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a b s t r a c t 

We model the work of a front-line service worker as a queueing system. The server interacts with cus- 

tomers in a multi-stage process with random durations. Some stages require an interaction between 

server and customer, while other stages are performed by the customer as a self-service task or with 

the help of another resource. Random arrivals by customers at the beginning and during an encounter 

create random lengths of idle time in the work of the server (breaks and interludes respectively). The 

server considers treatment of an infinite amount of back-office tasks, or tasks that do not require interac- 

tion with the customer, during these idle times. We consider an optimal control problem for the server’s 

work. The main question we explore is whether to use the interludes in service encounters for treating 

back-office, when the latter incur switching times. Under certain operating environments, working on 

back-office during interludes is shown to be valuable. Switching times play a critical role in the optimal 

control of the server’s work, at times leading the server to prefer remaining idle during breaks and inter- 

ludes, instead of working on back-office, and at others to continue back-office in the presence of waiting 

customers. The optimal policy for use of the interludes is one with multiple thresholds depending on 

both the customers queueing for service, and the ones who are in-service. We illustrate that in settings 

with multiple interludes in an encounter, if at all, the back-office work should be concentrated on fewer, 

longer and later interludes. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

c  

t  

s  

c  

c  

i  

w  

b  

a  

u  

o  

c  

a  

e  
1. Introduction 

In front-office service processes the customer is present dur-

ing production and delivery and may take an active role as

a co-producer. Such services require multiple phases of service

employee-customer interactions and are labeled as service encoun-

ters. The focus of this paper is the work of the front-office ser-

vice employee (the focal service worker) in such a service en-

counter. In some settings, these service encounters are called cases,

and the front-office service employee is known as a case manager.

Phases of the service encounter that are not performed by the fo-

cal worker are not explicitly modeled and are characterized as a

delay with random duration in the focal employee’s work. These

delays, that occur during an ongoing service encounter while the
∗ Corresponding author. 
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ustomer is away for an offline task, are labelled as interludes for

he front-office server. Each new customer arrival generates a new

ervice encounter. The random duration during which there are no

ustomers present in the system is labelled as a break in the fo-

al employee’s work. During times when the focal worker is not

nteracting with customers, i.e. during interludes and breaks, the

orker can choose to remain idle or work on other tasks that can

e performed without the presence of a customer. The latter tasks

re known as back-office tasks and are expected to have lower

rgency compared to the front-office. Alternating between front-

ffice and back-office tasks requires a switching time for the fo-

al server. In such a setting, the goal of this paper is to formulate

nd analyze the optimal control problem for the focal server’ work,

xploring the use of interludes and breaks to perform back-office

asks when these incur switching times. 

The simplest such system is one where the front-office service

orker is an investigator. In an after-sales technical service cen-

er, a customer with a repair need may report a problem to an

nvestigator, perform several tests on the item as suggested by this

https://doi.org/10.1016/j.ejor.2020.04.048
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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erver in self-service mode, report back on the results of these to

he investigator to obtain a suggestion regarding next steps. At an

nsurance firm or bank branch, the customer who wants to buy

 product makes a request with the focal server, then completes

equested documentation, subsequently coming back to the inves-

igator to conclude the application process. Both of these exam-

les can be characterized by a three-stage process where the first

nd last stages are with the focal server, and the second stage con-

ists of an external delay (an interlude) that involves either a self-

ervice step, or another task performed by other resources. Dobson,

ezcan, and Tilson (2013) provide an example from an emergency

epartment (ED) for such a three-stage process. An investigator

ho is an ED physician examines the patient, then tests necessary

or diagnosis are performed by a back-office, and the patient re-

urns to the physician in stage three to conclude the investigation.

n other settings, processes may be more complex involving more

han three stages. For example, an audit process consists of sev-

ral interactions between a client and the focal server, while other

ervers will provide required validations between steps. Similarly,

 general practitioner (the focal server) may have several interac-

ions with a patient, interrupted by tests or imaging performed be-

ween visits. In all of these examples, the focal server has a choice

etween remaining idle, starting a new service encounter, or per-

orming some back-office tasks during interludes and breaks be-

ween customers. For instance, in the after-sales service center the

erver may perform some routine paper work while the customer

s away, and in the insurance firm the server may work on inves-

igations during such interludes. The general practitioner may be

riting reports concerning other patients. 

The existence of switching times when multitasking between

wo types of distinct tasks is well documented in the behavioral

iterature. First, multitasking or working on several tasks at a time

ctually means working on different tasks by alternation instead

f working on them strictly at the same time. Simultaneity is not

fficient for humans, as it can create interferences between jobs

 Gladstones, Regan, & Lee, 1989 ), and can lead to mistakes ( Lohr,

0 07; Rosen, 20 08 ). Yet alternation induces inefficiency and time

oss related to switching between tasks Rosen (2008) . Minimizing

uch losses requires the limitation to alternation between at most

wo distinct tasks ( Charron & Koechlin, 2010; Dux et al., 2009 ). In

his paper, our main motivation is to study the role of switching

imes when alternating between front-office and back-office tasks

n the work of a front-office service worker. Front-office tasks are

onsidered to be of higher urgency relative to back-office tasks due

o the presence of the customer. The server’s multitasking control

roblem can be formulated as one that tries to maximize the pro-

ortion of time spent on back-office tasks while respecting some

ervice level on the waiting times of front-office tasks. More pre-

isely, the question we wish to analyze is how to use the interludes

nd breaks in service: by remaining idle and thus ready for the

ustomer, by initiating the service of new customers, or by making

se of these times to work on back-office tasks at the expense of

ncurring switching times to start and then to return to the cus-

omer task? 

One way of avoiding switching times, while keeping the server

usy, is to have the server start on a new task of similar nature.

n the service front-office context, this corresponds to starting the

ervice of a new customer during an interlude. As the front-office

erver initiates new service encounters during interlude times, sev-

ral customers will be in the system at different stages of their

ervice encounter. The number of customers in the system may be

nrestricted in settings where the customer performs self-service

asks during interlude times. In other systems, managers may im-

ose a limit on the number of customers that are allowed to be

imultaneously in service to avoid in-service waits or other disrup-

ions. This limit is called a caseload. Examples of such systems can
e a contact center where servers manage multiple online chats

 Legros & Jouini, 2019 ), or an emergency department where physi-

ians treat multiple patients simultaneously ( Campello, Ingolfsson,

 Shumsky, 2017 ). While our main research question is how to

ake use of interludes in the presence of switching times between

ront and back-office tasks, we also explore the effect of an exoge-

ously determined caseload on this main problem. 

More generally, white-collar service work consists of multi-

tage customer-server interactions, where back-office tasks can be

ombined with customer service. Workflow systems enable the

anagement of such multitasking and render automated control

f such work viable. While the idea of optimally controlling the

ay such a server blends back-office tasks between customer en-

ounters has been studied in the context of call center blending

roblems, the combined problem of blending back-office work be-

ween as well as within service encounters has not been ana-

yzed before. The latter feature requires not just considering pre-

rocess waiting times but also in-process waiting times for cus-

omers as the server chooses between staying idle or working on

ack-office tasks. Switching times have not been considered in any

ront office-back office blending models before. 

Our analysis shows that using the interludes may make sense

n some operating environments, and further explores how this

hoice interacts with features such as the workload, task durations,

witching time durations, and caseload of the server. For three-

tage systems, we characterize the optimal policy via a Markov de-

ision process approach. Switching times play a critical role in the

ptimal control of the server’s work, at times leading the server

o prefer remaining idle during breaks and interludes, instead of

orking on back-office tasks, and at others to continue back-office

asks in the presence of waiting customers. For more general ser-

ice encounters, we focus on a simpler non-optimal policy where

he performance measures can be computed explicitly. Sensitivity

nalyses in the simpler policy demonstrate that blending should

rst be undertaken during breaks and only then attempted dur-

ng interludes. Our analysis also reveals that the interlude dura-

ion should not be artificially extended by continuing the work on

ack-office tasks while a customer wants to finish a last stage of

ervice. In addition, the direction of the swicthes from front-office

o back-office or back-office to front-office task has an influence. In

he presence of multiple interludes in an encounter, if at all, the

ack-office tasks should be concentrated on fewer, longer and later

nterludes. 

. Literature review 

Models of multitasking in queueing systems can be classified

nto three categories based on the way the server treats the tasks:

imultaneous treatment, blending treatment (treat one task at a

ime), and imbricated treatment (treat one task within the treat-

ent of another one). Simultaneous treatment is related to com-

uter multitasking in switching networks or processor sharing

ueues ( Gromoll, Robert, & Zwart, 2008; Stolyar, 2004 ). Human si-

ultaneous multitasking is rare and is typically done in the form

f alternating between tasks. 

