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ABSTRACT

The Robot Operating System (ROS) is the de-facto standard for

robotic software. If on one hand ROS is helping roboticists, e.g., by

providing a standardized communication platform, on the other

hand ROS-based systems are getting larger and more complex and

could benefit from good software architecture practices. This paper

presents an observational study aimed at (i) unveiling the state-of-

the-practice for architecting ROS-based systems and (ii) providing

guidance to roboticists about how to properly architect ROS-based

systems. To achieve these goals, we (i) build a dataset of 335 GitHub

repositories containing real open-source ROS-based systems, (ii)

mine the repositories for extracting the state of the practice about

how roboticists are architecting them, and (iii) synthesize a catalog

of 49 evidence-based guidelines for architecting ROS-based systems.

The guidelines have been validated by 77 roboticists working on

real-world open-source ROS-based systems.

ACM Reference Format:

Ivano Malavolta†, Grace Lewis‡, Bradley Schmerl�, Patricia Lago†, David
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1 INTRODUCTION

Robots and the software that controls them are becoming more

prevalent as society automates more industries. From autonomous

vehicles and factories, to healthcare, services, and commerce, these

robots are playing an increasingly important role in many compa-

nies’ growth and the growing demands of society. As robots become

important in more facets of our world, and their tasks become more

complex, engineering their software to meet quality requirements

such as safety and reliability becomes more critical.

One emerging standard framework for developing robotic soft-

ware is the Robot Operating System (ROS) [30], a set of open source

libraries and tools for developing modular robotic functions that

communicate with each other in a loosely-coupled, multi-process,

distributed environment. ROS also has a set of mature tools for
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managing software builds and deployment, simulating production

environments for testing and development, and sharing common

packages. Though it is hard to estimate the current adoption of

ROS, as of writing there are 5941 papers that cite the seminal paper

on ROS [30], and ROS supports more than 140 different types of

robots (http://ros.org).

ROS systems are becoming large and complex. However, while

there are many open source packages, documents, and examples

on how to use ROS, engineering robots with particular properties

is still mostly an art and a matter of trial and error. Moving robot

software development from an art to an engineering discipline

as robots become further commoditized, means that developers

need to have ways to more systematically and quickly produce

software that meets the quality demands of the domains in which

they are used. For example, robots need to be engineered to be safe

when they are required to interact with humans; engineers need

to know that sensor data about the environment can be consumed

and processed in a timely manner to achieve interaction with the

world; and robots need to be reliable and secure when they are

performing functions critical to industry and infrastructure.

To understand how to achieve well-architected robots, we must

first look at the body of knowledge that has already been developed

around ROS. We can understand how roboticists have architected

existing systems, the guiding principles can be derived from this

experience, and the quality requirements concerning them the most.

Fortunately, because ROS is open source, it has encouraged the open

source development of many robots and robotic components that

we can study to find answers to these questions.

This paper addresses three research questions: What are the

architecture-relevant characteristics of open-source ROS-based sys-

tems? (RQ1), What quality requirements are considered when ar-

chitecting ROS-based systems? (RQ2), and How to guide roboticists

when architecting ROS-based systems? (RQ3). Our approach con-

sists of two main parts: (1) mining ROS repositories on GitHub,

GitLab, and BitBucket to uncover architecture documentation and

guidelines related to architecture design or quality requirements,

and (2) surveying developers who actively contributed to those

repositories to determine the usefulness of these guidelines, as well

as elicit additional guidelines directly.

The main contributions of this study are: (1) A characterization

of the state of the practice with respect to the architecture of ROS-

based systems; (2) A set of 49 guidelines and the quality requirements

that these guidelines are concerned with; (3) A validation of these

guidelines from 77 roboticists who were active committers to these

projects; and (d) The replication package for the study.
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There are two main targets for the results of this study: (1) roboti-

cists who want to apply good design principles to develop robots

that meet quality requirements, and (2) architecture researchers

who can use them as evidence-based indications about how real-

world ROS systems should be architected, thus inspiring future

research contributions such as automated architectural analysis.

2 ROS-BASED SYSTEMS

We define a ROS-based system as a system that contains robotics

capabilities built using the ROS framework. ROS 1 was developed

in 2007 as the development environment for the Willow Garage

PR2 robot, but has proven useful for a wide variety of robots [15].

ROS 1 is currently evolving into ROS 2 to address this broader

ROS community. Some of the new features in ROS 2 include better

support for teams of multiple robots and real-time requirements,

as well as improved APIs.

Publish

Node 1 Node 2

Topic
Subscribe

Service Invocation

ROS
Master

Registration / Lookup Registration / Lookup

Figure 1: ROS Node Communication

For both ROS 1 and ROS 2, from a software perspective, a ROS-

based system is composed of Nodes, which are processes that per-

form computation [31]. Nodes communicate with each other using

a publish/subscribe model based on Topics, or using a request/reply

model based on Service Invocations, as shown in Figure 1.1

The ROSMaster provides topic and service registration for Nodes,

as well as lookup capabilities. In addition, the ROS Master contains

a Parameter Server that centrally stores parameters as key/pair

values that can be accessed at run-time. There are other concepts in

ROS-based systems that will not be covered due to page limitations,

such as nodelets and namespaces [30], but these are not necessary

as background for this paper.
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Figure 2: Example of a ROS software architecture – adapted

from the IGVC-IITK/computer_vision project

ROS-based systems are typically started using a launch file. The

launch file is used by the roslaunch tool [31] to start the ROSMaster

1Communication can also use actions, which are implemented as a combination of
topics and services.

and all system Nodes, set parameters in the Parameter Server, and

perform any other initialization required by the system. One of the

main differences between ROS 1 and ROS 2 is that launch files are

written in XML in ROS 1 and in Python in ROS 2.

Figure 2 shows the architecture for a computer vision subsystem,

available in our dataset (see Section 3.1). It shows nodes as ellipses

and topics as rectangles. As an example of communication between

nodes, the bottom right of the figure shows a node called CLASSI-

FIER NODE publishing a message to the /prediction topic, which
is subscribed to by the MASKER NODE node. For systems with

documented architectures, the “ellipses for nodes and rectangles

for topics” is a common convention. More sample architectures can

be found in the replication package for this study (see Section 3).

