Abs total*	Abs	Conc(ppm)	Abs total*	Abs	Conc(ppm)		
(min)		fenol**			fenol**		pН	T (°C)
0	0,86399	0,63509	18,512	0,79651	0,53517	19,153	3,67	23,30
10	0,80571	0,57681	16,636	0,68785	0,42651	15,656	3,55	23,10
20	0,74421	0,51531	14,657	0,62877	0,36743	13,755	3,51	23,00
30	0,73304	0,50414	14,297	0,59201	0,33067	12,571	3,50	22,90
40	0,78136	0,55246	15,852	0,58325	0,32191	12,290	3,50	22,90
50				0,58022	0,31888	12,192		
60				0,57230	0,31096	11,937		
70				0,58331	0,32197	12,291		
80				0,56525	0,30391	11,710		
90				0,57043	0,30909	11,877		
100				0,57911	0,31777	12,156		
110				0,57824	0,31690	12,128		
				l		1		1

Continuació	ón tabla XX						
175	0,67017	0,44127	12,274			3,48	24,70
205	0,65682	0,42792	11,844			3,48	24,90
235	0,66321	0,43431	12,050			3,47	25,00
260	0,65860	0,42970	11,901			3,46	25,20
325	0,66889	0,43999	12,233			3,45	25,30
355	0,67755	0,44865	12,511			3,47	25,10
R	endimiento (%)	32,4	Rendimiento (%)	36,7		1

Tabla XXI. Adición de 0,005 ml de oxidante a 30%

Fenol Abs (210,5 nm)= 0,37509

Fenol + 3,5 mg Fe (III) Abs (210,5 nm)=0,65745

t	Abs	Abs	Conc	Abs	Abs	Conc	Abs	Abs	Conc	pН
(min)	total*	fenol**	(ppm)	total*	fenol**	(ppm)	total*	fenol**	(ppm)	
0	0,71854	0,43618	12,110	0,68485	0,40249	11,026	0,69509	0,41273	11,355	3,46
10	0,68778	0,40542	11,120	0,66407	0,38171	10,357	0,66193	0,37957	10,288	3,49
20	0,62054	0,33818	8,956	0,59310	0,31074	8,073	0,59585	0,31349	8,161	3,48
30	0,60828	0,32592	8,561	0,58281	0,30045	7,741	0,57560	0,29324	7,509	3,50
40	0,66437	0,38201	10,366	0,58773	0,30537	7,900	0,53561	0,25325	6,222	3,51
50	0,60074	0,31838	8,318	0,57418	0,29182	7,464	0,50495	0,22259	5,235	3,51
60	0,58947	0,30711	7,956	0,56070	0,27834	7,030	0,49191	0,20955	4,816	3,52
90	0,56251	0,28015	7,088	0,57999	0,29763	7,651	0,48051	0,19815	4,449	3,51
120	0,55675	0,27439	6,903	0,53273	0,25037	6,130	0,50470	0,22234	5,227	3,52
180	0,54665	0,26429	6,578	0,50713	0,22477	5,306	0,47826	0,19590	4,376	3,59
240	0,47511	0,19275	4,275	0,47821	0,19585	4,375	0,47175	0,18939	4,167	3,52
Re	endimiento	(%)	61,9	Rendim	iento (%)	58,6	Rendimi	ento (%)	66,2	

Tabla XXII. Curva de calibración de fenol (Figura III anexo B).

Concentración	Absorbancia
(ppm)	(210.5 nm)
0,092	0,02667
0,184	0,03309
0,369	0,05474
0,649	0,05109
0,738	0,09722
0,867	0,06634
1,239	0,09705
1,299	0,10136
1,476	0,17909
1,770	0,14554
2,529	0,19450
2,598	0,18848
2,952	0,32932

Concentración	Absorbancia
(ppm)	(210.5 nm)
3,612	0,28223
5,195	0,36192
5,903	0,62949
7,373	0,58429
10,391	0,72605
10,532	0,80532
15,046	1,12780
20,781	1,38490
21,494	1,56310
35,824	2,23670
41,562	2,35360
47,226	2,64770

Tabla XXIII. Curva de calibración del peróxido de hidrógeno (Figura V anexo B).

