
VU Research Portal

Searching for Embeddings in a Haystack

Joshi, Unmesh; Urbani, Jacopo

published in
WWW '20
2020

DOI (link to publisher)
10.1145/3366423.3380043

document version
Publisher's PDF, also known as Version of record

document license
Article 25fa Dutch Copyright Act

Link to publication in VU Research Portal

citation for published version (APA)
Joshi, U., & Urbani, J. (2020). Searching for Embeddings in a Haystack: Link Prediction on Knowledge Graphs
with Subgraph Pruning. In WWW '20: Proceedings of The Web Conference 2020 (pp. 2817-2823). Association
for Computing Machinery, Inc. https://doi.org/10.1145/3366423.3380043

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 14. Dec. 2021

https://doi.org/10.1145/3366423.3380043
https://research.vu.nl/en/publications/62e3eaf6-a578-4573-850e-03399defa371
https://doi.org/10.1145/3366423.3380043

Searching for Embeddings in a Haystack:
Link Prediction on Knowledge Graphs with Subgraph Pruning

Unmesh Joshi and Jacopo Urbani
{u.n.joshi,j.urbani}@vu.nl

Vrije Universiteit Amsterdam
The Netherlands

ABSTRACT
Embedding-based models of Knowledge Graphs (KGs) can be used
to predict the existence of missing links by ranking the entities
according to some likelihood scores. An exhaustive computation of
all likelihood scores is very expensive if the KG is large. To counter
this problem, we propose a technique to reduce the search space by
identifying smaller subsets of promising entities. Our technique first
creates embeddings of subgraphs using the embeddings from the
model. Then, it ranks the subgraphs with some proposed ranking
functions and considers only the entities in the top k subgraphs.
Our experiments show that our technique is able to reduce the
search space significantly while maintaining a good recall.

ACM Reference Format:
Unmesh Joshi and Jacopo Urbani. 2020. Searching for Embeddings in a
Haystack: Link Prediction on Knowledge Graphs with Subgraph Pruning.
In Proceedings of The Web Conference 2020 (WWW ’20), April 20–24, 2020,
Taipei, Taiwan. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3366423.3380043

1 INTRODUCTION
Knowledge Graphs (KGs) are a popular representation model to
publish factual knowledge on theWeb. KGs are crucial assets for en-
hancing various tasks like question answering [7], ontology-based
data access [5], task-oriented dialogs [19], data integration [16],
or named entity recognition [24]. Although the largest public KGs
contain billions of statements (e.g., Wikidata [26], DBpedia [18]),
they are still far from being complete.

The problem of completing the KGs is addressed by numerous
techniques which range from rule mining [11], extraction from
unstructured sources [15], or ontological reasoning [1]. In this pa-
per we consider embedding-based models [20], i.e., models where
the entities and relations in the KG are “embedded” into high-
dimensional numerical vectors (called embeddings) and potential
new links are identified by computing numerical likelihood scores.

Multiple studies have shown that these techniques return good
results for KG completion (see surveys at [4, 20]) but their applica-
tion to large KGs is problematic for two reasons. First, large KGs
can contain millions of entities and this leads to models with a
huge number of parameters. The second problem concerns the dis-
covery of links that complete partially-bounded statements like

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380043

(?,bornIn,UK), which can be seen as a query answering problem.
To solve this problem, embeddings are used to construct an numer-
ical representation of the query, which is then combined with the
embeddings of all entities to assign likelihood scores to each of
them. Then, only the entities with the best scores are considered
as potential answers. The problem is that if the KG has many en-
tities, then computing the likelihood score for every entity is too
expensive.

In this paper, we propose a technique that addresses these two
problems. The main idea is to restrict the ranking only to the subset
of the most promising entities. This subset is computed in two
stages: First, we compute the likelihood scores considering em-
beddings that represent sets of entities contained in star-shaped
subgraphs. We refer to these embeddings as subgraph embeddings.
Then, we compute the likelihood scores considering only the en-
tities in the top-ranked subgraphs. Since typically there are far
fewer subgraphs than the entities, computing the first ranking is
fast and does not require loading the entire model. Therefore, our
method introduces savings both in terms of runtime and resource
utilization.

Our technique can be applied with several existing embedding
models. We considered TransE [3], HolE [21], DistMult [30], and
ConvE [6], which are currently among the most popular models.
Our discussion focuses on three key aspects of our technique. Firstly,
we study the benefits with two representations of the subgraph
embeddings. The first representation views the subgraph embed-
ding as the average of the embeddings of its entities. The second
one constructs Gaussian embeddings, i.e., constructs a Gaussian
probability distribution for each subgraph. Secondly, we introduce
two different scoring functions to rank the best subgraphs. The first
function reuses the likelihood score of the embedding model while
the second one applies KL-divergence [17] between the distribution
of the known answers of the query and of the subgraph embed-
dings. Thirdly, we describe how we can determine automatically
the number of top k subgraphs using evidence in previous query
executions.

