
VU Research Portal

Architectural technical debt

Verdecchia, Roberto; Kruchten, Philippe; Lago, Patricia

published in
Software Architecture
2020

DOI (link to publisher)
10.1007/978-3-030-58923-3_14

document version
Peer reviewed version

Link to publication in VU Research Portal

citation for published version (APA)
Verdecchia, R., Kruchten, P., & Lago, P. (2020). Architectural technical debt: A grounded theory. In A. Jansen, I.
Malavolta, H. Muccini, I. Ozkaya, & O. Zimmermann (Eds.), Software Architecture: 14th European Conference,
ECSA 2020, L'Aquila, Italy, September 14–18, 2020, Proceedings (pp. 202-219). (Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol.
12292 LNCS). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-
58923-3_14

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 22. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/387934129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-030-58923-3_14
https://research.vu.nl/en/publications/72fb823d-3eb0-4ae4-9ad1-d123e0b89a46
https://doi.org/10.1007/978-3-030-58923-3_14
https://doi.org/10.1007/978-3-030-58923-3_14

Architectural Technical Debt:
A Grounded Theory

Roberto Verdecchia1, Philippe Kruchten2, and Patricia Lago1

1 Vrije Universiteit Amsterdam, The Netherlands, {r.verdecchia|p.lago}@vu.nl
2 University of British Columbia, Vancouver, Canada, pbk@ece.ubc.ca

Abstract. Architectural technical debt in a software-intensive system is
driven by design decisions about its structure, frameworks, technologies,
languages, etc. Unlike code-level technical debt, which can be readily
detected by static analysers, and can often be refactored with minimal
efforts, architectural debt is hard to detect, and its remediation is wide-
ranging, daunting, and often avoided. The objective of this study is to
develop a better understanding of how software development organisations
conceptualize their architectural debt, and how they deal with it, if
at all. We used a grounded theory method, eliciting qualitative data
from software architects and senior technical staff from a wide range
of software development organizations. The result of the study, i.e., the
theory emerging from the collected data, constitutes an encompassing
conceptual theory of architectural debt, identifying and relating concepts
such as symptoms, causes, consequences, and management strategies. By
grounding the findings in empirical data, the theory provides researchers
and practitioners with evidence of which crucial factors of architectural
technical debt are experienced in industrial contexts.

Keywords: Software Architecture · Technical Debt · Grounded Theory.

1 Introduction
Quoting Avgeriou et al. [3], “In software-intensive systems, technical debt

consists of design or implementation constructs that are expedient in the short
term, but set up a technical context that can make a future change more costly
or impossible. Technical debt is a contingent liability whose impact is limited to
internal system qualities, primarily maintainability and evolvability”.

Technical Debt (TD) can take many different forms in software development,
and can be found in many different places [16]. While much of the literature
and tooling available today address code-level TD, our focus is on Architectural
Technical Debt (ATD). This is the technical debt incurred at the architectural
level of software design, i.e., in the decisions related to structure (layering, decom-
position in subsystems, interfaces), technologies (frameworks, packages, libraries,
deployment approach), or even languages, development process, and platform. As
software systems grow in size and their lifespan extends, many of these original
design choices become constraints, limiting future evolution or even preventing
it. To evolve the system, developers find workarounds, introducing quality issues
and delays. Large and long-lived systems are suffering from architectural debt,
while the small and short-lived ones die before ATD becomes a real problem.

mailto:r.verdecchia@vu.nl
mailto:p.lago@vu.nl
mailto:pbk@ece.ubc.ca

2 R. Verdecchia et al.

To characterize ATD, find attributes of ATD, and develop an interpretation
of ATD based on empirical evidence, we used a grounded theory approach [12]
with experienced industry practitioners as subjects. The result of our study is
an ATD “theory”, providing empirical evidence of how software development
practitioners conceptualize ATD and its management. Some of our theory results
can also be applied to other forms of technical debt, such as code-level TD.

2 Research Method
For our study, we adopted the classic “Glaserian” Grounded Theory (GT)

method [12], and we stayed with it throughout the whole study, from data
collection, to data analysis and synthesis, with the exception of our adoption of a
different “coding family” w.r.t. the ones suggested by Glaser [11], as explained in
Section 2.2. This GT approach has given us a fresh and independent viewpoint on
ATD, by letting concepts emerge from the personal experience of our participants,
rather than the preconceived views of the researchers. In line with GT principles,
we delayed the review of the literature until after our theory emerged, in order to
avoid the influence of existing concepts on our theory [10]. Specifically, the first
author was not too immersed in the TD world prior to this study, and refrained
from conducting an extensive literature review on ATD before analyzing the
data, minimizing possible confirmation biases, and improving his “theoretical
sensitivity” [9]. In fact, as stated by Glaser et al., prior knowledge “violates the
basic premise of GT - that the theory emerges from the data, not from extant
theory” [13]. We also followed the recommendations of Stol et al. [27], on the
application of GT to software engineering topics, and avoided the typical pitfalls
they have identified. The investigation, including data collection, data analysis,
and reporting, lasted approximately 6 months.

2.1 Data Collection

To collect data, we conducted semi-structured interviews with industrial prac-
titioners. Initial participants were recruited by convenience and then subsequent
ones driven by theoretical sampling [10], that is, tactically picking new subjects
that would allow to confirm or disconfirm the findings so far, or to explore new
areas. Specifically, the initial participants were contacted within our personal
network. Subsequent participants were selected by following theoretical sampling,
in order to fill the gaps identified in our emerging theory, and/or to explore
unsaturated concepts [10]. Specifically, we identified via theoretical sampling [12]
senior technical leaders as best fitted participants for data collection, given
their hands-on experience on a vast range of ongoing (and concluded) long-lived
software projects. We interviewed 18 experienced software practitioners, with a
mean industrial experience of 17.5 years, from 14 distinct companies in different
industrial domains. Table 1 presents an overview of the participant demographics.
Interviews lasted approximately 1 hour and were conducted face-to-face at the
practitioners’ workplaces or, when not possible, via video-calls.

