
VU Research Portal

Evaluating the impact of caching on the energy consumption and performance of
progressive web apps
Malavolta, Ivano; Chinnappan, Katerina; Jasmontas, Lukas; Gupta, Sarthak; Soltany,
Kaveh Ali Karam

published in
MOBILESoft '20
2020

DOI (link to publisher)
10.1145/3387905.3388593

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Malavolta, I., Chinnappan, K., Jasmontas, L., Gupta, S., & Soltany, K. A. K. (2020). Evaluating the impact of
caching on the energy consumption and performance of progressive web apps. In MOBILESoft '20: Proceedings
of the IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems (pp. 109-119).
Association for Computing Machinery, Inc. https://doi.org/10.1145/3387905.3388593

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/387935237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3387905.3388593
https://research.vu.nl/en/publications/994e196b-306a-4438-9ee5-e82062db0932
https://doi.org/10.1145/3387905.3388593

Evaluating the Impact of Caching on the Energy Consumption
and Performance of Progressive Web Apps

Ivano Malavolta, Katerina Chinnappan, Lukas Jasmontas, Sarthak Gupta, Kaveh Ali Karam Soltany
Vrije Universiteit Amsterdam, The Netherlands

i.malavolta@vu.nl, {k.p.chinnappan | l.jasmontas | s3.gupta | k.alikaramsoltany}@student.vu.nl

ABSTRACT

Context. Since today mobile devices have limited battery life, the

energy consumption of the software running on them can play a

strong role with respect to the success of mobile-based businesses.

Progressive Web Applications (PWAs) are built using common web

technologies like HTML, CSS, and JavaScript and are commonly

used for providing a better user experience to mobile users. Caching

is the main technique used by PWA developers for optimizing

network usage and for providing a meaningful experience even

when the user’s device is offline.

Goal. This paper aims at assessing the impact of caching on both

the energy consumption and performance of PWAs.

Method. We conducted an empirical experiment targeting 9 real

PWAs developed by third-party developers. The experiment is de-

signed as a 1 factor - 2 treatments study, with the usage of caching

as the single factor and the status of the cache as treatments (empty

vs populated cache). The response variables of the experiment are (i)

the energy consumption of the mobile device and (ii) the page load

time of the PWAs. The experiment is executed on a real Android

device running the Mozilla Firefox browser.

Results. Our results show that PWAs do not consume significantly

different amounts of energy when loaded either with an empty or

populated cache. However, the page load time of PWAs is signifi-

cantly lower when the cache is already populated, with a medium

effect size.

Conclusions. This study confirms that PWAs are promising in terms

of energy consumption and provides evidence that caching can be

safely exploited by PWA developers concerned with energy con-

sumption. The study provides also empirical evidence that caching

is an effective technique for improving the user experience in terms

of page loading time of PWAs.

CCS CONCEPTS

• Software and its engineering→ Software performance; •

Information systems→Web applications.

ACM Reference Format:

Ivano Malavolta, Katerina Chinnappan, Lukas Jasmontas, Sarthak Gupta,

Kaveh Ali Karam Soltany. 2020. Evaluating the Impact of Caching on the En-

ergy Consumption and Performance of Progressive Web Apps. In IEEE/ACM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7959-5/20/05. . . $15.00
https://doi.org/10.1145/3387905.3388593

7th International Conference on Mobile Software Engineering and Systems

(MOBILESoft ’20), October 5–6, 2020, Seoul, Republic of Korea. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3387905.3388593

1 INTRODUCTION

Introduced for the first time in 2015, Progressive web apps (PWAs)

are special kinds of mobile web apps supporting, among others,

progressive enhancement, low or no network connectivity, back-

ground processing capabilities, and push notifications [19]. The

essence of a PWA is that it behaves like a typical mobile application

without the need of uploading it onto Google Play or Apple App

Store. PWAs do not require stable network conditions and they tend

to work faster than standard mobile-optimized websites [2]. At the

core of PWAs lie service workers1 , i.e., a set of JavaScript APIs

for allowing developers to programmatically cache and preload

assets and data, perform background operations, receive push no-

tifications, etc. One of the main features of PWAs and one of the

main reasons why they have been gaining popularity, is that they

allow developers to provide the so-called offline-first experience

[26]. Specifically, when a standard web app is launched on a mobile

device, the user must be on-line and wait for the web page to load,

including the dynamic contents of the page, images, style-sheets,

scripts, etc. Differently, PWAs can store resources and JavaScript

modules in a dedicated cache in the browser once they are first

accessed, allowing the PWA to work also when the user is offline.

If on one side caching improves user experience, reliability, and

performance [1], on the other side service workers require that

their JavaScript source code is parsed, downloaded, and executed,

implying the usage of additional computational resources, which

in turn may impact the energy consumption and performance of

the PWA as a whole.

The goal of this study is to empirically assess the impact of

caching on both the energy consumption and performance of PWAs.

We achieve this goal by conducting an empirical experiment tar-

geting 9 real PWAs developed by third-party developers. The ex-

periment is designed as a 1 factor - 2 treatments study, with the

usage of caching as the single factor and the status of the cache as

treatments (empty vs populated cache). The response variables of

the experiment are (i) the energy consumption of the mobile device

and (ii) the page load time of the PWAs. The experiment is executed

on a real Android device running the Mozilla Firefox browser.

The main contributions of this paper are:

• the results of an experiment on the impact of caching on the

energy efficiency and performance of 9 real progressive web

apps;

• a discussion of the obtained results and their implications

for developers;

1http://www.w3.org/TR/service-workers/

109

2020 IEEE/ACM 7th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

• the replication package of our experiment containing its

subjects, execution scripts, analysis scripts, and raw data.

The results of this study benefit both (i) mobile web developers in

better understanding to which extent caching plays a role in terms

of energy consumption and performance of their PWAs, (ii) browser

vendors (e.g., Mozilla) with objective evidence about caching in

PWAs, which may be used for taking better informed decisions

when designing/improving the caching engines of their browsers.