3 STUDY DESIGN

This study aims at answering three main research questions.

RQ1 –What are the architecture-relevant characteristics of open-

source ROS-based systems?

RQ1.1 –What types of systems are implemented using ROS? This

question aims at setting the context for the study by quantitatively

assessing the types of systems implemented using ROS, e.g., ground

robots, manipulation robots, self-driving vehicles.

RQ1.2 –What capabilities are provided by ROS-based systems?

This question aims at characterizing (i) whether software reposi-

tories contain the full software stack of a robotic system or only a

single component (e.g., a computer vision component such as the

one in Figure 2); (ii) what robotic capabilities are implemented in

ROS. Answering this question will help roboticists and researchers

get an overview of the landscape of robotics software implemented

in ROS, as well as subsystems that are readily available in the ROS

ecosystem and thus become opportunities for software reuse.

RQ1.3 – To what extent do roboticists document the software

architecture of ROS-based systems? The benefits of architecture doc-

umentation have been largely discussed [10]. However, given the

wide adoption of agile methods [18], the extent to which roboticists

are documenting their architecture (and how) is not known. This

research question aims at filling this gap. A goal is for roboticists

to use the collected example architectures as inspiration for how to

document the architecture of their own systems.

RQ2 –What quality requirements are considered when architect-

ing ROS-based systems? With this question we aim at supporting

roboticists’ understanding of the quality requirements that are po-

tentially impacted the most by their architectural decisions. Even

though modern robotics systems have to cope with a large number

of quality requirements [2], it appears that the software engineering

community tends to primarily focus on performance measurement

and functional issues, while neglecting other crucial quality require-

ments, such as maintainability, energy efficiency, and safety [7, 9].

With this research question we aim at objectively assessing this

phenomenon in the context of real-world robotic projects.

RQ3 – How to guide roboticists when architecting ROS-based sys-

tems? The goal is to provide a catalog of guidelines for architecting

ROS-based systems. In this study a guideline is defined as the “in-

formation intended to advise [architects] on how something should

be done or what something should be” [36]. Roboticists can use

the catalog as a source of actionable guidance for architecting their
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Figure 3: Overview of the Study Design

systems. Researchers can use it as a solid foundation for developing

new scientific contributions, e.g., techniques to detect violations of

the guidelines.

Figure 3 presents the overview of the study design. It follows

a mixed method research methodology involving two sequential

phases. Phase 1 produces preliminary results via a quantitative and

qualitative analysis of data mined from open-source repositories

(see Section 3.1), and Phase 2 complements the results of Phase 1 via

an online survey, which targets roboticists contributing to real ROS-

based projects (see Section 3.2). To allow independent replication

and verification of the study, we provide a full replication package2

including the details of the research protocol, sample architectures,

raw data, mining scripts in Python, and data analysis scripts in R.

3.1 Phase 1: Mining Software Repositories

3.1.1 Dataset Construction. Because the community around ROS

has always encouraged open-source development in the form of

publicly available packages [14], we can consider open-source soft-

ware repositories as good data sources for characterizing the prac-

tices of roboticists in the context of real-world projects.

Figure 4 shows the steps for building the dataset of our study.

The initial search (step 1) is based on (i) rosmap, a ROS depen-

dency analysis tool that can also identify ROS-based repositories in

GitHub, Bitbucket, and Gitlab [28] and (ii) ghtorrent, a widely-used

queryable mirror of GitHub [16]. Then we filtered out fork reposito-

ries to avoid duplication (step 2). As suggested in [23], we excluded

repositories with less than 100 commits (step 3) and less than 2

stars (step 4) to avoid inactive or non-maintained projects. Since

we are targeting real-world projects involving ROS systems used in

real contexts, in steps 5, 6, and 7 we filtered out all repositories con-

taining demos, development tools, simulators (or software runnable

only on simulators), respectively; in these steps a repository was dis-

carded if either its name, description, or unique identifier matched

a black-list regular expression. In order to avoid false positives, we

manually checked all the repositories discarded in each of the three

steps and refined the black-list regular expression until no relevant

repository was discarded. In step 8 we locally cloned the 952 repos-

itories, and in step 9 we discarded all repositories not having at

2http://github.com/S2-group/icse-seip-2020-replication-package
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Figure 4: Repository Collection and Filtering

least one ROS launch file, either in XML (ROS 1) or Python (ROS

2). The rationale for Step 9 is (i) we are looking for repositories

containing ROS-based systems, rather than simple isolated ROS

nodes, (ii) launch files are predominantly used for system-related

activities, e.g., configuring and starting multiple nodes, and (iii)

launch files are the main input for existing architecture extraction

approaches for ROS [32, 37].

Finally, in step 10 we performed an in-depth quality assessment

of all the 598 repositories. Guided by the systematic literature re-

view methodology [38], we manually analyzed each potentially

relevant repository and selected it according to a set of inclusion

and exclusion criteria. Two examples of representative exclusion

criteria are (the full set is available in the replication package): (1)

The repository contains only collections of snippets of code, examples,

or templates, and (2) The repository contains only testing artifacts

(e.g., test cases). A repository was selected if it satisfied all inclusion

criteria and none of the exclusion criteria. Three researchers were

involved in step 10 and conflicts were resolved by a fourth one.

The final dataset is composed of 335 GitHub repositories. As

shown in Table 1, the dataset is quite heterogeneous, e.g., in terms

of commits, contributors, and launch files. This, in addition to our

manual quality assessment, makes us reasonably confident that

the repositories considered in this study are of good quality and

adequately representative of real-world projects.

Table 1: Descriptive statistics of the repository dataset (SD =

standard deviation, CV = coefficient of variation)

Min. Max. Median Mean SD CV

Commits 100 7611 272 621.13 991.62 1.59
Contributors 1 233 12 20.86 27.42 1.31
Branches 2 483 6 11.3 29.78 2.63
Issues 0 983 17 60.8 117.48 1.93
Pull requests 0 2165 20 79.87 194.67 2.44
Launch files 1 579 14 30.18 55.22 1.83

3.1.2 Data Extraction and Analysis. For RQ1.1, RQ1.2, and RQ1.3

we inspected the following data sources of each of the 335 reposito-

ries: (i) all the markdown files stored in the repository (e.g., readme

and change log file of the project), (ii) all external web resources and

documents linked in the repository, and (iii) all documents stored in

the repository. For each data source we conducted iterative content
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analysis sessions with open coding [25] which eventually led to

a classification framework composed of three facets, one for each

sub-question. Three researchers were involved in this phase over

three splits of the dataset: in the first iteration we considered 50 ran-

dom repositories, then the next 150, and finally the remaining ones.