The main idea in queue blending models is to determine ef-

cient scheduling policies for the treatment of urgent and non-

rgent jobs. As in this paper, the optimization problem in these

tudies consists of maximizing the time spent on non-urgent jobs

hile achieving a service level constraint on urgent ones. One im-

ortant difference in all of the queue blending models as com-

ared to our model assumptions is that the urgent tasks consist

f single stages and switching times between tasks are not consid-

red. Blending models have been widely studied in the context of

all centers with urgent inbound and non-urgent outbound calls.
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Models by Brandt and Brandt (1999) , Deslauriers, L’Ecuyer, Pichit-

lamken, Ingolfsson, and Avramidis (2007) evaluate performance in

such systems. Bhulai and Koole (2003) ; Gans and Zhou (2003) ;

Legros, Jouini, and Koole (2015) consider queue blending models

where the inbound jobs have a non-preemptive priority over the

outbound ones. They show that the optimal policy is a reserva-

tion threshold policy on the number of busy servers. Further ref-

erences on queue blending operations include Keblis and Chen

(2006) ; Pang and Perry (2014) ; Pichitlamken, Deslauriers, L’Ecuyer,

and Avramidis (2003) . Server’s reservation is also shown to be ef-

fective in our article when switching times between tasks are con-

sidered. Armony and Maglaras (2004) ; Legros, Jouini, and Koole

(2016) analyze optimal server scheduling policies in models with

a call-back option, which allows to transform an inbound call into

an outbound one. As in this paper, they show that optimal policies

are a function of the number of waiting inbound calls and have a

threshold form. 

Polling systems consider servers that alternate between sta-

tions. The objective in these studies is to determine the optimal

priority rules between stations to minimize the expected time

spent in the system or a more complex holding cost function.

These queueing models are also called reentrant lines and are

very complex to analyze ( Dai, Hasenbein, & Vate, 2004; Hasenbein,

1997; Koole & Righter, 1998; Yom-Tov & Mandelbaum, 2014 ). None

of these studies investigate the possibility to initiate non-urgent

tasks and most of them do not consider switches when moving

from one station to another. In Srinivasan and Gupta (1996) , a sys-

tem where different customer classes are served at different par-

allel stations, with a roving server who incurs a switching time

to switch from one station to another is considered. Their analy-

sis shows that it may be better from a work in-process minimiza-

tion perspective for the server to wait at a station even when there

are no waiting jobs at this station, rather than roving. In our set-

ting, the server moves between tandem service stations and a par-

allel back-office station, and customers may be waiting both to get

into service or to continue service at an in-process station, while

back-office tasks are infinite and always available. We show that

the server may choose to continue treating back-office tasks dur-

ing interludes when customers are waiting, or to remain idle dur-

ing these times despite the desire to treat back-office tasks. 

Without switches, in a multi-phase service process, Johri and

Kateiiakis (1988) show that it is optimal to keep on serving a cus-

tomer until service completion instead of initiating the service of

new customers, when the objective is to minimize the expected

time spent in the system. Our optimization problem differs from

theirs as we do not have the objective to minimize the time spent

in the system by high priority jobs. Our conclusion is therefore also

different; a strict priority for the oldest customer in the system

may not be optimal. Iravani, Posner, and Buzacott (1997) consider

a model with two phases of service, two queues, and no switch.

Using a Markov decision process approach, they derive the optimal

policy and show that it can be approximated by a triple-threshold

policy. The thresholds determine the states at which, it is preferred

to switch from the first to the second queue, it is preferred to

wait in the first queue, or it is preferred to switch back from the

second to the first queue. In a similar setting, with switches, we

also show that the optimal policy has a threshold nature and that

the switches from urgent to non-urgent jobs are done in different

states than the switches back from non-urgent to urgent jobs. In

the multi-server case, Andradóttir, Ayhan, and Down (2001) deter-

mine the contexts where it is optimal to spread the severs among

the different stations. With switches, Duenyas, Gupta, and Olsen

(1998) provide a partial characterization of the optimal policy. In

particular, as in our article, they show that the server should stay

at a given station until the number of customers at another station

exceeds a given threshold. 
Case-manager systems are an example of imbricated service.

ampello et al. (2017) study such systems where a case-manager

eals with the case of a customer that consists of a random num-

er of tasks, interspersed with so called external delays (similar

o interludes herein) during which the customer is away complet-

ng tasks elsewhere. The maximum number of customers that a

ase-manager takes on at a time is called the caseload. The paper

nvestigates the tradeoff between the wait by customers upon ar-

ival which is reduced with an increase in the caseload, and the in-

rocess wait of customers who come back from external delay and

nd their case-manager working on other customers’ cases which

s increasing in the caseload. In KC (2013) , multitasking in an emer-

ency department is measured by the number of patients simulta-

eously under care, thus resembling the caseload in Campello et al.

2017) . Increased caseload has a negative effect on quality in KC

2013) , while in Campello et al. (2017) increasing the caseload has

n effect on wait times. Dobson et al. (2013) consider a model for

n investigator, where again the investigator can take on new cus-

omers while an existing one is away. There is no switching time

or the investigator between customers, however customers who

emain in the system generate so called interruptions, which af-

ect the efficiency of the investigator. Chat service systems in con-

act centers are also a form of multitasking with imbricated ser-

ice, where it is assumed that a server can simultaneously treat

ifferent chats ( Cui & Tezcan, 2016; Shae et al., 2007; Tezcan &

hang, 2014 ), alternating between chats whenever the focal one

nters into an interlude. None of these papers consider the pos-

ibility of a different type of task, like the back-office tasks we

onsider. 

Another instance of multitasking with imbricated service is

ound in Gurvich and Van Mieghem (2017) between collabora-

ive and individual work for professional service workers. Work-

rs’ individual work is interrupted by collaborative work, which

equires the simultaneous presence of multiple workers. The in-

ividual tasks of Gurvich and Van Mieghem (2017) are like the

ack-office tasks in our setting. Collaborative tasks resemble the

ront-office tasks. While those that are labeled as cases of reach-

ng out by the server are different from front-office tasks in that

heir demand is driven by the server, those that are labeled as re-

ponding to collaborative requests are similar to front-office tasks

here the server needs to respond to customer requests arriv-

ng randomly. For this latter type, their arrivals are exogenous

nd require the presence of more than one party to be present.

n our model the two parties are the server and the customer,

hile in theirs it is two servers. Similar to our paper, Gurvich and

an Mieghem (2017) emphasize the importance of efficiency losses

reated by switching times between different types of tasks. Col-

aboration is also modeled in Gurvich and Van Mieghem (2014) ,

ho study networks where some activities require the simulta-

eous processing by multiple types of multitasking human re-

ources. Dobson, Lee, Sainathan, and Tilson (2012) consider a sys-

em with three tandem stations and two servers. Each server

erves at one station, however a third station in the middle rep-

esents a collaborative task where both servers have to be si-

ultaneously present. This model combines the tandem nature of

ur service encounter, with a collaborative task between servers.

hile we assume back-office tasks are infinite, here patient re-

uests are infinite so that arrivals are not random. There is no

witching time between tasks for the servers, however the need

o have both servers simultaneously present combined with ran-

om service times, induces the optimality of batching for the col-

aborative station. This resembles the queue state-dependent poli-

ies we find. In our setting, random customer returns from in-

erludes and the need for simultaneous presence of the customer

nd the server, combined with switching times creates a similar

ffect. 
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. Problem description and modeling 

We consider a single-server multitasking problem with high ur-

ency (HP) and low urgency (LP) jobs. HPs require the presence of

he customer (front-office), arrive over time and should be treated

uickly, whereas LPs do not require the presence of a waiting cus-

omer (back-office) and hence do not necessitate immediate treat-

ent. The HP treatment consists of a succession of working phases

nterrupted by interlude phases for the server. During interlude

hases, the server is not needed and can possibly work on another

ask. During working phases there is a direct interaction between

he HP in service and the server. No other task can be assigned to

he server at these moments. 

Model assumptions We model the server multitasking problem

s a single-server queueing system. The server we consider is re-

erred to as the focal server , and any other server is referred to as

 non-focal server . The arrival process of HP is Poisson with arrival

ate λ. If the server cannot serve an arriving HP, then the HP waits

pre-process) in a first-come-first-served (FCFS) infinite capacity

ueue called Queue 1. In its full generality, we model the service

ime of an HP by a succession of N ≥ 1 independent working and

nterlude phases, where working phases are generally distributed

nd interlude phases are exponentially distributed. The first and

he last phases are working phases (thus N is an odd number).

ith N = 1 , the service is in one single phase without interlude.

he investigator system, with a single interlude, corresponds to the

ase N = 3 . After its last phase of service, the HP leaves the sys-

em. All HPs are assumed to require the same number of service

hases. This restricts the model to settings where the service en-

ounters can be considered as relatively standardized in terms of

ervice phases needed per customer. Processes with standard op-

rating procedures would fall in this group. While going through

n interlude phase, the HP is routed to a non-focal resource which

s modeled as a random length of the interlude duration. Thus, our

odel does not explicitly characterize the non-focal resource. The

atter is modeled as though there is an infinite capacity with no

aiting or blocking due to the unavailability of this resource. Af-

er a random interlude time spent with this non-focal resource,

he HP directly continues its service if the focal server is avail-

ble. Otherwise, the HP waits (in-process) in another FCFS queue,

alled Queue 2, until the server becomes available. We consider a

ynamic state-dependent priority between Queue 1 and Queue 2

hich is optimized within the optimization Problem (1) defined

elow. 

