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Abstract – The transport of pesticides from application areas to other areas results in pesticide 

contamination and this sort of contamination has led to unexpected environmental problems 

worldwide. It is important to determine the responses of phytoplanktonic organisms to these 

chemicals for an understanding of the effects of pesticides on aquatic ecosystems. In this study, 

Arthrospira platensis Gomont cyanobacteria were exposed to different concentrations of the 

pesticides cypermethrin (0-50 µg mL-1) and deltamethrin (0-2 µg mL-1). Changes in 

chlorophyll-a concentration, the absorbance of OD560, antioxidant parameters (SOD, APX, 

GR, MDA, H2O2, and proline) were determined under the pesticide exposure. Our results 

showed that there is a decrease in OD560 absorbance and chlorophyll-a content proportionate 

to the increase of pesticide levels. Superoxide dismutase enzyme activity decreased with Cyp 

and Dlm application in A. platensis cultures. Glutathione reductase enzyme activity also 

decreased with Cyp applications but did not change with Dlm application. Ascorbate peroxidase 

enzyme activity increased with Cyp treatments but did not change with Dlm applications. 

Although malondialdehyde and hydrogen peroxide contents did not change with Cyp 

applications, they increased with Dlm applications. Proline contents increased with Cyp 

applications but decreased with Dlm applications. In conclusion, deltamethrin is more toxic 

than cypermethrin in the concentrations applied. 
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Introduction 

Many chemicals, including pesticides, are released through modern industrial and 

agricultural activities and have reached a high level in the environment (Burkiewicz et al. 2005). 

Pesticides affect not only target organisms but also non-target organisms in the aquatic biota 

(Tremolada et al. 2004). These organisms play an important role in biological processes such 

as biogeochemical cycling, production, separation, and interaction with other organisms. 

Pesticides disturb the balance of water ecosystems with their direct action on plants and animals 

or with their bioaccumulation and transfer abilities in the food chain (Netrawali and Gandhi 

1990, Burkiewicz et al. 2005). Planktonic algae display a fundamental role as primary producers 

(Burkiewicz et al. 2005) and a decrease in algal density and species composition affects the 

aquatic ecosystem directly by reducing biodiversity and primary production (Li et al. 2005). 

They are sensitive indicators that allow testing of the different effects of chemicals released into 

the water (Burkiewicz et al. 2005). For this reason, microalgae are frequently used in various 
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bioassays (Li et al. 2005). Agricultural chemicals inhibit the growth rate, biomass, and pigment 

content of freshwater algae by contaminating surface waters in agricultural areas (Netrawali 

and Gandhi 1990). 

Pyrethroids are a class of synthetic insecticides designed and optimized based on 

pyrethrin structure (Elliott 1995). These pesticides are effective insecticides that are widely 

used to control agricultural and healthcare pests. After use, they are released into the 

environment and enter water resources (Mittal et al. 1994). Cypermethrin (Cyp) and 

deltamethrin (Dlm) have increased toxicity, especially to aquatic organisms with increasing life 

expectancy (Johri et al. 1997). Megharaj et al. (1987) observed that Cyp has inhibitory effects 

on Scenedesmus bijugatus Kützing. Xiong et al. (2002) and Li et al. (2005) found similar results 

for Scenedesmus obliquus Kützing. Wang et. al. (2011) carried out a growth inhibition test on 

Skeletonema costatum Cleve, Scrippsiella trochoidea (F.Stein) A.R.Loeblich III and 

Chattonella marina (Subrahmanyan) Y.Hara et M.Chihara during 96 h. Saenz et al. (2012) 

studied Cyp toxicity to Scenedesmus quadricauda Chodat, Scenedesmus acutus Meyen, 

Chlorella vulgaris Beyerinck (Beijerinck) and Pseudokirchneriella subcapitata (Korshikov) 

F.Hindák. Wang et al. (2012) tested Cyp effetcs on Scenedesmus obliquus. These references 

show that Cyp has toxic effects on various groups of microalgae. There are also some studies 

on Dlm toxicity to aquatic microorganisms. Baeza-Squiban et al. (1987) have shown that the 

growth of Dunaliella sp. Teodoresco and Chlamydomonas sp. Ehrenberg was inhibited by Dlm 

application. Caquet et al. (1992) observed Dlm effects on phytoplankton communities in 

freshwater mesocosms and found Dlm to disappear rapidly from the aquatic ecosystem. 