The remainder of this paper is organized as follows. Section 2

provides background information about caching in PWAs. Sections

3 and 4 present the experiment design and its execution infrastruc-

ture, respectively. Section 5 describes the results of the experiment,

followed by a discussion in Section 6. Threats to validity and related

work are presented in Sections 7 and 8, respectively. Section 9 closes

the paper.

2 BACKGROUND

Caching in mobile networks is important to compete with the un-

precedented growth of network traffic [21]. Network caching is

defined as the technique to store information which can be reached

recurrently from the origin of the request. It helps in decreasing

web traffic and the website load time for the users [3]. In addition,

web caching is the short-term storage mechanism employed in

network caching with the main function of delivering the webpage

content to end-users as fast as possible. Distributed networks, with

multiple servers, save copies of web content which are cached and

retrieved from the closest server based on user requests [23]. In a

recent study conducted by Qian et al. [23] on web caching in smart-

phones, it was concluded that web downstream traffic generated

by mobile browsers and apps exceeds all other types of network

traffic [11]. There exists a major gap between specification and

implementation of the protocol for web caching in mobile devices

today. Reviewing and fixing this could in turn drastically reduce the

network traffic caused by mobile devices, along with the resources

and energy consumed. Optimization of the caching parameter con-

figurations, cache validation, delta encoding and utilization of the

offline application cache are some of the most prominent ways that

could help in reducing mobile network overheads and the delays

or wait time of the end users [23].

In PWAs, caching is done with the help of service workers. A

service worker is a JavaScript script that is part of the PWA, with

the exception that it is executed in its own thread (instead of run-

ning on the main thread of the web app) and the browser runs it in

background [13]. There are four main caching strategies commonly

applied in PWAs today [10]. The first one, Stale-While Revalidate

strategy, is used mostly for assets with a certain tolerance. It would

return a cached version of the resource immediately, while it checks

for an updated version on the network. If the updated version is

found, it is saved to the cache for subsequent requests. The second

strategy used is Cache-Only which, as the name suggests, returns

the cached version of the resource without checking for an updated

version on the network. This works well on pre-cached static re-

sources since it only updates the contents when the application

version is updated itself. Network-First is the third strategy which

falls back on a cached version if it fails to fetch the latest contents

from the network server and in turn, helps to keep the dynamic re-

sources updated. The fourth strategy is a Cache-First strategy which

checks the network for the latest version to update the resource

in cache, but only if the first fetch from the cache fails. This helps

in optimizing repetitive asset requests, as it only hits the network

server for updated resources.

1 // required files
2 workbox.precaching.precacheAndRoute ([
3 '/css/app.css',
4 '/js/offline_page.js',
5 'img/logo.png',
6 '/img/default_thumb.png'
7]);
8 var networkFirstHandler = workbox.strategies.

networkFirst ({
9 cacheName: "default",
10 plugins: [
11 new workbox.expiration.Plugin ({
12 maxEntries: 10
13 }),
14 new workbox.cacheableResponse.Plugin ({
15 statuses: [200]
16 }),
17],
18 });
19 // Handle all navigation requests - can
20 // switch to offline mode
21 const navMatcher = ({ event }) => event.request.

mode === "navigate";
22 const navHandler = args =>
23 networkFirstHandler
24 .handle(args)
25 .then(response => (! response ? caches.match("/

offline.html") : response));
26 workbox.routing.registerRoute(navMatcher ,

navHandler);

Listing 1: Example of service worker from a real PWA

As a concrete example, Listing 1 illustrates a fragment of the

service worker containing the caching mechanism of one of the

PWAs used in this study (slate.com). The listing uses Workbox,

a collection of JavaScript libraries for PWAs provided by Google2.

Firstly, all necessary static resources to be cached are defined in

an array and stored in a precaching data structure (lines 2-7). Pre-

caching consists in the process of adding files to the cache of the

browser when the service worker loads the first time. It is impor-

tant to note that cacheable resources can be of any type, including

for example CSS stylesheets, JavaScript files, images. Then, the

“network first” strategy is initialized in order to allow cacheable

resources to come from the network whenever possible, but also to

fallback to their cached version if the network fails (lines 8-18); here

the developers specified also that the maximum number of entries

in the cache is 10 (line 12) and that every server response with

status code 200 is cacheable. Finally, the service worker defines and

registers a handler for navigation events in the PWAs such that a

static offline.html page is shown to the user in case their mobile

device is currently offline (lines 21-26).

3 EXPERIMENT DESIGN

3.1 Goal and Research Questions

Intuitively, the goal of the experiment is to evaluate the impact

caching has on both the energy consumption and the performance

2https://developers.google.com/web/tools/workbox

110

of PWAs. More specifically, we will investigate how having an

empty or already-populated cache will impact the energy consump-

tion and performance of a PWA. Table 1 shows a more formal

definition of the goal using the Goal-Question-Metric technique

[4, 6].
Table 1: Goal definition

Analyze Cache status

For the purpose of Evaluating its impact on

With respect to Energy consumption and perfor-

mance

From the point of view of Developers and researchers

In the context of Real-world PWAs

Combination

Analyze the cache status for the purpose of evaluating its

impact on the energy efficiency and performance from the

point of view of developers and researchers in the context of

real-world PWAs

The goal described above is refined into the following two re-

search questions.

[RQ1]: How does the cache status impact the energy consumption

of progressive web apps? This research question is asked to assess

and evaluate the impact of the status of the browser’s cache on the

energy consumption of PWAs.

[RQ2]: How does the cache status impact the performance of pro-

gressive web apps? The purpose of this research question is to assess

and evaluate the impact of empty and populated cache on the per-

formance of progressive web applications.

Answering these research questions will help developers and

researchers to better understand caching and its impact in PWAs,

and utilize that knowledge to identify and repair energy hotspots

in their apps more effectively in the future.