In addition, we assume to have an infinite number of LPs that

re waiting to be treated. These tasks are independent from the

Ps and their service time distribution does not need to be spec-

fied. At any point in time, if the server is working on LP, she can

ecide to interrupt her work in order to serve an HP waiting in

ueue 1 or in Queue 2. Since HP and LP represent different types

f tasks, the server incurs a switching time in switching from LP

o HP. The switching time can be considered as a mental adjust-

ent time for the server, the time for the server to switch sys-

ems, or the time it takes to wrap-up the ongoing LP work. The

witching time duration is random and assumed to be exponen-

ially distributed with rate μS 1 
. 

When the server is working on HP during a working phase of

he service, the service cannot be preempted by any other jobs. At

he end of a working phase, the server can decide either to remain

dle, to serve another HP if there is one either in Queue 1 or in

ueue 2, or to serve an LP. If the server decides to work on LP,

hen there also exists a switching time from HP to LP. The switch-

ng time duration is random and assumed to be exponentially dis-

ributed with rate μS 2 
. For simplicity, we use the notation μS when

S 1 
= μS 2 

= μS . Note that during a switching time from HP to LP,

n HP may arrive at Queue 1 or at Queue 2. In this case, we as-
ume that the HP is directly served by the server without waiting

or the end of the switch. This is a simplifying assumption made

or tractability, and may not hold in some applications. 

For the focal server, we distinguish the periods of time where

he system is empty of HP; the server’s break , and the ones where

he server is not working on HP but at least one HP is with the

on-focal server; the interlude . In addition, some systems limit the

umber of HPs which have initiated their service. The maximal

umber of HPs either in service with the focal server, with the

on-focal server, or in Queue 2 is called the caseload . For instance,

ith caseload = 1 , the server is not allowed to initiate the service

f any HP until the HP currently in service has completely finished

ts service. In other words, with caseload = 1 , a strict reservation-

riority is given to Queue 2. We assume that the system param-

ters are such that the system is stable. The stability condition

an be obtained when the focal server does not initiate LPs. For

aseload = 1 , the stability condition corresponds to the one of an

/G/1 queue, where the expected service time includes the work-

ng phases and the interludes (see Section 5 ). The stability con-

ition for caseload = 1 is a sufficient condition for having stabil-

ty for caseload > 1. With infinite caseload, the system is work-

onserving and some results of the queueing literature may ap-

ly. For instance if working phases are exponentially distributed

ith rates μ1 , μ2 , ..., and, μn , a necessary condition for sta-

ility is λ
μ1 

+ 

λ
μ2 

+ · · · + 

λ
μn 

< 1 ( Dai & Weiss, 1996 ). Other refer-

nces for the stability of reentrant lines include Dai et al. (2004) ;

asenbein (1997) ; Koole and Righter (1998) ; Yom-Tov and Mandel-

aum (2014) . For finite caseload, the stability condition is complex

o determine as the system is not work-conserving. To the best of

ur knowledge, the literature on reentrant lines does not provide

tability conditions for this case. With exponential working phases,

e can determine the stability condition by the matrix geometric

echnique developed in Neuts (1981) . The idea is to compute the

ra f fic coefficient for the associated Quasi-birth-and-death process, 

nd, to determine the condition under which the infinitesimal gen-

rator matrix is positive recurrent. This condition will ensure the

xistence of the stationary regime. This method is however only

imited to small caseload values. For larger values of the caseload,

he system dimensionality may be too high to implement this ap-

roach. The model is depicted in Fig. 1 . 

The optimization problem To evaluate the performance measures

elated to LPs and HPs, we consider the random variables T and W

hich represent the proportion of time spent by the server on LP

nd the total waiting time in the two queues by an HP customer,

espectively. We are interested in the long-run expected values of

hese random variables; E ( T ) and E ( W ). More specifically, consider

n interval of time [0, t ] and denote by L ( t ) the total time spent

n LP by the server excluding the switching times. We define E ( T )

s E(T ) = lim 

t −→∞ 

L (t) 
t . Let us denote by A ( t ) the number of arrivals

uring [0, t ] and by W k the total waiting time of the k th cus-

omer in the system (i.e., the wait in Queue 1 and in Queue 2).

e then define E ( W ) as E(W ) = lim 

t −→∞ 

A (t) ∑ 

k =1 

W k 
A (t) 

. The quantity E ( W )

an be decomposed into the expected wait in Queue 1 (denoted

y E ( W 1 )) plus the expected wait in Queue 2 (denoted by E ( W 2 )),

(W ) = E(W 1 ) + E(W 2 ) . 

At any point in time, the server has to decide whether to re-

ain idle, to serve an HP, or to serve an LP in order to have an

fficient allocation of the time to front and back-office tasks. As

ustomers are actively waiting to be served, a waiting time con-

traint has to be met for HPs. LPs are non-urgent but are never-

heless valuable for the system, so the time spent to treat these

asks should be maximized. Having a service level constraint on

rgent tasks and maximizing the proportion of time spent on non-

rgent ones is consistent with the optimization problems encoun-
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Fig. 1. Model description. 
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tered in the queue blending literature ( Bhulai & Koole, 2003; Gans

& Zhou, 2003; Legros et al., 2015 ). We thus formulate the optimiza-

tion problem as: {
Maximize E(T ) 
subject to E(W ) ≤ w , 

(1)

where the expected waiting time service level threshold is w . A

solution to Problem (1) exists if we have E(W ) ≤ w when no LPs

are treated. For simplicity, we will refer to the expected proportion

of time spent on LP as the expected time spent on LP instead. We

choose to restrict the class of admissible policies to the class of

stationary policies which are non-idling in HPs, i.e. the server is

not allowed to idle if an HP is available for service. This assumption

is in line with typical service management practice. 

Because of the exponential assumptions for inter-arrival times

at Queue 1 and for interlude times with the non-focal server

(which corresponds to arrivals at Queue 2), if a decision is opti-

mal upon a service phase completion or an arrival instant, then the

same decision is also optimal later on and as long as the system

state does not change. This result is due to the memoryless prop-

erty of the exponential distribution. Although the server working

phases can be generally distributed, job preemption is not allowed

when the server is working on HP. Therefore, the decision instants

for the server are only upon the service phase completion times

and the arrival instants of HPs at Queue 1 or at Queue 2. 

Consider a decision instant where the server has just completed

the service phase of an HP and at least one HP is waiting in

Queue 1 or in Queue 2. The focal server has to choose between

scheduling an HP or an LP (or idling, but this is evidently subop-

timal). Giving priority to LPs and delaying HPs obviously leads to

higher waiting times. Delaying the processing of an LP job does

not change the performance for this class, as we are interested in

the long-term time spent by the server on these jobs. This intu-

itive argument implies that, when a server becomes idle and an

HP is waiting, it is optimal to serve this HP. Based on this intuitive

argument, we assume that the server gives priority to HPs after a

service phase completion of an HP and another HP is waiting. This

priority rule is consistent with similar optimization problems en-

countered in the queue blending literature ( Bhulai & Koole, 2003;

Legros et al., 2015 ). Moreover, during a switch from HP to LP if

an HP arrives at Queue 1 or at Queue 2, then this HP is directly

served. 

Hence, after the service phase completion of an HP, the decision

to treat LP can only be taken if there is no HP waiting in the sys-

tem or if Queue 2 is empty and the caseload is such that the server

is not allowed to start the service of an HP from Queue 1. In such
ases, the server can decide either to remain idle or to treat LP.

he value of remaining idle is to avoid any waste of time due to

witching times when an HP should be served. The value of serv-

ng LPs is to increase the time spent on these jobs. This decision

s complex and depends on the system state; the number of HPs

n Queue 1, the number of HPs with the non-focal server, and the

ervice progress of each HP while going through the interlude. 

Consider now a situation where the server is working on LP.

he next possible decision instants are those of HP arrivals at

ueue 1 or at Queue 2. Due to the switching time from LP to HP,

he server may not automatically interrupt the service of LP upon

n HP arrival at one of the queues. It may instead be beneficial to

ait until the congestion in one of the queues is sufficiently im-

ortant to consider the switch. Finally, if the server is in switch

rom LP to HP, an arrival at Queue 1 or at Queue 2 will not modify

he initial decision to treat an HP. 

In Fig. 2 , we summarize the decision actions discussed above.

he server’s optimal actions are state-dependent when working on

P at an arrival instant, or when an HP working phase has finished

nd no HP is waiting for service. The optimal policy is a function

f the number of HPs in Queue 1, in Queue 2, with the non-focal

erver, and the remaining service time distribution of each HP. This

akes it difficult to obtain. We therefore propose the following

nalyses to solve the optimization problem. 