At each iteration we cross-checked and refined the classification

framework. The resulting categories are described in Section 4.

For 115 of the 335 repositories, full or partial architecture docu-

mentation is present (see Section 4 for details). For RQ2 and RQ3,

two researchers manually inspected all documentation artifacts in

those 115 repositories and collaboratively collected 142 unique text

fragments where architecturally-relevant concerns are discussed.

In this context, we borrow the definition of system concern from

[21], where it is defined as the interest in a system relevant to one

or more of its stakeholders (e.g., presence of integrator nodes, sys-

tem layers, interfaces to other systems). For answering RQ2 we

conducted content analysis sessions again, but in this case (i) we

targeted architecture documentation fragments and (ii) we used

the quality requirements of the ISO/IEC 25010 standard [1] as the

initial set of codes. For RQ3 we applied thematic analysis [12] to

synthesize architecting guidelines (i.e., the themes) from the ar-

chitecture documentation fragments. We chose thematic analysis

because architectural information can be strongly dependent on

project- and system-specific characteristics and thematic analysis

copes well with context-dependent data [12]. Four researchers were

involved in this phase, which led to the definition of a preliminary

set of 39 guidelines. Based on the thematic analysis, we organized

the guidelines into 7 families of architectural concerns manifested

by developers working on ROS systems (e.g., communication and

networking, node responsibility).

3.2 Phase 2: Online Survey

The target population of the online survey is roboticists whoworked

on at least one real-world ROS project with some level of architec-

tural design. We extracted all contributors of the 115 repositories

containing architecture documentation. Then, in order to increase

the quality of the provided answers and to be sure that the context

of the project is still fresh in participants’ minds, we discarded

all contributors who did not make any commits in the considered

repositories in the last 12 months. The resulting sample is composed

of 520 roboticists distributed over 81 unique GitHub repositories.

3.2.1 Questionnaire design and invitation. We designed the ques-

tionnaire to complement the results obtained from Phase 1. In the

questionnaire we target exclusively RQ2 and RQ3. In this phase we

followed well-established guidelines for questionnaire design [33].

The questionnaire is composed of 8 questions organized in 4

groups. Group 1 introduces the questionnaire and asks about demo-

graphics. Group 2 asks the participant to rate the usefulness of each

of the 39 preliminary guidelines in their last ROS-based project;

answers are provided on a four-point Likert scale and a Don’t know

option. Additional guidelines can be proposed by roboticists in

a following open-ended question. Group 3 asks about the top-3

quality requirements considered when working on the last ROS

system. Group 4 is optional and asks general feedback about the

study. The questionnaire was created as an online form and its

complete transcript is available in our replication package.

The questionnaire was completed by 77 participants, yielding a

14.8% response rate, which is in line with other studies in software

engineering [33]. Participants tend to have multiple years of expe-

rience with ROS (min=1, max=10, mean=4.5, median=4, SD=2.55)

and multiple contributions to ROS packages (more than 10 pack-

ages=26/77, between 6 and 10=12/77, between 2 and 5=34/77, and 1

package=5/77), and their primary motivation for using ROS is mostly

academic (39/77), professional (28/77), or other (10/77).

3.2.2 Data extraction, analysis, and combination. With regards to

RQ2 (i.e., quality requirements), two researchers performed content

analysis sessions using the same codes defined in Phase 1 and we

report them as an additional perspective to assess the level of agree-

ment between the quality requirements mentioned in architecture

documentation and the ones considered important by roboticists.

Concerning RQ3, we first collected the usefulness values for each

of the preliminary 39 guidelines . They provide an indication of the

applicability of the guidelines to future ROS projects. Second, 21

participants discussed additional guidelines in the follow-up open

question; four researchers performed thematic analysis and merged

the resulting guidelines with the ones from Phase 1. This additional

analysis led to the identification of 10 new guidelines, leading to

the final set of 49 guidelines for architecting ROS-based systems.

4 RESULTS

4.1 Architecture-relevant Characteristics (RQ1)

Types of Implemented Systems (RQ1.1). Figure 5a shows the

ten types of systems that were found in the repositories (some

repositories were classified in more than one category). Ground

robots are the prevalent system type (28.1%), followed by a category

that we have termed Generic (25.4%), to mean that the systems can

be used independently of any specific application domain (e.g.,

object tracker, task manager, parameter wrapper). Categories that

follow are Manipulation (e.g., industrial robotic arm) (15.6%), Aerial

(11.3%), Service (e.g., mobile robot assistant) (10.1%), Humanoid

(5.1%), Aquatic (3.0%), Underwater (3.0%), Self-Driving Vehicle (2.7%),

and Other (a specialized software stack and a research kit) (0.6%).

System Capabilities (RQ1.2).We studied two aspects of the sys-

tems: scope and provided capabilities. For scope, as shown in Figure

5c, we distinguished between Subsystems and Full Systems. Sub-

systems refer to repositories that contain the implementation of

a component that is meant to be used in the context of a larger

system, and have the larger representation in the set (63.6%). Full

Systems refer to repositories that contain complete systems, such

as a robot or a group of robots, and account for 36.4% of the set.

Figure 5b shows the distribution of capabilities provided by the

subsystems (some subsystems implement more than one capability).

Control (40.2%), Planning (31.1%), Vision (26.2%), and Navigation

(24.6%) are the largest categories, which is not surprising given that

these are common capabilities in robotics systems. Categories that

follow are Integration (i.e., integration with external systems such

as the cloud, a web page, and apps) (18.0%), Infrastructure (e.g., self-

healing, monitoring and logging ) (15.6%), Sensing (13.1%), Base (e.g.,

component startup, basic configurations, hardware-specific nodes)

(12.3%), Development Support (e.g., exporters, visualizers, GUIs)

(11.5%), Simultaneous Localization and Mapping (SLAM) (11.5%),

Mapping (4.9%), Localization (4.1%), and Audio (1.6%).