Our experiments show that our method can reduce the search
space to a fraction of all entities. In many cases this reduction does
not compromise the recall, i.e., known correct answers are not
ignored. In the best cases, the reduction can be up to one order
of magnitude while preserving a recall ≥ 50%. This makes our
method a valid alternative to perform an exhaustive ranking with
all entities.

All the code and models are available at the link https://github.
com/unmeshvrije/scikit-kge.

2817

https://doi.org/10.1145/3366423.3380043
https://doi.org/10.1145/3366423.3380043
https://doi.org/10.1145/3366423.3380043
https://github.com/unmeshvrije/scikit-kge
https://github.com/unmeshvrije/scikit-kge

WWW ’20, April 20–24, 2020, Taipei, Taiwan Unmesh Joshi and Jacopo Urbani

Model Score functionψ (h, r, t)
TransE [3] ∥ h + r − t ∥L
DistMult [30] h⊤Wr t
HolE [21] σ (r⊤(h⋆ t))
ConvE [6] σ (nn(h, r) · t)

Table 1: Score functions with h, r, t ∈ Rd ,Wr is a diagonal matrix ∈ Rd×d ,⋆
is circular correlation, nn is 2D convolution. L is the L1 or L2 norms

2 PRELIMINARIES
We view a KG as a directed labeled graph K = (V, E,R) where
V is a set of nodes, E is a set of edges, and R is a set of named
relations. We denote each edge in E as a triple (h, r , t) where h
(head) is the outgoing node, t (tail) is the incoming one, and r ∈ R

(relation name) is the label of the edge. Intuitively, nodes represent
entities while edges indicate semantic relations between them, e.g.,
(London, capitalO f ,UK). The set of triples is divided into three
sets: training (Etrain), validation (Eval) and test (Etest).

An embedding is a vector in Rd with d > 0. We use boldface
fonts to denote them, i.e., we write e and r to refer to the vectors
associated with the entity e and the relation r respectively. Amodel
is a set of embeddings. To learn a model, techniques like TransE,
ConvE, etc. define a score function ψ (h, r, t) to compute the likeli-
hood that (h, r , t) is true and then use it to specify a loss function
(e.g., pairwise hinge loss [3], binary cross entropy [6]) that should
be minimized during training. Table 1 shows the score functions of
the models that we considered in this paper.

Once the embeddings are trained, they can be used for tasks like
link prediction. The goal of link prediction is to predict the head or
the tail entities given the relation and the other entity. For instance,
if r and t are given, then the goal is to predict the correct h, which
can also be seen as answering a query of the form (?, r , t). This can
be done by computing the score function for r and t and any other
entity e and use it as a likelihood score that e is an answer.

Computing the likelihood score for every entity can be computa-
tionally expensive. The goal of our technique is to reduce this cost
with an approximate ranking. This problem can also be seen as a
k-nearest neighbour (kNN) search problem. Given an embedding
as input, the goal of a kNN technique is to find the top k embed-
dings which are closest according to a distance function. In our
evaluation, we will compare the performance of our method against
IVFADC [13], one state-of-the-art technique of this kind.

3 APPROACH
Overview. We propose a two-stage approach to speed up link pre-
diction. In the first stage, we create embeddings of the subgraphs.
In the second stage, we rank the subgraphs based on the likelihood
scores between the embedding of the query and subgraph embed-
dings. Optionally, a third stage can be applied to compute a suitable
value of k to select the top k subgraphs.

Example 3.1. Consider the queryQ = (?,bornIn,UK) in Figure 1.
It is likely that answers for this query are persons that are members
of the UK parliament, or persons who work in London. These are
entities contained in star-shaped subgraphs rooted in the entities
UK_Parliament and London respectively. It is much less likely that
an answer can be found in a subgraph that contains vehicles. First,
our approach uses the embeddings of the people who are members

Query: <?,bornIn,UK>

Knowledge Graph

Q ≈ n

Q ≈ m << n

Standard Approach

Our Approach<?,partOf,UK_Parliament>

<?,workIn,London>

<?,isA,Car>

Figure 1: Overview of our approach. V is the number of en-
tities in K ,U is the number of subgraphs

of the UK Parliament to construct a subgraph embedding for the
subgraph rooted at UK Parliament. Similarly, it creates subgraph
embeddings for other subgraphs. Then, it ranks the likelihood scores
computed using these embeddings and the query to identify the
top k subgraphs that most likely contain answers for the query.

Creation of Subgraph Embeddings (First stage). We use sub-
graphs to identify groups of similar entities. In principle, ourmethod
can be applied with any type of subgraph, provided that we can
construct an embedding for it. In this paper, we consider only star-
shaped subgraphs which are formed by sets of entities that share a
common neighbor with a fixed relation. The reason for this restric-
tion is that the similarity criterion in such subgraphs is naturally
defined by the shared neighbor. For instance, all entities which
share a connection to the entity London with the relation worksIn
are similar to each other precisely because they all work in London.
We distinguish two types of subgraphs: The ones which have an
outgoing edge to the common neighbour and the ones that have
an incoming one.