1. Optimal Policy ( Section 4 ). We first focus on investigator sys-

tems with N = 1 and N = 3 , assuming exponential working

phases for the server, and allowing for a general caseload. Using

a Markov decision process (MDP) approach, we compute the

optimal policy and evaluate the impact of the caseload. 

2. Policy P ( Section 5 ). We then address the problem for ser-

vice encounters with multi-interludes ( N ≥ 3) and generally dis-

tributed working phases. We propose and analyze a heuristic

policy, labeled as Policy P, that is not state-dependent for the

use of the interludes. Such a policy also provides managerial

simplicity. Under Policy P, we derive performance measures in

closed-form, allowing us to further characterize the preference

for when to use the interludes for LP work. 

We end this section by a summary of the Notations used

hroughout the paper in Table 1 . 

. Analysis of the optimal policy for investigator systems 

In this section, we focus on solving Problem (1) . To this end, we

evelop a Markov decision process approach in Section 4.1 to de-

ermine the optimal policy. Next, in Section 4.2 , we consider spe-

ial cases for the system parameters where structural properties of



B. Legros, O. Jouini and O.Z. Ak ̧s in et al. / European Journal of Operational Research 287 (2020) 946–963 951 

Fig. 2. Decision actions. 
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he optimal policy can be proven. Finally, in Section 4.3 , we con-

uct a numerical study to understand the impact of the system pa-

ameters on the optimal policy. In order to define a Markov deci-

ion process for this system and to avoid dimensionality explosion,

e assume here that working phases are exponentially distributed,

nd that the number of interludes is at most one (i.e., N = 1 or

 = 3 ). 

.1. Markov decision process approach 

We consider the case N = 3 and formulate the problem via the

efinition of states, the transition structure and the possible ac-

ions. The simpler case N = 1 , can be easily deduced from the case

 = 3 . We denote by μ1 , μ2 , and μI , the exponential rates of the

rst working phase, the last one, and the interlude duration, re-

pectively and by c the caseload. Recall that μS 1 
and μS 2 

are de-

ned as the exponential rates for the switch from LP to HP and for

he switch from HP to LP, respectively. We define a state of the sys-

em by (�, � v ) , where � is the state of the server; and 

�
 v = (x, y, z) ,

or x , y , z ≥ 0, where x , y , and z are the number of HPs in Queue 1

nd in the first service phase, in Queue 2 and in the second ser-

ice phase, and with the non-focal server, respectively. The server

an be working on HP, idle and waiting for an HP, or be in switch

rom HP to LP. In these cases, the state of the server is denoted by

 and the server treats HP as long as an available HP is present

n Queue 1 or in Queue 2. Otherwise, the server can be dedicated

o LP or in switch from LP to HP. In these cases, the state of the

erver is denoted by L and the server is not allowed to treat HP

ven if there are HPs in Queue 1 or in Queue 2. 

We next describe the possible transitions and actions from a

iven state (�, � v ) , for �∈ { H , L } and 

�
 v ∈ N 

3 . We denote by � e i the

ector ( δi ,1 , δi ,2 , δi ,3 ) for i = 1 , 2 , 3 , where δi , j is the Kronecker

elta; δi, j = 1 if i = j, and δi, j = 0 otherwise. 

1. An arrival at Queue 1 with rate λ. The number of HPs in

Queue 1 and in the first service phase is increased by 1, which

changes the state to (�, � v + 

�
 e 1 ) . 

2. An arrival at Queue 2 with rate z μI . The number of HPs with

the non-focal server is reduced by 1 and the number of HPs in
Queue 2 or in the second phase of service is increased by 1.

This changes the state to (�, � v − �
 e 3 + 

�
 e 2 ) . 

3. A service phase completion can be decided either from Queue 1

or from Queue 2 with rate μ1 or μ2 , respectively. If � =
H, x > 0, y = 0 , and z < c , then the server serves an HP from

Queue 1. If y > 0 and either x = 0 or y + z = c, then the server

serves an HP from Queue 2. Finally, if x > 0, y > 0, and y + z < c,

then the server chooses the minimizing action between serv-

ing an HP from Queue 1 or from Queue 2. When a service

phase completion from Queue 1 occurs, the number of HPs

with the non-focal server is increased by 1 and the number

of HPs in Queue 1 or in the first phase of service is reduced

by 1. This changes the state to (H, � v − �
 e 1 + 

�
 e 3 ) . When a service

phase completion from Queue 2 occurs, the number of HPs in

Queue 2 or in the second phase of service is reduced by 1. This

changes the state to (H, � v − �
 e 2 ) . 

4. A switch from HP to LP can be decided if � = H, x = y = 0 (i.e.,

the two queues are empty) or if y = 0 and z = c (i.e., Queue 2 is

empty and the number of HPs with the non-focal server attains

the caseload). If this choice is made, the state changes to (L, � v )
upon the switch completion with rate μS 2 

. 

5. A switch completion from LP to HP can be decided if � = L . If

this choice is made, the state changes to (H, � v ) upon the switch

completion with rate μS 1 
. 

With finite caseload, the maximal event rate, λ + cμI + μS 1 
+

S 2 
+ μ1 + μ2 , is bounded. This continuous-time model is there-

ore uniformizable. We then choose to discretize it (Section 11.5.2.

n Puterman, 1994 ). We assume that λ + cμI + μS 1 
+ μS 2 

+ μ1 +
2 = 1 , such that the rate out of each state is equal to 1 by adding

ctitious transitions from a state to itself; then we can consider

he rates to be transition probabilities. Note that the system with

nfinite caseload can only be approximated with a sufficiently high

nite caseload. We define the dynamic programming value func-

ions V k (�, � v ) over k ≥ 0 steps, depending on the state of the sys-

em (�, � v ) , for �∈ { L , H } and 

�
 v ∈ N 

3 . We choose V 0 (�, � v ) = 0 , for

∈ { L , H } and 

�
 v ∈ N 

3 . Next, we express V k +1 (�, � v ) in terms of

 k (�, � v ) in the following way. The objective to maximize the time

pent on LP and the constraint for HP are merged into a single

ost function using a Lagrange parameter γ which accounts for the



952 B. Legros, O. Jouini and O.Z. Ak ̧s in et al. / European Journal of Operational Research 287 (2020) 946–963 

Table 1 

Notations. 

Exogenous parameters 

λ Arrival rate 

N Number of working and interlude phases 

x Expected service time which includes the interlude time 

cv Coefficient of variation of the service time distribution; it is the ratio of 

the standard deviation divided by the expected value 

g (.) Probability density function of the service time which includes the interlude time ˜ G (. ) Laplace-Stieltjes Transform (LST) of the service time; ̃  G (s ) = 

∫ ∞ 
x =0 g(x ) e −sx d x 

μS 1 , μS 2 Exponential switching rate from LP to HP or from HP to LP, respectively ( a S i = 

λ
μS i 

, for i = 1 , 2 ) 

μS Exponential switching rate when μS = μS 1 = μS 2 ( a S = 

λ
μS 

) 

μI Exponential interlude time rate when N = 3 ( t I = 1 /μI and a I = λ/μI ) 

μI i Exponential interlude time rate of the i th interlude when N > 3 

ω Waiting time objective 

Control parameters and state definition for the optimal policy with Caseload = 1 , and N = 3 

x , y , z Number of HPs in Queue 1 and in the first service phase, in Queue 2 

and in the second service phase, or with the non-focal server, respectively 

H Server working on HPs, idle and waiting for an HP, or in switch from HP to LP 

L Server working on LPs or in switch from LP to HP 

u I 1 , u I 2 , u B Thresholds on the number of customers in Queue 1 for the switch from LP to HP 

respectively depending on whether the server is in an interlude and an HP is with 

the non-focal server, the server is in an interlude and an HP is in Queue 2, 

or no HP is with the non-focal server nor in Queue 2, respectively 

˜ u I Threshold on the number of customers in Queue 1 for the switch from HP to LP 

during the interlude 

Control parameters of Policy P
n ∗ Threshold on the number of customers in Queue 1 above which the server chooses to switch 

from LP to HP in order to serve high priority jobs ( n ∗ ≥ 0) 

p ∗ Probability to start working on LP during the interlude (with probability 1 − p ∗

the server remains available for directly serving HP) 

q ∗ Probability to start working on LP after a switch when the system is empty of HP (with 

probability 1 − q ∗ the server remains available for directly serving HP) 

t ∗ Extra time spent on LP before a switch during the interlude when the customer is ready 

for service completion 

Random Variables 

X Time actively spent by the server on serving the customer (it excludes the interlude times) 

I Time during which the customer is busy without needing the server. I is exponentially 

distributed with parameter μI 

X S 1 , X S 2 Switching times respectively from HP to LP and from LP to HP, respectively 