3.2 Subjects Selection

In order to make our experiment representative of real develop-

ment practices, we decided to use real-world PWAs developed by

third-party developers as subjects. To this aim, we consider three

different collections of third-party PWAs as starting point of our sub-

jects selection phase, namely: PWA Rocks3, Awesome PWA4, and

a recently published on-line article on a technical blog5. The con-

sidered collections are well-known in the web community, actively

maintained, and several independent members of the community

are contributing to them. We mined all PWAs mentioned in the

three collections and combined them into a single source of data

(while removing duplicates). This resulted in a collection of 100

unique PWAs, which could potentially be used as subjects for our

experiment. Then, we locally downloaded all the frontend-related

software artifacts of each PWA, i.e., HTML, CSS, and JS code, but

also images and other static resources. This step has been done for

all 100 PWAs and it has been performed via a third-party Google

Chrome extension6.

3https://pwa.rocks/
4https://github.com/hemanth/awesome-pwa
5https://www.tigren.com/examples-progressive-web-apps-pwa
6https://github.com/up209d/ResourcesSaverExt

We perform a further selection process with the aim of identi-

fying a set of PWAs which are representative of the population of

real-world PWAs (e.g., discarding toy examples, PWAs with only

a login screen, videogames). Inspired by the systematic literature

review methodology [28], we first defined a priori a set of inclusion

and exclusion criteria, then we manually analyzed each potentially

relevant PWA and selected it according to the selection criteria. A

PWA was selected if it satisfied all inclusion criteria and none of

the exclusion criteria. Table 2 shows the selection criteria used in

this study.

Table 2: Subjects inclusion and exclusion criteria

Inclusion criteria

I1 The PWA is data-driven (the most recurrent application

scenario for PWAs [20]), i.e., it shows data depending on the

interaction events of the end user, where data is typically

provided by back-end services [12]

I2 The PWA shows dynamic data at load time (e.g., no landing

pages)

I3 The locally downloaded frontend of the PWA loads properly

on a mobile device (i.e., no missing images, no broken links,

etc.)

Exclusion criteria

E1 The PWA is admittedly experimental or in an alpha/beta

stage

E2 The PWA is a videogame (videogames have a totally differ-

ent development model of standard data-driven PWAs)

E3 The PWA shows only a login screen at startup time

Table 3 reports the selected PWAs, together with their URL and

category. The subjects of this study are heterogeneous in terms

of size and category, making us reasonably confident about their

representativeness of the targeted population.

Table 3: Subjects of this study

Progressive Web App Category

petlove.com.br Shopping

m.alibaba.com Shopping

nylon.com Magazine

zumata.com Business

slate.com News

smashingmagazine.com Magazine

edgy.app News

soundslice.com Entertainment

nrw-tourismus.de Entertainment

3.3 Experimental Variables

For answering the defined research questions in Section 3.1, we

consider the cache status as our independent variable, with two

treatments: empty cache and populated cache. At every experiment

run, the empty cache treatment is enforced by completely cleaning

the Firefox mobile app running on the mobile device and then

loading the PWA, whereas the populated cache treatment is enforced

111

by launching the PWA twice within the same run while measuring

the dependent variables only during the second launch.

The dependent variables of the experiment are two (one for each

research question):

• Energy consumption: measured in Joules (J), it represents

the amount of energy consumed by theMozilla Firefox browser

running on the mobile device for fully loading the PWA (see

below);

• Page load time: measured in milliseconds (ms), it represent

the amount of time between the initial HTTP GET request

issued from the Mozilla Firefox browser running on the mo-

bile device and the moment in which the browser raises the

load7 event.

3.4 Experimental Hypotheses and Design

We have formulated the following hypotheses in order to answer

the research questions of our study.

Given that μempty is the average energy consumption of PWAs

launchedwith an empty cache and μpopulated is the average energy
consumption of PWAs launched with a populated cache, then the

null and alternate hypotheses for RQ1 are defined as:

He
0 : μempty = μpopulated

He
1 : μempty � μpopulated

Similarly, given that ρempty is the average page load time of

PWAs launched with an empty cache and ρpopulated is the average
page load time of PWAs launched with a populated cache, then the

null and alternate hypotheses for RQ2 are defined as:

H
p
0 : ρempty = ρpopulated

H
p
1 : ρempty � ρpopulated

Based on the subjects, variables, and hypothesis of our experi-

ment, we designed our experiment as a balanced 1 factor - 2 treat-

ments experiment with a crossover design [28], i.e., each PWA re-

ceives both the empty cache and the populated cache treatments

across experimental runs. In order to take into account the intrinsic

variability of energy measurement in mobile devices [15], each

trial of our experiment has a repeated measures design, where the

measures of both energy consumption and page load time are col-

lected 20 times for each subject-treatment combination. Finally,

the measurements executions are randomized in order to take into

account possible contextual variations within the measurement

infrastructure (see Section 4).

3.5 Data Analysis

The data obtained from the experiment runs is analyzed quanti-

tatively. Firstly, for each dependent variable we will investigate

on the normality of its distribution by (i) visually inspecting the

distribution of the obtained measurements, (ii) building a Q-Q plot

against the theoretical normal distribution and visually inspecting

it, and (iii) applying the ShapiroWilk test, where the null hypothesis

is that the data comes from a normal distribution.

Then, if the data will be normally distributed we will apply the

paired t-test statistical test to test the statistical hypothesis related

to each research question. Moreover, in case the obtained data is

7https://developer.mozilla.org/en-US/docs/Web/API/Window/load_event

not normally distributed, as suggested in [27], we will transform

measurement data in order to explore the possibility of having a

normal distribution, which can potentially lead to higher statistical

power. If also the transformed data will not follow a normal distri-

bution, then the Wilcoxon signed-rank non-parametric test will be

used since it does not make any assumptions about the data being

analyzed. All statistical tests will be performed with α = 0.05 as
significance level.