As the emerging theory should guide the sampling process, we solved the
“bootstrap problem” [1] of GT by starting our first interview with the question:
“Which architectural design decision do you regret the most today?”. Subsequently,

Architectural Technical Debt: A Grounded Theory 3

Table 1. Participant Demographics

ID Role Ex Domain OS CC
P1 Senior Vice-President of SE 21 Banking S 72
P2 Software Staff Engineer 17 Telecom M 103
P3 Senior Director of SE 20 Enterprise Software XL 130
P4 Chief Technology Officer 14 Financial Services M 149
P5 Senior Software Engineer 22 Health L 155
P6 Senior Software Engineer 8 Software Tooling M 168
P7 Senior Software Engineer 18 Software Tooling M 174
P8 Senior Software Engineer 23 Software Tooling M 181
P9 Vice-President of Product 15 Data Analysis M 188
P10 Senior Software Engineer 12 Software Tooling M 191
P11 Senior Director of Technology 26 Data Technologies M 198
P12 R&D Director 27 Enterprise Software L 205
P13 Senior Software Engineer 14 Software Tooling M 215
P14 Senior R&D Manager 16 Enterprise Software L 220
P15 Chief Software Architect 11 Cloud Services M 228
P16 Chief Technology Officer 12 Consultancy S 231
P17 Co-Founder 33 Consultancy XS 234
P18 Founder 22 Mobile Applications XS 235

ID: participant identifier; Role: current participant role; Ex: industrial experience
(years); OS: organization size (XS<20; S<100; M<500; L<5K; XL>10K); CC: Cu-
mulative number of codes per participant.

and by following theoretical sampling [12], the other interview questions emerged
iteratively. This strategy, following GT principles, is meant to let participants
express their main concerns on ATD in their own words, and the researcher
to explore unsaturated concepts. In addition, we also gathered data on the
professional background of participants via a predefined set of demographic
questions to collect the data summarized in Table 1.

Interviews were audio-recorded and transcribed manually by following the
denaturalism approach, that is, grammar was corrected, interview noise (e.g.,
stutters) was removed, and nonstandard accents (i.e., non-majority) were stan-
dardized, while ensuring a full and faithful transcription [25].

The data collection terminated once we reached theoretical saturation, that
is, when components of our theory are well supported and new data is no longer
triggering theory revisions or reinterpretations [9]. The values reported in column
“CC” of Table 1, display the slow increase of cumulative unique codes w.r.t. the
number of participants, indicating that we achieved saturation around P16.

2.2 Data Analysis
We followed Glaser’s grounded theory data analysis and synthesis processes

to create our theory: open coding, selective coding, and theoretical coding [12] [9].
Specifically we examined the whole body of text transcripts, subdivided them
into separate “incidents” (sentences or paragraphs) [12], and labeled the incidents
with codes to let the theory concepts emerge. When possible, codes are generated
by directly quoting the incidents (e.g., see [S-Q1]). Otherwise, “synthetic” codes
summarizing the semantic meaning and emerging concept of the incidents were
created by the authors. Subsequently, concepts were clustered into core descriptive
categories, which guided the future data collection. Finally, we established the
conceptual relations between the different emerging core categories, leading to
the formulation of our theory. We express the relationships between codes as

4 R. Verdecchia et al.

hypotheses via a UML model to precisely describe the relations of different nature
emerging between the categories of our theory (see Figure 1).

Numerous concepts of our theory possess a multifaceted nature. For instance,
the concept of “technical debt” itself can be both a cause, leading to the introduc-
tion of additional debt, and a consequence, e.g., of pre-existing debt. Following
GT principles, concepts with multiple facets were coded according to the one
deemed most important by participants. This ensured the emergence of concepts
from the data, rather than from preconceived knowledge of the authors.

During the entirety of the coding procedures, we made use of memoing [12].
We created textual memos to elaborate concepts (i) related to single incidents,
such as “This incident exemplifies the impossibility to implement new functionality
due to ATD” and (ii) orthogonal to multiple incidents (e.g., relations between
concepts, or categories, such as “Developer’s intuition can lead both to ATD
identification and prioritization”).

As described in Section 2.1, we analysed our data immediately and contin-
uously, using simultaneous data collection and analysis, guided by theoretical
sampling. Additionally, during data analysis, we constantly compared our data,
memos, codes, and categories, in order to identify and keep track of common
notions, topics, and patterns, as they emerged. Similarly, we continuously sorted
our memos to evolve the emerging concepts and categories to best fit our codes,
leading to the formulation of a substantive, cohesive theory. We performed contin-
uous comparison until additional data being collected did not add new knowledge
about the categories, i.e., until we reached the state of saturation (see Section 2.1).

Three researchers were involved in both the data collection and analysis phases,
where the first author carried out the coding, memoing, and analysis processes,
while the others collaboratively analysed and reviewed iteratively the results.

3 Results
An overview of our grounded theory on ATD is depicted in Figure 1. In this

section we describe the 6 core categories emerging from our data, which constitute
the foundation of our grounded theory on ATD3. We also discuss the emerging
relations between the different categories. In line with the grounded theory
literature, this enables us to both present comprehensively the emerging theory,
and offer explanations and predictions underlying ATD related phenomena [9].

At the core of our theory lies the ATD item , i.e., the category that embodies
the instances of ATD residing in a software-intensive system (for an in-depth
description of this category, see Section 3.1). The identification of the ATD item
as the core category of our theory can be also observed from the numerous
relations between this category and the other ones reported in Figure 1.

