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Evolving Robot Software and Hardware

A.E. Eiben
a.e.eiben@vu.nl

Vrije Universiteit Amsterdam

Figure 1: The first robot family created by the Robot Baby Project at the Vrije Universiteit Amsterdam [15]. The parents are

the green and the blue robots on the right. The offspring, created through crossover and mutation, is the robot on the left.

ABSTRACT

This paper summarizes the keynote I gave on the SEAMS 2020

conference. Noting the power of natural evolution that makes living

systems extremely adaptive, I describe how artificial evolution can

be employed to solve design and optimization problems in software.

Thereafter, I discuss the Evolution of Things, that is, the possibility

of evolving physical artefacts and zoom in on a (r)evolutionary

way of creating ‘bodies’ and ‘brains’ of robots for engineering and

fundamental research.

CCS CONCEPTS

• Computer systems organization→ Embedded systems; Ro-
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1 EVOLUTIONARY ALGORITHMS

Evolution is arguably an excellent designer and optimiser. It has

driven the emergence of Life on Earth creating a vast diversity of

lifeforms adapted to all kinds of environmental conditions. The

‘engine’ behind evolution is the reproduction-selection cycle that

is analogous to the generate-and-test loop of search algorithms.

This has been noticed many decades ago [2, 22] and by the end of

the twentieth century evolutionary computing (EC) has become a

vibrant research area with many applications [8].

The fundamental insight behind EC is to link natural evolution

and search-based problem solving, perceive the problem context

as an environment, candidate solutions as individuals in this en-

vironment, and the quality of a candidate solution as its fitness

that determines its chances for survival and reproduction. Based

on this perspective, an evolutionary problem solving process can

be conducted by creating a population of candidate solutions and

consecutively updating this population by (randomized) selection

and reproduction such that the candidate solutions with a higher

fitness have a higher chance to survive and reproduce. The general

evolutionary loop is shown in Figure 2.

An important technical detail under the hood is another bio-

inspired ‘trick’: the distinction between the genotype and the phe-

notype of the individuals. The genotype is the code, the technical

analogy of DNA, while the phenotype is the real object in the

context of the problem to be solved, the technical analogy of the

organism encoded by the given piece of DNA. Crucially, the re-

production operators (crossover and mutation) are applied to the

genotypes, while the selection operators (parent selection and sur-

vivor selection) work on the phenotypes. A given optimisation
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Figure 2: General diagram of Evolutionary Algorithms.

problem naturally determines the phenotypes. For instance, for a

travelling salesman problem phenotypes are possible routes. How-

ever, the user can freely choose the genotypes to represent these.

For the travelling salesman problem, a route can be coded as a list

of city names or by an adjacency matrix. The choice of the geno-

types and the definition of the corresponding genotype-phenotype

mapping (a.k.a. representation) is one of the most important design

decisions when specifying an evolutionary algorithm [21].

Over the last decades, EAs have been developed under different

names including genetic algorithms, genetic programming, evolu-

tion strategies, and they have proven their power on hard problems

without analytical models, non-linear relations among variables

and complex objective functions with multiple local optima [8, 9].

2 THE EVOLUTION OF THINGS

Evolutionary computing mimics natural evolution, but there are

significant differences between them, cf. Table 1 in [9]. Perhaps

the most prominent difference is that evolutionary computing is,

well, . . . computing. That is, it takes place in a virtual space, whereas

natural evolution happens in the real world. The advantage of evo-

lutionary computing systems is that they are programmable, con-

figurable, and observable. Natural evolutionary systems are quite

the opposite. They are certainly real, but hardly programmable,

configurable, and observable. The combination of the two offering

the best of both worlds is the The Evolution of Things as introduced

in [7] and further discussed in [10] and [9], cf. Figure 3.

The key idea behind the Evolution of Things concept is to have a

programmable evolutionary system that works with physical arte-

facts. These artefacts can be passive, e.g., sunglasses or airplane

wings, or active, animate things, robots for short. Robots that are

able to reproduce and evolve in the real world hold great promises

for engineering –these will be discussed in the next section– as

well as for fundamental research. To this end, an evolving robot

system can be perceived as a hardware model of natural evolution

[19] and used as a research instrument to study evolutionary phe-

nomena. Fundamental questions that can be investigated include

the evolution of (embodied) intelligence, the interplay between

the body and the brain, and the impact of the environment on the

evolved organisms. Using real robots instead of simulations is in-

teresting, because this guarantees that the observed effects are real

and not just artefacts of the simulator. Research with robots also

Figure 3: Evolution of Things: the best of both worlds.

offers advantages with respect to living organisms, because robots

are easily observable (e.g., internal processes and communication

can be logged) and controllable which allows systematic studies

under strictly regulated conditions and many repetitions for solid

statistics.