Finally, in order to statistically assess themagnitude of the impact

of caching, we apply the Cliff’s Delta statistical test to both the

energy consumption and the page load time [8]. The Cliff Delta is a

non-parametric effect size for ordinal variables and it does make any

assumptions about the distributions being compared. The values of

the obtained Cliff Delta measures are interpreted according to the

guidelines proposed by [14].

3.6 Study Replicability

In order to foster independent verification and replication of this ex-

periment, a full replication package is publicly available on GitHub8.

The replication package contains (i) the full list of potentially usable

subjects (before our application of inclusion/exclusion criteria), (ii)

the Python scripts for locally downloading the frontends of the

potential subjects, (ii) the raw data containing all the measures

collected during the execution of the experiment, (iii) the R scripts

for analysing the obtained data, and (iv) a guide containing the

steps for replicating the experiment.

4 EXPERIMENT EXECUTION

We developed a dedicated tool chain for automating several steps of

the execution of the experiment. In the following we describe our

tool chain, together with third-party libraries and tools we used to

achieve the goal of reliably measuring the energy consumption and

page load time of the 9 PWAs described in Section 3.2. Specifically,

for orchestrating the execution of all the runs of the experiment

we make use of Android Runner [24]. Android Runner is a Python

framework for automatically executing experiments involving both

native and web application running on Android-based devices. In

Android Runner experiments are defined in a descriptive manner as

a JSONfile, and then the full execution of the experiment ismanaged

by the tool via a combination of Python scripts and Android Debug

Bridge (ADB9) commands.

Table 4: Technical characteristics of the mobile device

Feature Specifications

OS Android 9.0 (Pie)

Chipset Qualcomm SDM845 Snapdragon 845 (10 nm)

CPU Octa-core (4x2.5 GHz & 4x1.6 GHz Kryo 385)

GPU Adreno 630

Memory 4GB

Display 1080x2160 pixels, 5.5" POLED capacitive touch-

screen

8https://github.com/S2-group/mobilesoft-2020-caching-pwa-replication-package
9https://developer.android.com/studio/command-line/adb

112

In our experiment, Android Runner is executed on a laptop with

Ubuntu 18.04.1 LTS and 4GB of memory. For this experiment we

use a real mobile device with the technical characteristics listed in

Table 4. PWAs are hosted on the laptop, served over a Wifi network,

and executed within an instance of the Mozilla Firefox browser

(version 68.1.1). For this experiment we use a real mobile device

with the technical characteristics listed in Table 4.

Both the laptop and the mobile device run under the same WiFi

network with a speed of 100 Mbps. To ensure that the WiFi condi-

tions do not alter the results of the experiment, the mobile device

and the laptop are the only devices connected to the WiFi network.

Further, we take special care in keeping the execution environment

as clean as possible, specifically: the mobile device is loaded with a

clean installation of the Android OS, it has been configured so to do

not perform any OS updates, Google services have been disabled,

all third-party apps have been uninstalled, and push notifications

have been disabled.

With the laptop connected to mobile device, each run of the ex-

periment is executed by automatically launching each PWA in the

Firefox app running on the device, while its energy consumption

and page load time are measured. To measure the energy consump-

tion of the PWAs we use the dumpsys10 tool; it is maintained by

Google and it is generally used for programmatically providing

information about the system services running on an Android de-

vice. When running dumpsys with the batterystats option, it

generates data about battery usage on a device, such as the power

use per app and system component, the history of battery-related

events, etc. The page load time metric is obtained by collecting the

timestamp of the beginning of the launch of each PWA and the

timestamp of the full load event of the PWA. The launch timestamp

is collected by the orchestration tool at the beginning of every run

of the experiment, whereas the page load timestamp is obtained by

injecting a snippet of JavaScript code into the index.html file of

each PWA which listens to the load event triggered by the PWA

and sends it back to the orchestration tool via ADB.

In order to take into account the intrinsic variability of energy

and page load time measurements, we take the following precau-

tions: (i) the order of execution of the experiment runs is random-

ized, (ii) the measurement of each PWA is repeated 20 times, (iii)

between each run the mobile device remains idle for 60 seconds so

to take into account tail energy usage, i.e., the phenomenon where

certain hardware components of mobile devices are optimistically

kept active by the OS to avoid startup energy costs [17], and (iv)

depending on the specific treatment to be considered, the Firefox

app is cleared before each run so to reset its cache and persisted

data.

5 RESULTS

This section presents the results of our empirical experiment for

each research question.

5.1 Impact on Energy Consumption (RQ1)

The descriptive statistics of the collected energy measures across

all subjects and treatments are reported in Table 5. The total en-

ergy consumed to load a PWA is between 1.719 joules and 26.613

10https://developer.android.com/studio/command-line/dumpsys

Table 5: Descriptive statistics of the collected energy mea-

sures

Energy (J)

Minimum 1.719

1st Quantile 4.094

Median 5.094

Mean 5.124

3rd Quantile 6.154

Maximum 26.613

Standard deviation 1.761

joules. A standard deviation of 1.761 shows that the collected en-

ergy measures are quite concentrated around the mean, which has

a value of 5.124 for our dataset. Also, the low standard deviation is

an indication of the reliability of our measurement infrastructure

which indeed presents very few outliers.

Figure 1: Histogram and Q-Q-plot of energy consumption

measures

Figure 1 illustrates a Q-Q-plot and histogram depicting the en-

ergy consumption of PWAs with either an empty or populated

cache. The histogram in Figure 1 depicts a bell-curve hinting on

normal distribution of the data. However, an outlier with energy

consumption with the value of 26.6 is present. The outlier value of

26.6 comes from the petlove.com.br subject. The skewness reports a

positive value of 4.908, thereby implying that the data distribution

is skewed to the right. The Q-Q-plot in the same figure for energy

consumption depicts the extreme outlier as well. In order to avoid

113

Figure 2: Log-transformed energy consumption measures

bias, we decided to do not remove the mentioned outlier. Moreover,

we performed the Shapiro-Wilk test for normality and the outcome

was a p-value of 3.212e − 14 < α , meaning that the null hypothesis
H0 that the data comes from a normal distribution was rejected.
We performed a number of transformations to the obtained

data in order to check if we could obtain a normally distributed

dataset, and thus being able to apply more powerful statistical tests.