34



94
85

52
38 34

17
10 10 9

2
0

25

50

75

100
G

ro
un

d

G
en

er
ic

M
an

ip
ul

at
io

n

Ae
ria

l

Se
rv

ic
e

H
um

an
oi

d

Aq
ua

tic

U
nd

er
w

at
er

Se
lf-

dr
iv

in
g 

Ve
hi

cl
e

O
th

er

(a) Types of Implemented Systems

49

38
32 30

22 19 16 15 14 14

6 5 2
0

20

40

C
on

tro
l

Pl
an

ni
ng

Vi
si

on

N
av

ig
at

io
n

In
te

gr
at

io
n

In
fra

st
ru

tu
re

Se
ns

in
g

Ba
se

D
ev

. S
up

po
rt

SL
AM

M
ap

pi
ng

Lo
ca

liz
at

io
n

Au
di

o

(b) Provided Capabilities

213

122

0
50

100
150
200
250

Subsystem Full System

(c) System Scope

220

60 55

0
50
100
150
200
250

No Partially Yes

(d) Architecture Documentation

21
19

15

9
6 5

2 1 1
0

5

10

15

20

25

M
ai
nt
ai
na
bi
lit
y

Pe
rfr
om
an
ce

R
el
ia
bi
lit
y

Po
rta
bi
lit
y

C
om
pa
tib
ilit
y

U
sa
bi
lit
y

Sa
fe
ty

En
er
gy

Se
cu
rit
y

(e) Quality Requirements Mentioned in the Documentation
52

40 39 38

21

13
7 4 1

0

20

40

M
ai
nt
ai
na
bi
lit
y

R
el
ia
bi
lit
y

Pe
rfo
rm
an
ce

U
sa
bi
lit
y

C
om
pa
tib
ilit
y

Po
rta
bi
lit
y

Sa
fe
ty

Se
cu
rit
y

En
er
gy

(f) Most Considered Quality Reqts when Working on ROS Systems

Figure 5: Results for RQ1

Architecture Documentation (RQ1.3).We examined the repos-

itories to find architecture documentation, as explained in Section

3.1.2. Most projects (65.7%) do not have architecture documentation.

Some projects have partial documentation (17.9%), meaning that the

architecture was either informally described (e.g., via a simplified

box-and-line or layered diagram) or presented as a list of topics,

services, or nodes, but not how all of them were connected (i.e.,

no configuration information). Finally, only (16.4%) of the projects

have a documented architecture (i.e., the system is described in

terms of nodes, services, topics, and their configuration).

4.2 Quality Requirements (RQ2)

For the 115 repositories containing full or partial architecture doc-

umentation, Figure 5e shows the distribution of the quality require-

ments that were explicitly mentioned in these repositories (details

on how these were obtained are in Section 3.1.2). The most fre-

quently mentioned quality requirement is Maintainability (26.6%),

followed by Performance (24.1%), and Reliability (19.0%). Fewer

mentions were found for Portability (11.4%), Compatibility (7.6%),

Usability (6.3%), Safety (2.5%), Energy (1.3%), and Security (1.3%).

Figure 5f shows the results for the questionnaire question re-

garding the most considered quality requirements when working

on ROS-based systems. Similar to the results in Figure 5e, the top

three quality requirements are Maintainability (67.6%), Reliabil-

ity (51.2%), and Performance (50.1%). However, according to the

survey responses, reliability is considered more frequently than

performance. The next considered quality requirement is Usability

(49.4%), which appears in a much higher position than in Figure

5e. This result is not surprising, given that the goal of open-source

repositories is to get the community to use them. Compatibility

(27.3%), Portability (16.9%), Safety (9.1%), Security (5.2%), and Energy

(1.3%) follow. The fact that security and energy are the lowest in

both figures, however, is surprising, given that these are robotics

systems (see Section 5).

4.3 Guidelines (RQ3)

The guidelines and architectural concerns are shown in Table 2.

Within each architectural concern, guidelines are sorted by their

level of usefulness (“U”, column 5 in Table 2), defined as the number

of responses in the online survey where a guideline was considered

either as absolutely useful or useful. As shown in Figure 6,

the vast majority of survey participants assessed the guidelines as

(absolutely) useful.

P3
P2
P1
S4
S3
S2
S1
H5
H4
H3
H2
H1
I5
I4
I3
I2
I1

B4
B3
B2
B1
N8
N7
N6
N5
N4
N3
N2
N1

C10
C9
C8
C7
C6
C5
C4
C3
C2
C1

100 75 50 25 0 25 50 75 100

Absolutely
useful 
Useful
Don't know
NOT useful

Absolutely 
NOT useful

Figure 6: Usefulness of the Guidelines

It is important to note that we are using the usefulness of the

guidelines just as a sorting mechanism (not a ranking). Also, some

guidelines (e.g., C10, B4) were considered not useful, but we decided

to keep them because (i) we did not want to lose any potentially

useful guideline, and (ii) a non-negligible number of survey par-

ticipants still assessed them as useful or absolutely useful.
The last column of Table 2 presents the number of repositories in

which a guideline has been mentioned. We notice that (i) more

than half of the guidelines (29/49) are mentioned in more than

one repository, (ii) only 8 guidelines have been mentioned in only
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one repository, and (iii) some guidelines are mentioned in a large

number of repositories (e.g., I5, H2). This is a confirmation of the

general applicability of the guidelines for roboticists working on

different types of robotic systems. Due to space limitations, we only

describe the most useful guideline for each architectural concern.

C1 – Use standardized ROSmessage formats as much as pos-

sible, possibly supporting also their legacy versions. The ROS

community provides standardizedmessage formats for representing

primitive and widely used data types, e.g., geometric transforma-

tions, point clouds, battery levels. These packages are collected

in two well-known ROS stacks called common_msgs and std_msgs.
When possible, roboticists should adopt these standardized message

formats in order to increase the opportunities for reuse for ROS

nodes. If commonly used message formats are used within a system,

then compatible nodes can be replaced or upgraded with less effort,

for example by simply remapping the topics expected by the new

nodes to the topics already available in the system.