Antioxidants are compounds that reduce the harmful effects of oxidation via inhibiting 

free oxygen formation or eliminating formed free radicals (Baublis et al. 2000). Superoxide 

dismutase (SOD: EC 1.15.1.1) is a class of metalloprotein that catalyses superoxide to oxygen 

and hydrogen peroxide (H2O2) (Valentine et al. 1998). Ascorbate peroxidase (APX: EC 

1.11.1.11) converts hydrogen peroxide to water by using ascorbate as an electron donor and 

thereby accumulations of H2O2 toxic levels are prevented in photosynthetic organisms (Chew 

et al. 2003). Glutathione reductase (GR: EC 1.6.4.2), is a member of NADPH-dependent 

oxidoreductases, found in both prokaryotic and eukaryotic cells. GR catalyses the reduction of 

oxidized glutathione (GSSG) to reduced glutathione (GSH) together with the oxidation of 

NADPH and plays an important role in the cellular defence systems against reactive oxygen 

metabolites by creating a reduced GSH pool (Anjum 2010). Malondialdehyde is a metabolite 

that occurs with peroxidation of lipids including three or more double bonds. Lipid peroxidation 

causes malondialdehyde formation (Goel and Sheoran 2003). It is known that proline content 

increases under various stress factors and proline accumulation protects cell parts and cell 

contents such as enzymes, membranes and polyribosomes (Kishor et al. 2005). 

The enzymatic and non-enzymatic antioxidant defence systems create the response to 

oxidative stress and reflect the tolerance and susceptibility of algae to pesticide exposure. 

However, although there is some information about algal antioxidant systems, which are either 

a response to the environmental conditions or a defensive system (Mallick and Mohn 2000) 

studies about the harmful or activator effects of pyrethroids on algal antioxidant systems are 

limited.  

The aims of our study are: (i) to determine metabolic damage due to cypermethrin and 

deltamethrin toxicity and (ii) to measure the intracellular level of antioxidant responses for 

pesticide detoxification in Arthrospira platensis-M2 strain. For this purpose, the alterations of 

some parameters such as growth rate (OD560), chlorophyll-a content, superoxide dismutase 

(SOD), ascorbate peroxidase (APX), glutathione reductase (GR), malondialdehyde (MDA), 

hydrogen peroxide (H2O2) and proline have been investigated during pesticide application. 

Responses given by phototrophic microorganisms to pesticides will help us to have an idea of 

how the communities are affected by the pesticides in the water ecosystems. 
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Material and methods 

Algae culture and treatment 

Arthrospira platensis, strain M2, was obtained from the Soley Microalgae Institute 

(California, USA) (Culture collection No: SLSP01). Algae were grown in Spirulina Medium 

(Aiba and Ogawa 1977) under axenic conditions. 20 mL algal cultures were inoculated onto 

180 mL culture medium in an Erlenmeyer flask and were allowed to grow under full-spectrum 

lamps providing 93 µmol photons m-2 s-1 photosynthetically available radiation in a 12:12 h 

light/dark cycle at 30 ± 1 ºC during 10 days. At the end of 10 days, cultures were renewed and, 

all the flasks contained 50 mL algal culture. Stock solutions of the commercial formulation of 

Cyp and Dlm (200 g L-1 and 25 g L-1, respectively; EC, Sakarya, Turkey) were prepared with 

distilled water and were then diluted for all bioassays. Various concentrations of cypermethrin 

(10, 20, 30, 40, 50 µg mL-1) and deltamethrin (0.125, 0.25, 05, 1, 1.5, 2 µg mL-1) were added 

to the culture medium. The range of concentrations was determined with preliminary range-

finding bioassays according to EC50 value for growth parameters and IC50 value for enzyme 

activity assays and at least five concentrations were selected under these values.  

 

Cell growth and chlorophyll-a assay 

Optical densities (ODs) of microalgae were measured spectrophotometrically over 7 days 

under control and stressed conditions taking absorbance at 560. Chlorophyll-a content was 

estimated by methanol extraction and measured spectrophotometrically over 7 days 

(MacKinney 1941). 

 

Antioxidant enzyme activities 

On the 7th day of the study, 2 mL culture solutions from the control and treated samples 

were centrifuged at 14.000 rpm for 20 min at 4 °C and the resulting pellets were kept at -20 °C 

until enzyme activity was measured. Pellets were ground with liquid nitrogen and suspended in 

specific buffers with proper pH values for each enzyme. The protein concentrations of algal 

cell extracts were determined according to Bradford (1976), using bovine serum albumin (BSA) 

as a standard. 

The superoxide dismutase activity was determined by the method of Beyer and Fridovich 

(1987), based on the photoreduction of NBT (nitroblue tetrazolium). Extraction of pellets (0.2 

g) was performed in 1.5 mL homogenization buffer containing 100 mM K2HPO4 buffer (pH 

7.0), 2% PVP, and 1 mM Na2EDTA. After centrifugation at 14,000 rpm for 20 min at 4 °C, the 

resulting supernatants were used to measure SOD activity. The reaction mixture consisted of 

100 mM K2HPO4 buffer (pH 7.8) containing 9.9  10-3 M methionine, 5.7  10-5 M NBT, %1 

triton X-100, and enzyme extract. The reaction was started by the addition of 0.9 µM riboflavin 

and the mixture was exposed to light with an intensity of 375 µmole m-2 s-1. After 15 min, the 

reaction was stopped by switching off the light, and absorbance was read at 560 nm. The SOD 

activity was calculated by a standard graphic and expressed as U mg-1 protein.  

