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Inertial measurement units (IMUs) are a potentially useful tool for clinicians and researchers in assessing
spine movement biomechanics and neuromuscular control patterns. This study assessed the between-
day reliability of the HIKOB FOX IMU in measuring local dynamic stability (LDS) and variability of trunk
movements in patients with chronic low back pain (LBP). The local divergence exponent (kmax) was used
to quantify LDS and the mean standard deviation (MeanSD) between cycles was used to quantify variabil-
ity during 30 repetitive cycles of flexion/extension, rotation, and complex movement tasks. For kmax the
average coefficient of variation (CV) was ~10% in the flexion/extension and rotation tasks, and all CV val-
ues were <20% when also including the complex task. ICC values for kmax ranged from 0.28 to 0.81.
Reliability of kmax was similar between the pelvis and thorax segments (CV: ~10%, ICC: 0.48–0.78) and
worse for the lumbar spine (CV: ~15%, ICC: 0.28–0.59). The CV for MeanSD was typically in the range
of 20–30%, with even greater CV in the non-primary axes during each task (30–52%). Similarly, ICC values
were lowest about the anterior-posterior axis in the flexion/extension task (ICC: 0.15–0.29) and largest
about the longitudinal axis in the rotation task (ICC: 0.76–0.88). The moderate between-day reliability
of kmax in the sagittal and transverse planes offers improvement over manual and subjective tests with
poor reliability that are currently used in clinics. The minimal detectable differences presented give a
threshold for change in research and rehabilitation in patients with LBP.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Low back pain (LBP) affects over 80% of people at some point in
their lifetime (Andersson, 1999). Of these cases, 85–90% are classi-
fied as non-specific (Waddell, 2005), meaning that the pain is not
attributed to any specific injury or pathology (Balagué et al.,
2012). LBP places a large socioeconomic burden on health care sys-
tems worldwide. For instance, when considering premature mor-
tality, prevalence and condition severity, the burden of LBP is
second only to heart disease in the European Union (Murray
et al., 2012), and is still the first cause of years lived with disability
worldwide (Wu et al., 2020).

Despite the high prevalence and impact of LBP, overall assess-
ment and management of the disorder is substandard, which does
not permit clinicians to categorize patients or prescribe optimal
individual treatment. LBP disorders have been documented to
manifest in terms of altered movement quality, including excessive
or poor stability and poor coordination of lumbopelvic segments
(Asgari et al., 2015, 2017; Mokhtarinia et al., 2016; Seay et al.,
2011; Spinelli et al., 2015). Local dynamic stability (LDS) estimates
– whereby the average exponential rate of divergence between
nearest neighbor trajectories in a reconstructed state space is used
to estimate the amount of chaos in a system (Rosenstein et al.,
1993) – have also been used to evaluate spine control and move-
ment stability (Asgari et al., 2017; Bourdon et al., 2019; Graham
et al., 2014; Granata and England, 2006; Granata and Gottipati,
2008; Ross et al., 2017). The local divergence exponent (kmax), also
known maximum finite-time Lyapunov exponent, is used to quan-
tify LDS and is a metric that could be used to establish subgroups of
LBP patients, with those with high kmax values having ‘‘loose” con-
trol of the spine and possible proprioceptive deficits and those with
low kmax values having ‘‘tight” control of the spine and possible
muscle guarding (van Dieen et al., 2019a, 2019b).

Patients with LBP have demonstrated greater initial LDS (lower
kmax) during lifting at the hip in the frontal and transverse planes
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with respect to controls (Asgari et al., 2017) and lower kmax over
longer time intervals during repetitive trunk flexion/extension
movements (Asgari et al., 2015). Additionally, kinematic variability
can be assessed by taking the mean of the standard deviation
(MeanSD) of angular displacement at each time point across cycles
(Asgari et al., 2015; Graham et al., 2012a, 2012b). Spine kinematics,
including angular displacement and velocity, is thought to differ
between patients with LBP and controls (Beange et al., 2017;
Sedrez et al., 2019). Thus, correct characterization of spine move-
ment in clinical practice is essential in informing diagnosis and
providing specific intervention strategies for LBP patients.