Concentración	Abs	Abs	Abs
(ppm)	(210.5 nm)	(210.5 nm)	(210.5 nm)
150,00	0,66605	0,60523	0,64168
75,00	0,35301	0,31907	0,32669
37,50	0,18993	0,15720	0,16847
18,75	0,11667	0,07868	0,09196
9,38	0,06715	0,04173	0,04567
4,69	0,03996	0,01602	0,01885

Tabla XXIV. Curva de calibración de sulfato de hierro (Figura VI anexo B)

Concentración	Abs	Abs
(ppm)	(210.5 nm)	(210.5 nm)
56,000	0,56536	0,52846
28,000	0,27119	0,27434
14,000	0,13820	0,14531
7,000	0,07513	0,09436
3,500	0,04749	0,07696
1,750	0,06240	0,05626
0,875	0,06530	0,05124

Tabla XXV. Lote 1 del sistema acoplado

Tiempo	Abs total*	Abs fenol**	Conc	Abs total*	Abs fenol**	Conc	Rendimiento
(h)	alim	alim	(ppm) alim	prod	prod	(ppm) prod	(%)
0	0,65279	0,43930	12,232				
2	0,48787	0,27438	6,924				
4	0,41476	0,20127	4,571				
6	0,42110	0,20761	4,775				
20	0,41884	0,20535	4,702				
22	0,40501	0,19152	4,257				
24	0,39351	0,18002	3,887				
26	0,40702	0,19353	4,322				
28	0,39634	0,18285	3,978	0,28958	0,07609	0,542	86,4
30	0,36645	0,15296	3,016	0,27509	0,06160	0,076	97,5
44	0,37742	0,16393	3,369	0,27591	0,06242	0,102	97,0

^{*}Abs contaminante + Abs catalizador + Abs oxidante

^{**(}Abs contaminante + Abs oxidante) sin consumir

Tabla XXVI. Lote 2 del sistema acoplado

Tiempo	Abs total*	Abs fenol**	Conc	Abs total*	Abs fenol**	Conc	Rendimiento
(h)	alim	alim	(ppm) alim	prod	prod	(ppm) prod	(%)
0	0,66420	0,51064	14,528				
2	0,54741	0,39385	10,769				
3	0,56726	0,41370	11,408				
5	0,52863	0,37507	10,165				
20	0,50220	0,34864	9,314	0,32159	0,16803	3,501	62,4
22	0,53249	0,37893	10,289	0,35685	0,20329	4,636	54,9
24	0,58167	0,42811	11,872	0,34576	0,19220	4,279	64,0
26	0,57719	0,42363	11,728	0,42288	0,26932	6,761	42,3
28	0,59161	0,43805	12,192	0,40683	0,25327	6,245	48,8
30	0,40528	0,25172	6,195	0,23642	0,08286	0,760	87,7
44	0,39708	0,24352	5,931	0,28060	0,12704	2,182	63,2
46	0,48601	0,33245	8,793	0,30251	0,14895	2,887	67,2

Tabla XXVII. Lote 3 del sistema acoplado

Tiempo	Abs total*	Abs fenol**	Conc	Abs total*	Abs fenol**	Conc	Rendimiento
(h)	alim	alim	(ppm) alim	prod	prod	(ppm) prod	(%)
0	0,66464	0,48340	13,651				
4	0,46259	0,28135	7,148				
6	0,47457	0,29333	7,534				
8	0,34597	0,16473	3,395				
22	0,43073	0,24949	6,123				
24	0,41836	0,23712	5,725				
26	0,43348	0,25224	6,211				
28	0,41301	0,23177	5,553	0,34215	0,16091	3,272	41,1
30	0,39229	0,21105	4,886	0,18979	0,00855	0,000	100,0
32	0,37945	0,19821	4,472	0,18804	0,00680	0,000	100,0

Tabla XXVIII. Lote 4 del sistema acoplado

Tiempo	Abs total*	Abs fenol**	Conc	Abs total*	Abs fenol**	Conc	Rendimiento
(h)	alim	alim	(ppm) alim	prod	prod	(ppm) prod	(%)
0	0,62654	0,46539	13,072				
2	0,45378	0,29263	7,511				
5	0,44293	0,28178	7,162				
7	0,42420	0,26305	6,559				
9	0,43527	0,27412	6,916				
23	0,42662	0,26547	6,637	0,18406	0,02291	0,000	100,0
25	0,42993	0,26878	6,744	0,19965	0,03850	0,000	100,0
27	0,41593	0,25478	6,293	0,21813	0,05698	0,000	100,0
29	0,44613	0,28498	7,265	0,26007	0,09892	1,277	82,4
31	0,42680	0,26565	6,643	0,30533	0,14418	2,734	58,9
33	0,47330	0,31215	8,140	0,32617	0,16502	3,404	58,2