T Proportion of time spent on LP 

W Overall waiting time for a given customer 

S Overall time during which the server is without the customer (either waiting for the 

customer, in switch or busy with LP) 

Probabilities for the performance evaluation under Policy P
p t ( n , r ) Probability-density of having n customers in the system, n ≥ 1 and a remaining service 

time of r , r ≥ 0, at time t (given some arbitrary initial distribution) 

p ( n , r ) p(n, r) = lim 

t→∞ 
p t (n, r) , for n ≥ 1 ˜ P (n, s ) ˜ P (n, s ) = 

∫ ∞ 
r=0 e 

−sr p(n, r) d r is the LST associated with p ( n , r ) 

π n Stationary probability to have n customers in the system when the server is busy with 

high priority tasks, for n ≥ 1 ( πn = 

∫ ∞ 
r=0 p(n, r) d r) 

π 0, s Stationary probability to be in a system with no high priority tasks and a server in switch 

from HP to LP 

π 0,0 Stationary probability to be in a system with no high priority tasks and a server reserved 

for LP (not working on LP) 

π 0 π0 = π0 ,s + π0 , 0 

φn Stationary probability to have n customers in the system when the server is busy with 

low priority tasks, for 0 ≤ n ≤ n ∗ or in switch from LP to HP for n > n ∗
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time spent by an HP in Queue 1 or in Queue 2 and with the focal

server. The value of γ is chosen such that for the optimal policy

E(W ) = w ( Altman, 1999 ). The procedure to set the value of γ is

presented in Section 1 of the Online Appendix. Moreover, we count

a reward of one when the server is treating some LPs in order to

obtain the proportion of time spent on LPs. The objective for the

server is to determine when to initiate the switches from HP to LP

and those from LP to HP. The optimal decisions are captured by the

minimization operator, V ∗
k 
(�, � v ) , in the value function formulation.

We write for k ≥ 0, �∈ { L , H } and 

�
 v ∈ N 

3 : 

 k +1 (H, � v ) = 

γ (x + y ) 

λ
+ λV k ( H, � v + 

�
 e 1 ) + zμI V k (H, � v − �

 e 3 + 

�
 e 2 ) (2)

+ 1 x> 0 ,y =0 ,z<c μ1 V k (H, � v − �
 e 1 + 

�
 e 3 ) 

+ 1 y> 0 , (x =0 ∪ y + z= c) μ2 V k (H, � v − �
 e 2 ) + 1 y =0 , (x =0 ∪ z= c) μS 2 V 

∗(H, � v )
k 
+ 1 x> 0 ,y> 0 ,y + z<c min ( μ1 (V k (H, � v − �
 e 1 + 

�
 e 3 ) − V k (H, � v )) , 

×μ2 (V k (H, � v − �
 e 2 ) − V k (H, � v )) ) 

+ (1 − λ − zμI − μ1 1 x> 0 ,y =0 ,z<c − μ2 1 y> 0 , (x =0 ∪ y + z= c) 
− μS 2 1 y =0 , (x =0 ∪ z= c) ) V k (H, � v ) , and, 

 k +1 (L, � v ) = 

γ (x + y ) 

λ
− 1 + λV k (L, � v + 

�
 e 1 ) + zμI V k (L, � v − �

 e 3 + 

�
 e 2 ) 

+ μS 1 V 
∗

k (L, � v ) + (1 − λ − zμI − μS 1 ) V k (L, � v ) , 

here 1 x ∈ A is the indicator function of a given subset A , and

 

∗
k 
(L, � v ) = min (V k (H, � v ) + 1 , V k (L, � v )) (i.e., switching decision from

P to HP), and V ∗
k 
(H, � v ) = min (V k (H, � v ) , V k (L, � v )) (i.e., switching de-

ision from HP to LP), if � v = z � e 3 for z ≥ 0 or � v = x � e 1 + c � e 3 , for x ≥ 0

nd, V ∗
k 
(H, � v ) = V k (H, � v ) , otherwise. In Eq. (2) , the terms 

γ (x + y ) 
λ

easure the expected wait in the system. The terms proportional
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ith λ represent a customer’s arrival in Queue 1. The terms pro-

ortional with z μI correspond to an arrival in Queue 2 from a

ustomer who completes a service with the non-focal server. The

erms proportional with μi corresponds to the end of working

hase i for i = 1 , 2 . The terms proportional with μS 1 
and μS 2 

cap-

ure the possibility to start an HP or an LP after a switch time. The

inimizing operator in the first part of the equation optimizes the

ecision for serving a customer from Queue 1 or from Queue 2.

he last term gives the fictitious transition from a state to itself.

ote that a cost of one is counted if a switch from LP to HP is exe-

uted in order not to count the switching time into the time spent

n LP. 

To obtain the infinite horizon average optimal actions we rely

n the value iteration technique by recursively evaluating V k us-

ng Eq. (2) , for k ≥ 0. As k tends to infinity, the optimal pol-

cy converges to the unique average optimal policy. This conver-

ence result is ensured by Theorem 8.10.1 in Puterman (1994) (a

ountable state set, finite set of actions and a uniformizable sys-

em). As k tends to infinity, the difference V k +1 − V k converges to

E(W ) − E(T ) ( Puterman, 1994 ). Since E(W ) = w for the optimal

olicy, one can then easily compute the value of E ( T ). Note that by

edefining the cost associated with the number of HPs in Queue 1

r in Queue 2, one can also obtain E ( W 1 ) and E ( W 2 ) using value

teration. 

The numerical investigations show that the optimal policy for

he switches from LP to HP or from HP to LP either during the

nterlude or during the break is a state-dependent threshold policy .

his policy is characterized by the following properties: 

• If it is optimal to switch from LP to HP in state ( L , x , y , z ), then

it is also optimal to operate this switch in states (L, x + 1 , y, z) ,

(L, x, y + 1 , z) , and (L, x, y, z + 1) , for x ≥ 0 and 0 ≤ y + z < c. 
• If it is optimal to switch from HP to LP in state (H, 0 , 0 , z + 1)

(respectively, in state (H, x + 1 , 0 , c) ), then it is also optimal to

operate this switch in state ( H , 0, 0, z ) (respectively, in state ( H ,

x , 0, c )), for 0 ≤ z < c and x ≥ 0. 

Even though, we can compute the optimal policy numerically, it

s not possible to prove its properties using an induction step for

he general case. In the following section, considering some special

ases of the system parameters, we prove some of the structural

roperties of the optimal policy. These properties will be used in

ection 5 to propose a simpler policy to solve Problem (1) . 

.2. Structural properties of the optimal policy in special cases 

First, we consider the case N = 1 , where the service of an HP is

xecuted in one single stage without interlude. The analysis of this

ase enables us to better characterize the optimal decisions that

he server should make during the break . Next, we investigate the

ase N = 3 with a caseload = 1 , where the optimal decisions during

he interlude can be proven. Finally, we investigate the case N = 3

ith infinite caseload and a strict priority for Queue 1 in order

o prove how the state variables x , y , and z impact the optimal

ecisions. 

.2.1. Analysis of the case N = 1 

Without interludes, the value function can be reformulated in

 simpler form as the system becomes one-dimensional. Eq. (2) is

hen reformulated as 

 k +1 (H, x ) = 

γ x 

λ
+ λV k (H, x + 1) + 1 x> 0 (3) 

× μ1 V k (H, x − 1) + μS 2 1 x =0 V 

∗
k (H, 0) 

+ (1 − λ − μ1 1 x> 0 − μS 2 1 x =0 ) V k (H, x ) , and, 

 k +1 (L, x ) = 

γ x − 1 + λV k (L, x + 1) + μS 1 V 

∗
k (L, x ) 
λ

+ (1 − λ − μS 1 ) V k (L, x ) , (3) 

here x is the number of customers in the system, with V ∗
k 
(L, x ) =

in (V k (H, x ) + 1 , V k (L, x )) (i.e., switching decision from LP to HP),

nd V ∗
k 
(H, x ) = min (V k (H, x ) , V k (L, x )) . In Proposition 1 , we prove,

nder some conditions reflecting a high care for customer’s wait

nd a sufficiently long switching time, that the optimal policy for

he use of the break is a threshold policy. This result extends those

or the queue blending literature without switches, and will be

sed in Section 5 to construct Policy P . 

roposition 1. With μS 2 
≤ μ1 ≤ 2 μS 2 

and γ ≥λ, the optimal pol-

cy for the use of the break is defined by the parameters n ∗ and q ∗,

uch that a switch from LP to HP is initiated whenever the number of

Ps in Queue 1 is strictly above n ∗ and the switch from HP to LP is

nitiated with probability q ∗ when the system becomes empty. 

The proof of Proposition 1 is given in Section 2 of the Online

ppendix. The parameter n ∗ is a threshold which defines a deter-

inistic state-dependent priority for HP. The parameter q ∗ allows

he system to provide something stronger than a simple priority.

n the case n ∗ = 0 and q ∗ = 1 , a strict priority is given to HP in a

ork-conserving situation. If q ∗ = 0 , no LPs are treated in between

P in order to reserve the server for HP. 