Definition 3.2. The outgoing subgraph rooted at entity e and
relation r is defined as the set of entities {t | (e, r , t) ∈ Etrain }, i.e.,
the set of entities which are connected to e with an incoming arc
with label r . Likewise, an incoming subgraph rooted at e and r is
the set {t | (t , r , e) ∈ Etrain }

Since our goal is to reduce the search space for potential answers,
we ignore subgraphs that are too small to lead to a significant
reduction. To this end, we introduce a threshold value τ and ignore
all subgraphs with less than τ entities.

In order to compute the subgraph embeddings, we rely on an
external model that computes the embeddings of the entities. We
refer to this model as the embedding model. In this paper, we consid-
ered four methods (TransE, HolE, DistMult, ConvE) but we believe
that our approach can also be used with other models. Note that
the embedding model provides not only the entity embeddings but
also the score functions to determine the similarity between them.

Given the embeddings provided by the embedding model, we
consider two approaches for constructing the subgraph embed-
dings. The first approach computes the subgraph embedding as the
average of embeddings of the members of the subgraph. That is,
given a subgraph S , the corresponding embedding Sµ is computed

2818

Searching for Embeddings in a Haystack WWW ’20, April 20–24, 2020, Taipei, Taiwan

as

Sµ =
1
|S |

∑
e ∈S

e (1)

With this method, the subgraph is embedded as a single “point”
in the high-dimensional space, but the position is sensible to out-
liers as it is computed with the average. To counter this problem,
the second approach represents the subgraphs using Gaussian em-
beddings [10, 25] so that they are no longer represented by single
points but rather as areas where the subgraphs are more or less
likely to be located. The idea behind Gaussian embeddings is to
represent each symbol as a multi-dimensional Gaussian probability
distribution. The probability distribution determines the likelihood
that the symbol is positioned at certain coordinates. This likelihood
is high around the average but diminishes as we move away with
the rate defined in the normal distribution.

With this method, every subgraph is defined by an average and
variance embeddings, i.e., a tuple ⟨Sµ , Sσ ⟩. The average embedding
Sµ is computed with Equation 1. Each element Sσ [i] of the variance
embeddings Sσ is computed as

Sσ [i] =
|S |∑
j=1

(ej[i] − Sµ [i])2

|S | − 1
(2)

where 1 ≤ i ≤ d . Note that in (2) we divide by |S | − 1 instead of |S |
following Bessel’s correction [28].

Ranking Subgraph Embeddings (Second stage). After we com-
puted the embeddings of all subgraphs with more than τ entities,
our system is ready to perform link prediction. Let us consider an
input query q of the form (?, r , e) where r ∈ R, e ∈ V , and U is
the set of all subgraphs that we extracted from K . Moreover, let
us assume that there exists an ideal KG K ′ ⊇ K which contains
all true facts over V and R, and let A = {e ′ | (e ′, r , e) ∈ K ′} be
the set of all admissible answers for q (the case for q = (e, r , ?) is
analogous).

Our goal is to rank the entities in a list ρ = ⟨e1, . . . , en⟩ that con-
tains exactly the entities inA. If we rank all the entity embeddings,
then we obtain an approximate ρ ′ where n = |V| and possibly not
all the first entities in ρ ′ are inA. Since we are not interested in the
answers not in A, we would like to rank as few entities as possible
without excluding the ones in A. In other words, our objective is
to compute ρ such that: 1) n is as close as possible to |A| and 2) ρ
contains as many entities in A as possible.

We use the subgraph embeddings to achieve our goal. First, we
create an embedding q of query q as it is defined by the embed-
ding model. Then, we compute the likelihood scores between q and
the embeddings of the subgraphs. The computation of the likeli-
hood scores depends on the representation used for the subgraphs.
We use the functions scoreµ and scorekl , defined below, when the
subgraphs are computed as average and Gaussian embeddings re-
spectively.

Score scoreµ . If we use the subgraph embeddings computed as the
average of the subgraph’s members (first approach), then we use the
score functionψ provided by the embedding model to compute the
likelihood score between the subgraph embedding and the query,
effectively treating the subgraph embeddings like any other entities.

Score scorekl . The score function ψ cannot be applied as-is on
Gaussian embeddings. In this case, we proceed as follows. First,
we consider up to t (default value is 50) known answers of q from
Etrain to construct a Gaussian embedding of the query. Then, we
use the Kullback–Leibler (KL) divergence [17] as scoring function.
This function measures to what extent the two distributions differ
from each other (a returned value of 0 means that the two distribu-
tions are equivalent). Therefore, it is a suitable measure to quantify
the likelihood score between the query and the subgraph.

More formally, scorekl for query q and subgraph S is defined as

scorekl (⟨qµ , qσ ⟩, ⟨Sµ , Sσ ⟩) =
d∑
i=1

(qµ [i] − Sµ [i])2 + (qσ [i]2)
2(Sσ [i])2

+

ln
√
Sσ [i]

qσ [i]
−
1
2
(3)

where ⟨qµ , qσ ⟩ and ⟨Sµ , Sσ ⟩ are the Gaussian embeddings of q and
S respectively.