In Figure 2 we show the results of a log transformation of the

energy consumption measures. However, also the log-transformed

data does not follow a normal distribution (the details about the

performed tests are available in the replication package).

Since the energy consumption measures are not following a nor-

mal distribution, we use the Wilcoxon signed-rank non-parametric

test to determine if there is a statistically significant difference

between the energy consumption of the PWAs across the two treat-

ments of the cache status factor (i.e., empty and populated cache).

The test yields ap-value of 0.489, thereby, we are unable to reject the
null He

0 hypothesis. This means that we are not able to claim that

PWAs with either an empty or populated cache consume different

amounts of energy on our mobile device.

5.2 Impact on Performance (RQ2)

The descriptive statistics in Table 6 are about the page load time

of all the considered PWAs, either with empty or populated cache.

The page load time across all PWAs varies from 0.089 seconds to

a maximum of 5.241 seconds. The highest value is 5.241 and it

comes from the nrw-tourismus.de subject. It is interesting to note

that the energy consumption outlier (26.6) belongs to a different

PWA (petlove.com.br). In Table 6 we can also note a low standard

deviation (0.610), again indicating a high tendency of the collected

page load times towards their mean value (0.6758).

Table 6: Descriptive statistics of the collected page load times

Page load time (s)

Minimum 0.089

1st Quantile 0.351

Median 0.547

Mean 0.676

3rd Quantile 0.726

Maximum 5.241

Standard deviation 0.610

Figure 3 illustrates a Q-Q-plot and histogram depicting the page

load time of all PWAs for both an empty and populated cache. The

skewness of the page load times reports a positive value of 2.810475,

which can be seen also in the histogram in Figure 3, with the data

distribution skewed to the right. In the same figure, the Q-Q-plot for

the page load times also shows that the data is skewed to the right,

implying that the data may not be normally distributed. Similarly

to what we did for energy consumption measures, we apply the

Shapiro-Wilk test for normality to the collected page load times.

The obtained p-value is 1.404e − 07 < α , allowing us to reject the
null hypothesis that the data follows a normal distribution.

Figure 3: Histogram and Q-Q-plot of PWA page load times

114

Figure 4 illustrates the log transformation of the PWA page load

times. It can be observed that the skewness is much lower in the

histogram of the log-transformed data. However, the Q-Q plot still

tends to show not normally distributed data and after applying

again the Shapiro-Wilk test, we obtain a p-value 1.404e − 07 < α ,
making us reasonably confident that the data collected for the page

load times of our PWAs does not follow a normal distribution.

Figure 4: Log-transformed page load times

Since also the distribution of the page load times is not normal,

we again use the Wilcoxon signed-rank non-parametric test to

determine if there is a statistically significant difference between

the page load times of PWAs with either an empty or populated

cache. Thep-value reported by the test is 2.2e−16 < α . Thus, we are

able to reject theH
p
0 null hypothesis, and claim that the status of the

browser cache has an impact on the performance of PWAs. So far,

we are able to prove that caching plays a role on the performance

of a PWA in terms of page load time; however, in order to find out

how much is such an impact, now we compute the effect size of the

phenomenon we just discovered. To do so, we apply the Cliff’s delta

effect size measure to the data related to the page load times of the

PWAs. The obtained Cliff’s delta effect size measure is −0.419, thus

revealing a medium effect size (0.33 ≤ |d | ≤ 0.47) in favor of the
populated cache treatment. The obtained result provide objective

evidence about the fact that loading a PWA with a populated cache

in the browser leads to faster load times, with a medium effect on

them.

Figure 5: Density of page load times with empty and popu-

lated cache

To further support and look deeper into the results obtained

with the Cliff’s delta measure, in Figure 5 we show the density plot

of the page load times with empty and populated cache. We can

visually confirm that the difference between the page load times

under the two different treatments (empty cache and populated

cache) is existing and that PWAs loaded with an empty cache tend

to load slower than PWAs loaded with an already populated cache.

6 DISCUSSION

The results obtained from our experiment are very different if

we consider energy consumption and page load times separately.

Specifically, energy consumption does not significantly differ when

loading a PWA with either an empty or a populated browser cache,

with an average energy consumption of 5.124 Joules (see Section

5.1). The insight that we can get from this result is that the energy

consumed for the additional network requests required by a PWA

with an empty cache is compensated by the (mostly I/O) operations

performed by the browser and the PWA for checking cache hits

and retrieving the previously cached elements. Another possible

reason may be that the involved physical components may not

consume energy proportional to time. This finding is even more

surprising (and should raise a warning to both browser vendors and

developers) if we consider that page load time is statistically lower

when loading PWAs with an already-populated browser cache,

with a medium effect with respect to an empty browser cache (see

Section 5.2). Indeed, if we recall that enerдy = power x time , in
principles andwith comparable conditions, having longer execution

times would lead to higher energy consumption; this result stresses

the fact that the operations performed by the browser and the

PWAs for managing their cache are highly demanding in terms

of power. Browser vendors like Mozilla can minimize the energy

consumption of their products by further investigating on and

optimizing the amount of power needed for managing the caching

mechanisms operated by their implementation of the serviceworker

W3C standard.

In order to better understand and provide additional insights

about the previously discussed results, we analysed the energy

consumption and page load time of each single PWA across both

115

Figure 6: Energy consumption and page load time for each PWA

the empty cache and populated cache treatments. Figures 6(a) and

6(b) show the obtained results. Despite some sporadic outlier, both

figures show that the results of each PWA are predominantly in

line with the global results obtained by looking at all PWAs alto-

gether. Two notable exceptions are about the page load time of the

m.alibaba.com and zumata.com subjects, whose page load times are

considerably longer when they are launched with an empty cache.