Tabla XXIX. Lote 1 del sistema acoplado, titulación volumétrica

Tiempo	V* alim	C* alim	V* prod	C* prod	Rendimiento
(h)	(ml)	(N)	(ml)	(N)	(%)
0	0,25	0,017			
2	0,35	0,024			
4	0,35	0,024			
18	0,30	0,020			
20	0,30	0,020			
22	0,30	0,020			
24	0,30	0,020			
26	0,30	0,020	0,00	0,000	100,0
28	0,25	0,017	0,00	0,000	100,0
42	0,30	0,020	0,05	0,003	83,3

V*: volumen de base gastada 0.34 N en la titulación

C*: es la concentración calculada con la formula $((V_1*C_1)/V_2=C_2)$

Tabla XXX. Lote 2 del sistema acoplado, titulación volumétrica

Tiempo	V* alim	C* alim	V* prod	C* prod	Rendimiento
(h)	(ml)	(N)	(ml)	(N)	(%)
0	0,20	0,014			
1	0,20	0,014			
3	0,20	0,014			
18	0,25	0,017	0,00	0,000	100,0
20	0,20	0,014	0,05	0,003	75,0
22	0,20	0,014	0,00	0,000	100,0
24	0,20	0,014	0,00	0,000	100,0
26	0,30	0,020	0,00	0,000	100,0
28	0,20	0,014	0,00	0,000	100,0
42	0,30	0,020	0,05	0,003	83,3
44	0,35	0,024	0,00	0,000	100,0

Tabla XXXI. Lote 3 del sistema acoplado, titulación volumétrica

Tiempo	V*	C*	V*	C*	Rendimiento
(h)	(ml) alim	(N) alim	(ml) prod	(N) prod	(%)
0	0,30	0,020			
2	0,30	0,020			
4	0,35	0,024			
18	0,30	0,020			
20	0,30	0,020			
22	0,35	0,024			
24	0,25	0,017	0,00	0,000	100,0
26	0,30	0,020	0,00	0,000	100,0
28	0,25	0,017	0,00	0,000	100,0

Tabla XXXII. Lote 4 del sistema acoplado, titulación volumétrica

Tiempo	V*	C*	V*	C*	Rendimiento
(h)	(ml) alim	(N) alim	(ml) prod	(N) prod	(%)
0	0,35	0,024			
3	0,30	0,020			
5	0,30	0,020			
7	0,30	0,020			
21	0,30	0,020	0,05	0,003	83,3
23	0,25	0,017	0,00	0,000	100,0
25	0,30	0,020	0,10	0,007	66,7
27	0,30	0,020	0,00	0,000	100,0
29	0,30	0,020	0,00	0,000	100,0
31	0,30	0,020	0,00	0,000	100,0

Tabla XXXIII. Lote 1 del sistema acoplado, titulación potenciométrica

Tiempo	pH_i	C** alim	pH _f	C** alim	pΗ _i	C** prod	pH _f	C** prod	Rendimiento
(h)	alim	(N)	alim	(N)	prod	(N)	prod	(N)	(%)
0	3,45	0,00035	8,31	0,00000					
2	3,23	0,00059	7,27	0,00000					
4	3,49	0,00032	8,14	0,00000					
18	3,14	0,00072	7,41	0,00000					
20	3,58	0,00026	8,12	0,00000					
22	3,61	0,00025	8,24	0,00000					
24	3,61	0,00025	8,18	0,00000					
26	3,57	0,00027	8,46	0,00000	7,36	0,00000	7,36	0,00000	100,0
28	3,62	0,00024	7,26	0,00000	7,50	0,00000	7,50	0,00000	100,0
42	3,80	0,00016	7,87	0,00000	6,59	0,00000	7,37	0,00000	99,8

pH_i: pH inicial

 $pH_{\rm \,f}$: pH final de la muestra titulada

C**: concentración calculada por Log-1 (-pH)

Tabla XXXIV. Lote 2 del sistema acoplado, titulación potenciométrica

Tiempo	pΗ _i	C** alim	pH_f	C** alim	pH_i	C** prod	pH_f	C** prod	Rendimiento
(h)	alim	(N)	alim	(N)	prod	(N)	prod	(N)	(%)
0	3,45	0,00035	7,62	0,00000					
1	4,07	0,00009	7,10	0,00000					
3	3,80	0,00016	7,67	0,00000					
18	3,83	0,00015	7,37	0,00000					
20	3,83	0,00015	7,00	0,00000	6,98	0,00000	7,81	0,00000	99,9
22	3,90	0,00013	7,49	0,00000	7,15	0,00000	7,15	0,00000	99,9
24	3,82	0,00015	7,00	0,00000	7,00	0,00000	7,00	0,00000	99,9
26	3,91	0,00012	8,31	0,00000	7,47	0,00000	7,47	0,00000	100,0
28	3,95	0,00011	8,23	0,00000	7,11	0,00000	7,11	0,00000	99,9
42	3,98	0,00010	7,90	0,00000	6,89	0,00000	7,14	0,00000	99,9
44	4,02	0,00010	7,10	0,00000	7,08	0,00000	7,08	0,00000	99,9