Standardized message formats allow roboticists to save effort

by using already-available development tools such as visualizers for

sensor data (e.g., rqt_plot) and SLAM algorithms (e.g., gmapping).
They improve the overall testability of ROS nodes because they can

be tested in isolation by replaying events and data stored in com-

patible ROS bags.6 Additionally, standardized message formats ease

integration of new sensors and hardware devices into the system.

Indeed, many manufacturers of robotics hardware are supporting

ROS out-of-the-box and the ROS nodes running on top of their

shipped devices typically publish/subscribe to topics conforming

to message formats belonging to the common_msgs ROS stack.
Finally, as any other software, the definitions of standardized

message formats are also subject to change (e.g., the GitHub reposi-

tory for common_msgs has more than 700 commits). It is important
to make the nodes of the system under development as independent

as possible from (possibly evolving) message formats, especially

when working on long-lived or difficult-to-update systems.

N1 – Group nodes and interfaces into cohesive sets, each

with their own responsibilities and well-defined dependen-

cies. The software architecture of ROS-based systems is getting

more and more complex and can easily result in an intricate net-

work of hundreds of interdependent nodes [32]. Such complexity

can lead to technical debt, lock-in to specific ROS packages, and

difficulty extending the system.

Developers need to carefully manage the dependencies between

packages and how ROS nodes communicate with each other. This

task can be carried out with different degrees of rigor, depending

on the criticality of the system. Having a clear overview of the ROS

nodes and their relationships allows developers to assign clear re-

sponsibilities to ROS nodes and make well informed decisions when

the system will need to evolve. As an example, the architecture

of the ROS stack for the Niryo One7 manipulator arm is designed

around five layers: external communication, command, motion plan-

ning, control, and hardware. Having a well-defined organization

of node responsibilities allows developers to (i) concisely reason

about the workflow of the system and (ii) reuse well-maintained

6A bag in ROS is the file format used to record messages exchanged by ROS nodes
and replay them for future inspection of the system.
7https://github.com/NiryoRobotics/niryo_one_ros

and tested packages such as MoveIt8 and ros_control 9.

B1 – The behavior of each node should follow awell-defined

lifecyle, which should be queryable and updatable at run-

time. ROS considers nodes as black-box components and does not

prescribe any specific behavior to nodes per se. On the one hand this

level of flexibility provides great freedom to developers, but on the

other hand it impacts node testability, reliability, and maintainabil-

ity. When dealing with stateful ROS nodes, developers should treat

their internal lifecycle as a first-class concern of the system. As a

base case, node lifecycles can be included in the documentation of

a ROS package so that third-party developers and users know in

advance the behavior they can expect from the nodes and properly

interact with them (e.g., by sending messages in the correct order).

Having a well-defined internal lifecycle of a ROS node can also help

in terms of testability, e.g., by guiding the development or even the

automatic generation of test cases.

Some steps towards a precise definition of the lifecycle of ROS

nodes are being taken by different players of the ROS ecosystem.

First, ROS 2 is providing support for managed nodes,10 i.e., nodes

whose lifecycle follows a known state machine containing four

states, namely Unconfigured, Inactive, Active, and Finalized. The

state machine of a ROS 2 managed node can be inspected and con-

trolled by other nodes and launch files. Second, some ROS packages

are already explicitly considering the lifecycle of their nodes in their

APIs, even without ROS 2 managed nodes; for example, quoting the

documentation of ros-controls/ros_control, “the lifecycle of
controllers is not static. It can be queried and modified at run-time

through standard ROS services provided by the controller_manager.

Such services allow to start, stop and configure controllers at run-

time.” This example also highlights that defining and enforcing the

lifecycle of ROS nodes can enhance the system in terms of run-time

configurability and reflection, which can be exploited for providing

autonomous capabilities [2].

I1 – Assign meaningful names to components (e.g., nodes,

topics, services) and group them by adopting standard pre-

fixes/suffixes. Similarly to how bad variable names impact read-

ability, maintenance, and understandability of source code [8, 19],

bad practices for naming ROS entities can also negatively impact

the architecture of ROS-based systems. This problem is especially

severe in ROS-based systems because in ROS, topics and services

are created programmatically by the nodes at run-time and their

identifiers are just strings. In addition to the obvious issue related

to understandability, bad naming practices can lead to run-time

errors which are hard to detect, such as mistakenly unconnected

nodes or unintentional and unwanted connections, incompatible

interfaces, node misconfigurations, and bugs in launch files [37].

H1 – Nodes directly interacting with simulators and hard-

ware devices should provide identical ROS messaging inter-

faces to the rest of the system. ROS provides a full ecosystem of

robotic simulators supporting a wide variety of physics engines,

robot models, etc. ROS-based simulators enable roboticists to run

software in the loop (SITL) simulations, where the ROS nodes ex-

ecuted during the simulation are exactly the same as the ones

8https://moveit.ros.org/
9https://moveit.ros.org/
10https://design.ros2.org/articles/node_lifecycle
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Table 2: Guidelines for Architecting ROS-based Systems. P=Provenance (GitHub|Questionnaire), U=Usefulness, M=Mentions.

Communications and networking (C)

ID Architectural guideline Quality requirements P U M

C1 Use standardized ROS message formats as much as possible, possibly supporting also their legacy versions. MAINT, COMP, PORT G(6), Q(1) 71 9

C2 ROS nodes should be agnostic of the underlying communication mechanisms (e.g., network protocols, deployment topology, etc.). MAINT, PORT G(3) 63 3

C3 Include health information about both nodes and data in messages containing critical data. (e.g., strength of GPS signal) REL G(8) 61 8

C4 If the system is remotely distributed, constantly observe the status of the communication channels, hosts, and machines on the network. REL G(4) 57 4

C5 Nodes that potentially produce/consume large amounts of messages should be configurable in terms of their publish/subscribe rates. PERF, MAINT, REL G(2) 55 2

C6 Selectively limit the data exchanged between nodes to provide only the information that is strictly necessary for completing tasks. PERF, SEC G(3) 54 3

C7 If different types of data are always sent/received together and must be synchronized, then either package them into a single message or
subscribe to them using a time synchronizer filter.