Example 3.3. If we use TransE as embedding model and average
subgraph embeddings, then the embedding for q = (?, r , e) is q =
e − r. Then, for every subgraph S ∈ U, the likelihood score is
computed as:

scoreµ (q, Sµ) =∥ q − Sµ ∥L (4)

The ranking depends on a parameter k which determines the
number of the top subgraphs that should be considered. Higher
values of k will lead to higher recalls since they increase the chance
that more entities are included. The downside is that the runtime
will also increase. Lower values of k will have the opposite effect.
Computing k Dynamically (Optional third stage). Finding an
optimal value for k might not be trivial. We propose the following
procedure to dynamically compute such a value. For a given q,
we select all known answers to q from Etrain ∪ Eval . Then, we
compute the position of the first subgraphs that contain known
answers and take the maximum value (up to a maximum threshold
value of 50% of |U|). If there is no subgraph that contains the
answer, or there are no answers for q in Etrain ∪Eval , then we set
k = max(10, 0.1 × |U|), i.e., we set k equal to 10% of the number of
subgraphs with a minimum value of 10 if there are fewer than 100
subgraphs.

4 EVALUATION
Datasets. We considered LUBM [9], a well-known benchmark tool
and three popular real-world KGs: a subset of YAGO [12], a subset
of Freebase, andWikidata [26]. We chose LUBM and YAGO because
they are sparse KGs, thus are more challenging inputs [22], while
Wikidata is a popular large KG. We used the subset FB15K-237 of
Freebase, which is used in several related publications [6]. We used
the same subsets of LUBM, YAGO as [22]. We used the April 2019
version of Wikidata (truthy statements) from the official repository.
Figure 3d contains statistics about each dataset.
Model training. We split each KG in the train / validation / test
(98%/1%/1%) subsets, as usual. To create the models, we consid-
ered TransE (model parameters: Adagrad [8], embedding size (d)

2819

WWW ’20, April 20–24, 2020, Taipei, Taiwan Unmesh Joshi and Jacopo Urbani

Recall (Head)

LUBM TransE

80

60

40

20

LUBM HolELUBM TransE

80

60

40

20

LUBM DISTMULTLUBM TransE

80

60

40

20

Recall (Tail)

LUBM TransE

80

60

40

20

LUBM ConvE

YAGO TransE

LUBM TransE

80

60

40

20

LUBM ConvE

YAGO HolE

LUBM TransE

80

60

40

20

LUBM ConvE

YAGO DISTMULT

LUBM TransE

80

60

40

20

LUBM ConvE

YAGO ConvE

LUBM TransE

80

60

40

20

LUBM ConvE

adn adn adn adn adn

FB15K-237 TransE

LUBM TransE

80

60

40

20

LUBM ConvE

Dyn10%5%105
a d n a d n a d n a d n a d n

FB15K-237 HolE

LUBM TransE

80

60

40

20

LUBM ConvE

X-axis : TopK Vs Y-axis : Recall

Dyn10%5%105
a d n a d n a d n a d n a d n

FB15K-237 DISTMULT

LUBM TransE

80

60

40

20

LUBM ConvE

X-axis : TopK Vs Y-axis : Recall

Dyn10%5%105
adn adn adn adn adn

FB15K-237 ConvE

LUBM TransE

80

60

40

20

LUBM ConvE

X-axis : TopK Vs Y-axis : Recall

Dyn10%5%105

(a) Recalls (higher the better)

Mean Rank (Head)

LUBM TransE

100

10

100

10

100

10

100

10

100

10

100

10

1000

100

10

1000

100

10

1000

100

10

YAGO TransELUBM TransE

100

10

100

10

100

10

100

10

100

10

100

10

1000

100

10

1000

100

10

1000

100

10

Mean Rank (Tail)

LUBM TransE

100

10

100

10

100

10

100

10

100

10

100

10

1000

100

10

1000

100

10

1000

100

10

FB15K-237 TransE

LUBM HolE

LUBM TransE

100

10

100

10

100

10

100

10

100

10

100

10

1000

100

10

1000

100

10

1000

100

10

FB15K-237 TransE

YAGO HolE

LUBM TransE

100

10

100

10

100

10

100

10

100

10

100

10

1000

100

10

1000

100

10

1000

100

10

FB15K-237 TransE

FB15K-237 HolE

LUBM TransE

100

10

100

10

100

10

100

10

100

10

100

10

1000

100

10

1000

100

10

1000

100

10

FB15K-237 TransE

a d a d a d a d a d

LUBM DISTMULT

LUBM TransE

100

10

100

10

100

10

100

10

100

10

100

10

1000

100

10

1000

100

10

1000

100

10

FB15K-237 TransE

Dyn10%5%105
a d a d a d a d a d

YAGO DISTMULT

LUBM TransE

100

10

100

10

100

10

100

10

100

10

100

10

1000

100

10

1000

100

10

1000

100

10

FB15K-237 TransE

X-axis : TopK Vs Y-axis : Mean Rank

Dyn10%5%105
a d a d a d a d a d

FB15K-237 DISTMULT

LUBM TransE

100

10

100

10

100

10

100

10

100

10

100

10

1000

100

10

1000

100

10

1000

100

10

FB15K-237 TransE

X-axis : TopK Vs Y-axis : Mean Rank

Dyn10%5%105

(b) Mean Ranks (lower the better)