3 EVOLUTIONARY ROBOTICS

Evolutionary Robotics (ER) is a research area that applies EAs to

design and optimize the bodies (morphology, hardware), the brains

(controller, software) or both for simulated or real autonomous

robots [4, 20, 23]. Using artificial evolution for robot design has a

strong rationale.

As natural evolution has produced successful life forms for

practically all possible environmental niches on Earth, it is

plausible that artificial evolution can produce specialised

robots for various environments and tasks.

Obviously, designing robots for structured environments with

known and predictable conditions can be done by classic engineer-

ing. However, complex unstructured environments with (partially)

unknown and possibly changing conditions represent a completely

different challenge. Think, for instance, of robots for environmental

monitoring in rain forests, exploration of ocean floors, or terraform-

ing on other planets. In such cases it is hard to determine the optimal

morphologies and the control systems driving them. For example,

should a robot that operates in the jungle have wheels, legs, or

both? What is the optimal arrangement of its sensors? Should that

robot be small to maneuver through narrow openings or should it

be big and heavy to trample down obstacles?

Evolutionary algorithms have been successful in solving various

design problems and obtaining unexpected, ‘original’ solutions that

surprised their users [1, 12, 17]. To illustrate their potential for

designing robots let us consider two motivational examples.

Example 1: Breeding Farm Recall the problem of designing

robots for inspecting forests. An evolutionary approach to this prob-

lem can be implemented on a ‘robot breeding farm’ that consists of a

mock-up forest environment and an evolutionary engine. Reproduc-

tion could be realized by a rapid prototyping facility that constructs
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Figure 4: Left: Generic system architecture for robot evolution conceptualized by the Triangle of Life, cf. [6]. Right: Illustra-

tion of an EvoSphere that stands for a tangible implementation of this framework [5]. An EvoSphere consists of three main

components that belong to the three edges of the triangle, plus a recycling facility and equipment for observation.

the robots (phenotypes) based on specs sheets (genotypes). Fitness

evaluations can be done by measuring the task performance of the

robots in the test environment and selection can be implemented

by using this notion of fitness. Additionally, the users can steer

and accelerate evolution by (de)selecting robots for reproduction

as they see fit, acting akin to farmers who breed animals. Robot

breeders can stop the evolutionary process after obtaining a good ro-

bot and produce several copies of it to be deployed in the real-world.

In the Breeding Farm example, and in most evolutionary com-

puting applications, evolution is (ab)used as an optimizer that is

halted when a satisfactory solution is found. Real evolution, how-

ever, is not about optimization, but about adaptation that never

stops. Including this feature in robot populations would imply that

they can adapt to previously unknown and/or changing conditions.

Example 2: Terraforming Imagine a mission for the coloniza-

tion of a moon or another planet. Using robots to explore the planet

and make it habitable is a straightforward option, but designing an

optimal morphology and control system in advance can be unfeasi-

ble. An evolutionary engine operating autonomously on the planet

can mitigate this problem. The first component of this system is

a (re)production facility that can make use of local resources and

construct a large variety of robots. The second one is a twofold

selection drive, such that robots become fit for the environment as

well as fit for purpose. Environmental selection (for viability) is for

free, as robots with a poor feature set will not be able to operate

adequately. Sexual selection, in turn, can be pre-programmed such

that robots have a ‘basic instinct’ to chose mating partners with a

high task performance (utility). The evolving robot population will

then become increasingly adapted to the given planet and adjust

their bodies and brains when the conditions change - something

that is essential in terraforming.

Note, that the case of terraforming is very different from the

breeding farm because the evolutionary system must operate for

extended periods of time without direct human oversight. The

evolutionary process should keep running such that the robots

can continually adapt their bodies and brains over consecutive

generations. In this respect the terraforming application is closer

to biological evolution, while a breeding farm is more like a usual

evolutionary design process.

These examples, although quite different, share an important

element: both describe a system of real robots, where the morpholo-

gies as well as the controllers undergo evolution. This is in stark

contrast with the current practice. Evolutionary Robotics today is

mainly concerned with evolving the controllers of simulated robots.

ER systems where morphologies and controllers of robots evolve

simultaneously are rare and –forced by technological limitations–

they only work in simulation. Occasionally, an evolved robot is

constructed in the real world, but the evolutionary process is sim-

ulated [18]. This practice inevitably runs into the reality gap [14],

that is, the phenomenon that a solution evolved in simulation will

only work well in simulation. Implementing the evolved solution

in the real world, on a physical robot, typically leads to a different

behaviour that is (much) worse than the simulated one.