REL G(2) 53 2

C8 Develop adapter components when data exchanged between nodes is not compatible (semantically), incorrect, out-of-order, or redundant. COMP, REL G(9) 42 9

C9 Use services when starting up robots (instead of publishing to topics) so that the status of the system can be checked before operation. REL G(1) 37 1

C10 Publish empty messages when triggering atomic actions. PERF G(1) 25 1

C11 Frequent messages should be exchanged either via services with persistent connections or via topic-based communication. PERF Q(1) - -

C12 Run multiple nodes in a single process when the overhead due to inter-process communication is too high both in terms of frequency of

messages and payload.3
PERF Q(2) - -

C13 Do not subscribe to (or unsubscribe from) topics where no messages will be published to (even temporarily). PERF Q(1) - -

C14 Nodes should unsubscribe from topics when messages are not needed (even temporarily). PERF Q(1) - -

C15 Publish messages (and perform the computation necessary to generate them) to a topic only when there is at least one subscriber to it. PERF Q(1) - -

Node responsibilities within the system (N)

N1 Group nodes and interfaces into cohesive sets, each with its own responsibilities and well-defined dependencies. MAINT, PORT G(3), Q(1) 63 3

N2 Each ROS package should be responsible for one and only one feature of the system or robot capability and provide a well-defined interface. MAINT G(9) 63 9

N3 Decouple nodes with responsibilities that naturally work at different rates and use different rates for different purposes. PERF, REL G(7) 61 7

N4 By design, limit unnecessary computationally-heavy operations by carefully analyzing the execution scenarios across ROS nodes. PERF, EN G(6), Q(1) 59 6

N5 Transform data only when it is used, for efficiency in terms of computation and bandwidth. PERF, MAINT G(1) 58 1

N6 Deploy each single node so that it is runnable (and testable) in isolation. MAINT G(2) 55 2

N7 Provide dedicated nodes for doing introspection and querying the lower levels of the system. PORT G(3) 41 3

N8 Use a dedicated node to store and represent globally-relevant data (e.g., the physical environment where the system operates) and use it as
the single source of truth for all the other nodes in the system.

PERF, REL, SAFE G(5) 38 5

N9 Keep the number of nodes as low as possible to support the basic execution scenarios and extend the architecture for managing corner cases. MAINT Q(2) - -

N10 Take full advantage of existing packages in the ROS ecosystem and create your own package only when it is strictly needed. MAINT Q(2) - -

Internal behavior of the nodes (B)

B1 The behavior of each node should follow a well-defined lifecyle, which should be queryable and updatable at run-time.4 REL, MAINT, PORT G(4) 50 4

B2 The spinning rate for nodes should be configurable so that they can operate according to available computational resources. PERF G(4) 47 4

B3 If a node is stateful and its behavior strongly depends on time and message arrival order, specify the message protocol expected by the node. REL, MAINT, USAB G(2) 45 2

B4 ROS nodes should be stateless and their behavior should not depend on previous operations or received messages. REL, MAINT, USAB G(1) 30 1

B5 Nodes with configuration errors should fail explicitly at launch time. REL Q(1) - -

B6 If a node is computationally expensive, then ensure that it only executes when other nodes are subscribed to a topic that it publishes to
(unless topic latching is enabled).

PERF Q(2) - -

Interface to external users and third-party developers (I)

I1 Assign meaningful names to architectural elements (e.g., nodes, topics, messages, services) and group them by adopting standard pre-
fixes/suffixes.

MAINT, USAB G(4), Q(2) 71 4

I2 When possible, core algorithms, libraries, and other generic software components should be ROS-agnostic. PORT, MAINT G(1), Q(1) 68 1

I3 Expose a single ROS node with interfaces for third-party users for the most common use cases. USAB, MAINT G(7) 61 7

I4 Systems interactingwith other non-ROS systems should provide two types of interfaces: a ROS-independent interface for the external systems
and a ROS-based interface for ROS tools such as Rviz, Qt, etc.

USAB, COMP G(4) 60 4

I5 Identify variation points of the system in advance, and design the system to be extended by third-parties without modifying its core nodes. MAINT G(24) 59 24

I6 Logging should be standardized across the project and follow well-defined guidelines. MAINT Q(1) - -

Interaction with hardware and other lower-level entities (H)

H1 Nodes interacting with simulators and hardware devices should provide identical ROS messaging interfaces to the rest of the system. PORT G(3) 72 3

H2 Design ROS nodes to be as hardware-independent as possible. MAINT, PORT, COMP G(15) 69 15

H3 Decouple ROS nodes from variations in the execution environment. MAINT, PORT, COMP G(9), Q(1) 59 9

H4 The interface of nodes responsible for state estimation should (i) support an arbitrary number and different types of sensors and (ii) be able
to combine the information provided by the sensors.

COMP G(1) 50 1

H5 If context-specific configuration is needed at run-time (e.g., available hardware capabilities), then persist this configuration in a dedicated
node to avoid having to recalculate it at run-time.

PERF G(4) 32 4

Safety-critical concerns (S)

S1 ROS nodes should be resilient with respect to the amount and frequency of the data received by sensors. REL G(6) 59 6

S2 Use different communication channels and different hardware depending on the criticality and real-time needs of the nodes. REL G(1), Q(1) 49 1

S3 For real-time requirements, collect timestamps from as many sources as possible (i.e., do not rely on ROS-based timestamps only).5 PERF G(2) 36 2

S4 Provide at least one globally-reachable node capable of receiving run-stop messages and stopping/resetting the whole system REL, SAFE G(3) 34 3

Data persistence (P)

P1 Avoid persisting raw data (e.g., a full resolution video) if only part of it will be used. PERF G(1) 56 1

P2 Avoid race conditions when persisting data received from other ROS nodes within the system. MAINT, PERF G(1) 52 1

P3 Use a dedicated node for persisting and querying long-term data and short-term data (e.g., in the order of seconds). MAINT, PERF G(2) 32 2

executed when using real robots.

The key point for developers is that having identical messaging

interfaces from the hardware/simulation levels to the rest of the

system localizes by design the impact for switching between various

simulators and hardware devices, thus reducing future modification

costs. Following H1 can also lead to a superior level of portabil-

ity and testability of the system by design. For example, different

simulation engines can be used (even in combination) for better

8ROS 2 supports C12 via intra-process communication, ROS 1 supports it via nodelets.
9ROS 2 partially supports guideline B1 via managed nodes.

exercising different aspects of the system.

