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Abstract—Data in time series format, such as biological signals
from medical sensors or machine signals from sensors in indus-
trial environments are rich sources of information that can give
crucial insights on the present and future condition of a person or
machine. The task of predicting future values of time series has
been initially approached with simple machine learning methods,
and lately with deep learning. Two models that have shown good
performance in this task are the temporal convolutional network
and the attention module. However, despite the promising results
of deep learning methods, their black-box nature makes them
unsuitable for real-world applications where the predictions need
to be explainable in order to be trusted. In this paper we propose
an architecture comprised of a temporal convolutional network
with an attention mechanism that makes predictions while
presenting the timesteps of the input that were most influential
for future outputs. We apply it on two datasets and we show
that we gain interpretability without degrading the accuracy
compared to the original temporal convolutional models. We
then go one step further and we combine our configuration with
various machine learning methods on top, creating a pipeline that
achieves interpretability both across timesteps and input features.
We use it to forecast a different variable from one of the above
datasets and we study how the accuracy is affected compared to
the original black-box approach.

Index Terms—forecasting, multivariate time series, inter-
pretability, attention mechanism, temporal convolutional neural
network

I. INTRODUCTION

Time series data are pervasive in many areas in life, such
as health, industry and finance. Moreover, with the further
diffusion of Internet of Things and 5G, the amount of data
collected will increase dramatically, creating new opportunities
for knowledge extraction and applications [1].

One important task with respect to time series is the
forecasting of their future values, enabling planning of future
actions. By forecasting, we mean that given the past values of
one or more time series as input, we try to predict the future
values of one or more time series. When we have more than
one time series as input or output, we refer to the problem
as multivariate forecasting. The forecasting output can be the
future values of the input time series or it can be the future

values of an independent time series which is correlated with
the input variables.

Lately, deep learning (DL) methods have been increasingly
employed to tackle the above task. Some models have emerged
as the de facto approach for processing sequences, namely re-
current neural networks (RNNs) and their more complex vari-
ants such as long short-term memory (LSTM) networks [2].
However, recently Bai et al. [3] brought focus on an approach
named temporal convolutional network (TCN), showing that
it holds promising potential in sequence modeling, while
dealing with some of the issues of the recurrent networks.
Another approach comes from the natural language sequence
processing area with the attention mechanism [4], originally
used to focus on the most important parts of an input sentence
in a translation task. This model has also been applied to time
series forecasting and showed promising performance [5].

Although the interest in machine learning (ML) and DL
research for time series forecasting has been increasing, there
is still a debate about whether more complex models perform
better than simpler models or well-studied statistical methods
[6], [7]. As an example, the winner of the 2018 M4 forecasting
competition used a hybrid DL - statistical model and the
majority of the top accurate submissions were combinations
of methods [8]. This leads Makridakis et al. to conclude
that the combination of methods is a promising direction for
forecasting. In addition, in [6], the same authors find that DL
models such as RNNs and LSTMs achieve lower accuracy than
most simple statistical methods. In the same work, two more
points are stressed: the need for users of complex models to
understand how their predictions arise and the importance of
providing confidence intervals for the predictions of a model.

Since ML and DL models are being used more extensively
in areas where they can drive crucial decisions with significant
impact, such as healthcare and industry, they should provide
justification for their outputs, something that is also pushed
by regulations [9]. In addition, the interpretability of models
can enable additional applications. For example, feature impor-
tance attribution can lead to knowledge and insight extraction
from data [10], as well as reduction of uninformative or noisy



sources of data. These factors have driven researchers to come
up with methods for explaining opaque models, as well as
strive for stricter definitions surrounding interpretability [11]–
[13]. Although methods such as SHAP [14], which calcu-
late feature importance, have become popular for explaining
complex black-box models, the majority are after-the-fact
explanations of inherently closed models, which can present
challenges. Instead, we need models that are explainable by
design and offer sufficient basis about their own predictions
[15].