Although there is a shift toward assessing spine movement
quality and control to improve stratification of LBP diagnosis and
care, manual testing and visual inspection are often unreliable
(Fritz et al., 2007; Hicks et al., 2003; Stolz et al., 2020). On the other
hand, using wearables to perform kinematic evaluations of spinal
control has demonstrated acceptable reliability (Graham et al.,
2012b; Laird et al., 2016). Furthermore, LDS and MeanSD can be
calculated with wearable technology, while visual observations
are limited to the assessment of gross dynamics like range of
motion (Beange et al., 2019b). Primary and allied healthcare pro-
fessionals have themselves expressed the need for measurement
instruments to be able to quantify specific outcome measures in
order to objectively assess movement quality in LBP patients
(Beange et al., 2017; van Dijk et al., 2017). Inertial measurement
units (IMUs) are being recognized as a portable and cost-worthy
alternative to traditional movement quality analyses, and have
the potential to be introduced into clinical settings for LBP assess-
ment (Ashouri et al., 2017). The progression towards the wide-
spread use and acceptance of IMU-based assessments in routine
clinical practice is currently limited by uncertainties regarding sen-
sor accuracy and reliability (Bauer et al., 2015; Bolink et al., 2016;
Cuesta-Vargas et al., 2010; Whelan et al., 2016). Nonetheless kmax

and MeanSD have demonstrated moderate to good between-day
reliability in healthy participants performing repetitive flexion
when calculated with IMU data (Graham et al., 2012b). Moreover,
recent work demonstrated good agreement between optical
motion capture and IMU data in assessing dynamic spine motor
control with LDS and coordination in healthy participants
(Beange et al., 2019b).

To support the use of IMUs in research and for them to transi-
tion into clinical practice the sensors need to demonstrate good
reliability as well as validity, particularly in patient populations.
Any evaluation of treatment needs to be considered in the context
of measurement error. Reliability is impacted upon by both biolog-
ical error and error from the equipment used (Hopkins, 2000a).
From a biological standpoint, patients with acute LBP have high
variability in pain levels day to day (Suri et al., 2011) and pain
intensity for those with chronic pain (including LBP) also fluctuates
(Peters et al., 2000). Variable levels of pain from one day to another
could lead to variable between-day movement patterns. In the case
of IMUs there is inherent error from gyroscopic drift and magnetic
distortion, and movement amplitude-/frequency-dependent error
that needs to be removed with computational models to improve
accuracy (Ashouri et al., 2017; Cuesta-Vargas et al., 2010). Exam-
ples include improving fusion algorithms to optimally calculate
segment and joint orientations and correct for drift (Madgwick
et al., 2011; Wittmann et al., 2019). Additionally as the reliability
of a given IMU sensor is site and task specific (Cuesta-Vargas
et al., 2010), it is necessary to evaluate the reliability of a sensor
to be used in an intervention during the specific tasks which will
be used to assess the effectiveness of the intervention, as well as
in the clinical population of interest, in this case LBP patients.

Therefore, the objective of this study was to assess the
between-day reliability of an IMU sensor (HIKOB FOX, Meylan,
2

France) in assessing functional movement quality using LDS and
MeanSD in a population with chronic LBP.
2. Methods

2.1. Participants

As part of a larger clinical trial (NCT02059317), thirty patients
with LBP (19F, 11M), mean (SD) age of 44 (8) years and BMI of
25.4 (5.6) kg/m2 were recruited to participate in this study at the
University Hospital of Nîmes, France. Participants performed a
total of three assessments: the initial baseline assessment, a repeat
assessment seven days later, and a third asssement following a five
day rehabilition program in a spine rehabilitation centre. The Que-
bec Back Pain Disability Scale (Kopec et al., 1995) was used for
patients to rate their pain from 0 to 100 (with 0 representing no
pain and 100 being the worst pain imaginable) on visits one and
three. Additionally, patients were asked to rate their pain on a
visual analogue scale (0–10) during each of the three tasks on visits
one and two (in this case with 0 representing no pain and 10 being
the worst pain imaginable). For the purposes of this study, only
data from the first two assessments before the intervention were
analyzed. All participants provided informed consent prior to data
collection and all procedures were approved by the institutional
research ethics board (CCP SUD MED III 2013.11.09). Inclusion cri-
teria included: common LBP lasting for more than six months.
Exclusion criteria included: previous back surgery, postural disor-
ders, neurological/balance disorders, the use of medications that
could impact spine control, and lumbar specific treatment during
the last month (infiltration, neurostimulation, patch).