A recurrent strategy to achieve H1 is to have a hardware ab-

straction layer. For example, in ros-controls/ros_control “the
backbone of the framework is the Hardware Abstraction Layer,

which serves as a bridge to different simulated and real robots . . . It

also allows for integrating heterogeneous hardware or swapping

out components transparently . . . Through these typed interfaces,

this abstraction enables easy introspection, increased maintainabil-

ity and controllers to be hardware-agnostic”.

S1 –ROSnodes should be resilientwith respect to the amount

and frequency of the data received by sensors. Developers
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should be aware that hardware devices such as sensors tend to

produce data in bursts (e.g., due to changes in the environment),

degrade, and become less accurate over time [22]. Depending on

the tasks being performed, developers should address this vari-

ability by design, e.g., by setting up load balancing nodes for man-

aging sudden bursts of sensor data or by making nodes resilient

to gaps in sensor data. The latter is especially important for the

reliability of state estimation nodes because faults in these nodes

can lead to severe failures at the system level. The contributors

of hasauino/rrt_exploration document their own solution for
continuous estimation as follows: “each state estimation node in

robot_localization begins estimating the vehicle’s state as soon as

it receives a single measurement. If there is a holiday in the sensor

data . . . the filter will continue to estimate the robot’s state via an

internal motion model”.

Being resilient with respect to the amount and frequency of

sensor data can make the robotic system more scalable, even at run-

time. For example, in cra-ros-pkg/robot_localization “each
robot runs an instance of the local_rrt_frontier_detector . . . Run-

ning additional instances of the local frontier detector can enhance

the speed of frontier points detection, if needed”.

P1 – Avoid persisting raw data (e.g., a full resolution video) if

only part of it will be used. Depending on the provided capabili-

ties, ROS systems can produce large amounts of data. For example,

the ROS bag of a demo mapping session of the rtabmap_ros pack-
age can take up to 1.1Gb10. As informally confirmed by the ROS

community11, data persistence in ROS can lead to severe perfor-

mance overheads at run-time.

Even though it can be tempting to persist all raw data pro-

duced by the system (e.g., for subsequent inspection or replay),

developers should identify the subset of relevant data based on

future needs and selectively persist only that data. When record-

ing ROS bag files, developers should avoid recording all topics

within the system, rather only the ones required for subsequent

replays. The same principle holds for audio/video data. A clever

mechanism for dealing with audio/video data is implemented in

florisvb/multi_tracker, where a “buffering node” “listens to
the camera topic . . . and saves the pixels and values for any pixels

that change more than the specified threshold. This results in a

dramatically compressed filesize relative to a full resolution video.”

5 DISCUSSION

In this study we mined ROS open source software repositories and

surveyed active developers to elicit quality requirements and guide-

lines that impact the software architecture of robotics systems. We

found discussions relating to ten different quality requirements. The

top three quality requirements were maintainability, performance,

and reliability. While we cannot say for certain, we suspect that

maintainability is important because the aim of the ROS community

(and open source software in general) is to build software that can

be used in many contexts. This is further supported by the observa-

tion that many survey participants highlighted the importance of

documentation and ease of source code understanding of the pack-

ages. Performance is important because many of the computations

10http://wiki.ros.org/rtabmap_ros
11https://answers.ros.org/question/266095/rosbag-record-performance-issues/

performed by robots (e.g., computer vision, planning, navigation)

are computation- and data-intensive and therefore challenge the

computing resources typically available on robots (especially mo-

bile autonomous robots). Reliability is important because robots

tend to interact with the physical environment and should provide

assurances about their expected behaviour.

More surprising is the sporadic discussion surrounding safety

and security – in fact, security is a major factor in spawning vari-

ants of ROS, such as SROS and ROS-M.12 We suspect that these

qualities will gain importance as robots become more common and

guidelines emerge for them. We also suspect that safety and secu-

rity are currently of more concern in commercial robotics, an area

that was outside the scope of this study. We were also surprised

that energy was not a major concern, especially when robots are

autonomous and have restricted energy supplies.

Because the guidelines have been sourced from an examination

of open source projects and surveys to participants of those projects,

we do not make any claims that we have elicited all guidelines

associated with developing ROS-based systems. Indeed, there may

be other sources for guidelines too, such as robotics textbooks,

interviews with robotic experts working on commercial products,

etc. Moreover, as shown in Table 2, out of the 49 guidelines, 32 came

uniquely from open-source repositories, 10 came uniquely from

surveys, and 7 came from both sources. Therefore, we can say that

GitHub is a good source for guidelines. Interestingly, repositories

on GitLab and BitBucket were filtered out in Phase 1 of the study -

after the first nine steps we had 0/46 GitLab repositories included

and 23/527 BitBucket repositories. These final ones were discarded

after manual selection as they did not satisfy the selection criteria.

We believe that these guidelines are generally applicable, but they

should be used in context, e.g., C2 and C4 appear to be in conflict –

if a developer wants to observe the status of hosts on the network

(C4), the ROS node responsible for doing this must be aware of the

network topology, contradicting C2. An architect should know this

and resolve it, for example, by making C4 generally applicable and

isolating the functionality for C2 into a separate node. Similarly,

data may need to be distributed if network connections are unreli-

able, counter to N2. As with all architectural guidelines, architects

must understand the context-sensitive trade-offs.

Furthermore, while this paper reports only on guidelines related

to ROS, we think that many of the guidelines will apply to other

non-ROS robotic systems. Most robotic systems are implemented

in some form of publish-subscribe style (e.g., [6, 11]), and many of

the guidelines (e.g., C3-C15) may also apply to those systems.