At the root of each ATD item lies one or more cause . Each cause can generate
one or more items (see Section 3.2). From our data time pressure and business
drive are the main causes leading to the generation of ATD items: “The plan is

3 Due to space limitations, in this paper we do not discuss in detail the categories with
direct semantics in our theory (ATD, Artifact, Tool, and System), and the marginal
categories related to human factors (Person and Communication).

Architectural Technical Debt: A Grounded Theory 5

1..*

1..*

generates

leads	to
*

points	to

1..*

1..*

1..*

addresses

affects
ATD
item

Cause

Symptom

displays

*

Consequence

0..1

guides
ATD

management	
strategy

Artifact

possessesATD

*

System

Prioritization
strategy

1..*

influences

*

influences

Person

1..* supports

Tool

* 1..**

*

*

*

*

Communication

Fig. 1. Core categories of the ATD theory and their relations

one thing, but the plan is not working now, we have to adapt quickly. Whether or
not we meet the coding rules, I proceed. I don’t care. Something is broken, nobody
cares how nicely something fits the architecture, I care if it’s gonna break our
product. That is not a computer science issue, it’s a business one.”-P8 [R-Q1]

As causes can generate one or more ATD items, so ATD items can lead to one
or more consequences, e.g., reduced development velocity, higher maintenance
cost, impossibility to implement new functionality (see Section 3.3). Additionally,
in contrast to the relation between Cause and ATD item, ATD items can also
be “dormant”, i.e., the items are present in the system, but do not lead to any
immediate consequence: “There was a developer who wrote a component that
nobody knows how it works, and so we are all afraid of touching it. It works well
for now, but if something stops working, or we have to touch that, for example to
implement some new functionality, we could have a problem.”-P12 [R-Q2]

Consequences can display one or more symptoms, e.g., recurrent customer,
performance, and/or development issues. A consequence can also not display any
symptom, either because an ATD item is “dormant”, or because the observed
symptoms are not sufficiently distinct to establish the relation: “To be honest? I
have a bit of a vibe. As a product manager, I’m pretty like face-to-face and hands
on, and I kind of just gauge the winds on the face of developers”-P9 [R-Q3]

Symptoms point to one or more ATD items, i.e., observing symptoms displayed
by a consequence can lead to the identification of one or more ATD items. Often,
multiple symptoms point to a single, widespread, ATD item:“You do things like:

“How are your bugs?”, “How is your performance?”. All of those things tell you
something. They are indicators. Like code coverage, it tells you something, but does
it really tell you anything? But it’s just one big underlying problem!”-P3 [R-Q4]

Nevertheless, as reported in quote [R-Q3], consequences of ATD items can also
not display any clear symptom, making the discovery of related ATD items harder.

Each ATD item can affect one or more artifacts, e.g., software components,
test suites, software development tools, and/or documentation:“We reached the
point where it [architecture] became quite brittle, and it was also quite difficult
to change the test suite, because the architecture was so complex...so many
connectors...and the variance of those connectors!”-P7 [R-Q5]

Similarly, an ATD item can reside in one or more artifacts, i.e., it can be
present simultaneously in various artifacts of different nature, or even occur in
the relation established between two or more artifacts.

6 R. Verdecchia et al.

ATD items can be addressed via one or more ATD management strate-
gies, e.g., via systematic time allocation, large-scale rewrites, and/or carry out
opportunistic patching (see Section 3.5). Additionally, it is also possible to address
multiple ATD items with a single management strategy (typically via rewrites):

“Usually, I just do a gut evaluation: if there is a large disconnect between what the
system does and what it is supposed to achieve, usually it is a big indicator that
there are many problems, and we need a rewrite.”-P1 [R-Q6]

ATD management strategies can be guided by a prioritization strategy,
i.e., a strategy with which ATD management tasks are prioritized along with
other development tasks, such as bug fixes, and implementation of new func-
tionality [15] (see Section 3.6). Often, prioritization processes are not carried
out systematically, and can consider one or multiple management strategies de-
pending on the addressed ATD item(s):“Given three weeks of development time,
which architectural technical debt should we pay down? I would say, we’re not
doing it systematically, but we’re probably not coming out with two very different
answers. And if something was really painful, we would know.” -P9 [R-Q7]

ATD management strategies can also be supported by tools, e.g., static
analyzers and linters. In some rare instances tools for detecting architectural
problems, like component dependency anti-patterns, are used. Nevertheless, in
most of the cases, ATD management strategies are not supported by any tools,
potentially due to their perceived immaturity:“The really expensive type of debt
[ATD], I have not seen a tool which is able to detect that. . . ”-P10 [R-Q8]

Two marginal categories emerging in our theory are person and communica-
tion. Being related to human factors [5], the nature of these categories is different
from the others. The relation between person and ATD items is of a multi-
faceted nature: among others, people’s personal drive, skill set, and awareness can
influence ATD from its establishment to its prioritization, and resolution. Fur-
ther, ATD in a software system often leads to communication of ATD-related
concepts among the people working on the system. ATD communication may
regard the exposition of ATD items, the impediments related to discussing ATD,
and even uneasy discussions on who is to blame.

As person and communication categories emerge as subsidiary categories
in our theory, we focus the description of our theory on the categories related
the closest to our core category (i.e. ATD item). Nevertheless, for the sake of
completeness, a discussion of the person and communication categories is reported
in the companion material of this study4.

3.1 ATD Items

In this section we present the five most prominent types of ATD items residing
in software-intensive systems which emerged from our results.