The ascorbate peroxidase activity was determined according to Wang et al. (1991) by 

estimating the decreasing rate of ascorbate oxidation at 290 nm. APX extraction was performed 

in 50 mM Tris–HCl (pH 7.2), 2% PVP, 1 mM Na2EDTA, and 2 mM ascorbate. The reaction 

mixture consisted of 50 mM K2HPO4 buffer (pH 6.6), 2.5 mM ascorbate, 10 mM H2O2, and 

enzyme-containing 100 µg protein in a final volume of 1 mL. The enzyme activity was 

calculated from the initial rate of the reaction using the extinction coefficient of ascorbate (E = 

2.8 mM cm-1 at 290 nm). 

The glutathione reductase activity was measured with the method of Sgherri et al. (1994). 

Extraction was performed in 1.5 mL of suspension solution containing 100 mM K2HPO4 buffer 
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(pH 7.0), 1 mM Na2EDTA, and 2% PVP. The reaction mixture (total volume of 1 mL) contained 

100 mM K2HPO4 buffer (pH 7.8), 2 mM Na2EDTA, 0.5 mM oxidised glutathione (GSSG), 0.2 

mM NADPH and enzyme extract containing 100 µg protein. The decrease in absorbance at 340 

nm was recorded. Correction was made for the non-enzymatic oxidation of NADPH by 

recording the decrease at 340 nm without adding GSSG to assay mixture. The enzyme activity 

was calculated from the initial rate of the reaction after subtracting the non-enzymatic oxidation 

using the extinction coefficient of NADPH (E = 6.2 mM cm-1 at 340 nm). 

 

Determination of malondialdehyde and hydrogen peroxide  

The malondialdehyde content was determined by the method of Heath and Packer (1968). 

0.2 g of pellet was homogenized in 3 mL of 0.1% TCA (4 °C) and centrifuged at 4100 rpm for 

15 min and the supernatant was used in the subsequent determination. 0.5 mL of 0.1 M Tris–

HCl pH 7.6 and 1 mL of TCA–TBA–HCl reagent (15% w/v) (trichloroacetic acid–0.375% w/v 

thiobarbituric acid–0.25 N hydrochloric acid) were added to the 0.5 mL of the supernatant. The 

mixture was heated at 95°C for 30 min and then quickly cooled in an ice bath. To remove 

suspended turbidity, the mixture was centrifuged at 4100 rpm for 15 min, then the absorbance 

of the supernatant at 532 nm was recorded. Non-specific absorbance at 600 nm was measured 

and subtracted from the readings recorded at 532 nm. The MDA content was calculated using 

its extinction coefficient of 155 mM−1 cm−1. For determination of the hydrogen peroxide 

content, 0.5 mL of 0.1 M Tris–HCl (pH 7.6) and 1 mL of 1 M KI were added to 0.5 mL of 

supernatant. After 90 min, the absorbance was recorded at 390 nm. 

 

The proline content determination 

The proline content was determined by the method of Weimberg et al. (1982). 0.1 g of 

pellet was homogenized in 10 ml of 3% aqueous sulphosalicylic acid and the homogenates were 

incubated in a hot water bath at 95 oC for 30 minutes. The samples were cooled and centrifuged 

at 4100 rpm for 10 min. Two mL of the extract reacted with 2 mL of acid–ninhydrine and 2 mL 

of glacial acetic acid for 1 h at 100°C. The reaction mixture was extracted with 4 mL toluene. 

The chromophore containing toluene was separated and the absorbance was recorded at 520 

nm. 

 

Statistical analysis 

The differences between the means of control and treated samples were analysed by one-

way analysis of variance (ANOVA), taking P < 0.05 as significant according to LSD with two 

degrees of freedom. Three replicate cultures were used for each treatment. The mean values ± 

SE are shown in Figures. 

 

Results 

Biomass and chlorophyll-a content 

Biomass production and chlorophyll-a content of Arthrospira platensis-M2 cells were 

significantly decreased by Cyp and Dlm application to the culture medium for 7 days (P < 0.05, 

Figs. 1, 2). The most significant reductions were observed at the highest pesticide treatments, 

(50 µg mL-1 for Cyp and 2 µg mL-1 for Dlm) in biomass production and chlorophyll-a content. 

Cyp and Dlm toxicity affected the biomass production and chlorophyll-a content of A. 

platensis-M2 cells, which increased in a time-dependent manner during the 7 days (Figs. 1a,b, 

2a,b). The EC 50 values of Cyp and Dlm applications are 53.12 ± 1.16 µg mL-1 and 1.76 ± 0.07 

µg mL-1 respectively for 7th day, based on biomass production. 