Tabla XXXV. Lote 3 del sistema acoplado, titulación potenciométrica

Tiempo	рН _і	C** alim	pH_f	C** alim	pΗ _i	C** prod	pH_f	C** prod	Rendimiento
(h)	alim	(N)	alim	(N)	prod	(N)	prod	(N)	(%)
0	3,15	0,00071	7,90	0,00000					
2	3,49	0,00032	8,26	0,00000					
4	3,48	0,00033	7,58	0,00000					
18	3,32	0,00048	7,71	0,00000					
20	3,55	0,00028	7,86	0,00000					
22	3,58	0,00026	8,71	0,00000					
24	3,61	0,00025	7,00	0,00000	7,22	0,00000	7,22	0,00000	100,0
26	3,59	0,00026	8,42	0,00000	7,25	0,00000	7,25	0,00000	100,0
28	3,63	0,00023	7,00	0,00000	7,10	0,00000	7,10	0,00000	100,0

Tabla XXXVI. Lote 4 del sistema acoplado, titulación potenciométrica

Tiempo	pΗ _i	C** alim	pH_f	C** alim	pΗ _i	C** prod	pH_f	C** prod	Rendimiento
(h)	alim	(N)	alim	(N)	prod	(N)	prod	(N)	(%)
0	3,40	0,00040	8,31	0,00000					
3	3,39	0,00041	8,58	0,00000					
5	3,49	0,00032	8,66	0,00000					
7	3,42	0,00038	8,38	0,00000					
21	3,29	0,00051	8,15	0,00000	6,94	0,00000	7,83	0,00000	100,0
23	3,13	0,00074	7,86	0,00000	7,38	0,00000	7,38	0,00000	100,0
25	3,34	0,00046	7,94	0,00000	6,86	0,00000	7,92	0,00000	100,0
27	3,70	0,00020	7,99	0,00000	7,31	0,00000	7,31	0,00000	100,0
29	3,33	0,00047	7,87	0,00000	7,32	0,00000	7,32	0,00000	100,0
31	3,16	0,00069	8,62	0,00000	7,37	0,00000	7,37	0,00000	100,0

Tabla XXXVII. Pruebas de DQO realizadas al sistema acoplado (ver protocolo en anexo H)

	lote 1								
Tiempo	DQO	DQO	Rendimiento						
(h)	(mg O ₂ /l) alim	(mg O ₂ /l) prod	(%)						
0	14,9								
22	10,3	11,1	-7,8						
38	10,0	16,5	-65,0						

lote 2

Tiempo	DQO	DQO	Rendimiento		
(h)	(mg O ₂ /l) alim	(mg O_2/I) prod	(%)		
0	4,0				
19	5,6	2,0	64,3		
25	6,4	13,6	-112,5		

lote 3

Tiempo	DQO	DQO	Rendimiento
(h)	(mg O ₂ /l) alim	(mg O_2/I) prod	(%)
0	6,8		
22	23,2	17,2	25,9
24	8,0	0,4	95,0

lote 4

Tiempo	DQO	DQO	Rendimiento
(h)	(mg O ₂ /l) alim	(mg O_2/I) prod	(%)
0	12,8		
22	13,2	0,4	97,0
24	7,6	6,8	10,5

Tabla XXXVIII. Biodegradabilidad del contaminante calculado por espectrometría UV-vis

Muestra	Abs alimento	Conc alimento	Abs producto	Conc producto	Rendimiento
(h-d-m-a)	(210,5 nm)	(ppm)	(210,5 nm)	(ppm)	(%)
0	0,35502	4,559	0,11363	0,38794	91,5
2	0,33365	4,190	0,11998	0,49767	88,1
4	0,40590	5,438	0,20133	1,90340	65,0
6	0,43082	5,869	0,22381	2,29186	60,9
24	0,33274	4,174	0,09304	0,03214	99,2
26	0,34720	4,424	0,12587	0,59945	86,5
28	0,35725	4,598	0,15843	1,16209	74,7
30	0,36304	4,698	0,12825	0,64057	86,4
48	0,32484	4,038	0,09908	0,13651	96,6
50	0,34152	4,326	0,14566	0,94142	78,2
52	0,35334	4,530	0,14186	0,87576	80,7
54	0,35747	4,602	0,16349	1,24952	72,8