The Minimum Viable Product (MVP) that stuck. Often ATD manifests
itself in a software-intensive system as an MVP that, while intended as a tem-
porary “bare-bones” solution, evolved into the architectural foundation of a
system, without properly considering the architectural implications of adopting

4 http://s2group.cs.vu.nl/files/ATD_GT_ECSA_companion_material.pdf

http://s2group.cs.vu.nl/files/ATD_GT_ECSA_companion_material.pdf

Architectural Technical Debt: A Grounded Theory 7

an immature artifact as architectural basis. This ATD item is often related to
time pressure, lack of architectural awareness, and uncontrolled software evo-
lution:“It was an MVP solution that is still in place. And we were constantly
broadening the scope of the problem. So for quite a long time, we just kept adding
new functionality, and this problem was never solved.”-P6 [ATDI-Q1]

The Workaround that stayed. ATD can be introduced in a software system as
a temporary workaround to bypass some architectural constraints, which over time
becomes deeply embedded into the architecture. As described by P8 in [R-Q1],
such workarounds can be brought in deliberately, for the sake of development
velocity, or triggered by unexpected context changes. Nevertheless, the awareness
of the progressive consolidation of the workaround into the architecture can be
inadvertent: “. . . somehow we ended up with three pathways through the code, first
we had one, then two, and so on . . . there was duplication among the three, but also
separate pieces to each one, that stuff was not isolated nicely . . . ”-P13 [ATDI-Q2]

Consolidated workarounds can become so embedded into an architecture that,
while their consequences is evident, it is no more worthwhile fixing them:“. . . at
this point . . . I think it’s been deemed too expensive at best to change that
[workaround], relative to the other business priorities we have.”-P7 [ATDI-Q3]

Re-inventing the Wheel. This type of ATD item refers to ad-hoc components
developed in-house, which are chosen over already available components with
similar functionalities (e.g., components available as open source software): “We
basically built our own thing . . . why would we build our own persistence library?
That doesn’t make sense! It’s just silly!” P11 [ATDI-Q4]

In addition to the resources required to implement already available solutions,
drawbacks include lower quality, additional maintenance, and lack of documenta-
tion: “We built our own thing . . . and now it’s hard to maintain. And now that
we have got to build on top of it, people are getting tired . . . ”-P8 [ATDI-Q5]

Ad hoc components are often chosen due to the perceived velocity of developing
a new component instead of getting accustomed to, and adapting, an existing
one. Individual drive of developers can influence this decision: “I thought to be
smarter, but I was not . . . in the long run, off-the-shelf solutions make people
faster in ramping up, even if you [just] have to adapt them.”-P3 [ATDI-Q6]

Source Code ATD. These are technical debt items strictly related to the
implementation of architectural components, and the relations between them.
As described by P13: “It was not really clear what was common and what was
separated between the modules . . . ”-P13 [ATDI-Q8]

This type of debt is often associated with poor separation of concerns, and/or
tightly coupled architectural components, lowering the overall software quality,
and directly affecting maintainability, modifiability, and adaptability: “For ex-
ample [consider] GDPR. They changed their policy, but our change was harder
because our code was just one big clog. Either we built on top of it, making
everything even harder, or we separated the pieces”-P8 [ATDI-Q9]

As further discussed in Section 3.5, this type of debt can be very expensive
to fix, and can even originate from systematic processes aimed at lowering ATD:

“We did a rewrite, and there the tight coupling started”-P13 [ATDI-Q10]

8 R. Verdecchia et al.

Architectural Lock-in. Related to the previous debt item, ATD can arise in
architectural components which, due to their deep embedment into a software
architecture, become very costly or even impossible to replace. This debt item is
often referenced as harmful if co-occurring with “dormant” ATD items [R-Q2],
or if the lock-in is of technological nature and unreliable (e.g., a third party has
complete ownership of a component and releases a breaking change). As described
by P1: “Sometimes you make something overly-specific, lock in completely into a
specific library or technology. It’s about how able your system is to change without
crystallizing in design choices dictated by the need of adaptation.”-P1 [ATDI-Q11]

New Context, Old Architecture. The last type of ATD item that emerged in
our theory regards not paying continuous effort in order to keep the architecture
of a software-intensive system aligned with its context, leading to an outdated
architecture. This item is mostly incurred inadvertently. Nevertheless, this item
can also be established deliberately, e.g., if driven by a business strategy: “The
business was to keep the costs down and make as much profit as possible, and after
8-10 years, the architecture was seriously showing its age . . . ”-P11 [ATDI-Q13]

3.2 Causes

In this section we discuss the four lead root causes of ATD items emerging from
the data gathered for our theory.

Time Pressure. Sixteen of the eighteen participants acknowledged time pressure
as the leading cause of ATD. P11 summarized: “In a product you need to hit
quarterly targets. Always on the treadmill, getting things done.”-P11 [CA-Q1]

As [R-Q1] evinces, under time pressure, architectural quality is often sacrificed.
This is a recurrent theme across participants. P2 noted: “When time becomes
tight, the first thing falling out is cleaning the architecture.”-P2 [CA-Q3]

The rationale behind the sacrifice of architectural quality for the sake of
velocity has to be attributed to the large amount of resources often involved in
architectural changes. As P13 stated: “One thing is always time, it’s quicker to
do feature development instead of doing architectural changes”,-P13 [CA-Q4]

From our data emerges that developers often accumulate ATD when dealing
with time pressure, under the (often incorrect) assumption that these shortcom-
ings will be dealt with at a later stage, as further detailed in Section 3.6.

Lack of Architectural Knowledge and Documentation. In the presence of
an unclear architecture, developers often introduce ATD (either inadvertently or
deliberately), in order to save the time that should be invested in understanding
comprehensively the architectural details.

