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This Letter derives explicit factors linking mode-mismatch-
induced power losses in Hermite–Gauss optical modes to
the losses of the fundamental spatial mode. Higher-order
modes are found to be more sensitive to beam parameter
mismatches. This is particularly relevant for gravitational-
wave detectors, where lasers employing higher-order optical
modes have been proposed to mitigate thermal noise, and
quantum-enhanced detectors are very susceptible to losses.
This work should inform mode matching and squeez-
ing requirements for Advanced+ and third generation
detectors. © 2020 Optical Society of America

https://doi.org/10.1364/OL.403802

Optical higher-order modes (HOMs) have a wide range of
uses, for example, driving micro-machines [1,2], manipulation
of cold atoms [3], and telecommunications [4]. In precision
metrology, the performance of current and future gravitational-
wave detectors is limited by self-noise of the detectors, which is
dominated over a wide frequency band by the quantum noise of
the interrogating light field and the thermal noise of the optics.
The introduction of non-classical light (also called squeezing)
into advanced gravitational-wave detectors [5], leaves thermal
noise as the fundamentally limiting noise in the detectors’ most
sensitive frequency range [6].

There are proposals to use a HOM as the carrier mode in the
interferometer to mitigate thermal noise [7–9] in gravitational-
wave detectors. This technique may also be of interest to other
thermal-noise-limited optical cavities [10]. Sorazu et al. stud-
ied the use of a Laguerre–Gauss 3,3 (LG33) mode in a 10 m
suspended optical resonator [11] and noted that astigma-
tism caused the break up of the LG33 mode into component
Hermite–Gauss (HG) modes with a similar, but not equal,
round trip Gouy phase, resulting in distorted control signals and
a poor power coupling into the resonator.

Adaptive astigmatism control could be used to mitigate
LG33 break-up [12]. Alternatively, HG modes are naturally
astigmatic, and may be more compatible with the long baseline
optical resonators used in gravitational-wave detectors [10]. The

HG55 has been discussed [10] as a possible option. However,
it is well known that the transfer of squeezed light into the
interferometer is exceptionally sensitive to optical losses [13].
Mode mismatch can be a dominant source of squeezing loss [14]
and a 98% mode-matching target is achievable with Advanced
LIGO+, potentially allowing 8 dB of squeezing [15].

This Letter revisits the subject of HOM to resonator match-
ing, in the context of HG modes, and derives an increased
sensitivity to mode mismatch that scales monotonically with
mode index. For the HG55, the losses due to waist-size mis-
match would be 31 times worse than for the fundamental
mode. Results for a waist position mismatch are shown in
Supplement 1. Our results are derived using a computer algebra
system [16] and shown to match numeric integration. A higher-
order astigmatic beam passing though the LIGO Output Mode
Cleaner (OMC) is considered as an example of applying these
coefficients. These results are consistent with the evidence dis-
cussed in [11], the decreased mode purity and power observed in
[10], and experimental observations in [17].

The mode-coupling coefficients were derived in the general
case in 1984 by Bayer–Helms [18]. Consider two mode bases,
the first with waist w0 at z0 (typically the mode basis of the
incoming light) and the second with waist w̄0 at z̄0 (typically the
resonator mode basis). Then, the amplitude coupling of a mode
with indices n,m in the first basis to mode n̄, m̄ in the second
basis is described by kn,m,n̄,m̄ , which is in general complex. In
this work, all parameters with an overline correspond to the
resonator basis.

For HG modes, this coupling coefficient is separable [18]:

kn,m,n̄,m̄ = kn,n̄km,m̄ . (1)

If the beam axis is aligned, then the 1D coupling coefficients
are reduced to [18]

kn,n̄ =

∫
∞

−∞

un
(
x ′, z

)
ū∗n̄
(
x ′, z

)
dx ′. (2)

Considering only w0 6= w̄0, z0 = z̄0 (see Supplement 1 for
w0 = w̄0, z0 6= z̄0), then evaluating both beams at the waist
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z= z0, the beam size isw(z)=w0, and the radius of curvature
is RC =∞. Additionally, the Gouy phase of the resonator mode
at the waist is zero 9̄(z0)= 0. Then, by rescaling x = x ′/w̄0,
the spatial properties of the resonator eigenmodes are [19]

ū n̄(x , z)=
(

2

π

) 1
4
√

1

2n̄ n̄!
Hn̄
(√

2x
)
e−x2

. (3)

Defining the fractional waist-size mismatch,w≡w0/w̄0, the
distribution of the incoming light is

un(x , z)=
(

2

π

) 1
4
√

1

2nn!w
exp

(
i(2n + 1)9(z)

2

)

× Hn

(√
2x
w

)
exp

(
−x 2

w2

)
, (4)

where 9 is free to describe some accumulated Gouy phase.
After substitution of Eqs. (4) and (3), Eq. (2) is difficult to solve.
However, the integrate function from SymPy [16] v1.3, can
solve this for a specific n, which may then be expanded with the
series method. For the first 10 orders, the coupling constant
between the same mode in each basis (n = n̄) is

kn,n ≈ exp

(
i(2n + 1)9(z)

2

)

×

(
1−

Cn

4

(
(w− 1)2 − (w− 1)3

)
+O

(
(w− 1)4

))
,

(5)

where

C0 = 1, C1 = 3, C2 = 7, C3 = 13, C4 = 21, C5 = 31,

C6 = 43, C7 = 57, C8 = 73, C9 = 91, C10 = 111,
(6)

and Code 1, Ref. [20] can be used to compute additional values
of Cn . Figure 1 shows a numerical solution to Eq. (2) using
PyKat [21] against Eq. (5) expanded to order (w− 1)3. For
a waist-size mismatch less than 5%, there is good agreement
between the analytic solution and the numerical ones.