4 HOW TO EVOLVE REAL ROBOTS

The 2012 position paper [7] outlined the promises and grand chal-

lenges of artificial evolutionary processes in materio, but it did not

provide implementation guidelines. These have been offered in

[6] that presented an framework for “evolving robots in real time

and real space”. A tangible implementation of this framework is

envisaged by the notion of an EvoSphere as discussed in [5].

This framework, called the Triangle of Life, is illustrated in Fig-

ure 4. It consists of three stages: morphogenesis, infancy, andmature

life, consequently, an EvoSphere consists of three main components:

the Robot Fabricator, the Training Facility, and the Arena. The Robot

Fabricator is where new robots are created. The Training Facility

hosts a learning environment for ‘infant’ robots so they can learn
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to control their –possibly unique– body to acquire basic skills (loco-

motion, object manipulation) and to perform more complex tasks. If

a robot achieves a satisfactory level of performance, it is declared a

fertile adult and enters the Arena which represents the world where

the robots must survive and perform user-defined tasks. Success-

ful robots can be selected for reproduction. The sexual selection

mechanism can be innate in the robots so they choose ‘mating

partners’ autonomously, or executed by an overseer, which can be

algorithmic, a human breeder, or a combination.

Because a robot is a combination of its body (morphology, hard-

ware) and its brain (controller, software), it is necessary that the

genotypes code for both the body and the brain. Crossover and

mutation act on the genotypes of the parents and produce a new

genotype, where the body coding segment is the combination of

the body coding segments of the parents. The body of the offspring

is then created by the Robot Fabricator. The evolution of robot

brains is partly similar, the offspring starts is life cycle with the

combination of the brain coding segments of the parents. However,

this inherited brain undergoes a learning process in the Training

Facility before the robot can enter the Arena.

Including a learning facility is not an arbitrary design choice,

it is meant to mitigate a general problem. Namely, while it can

be assumed that the parents had well-matching bodies and brains

(otherwise they had not been fit enough to be selected for mating),

in general it cannot be assumed that crossover preserves the good

match. Thus, we must cope with a potential mismatch between the

inherited body and the inherited brain of the offspring. This implies

that the evolution of brains is different from the evolution of bodies.

Bodies undergo ‘clean’ evolution, whereas the adaptation of brains

is driven by a combination of evolution and learning. Interestingly,

the learning method can be implemented by an EA (e.g., neuro-

evolution, genetic programming, evolution strategy). In this case,

we get a system with two evolutionary loops. The outer loop that

forms the Triangle of Life is evolving bodies and brains, while the

inner loop under the hood of the learning method is improving the

brain in the given body of a newborn robot.

5 CHALLENGES AHEAD

With the development of 3D-printing, rapid prototyping, and au-

tomated assembly the evolution of robots is becoming feasible, at

least in an academic setting [3, 13, 15, 24]. Additionally, researchers

have demonstrated how an organism evolved in simulation can be

incarnated by using ‘wetware’ instead of hardware [16]. Recently,

the first large scale research project, Autonomous Robot Evolution:

Cradle to Grave1 has been commenced [11]. The ARE project repre-

sents a big step towards real applications and it illuminates the most

critical challenges: 1) Automated construction of fully functional

robots; 2) Time and sample efficient learning of multiple skills and

tasks; 3) Reliable evaluation of task performance and fitness. Meet-

ing these challenges will help unlock the full potential of robot

evolution for engineering as well as for fundamental research. Over

the long term, this will lead to a new breed of machines that can

change their form and behaviour, not by error, but on purpose.

1https://www.york.ac.uk/robot-lab/are/

ACKNOWLEDGMENTS

I gratefully acknowledge the financial support of the Vrije Univer-

siteit Amsterdam and the EPSRC under theARE project: EP/R03561X,

EP/R035679, EP/R035733.

REFERENCES
[1] P.J. Bentley (Ed.). 1999. Evolutionary Design by Computers. Morgan Kaufmann.
[2] H.J. Bremermann, M. Rogson, and S. Salaff. 1966. Global Properties of Evolution

Processes. In Natural Automata and Useful Simulations, H.H. Pattee, E.A. Edlsack,
L. Fein, and A.B. Callahan (Eds.). Spartan Books, Washington DC, 3–41.

[3] Luzius Brodbeck, Simon Hauser, and Fumiya Iida. 2015. Morphological evolution
of physical robots through model-free phenotype development. PloS one 10, 6
(2015), e0128444.

[4] S. Doncieux, N. Bredeche, J.-B. Mouret, and A.E. Eiben. 2015. Evolutionary
robotics: what, why, and where to. Frontiers in Robotics and AI 2 (2015), 4.