.2.2. Analysis of the case N = 3 with caseload = 1 

For such a setting, the optimal policy for the switch from LP to

P is simpler due to the constraint 0 ≤ y + z ≤ 1 . Moreover, with

aseload = 1 , Queue 2 has a strict priority over Queue 1. Therefore,

q. (2) can be rewritten as follows: 

 k +1 (H, � v ) = 

γ (x + y ) 

λ
+ λV k ( H, � v + 

�
 e 1 ) + zμI V k (H, � v − �

 e 3 + 

�
 e 2 ) 

(4) 

+ 1 x> 0 ,y =0 ,z=0 μ1 V k (H, � v − �
 e 1 + 

�
 e 3 ) + 1 y> 0 μ2 V k (H, � v − �

 e 2 ) 

+ 1 y =0 , (x =0 ∪ z=1) μS 2 V 

∗
k (H, � v ) 

+ (1 − λ − zμI − μ1 1 x> 0 ,y =0 ,z=0 

− μ2 1 y> 0 − μS 2 1 y =0 , (x =0 ∪ z=1) ) V k (H, � v ) , and, 

 k +1 (L, � v ) = 

γ (x + y ) 

λ
− 1 + λV k (L, � v + 

�
 e 1 ) + zμI V k (L, � v − �

 e 3 + 

�
 e 2 ) 

+ μS 1 V 

∗
k (L, � v ) + (1 − λ − zμI − μS 1 ) V k (L, � v ) . 

or the switch from LP to HP, we observe numerically that there

xist three thresholds on the number of HPs in Queue 1 denoted

y u I 1 , u I 2 , and u B , depending on whether the server is in an in-

erlude and an HP is with the non-focal server ( y = 0 , z = 1 ), the

erver is in an interlude and an HP is in Queue 2 ( y = 1 , z = 0 ),

r no HP is with the non-focal server nor in Queue 2 (i.e., a

erver’s break: y = z = 0 ), such that the decision to switch from

P to HP is taken if and only if the number of HPs in Queue 1

s above these thresholds. A switch from HP to LP, may occur ei-

her if x = y = z = 0 (switch during the break) or if y = 0 , z = 1 and

 < ˜ u I (switch during the interlude). In Proposition 2 , we show the

hreshold structure of the optimal policy during the interlude for

he switch from LP to HP and from HP to LP. Moreover, we show

hat u I 1 ≥ u I 2 . The proof of Proposition 2 is given in Section 3 of

he Online Appendix. Note that the threshold structure of the op-

imal policy for the switch from LP to HP during the break cannot

e proven with this technique due to the caseload limitation which

reaks the monotonicity properties of the value function. 

roposition 2. For caseload = 1 , the optimal policy during the inter-

ude is of threshold type. There exists thresholds u I 1 , u I 2 and ˜ u I such

hat: 

• The switch from LP to HP is initiated if and only if x ≥ u I 1 with

y = 0 and z = 1 , or x ≥ u I 2 with y = 1 and z = 0 . Moreover, u I 1 ≥
u I 2 . 
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• The switch from HP to LP during an interlude is initiated if and

only if x < ˜ u I . 

4.2.3. Analysis of the case N = 3 with infinite caseload and priority 

for Queue 1 

With infinite (or unrestricted) caseload, some properties of

the optimal policy can be proven. However, we need to simplify

the model assumptions by giving strict priority to Queue 1 in-

stead of optimizing the queue priority and by assuming μ1 = μ2 =
μS 2 

. Moreover, as the system is non-uniformizable with infinite

caseload, the MDP approach can be implemented only if the real

system is approximated by a sufficiently high finite caseload such

that uniformization is possible and the effect of the caseload re-

striction can be neglected. 

Even though the problem becomes three-dimensional with in-

finite caseload, as the switch from HP to LP can only be operated

if x = y = 0 , the decision to switch from HP to LP only depends on

the state variable z . This simplifies the analysis as compared to a

case with a finite caseload. 

Under the aforementioned assumptions, in Proposition 3 , we

prove the threshold structure of the optimal policy in the variables

y and z . Yet, we are not able to show the same result in the vari-

able x as some of the monotonicity properties do not propagate

via an induction step. However, by further replacing the expected

wait E ( W ) in Problem (1) by the expected wait in Queue 1, E ( W 1 ),

the optimal policy can be fully proven. This objective is compati-

ble with a priority to Queue 1. The proof of Proposition 3 is given

in Section 4 of the Online Appendix. As reflected in this proposi-

tion, the optimal policy may be impracticable due to its complex-

ity. Therefore, in Section 5 , we simplify the analysis by considering

non-state-dependent decisions during the interlude. 

Proposition 3. In the case μ1 = μ2 = μS 2 
, without caseload restric-

tion, with priority for Queue 1, the optimal policy is a threshold type

policy with the following properties: 

Switch from HP to LP. There exists a threshold on the number of

customers with the non-focal server, ˜ u , such

that the server initiates a switch from HP to

LP if and only if both queues are empty and

the number of HPs with the non-focal server

is strictly below this threshold; z < ˜ u . 

Switch from LP to HP. For each x ≥ 0, there exists a threshold func-

tion z = u x (y ) , decreasing in y , such that if

the server is working on LP in state ( x , y , z )

then it is optimal to switch from LP to HP if

and only if z ≥ u x ( y ) . 

Under the same conditions, while considering E ( W 1 ) instead of

E ( W ) in the objective, the optimal policy is also of threshold type but

the switch from LP to HP can be further characterized as follows: 

Switch from LP to HP. There exists a threshold function z =
u 1 (x, y ) , decreasing in the variables x and y , such that if the server

is working on LP in state ( x , y , z ) then it is optimal to switch from LP

to HP if and only if z ≥ u 1 ( x , y ) . 

4.3. Numerical analysis 

We end this section with a numerical analysis to better under-

stand how the optimal policy is influenced by the environmental

conditions. First, in Section 4.3.1 , we investigate the effect of the

system parameters on the optimal policy in the case N = 3 and

caseload = 1 . Next, in Section 4.3.2 , we evaluate the role of the

caseload. 

4.3.1. Effect of the system parameters 

Table 2 tabulates the thresholds for the policy computed with

Eq. (4) (see Section 4.2.2 ) for different values of the system param-
ters under the stability condition λ < 

(
μ−1 

1 
+ μ−1 

I 
+ μ−1 

2 

)−1 
. Note

hat the service rates are chosen such that the expected service

ime of an HP is constant (i.e., μ−1 
1 

+ μ−1 
I 

+ μ−1 
2 

is constant). 

Consistent with Proposition 2 , we observe that u I 1 ≥ u I 2 . We

lso observe that u I 1 ≥ ˜ u I . This means that if a switch from HP to

P is decided in a given state, then in the same state the server

hould not initiate a switch back from LP to HP. In most cases, we

lso observe that u B ≥ u I 1 : For a given number of HPs in Queue 1,

ne more HP is present in the system during an interlude (ei-

her with the non-focal server or in Queue 2) than during a break.

ence, it is more urgent to switch from LP to HP during an inter-

ude than during a break which is represented by u B ≥ u I 1 . Surpris-

ngly, counterexamples can be found for low values of μS (see lines

 and 9). The explanation comes from the long switching times. If

 decision to treat LP during the interlude is taken (i.e., at state ( x ,

, 1)), then the HPs already waiting in Queue 1 suffer from a first

witch from HP to LP and from an additional one from LP to HP.

he decision to treat LP during the break can only be taken in an

mpty system due to the priority for HP, so no HP is impacted by

he switch from HP to LP. (Recall that an HP who arrives during a

witch from HP to LP is directly served.) During the break, arriv-

ng HPs are only impacted by the switch from LP to HP. To reduce

he negative effect of a double switch during the interlude com-

ared to a single one during the break, the server should continue

orking on LP for a larger number of waiting HPs during the in-

erlude than during the break. This behavior of the optimal policy

xplains why it is not possible to show the monotone behavior of

he optimal policy as a function of the congestion in Queue 1 dur-

ng the break. The preference for using the break or the interlude

ill be further investigated via a sensitivity analysis under policy

in Section 5 . 

Table 2 is organized in order to explore the impact of various

ystem parameters. 

• Comparison of lines 4–6 with lines 10–12 shows the role played

by the service level objective, ω . We observe that the thresh-

olds increase when the desired service level on HP is less strict,

i.e., when these requests become less urgent, and consequently

more time is dedicated to LP work as seen in the increased val-

ues of E ( T ) in the last column. 
• Comparison of lines 1–3 with lines 4–6 or with lines 7–9

shows the important role played by the switching times when

switches from HP to LP and from LP to HP have the same ex-

pected duration. With long switching times, the server should

postpone the switch from LP to HP. This is reflected by high

thresholds for the switch from LP to HP ( u I 1 , u I 2 , and u B ). The

last column shows the high negative impact that switching

times may have on the expected time spent on LP. In order

to avoid making too frequent switches, we also could expect

to have ˜ u I decreasing with the length of the switching time.