 

The antioxidant parameters 
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The effect of Cyp applications on SOD activity in A. platensis-M2 cells is presented in 

Fig. 3a. All Cyp concentrations (5, 10, 20, 30, 40, 50 µg mL-1) caused an increase in SOD 

activity on A. platensis-M2 cells as compared to that of control. The maximum inhibition in 

SOD activity (96%) occurred at 40 µg mL-1 Cyp concentration. APX activities increased at the 

same concentrations (P < 0.05, Fig. 3b). On the other hand GR activities also decreased at all 

concentrations except 5 µg mL-1 Cyp application (P < 0.05, Fig. 3c). Ten, 20, 30, 40, 50 µg mL-

1 Cyp concentrations caused to decrease by 17, 66, 47, 70, 85% in GR activity, respectively. 

MDA and H2O2 contents (Fig. 4a,b) did not change statistically but proline contents (Fig. 4c) 

increased at all Cyp concentrations (P > 0.05). 

The effect of Dlm applications on SOD activity in A. platensis-M2 cells is presented in 

Fig. 5a. SOD activities decreased by 37, 47, 21, 39, 36, 52% (P < 0.05) at all the Dlm 

concentrations, respectively; APX and GR activities did not display any alteration statistically 

(P > 0.05, Fig. 5b,c). MDA contents increased at 0.5, 1, 1.5 µg mL-1 Dlm applications (74, 85, 

78%; respectively) (P < 0.05, Fig 6a); however H2O2 content increased with 1, 1.5 and 2 µg 

mL-1 Dlm applications (P < 0.05, Fig. 6b). Proline content decreased statistically at 2 µg mL-1 

Dlm concentration (P < 0.05, Fig. 6c). 

 

Discussion 

In this study, we have found that exogenous addition of different concentrations of two 

synthetic pyrethroids (cypermethrin and deltamethrin) showed varying degrees of toxicity to 

the growth of Arthrospira platensis M2 strain. In a study of Scenedesmus bijugatus, Nostoc 

linckia Bornet ex Bornet et Flahault, Synechococcus elongatus (Nägeli) Nägeli and 

Phormidium tenue Gomont, Megharaj et al. (1987) found that cypermethrin inhibited the 

growth of Scenedesmus bijugatus at 10-50 μg mL−1 concentrations. Xiong et al. (2002) applied 

cypermethrin to Scenedesmus obliquus during a 96 h period and found that the EC50 was 112 

mg L-1. Li et al. (2005) reported that cypermethrin inhibited the growth of Scenedesmus 

obliquus at 50-250 mg L-1 concentrations during 96 h, and the chlorophyll-a and carotenoid 

content of Scenedesmus obliquus decreased with the application. Li et al. found the EC50 value 

of cypermethrin as 112 ± 9 mg L-1. Wang et. al. (2011) carried out a growth inhibition test 

about cypermethrin toxicity on Skeletonema costatum, Scrippsiella trochoidea, and Chattonella 

marina during 96 h and they determined EC50 values as 71.4 μg L−1, 205 μg L−1 and 191 μg 

L−1, respectively. Saenz et al. (2012) study cypermethrin toxicity to Scenedesmus quadricauda, 

Scenedesmus acutus, Chlorella vulgaris and Pseudokirchneriella subcapitat and the inhibited 

growth concentrations are  0.3-5 mg L-1, 0.6 mg L-1, 0.15 - 2.5 mg L-1 and 0.075 mg L-1, 

respectively. In another study, Wang et al. (2012) determine the toxic effects of commercial 

cypermethrin on S. obliquus and measure EC50 value of 2.37 mg L-1. The data and the 

concentrations used (10-50 µg mL-1) of Megharaj et al. (1987) are the closest to the results of 

our study. As was shown in the literature, Cyp has an inhibitory effect on algal growth and 

chlorophyll-a content. 

As with the toxicity of Cyp, there are some studies about the effect of Dlm on algae. In 

the study of Burkiewicz et al. (2005), the cell density of Scenedesmus subspicatus Chodat 

decreased with 2.5, 5 and 10 mg L-1 Dlm applications during 24 h and 1.25 mg L-1 Dlm 

application during 72 h. Lutnicka et al. (2014) observed that Dlm has inhibited the growth of 

Chlorella vulgaris by 13% at the end of 14 days with a 0.02 μg L-1 Dlm application.  

Although the Dlm concentrations in the study of Lutnicka et al. (2014) were lower than 

in our applications, the concentrations of Burkiewicz et al. (2005) were similar to those in our 

studies’. 

In our study, SOD activities of A. platensis decreased at all Cyp applications except 5 µg 

mL-1 and at all Dlm applications according to control. In our study, Cyp and Dlm pesticides 
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also caused significant reductions in chlorophyll-a, and thus loss of photosynthetic metabolism 

may have caused significant reductions in SOD activity. Wang et al. (2011) also reported that 

Cyp pesticide in high concentrations (> 50 μg L-1) inhibited SOD activity in Skeletonema 

costatum, Scrippsiella trochoidea and Chattonella marina, and they pointed out the inactivation 

of SOD activity may have been due to growth being inhibited by cypermethrin. One or more of 

the suggested reasons in these articles may be the main mechanism of Cyp and Dlm toxicity on 

the SOD enzyme activity in our study. 