Tabla XXXIX. Biodegradabilidad del contaminante calculada por titulación volumétrica

Tiempo	V (ml) NaOH	Conc (N) alim	V (ml) NaOH	Conc (N) prod	Rendimiento
(h)	alim		prod		(%)
0	0,45	0,003	0,05	0,000	88,9
2	0,20	0,001	0,00	0,000	100,0
4	0,25	0,002	0,00	0,000	100,0
6	0,10	0,001	0,00	0,000	100,0
24	0,35	0,002	0,00	0,000	100,0
26	0,35	0,002	0,00	0,000	100,0
28	0,20	0,001	0,00	0,000	100,0
30	0,25	0,002	0,00	0,000	100,0
48	0,30	0,002	0,00	0,000	100,0
50	0,35	0,002	0,00	0,000	100,0
52	0,30	0,002	0,00	0,000	100,0
54	0,35	0,002	0,00	0,000	100,0

Tabla XL. Biodegradabilidad del contaminante calculada por titulación potenciométrica

Tiempo	pH _i	C** alim.	pH _f	C** alim.	pH_i	C** proa.	pH _f	C** proa.
(h)	alimento	(N)	alimento	(N)	producto	(N)	producto	(N)
0	6,33	0,00000	7,51	0,00000	6,95	0,00000	7,27	0,00000
2	6,76	0,00000	7,68	0,00000	7,96	0,00000	7,96	0,00000
4	6,01	0,00000	7,04	0,00000	7,03	0,00000	7,03	0,00000
6	6,65	0,00000	7,11	0,00000	7,22	0,00000	7,22	0,00000
24	6,23	0,00000	7,04	0,00000	7,22	0,00000	7,22	0,00000
26	5,97	0,00000	7,10	0,00000	7,46	0,00000	7,46	0,00000
28	6,08	0,00000	7,12	0,00000	7,26	0,00000	7,26	0,00000
30	6,09	0,00000	7,02	0,00000	7,05	0,00000	7,05	0,00000
48	6,27	0,00000	7,17	0,00000	7,18	0,00000	7,18	0,00000
50	5,91	0,00000	7,00	0,00000	7,15	0,00000	7,15	0,00000
52	5,99	0,00000	7,21	0,00000	7,13	0,00000	7,13	0,00000
54	5,96	0,00000	7,05	0,00000	7,11	0,00000	7,11	0,00000

Tabla XLI. SEGUIMIENTO DE PH EN ALIMENTO Y PRODUCTO DEL SISTEMA ACOPLADO

Tiempo	pН	pН
(h)	alimento	producto
0	3,57	7,36
2	3,62	7,50
16	3,80	7,37
18	3,83	6,98
20	3,90	7,15
22	3,82	7,00
24	3,91	7,47
26	3,95	7,11
40	3,98	6,89
42	4,02	7,08
142	3,61	7,22
144	3,59	7,25
146	3,63	7,10
208	3,29	6,94
210	3,13	7,38
212	3,34	6,86
214	3,70	7,31
216	3,33	7,32
218	3,16	7,37

ANEXO B. FIGURAS

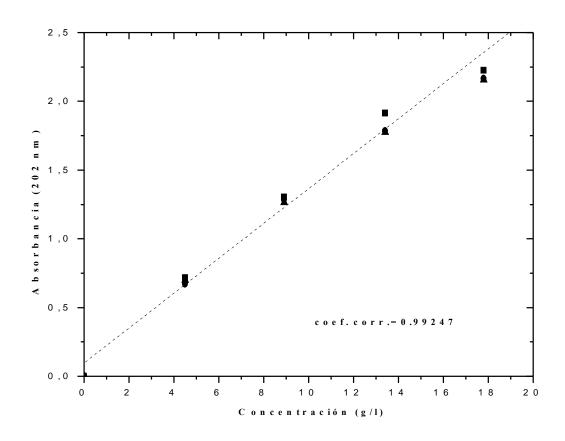


FIGURA I. CURVA DE CALIBRACION DEL ACIDO ACÉTICO a 202 nm.