Inspired by the above concepts, we present an interpretable
method for multivariate time series forecasting using deep
learning. Our key contributions are:

• An architecture that provides per instance visualization of
the focus of a TCN on the input time series and highlights
the important timesteps for the production of each step
of the output. The configuration presented is modular,
inherently interpretable, comprised of already known DL
units and is kept as simple as possible, in the spirit of
keeping the model complexity low as well.

• A demonstration of the ability of the above architecture to
handle multiple time series of different type in a multitask
problem fashion.

The architecture is evaluated on two multivariate datasets,
regarding Air Quality [16] and Water Quality variables, of
which the latter has been approached with a TCN in [17].
It is important to note that our suggested architecture does
not employ a new model built from scratch, nor do we try
to achieve state of the art in the datasets under consideration.
Instead, the goal is to integrate interpretability to an existing
TCN model with as few changes as possible and without
significantly affecting the model accuracy. For that purpose
we do not do any feature selection or transformation, or
hyperparameter tuning for our method, in order to present as
fair metrics as possible.

Moreover, we combine our DL architecture with inherently
interpretable ML methods on top, creating a pipeline that is
shown fully in Fig. 1. In this, the DL part predicts the future
values of the inputs, which are then used as features to the
ML methods to predict the final target variable. We apply
this pipeline to the Water Quality dataset, choosing one of
its variables (dissolved oxygen) as the target output. Although
this DL-ML pipeline is not necessary for our suggested
mechanism to function, it gives valuable insights for our work.
First, we measure the effect on accuracy for an applied real-
world use case while introducing importance attribution both
across timesteps and features. Moreover, we get an implicit
estimation of the forecasting accuracy of our model for the
intermediate outputs of the variables whose metrics were not
in the baseline, such as pH. Finally, as we discuss later, we
verify the validity of the attention distribution patterns.

The rest of the paper is organized as follows: Section
2 presents related work on the main concepts of our ap-
proach. Section 3 presents our proposed architecture. Section
4 presents details about the datasets, preprocessing and im-

plementation of the model, as well as the results. Finally, in
section 5 we conclude the paper and discuss future directions.

II. RELATED WORK

A. Multivariate Time Series Forecasting

Due to the increasing research interest in DL, more and
more models are being proposed that partially or fully utilize
DL components for multivariate time series forecasting [5].
The DL models range from simple versions of recurrent neural
networks, such as LSTMs, to complex approaches combining
the above elements with fully connected neural networks
and convolutional neural networks, such as LSTNet [18] and
DeepAR [19]. The majority of those works however does not
touch at all upon the issue of interpretability of the model.

Temporal Convolutional Networks: Although there have
been works that have used 1-dimensional convolutions as com-
ponents of the overall model, here we focus on works utilizing
the general architecture referred to as temporal convolutional
network by Bai et al. in [3], with the distinctive elements
of residual blocks, 1-d causal convolutions and dilation of
the convolution filter across levels. In [20], Borovykh et al.
utilize the aforementioned elements to create a network for
one-step ahead forecast of financial time series, while in
[21], a TCN block has been used as a component of the
proposed multi-head model. In [17], which is the work using
the Water Quality data, a TCN is used to predict dissolved
oxygen and temperature simultaneously. Our approach can
forecast multiple variables of different type, fully exploiting
the potential of the TCN model.

B. Attention Mechanism

The family of attention mechanisms has been introduced
mainly in relation to natural language processing tasks [4],
but has evolved beyond this domain into the rest of the DL
areas. Regarding multivariate time series forecasting, in [22]
the authors propose an encoder-decoder LSTM framework
with an intermediate multimodal attention mechanism which
focuses on different input periods. In [23] the authors present
a convolutional filter based attention mechanism that selects
the most relevant steps to pass to a subsequent RNN cell.
Other approaches include [24], where the authors apply a
Transformer architecture [25] to time series forecasting and
[26], where a self-attention layer serves for the learning of
temporal patterns by the model. The attention mechanism in
hierarchical format has also been used to differentiate between
focus across timesteps and across inputs, in works such as [27]
and [28]. Although the model performance may be benefited,
in the majority of the works the attention mechanism is not
used to give insights about the model predictions. In addition,
in the works above, the attention module is an intermediate
component which outputs a "context" vector which is then
usually fed to the rest of the network. Thus, the attention
output is removed from the final output by a number of
complex stages and its value is not immediately obvious. In
contrast, the prediction and the explanation in our approach
come directly from the attention mechanism, making them



tightly coupled, as we will see in subsection III-B. Another
important advantage is the beneficial match of the attention
mechanism with the large receptive field of the TCN [3], which
further enables the network to take into account timesteps deep
into the input past. Finally, the importance of the input features
in the case of our full pipeline is achieved through well-studied
machine learning methods.