This situation was described by many participants, including P12, who ex-
plained: “When you are working on an older system, you have lots of constraints
that you have to know about, and they are often not well documented, and so
you don’t know what things will come in your way, things that you have to work
around. So you are constantly extinguishing this little fires to figure out what is
going on, it takes a while . . . ”-P12 [CA-Q5]

In addition to the introduction of ATD, lack of architectural knowledge can
also lead to the obfuscation of ATD items, hindering the awareness of the ATD

Architectural Technical Debt: A Grounded Theory 9

present in a software system. P2 described: “There was no documentation or
tests. You never really understood if the code was intended like that, if it was
intended that way, or if it was just “I will get to this later”.”-P2 [CA-Q6]

Unsuitable Architectural Decision. ATD can arise by making inadvertently
an inappropriate architectural decision. Often, inadvertent design decisions lead-
ing to ATD are associated to the lack of context awareness, resulting in approxi-
mate and/or ill-calibrated trade-off analyses. P14 described one of such instances:

“At the time there were reasons that supported our decision, but later on. . . when
we think back at it, we see that we didn’t evaluate all the options.”-P14 [CA-Q7]

The magnitude of the ATD associated to unfitted decisions varied greatly
across participants, with some notable cases where the impact on a product was
enormous: “That decision didn’t seem important at the time, but we should have
considered the debt associated to it early on. For me, it was a lack in understanding
properly the context. . . the project eventually got killed.”-P14 [CA-Q8]

Human influence. Lastly, a recurrent concept of ATD cause regards the in-
fluence of human factors on ATD. Under this category fall aspects related to
personal drive, such as the example reported in [ATDI-Q7], including lack of
developer expertise and cognitive biases (notably the Dunning-Kruger effect [17]).

3.3 Consequences
In this section we document the 4 most prominent consequences of ATD

which emerged from our data.

Carrying Cost. Often, the consequences of ATD are not immediate, but rather
manifest themselves over time. Specifically, a recurrent consequence of ATD is
an incremental amount of resources which have to be dedicated over time in
maintaining and evolving software-intensive systems. As P1 described: “We did
not think hard enough of the [architectural] design, its cognitive overload, the
associated carrying costs, how much will take us on a continuous basis to work
on the system designed in this way.”-P1 [CO-Q1]

To mitigate the negative impact of the carrying on customer perception, some
participants reported to actively invest resources to make refactoring efforts
tangible to end-users: “While doing the refactoring, we also enhanced the front-
end, just to let the customer feel that the product is getting better.”-P4 [CO-Q3]

Implementing new functionality becomes challenging. Associated to the
carrying cost, ATD can also affect the ease with which new functionalities are
implemented. This is often associated with “blurred” responsibilities among
architectural components (cf. [ATDI-Q8]). In some cases, due to ATD, it can
become necessary to completely discard functionality implementation. Especially
telling are instances where such functionalities are characterized by a supposedly
trivial implementation. P6 recalled: “The new functionality, if you talked about
it, was so reasonable to do. . . but in reality. . . it was so difficult to implement in
the current architecture that we ended up scooping it out.”-P6 [CO-Q5]

In the most severe cases, architectures can become “crystallized”, i.e., ATD
hinders almost completely the implementation of new functionalities. One of
this rare cases was described by P4: “They [developers] could not even build new

10 R. Verdecchia et al.

features, because of the architectural debt they were facing. They put workaround
on workaround, and then they couldn’t implement new features”-P4 [CO-Q6]

Reduced Development Velocity. Related to the first two emerging conse-
quences, most participants described one of the main consequences of ATD as a
distinct loss of development velocity. This loss is in most cases associated to addi-
tional time required to understand the architecture, modify multiple components
when carrying out small changes, and fixing bugs which, due to ATD, are hard
to locate. P13 explained: “Development takes much more time than expected,
sometimes because you run into an unknown issue, and other times you just
cannot properly size the thing that you are working on, because the architecture is
much more complex then what you expected.”-P13 [CO-Q7]

Difficulties in carrying out parallel work. Due to poor separation of concerns
and tight coupling among architectural components, ATD can impact also the
ability to carry out parallel development. This is often occurring in the presence
of overloaded components, i.e., components encapsulating a big portion of the
business logic or data of a software intensive-system. P14 describes one of such
incidents as follows: “The module became very popular, we just kept building
features on it . . . and now it’s a bottleneck, because we have many teams working
on it at the same time, people are stepping on one another toes.”-P14 [CO-Q8]

3.4 Symptoms

Four types of symptoms, pointing to ATD items, emerged in our theory.

Recurrent Customer Issues. Among all symptoms of ATD, recurring customer
issues is the most apparent. As P3 explains: “The best indicator of all are customer
issues: if you have an area with lots of recurring customer issues, either the team
is garbage, or you have architectural issues.”-P3 [S-Q1].

With this symptom are often associated recurrent patches in the same area
of the code, pointing to an architectural problem, P9 describes: “There’s this
kind of hard to pin down feeling, when in order to meet some new need you are
like” “okay, it feels weird but I’ll patch it, and I’ll patch it again, and again. And
after a while, you realize that you’re kind of like. . . you’re playing whack-a-mole!
It can’t be that everything is an edge case!”-P9 [S-Q2]

High Number of Defects. As reported by many participants, a high number
of defects localized in a certain area of the code can indicate the presence of
an ATD item. P10 explained: “When you have a lot of bugs in an area of code,
that means: either that area is complex by itself, or there is some unmanaged
architectural complexity leading to that.”-S13 [S-Q3]

Performance issues. Performance issues which are hard to address can also
be a symptom of ATD. Commonly, performance issues caused by ATD are
either scalability issues, representing the inability of systems to scale due to
ATD, or performance stalls, i.e., performance bottleneck which cannot be solved
without architectural refactoring. P3 described this symptom as follows: “With
performance, if you can really just move it around but not solve it, that is an
indicator that you are doing something architecturally wrong.”-P3 [S-Q4]

Architectural Technical Debt: A Grounded Theory 11

“I don’t want to touch it”. This symptom of our theory deals with human
intuition and sensitivity. Rather than deriving from a systematic analysis, this
symptom represents the instinctual refrain of software developers to modify a
certain component in which ATD resides. R12 describes one of such instances,
associated with a “dormant” ATD item: “Developers will often tell you if some-
thing stinks, right? There is always something which is hard to work with, maybe
it’s a piece of code that no-one wants to touch, that’s a symptom! It might do its
job well, but no one wants to touch it!”-P12 [S-Q6]

3.5 Management Strategies

Six managements strategies to cope with ATD emerged from our data. We iden-
tified three types of management strategies, namely active, reactive, and passive.