%Reduction (Head) %Reduction (Tail)

80

60

40

20

TopK

LUBM TransE

80

60

40

20

TopK

LUBM TransE

YAGO TransE

a d a d a d

80

60

40

20

TopK

LUBM TransE

YAGO TransE

FB15K-237 TransE

Dyn10%5%

(c) % Reductions (higher the better)

Figure 2: Recall/Mean Rank/%Reduction on LUBM, YAGO, FB15K237 with “a”: scoreµ , “d”: scorekl , “n”: scoren

2820

Searching for Embeddings in a Haystack WWW ’20, April 20–24, 2020, Taipei, Taiwan

50, learning rate (lr) 0.1, margin (γ) 1, batch size 1000), Distmult
(Adagrad, d 50, lr 0.1, γ 1), HolE (Adagrad, d 50, lr 0.1, γ 0.2) and
ConvE (embedding dropout 0.3, feature map dropout 0.2, projection
layer dropout 0.3, d 50, batch size 128, lr 0.001 and label smoothing
0.1). These methods were used to learn the embeddings of all KGs
except Wikidata, which was used only with TransE.

All models were trained for up to 500 epochs. To train LUBM,
YAGO, and FB15K-237, we used a machine equipped with 64GB of
RAM and two 8-core CPU 2.4GHz. The training terminated in a few
hours in the longest case. The model of Wikidata is significantly
larger than the other three. Therefore, we used another machine
with 1TB of RAM and four 12-core Intel Xeon E5 CPUs. In this case,
training the model with TransE and 32 HOGWILD! [23] threads
took approximately 13 days.

We created subgraphs with different values of τ . The runtime
for the creation with LUBM, FB15K-237, and YAGO is within a few
seconds. For Wikidata, it took about five hours. Table 3d shows the
number of created subgraphs.

To compare our method against approximate kNN techniques,
we considered the state-of-the-art implementation of IVFADC [13]
provided in the library FAISS by Facebook [14]. This technique de-
pends on two important hyperparameters: The number of centroids
(c) and the number of bytes (b) per code. Recommended settings
are that the number of centroids is between 4

√
N and 16

√
N where

N is the number of entities while the bytes per code should be
between 5 and 25. We performed a grid search within these ranges
and obtained the best results with c = 4

√
N and b = 5.

Subgraph-based predictions. We performed a number of exper-
iments to evaluate the predictions with our method on the testsets
(Etest). For each triple, we performed a head (H) prediction (i.e., we
try to predict answers for queries of the form (?,x ,y)) and a tail (T)
prediction (i.e., queries of the form (x ,y, ?)). In these experiments,
we included all subgraphs created with τ ≥ 10.

We considered three metrics: Recall, %Reduction, and Mean Rank.
With the recall, we measure how many times the test answer (head
or tail) was among the selected subgraphs. This metric is important
because it indicates how many times our method did not exclude
true answers. We define %Reduction as 100 − |A|/|V| ∗ 100 where
A is the union of all entities in the selected subgraphs and V is
the set of all entities. This metric shows how effective our method
is in reducing the search space because a higher value indicates
that our method selected a much smaller fraction of all entities as
potential answers. The last metric measures the position of the first
subgraph where the answer was found. The ideal case would occur
when both recall and %reduction are maximum and the mean rank
is minimum, but higher values of k will favor the recall instead of
the %reduction.

We use the recall to compare the performance of our method
against IVFADC. To this end, for every query we configure IVFADC
to retrieve the top x similar entities where x is the number of entities
contained in the top k subgraphs. For instance, suppose that our
method is called to select the top three subgraphs, and for a given
query it selected the subgraphs д1, д2, д3 which contain x1,x2,x3
sets of entities respectively. Then, IVFADC is configured to retrieve
the top x = |x1 ∪ x2 ∪ x3 | entities. In this way, we compare fairly
because we check the recall with the same number of answers.

Figure 2a shows the recall with all models on LUBM, YAGO, and
FB15k-237. The recall is shown for head and tail predictions using
average and Gaussian embeddings (scoreµ and scorekl resp.), and
IVFADC (scoren). Our method used top 5, 10, 5%, 10% subgraphs or
the dynamically computed top k (“Dyn”) subgraphs.

We make three observations. First, the recall of the average sub-
graphs (scoreµ) is higher than the Gaussian embeddings and it
outperforms IVFADC in all cases, while the Gaussian embeddings
outperform it more than 80% of the cases. Second, the recall is poor if
we consider only ≤ 10 subgraphs, especially with FB15k-237 which
is the most challenging dataset. However, it increases significantly
after selecting >5% of subgraphs. Third, with LUBM the recall of
tail predictions is higher than the head predictions. The reason is
that LUBM is a highly regular dataset and there are fewer objects.
With the other two datasets, the recall of head predictions is higher
in 70% of the cases (YAGO) and 58% of the cases (FB15K-237).