C. Interpretability Through Visualization Methods

In the time series classification domain, there has been
significant work when it comes to visualizing important parts
of the input, resulting in methods such as class activation
mapping [29]. In the medical domain we see examples such as
[30] and [31], where the weights of attention mechanisms are
used to indicate the importance of the various input features
in each time step for the corresponding classification tasks.
When it comes to forecasting however, there has been little
work. Two notable examples are [26] and [24], where the
visualization of the learned attention weights can indicate
persistent temporal patterns. Our approach gives instead per
instance intuitive visualization of the focus of the network on
the input for each time step of the output. This provides a fine-
grained level of detail, which allows us to understand when the
network succeeds, and equally importantly, when the network
fails to meaningfully focus on the input.

III. PROPOSED CONFIGURATION

Our suggested architecture is shown in Fig. 1. The main DL
pipeline, which is the configuration applied to both datasets is
in the dotted frame (left), while the end-to-end topology that
is used for the extended analysis of the Water Quality variable
includes an ML pipeline (dashed frame, right).

A. Temporal Convolutional Network Block

The main building block of the DL part of the model is the
TCN residual block, as seen in Fig. 2. The structure of the
block is similar to [3] and is mainly based on the 1-D causal
dilated convolution. This operation means that a filter f with
size k (f ∈ Rk), bias b and dilation factor d is convolved with
a 1-D input x ∈ RL to produce an output x′ ∈ RL, where
each element is calculated as:

x′
i =

k−1∑
j=0

fj · xi−d∗j + b (1)

In the cases where i − d ∗ j < 0 we consider xi−d∗j = 0.
An example of 1-d convolutions with different dilations can
be seen in Fig. 3. In each Conv1D layer, a number of F filters
is slid across each of the N 1-D sequences of length L in
the above manner, producing initially an N × L × F matrix.
This result is then summed across the dimension of the N
inputs, producing an L×F matrix. Weight normalization [32]
is applied on the weights of the Conv1D layers and a channel-
wise dropout layer is added for training regularization [33].
This means that during the training phase of the model, each
of the F dimensions of the Conv1D output is zeroed out with
dropout probability p before being forwarded to the next layer.

Finally, a rectified linear unit (ReLU) activation is applied to
each of the matrix elements [34]. The residual connection on
the right branch of the block is comprised of another weight
normalized Conv1D layer. The outputs of the two branches
are summed and passed through the final activation function
of the block, which is linear for all blocks apart from the last
block of the stack which uses ReLU activation.

B. Attention Mechanism

The attention module that we use on top of the TCN
to produce the forecast and the interpretation is based on
the scaled dot-product attention as described in [25]. The
intuition of the attention mechanism is that a Value matrix is
transformed based on how a Query and Key matrix match. In
our example, the TCN produces the query, while the key-value
pair are different transformations of the input. The output O
of the block is a function of the Query, Key and Value inputs
in this fashion:

O = D · V = softmax(
QKT

√
L

) · V (2)

According to (2), the dimension of O is equal to that of Q,
and in our case we want to output h predictions for each of
the N input time series, i.e. a ON×h matrix. Thus, we scale
down the output of the last TCN block from L×F to L×N
using a weight normalized Conv1D layer with N filters. Then
we apply a dense layer to the transpose of the result to form
the query QN×h. The key and value are formed as follows:

KN×1×L = IN×1×L ·WN×L×L
K + bN×1×L

K

V N×1×L = IN×1×L ·WN×L×L
V

(3)

where I is the original time series input and WK , bK and WV

are trainable matrices.
Attention Weights Intuition: In order to understand the

intuition behind the attention visualization, we can focus on
only one of the N time series, ignoring this dimension of the
matrices, without loss of generality. As a consequence of (3),
we see that each element Ii of the time series contributes to
each element of the value matrix V according to the weights
of the ith row of the matrix WV . In the same fashion, each
element of the value matrix V contributes to each element j
of the final output O according to the jth row of matrix D of
(2). This means that we can produce a matrix A ∈ Rh×L as
so:

Ah×L = Dh×L · abs(WL×L
V )T (4)

Each row j of A shows how each output Oj is affected by
each original input Ii. We select the absolute values of the
weights to portray the attention based on the scale and not the
sign of the weights, but this is an implementation choice and
can be changed based on the needs of the application.

C. Machine Learning Methods

For the ML part of our analysis, we have chosen to utilize
and compare three well known ML methods which provide
different forms of interpretability, which are briefly presented



Fig. 1. Proposed configuration

Fig. 2. TCN block structure

Fig. 3. Dilated convolutions (Source: [3])

in order of increasing complexity. The full description of these
ML methods and the presentation of their detailed statistical
properties is out of the scope of this paper, but interested
readers can follow relevant sources [35].

1) Linear Regression: One of the simplest methods to
predict an output is to express it as a weighted sum of the
input features such that y = w0+w1 ·x1+ · · ·+wn ·xn. The
interpretability of this method comes directly from the weights
wi that show how much a change in one of the features affects
the output, given that all other features stay the same.

2) Decision Tree: The decision tree model is a structure
where the data are iteratively split in subsets based on some
condition relevant to the input features (e.g. if x1 < value...),
until the final subsets, or leaf nodes, are created. In the case

of regression, the condition of the split can be formed with
the aim to minimize the mean squared error or mean absolute
error of the predictions in the final nodes. By traversing the
tree from the root node following the splits for a given input
we arrive at a terminal node that tells us the prediction for this
specific input. The decision tree can be visualized and gives
an intuition about the model criteria, and the most important
features can easily be determined.

3) Generalized Additive Models: In generalized additive
models (GAMs) [36], the output y is calculated as

g(y) = w0 +

n∑
i=1

Fn(xn), where Fn =

M∑
s=0

βsBs(xn) (5)

In [37], each F is called a shape function and can be comprised
of base functions Bs such as polynomial expressions of a
feature. The function g is called the link function and connects
the different shape functions. A smoothing term λ is also
applied during the fitting of the model to reduce overfitting. It
is apparent that simple linear regression is a specific case of
a generalized additive model. Since the functions can be very
complex, we can visualize how each feature affects the final
output by generating the so called partial dependency plots
that portray their relationship.

IV. EVALUATION

A. Datasets

a) Air Quality: The Air Quality dataset [16] contains
hourly averaged values of sensor readings of five chemicals,
namely carbon monoxide, non metanic hydrocarbons, benzene,
total nitrogen oxides and nitrogen dioxide, from a device
placed at road level in an Italian city. The dataset also contains
the ground truth for these chemicals, provided by a separate
reference analyzer, as well as the temperature and relative and
absolute humidity. All these values are recorded from 03/2004
to 04/2005. In our experiment we use all these variables as
inputs to predict the future values of the ground truth for
carbon monoxide, benzene, total nitrogen oxides and nitrogen
dioxide. The reason we drop the non metanic hydrocarbons
ground truth time series is its large number of missing values.



b) Water Quality: This dataset comes from the ambient
estuarine water quality monitoring data for the Burnett river
in Queensland, Australia, retrieved from the Open Data Portal
of Queensland Government. The dataset includes measure-
ments of temperature, specific conductivity, pH, dissolved
oxygen, turbidity and chlorophylla in water, measured every
30 minutes. In the original approach [17], all variables are
used as inputs, and the temperature and dissolved oxygen
as outputs. In our suggested formulation, all variables apart
from dissolved oxygen are used as inputs to the DL part. The
DL output is the predictions for these same variables. Those
intermediate predicted values are used as inputs to the ML
model along with the following time information for each
predicted timestep: time of day, day of the week, day of
the month, day of the year, month and quarter of the year.
In addition, the ML model has as inputs the value of the
dissolved oxygen at the last timestep of the original input
window and its mean across the last 48 timesteps of the same
input window. The output of the ML model is the future values
of the dissolved oxygen time series. Following the example of
[17], we use the measurements starting from 03/2014 up to
and including 03/2018. More details about the measurements
can be found on the official data portal1.