Active management strategies. Active strategies are based on the acknowl-
edgment of the presence of ATD in a software system, and the development of a
plan to actively manage it. In the following we present the 3 active management
strategies emerging in our theory.

Boy scout rule. This management strategy borrows from the camping rule
“Always leave the campground cleaner than you found it”. Based on this metaphor,
developers pay back the debt in small incremental steps while carrying out other
development activities on a software component, such as new functionality
implementation or bug fixes. P1 described: “I generally advocate in “stealing
time”, when a component has bothered you enough, I would just say: fix it, and
do not tell anyone. If you are already working on that area of code, just take
some extra time to refactor it.”-P1 [MS-Q1]
This strategy is rarely applied. In fact, unlike other forms of TD, ATD is in most
cases hard, or even impossible, to be addressed in small increments.

Systematically dedicate time. This management strategy entails systematically
allocating time in order to repay the accumulated ATD. Most participants
described allocating a fixed percentage of development time per-sprint to refactor
ATD items. The most recurrent percentage of time dedicated to ATD refactoring
results to be between 20% and 30%, with the exception of P1 and P9, who
reported 10% and 50% respectively. P12 jokingly described allocating an entire
day per-sprint exclusively to ATD refactoring activities: “We have a Lannister
day, you know, because Lannisters always pay their debts. [laughs].”-P12 [MS-Q2]

Technical credit. This strategy regards the investment of resources to improve
architectural maintainability and evolvability prior to the emergence of ATD.
Specifically, this strategy aims at mitigating future ATD by proactively improv-
ing architectural elements which could slow down future development. Some
participants described this strategy from a theoretical standpoint. Nevertheless,
the common agreement is that, due to time pressure and uncertain pay-off, it is
hardly ever adopted. P3 explained: “You are spending time in trying to make
something perfect. When do you have that time for that? You do not get paid by
“I’ll make it evolvable”, you spend days or weeks in something that might not pay
off, who can afford that?”-P3 [MS-Q3]

12 R. Verdecchia et al.

Reactive management strategies. Reactive strategies entail that, while
the presence of ATD is acknowledged, its management is postponed until the
repayment becomes unavoidable (e.g., when ATD prevents the development of a
new feature). Two prominent reactive strategies emerged in our data, namely
opportunistic patching and major refactoring.

Opportunistic patching. This strategy, rather than aiming at resolving ATD,
deals with its occurrence by investing the minimum resources necessary to bypass
the limitations imposed by the ATD. This often results in small patches, or
temporary architectural workarounds, which build upon the existing ATD. As
described in [S-Q2], opportunistic patching rarely resolves the root cause of an
ATD item, but can nevertheless point to the underlying problem. P11 described
a similar situation: “It was architectural debt, but we were able to squeeze around
it by doing little incremental changes here and there, which did not touch the
architecture much. . . we were just kicking the can down the road. . . in retrospective
we were just patching, patching all the way.”-P11 [MS-Q4]

Major refactoring. Due to ATD severity, it can become necessary to methodically
eradicate it, even at the cost of sacrificing other development activities. This
constitutes a major undertaking, causing the loss of competitive advantage, and
the investment of a conspicuous amount of resources. This strategy includes
refactoring conducted by entire developer teams, or even complete rewrites of
a products. Due to the resources required, and its uncertain outcome, timing
this strategy is a complex problem. P11 explains: “You always have to overcome
this lump of “when is the right time?”. There is never a right time. You have to
decide when it is. It [ATD] has to reach a crest before you realize: “OK this is
enough now”, you bite the bullet, and try to do something about it.”-P11 [MS-Q5]

Passive management strategy. The passive management strategy, rather
than aiming to actively or passively resolve ATD, attempts to cope with it by
carrying out development activities by avoiding to address ATD items.

Neglect. Participants described strategies in which, while the negative impact of
the ATD of a system is evident, the cost of fixing it is not worth addressing it.
In such cases, development activities are carried out at a slower pace, embracing
the ATD, and building upon existing debt. “Sometimes you have a lot of edge
cases but the cost of. . . you know it’s bad, you know you don’t want to do it, you
know there’s a better way, but the better way isn’t worth it.”-P9 [MS-Q6]

3.6 Prioritization Strategies

In this section, we discuss our findings related to how the refactoring of
ATD items is prioritized w.r.t. other development activities, such as feature
development and bug fixes. Prioritization strategies guide management strategies
of active nature, as reactive and passive strategies respectively manage ATD only
when strictly necessary and not at all.

From our results emerged that often ATD is kept track of, e.g., by char-
acterizing backlog items according to the classification of Kruchten [15], i.e.,
by making a distinction between functional features, bug fixes, architectural

Architectural Technical Debt: A Grounded Theory 13

features, and technical debt. Nevertheless, while ATD items are often traced,
prioritizing their refactoring w.r.t. to other development activities does not follow
an established methodology. As P10 states: “We fear we do not have a scientific
method here. . . it is basically gut feeling. We do not have any research around
what needs to have the highest priority.”-P10 [PR-Q1]

This “gut feeling” has been a recurrent theme among participants on how
ATD is prioritized. Due to the difficulties associated with quantifying the impact
of ATD, practitioners do not adopt systematic prioritization approaches; rather,
they adopt informal ones, to balance their ATD refactoring activities with other
development activities (cf. [R-Q7]). P3 further clarifies this concept: “I would say,
find your balance, do the minimum necessary. It is not a science, it’s an art. Why
do large companies fail? Because at some point that balance is tilted.”-P3 [PR-Q2]

4 Related Work

As recommended by Glaserian GT principles [12], to mitigate confirmation
bias, we reviewed the related literature after building our theory. From the
inspection of the ATD corpus, we identified four studies related the closest to ours.