Figure 2b reports the mean rank of the first subgraph that con-
tained the right answer (with τ=10). On LUBM and YAGO, scorekl
returns lower ranks than scoreµ in 86% and 76% of the cases re-
spectively. On FB15K-237, the two subgraph embeddings return
similar ranks. Note that the mean ranks using the dynamic strategy
are always higher than the mean ranks using the fixed k . This is
because a few high values of k that are selected dynamically can
drastically increase themean rank. From amore general perspective,
we observe that the KL-divergence used by the Gaussian subgraph
embeddings is more effective in discovering the subgraphs with
potential answers than the scoring function used with the average
subgraph embeddings (given the lower mean rank).

Finally, Figure 2c reports the %Reduction with TransE (the results
with the other methods are analogous). The figure shows that our
method is very effective in reducing the search space. For YAGO and
FB15K-237, the reduction is >50% for all cases. For LUBM, scoreµ
gives higher reduction than the scorekl in five out of six cases.
Moreover, we observe that the dynamic strategy returns the lowest
reduction rates. This result was expected since this procedure is
designed to give preference to recall than reduction.

Figures 3a, 3b, and 3c report the recall, %Reduction, and normal-
ized mean ranks using Wikidata and TransE (with a normalized
mean rank, 1 corresponds to the size of the selected subgraphs).
With this dataset, the number of subgraphs is significantly higher
and this makes the predictions more challenging. This leads to a
lower recall than with the other KGs, but it still remains above 50%
if we use our dynamic procedure for the top k. The reduction of
the search space is significant as it is >80%. The observed mean
ranks are higher than with the other datasets, which is a result that
follows from the fact that this is a much more challenging dataset.

Changing τ . Figure 3e shows how the recall and %Reduction are
affected when we consider more or fewer subgraphs on LUBM,
YAGO and FB15K-237 with TransE. If τ is too high, then there will
be only few subgraphs and our technique will not be effective. If τ
is too small, then there will be too many subgraphs and it will be
equally ineffective. A threshold value of 10 returns better recalls
but a higher value leads to better reductions. From our experiments,
it appears that τ = 10 is a good value for better recall, otherwise
τ = 50 returns better reductions (and thus faster runtimes).

2821

WWW ’20, April 20–24, 2020, Taipei, Taiwan Unmesh Joshi and Jacopo Urbani

 0

 20

 40

 60

 80

 100

a d a d a d a d

R
e
c
a
ll

Top K

Recall(H)
Recall(T)

Dyn40%25%10%

(a) Wikidata Recall

 0

 20

 40

 60

 80

 100

a d a d a d a d

%
 R

e
d
u
c
ti
o
n

Top K

%Reduction(H)
%Reduction(T)

Dyn40%25%10%

(b) Wikidata %Reduction

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

a d a d a d a d

M
e
a
n
 R

a
n
k

Top K

MR(H)
MR(T)

Dyn40%25%10%

(c)WikidataMeanRank (Normalized)

Dataset #Entities#Triples # Subgraphs
τ =10τ =50τ =100

LUBM 17K 67K 1218 28 27
YAGO 266K 551K 9.9K 965 321
Wikidata 148M 3.5B NA 1.5M NA
FB15K237 14K 298K 8.8K 1052 374

(d) Datasets and Subgraphs statistics

a d a d a d

Recall(H) Recall(T)

80

60

40

20

X-axis : Min Subgraph Size Vs % Y-axis : Recall/Reduction

LUBM TransE

1005010

a d a d a d

80

60

40

20

X-axis : Min Subgraph Size Vs % Y-axis : Recall/Reduction

LUBM TransE YAGO TransE

1005010

a d a d a d

%Red(H) %Red(T)

80

60

40

20

X-axis : Min Subgraph Size Vs % Y-axis : Recall/Reduction

LUBM TransE YAGO TransE FB15K-237 TransE

1005010

(e) Recalls and %Reductions with varying subgraph Size (τ)

KG All kNN Our approach
entities (IVFADC) k=top10% k=dynamic

LU (µ) 394ms 148ms 134ms 416ms
LU (KL) 5.8s 13.6s
FB23 (µ) 403ms 193ms 119ms 180ms
FB23 (KL) 7.4s 16.4s
YA (µ) 6.7s 2.4s 303ms 1.5s
YA (KL) 8.3s 14.7s

(f) Runtime of our approach vs. kNN and all entities
on 150 queries

Figure 3: (1) Experiments with Wikidata and varying τ with a: scoreµ , d: scorekl ; (2) Tables with statistics and Runtimes