B. Baselines

For the Water Quality dataset, we use as baseline the
work in [17], a TCN with two fully connected networks
on top to simultaneously forecast the two output variables
of temperature and dissolved oxygen. To the best of our
knowledge, no TCN configuration has been applied to the Air
Quality dataset. Thus, we set as baseline a model similar to
the above, i.e. a TCN with one fully connected network for
each of the four output variables on top.

C. Preprocessing and Sample Creation

a) Air Quality: Apart from removing the Non Metanic
Hydrocarbons ground truth variable due to a lot of missing
values, we remove rows that contained nothing but NaN (Not
a Number) values, which signify invalid measurements. We
also replace with 0 the missing values that are indicated with
the -200 value in the original dataset.

b) Water Quality: The first preprocessing step was in-
specting the time series and removing values that are both rare
and extreme, which makes it highly probable that they are the
result of measurement errors. These include temperatures over
40 degree Celsius for the temperature time series, as well as
negative values for the turbidity and chlorophylla series. Those
values are replaced with NaN. Following that, we replace with
NaN all values that are further than 3 times the standard
deviation away from the mean of each times series. In that
way we remove data points that may not appear obvious
outliers during visual inspection, but statistically are highly
improbable. We then fill in all the NaN values with the linear
interpolation method of the pandas library [38].

1https://www.data.qld.gov.au/dataset/ambient-estuarine-water-quality-
monitoring-data-near-real-time-sites-2012-to-present-day

The preprocessing in both cases is purposefully kept simple
and generic. The motivation is that without expert knowledge
on the specific domains any more specific preprocessing
actions would not be justified, so we utilize methods that can
easily be transferred across different domains. To create the
samples for training, validation and testing of the end-to-end
models, we use the sliding window technique. For the Air
Quality dataset, each input window has length 96 and each
output window 24. We use the data from the period 10/03/2004
- 10/12/2004 for training and from 11/12/2004 -04/04/2005 as
test set. We use 25% of the training period data as validation
set. This gives us 4865 training samples and 1621 validation
samples. The test days are 114, of 24 measurements each. For
the Water Quality dataset, each input window has length 192
and each output 48. We use the data from the period 03/2014 -
03/2017 for training and from 01/04/2017 - 31/03/2018 as test
set. We use 10% of the training period data as validation set.
This amounts to 41874 training samples and 4652 validation
samples. The test days are 333, of 48 measurements each.

Before the start of the training, we shuffle the training
samples in order to avoid that the validation set focuses on
a specific time of a year that could affect variables such
as the temperature. In addition, since the time series differ
significantly in scale, we scale them to the 0 - 1 range using
the scikit-learn library [39].

In the dissolved oxygen pipeline, the fitting of the ML
models is done after the DL model has been trained. We select
the DL model with the best validation set performance and
we apply it to the whole training and validation set to get the
intermediate outputs. After removing overlapping predictions,
we have 46560 training samples. The test samples are still 333
days of 48 measurements, i.e. 15984 values.

D. Uncertainty Estimation

In order to get uncertainty estimates for the predictions
of the models, we combine dropout [40] and ensemble [41]
methods. We train 10 instances of the DL model with different
random seeds, so we achieve different weight initialization,
as well as different shuffling of the train set. During the
evaluation of each of those instances, we enable the dropout
layers of the TCN blocks and run the end to end models 20
times. This process gives us 200 samples from which we can
get the mean and confidence interval of the predictions at the
95% level, as well as the mean and standard deviation of the
metrics.