2.2. Instrumentation

HIKOB Fox IMU sensors (Meylan, France) were firmly attached
to each participant’s back over the T8 (thorax) and S2 (pelvis) spi-
nous processes using double-sided tape (Fig. 1D). Raw 3D
accelerometer, gyroscope, and magnetometer data were collected
at 100 Hz on the data logger embedded in the IMU, which were
then downloaded to be analyzed at a later date using custom anal-
ysis software.

2.3. Movement protocol

Emulating previous protocols (Bourdon et al., 2019; Dupeyron
et al., 2013), on each visit to the lab participants performed 30 rep-
etitions of three different trunk movements in three separate trials
(Fig. 1). It has been shown that 30 repetitions is sufficient to
achieve acceptable precision of LDS (Dupeyron et al., 2013). The
movement tasks were a flexion–extension task (Fig. 1A, represent-
ing lifting without a load), a rotation task (Fig. 1B) and a complex
task (Fig. 1C, involving movements in three dimensions) and have
been described previously (Dupeyron et al., 2013). Briefly, for the
flexion–extension task, participants performed trunk flexion from
standing to touch a target at knee height with both fingers at
one arm length forward. For the rotation task, participants alter-
nated touching targets positioned bilaterally at shoulder height
at one arm length laterally on the left and right sides. For the com-
plex task, participants touched targets at knee height on the left,
shoulder height on the right, shoulder height on the left and knee
height on the right in succession. The mean and SD for the magni-
tudes of movement for each task in each plane across participants
are summarized in the Supplementary Material. The flexion–ex-
tension, rotation, and complex tasks were performed to the beat
of a metronome at 0.28 Hz, 0.24 Hz, and 0.14 Hz, respectively,
based on the preferred pace established in previous work



Fig. 1. Outline of each of the movement tasks (adapted with permission from Bourdon et al. 2019). (A) The flexion/extension task in the sagittal plane; (B) the rotation task in
the transverse plane and (C) the complex task in three dimensions. The placement of the inertial measurement units (IMUs) is shown in (D).
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(Dupeyron et al., 2013). Each movement series was block random-
ized for each participant, where they each completed the move-
ments in the same order on the two different testing days. The
duration of a session was 30 minutes and there were no adverse
events during the testing.

2.4. Data processing and analysis

All analyses took place in Matlab R2018b (The MathWorks Inc.,
Natick, USA). Raw IMU sensor data from each IMU were first fused
using the Madgwick algorithm (Madgwick et al., 2011), to compute
quaternions and then Euler angles for the pelvis and thorax in glo-
bal space, as well as for the lumbar spine region (i.e. 3D orientation
of the thorax sensor relative to the pelvis sensor). Any drift that
was not successfully removed via the sensor fusion process was
removed by subtracting a least-squares line of best-fit from the
time-series.

2.4.1. Local dynamic stability
To compute LDS for the pelvis, thorax, and lumbar spine using

local divergence exponents, two different approaches to state-
space reconstruction were taken after selecting a constant number
of cycles for each task across participants and then resampling the
selected time series to a constant number of samples (300 times
the number of cycles) using spline interpolation. First a 6D state
space (Y) was created using each independent Euler angle compo-
nent (x, y, z) at each point in time (t) and one time-lagged version
(TL) as per Equation (1). This was also completed for each indepen-
dent quaternion component, and while a comparison is presented
in the Supplementary Material, only Euler angle results are pre-
sented in the manuscript.

Y tð Þ ¼ xðtÞ yðtÞ zðtÞ xðt þ TLÞ yðt þ TLÞ zðt þ TLÞ½ � ð1Þ
A second state space was created by first calculating the sum of

squares (SS) of the three Euler angles (Beange et al., 2019b;
Bourdon et al., 2019; Graham et al., 2014; Granata and England,
2006), after first biasing the angles into a positive Cartesian space
to remove any zero crossings and relative bias between movement
planes (Beaudette et al., 2016). Then a 6D state-space (Y) was
reconstructed using the SS (r) at each time point (t) and its time-
lagged (TL) versions as per Equation (2).