GR and glutathione are effective on the Halliwell / Asada pathway in the inactivation of 

H2O2 in plant cells (Bray et al. 2000). GR catalyzes the last step of the ascorbate-glutathione 

pathway. GR activity significantly decreased at 10, 20, 30, 40, and 50 µg mL-1 Cyp 

applications. Saenz et al. (2012) found that Cyp concentrations causing algicidal effects, and 

thereby inhibitory effects of GR enzyme activity due to oxidative stress damage on P. 

subcapitata. The reductions in GR enzyme activities may have been related to loss of cell 

viability or deterioration of enzyme structure and enzyme reactions. 

In contrast, GR activity did not change in Dlm application in our study. Dewez et al. 

(2005) treated a fungicide Fludioxonil to Scenedesmus obliquus and indicated that GR activity 

was not significantly affected and the oxidized glutathione pool may have also been used by 

other enzymes. 

APX enzyme activity statistically increased at all concentrations in Cyp treatment. APX 

use ascorbic acid for the elimination of detrimental H2O2 (Verma and Dubey 2003). Studies 

on plants showed that APX activity increased in various stress conditions (Hideg and Vass 

1996, Verma and Dubey 2003). 

Teisseire and Vernet (2001) supported the conclusion that GR enzyme activity was 

related to the APX enzyme activity. In our study, it was concluded that the absence of alteration 

in GR activity at the application concentrations of Dlm promoted the absence of alteration in 

APX enzyme at similar concentrations because the ascorbate pool was counterbalanced by the 

GR enzyme.  

In our study, MDA content in A. platensis cultures treated with Dlm significantly 

increased at 0.5 μg mL-1, 1 μg mL-1, and 1.5 µg mL-1 concentrations. The changes in MDA 

content were parallel with the changes of H2O2 content for Dlm pesticide. The increase of 

H2O2 content caused the formation of OH radicals by the Haber-Weis reaction and therefore 

lipid peroxidation was increased (Goel and Sheoran 2003). Moreover, the inhibition of SOD 

activity caused accumulation of O2- in the medium in deltamethrin application. It is known that 

lipid peroxidation is linked to the amount of O2- (Choudhary et al. 2007). Also, Baruah and 

Chaurasia (2020) reported that alpha-cypermethrin decreased the photosynthetic pigment 

content and it increased the MDA content of Chlorella sp. at 6-48 mg L-1 during 96 h bioassay. 

The reduction of photosynthetic pigments also increases lipid peroxidation (Chen et al. 2008). 

A significant reduction of chlorophyll-a content may take place with lipid peroxidation at Dlm 

application. It was reported that MDA content, an indicator of lipid peroxidation, was increased 

by the endosulfan application (Kumar et al. 2008). Wang et al. (2011) found that cypermethrin 

enhanced MDA content on Skeletonema costatum, Scripsiella trochoidea and Chatonella 

marina.  

There was no significant change in the MDA content at the Cyp application and it was 

supported by the results of H2O2 content. Moreover, the increase in the proline content may 

have prevented the cell membrane damage and the amount of MDA. Siripornadulsil et al. 

(2002) reported that the cadmium application did not alter the amount of MDA in the proline 

overproducing transgenic Chlamydomonas reinhardtii P.A.Dangeard, and they suggested that 

proline may have inhibited free radical damage due to its antioxidant action.  

The amount of H2O2 in A. platensis cultures exposed to the Dlm significantly increase 

with addition of 1 μg mL-1, 1.5 μg mL-1, and 2 μg mL-1 Dlm. It was expected that the 
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application of Dlm pesticide would result in a decrease in the H2O2 content with the increase 

of SOD enzyme activity, but the H2O2 content likely increased due to the increased activity of 

oxidases such as glycolate oxidase, glucose oxidase, amino acid oxidase and sulfite oxidase in 

plants (Asada 1999).  

The amount of H2O2 in all concentrations of cultures of A. platensis exposed to Cyp 

(except 1 μg mL-1  and 5 μg mL-1) was not changed by increased APX enzyme activity. The 

decrease in the amount of H2O2 is likely due to the increase in enzymes consuming the H2O2 

content, such as the APX enzyme (Mallick and Mohn 2000). 

The free proline amount of A. platensis cultures exposed to Cyp was statistically 

significantly increased at all concentrations compared to the control. Proline accumulation has 

been reported in plants exposed to heavy metal stress (Saradhi and Saradhi 1991). Proline is an 

effective singlet oxygen scavenger and regulates the cell redox potential (Saradhi and Saradhi 

1991, Alia et al. 2001). Proline acts as an osmotic regulator and scavenger of OH radical in 

cells and thus it interacts with cell macromolecules such as DNA, protein, and lipids and 

consequently stabilizes the structure and function of these molecules (Kavir et al. 2005). The 

increase of proline content may be an adaptive response under extreme stress conditions (Fatma 

et al. 2007, Kumar et al. 2014). Proline reduces free radical production under stress conditions 

(Alia Saradhi 1993). Fatma et al. (2007) studied the effects of environmental pollution by 

evaluating proline content on Westiellopsis prolifica Janet cyanobacterium and found that 

alphamethrin pesticide and heavy metals increased proline accumulation. 