As a first indication, we checked the overall size of each of the 9 sub-

jects, but both m.alibaba.com (5.2Mb) and zumata.com (2.2Mb) are

in line with the size of all the other subjects (average=4.14Mb). We

speculate that the exceptionality of m.alibaba.com and zumata.com

is related to how cacheable resources are managed in their first load,

but further detailed analysis should be dedicated to get solid evi-

dence about how and why those two cases have larger differences.

For example, the service worker of m.alibaba.com has 8410 lines of

JavaScript code (after beautification); this is exceptional even for

service workers used in production [20] and it may indicate that

the caching mechanism of m.alibaba.com is particularly advanced,

potentially resulting in a more effective caching strategy.

7 THREATS TO VALIDITY

We have analyzed 4 different kinds of threats to validity [29] for

the purpose of evaluating the soundness of our results.

7.1 Internal Validity

Threats to internal validity are strongly related to the experiment

design and execution.

7.1.1 History. We considered two options on how to execute the

experiment and collect the results. One of the options was to collect

the results in an incremental manner. A total of 20 repetitions

were needed to be performed, with each repetition pertaining to

one of the 18 trials per subject (2 runs per PWA). We considered

to perform a subset of the runs of the experiment per day, with

the total time span for experiment execution of several days. The

second option was to execute all 20 repetitions for all trials and

collect the results in one shot. We have opted for the second option,

by ensuring that all results were produced under the same setting

and conditions. We have written a script to automate the repetitions

20 times for each trial, so that no manual work needed to be done.

Before the actual execution of all experiments, we produced trial

runs to ensure that the testing environment was reliable and no

interruptions occurred during the execution phase. The motivation

behind going for the second option was to assure that a reliable

set of results was produced for each experiment under the same

conditions and thereby, mitigate this threat.

7.1.2 Maturation. In order to mitigate this threat, we have set the

time interval in Android runner in between the runs to 60 seconds.

Two runs were performed for each PWA - first run with an empty

cache, and second run with a populated cache. We have cleared

the cache before each subsequent PWA, to ensure that the cache

was populated only with the contents of the current PWA being

launched.

7.1.3 Selection. Two iterations were performed in selecting the

subjects before finalizing the chosen subjects for the experiment.

The first iteration was performed in a random order; after collect-

ing 100 PWAs, 10 PWAs were selected from the list in a random

manner. However, it was evident that some of the PWAs did not

load properly on the mobile device via the localhost server. The

second iteration was performed manually, in order to ensure that

all selected PWAs loaded properly on the mobile device and there

were no complications. The final set of subjects consisted of 9 cho-

sen PWAs. Selection might play a role in this experiment since the

selection process of the subjects was done manually and the se-

lected group could possibly not represent the population; however,

in order to mitigate this threat, we have performed a rigorous selec-

tion procedure during the PWAs selection process (see Section 3.2),

116

therefore discarding non-data-driven PWAs, toy examples, PWAs

behind login walls, etc.

7.1.4 Reliability ofmeasures. Factors such as screen brightness,

network connectivity, and other kinds of interruptions can affect

the reliability of the measures. To mitigate this threat, we have set

the brightness of the screen of the mobile device to a minimum

value, performed all experiment runs in one round, and placed the

mobile device near the WiFi router so to ensure that the network

connectivity was constant for each run of the experiment.

7.2 External Validity

Threats to external validity are conditions that limit the ability to

generalize results.

7.2.1 Interaction of setting and treatment. This threat corre-

sponds to using unrealistic environment settings and resources. To

mitigate this threat, we used a relatively modern mobile device and

connected it via WiFi - a usual setting when users browse PWAs.

We used the Mozilla Firefox browser, as it was not possible to install

a different version of Google Chrome on our mobile device since it

was branded by Google and the installed version of Chrome on the

device was not suitable for the experiment.

7.2.2 Interaction of history and treatment. This threat deals

with the fact that the experiment was executed on a special day

at a special time, which could affect the results. To mitigate this

threat, the experiment was executed on a weekday during working

hours, to simulate a more realistic testing environment.

7.3 Construct Validity

A threat to the construct validity concerns the relationship between

the theory and observations, and generalizing the observations.

7.3.1 Inadequate preoperational explication of constructs.

We defined our constructs a priori, prior to the experiment execu-

tion, thereby, mitigating this threat. We used the GQM approach to

define our goal, which then guided the definition of the research

questions of this study. The hypotheses, dependent and indepen-

dent variables, and treatments were all defined during the planning

phase of the experiment.

7.3.2 Mono-operation bias. Even though we had one factor -

cache, which was the independent variable, to mitigate this threat

and to provide a full picture of the theory, we performed a total of

20 repetitions per trial, resulting in a total of 360 independent runs

within the whole execution of the experiment.

7.3.3 Measurement of page load only. In this study we inves-

tigated only the loading of PWAs, i.e., we collected measures within

the time span ranging from the first HTTP GET request to the tar-

geted subject and its full load (proxied by the triggering of the load

event). The rationale for this decision is to have a fully control-

lable environment with objectively-measurable metrics. However,

if a subject is using a network-first caching strategy, it is possible

that the impact of caching could reveal itself only when the user

is accessing some specific functionalities, potentially leading to

completely different results. As a future work, we are planning to

expand this study in order to execute realistic usage scenarios for

each subject in each run of the experiment, instead of focussing on

page load only.

7.4 Conclusion Validity

Threats to conclusion validity deal with issues concerning the ability

to determine the correct conclusion concerning the relationship

between the treatment and the results of an experiment.

7.4.1 Low statistical power. In order to reduce the impact of

this threat and mitigate it, we ensured that we had enough data

to work with and make correct conclusions. We had a total of

9 PWAs, each undergoing 2 treatments. A total of 20 runs were

performed for each trial with a total of 360 runs. Naturally, to

achieve even more accurate results in future replications of the

experiment, the number of subjects can be increased by redoing

the subjects selection phase of our study, while being able to fully

reuse our measurement infrastructure.