Y tð Þ ¼ rðtÞ r t þ TLð Þ r t þ 2TLð Þ r t þ 3TLð Þ r t þ 4TLð Þ r t þ 5TLð Þ½ �
ð2Þ

For both state space definitions, a TL of 10% of the average num-
ber of samples per cycle was used (Bourdon et al., 2019; Graham
3

et al., 2014; Granata and England, 2006). The exponential rate of
divergence between nearest neighbor trajectories in the recon-
structed state space was then determined to estimate the local
divergence exponent (kmax) (Bourdon et al., 2019; Dupeyron
et al., 2013). This was done by estimating a line of best-fit across
the first 0.25 cycles of the average logarithmic divergence curve
using both state spaces, using the robust modified Rosenstein algo-
rithm proposed by Mehdizadeh (2019).
2.4.2. Variability
To calculate the variability of the independent Euler angles (x, y,

z – in radians) as well as the SS, the MeanSD was used (Bruijn et al.,
2009; Graham et al., 2012a). Each angle (i.e. x, y, z, SS) from each
set of dynamic trunk movement cycles (i.e. flexion/extension, rota-
tion, complex) was first divided into separate cycles. Each cycle
was then time normalized to 101 samples (0–100% of the move-
ment cycle); point by point standard deviations were calculated
across all cycles and then the mean value was taken.
2.4.3. Statistics
Reliability was assessed using the intra-class correlation coeffi-

cient (ICC (2,1)), the standard error of measurement (SEM), and the
coefficient of variation (CV) in SPSS 26 (IBM Corporation, Armonk,
USA). The SEM was calculated as (SDD/

p
2) and CV was calculated

as (SEM/Grand Mean) * 100 (Batterham and George, 2003;
Hopkins, 2000a). The coefficient of variation is often considered
the best measure of reliability, as it allows direct comparison
between measures regardless of scaling (Hopkins, 2000a). The
minimal detectable difference (MDD) was determined to be
1.5*SEM (Hopkins, 2000a).
3. Results

3.1. Pain scores

The mean (SD) Quebec Back Pain Disability Scale score was 46
(17) on visit one. Pain scores were collected at baseline prior to
beginning the movement protocol and during the tasks. The mean
(SD) VAS back pain at baseline was 55 (22) and VAS during tasks
were available for only 18 observations (out of a possible 90; 30
participants multiplied by three tasks). There was a median
decrease of �2, �3 and �1, from visit one to visit two in the VAS
for the flexion, rotation and complex tasks, respectively. The
change in VAS scores between visits ranged from 0 to �6, suggest-
ing some decrease in pain between visits.
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3.2. Local dynamic stability (kmax)

There was excellent agreement between kmax calculated using
Euler angles and Quaternions (r � 0.99 for all tasks, Supplementary
Material), as such, all subsequent data are presented using the
more common Euler angle convention. The mean kmax values for
each segment at visit one and visit two in each task are presented
in Fig. 2, along with the associated CV. The ICC, SEM and MDD for
kmax are presented in Table 1. The average CV for all kmax values
was ~10% and all CV values were <20%. Considering CV, reliability
was similar between the pelvis and thorax (CV: ~8% and ~10% for
xyz and SS respectively) and worse for lumbar motion (CV: ~10%
and ~15% for xyz and SS respectively). The CV was generally greater
(worse reliability) in the complex task than in the flexion/exten-
sion and rotation tasks. ICC values for kmax ranged from 0.28 to
0.81. ICC values across tasks were again generally better for the
pelvis and thorax than the lumbar spine (mean 0.64 and 0.73 ver-
sus 0.50, respectively). ICC values for the pelvis and thorax were in
Fig. 2. Local dynamic stability (kmax) on visit one (V1) and visit two (V2) for: A) Pelvis; B)
and the sum of squares (SS). CV = coefficient of variation.

Table 1
Reliability statistics for local dynamic stability (kmax) for each segment during each task.

Flexion/Extension Rotation

Pelvis Thorax Lumbar Pelvis

xyz
ICC [95% CI] 0.55

[�0.02–0.80]
0.71
[0.34–0.87]

0.49
[�0.16–0.78]

0.62
[0.14–0.83]

SEM 0.38 0.41 0.50 0.32
MDD 0.57 0.62 0.75 0.48
SS
ICC [95% CI] 0.48

[�0.18–0.77]
0.63
[0.16–0.84]

0.48
[�0.18–0.77]

0.66
[0.25–0.85]

SEM 0.25 0.26 0.27 0.17
MDD 0.37 0.38 0.40 0.26

ICC = intra-class correlation coefficient, SEM = standard error of measurement, MDD = m

4

fact better for the complex task (~0.80) than the flexion/extension
task (~0.60) and rotation task (~0.70). However, the ICC of the lum-
bar spine kmax in the complex task was poor (0.28 [�0.62–0.68]) or
moderate (0.53 [�0.06-0.79]), for the xyz and SS respectively. The
MDD of kmax ranged from 0.17 to 0.75.