The free proline content of A. platensis cultures exposed to the Dlm effect was 

significantly reduced at 2 µg mL-1 concentration. Ewald and Schlee (1983) found that sulfide 

decreased the proline content by inhibiting proline synthesis. Likewise, Dlm may have inhibited 

the proline synthesis or may have disrupted proline configuration in our Dlm application. 

In conclusion, in this study, the decrease in biomass and chlorophyll-a was related to the 

concentration of Cyp and Dlm. Antioxidant enzyme activities and parameters were affected by 

different degrees according to the particular pesticides and their concentrations. These 

differences arose from the ROS producing capacity of Cyp and Dlm. Also, deltamethrin is more 

toxic than cypermethrin according to concentrations. Since these pesticides have a toxic effect 

on aquatic organisms, care should be taken when they are used with all necessary precautions 

to prevent their release into the aquatic ecosystem. 

 

Acknowledgement 

This study was supported by Sakarya University Research Projects under Grant no. 

FBDTEZ 2014-50-02-014. 

 

References 

Aiba, S., Ogawa, T., 1977: Assessment of growth yield of a blue-green alga: Spirulina platensis 

in axenic and continuous culture. Journal of General Microbiology 102, 179–182. 

Alia, S.P.P., 1993: Suppression in mitochondrial electron transport is the prime cause behind 

stress induced proline accumulation. Biochemical and Biophysical Research 

Communications 193, 54–58. 

Alia, S.P.P., Mohanty, P., Matysik, J., 2001: Effect of proline on the production of singlet 

oxygen. Amino Acid 21, 195–200. 

Anjum, N.A., Umar, S., Chan, M.T., 2010: Ascorbate-glutathione pathway and stress tolerance 

in plants. In: Pang, C.H., Wang, P.S. (eds.), Role of ascorbate peroxidase and glutathione 

reductase, 91–115. Springer Science, New York. 



TUNCA H, HÖDÜK K, KÖÇKAR F,  DOĞRU A, SEVINDIK TO 
 

8 
 

Asada, K., 1999: The water-water cycle in chloroplasts: scavenging of active oxygens and 

dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular 

Biology 50, 601–639. 

Baeza-Squiban, A., Marano, F., Ronot, X., Adolphe, M., Puiseux-Dao, S., 1987: Effects of 

deltamethrin and its commercial formulation DECIS on different cell types in vitro: 

Cytotoxicity, cellular binding, and intracellular localization. Pesticide Biochemistry and 

Physiology 28, 103–113. 

Baruah, P., Chaurasia, N. 2020: Ecotoxicological effects of alpha-cypermethrin on freshwater 

alga Chlorella sp.: Growth inhibition and oxidative stress studies. Environmental 

Toxicology and Pharmacology 76, 103347. 

Baublis, A.J., Clydesdale, F.M., Decker E.A., 2000: Antioxidants in wheat-based breakfast 

cereals. Cereals Foods World 45, 71–74. 

Beyer, W.F., Fridovich, I., 1987: Assaying for superoxide dismutase activity: Some large 

consequences of minor changes in conditions. Analytical Biochemistry 161, 559–566. 

Bradford, M.M.A., 1976: A rapid and sensitive method for the quantitation of microgram 

quantities of protein utilizing the principle of protein-dye binding. Analytical 

Biochemistry 72, 248–254. 

Bray, E.A., Bailey-Serres, J., Weretilnyk, E., 2000: Biochemistry and Molecular Biology of 

Plants. In: Gruissem, W., Jones, R. (eds.), Responses to abiotic stress, 1158–1203. 

American Society of Plant Physiologists, Rockville. 

Burkiewicz, K., Synak, R., Tukaj, Z., 2005: Toxicity of three insecticides in a standard algal 

growth inhibition test with Scenedesmus subspicatus. Bullettin of Environmental 

Contamination and Toxicolology 74, 1192–1198. 

Caquet, T., Thybaud, E., Le Bras S., Jonot, O., Ramade F., 1992: Fate and biological effects of 

lindane and deltamethrin in freshwater mesocosms. Aquatic Toxicology 23, 261–277. 

Chen, T.F., Zheng, W.J., Wong, Y.J. Yang, F., 2008: Selenium-induced changes in activities 

of antioxidant enzymes and content of photosynthetic pigments in Spirulina platensis. 

Journal of Integrative Plant Biology 50, 40–48. 

Chew, O., Whelan, J., Millar, A.H., 2003: Molecular definition of the ascorbate-glutathione 

cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. 

The Journal of Biological Chemistry 278, 46869–46877. 