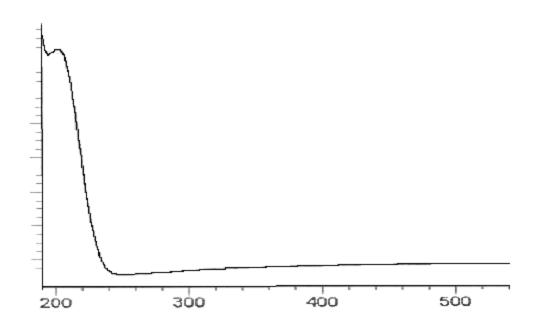


FIGURA II. ESPECTRO UV-vis DEL ÁCIDO ACÉTICO

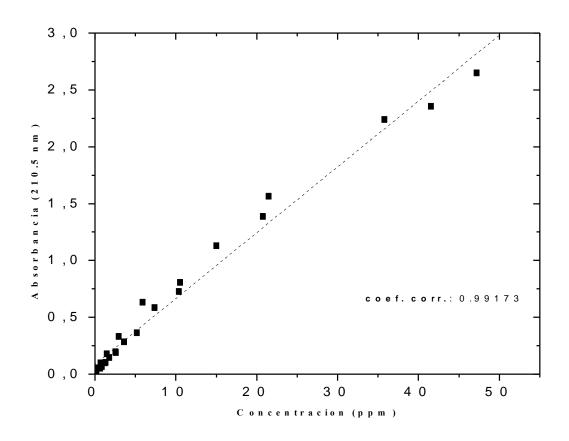


FIGURA III. CURVA DE CALIBRACIÓN DE FENOL a 210.5 nm

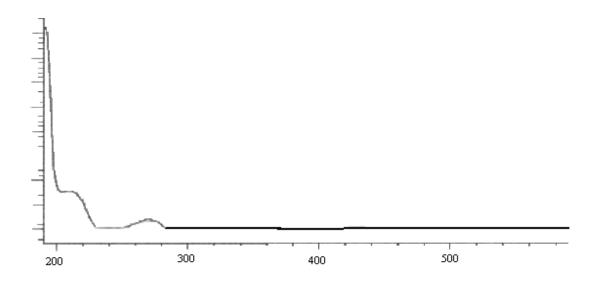


FIGURA IV. ESPECTRO UV-vis DEL FENOL

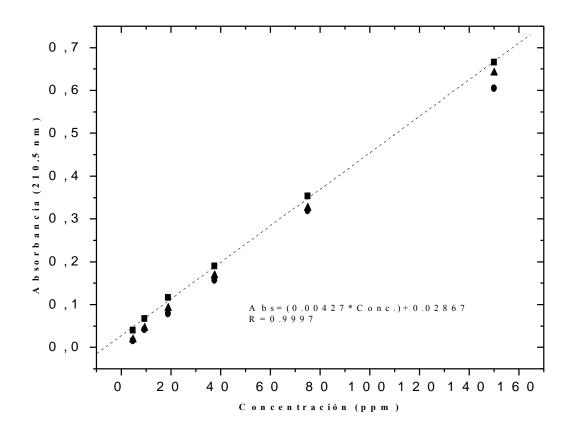


FIGURA V. CURVA DE CALIBRACION DEL PEROXIDO DE HIDROGENO a 210.5 nm

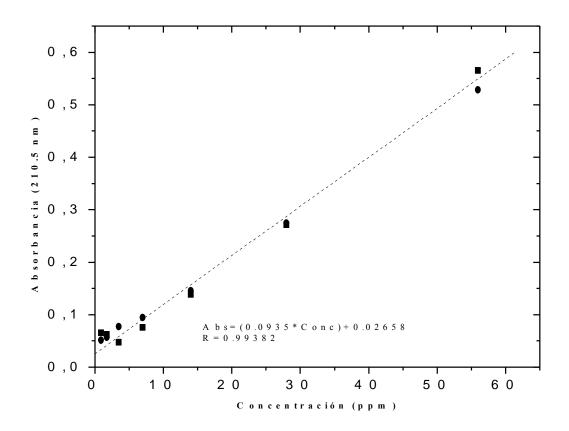


FIGURA VI. CURVA DE CALIBRACION DEL SULFATO DE HIERRO a 210.5 nm

ANEXO C. DETERMINACION SOLIDOS TOTALES

METODO PARA DETERMINACION DE SÓLIDOS TOTALES.¹⁷

- 1. Lleve la cápsula de porcelana a la mufla a 103°C por 10 min.
- 2. Luego dejar enfriar y llevar al desecador por 10 min.
- 3. Pesar la cápsula vacía y agregar 100 ml de muestra agitada.
- **4.** Llevar a baño maría hasta evaporación total.
- 5. Llevar de nuevo la cápsula a la mufla a 103°C por 10 min.
- 6. Dejar enfriar la cápsula y pasarla al desecador por 10 min.
- 7. Pesar la cápsula vacía para obtener el peso final.