However, since ˜ u I has reached its minimal value already with

μS 1 
= μS 2 

= 10 , no further reduction can be observed while in-

creasing the switching rate. 
• The examples in lines 13–14 highlight the impact of the inter-

lude duration. A long interlude duration is an incentive to use

this interlude to treat LP. This can be observed with u B increas-

ing from 1 to 3 when μI changes from 5 to 0.5, making the

interlude duration ten times longer. 
• Lines 15–16 provide examples where the two working phases

have different duration. The observations here can only be

made in cases where the rates μ1 and μ2 are significantly dif-

ferent. If μ2 > > μ1 , then an HP does not represent a signifi-

cant amount of remaining work for the server after the com-

pletion of the first working phase. Therefore, the decisions of

the server during the interlude are close to those during the

break as observed at line 15 ( u B = u I 1 ). If μ2 < < μ1 , the im-
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Table 2 

Computed thresholds with N = 3 and caseload = 1 . 

Exogenous parameters Thresholds for the Threshold for the 

switch from LP to HP switch from HP to LP 

ω λ μ1 μ2 μI μS 1 μS 2 u I 1 u I 2 u B ˜ u I E ( T ) 

1 5 0.05 1 1 1 10 10 1 1 1 1 88.98% 

2 5 0.1 1 1 1 10 10 1 1 1 1 78.89% 

3 5 0.2 1 1 1 10 10 2 1 1 2 55.94% 

4 5 0.05 1 1 1 1 1 1 1 1 1 87.24% 

5 5 0.1 1 1 1 1 1 1 1 2 1 68.96% 

6 5 0.2 1 1 1 1 1 2 1 2 1 34.97% 

7 5 0.05 1 1 1 0.05 0.05 11 10 13 1 11.17% 

8 5 0.1 1 1 1 0.05 0.05 5 2 3 1 6.48% 

9 5 0.2 1 1 1 0.05 0.05 4 2 2 1 1.03% 

10 10 0.05 1 1 1 1 1 2 1 2 1 88.86% 

11 10 0.1 1 1 1 1 1 4 2 2 4 71.79% 

12 10 0.2 1 1 1 1 1 6 4 6 5 39.20% 

13 5 0.2 2 2 0.5 1 1 2 2 3 2 33.52% 

14 5 0.2 0.71 0.71 5 1 1 2 1 1 1 32.29% 

15 5 0.2 1 10 0.53 1 1 3 1 3 3 32.04% 

16 5 0.2 10 1 0.53 1 1 2 1 3 2 31.81% 

17 10 0.1 1 1 1 0.67 2 5 2 3 6 73.35% 

18 10 0.1 1 1 1 2 0.67 3 2 2 3 67.31% 
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portant amount of remaining work after the completion of the

first working phase tends to reduce the value of using the in-

terlude and is reflected by smaller thresholds ( u I 1 and ˜ u I ). 
• Lines 11, 17 and 18 illustrate the impact of having different

switching duration from LP to HP and from HP to LP. We choose
1 

μS 1 

+ 

1 
μS 2 

= 2 such that the sum of the expected duration of

the switches is kept constant. We observe that a long switch

from HP to LP is less problematic than a long switch from LP

to HP. This observation is due to the beneficial possibility of

preemption by an HP when the server is in switch from HP to

LP while this preemption is not possible for the switch back

from LP to HP. We observe in particular that the thresholds are

higher at line 17 than at line 18 which reflects longer periods

of time spent on LPs. 
• The impact of the arrival rate is less straightforward. In some

examples we observe that the thresholds increase with the ar-

rival rate (see lines 1 to 3 or lines 4 to 6), while in others the

threshold decrease (see lines 7 to 9). This may be the result

of the competition between two phenomena. With high arrival

rates, the proportion of time spent on HP should be important

in order to attain the service level constraint for HP. This would

imply decreasing thresholds as the arrival rate increases, as ob-

served in lines 7–9. However, lines 1–3 and 4–6 contradict this

conclusion. It is in fact not good to have high thresholds with

low arrival rates (see lines 1 and 4). Consider a situation where

the server is treating LP and one HP is at the head of Queue 1.

The switch from LP to HP will be executed when the number of

HPs in Queue 1 attains the threshold. With a low arrival rate,

the time between two arrivals is long. Hence, high thresholds

would lead to an excessive wait for the HP at the head of the

queue. This explains why with a low arrival rate, it makes sense

to also have low thresholds. 

.3.2. Impact of the caseload 

A caseload restriction may be imposed either for managerial

easons (a quality concern in a healthcare setting) or to limit the

verall service time of an HP. Clearly, the caseload creates an ad-

itional constraint for the optimization problem, which can only

eteriorate the solution. We investigate the impact of the caseload

n E ( W 1 ), E ( W 2 ) and E ( T ). Using the computed policy with Eq. (2) ,

e determine the performance measures by adjusting the cost pa-

ameters in the value function. 
In Fig. 3 , we present the performance measures as a function

f the arrival rate λ for three values of the caseload (1, 2 and 3).

e first observe that as the caseload increases, the interval for λ
hich allows the system to achieve E(W ) = ω increases. This ob-

ervation can be related to the stability of the system which in-

reases with the caseload. 

The second observation is that the proportion of time spent on

P is higher with a higher caseload. The difference can be signifi-

ant for high arrival rates (see Fig. 3 (a)). So, clearly, an unrestricted

aseload is the best choice for Problem (1) . 

Another observation is that although E(W ) = E(W 1 ) + E(W 2 ) is

aintained constant, E ( W 1 ) (respectively, E ( W 2 )) increases (respec-

ively, decreases) with the arrival rate and decreases (respectively,

ncreases) with the caseload. Since the caseload limits the num-

er of HPs in Queue 2, increasing the caseload allows more HPs to

ait in Queue 2 and clearly leads to higher values for E ( W 2 ). The

aseload limits the congestion in Queue 2. Hence, the congestion

ncreases more in Queue 1 than in Queue 2, when the arrival rate

ncreases. This explains why E ( W 1 ) is increasing in λ. The caseload

estriction gives a state-dependent server reservation for Queue 2

i.e., if too many HPs are either in Queue 2 or with the non-

ocal server, then the server is not allowed to initiate an HP from

ueue 1). This explains why for a low caseload and a high arrival

ate we have E ( W 2 ) < E ( W 1 ). Having a small in-service wait, E ( W 2 ),

an be important in some contexts. For example, in the after-sales

echnical service setting, it may be desirable to complete the repair

f a critical item urgently, or the general practitioner may wish to

omplete the initial treatment of a serious patient in order to di-

ect them to a specialist without delay. In a chat service context,

ustomers may be more annoyed by an in-chat wait than a pre-

hat wait. Despite the increase in performance for Problem (1) as

he caseload is increased, we note that the improvement is de-

reasing in caseload, suggesting an eventual saturation. Taken to-

ether with the fact that the in-service waiting time increases, one

s left with the recommendation that the caseload should not be

ncreased beyond several customers. 

. Analysis for general multi-stage encounters under a 

estricted policy 

In this section, we consider multi-stage service encounters like

he earlier mentioned audit process or general practitioner exam-

les, possibly having more than one interlude. Given the fixed
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Fig. 3. Impact of the caseload ( μ1 = μ2 = 2 , μI = 1 , μS 1 = μS 2 = 4 , ω = 1 ). 
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number of stages assumption made, as stated in the modeling sec-

tion, we are considering mostly processes with standard operat-

ing procedures or protocols. This in turn suggests that an expo-

nential working phase may be too restrictive as an assumption.

Therefore, we wish to consider general service times for the work-

ing phases. The analysis of Section 4 shows us that even in the

presence of a single interlude, optimal policies during interludes

are state-dependent, with state-dependent thresholds. This creates

a very complex policy to implement. It is clear that for a setting

with multiple interludes, policies will be even more complex. The

desire to have general service times will further complicate the

analysis, with policies that need to depend on the remaining ser-

vice time distribution of HP. In addition to being analytically in-

tractable, state-dependent policies for use of the interludes may

also not be practical. Having a single policy for all interludes may

be preferred. Thus, motivated by both tractability and managerial

simplicity concerns, we limit the analysis of Problem (1) for gen-

eral multi-stage encounters to a restricted class of policies called

Policy P . The idea is to keep the policy for use of the break state-

dependent as shown to be optimal in Section 4.2.1 , while making

that for the interludes a static policy. Keeping the control during

the breaks state-dependent is relatively easier, as this decision only

depends on the number of customers in Queue 1. The benefit of

using this simpler (non-optimal) policy is that we can character-

ize performance measures and some policy parameters analytically

when caseload = 1 . This in turn allows us to explore the general

question of when one would be interested in using the interludes

for back-office work in such general multi-stage service encounters.