Choudhary, M., Jetley, U. K., Khan, M. A., Zutshi, S., & Fatma, T. 2007: Effect of heavy metal 

stress on proline, malondialdehyde, and superoxide dismutase activity in the 

cyanobacterium Spirulina platensis-S5. Ecotoxicology and environmental safety, 66(2), 

204-209. 

Dewez, D., Geoffroy, L., Vernet, G., Popovic, R., 2005: Determination of photosynthetic and 

enzymatic biomarkers sensitivity used to evaluate toxic effects of copper and fludioxonil 

in alga Scenedesmus obliquus. Aquatic Toxicology 74, 150–159. 

Elliott, M., 1995: Chemicals in insect control. In: Casida, J.E., Quistad G.B. (eds.), Pyrethrum 

flowers: production, chemistry, toxicology, and uses, 3–31. Oxford University Press, 

New York. 

Ewald, D., Schlee, D., 1983: Biochemical effects of sulphur dioxide on proline metabolism in 

the alga Trebouxia sp. New Phytology 94, 235–240. 

Fatma, T., Khan, A., Choudhary, M., 2007: Impact of environmental pollution on 

cyanobacterial proline content. Journal of Applied Phycology 19, 625–629. 

Goel, A., Sheoran, I.S., 2003: Lipid peroxidation and peroxide-scavenging enzymes in cotton 

seeds under natural ageing. Biologia Plantarum 46, 429–434. 

Hideg, E., Vass, I., 1996: UV-B induced free radical production in plant leaves and isolated 

thylakoid membranes. Plant Science 115, 251–260. 



TUNCA H, HÖDÜK K, KÖÇKAR F,  DOĞRU A, SEVINDIK TO 
 

9 
 

Heath, R.L, Packer, L., 1968: Photoperoxidation in isolated chloroplasts. I. Stoichiometry of 

fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189–198. 

Johri, A.K., Saxena, D.M., Lal, R., 1997: Interaction of synthetic pyrethroids with micro-

organisms: a review. Microbios 89, 151–156. 

Kavir, K.P.B., Sangam, S., Amrutha, R.N., Laxmi, P.S.N.K.R., 2005: Regulation of proline 

biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant 

growth and abiotic stress tolerance. Current Science 88(3), 424-438. 

Kishor, P. K., Sangam, S., Amrutha, R.N., Laxmi, P. S., Naidu, K.R., Rao, K.S., Sreenath Rao, 

Reddy, K.J., P. Theriappan P., Sreenivasulu, N., 2005: Regulation of proline biosynthesis, 

degradation, uptake and transport in higher plants: its implications in plant growth and 

abiotic stress tolerance. Current Science, 88, 424-438. 

Kumar, S., Habib, K.,  Fatma, T. 2008: Endosulfan induced biochemical changes in nitrogen-

fixing cyanobacteria. Science of the Total Environment, 403(1-3), 130-138. 

Kumar, S., Praveenkumar, R., Jeon, B.H., Thajuddin, N., 2014: Chlorpyrifos-induced changes 

in the antioxidants and fatty acid compositions of Chroococcus turgidus NTMS12. 

Letters of  Applied Microbiology 59 (5), 535–541 

Li, X., Ping, X., Xiumei, S., Zhenbin, W., Liqiang, X., 2005: Toxicity of cypermethrin on 

growth, pigments, and superoxide dismutase of Scenedesmus obliquus. Ecotoxicology 

and Environmental Safety 60, 188–192. 

Lutnicka, H., Fochtman, P., Bojarski, B., Ludwikowska, A., Formicki, G., 2014: The influence 

of low concentration of cypermethrin and deltamethrin on phyto- and zooplankton of 

surface waters. Folia Biologica 62, 251–257. 

MacKinney, G., 1941: Absorption of light by chlorophyll solution. The Journal of Biological 

Chemistry 140, 315–322. 

Mallick, N., Mohn, F.H., 2000: Reactive oxygen species: response of algal cells. Journal of 

Plant Physiology 157, 183–193. 

Megharaj, M., Venkateswarlu, K., Rao, A.S., 1987: Influence of cypermethrin and fenvalerate 

on a green alga and three cyanobacteria isolated from soil. Ecotoxicology and 

Environmental Safety 14, 142–146. 

Mittal, P.K., Adak, T., Sharma, V.P., 1994: Comparative toxicity of certain mosquitocidal 

compounds to larvivorous fish, Poecilia reticulata. Indian Journal of Malariology 31, 43–

47. 

Netrawali, M.S., Gandhi, S.R., 1990: Mechanism of cell destructive action of 

organophosphorus insecticide phosalone in Chlamydomonas reinhardtii algal cells. 

Bulletin of Environmental Contamination and Toxicology 44, 819–825. 

Sáenz, M.E., Marzio, W.D.D., Alberdi, J.L., 2012: Effects of a commercial formulation of 

cypermethrin used in biotech soybean crops on growth and antioxidant enzymes of 

freshwater algae. Journal of Environmental Protection 2, 15–22. 