[5] A.E. Eiben. 2015. EvoSphere: The World of Robot Evolution. In Proc. of TPNC
2015 (LNCS 9477), A.-H. Dediu, L. Magdalena, and C. Martín-Vide (Eds.). Springer,
3–19. https://doi.org/10.1007/978-3-319-26841-5_1

[6] A.E. Eiben, N. Bredeche, M. Hoogendoorn, J. Stradner, J Timmis, A.M. Tyrrell,
and A. Winfield. 2013. The Triangle of Life: Evolving robots in real-time and
real-space. In Proc. of ECAL 2013, P. Lio, O. Miglino, G. Nicosia, S. Nolfi, and
M. Pavone (Eds.). MIT Press, 1056–1063.

[7] A.E. Eiben, S. Kernbach, and E. Haasdijk. 2012. Embodied Artificial Evolution –
Artificial Evolutionary Systems in the 21st Century. Evolutionary Intelligence 5, 4
(2012), 261–272.

[8] A.E. Eiben and J.E. Smith. 2003. Introduction to Evolutionary Computing. Springer,
Berlin Heidelberg.

[9] A.E Eiben and J.E. Smith. 2015. From evolutionary computation to the evolution
of things. Nature 521, 7553 (2015), 476.

[10] A. E. Eiben. 2014. In Vivo Veritas: towards the Evolution of Things. In Proc. of
PPSN XIII (LNCS 8672), T. Bartz-Beielstein, J. Branke, B. Filipič, and J. Smith (Eds.).
Springer, 24–39.

[11] Matthew F Hale, Edgar Buchanan, Alan F Winfield, Jon Timmis, Emma Hart,
Agoston E Eiben, Mike Angus, Frank Veenstra, Wei Li, Robert Woolley, et al. 2019.
The ARE Robot Fabricator: How to (Re) produce Robots that Can Evolve in the
Real World. In Proc. of ALIFE 2019. MIT Press, 95–102.

[12] Gregory. S. Hornby, Jason D. Lohn, and Derek S. Linden. 2011. Computer-
Automated Evolution of an X-Band Antenna for NASA’s Space Technology 5
Mission. Evolutionary Computation 19, 1 (2011), 1–23.

[13] David Howard, Agoston E Eiben, Danielle Frances Kennedy, Jean-BaptisteMouret,
Philip Valencia, and Dave Winkler. 2019. Evolving embodied intelligence from
materials to machines. Nature Machine Intelligence 1, 1 (2019), 12–19.

[14] Nick Jakobi, Phil Husbands, and Inman Harvey. 1995. Noise and the reality
gap: The use of simulation in evolutionary robotics. In European Conference on
Artificial Life. Springer, 704–720.

[15] Milan Jelisavcic, Matteo De Carlo, Elte Hupkes, Panagiotis Eustratiadis, Jakub
Orlowski, Evert Haasdijk, Joshua E Auerbach, and Agoston E Eiben. 2017. Real-
world evolution of robot morphologies: A proof of concept. Artificial life 23, 2
(2017), 206–235.

[16] Sam Kriegman, Douglas Blackiston, Michael Levin, and Josh Bongard. 2020. A
scalable pipeline for designing reconfigurable organisms. Proceedings of the
National Academy of Sciences 117, 4 (2020), 1853–1859. https://doi.org/10.1073/
pnas.1910837117 arXiv:https://www.pnas.org/content/117/4/1853.full.pdf

[17] Joel Lehman, Jeff Clune, and Dusan Misevic. 2018. The Surprising Creativity of
Digital Evolution. In Proc. of ALIFE 2018. MIT Press, 55–56.

[18] Hod Lipson and Jordan B Pollack. 2000. Automatic design and manufacture of
robotic lifeforms. Nature 406, 6799 (2000), 974.

[19] John Long. 2012. Darwin’s Devices: What Evolving Robots Can Teach Us About the
History of Life and the Future of Technology. Basic Books.

[20] Stefano Nolfi and Dario Floreano. 2000. Evolutionary robotics: The biology, intelli-
gence, and technology of self-organizing machines. MIT press.

[21] Franz Rothlauf. 2006. Representations for genetic and evolutionary algorithms
(second ed.). Springer-Verlag.

[22] A.M. Turing. 1948. Intelligent Machines. In Mechanical Intelligence: Collected
Works of A.M. Turing, D.C. Ince (Ed.). North-Holland, Amsterdam, 107–128.

[23] Patricia A. Vargas, Ezequiel A. Di Paolo, Inman Harvey, and Phil Husbands. 2014.
The Horizons of Evolutionary Robotics. The MIT Press.

[24] Vuk Vujovic, Andre Rosendo, Luzius Brodbeck, and Fumiya Iida. 2017. Evolution-
ary Developmental Robotics: Improving Morphology and Control of Physical
Robots. Artificial Life 23, 2 (2017), 169–185.

4