7.4.2 Violated assumptions of statistical tests. To mitigate

this threat and ensure that the appropriate statistical tests were

being used, we firstly checked for the normality of our data by

using a combination of various techniques. Then, if the data was

normally distributed, and the rest of our assumptions proven to

be correct, a t-test would have been applied, otherwise we could

migrate to the Wilcoxon signed-rank test.

7.4.3 Fishing and error rate. This threat does not apply to our

empirical experiment. We do not repeatedly perform the tests for

significant relationships. The inclusion of outliers and subsequent

visualizations prove the absence of fishing for certain results.

8 RELATEDWORK

Progressive Web Apps have been investigated only recently, with

studies predominantly assessing how they can be used as a more

technically sustainable alternative with respect to standard web

apps and native mobile apps, specially in terms of multi-platform

support, improved user experience, easier operation, better main-

tainance, etc. [5, 18, 19]. Our research is completely different with

respect to the existing literature since we aim at providing empiri-

cal evidence about selected technical characteristics of PWAs (e.g.,

caching, energy consumption, performance), so to help developers

in taking better informed technical decisions.

To the best of our knowledge, the paper by Malavolta et al. is

the only empirical study investigating PWAs and service workers

[20]. There, the authors were focussing exclusively on the presence

of service workers; specifically, they performed an empirical study

targeting the energy efficiency of 7 real PWAs, while having 3

empirical factors: (i) the presence/absence of a service worker in

the PWAs, (ii) the network conditions (i.e., 2G vs WiFi), and (iii)

the type of mobile device on which the PWAs were running (i.e.,

low-end vs high-end smartphones). Similarly to our experiment,

their experiment did not find enough statistical evidence about

the impact that service workers may have on energy consumption

(regardless of the network conditions). By assessing the impact

of the caching status within service workers, our study can be

considered as a step further with respect to the research direction

initiated by Malavolta et al.

117

More in general, Pinto and Castor have investigated the main

concerns related to the energy efficiency of software applications,

such as lack of knowledge or resources to prevent developers from

accurately identifying, refactoring, and fixing the high energy con-

sumption hotspots in software applications [22]. From an engineer-

ing perspective, small inefficiencies can add up to affect certain

components such as battery life, responsiveness, performance of

the system and overall application success. Most of the research

done so far on correlations between energy efficiency and intensive

computational tasks has been heavily concentrated on the lower

levels of hardware and software stacks of the application [22]. We

recently investigated on the correlation between energy consump-

tion and the performance metrics in the context of mobile web apps

[7]. That study is different from ours because (i) it has been de-

signed specifically for investigating the correlation between energy

and performance, whereas this study is treating them as separate

factors, (ii) it considers a different metrics for the performance de-

pendent variable (i.e., the aggregated performance score produced

by Google Lighthouse vs page load time), and (iii) its subjects are

generic mobile web apps, whereas this study focusses exclusively

on PWAs.

Furthermore, a study conducted on performance based practices

that impact the energy efficiency of mobile applications concluded

that distinct features of a mobile device, such as battery life, im-

prove significantly with the inclusion of sustainable applications.

This emphasizes how important energy efficiency is in software

applications [9].

Research on how caching improves web app performance had

been done in other works, e.g., [25], where the authors provided

evidence about the fact that the use of caching produced several

benefits such as reduced latency. Although effective web caching is

not a silver bullet, setting up suitable caching policies can provide

measurable gains to PWAs with minimal work in the future [16].

However, we were not able to identify studies that focused on the

impact the status of the cache may have on the performance of

PWAs (in terms of page load time). We hope that our study can

inform researchers and web developers on the impact of caching

on energy consumption and performance of PWAs, and we hope

our results will help developers in better understanding how to

improve the caching strategies of their future PWAs.

9 CONCLUSIONS

In this paper we presented the design, conduction, and results of an

empirical study assessing the impact of the caching status on the

energy consumption and page load time in the context of real-world

PWAs. Our results show that there is no evidence that PWAs with

empty or populated caches significantly consume different amounts

of energy. The results of the experiments also show that overall

PWAs load faster with a populated cache. This study provides to

researchers and developers empirical evidence about the (medium)

gain that PWAs with cached resources can have in terms of page

load time.

A possible extension of this experiment is to investigate this

phenomenon in the wild by inspecting and analyzing the source

code of several thousands of real-world PWAs. The goal here is to

better understand (i) how developers implement the key enabling

features of PWAs such as push notifications, network caching, and

background processing and (ii) how they relate with the overall

quality of their code, e.g., in terms of performance, energy con-

sumption, maintainability, security. Moreover, we are planning to

carry out other follow-up studies focussing on the impact of (i)

different caching strategies (e.g., network-first, cache-first, etc.), (ii)

different and more realistic network conditions - instead of Wifi

only, and (iii) the type and amount of I/O operations performed

behind the lines by the browser.

REFERENCES
[1] [n. d.]. How Web Caching Improves Internet Performance. https://www.

3pillarglobal.com/insights/how-web-caching-improves-internet-performance.
Accessed: September 10, 2019.

[2] [n. d.]. WHAT ARE PWAS? ARE THEY FASTER? ARE THEY A SEARCH RANK-
ING FACTOR? https://www.ezoic.com/what-are-pwas-faster-search-ranking/.
Accessed: September 18, 2019.

[3] ApacheBooster. [n. d.]. What is network caching and why do we need it?
. https://apachebooster.com/blog/what-is-network-caching-and-why-do-we-
need-it/. Accessed: September 20, 2019.

[4] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. 1994. The Goal
Question Metric Approach. In Encyclopedia of Software Engineering. Wiley.