Martini et al. [23] present a multi-case study adopting some GT techniques,
while our investigation systematically applies the GT methodology. Accordingly,
the two works use different techniques for data collection, incident coding, and
results synthesis (cf. Section 2 of this study and Section 2 of [23]). Regarding
the results, [23] presents a taxonomy of ATD items and a model of their effects:
the specific ATD items are complementary to the ones emerging in our theory;
the effects are categorized into causes, phenomena, and extra activities and the
specific concepts resemble the categories cause and ATD management strategy
emerging in our theory, which in turn resulted in a richer number of categories
e.g., tool. Further, a previous work of the same authors [24] zooms into the
evolutionary nature of ATD and its accumulation and refactoring over time, e.g.,
the causes specific to accumulation. Our work is complementary by emphasizing
the theoretical structure underlying ATD instead. Overall, similarities and com-
plementarities are promising for a future comparative analysis between the results
of [23,24] and our substantive theory, with the ultimate goal of formulating a
formal theory [29] of ATD.

Besker et al. [4] conducted a systematic literature review to define a descriptive
model of ATD. By comparing the findings of such study with our theory, we
can observe a noticeable gap between the results of the two studies. In fact,
numerous aspects reported in the model of [4], such as ATD detection, ATD
identification, ATD measurement, ATD monitoring and related concepts, did not
emerge in our theory. Rather than attributing the absence of such concepts to
unsaturation, we conjecture that such divergence in results is due to the research
methodology followed. In fact, we can observe that the missing concepts are
related to ATD aspects which, while actively discussed in academic settings (e.g.
ATD identification [31]), did not yet get traction in industry (e.g., see [R-Q8]).
From this finding we can conclude that more action research is needed to bridge
the gap between studying ATD and dealing with it in practice.

14 R. Verdecchia et al.

Li et al. [19] present a set of architectural viewpoints and related metamodel
for documenting ATD. The viewpoints were constructed via an iterative process
driven by the stakeholder concerns on ATD. The viewpoint metamodel partially
overlaps with some categories of our theory. However, by focusing on documenting
ATD, it aims at the exhaustive characterization of ATD items. Differently, our the-
ory shifts the focus from documentation of ATD items specifics, to the phenomena
surrounding them, and as such, it is more encompassing, yet less detailed.

A broader review of the literature shows that the most studied type of
technical debt is source-code ATD [31] [18], such as ATD related to component
dependency [26] or modularity [20]. This typology of ATD emerged in our
theory as a specific concept of the ATD Item category, namely source-code ATD.
This category is also mentioned in Brooks’s popular book “The Mythical Man
Month” [6], where a recurrent theme is to plan to throw one away, i.e., designing
a system (and organization) by envisioning change, as it will eventually happen.
Moreover, the “workaround that stayed” ATD item is extensively discussed in
Fowler’s book titled “Refactoring: improving the design of existing code” [7], again
with a primary focus on TD at the source code level. The “re-inventing the wheel”
ATD item is instead discussed in Szyperski’s book [28], where design reuse is
advocated as the practice of sharing certain aspects of an approach across various
projects, thus avoiding to re-invent the wheel across projects and organizations.
The book also presents various techniques for addressing this ATD item, e.g.
using software libraries for sharing solution fragments, interaction and subsystem
architectures. Other kinds of ATD items, such as “compliance violations” have
been studied exclusively in narrower pockets of research [31] [18] [21], and are
mapped to our category “new context, old architecture”. In [22], Martini et al.
identified the information required to prioritize ATD. By comparing their findings
to our theory emerges again the current lack of awareness of research findings in
industrial contexts, as in our theory prioritization emerged as a mere “gut feeling”
(see Section 3.6). The literature further investigates other emerging categories,
such as TD management strategies [2], and the impact of TD on morale [8], but
does not systematically focus on the architectural level as we do.

Thanks to the adoption of the Glaserian GT method [12], our theory emerged
independently from prior theories and, as such, either confirms or adds to them.
This may pave the way for future works toward a joint formal theory [29].

5 Verifiability and Threats to Validity
We ensure the anonymity of our participants, their companies, and their col-

laborators. Hence, we keep confidential their identifying details, under the human
ethics guidelines governing this study. Accordingly, as customary in grounded
theory (e.g., [14]), the verifiability of our results should derive from the soundness
of the research method followed. Therefore, we report in Section 2 an in-depth
description of the method followed, and (within space constraints) we reference
as much as possible to direct quotes from our participants (albeit excerpted).

Our report demonstrates how the emerging theory fulfills the grounded theory
evaluation criteria [9], specifically: (i) our categories fit the underlying data, (ii)
the theory is able to work (i.e., explain ATD related phenomena), (iii) the theory

Architectural Technical Debt: A Grounded Theory 15

has relevance to the domain (i.e., development practices of large and long-lived
systems), and (iv) the theory is modifiable as new data appears.

As any grounded theory study, our investigation establishes a mid-range
substantive theory, i.e., a theory where elements belonging to the studied context
can be transferred to other contexts with similar characteristics. We hence do
not claim our theory to be absolute or final, and we highly welcome its extension,
e.g., by refining its granularity and adding detail to emerging concepts, or even
unveiling new concepts and categories that did not emerge in this investigation.