6 THREATS TO VALIDITY

External validity. ROS-based projects hosted on GitHub, Gitlab,

and Bitbucket may not be representative of the state of the practice

of ROS-based development. We also acknowledge that the repos-

itories in our dataset may not cover all possible types of robots

or capabilities. From an inspection of the obtained dataset, the

projects are highly heterogeneous in terms of number of contribu-

tors, number of commits, etc. Also, we performed a strict search

and selection process when building the dataset of repositories,

making us reasonably confident that irrelevant projects were not

12http://wiki.ros.org/SROS and https://rosmilitary.org/
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considered in subsequent phases (e.g., toy or demo projects). There-

fore, due to the high heterogeneity of the dataset and the strict

quality assessment we performed, we do not deem this as a major

threat to external validity. Even though we contacted all recent

contributors to the repositories in our dataset, they still might not

be representative of the whole roboticists population. This potential

bias is reasonably avoided because participants exhibited a good

level of heterogeneity in terms of type of experience, number of

contributed ROS packages, and primary motivation for using ROS.

Internal validity. This study has been conducted by adhering to

well-established guidelines in software engineering [23, 33, 38]. The

replicability of the study and independent verification of its findings

are ensured by documenting each phase of the study in a publicly

available replication package. The qualitative analysis for answer-

ing our RQs is based on the manual inspection and categorization

of several repositories and text fragments, potentially leading to

subjective results. We mitigated this potential threat to validity by

carefully following the content and thematic analysis methodolo-

gies and involving at least three researchers, with jointly discussed

disagreements and conflicts managed by a fourth. Moreover, the

39 guidelines emerging from Phase 1 have been scrutinized by 77

independent roboticists and the additional 10 emerging from Phase

2 were directly proposed by roboticists working on real projects.

In order to be confident about the quality of our guidelines, we

collected feedback about the final set of 49 guidelines from two

volunteers working on robotic systems for several years.

Conclusion validity. Third-party researchers can verify and check

the obtained results by replicating our study independently from

our results. This is possible thanks to the complete replication

package, which is publicly available. Another potential threat to

conclusion validity may lie in our definition of the guidelines and

architectural concerns. Indeed, other researchers may identify dif-

ferent text fragments from the systems’ documentation and differ-

ent concerns, thus potentially leading to totally different results.

We mitigated this potential threat to validity by (i) carefully docu-

menting the process we followed for building the guidelines (see

Sections 3.1.2 and 3.2.2), (ii) having the data extraction process con-

ducted by multiple researchers in collaboration, and (iii) making

the raw extracted data available for independent verification.

Construct validity. It is important that the mining pipeline for

searching and filtering ROS-based projects from the code host-

ing platforms is implemented and configured correctly. We miti-

gated this potential threat to validity by carefully designing the

whole pipeline (see Section 3.1.1), by testing each component of the

pipeline in isolation via subsets of data for which we knew already

the expected outcomes, and by making the implementation of the

whole pipeline publicly available in the replication package.

7 RELATEDWORK

Studies on ROS. Because ROS is under active development, is a

de facto standard for development of robots, and comprises many

open-source components, software engineering researchers are in-

creasingly using it as a source for research. A number of researchers

have tools and analyses that extract architectural structures from

ROS systems through static analysis of source files and configura-

tions. For example, HAROS [32] and other work described in [29, 37]

can generate the architecture and perform architectural consistency

checks such as detecting communication errors (e.g., nodes sub-

scribing to unpublished topics). This body of research focuses on

reconstructing architectures of existing systems rather than trying

to understand what architectural patterns or guidelines could be

used to achieve particular quality requirements.

To design good quality robotic software in ROS, the work in [17,

20] focuses on formally modeling ROS systems for real-time analy-

sis and V&V. These do not really focus on the architecture of ROS

systems, but could be used to generate or check the correctness

of ROS systems. In terms of code quality, Pichler et al. examine

open source projects with tools such as cpplint and XML validation

to analyze the quality of packages that many other ROS systems

depend on [28]. They caution that many projects that ROS systems

depend on are not engineered with code quality in mind, but are

developed just to demonstrate particular functionalities. While not

addressing quality requirements specifically, this result confirms

the importance of having guidelines for designing ROS systems

with safety, reliability, or availability in mind. These quality re-

quirements are not much discussed in the existing repositories (see

Section 4), which supports this observation. Similarly, [13] provides

a visualization tool with run-time usage metrics that can be used

after-the-fact to assess performance.

While this growing body of research examines the ROS ecosys-

tem and provides information on its code quality and reuse, our

approach goes a step further in eliciting (i) the state of the art

about the architectural design and decisions of ROS systems, (ii) the

quality requirements that are currently most concerning to ROS

developers, and (iii) evidence-based architectural guidelines for

achieving those qualities by both looking at code artifacts, target-

ing their official documentation and, more importantly, collecting

the perspectives of roboticists working on real ROS projects.

Mining Architectural Information.Mining information related

to software architecture from open source software repositories is

not new. Other researchers have shown that such information can

be derived from commit logs (either manually [35] or by applying

machine learning [5]), issue trackers [24], as well as developer

discussions in community groups such as StackOverflow [34] or

chat groups [3]. In this paper, we have confirmed this by surveying

developers to verify the usefulness of the architectural guidelines.

Identifying areas of the source code that implement specific

architectural tactics (e.g., heartbeat, audit, checkpoint) has also

been investigated [27]. In fact, these can be the areas of code that

change the most [26]. In future work we will use these techniques

to extend our work to discover how existing tactics are used in

robots and if there are any new domain-specific tactics that can

also be used in other software domains.

8 CONCLUSIONS AND FUTUREWORK

This paper described a study to elicit evidence-based architectural

guidelines for open-source ROS-based software for robots. Among

other findings, we found that of the relevant repositories, 16.4%

of them documented their architecture. In these cases, the most

discussed qualities were maintenance, performance, and reliability.

We elicited 39 guidelines derived from the repositories, and 10 more

from the survey. By surveying roboticists actively involved in these

projects, we are confident that these guidelines are generally useful.

These results can be used by roboticists to architect their systems to
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achieve particular quality requirements. Furthermore, architecture

researchers can use this study as a baseline for understanding the

architectural principles and practices of roboticists.

These results are a major foundation on which to base our future

work on determining architecture tactics for high-quality robot

software, and thereby provide a solid engineering basis for devel-

oping robots in a future where they are ubiquitous. To achieve this,

we plan to (i) explore how existing architecture tactics found in [4]

and others could be applied in this domain, (ii) mine robot-specific

tactics from other robotics sources and semi-automatically from

source code using approaches based on [32, 37], and (iii) provide

guidance for architecting high-quality robot software.
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