[5] Andreas Biørn-Hansen, Tim A. Majchrzak, and Tor-Morten Grønli. 2017. Pro-
gressive Web Apps for the Unified Development of Mobile Applications. In
Web Information Systems and Technologies - 13th International Conference, WE-
BIST 2017, Porto, Portugal, April 25-27, 2017, Revised Selected Papers. 64–86.
https://doi.org/10.1007/978-3-319-93527-0_4

[6] Lionel C Briand, Christiane M Differding, and H Dieter Rombach. 1996. Practi-
cal guidelines for measurement-based process improvement. Software Process
Improvement and Practice 2, 4 (1996), 253–280.

[7] Kwame Chan Jong Chu, Tanjina IslamMiguel Morales Exposito, Sanjay Sheombar,
Christian Valladares, Olivier Philippot, Eoin Martino Grua, and Ivano Malavolta.
2020. Investigating the correlation between performance scores and energy
consumption of mobile web apps. In Proceedings of the International Conference
on Evaluation and Assessment on Software Engineering (EASE). ACM, to appear.

[8] Norman Cliff. 1993. Dominance statistics: Ordinal analyses to answer ordinal
questions. Psychological bulletin 114, 3 (1993), 494.

[9] Luis Cruz and Rui Abreu. 2017. Performance-based guidelines for energy efficient
mobile applications. In 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft). IEEE, 46–57.

[10] David Novicki. [n. d.]. PWA Asset Caching Strategies. https://codeburst.io/pwa-
asset-caching-strategies-8a20c31b2181. Accessed: September 27, 2019.

[11] Jeffrey Erman, Alexandre Gerber, Mohammad Hajiaghayi, Dan Pei, Subhabrata
Sen, and Oliver Spatscheck. 2011. To cache or not to cache: The 3G case. IEEE
Internet Computing 15, 2 (2011), 27–34. Accessed: September 20, 2019.

[12] Mirco Franzago, Henry Muccini, and Ivano Malavolta. 2014. Towards a col-
laborative framework for the design and development of data-intensive mobile
applications. In Proceedings of the 1st International Conference on Mobile Software
Engineering and Systems. 58–61.

[13] Mihail Gaberov. 2019. How to optimize your JavaScript app by using Service
Workers. https://www.freecodecamp.org/news/optimize-your-javascript-app-
by-using-service-workers/. Accessed: September 10, 2019.

[14] Robert J Grissom and John J Kim. 2005. Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers.

[15] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan. 2013. Estimating
mobile application energy consumption using program analysis. In 2013 35th
international conference on software engineering (ICSE). IEEE, 92–101.

[16] Justin Ellingwood. [n. d.]. Web Caching Basics: Terminology, HTTP Headers, and
Caching Strategies. https://www.digitalocean.com/community/tutorials/web-
caching-basics-terminology-http-headers-and-caching-strategies. Accessed:
September 27, 2019.

[17] Ding Li, Shuai Hao,William GJ Halfond, and Ramesh Govindan. 2013. Calculating
source line level energy information for android applications. In Proceedings of
the 2013 International Symposium on Software Testing and Analysis. ACM, 78–89.

[18] Tim A. Majchrzak, Andreas Biørn-Hansen, and Tor-Morten Grønli. 2018. Progres-
sive Web Apps: the Definite Approach to Cross-Platform Development?. In 51st
Hawaii International Conference on System Sciences, HICSS 2018, Hilton Waikoloa
Village, Hawaii, USA, January 3-6, 2018. 1–10.

[19] Ivano Malavolta. 2016. Beyond native apps: web technologies to the res-
cue!(keynote). In Proceedings of the 1st International Workshop on Mobile De-
velopment. ACM, 1–2.

[20] Ivano Malavolta, Giuseppe Procaccianti, Paul Noorland, and Petar Vukmirovic.
2017. Assessing the impact of service workers on the energy efficiency of progres-
sive web apps. In 2017 IEEE/ACM 4th International Conference on Mobile Software

118

Engineering and Systems (MOBILESoft). IEEE, 35–45.
[21] Maria Gregori, Jesús Gómez-Vilardebó, Javier Matamoros, Deniz Gündüz. [n. d.].

Wireless Content Caching for Small Cell and D2D Networks. https://arxiv.org/
abs/1603.04341. Accessed: October 8, 2019.

[22] Gustavo Pinto and Fernando Castor. 2017. Energy efficiency: A new concern for
application software developers. Commun. ACM 60 (11 2017), 68–75.

[23] Feng Qian, Kee Shen Quah, Junxian Huang, Jeffrey Erman, Alexandre Gerber,
Zhuoqing Mao, Subhabrata Sen, and Oliver Spatscheck. 2012. Web caching on
smartphones: ideal vs. reality. In Proceedings of the 10th international conference
on Mobile systems, applications, and services. ACM, 127–140. Accessed: September
20, 2019.

[24] S2-Group. 2020. Android Runner. GitHub Repository. https://github.com/S2-
group/android-runner

[25] Swaminathan Sivasubramanian, Guillaume Pierre, Maarten van Steen, and Gus-
tavo Alonso. 2007. Analysis of Caching and Replication Strategies for Web

Applications. Internet Computing, IEEE 11 (02 2007), 60–66. https://doi.org/10.
1109/MIC.2007.3

[26] Sayali Sunil Tandel and Abhishek Jamadar. 2018. Impact of Progressive Web
Apps on Web App Development. International Journal of Innovative Research in
Science, Engineering and Technology 07, 09 (2018), 9439–9444.

[27] Sira Vegas. 2018. Analyzing software engineering experiments: Everything
you always wanted to know but were afraid to ask. In Proceedings of the 40th
International Conference on Software Engineering: Companion Proceeedings. 534–
535.

[28] C Wohlin, P Runeson, M Höst, M.C Ohlsson, B Regnell, and A Wesslen. 2012.
Experimentation in Software Engineering. (2012), 89–101. Accessed: September
22, 2019.

[29] C Wohlin, P Runeson, M Höst, M.C Ohlsson, B Regnell, and A Wesslen. 2012.
Experimentation in Software Engineering. (2012), 102–116. Accessed: October
22, 2019.

119