When considering a resonator, the power coupling efficiency,
kn,n̄,m,m̄k∗n,n̄,m,m̄ , is considered. Defining the horizontal losses
to be

Fig. 1. 1D mode mismatch parameter, kn,n for a waist-size only mis-
match between the incoming beam and the 1 mm resonator waist size.
Solid lines show numerical solutions to Eq. (2), and dotted lines show
the approximate analytic solutions in Eq. (5). See Supplement 1 for an
analogous waist-position mismatch.

Wx ≡
(w− 1)2 − (w− 1)3

4
≈ 1−

∣∣k0,0

∣∣ (7)

and likewise for the vertical losses, Wy , the full 2D coupling
coefficient is

kn,n,m,m ≈ e i(n+m+1)9(z)(1−Cn Wx −Cm Wy +CnCm Wx Wy ).
(8)

For an almost matched beam in x and y , the last term may be
safely ignored. The power coupling coefficient is then

kn,n,m,mk∗n,n,m,m ≈ 1− 2CnWx − 2Cm Wy , (9)

where terms of orders W2
x , W2

y , and Wx Wy have been neglected.
This result conclusively shows that HOMs are more susceptible
to mode mismatching losses when coupling into cavities.

Advanced LIGO operates with a high degree of mode match-
ing to ensure power couples efficiently between the resonators;
however, some degree of mismatch is always present.

Within the core interferometer, an increased sensitivity to
mode mismatch will likely cause a reduced interferometric
visibility. In addition, since the core interferometer is dual recy-
cled and has focusing elements within the recycling cavities, an
increased sensitivity to mode mismatch may lead to challenges
in defining an operating point for the resonators [22].

In the case of the input mode cleaners (IMCs) and OMCs,
modes that are not resonant are reflected and dumped.
Therefore, the effect of the mode mismatch is a reduced power
transmission through the resonator. In the case of the IMC,
small mismatches can be compensated for by increasing laser
power. In the case of the OMC, the mode mismatch directly
causes a loss of signal and loss for squeezed light injection.

A Finesse model [23,24] of the Advanced LIGO OMC
was produced, and the transmission efficiency was studied
for a range of input modes; results are shown in Fig. 2. The
input power was chosen such that a mode-matched beam pro-
duced 1 W of power on transmission, when the resonator was
tuned and was constant for all simulations. This power scaling
means that the power on transmission is equal to the OMC
power coupling efficiency. The input beam was astigmatic with
w0x = 0.98w̄0x and w0y = 0.96w̄0y . This astigmatism was
chosen to highlight the differing losses for modes with m 6= n.
The tuning range was measured from the expected resonance

Fig. 2. Power transmitted by the Advanced LIGO OMC for an
astigmatic input beam. On both plots, the x axis shows tuning from
expected resonance position, and the y axis shows the transmitted
power. The right-hand plot shows a zoom of the peak resonance on a
linear scale, and dashed lines show efficiency determined with Eq. (11).
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Table 1. Mode-Mismatch-Induced Power Losses through the OMC for an Astigmatic Input Beam
a

Input Mode Analytic (x) Analytic ( y) Analytic (Total) Simulation Difference

HG00 204.0 ppm 832.6 ppm 1036.7 ppm 1036.5 ppm 0.2 ppm
HG30 2652.5 ppm 832.6 ppm 3485.1 ppm 3472.8 ppm 12.3 ppm
HG50 6325.1 ppm 832.6 ppm 7157.8 ppm 7131.6 ppm 26.1 ppm
HG33 2652.5 ppm 10824.1 ppm 13476.6 ppm 13389.8 ppm 86.8 ppm

aThe analytic response is determined from Eq. (11), and the simulated response is determined from the Finesse cavity scan in Fig. 2.

position. Simulation modes n′,m′, up to n′ +m′ ≤ n +m + 4,
for input mode n,m were enabled.

The parameter 2Wx was determined by running an addi-
tional simulation with TEM00 input and w0y = w̄0y and
w0x = 0.98w̄0x ; then

2Wx = 1−
PTx

PT
, (10)

where PTx is the power measured on transmission, and PT is
the transmitted power for no mismatch. In this work, the input
power scaling means PT = 1. The parameter 2Wy was obtained
similarly. The analytically determined OMC power coupling
efficiency for mode HGnm is then∣∣kn,n,m,m

∣∣2 = 1−Cn

(
1−

PTx

PT

)
−Cm

(
1−

PTy

PT

)
, (11)

which is shown by the dotted lines in Fig. 2. This general
method also works as an experimental procedure and can be
used to estimate losses in switching to a HOM.
|kn,n,m,m |

2 was also obtained directly from the simulation
by measuring the peak transmitted power, and a compari-
son is shown in Table 1. As an example, when the n index is
increased from zero to three, the x related power losses increase
by 13 times. When the m index is increased as well, both x and
y power losses increase, so the total mode-mismatch-induced
power loss increases by 13 times.

Mode-mismatch-induced power losses in the OMC corre-
spond directly to a loss of signal and increased quantum noise.
Changing to an equivalently stable higher-order spatial mode
will reduce thermal noise; however, unless the HOM matching
is improved compared to the TEM00 mode matching, the
mode-mismatching-induced signal degradation will be 13 times
worse for a HG33 and 31 times worse for a HG55 carrier mode.
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