ST (mg/ml) = (peso final - peso inicial) x 10000

ANEXO D. VELOCIDAD DE SEDIMENTACION

DETERMINACION DE LA VELOCIDAD DE SEDIMENTACION DE LODOS

- 1. En una probeta graduada tomar 100 ml de los lodos en solución.
- 2. Calcular la masa de los lodos en base húmeda presente en ese volumen.
- 3. Agitar la muestra hasta homogenizar la solución.
- **4.** Colocar la probeta en posición e iniciar, e inmediatamente, la toma del volumen de lodos precipitados en intervalos de tiempo determinado.
- 5. Graficar el volumen de los lodos vs. tiempo.
- 6. Calcular la velocidad de sedimentación, con los datos de mayor linealidad, con la siguiente ecuación: V=h/t

h: altura en la probeta de los lodos sedimentados (cm)

t: tiempo (min)

V: velocidad de sedimentación (pendiente de la recta)

VELOCIDAD DE SEDIMENTACIÓN DE LODOS

Tiempo	Volumen
(s)	(ml)
0	0
5	2
10	10
15	16
20	18
25	22
30	24
35	26
40	28
45	30
60	32
70	32
410	32

ANEXO E. METODO DE FEHLING

DETERMINACION DE AZUCARES POR METODO DE FEHLING¹⁶

- 1. Tomar 5 ml de muestra
- 2. Agregar 5 ml de solución de Fehling A.
- 3. Agregar 5 ml de solución de Fehling B.
- 4. Calentar en agua hirviendo por 5 min.
- 5. La presencia de un precipitado rojo ladrillo es prueba positiva.

ANEXO F. METODO DE ANTRONA

DETERMINACION DE AZUCARES POR METODO DE ANTRONA

- 1. Hidrolizar en medio ácido el enlace glicosídico.
- 2. Tomar 100 µl de muestra.
- 3. Adicionar 100 µl de NaOH al 30%
- 4. Calentar por 10 min a 100°C
- 5. Enfriar a temperatura ambiente
- **6.** Adicionar 3,0 ml de Antrona (0,15% en 80% H₂SO₄)
- 7. Calentar por 15 min a 40°C
- 8. Medir Absorbancia a 620 nm

ANEXO G. CUANTIFICACION DE CO₂

DETERMINACION DEL INDICE DE RESPIRACION

(Utilizado para la cuantificación de CO₂ por actividad enzimática de las frutas)

- 1. Se pesan los lodos húmedos del reactor biológico.
- 2. Se sellan las fugas en el bioreactor.
- 3. El aire que entra al reactor circula a través de una trampa de KOH.
- **4.** En el tubo de pettenkofer se coloca hidróxido de bario.
- 5. luego se permite el paso de aire que sale del reactor a través del tubo de pettenkofer durante una hora.
- **6.** Toma una alícuota de 5 ml del contenido en el tubo y se adicionan de 2-3 gotas de fenolftaleína, se titula con ácido oxálico hasta desaparición del color rosa.

$$IR = N(Vb-Va)Me(CO_2)/(m_l \cdot t.V_{alfcuota})$$

IR: Intensidad Respiratoria (mg CO₂)/kg.h

N: Normalidad del ácido oxálico.

Vb: volumen del ácido oxálico gastado en la titulación del blanco.

Va: volumen del ácido oxálico gastado en la titulación de la muestra.

Valícuota: volumen de la alícuota del hidróxido de bario

Me(CO₂): peso molecular del CO₂ dividido 2

mı: masa de los lodos (kg)

t: tiempo de paso de aire a través del tubo (h)

PRODUCCIÓN DE CO2 DEL REACTOR BIOLÓGICO

	Tiempo (día)	CO ₂ (mg/kg lodo. h)
	0	2.65
POB alimentado	6	1.81
con ácido acético	29	1.21
	37	1.38
	56	1.10
Sistama aganlada	72	1.28
Sistema acoplado alimentado con	93	1.00
fenol	100	0.74
Tenor	107	0.51
	114	0.78
POB alimentado	117	0.21
con fenol	119	0.52
Con lenoi	121	0.31