Runtimes. Themetrics that we used so far have the advantage that
they are hardware-independent. We have also quantified the gain in
terms of runtime that would be saved if we use our method to rank
entities instead of considering all entities or IVFADC. The runtime
comprises the (1) computation of the likelihood scores between the
query and all the subgraphs, (2) ranking the subgraphs accordingly,
and (3) ranking the entities in the top k subgraphs. Figure 3f reports
the runtime needed for 150 random queries on FB15K-237, LUBM,
YAGO using TransE and our smaller machine. We considered all
three likelihood scores: scoreµ , scorekl , and scoren , k ≥10%, and
the “Dyn” strategy. From the table, we observe that the KL diver-
gence returns slower runtimes than IVFADC because the Equa-
tion 3 is much slower to compute than the other likelihood score
and this cancels the gain obtained by considering less entities. We
micro-benchmarked these runtimes and observed that while the
computation of scoreµ takes 200µsec, the computation of scorekl
takes 6000µsec. This makes scorekl worthwhile only if the aggre-
gation into subgraphs filters out some noise that would appear
if we rank all entities, or if the input contains subgraphs which
exclusion from the top k list yields a search space reduction that
compensates for the higher ranking cost. In general, we observe
that link prediction with the average-based embeddings is faster
than IVFADC and than considering all entities.

From the results reported in Figures 2 and 3, we conclude that our
method is able to reduce significantly the search space for relevant
embeddings without excessively compromise the recall. Changing
the number of top-k subgraphs leads to either a better recall or
reduction. The dynamic procedure that automatically selects k
appears to be a good compromise and lifts the user from the burden
of finding an optimal value for this parameter. With this technique,
average subgraph embeddings have a slight superior performance
than the Gaussian ones. Finally, we observe that the performance

of our method is not tied to a specific model. This suggests that it
is a general method that can be applied to even more embedding
models than the ones considered in this paper.

5 RELATEDWORK AND CONCLUSION

Related work. The usage of star-shaped subgraph embeddings
for KG completion was first proposed by Pal and Urbani [22]. In
contrast to our work, the method at [22] adds special subgraph
nodes to the original KG and then learns their embeddings like any
other nodes. The main limitation of [22] is that adding extra links
changes the topology of the graph and this affects the quality of
the embeddings. Our approach does not suffer from this limitation.

More recently, the work at [27] proposes to find approximate
answers to SPARQL queries using KG embeddings. This work is
similar to ours since it also creates subgraph embeddings. How-
ever, the context and challenges are different since the method
at [27] creates the embeddings on-the-fly for answering SPARQL
queries while we create “query-independent” embeddings for link
prediction.

Statistical relational learning methods have been applied to non-
labeled graphs as well. A survey is available at [4]. Some of these
methods create embeddings of subgraphs (e.g. [2, 29]) but the graphs
are unlabeled; thus they are easier to handle.

Conclusion. In this paper, we showed how aggregations of KG
embeddings in the form of subgraph embeddings can speed up
significantly the search of similar embeddings. Thus, they can be
used to perform link prediction on very large KGs. Moreover, our
technique is particularly useful if the hardware resources (or other
constraints) do not allow an extensive search that considers all
embeddings.

2822

Searching for Embeddings in a Haystack WWW ’20, April 20–24, 2020, Taipei, Taiwan

Our experiments on realistic KGs (YAGO, Freebase, Wikidata)
and benchmark dataset (LUBM) show that our technique outper-
forms k-nearest neighbor search and that it is able to significantly
reduce the number of most similar entities while maintaining a
good recall. Our results on Wikidata are particularly interesting
because, as far as we know, they show for the first time how an
embedding-based link prediction (TransE) can be applied to very
large KGs with billions of facts. This enables the application of
these techniques at a much larger scale than it is currently feasible.

It is interesting, as future work, to investigate whether there are
other types of subgraphs that can reduce the search space. Moreover,
our method returns, like all other similar methods, a ranked list
of potential candidate entities, but we still need a procedure to
make the final binary selection for link prediction. External sources
(or other inference methods) can play a role in this process, and
exploring such integration is another interesting topic for future
work.

REFERENCES
[1] Grigoris Antoniou, Sotiris Batsakis, Raghava Mutharaju, Jeff Z. Pan, Guilin Qi,

Ilias Tachmazidis, Jacopo Urbani, and Zhangquan Zhou. 2018. A survey of large-
scale reasoning on the Web of data. The Knowledge Engineering Review 33 (2018),
1–43.

[2] Antoine Bordes, Sumit Chopra, and Jason Weston. 2014. Question Answering
with Subgraph Embeddings. In Proceedings of EMNLP. ACL, Doha, Qatar, 615–620.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-
sana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-relational
Data. In Proceedings of NIPS. NIPS, Lake Tahoe, NV, USA, 2787–2795.

[4] H. Cai, V. W. Zheng, and K. C. Chang. 2018. A Comprehensive Survey of Graph
Embedding: Problems, Techniques, and Applications. IEEE Transactions on Knowl-
edge and Data Engineering 30, 9 (2018), 1616–1637.

[5] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
Riccardo Rosati, and Gestionale Antonio Ruberti. 2017. Ontology-Based Data
Access and Integration. Encyclopedia of Database Systems 2 (01 2017), 39–71.

[6] Tim Dettmers, Minervini Pasquale, Stenetorp Pontus, and Sebastian Riedel. 2018.
Convolutional 2D Knowledge Graph Embeddings. In Proceedings of AAAI. AAAI,
New Orleans, LA, USA, 1811–1818.