Saradhi, A., Saradhi, P.P., 1991: Proline accumulation under heavy metal stress. Journal of 

Plant Physiology 138, 554–558. 

Sgherri, C.L.M, Loggini B., Puliga S., Navari-Izzo F., 1994: Antioxidant system in Sporobolus 

stapfianus: changes in response to desiccation and rehydration. Phytochemistry 35, 561–

565. 

Siripornadulsil, S., Traina, S., Verma, D.P.S., Sayre, R.T., 2002: Molecular mechanisms of 

proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14, 

2837–2847. 

Teisseire, H., Vernet, G., 2001: Effects of the fungicide folpet on the activities of antioxidative 

enzymes in duckweed (Lemna minor). Pesticide Biochemistry and Physiology 69, 112–

117. 



TUNCA H, HÖDÜK K, KÖÇKAR F,  DOĞRU A, SEVINDIK TO 
 

10 
 

Tremolada, P., Finizio, A., Villa, S., Gaggi, C., Vighi, M., 2004: Quantitative inter-specific 

chemical activity relationships of pesticides in the aquatic environment. Aquatic 

Toxicology 67, 87–103. 

Valentine, W.M., Amarnath, V., Amarnath, K., Erve, J.C.L., Graham, D.G., Morgan, D.L., 

Sills, R.C., 1998: Covalent modification of hemoglobin by carbon disulfide: a potential 

biomarker of effect. Neurotoxicology 19, 99–108. 

Verma, S., Dubey, R.S., 2003: Lead toxicity induces lipid peroxidation and alters the activities 

of antioxidant enzymes in growing rice plants. Plant Science 164, 645–650. 

Wang, S.Y., Jiao, H., Faust, M., 1991: Changes in ascorbate, glutathione and related enzyme 

activity during thidiazuron-induced bud break of apple. Physiology Plantarum 82, 231–

236. 

Wang, Z., Xie, J., Jiang, S., Shi, J., Liu, Y., Gong, W., 2012: Effects of commercial 

cypermethrin on the growth of Scenedesmus obliquus and its physiochemical responses. 

China Environmental Science 32, 659–665. 

Wang, Z.H., Nie, X.P., Yue, W.J., 2011: Toxicological effects of cypermethrin to marine 

phytoplankton in a co-culture system under laboratory conditions. Ecotoxicology 20, 

1258–1267. 

Weimberg, R., Lerner, H.R, Poljakoff‐Mayber, A., 1982: A relationship between potassium and 

proline accumulation in salt‐stressed Sorghum bicolor. Physiology Plantarum 55, 5–10. 

Xiong, L., Wu, Z., Kuang, Q., Xia, Y., He, F., 2002: Studies on the toxicity of cypermethrin to 

Scenedesmus obliquus. Acta Hydrobiologica Sinica 26, 66–73. 

 

 

 

  



TUNCA H, HÖDÜK K, KÖÇKAR F,  DOĞRU A, SEVINDIK TO 
 

11 
 

Figure Legends 

 

 
 

Fig. 1. Biomass values, as absorbance at 560 nm (a), and chlorophyll-a concentration (b) of 

Arthrospira platensis treated with 0-50 µg mL-1 cypermethrin during 7 days. Data are the means 

± SE of three replicates. *Significantly different from control, P ˂ 0.05 (LSD analysis). 
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Fig. 2. Biomass values, as absorbance at 560 nm (a), and chlorophyll-a concentration (b) of 

Arthrospira platensis treated with 0-2 µg mL-1 deltamethrin during 7 days. Data are the means 

± SE of three replicates. *Significantly different from control, P ˂ 0.05 (LSD analysis). 
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Fig. 3. Total superoxide dismutase (SOD; a), ascorbate peroxidase (APX; b) and glutathione 

reductase (GR; c) activities of Arthrospira platensis treated with 0-50 µg mL-1 cypermethrin. 

Data are the means ± SE of three replicates. *Significantly different from control, P ˂ 0.05 

(LSD analysis). 
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Fig. 4. Malondialdehyde (MDA; a), hydrogen peroxide (H2O2; b) and proline (c) contents of 

Arthrospira platensis treated with 0-50 µg mL-1 cypermethrin. Data are the means ± SE of three 

replicates. *Significantly different from control, P ˂ 0.05 (LSD analysis). 
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Fig. 5. Total superoxide dismutase (SOD; a), ascorbate peroxidase (APX; b) and glutathione 

reductase (GR; c) activities of Arthrospira platensis treated with 0-2 µg mL-1 deltamethrin. 

Data are the means ± SE of three replicates. *Significantly different from control, P ˂ 0.05 

(LSD analysis). 
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Fig. 6. Malondialdehyde (MDA; a), hydrogen peroxide (H2O2; b) and proline (c) contents of 

Arthrospira platensis treated with 0–2 µg mL-1 deltamethrin. Data are the means ± SE of three 

replicates. *Significantly different from control, P ˂ 0.05 (LSD analysis). 