ANEXO H. DETERMINACION DQO

PROCEDIMIENTO PARA MEDIR DQO

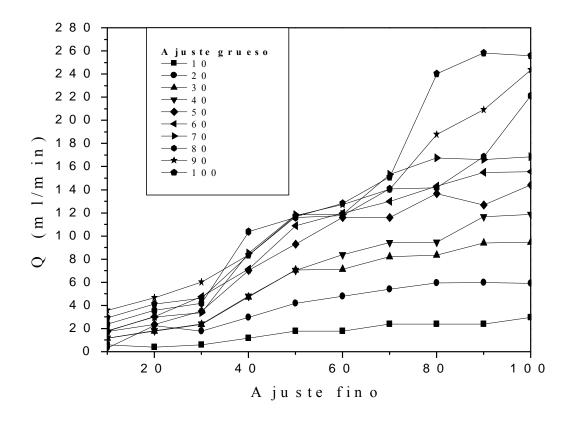
- 1. Medir 5 ml de K₂Cr₂O₇ 0.25 N mediante bureta o pipeta volumétrica y trasvasarlos a un balón de fondo plano.
- 2. Agregar cuidadosamente 15 ml de acido sulfurico mas sulfato de plata, para evitar sobrecalentamiento
- 3. Adicionar una pisca de sulfato de mercurio.
- 4. Adicionar 10 ml de la muestra de agua residual.
- 5. Colocar en reflujo durante mínimo ½ hora.
- 6. Dejar enfriar y adicionar 10 gotas de indicador 1-10 fenantrolína.
- 7. Titular con Fe (NH₄)₂(SO₄)₂ 0.05 N. hasta cambio de color ladrillo.
- **8.** Calcular con la siguiente formula:

 $mg O_2/L = (25 ml blanco - ml volumen gastado) (0.05) (8000) / volumen muestra$

ANEXO I. ANALISIS MICROBIOLOGICO

RECUENTO DE MESOFILOS AEROBIOS VIABLES

- 1. Preparar el agua de dilución de pectona y el medio de cultivo Agar plate count.
- 2. Preparar las diluciones 10⁻⁴ 10-5 y 10⁻⁶, que serán cultivadas.
- 3. Inocular en superficie por duplicado en cajas de petri, hacer el control de siembra.
- **4.** Incubar por 24 horas a 32°C
- **5.** Hacer conteo de ufc.


RECUENTO DE HONGOS Y LEVADURAS

- 1. Preparar el agua de dilución de pectona y el medio de cultivo Patata-glucosa
- 2. Preparar las diluciones 10⁻⁴ 10-5 y 10⁻⁶, que serán cultivadas.
- 3. Inocular en inclusión por duplicado en cajas de petri, hacer el control de siembra.
- 4. Incubar por 24 horas a 24°C
- 5. Hacer conteo de ufc.

RECUENTO DE COLIFORMES TOTALES

- 1. Preparar el agua de dilución de pectona y el medio de cultivo Verde brilla
- 2. Preparar las diluciones 10⁻⁴ 10-5 y 10⁻⁶, que serán cultivadas.
- 3. Inocular en tubos de ensayo con campana de fermentación por duplicado, hacer el control de siembra.
- 4. Incubar por 24 horas a 32°C
- 5. Observar producción de gas.

ANEXO J. CALIBRACION BOMBA

CURVA DE CALIBRACIÓN DE LA BOMBA DE MEMBRANA

La figura muestra la curva de calibración de la bomba, es el volumen obtenido en un tiempo determinado, dependiendo de la combinación de controles (ajuste fino-ajuste grueso) de la bomba, este equipo será utilizado en la alimentación del reactor biológico, ver datos en la siguiente tabla.

Tabla I. Curva de calibración de la bomba de membrana

Ajuste	*Q ₁₀	*Q ₂₀	*Q ₃₀	*Q ₄₀	*Q ₅₀	*Q ₆₀	*Q ₇₀	*Q ₈₀	*Q ₉₀	*Q ₁₀₀
fino	(ml/min)									
100	29,85	59,41	94,86	118,81	144,29	155,69	168,67	221,36	243,71	255,97
90	23,88	60,06	94,12	116,73	126,92	155,07	166,34	168,54	209,30	258,32
80	24,07	59,70	83,50	94,86	136,62	143,14	167,66	142,01	187,87	240,46
70	24,00	54,11	82,35	94,30	116,28	130,18	153,54	140,90	140,63	151,16
60	18,05	48,00	71,29	84,00	116,28	119,76	118,81	117,88	127,41	128,16
50	18,02	41,92	70,73	70,45	93,20	109,09	118,34	116,28	117,88	116,73
40	11,95	29,82	47,24	48,00	70,59	71,29	85,19	104,08	83,67	83,67
30	6,08	17,87	23,74	23,88	35,09	47,62	33,77	41,96	60,12	46,42
20	4,12	22,85	17,82	18,15	23,62	30,36	30,18	36,04	46,69	41,46
10	5,97	3,51	11,92	11,95	17,70	18,02	18,42	24,07	35,79	29,59

^{*}Q_n: caudal en ml/min de la bomba, donde n es el ajuste grueso desde 10 hasta 100, de 10 en 10.