6 Conclusions
Our investigation presents structured insights into the challenges faced in

industrial settings when dealing with ATD. From our study emerged a set of
interrelated categories regarding ATD, leading to a cohesive theory of ATD that
connects its causes, consequences, symptoms, management strategies, and other
related phenomena. We made a deep-dive into each category, by grounding our
findings in the experience of knowledgeable software practitioners. Our theory
provides a solid empirical foundation which may benefit both (i) practitioners
aiming at a better understanding of the ATD they experience, and (ii) researchers
looking for a theoretical framework of how ATD is experienced in industrial
settings. Notably, among other results, from our investigation emerge a set of
symptoms, consequences, and management strategies on which future research,
methodologies, and tooling, can be based. A research avenue we find particularly
interesting exploring is the further study of ATD symptoms, with particular
emphasis on quantifiable ones, in order to determine which symptoms are best
suited as foundation for novel ATD identification and management techniques,
e.g. by leveraging the method presented in [30].

References
1. Adolph, S., Hall, W., Kruchten, P.: Using grounded theory to study the experience

of software development. Empirical Software Engineering 16(4), 487–513 (2011)
2. Alves, N., Mendes, T.S., de Mendonça, M.G., Sṕınola, R.O., Shull, F., Seaman,

C.: Identification and management of technical debt: A systematic mapping study.
Information and Software Technology 70, 100–121 (2016)

3. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing Technical Debt in
Software Engineering. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2016)

4. Besker, T., Martini, A., Bosch, J.: Managing architectural technical debt: A unified
model and systematic literature review. Journal of Systems and Software 135 (2018)

5. Bourque, P., Fairley, R.E., IEEE Computer Society: Guide to the software engi-
neering body of knowledge (2014)

6. Brooks Jr, F.P.: The mythical man-month (anniversary ed.), Addison-Wesley (1995)
7. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley

Professional (2018)
8. Ghanbari, H., Besker, T., Martini, A., Bosch, J.: Looking for peace of mind?:

manage your (technical) debt: an exploratory field study. In: ACM/IEEE EMSE
Symposium (2017)

9. Glaser, B.: Theoretical Sensitivity. Sociology Press (1978)
10. Glaser, B.: Basics of grounded theory analysis: Emergence vs forcing. Sociology

press (1992)

16 R. Verdecchia et al.

11. Glaser, B.: The Grounded Theory Perspective III: Theoretical Coding. Sociology
Press (2005)

12. Glaser, B., Strauss, A.: Discovery of grounded theory: Strategies for qualitative
research. Aldine (1967)

13. Glaser, B.G., Holton, J.: Remodeling grounded theory. In: Forum Qualitative
Sozialforschung/Forum: Qualitative Social Research. vol. 5 (2004)

14. Hoda, R., Noble, J.: Becoming agile: a grounded theory of agile transitions in
practice. In: International Conference on Software Engineering. IEEE Press (2017)

15. Kruchten, P.: What Colour Is Your Backlog? (2008), available Online: https:

//tinyurl.com/y6f7vhpx (Accessed 10th May 2020)
16. Kruchten, P., Nord, R., Ozkaya, I.: Technical debt: from metaphor to theory and

practice. IEEE Software 29(6), 18–21 (2012)
17. Kruger, J., Dunning, D.: Unskilled and unaware of it: how difficulties in recognizing

one’s own incompetence lead to inflated self-assessments. Journal of personality
and social psychology 77(6), 1121 (1999)

18. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. Journal of Systems and Software 101, 193–220 (2015)

19. Li, Z., Liang, P., Avgeriou, P.: Architecture viewpoints for documenting architectural
technical debt. In: Software Quality Assurance, pp. 85–132. Elsevier (2016)

20. Li, Z., Liang, P., Avgeriou, P., Guelfi, N., Ampatzoglou, A.: An empirical in-
vestigation of modularity metrics for indicating architectural technical debt. In:
International ACM Conference on Quality of software architectures (2014)

21. Martini, A., Bosch, J.: The danger of architectural technical debt: Contagious debt
and vicious circles. In: WICSA Conference. IEEE (2015)

22. Martini, A., Bosch, J.: Towards prioritizing architecture technical debt: information
needs of architects and product owners. In: Euromicro Conference on Software
Engineering and Advanced Applications. pp. 422–429. IEEE (2015)

23. Martini, A., Bosch, J.: On the interest of architectural technical debt: uncovering
the contagious debt phenomenon. Journal of Software: Evolution and Process (2017)

24. Martini, A., Bosch, J., Chaudron, M.: Investigating architectural technical debt
accumulation and refactoring over time: A multiple-case study. Information and
Software Technology 67, 237–253 (2015)

25. Oliver, D., Serovich, J., Mason, T.: Constraints and opportunities with interview
transcription: Towards reflection in qualitative research. Social forces p. 1273 (2005)

26. Roveda, R., Fontana, F.A., Pigazzini, I., Zanoni, M.: Towards an architectural
debt index. In: Euromicro Conference on Software Engineering and Advanced
Applications. IEEE (2018)

27. Stol, K.J., Ralph, P., Fitzgerald, B.: Grounded theory in software engineering
research: a critical review and guidelines. In: IEEE/ACM International Conference
on Software Engineering (2016)

28. Szyperski, C., Gruntz, D., Murer, S.: Component software: beyond object-oriented
programming. Pearson Education (2002)

29. Urquhart, C., Lehmann, H., Myers, M.D.: Putting the theory back into grounded
theory: guidelines for grounded theory studies in information systems. Information
systems journal 20(4), 357–381 (2010)

30. Verdecchia, R., Lago, P., Malavolta, I., Ozkaya, I.: ATDx: Building an Architectural
Technical Debt Index. In: ENASE Conference (2020)

31. Verdecchia, R., Malavolta, I., Lago, P.: Architectural Technical Debt Identification:
the Research Landscape. In: IEEE/ACM TechDebt Conference (2018)

https://tinyurl.com/y6f7vhpx
https://tinyurl.com/y6f7vhpx

	Architectural Technical Debt: A Grounded Theory