E. Implementation Details and Hyperparameters

All DL experiments were implemented with Tensorflow 2.1
[42] and executed on an NVIDIA GeForce GTX TITAN X
GPU with 12 GB of memory. The training was executed for
120 epochs, with a batch size of 64. The loss is mean squared
error and the optimizer is Adam with learning rate 0.001 and
weight decay of 0.0001. The TCN for the Air Quality data is
comprised of 5 blocks, with dilation factors [1, 2, 4, 8, 16].
The kernel size is 3, and the number of filters is 128. The
dropout rate during training and uncertainty estimation is set



to 0.3. The hyperparameters for the Water Quality data are the
same ones as in [17]. The TCN is comprised of 7 blocks, with
dilation factors [1, 2, 4, 8, 16, 32, 64]. The kernel size is 3, and
the number of filters is 64. The dropout rate during training
is set to 0.5 and during uncertainty estimation to 0.85. The
hyperparameter considered for the decision tree was its depth
in the range [4,10]. The GAM model is implemented using
the pyGAM library [43]. The hyperparameters considered
are the number and order of the spline functions Bs in the
ranges [3,5] and [3,10], as well as the smoothing penalty in
the logarithmic scale [0.001,1000] with 11 evenly distanced
points. The hyperparameters for the decision tree and GAM
where chosen by running grid search in the above ranges
with 10-fold cross validation on the original training data and
keeping the ones with the least average value of mean squared
error across runs and the least average difference between
training and validation error (to avoid overfitting). This process
leads to selecting 6 as tree depth, as well as (0.004,5,7) for
λ, order and number of splines for the GAM model. All
the training and evaluation code for the experiments, as well
as the random seeds used for the training and the resulting
weights are made available2 to enable reproducibility, as well
as support further exploratory research [44] on the topics of
this work.

F. Results

In Table I we can see the mean and standard deviation
of the root mean squared error (RMSE) and mean absolute
error (MAE) metrics for all predicted variables on the test sets
of both datasets, for the baseline and suggested architecture.
These results clearly show that our added interpretability
mechanism on top of the original model does not negatively
affect the accuracy, while in some cases it even provides better
results. We also see that our suggested approach takes more
time to train, but in both cases the overhead is an acceptable
percentage of the original model training time.

In Table II we can see how the same metrics for dissolved
oxygen in the Water Quality dataset are affected as it is
generated by the interpretable DL and ML pipeline instead
of the original black-box DL model. It is notable that even
the simplest approach with linear regression has comparable
results with the baseline DL model, with much less deviation
among the results. The reason for that can be that the ML
output may depend more on features that are fixed, such as
the time-related ones, rather than the intermediate uncertain
DL outputs. Another noteworthy result is the fact that the
GAM model performs worse than linear regression, which
may indicate that for the specific set of features, the added
complexity does not produce better results. We can however
safely conclude that in the context of this real-world problem
it is possible to add time and feature intepretability while on
the whole achieving same or only slightly worse accuracy.

In Fig. 4 we can see the different visual results for the
prediction of dissolved oxygen on a sample day. The similarity

2https://github.com/lpphd/multivariate-attention-tcn

between the graphs for linear regression and GAM reinforces
our conclusion about the unnecessary added complexity, while
the decision tree graph form is the result of its quantized output
options for the regression problem.