[7] Dennis Diefenbach, Vanessa Lopez, Kamal Singh, and Pierre Maret. 2018. Core
techniques of question answering systems over knowledge bases: a survey. Knowl-
edge and Information systems 55, 3 (2018), 529–569.

[8] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive Subgradient Methods
for Online Learning and Stochastic Optimization. The journal of Machine Learning
Research 12 (2011), 2121–2159.

[9] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. 2005. LUBM: A benchmark for
OWL knowledge base systems. Journal of Web Semantics 3, 2 (2005), 158–182.

[10] Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao. 2015. Learning to Represent
Knowledge Graphs with Gaussian Embedding. In Proceedings of CIKM. ACM,
Melbourne, Australia, 623–632.

[11] Vinh Thinh Ho, Daria Stepanova, Mohamed H. Gad-Elrab, Evgeny Kharlamov,
and Gerhard Weikum. 2018. Rule Learning from Knowledge Graphs Guided by

Embedding Models. In Proceedings of ISWC. Springer, Monterey, CA, USA, 72–90.
[12] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum.

2013. YAGO2: A spatially and temporally enhanced knowledge base from
Wikipedia. Artifificial Intelligence 194 (2013), 28–61.

[13] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. IEEE transactions on pattern analysis and machine
intelligence 33, 1 (2010), 117–128.

[14] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. CoRR abs/1702.08734 (2017), 1–12. arXiv:1702.08734 http:
//arxiv.org/abs/1702.08734

[15] Aidan Hogan Jose L. Martinez-Rodriguez and Ivan Lopez-Arevalo. 2018. Infor-
mation Extraction meets the Semantic Web: A Survey. Semantic Web Journal
PrePress (2018), 1–81.

[16] Evgeny Kharlamov, Sebastian Brandt, Ernesto Jimenez-Ruiz, Yannis Kotidis, Stef-
fen Lamparter, Theofilos Mailis, Christian Neuenstadt, Özgür Özçep, Christoph
Pinkel, Christoforos Svingos, et al. 2016. Ontology-Based Integration of Stream-
ing and Static Relational Data with Optique. In Proceedings of SIGMOD. ACM,
San Francisco, CA, USA, 2109–2112.

[17] Solomon Kullback. 1978. Information Theory and Statistics. Dover Publications,
Mineola, NW, USA.

[18] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,
Sören Auer, and others. 2015. DBpedia–a large-scale, multilingual knowledge
base extracted from Wikipedia. Semantic Web 6, 2 (2015), 167–195.

[19] Andrea Madotto, Chien-ShengWu, and Pascale Fung. 2018. Mem2Seq: Effectively
Incorporating Knowledge Bases into End-to-End Task-Oriented Dialog Systems.
In Proceedings of ACL. ACL, Melbourne, Australia, 1468–1478.

[20] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. 2016. A Review of Relational
Machine Learning for Knowledge Graphs. Proc. IEEE 104, 1 (2016), 11–33.

[21] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. 2016. Holographic
Embeddings of Knowledge Graphs. In Proceedings of AAAI. AAAI, Phoenix, AR,
USA, 1955–1961.

[22] Soumajit Pal and Jacopo Urbani. 2017. Enhancing Knowledge Graph Completion
By Embedding Correlations. In Proceedings of CIKM. ACM, Singapore, Singapore,
2247–2250.

[23] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. HOG-
WILD!: A Lock-free Approach to Parallelizing Stochastic Gradient Descent. In
Proceedings of NIPS. NIPS, Granada, Spain, 693–701.

[24] Dominic Seyler, Tatiana Dembelova, Luciano Del Corro, Johannes Hoffart, and
Gerhard Weikum. 2018. A Study of the Importance of External Knowledge in
the Named Entity Recognition Task. In Proceedings of ACL. ACL, Melbourne,
Australia, 241–246.

[25] Luke Vilnis and Andrew McCallum. 2014. Word Representations via Gaussian
Embedding. arXiv preprint arXiv:1412.6623 1412 (2014).

[26] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: a free collaborative
knowledge base. Commun. ACM 57, 10 (2014), 78–85.

[27] Meng Wang, Ruijie Wang, Jun Liu, Yihe Chen, Lei Zhang, and Guilin Qi. 2018.
Towards Empty Answers in SPARQL: Approximating Querying with RDF Em-
bedding. In Proceedings of ISWC. Springer, Monterey, CA, USA, 513–529.

[28] Reichmann W.J. 1961. Use and Abuse of Statistics. Pelican, Oxford, UK. 320–321
pages.

[29] Pinar Yanardag and S.V.N. Vishwanathan. 2015. Deep Graph Kernels. In Proceed-
ings of KDD. KDD, Sydney, NSW, Australia, 1365–1374.

[30] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Em-
bedding Entities and Relations for Learning and Inference in Knowledge Bases.
In Proceedings of ICLR. ICLR, San Diego, CA, USA.

2823

http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/1702.08734

	Abstract
	1 Introduction
	2 Preliminaries
	3 Approach
	4 Evaluation
	5 Related Work And Conclusion
	References