3.3. Variability (MeanSD)

The average MeanSD values for each segment at visit one and
visit two in each task are presented in Fig. 3, along with the asso-
ciated CV. In this case, the MDD ranged from 0.005 rad (0.3�) to
0.032 rad (1.8�). The ICC, SEM and MDD for MeanSD are presented
in Table 2. The CV for MeanSD was typically in the range of 20–30%,
with the exception of rotations in the frontal plane around the
anterior-posterior (AP) axis during the flexion/extension task
(33–52%). ICC values for MeanSD ranged from 0.15 to 0.88. ICC val-
ues were lowest about the AP axis in the flexion/extension task
(ICC: 0.15–0.29) and largest about the longitudinal axis in the rota-
Thorax; and C) Lumbar segments during each task as measured using all xyz angles

Complex

Thorax Lumbar Pelvis Thorax Lumbar

0.70
[0.33–0.87]

0.59
[0.08–0.82]

0.75
[0.45–0.89]

0.75
[0.45–0.89]

0.28
[�0.62–0.68]

0.28 0.23 0.27 0.27 0.33
0.42 0.35 0.40 0.41 0.49

0.78
[0.55–0.91]

0.60
[0.10–0.82]

0.78
[0.51–0.90]

0.81
[0.59–0.92]

0.53
[�0.06–0.79]

0.15 0.23 0.11 0.13 0.18
0.23 0.32 0.17 0.20 0.28

inimal detectable difference, SS = sum of squares, CI = confidence interval.



Fig. 3. Variability (MeanSD in radians) on visit one (V1) and visit two (V2) for: A) Pelvis; B) Thorax and C) Lumbar segments during each task as measured about each axis and
as a sum of squares. CV = coefficient of variation; M-L = medial–lateral (i.e. flexion/extension); A-P = anterior-posterior (i.e. lateral bending); L = longitudinal (i.e. axial
rotation); and SS = sum of squares.

Table 2
Reliability statistics for variability (MeanSD) for each sensor/segment during each task.

Flexion/Extension Rotation Complex

Pelvis Thorax Lumbar Pelvis Thorax Lumbar Pelvis Thorax Lumbar

Medial-lateral axis (x – Flexion/Extension)
ICC [95% CI] 0.50

[�0.13–0.78]
0.38
[�0.41–0.73]

0.49
[�0.16–0.78]

0.60
[0.11–0.82]

0.50
[�0.12–0.77]

0.82
[0.60–0.92]

0.70
[0.33–0.87]

0.39
[�0.39–0.73]

0.29
[�0.62–0.69]

SEM 0.010 0.018 0.016 0.005 0.006 0.007 0.009 0.021 0.019
MDD 0.015 0.026 0.024 0.007 0.009 0.011 0.013 0.032 0.029
Anterior-posterior axis (y – Lateral Bending)
ICC [95% CI] 0.17

[�0.89–0.63]
0.15
[�0.93–0.63]

0.29
[�0.62–0.69]

0.77
[0.49–0.90]

0.47
[�0.19–0.76]

0.71
[0.35–0.87]

0.22
[�0.78–0.66]

0.32
[�0.54–0.70]

0.72
[0.37–0.88]

SEM 0.004 0.007 0.009 0.006 0.007 0.007 0.011 0.021 0.010
MDD 0.005 0.010 0.013 0.009 0.010 0.011 0.017 0.032 0.016
Longitudinal axis (z – Axial Rotation)
ICC [95% CI] 0.70

[0.32–0.87]
0.58
[0.04–0.81]

0.75
[0.43–0.89]

0.86
[0.69–0.94]

0.76
[0.47–0.89]

0.88
[0.74–0.95]

0.64 [0.17–0.84] 0.65 [0.21–0.85] 0.71
[0.33–0.87]

SEM 0.003 0.006 0.004 0.011 0.018 0.007 0.017 0.022 0.012
MDD 0.005 0.008 0.006 0.017 0.027 0.010 0.026 0.032 0.018
Sum of squares
ICC [95% CI] 0.47

[�0.19–0.77]
0.38
[�0.42–0.72]

0.54
[�0.05–0.80]

0.81
[0.57–0.91]

0.70
[0.33–0.87]

0.79
[0.53–0.91]

0.83 [0.61–0.92] 0.32
[�0.55–0.70]

0.40
[�0.36–0.74]