TABLE I
TEST SET METRICS AND TRAINING TIME FOR THE BASELINES AND

PROPOSED ARCHITECTURE

Air Quality dataset
Baseline Proposed model

CO RMSE 1.56 ± 0.10 1.32 ± 0.04
MAE 1.14 ± 0.07 0.93 ± 0.03

Benzene RMSE 7.59 ± 0.31 7.02 ± 0.52
MAE 5.69 ± 0.27 4.85 ± 0.25

NOX RMSE 244.43 ± 22.63 214.49 ± 10.31
MAE 180.62 ± 15.56 152.25 ± 7.46

NO2 RMSE 52.35 ± 13.29 48.57 ± 1.53
MAE 41.83 ± 12.66 36.94 ± 1.18

Training time (sec) 477 ± 7 524 ± 11
Water Quality dataset

Baseline Proposed model
Temperature RMSE 0.59 ± 0.07 0.50 ± 0.02

MAE 0.39 ± 0.04 0.33 ± 0.02
Training time (sec) 4554 ± 143 5310 ± 262

TABLE II
DISSOLVED OXYGEN TEST SET METRICS FOR THE BASELINE AND

PROPOSED ARCHITECTURE WITH ML METHODS

Method Dissolved Oxygen

RMSE MAE
Baseline 0.50 ± 0.09 0.30 ± 0.05

Proposed model 0.49 ± 0.00 0.34 ± 0.00
with linear regression

Proposed model 0.55 ± 0.02 0.37 ± 0.01
with decision tree
Proposed model 0.52 ± 0.01 0.36 ± 0.01

with GAM

G. Interpretability Examples

In Fig. 5 we can see two representative intuitive visu-
alizations of the attention distributions generated along the
forecasting for two sample days, one for the temperature
variable from the Water Quality dataset and the other for the
benzene variable from the Air Quality dataset. These portray
the relationship of one sample step of the output to the input
of the specific time series.

In order to generate these visualizations, we select the row
of matrix A, described in subsection III-B, that corresponds
to the output element we want to study and we portray its
values as a heatmap, after scaling them to the range 0-1.
Thus, the darker the background at an input step, the higher
its contribution to the value of the output step. Regarding the
temperature variable, we can see that for this specific sample
step (23rd) the model heavily focuses on the last few steps of
the input, as well as the area approximately one day before
the required prediction to construct the output. The attention
for the sample step (13th) of the benzene variable follows



(a) Baseline DL model (b) Linear Regression

(c) Decision Tree (d) Generalized Additive Model

Fig. 4. Dissolved oxygen forecast visualizations for 21/04/2017

a similar pattern, although it clearly presents more complex
behavior, which may indicate the more complex nature of this
time series.

This visualization mechanism is important in portraying the
focus of the model when it succeeds, and equally importantly,
the inability of the model to correctly construct the output,
which can indicate that it is unsuitable for a specific time
series. A robust empirical confirmation of the validity of this
focus in the case of the Water Quality dataset is that we
have used the attention pattern of the temperature variable as
guideline to construct two features for the dissolved oxygen
time series as input for the ML model, namely its last known
value and the average value of its last period, as discussed
in subsection IV-A. The accuracy that is achieved for the
dissolved oxygen is an affirmation of the usefulness of the
visualization. Even in the cases that the attention focus is more
complex and not immediately obvious, the fact that we have
this information at our disposal allows us to perform fine-
grained analysis, such as discovering common patterns across
multiple days of forecasting.

V. CONCLUSION

In this paper we proposed an architecture comprised of an
attention mechanism combined with a temporal convolutional
network that can produce per-instance prediction interpretation
for multivariate time series forecasting by portraying, for
each time series, the focus of the model on its input when
producing each step of its output. We tested this mechanism
on two multivariate datasets and we showed that the attention
mechanism can be trivially added on top of an existing
temporal convolution model with minimal or no changes and

(a) Temperature attention distribution

(b) Benzene attention distribution

Fig. 5. Attention distributions for temperature and benzene variables (Figure
best viewed in color)

it adds interpretability without reducing the accuracy of the
model, and in some cases even increasing it. We also presented
the intuitive visual explanations of the attention distribution.
In addition, we presented this architecture in the context of an
end-to-end forecasting pipeline, by combining it with each of
three inherently explainable ML methods on top. We used this
pipeline to tackle a real-world forecasting problem and predict
a target variable that was originally produced from a deep
learning, black-box model. We compared the performance
between these methods and the original approach and we
showed that they give similar results in terms of metrics.
Thus, we get comparable results with the added advantage
of interpretability both across timesteps and features to the
end-to-end model for the final target variable.

Future work includes further research regarding the combi-
nation of attention mechanisms with other types of models to
achieve inherent and not post-hoc interpretability. In addition,
we plan to explore an interpretable mechanism of evaluating
the effect of all inputs to the output of a specific time series,
by exploring the internal workings of the TCN model.
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