SEM 0.011 0.017 0.014 0.011 0.017 0.007 0.012 0.022 0.016
MDD 0.016 0.025 0.022 0.016 0.026 0.011 0.018 0.033 0.024

ICC = intra-class correlation coefficient, SEM = standard error of measurement, MDD = minimal detectable difference, CI = confidence interval.
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tion task (ICC: 0.76–0.88). In the flexion/extension task ICC values
about the longitudinal axis (0.58–0.75) were also greater than val-
ues about the medial–lateral (ML) axis (0.38–0.50).
4. Discussion

The objective of this study was to assess the between-day reli-
ability of an IMU in assessing spine control and functional move-
ment quality as characterized by kmax and MeanSD in individuals
5

with chronic LBP. Considering the CV, overall reliability was better
for kmax than MeanSD (CV: around 10% and 28%, respectively). The
ICC values for kmax were generally moderate to good considering
Cohen’s thresholds for interpreting effect sizes, although no ICC
value was above 0.9, which has also been argued as the necessary
level to consider a measure practical and valid (Cohen, 1988;
Hopkins, 2000b). Unfortunately, we were not able to account for
subgroups of LBP within this study, which would give an indication
of the heterogeneity of the sample, and may have affected reliabil-
ity. However, patients with LBP are known to exhibit heterogeneity
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(van Dieen et al., 2019a) and ICC values increase with increased
heterogeneity (Hopkins, 2000a). Additionally, although an appar-
ent decrease in VAS pain scores during movement tasks was
recorded between visit one and visit two, the results were based
on a very limited number of values (18/90). As such, we cannot
realistically account for any variations in pain between visits one
and two which may have affected reliability and as such we were
not able to use a mixed effect model controlling for pain to esti-
mate reliability. We might expect a difference in pain scores
between visits one and two as self-reported pain scores are likely
to vary with time (Turk and Marcus, 1994). We also did not
account for height or weight in the model, however these anthro-
pometrics have been shown to have only a small correlation with
spinal motion and LBP (Heuch et al., 2015; Mellin, 1987), which
was also the case with our data here.

The consistency of IMUs with optical motion capture has been
shown to be best in the primary direction of trunk movement
(Beange et al., 2019a, 2019b, 2018). Consequently, the finding of
poorest reliability of MeanSD about the AP axis in the flexion/ex-
tension task (ICC: 0.15–0.29, CV: 32.55–52.27%) and the best reli-
ability about the longitudinal axis in the rotation task (ICC: 0.76–
0.88, CV: 17.30–23.51%) is not surprising. Greater reliability about
the longitudinal axis (ICC: 0.58–0.75, CV: 20.55–29.30%) than the
ML axis (0.38–0.50, CV: 26.63–29.27%) in the flexion/extension
task was unexpected, although it remains to be seen whether such
a difference in the reliability between axes is meaningful. Never-
theless, the reliability of MeanSD calculated using SS was driven
by the reliability in the primary axis of movement in the flexion/
extension and rotation tasks, which is also similar to earlier work
(Beange et al., 2019a, 2019b).

Clinical assessments of spine movement quality and variability
are typically performed around the ML axis in the sagittal plane
(Delitto et al., 2012; Wattananon et al., 2017). As such moderate
reliability during the flexion/extension task for kmax and MeanSD
could offer some improvement upon current segmental mobility
testing and intervertebral motion testing which have been shown
to have poor reliability (Hicks et al., 2003; Stolz et al., 2020). The
complexity of processing IMU data was previously a barrier to
the uptake of wearables in the clinical setting (Papi et al., 2017).
However, new, low cost, wearable sensors synced with mobile
devices and cloud-based applications are being developed that
provide on-board calculations and signal quality checks in real
time (e.g. Graham and Josan, 2017). Additionally, advances in
cloud-computing allow data to be stored in secure databases to
build large data sets that enable machine learning algorithms to
differentiate groups, such as healthy and LBP patients, and provide
feedback to the clinician in an easily interpretable format. The
MDD presented in this study provide a threshold for both research-
ers and clinicians to determine whether change has occurred as a
result of an intervention. The excellent agreement in kmax when
calculated with Euler angles and quaternions, supports the use of
the more familiar Euler angle convention in future work for ease
of interpretation, although quaternions have the benefit of not suf-
fering from Gimbal lock, should this be present in the dataset.

In conclusion, this study found that LDS (kmax) generally had
greater between-day reliability than movement variability
(MeanSD) when assessing spine movement using IMUs in patients
with LBP.
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