This section is organized as follows. Section 5.1 defines Policy P .

Section 5.2 gives the explicit performance measures and partially
 c
haracterizes the optimal control parameters in the case caseload =
 . Section 5.3 provides the results of the numerical investigation

howing the main drivers for the use of the interlude or the break.

ection 5.4 extends the analysis of Section 5.3 in order to answer

anagerial questions. 

.1. Definition of Policy P

For Policy P, we give a strict priority for Queue 2. The policy

or the use of the break and the interlude is defined as follows:

he server’s policy during a break. We propose a queue length de-

endent threshold priority for HP. We define a threshold n ∗ on the

umber of HPs in Queue 1 and a parameter q ∗ such that 

• At a service completion of an HP, if the system is empty of HP

(i.e., a break), then with probability q ∗ the server switches from

HP to LP and with probability 1 − q ∗, she chooses to remain idle

and thus available for directly serving HP (reservation). Recall

that if an HP arrives before the end of the switching time, this

HP is directly served. 
• If the server is working on LP, the server initiates a switch from

LP to HP if and only if the number of HPs in Queue 1 is strictly

above n ∗. 

Note that this policy is identical to the one found in

roposition 1 . 

The server’s policy during an interlude. During an interlude, we

hoose a non-state dependent policy. At the beginning of an inter-

ude, the server automatically switches from HP to LP with prob-

bility p ∗ and works until an HP comes back. When the customer

omes back, 
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• if the server is still in switch from HP to LP then the customer

is directly served, 
• if the server is working on LP then the server continues work-

ing on LP during t ∗ time units then switches from LP to HP

before continuing the service of the HP customer. 

The possibility to continue working on LP for a duration t ∗ al-

ows the server to reduce the negative impact of the switching

imes by working longer on LP. Note that in the case p ∗ = t ∗ = 0 ,

he server is reserved for HP, in the case p ∗ = 1 and t ∗ = 0 , then

 strict priority is given to HP but the server adopts a work-

onserving strategy. The definition of this policy can be extended

o a case with multiple interludes by setting a parameter p ∗ and t ∗

or each interlude. 

The randomizing parameters q ∗ and p ∗ are useful by allowing

xact attainment of the service level constraint for HP. The pa-

ameters p ∗ and q ∗ control the decision to switch from HP to LP

hereas the parameters n ∗ and t ∗ control the decision to switch

ack from LP to HP. From a simulation study, we compare the per-

ormance of Policy P to the optimal policy for investigator systems

 N = 3 ) in Section 5 of the Online Appendix. We observe that it

erforms well, and its performance may even coincide with the

ptimal one in some cases (for high and low arrival rates). How-

ver, in cases with long interlude durations, short switching times

nd a high workload its performance begins to deviate from the

ptimal one. 

.2. Analysis of Policy P with caseload = 1 

Theorem 1 gives closed-form expressions for the performance

easures of interest for Policy P with caseload = 1 . In order to

implify the notation, we assume that the service encounter in-

ludes only one interlude with an exponential rate μI . We denote

y R , the random service time of an HP. It is defined as the inter-

al of time from the initiation of the first phase of service of an

P to the last service phase completion. It includes the working

hases, the time spent with the non-focal server and the wait in

ueue 2. Hence, the service time can be decomposed as the sum of

wo random variables, X and S , where X is the time actively spent

ith the server (the working phases) and S is the time spent with-

ut the server (the time spent with the non-focal server plus the

ime spent in Queue 2), R = X + S. The system performance mea-

ures are functions of E ( R ) and cv R defined as the expected service

ime and the coefficient of variation of the service time R , respec-

ively. The random variable X is given by the distributions of the

orking phases. What remains to be characterized is the random

ariable S . Hence, for the performance evaluation, we determine

he first and the second moments of S ; denoted by E ( S ) and E ( S 2 ),

espectively. Finally, we denote by a S i the ratio λ/μS i 
, for i = 1 , 2 .

he stability condition in this model is identical to the one of an

/G/1 queue since HPs are served one by one (caseload = 1 ), i.e.,

E ( R ) < 1. Note that the performance measures can easily be ex-

ended to the case of more than one interlude; while the parts of

he expressions of E ( T ) and E ( W ) depending on the break would re-

ain identical, other parts corresponding to additional interludes

hould be added. These additional terms would be obtained in a

imilar way as the parts related to single interlude. 

The approach to compute the performance measures first con-

ists of providing a recursive formula for the computation of the

tationary probabilities, using a state definition based on the resid-

al service time for a given customer. From the recursive relations

or the stationary probabilities, we derive the probability of an

mpty system, the expected waiting time and the expected time

pent on LP as a function of the system parameters, the first and

he second moments of the time spent in service (which includes

he time spent with the server plus the time spent with the non-
ocal server plus the time spent in Queue 2), and the expected

ime spent on LP during the interlude. The complete detailed proof

s given in Section 6 of the Online Appendix. 

heorem 1. The expected proportion of time spent on LP, E ( T ), is 

(T ) = p ∗λ
μS 1 

μI + μS 1 

(
t ∗ + 

1 

μI 

− 1 

μS 1 

+ 

μI e 
−μS 1 

t ∗

μS 1 (μS 1 + μI ) 

)
+ 

(1 − λE(R ))(n 

∗ + 1) 

n 

∗ + 

1 
q ∗ + 

1 
q ∗ ( a S 1 + q ∗a S 2 ) 

. (5) 

he expected waiting time, E ( W ), is 

(W ) = p ∗
μS 1 

μS 1 + μI 

(
1 

μS 2 

+ t ∗
)

+ 

λE(R ) 2 (1 + cv 2 R ) 

2(1 − λE(R )) 

+ 

n 

∗( n 

∗ + 1 + 2 a S 2 ) 

2 λ
(
n 

∗ + 

1 
q ∗ + 

1 
q ∗ ( a S 1 + q ∗a S 2 ) 

) (6) 

+ 

1 

μS 2 

· 1 + a S 2 
n 

∗ + 

1 
q ∗ + 

1 
q ∗ ( a S 1 + q ∗a S 2 ) 

. 

he first and second moments of S are 

(S) = 

1 

μI 

+ p ∗
μS 1 

μS 1 + μI 

(
1 

μS 2 

+ t ∗
)

, (7) 

(S 2 ) = 

2 

μ2 
I 

+ 

p ∗μS 1 

μS 1 + μI 

( (
t ∗ + 

1 

μS 2 

)2 

+ 

1 

μ2 
S 2 

+ 

2 

μI 

(
t ∗ + 

1 

μS 2 

)) 

.

(8) 

The expected time spent on LP, as given in Eq. (5) , is the sum

f the expected time spent on LP during the interlude, E(T I ) =
p ∗λ

μS 1 
μI + μS 1 

(
t ∗ + 

1 
μI 

− 1 
μS 1 

+ 

μI e 
−μS 1 

t ∗

μS 1 
(μS 1 

+ μI ) 

)
, and the expected time 

pent on LP during the break, E(T B ) = 

(1 −λE(R ))(n ∗+1) 

n ∗+ 1 
q ∗ + 1 

q ∗
(

a S 1 
+ q ∗a S 2 

) . The

xpected waiting time, as given in Eq. (6) , is the sum of four

erms. The first one is the in-service wait in Queue 2, E(W 2 ) =
p ∗

μS 1 
μS 1 

+ μI 

(
1 

μS 2 

+ t ∗
)
, and the second one is similar to the expected

aiting time in an M/G/1 queue. This second term shows that the

ariability of the working phases negatively affects the solution of

roblem (1) . The last two terms may be more complicated to inter-

ret. Note that in the case of q ∗ = 1 and μS 1 
= μS 2 

, the third term

s exactly equal to n ∗
2 λ

which corresponds to the effect of n ∗ on the

aiting time ( n ∗/2 is the average queue size when the server is on

P). 

Computation of the optimal threshold parameters under Policy P .

e proceed by first assuming that the policy for the use of the

nterlude is fixed (i.e., the parameters p ∗ and t ∗ are fixed) in or-

er to derive closed-form expressions for the optimal values of

 

∗ and q ∗. Next, the values of p ∗ and t ∗ will be computed nu-

erically. Since the use of the interlude is fixed, the difference

 = w − E(W 2 ) − λE(R ) 2 (1+ cv 2 
R 
) 

2(1 −λE(R )) 
is also fixed. We assume that K ≥ 0,

therwise the waiting time constraint in Problem (1) cannot be

atisfied. In Proposition 4 , we state the optimal expressions of n ∗

nd q ∗ in K and the system parameters. The proof is given in Sec-

ion 7 of the Online Appendix. 

roposition 4. The following holds. 

1. If a S 2 ≥ 1 √ 

2 
and λK ≤

√ 

2 a S 2 

(
( 
√ 

2 +1) a S 2 
− 1 

2 

)
1+ a S 1 

2 
+( 

√ 

2 +1) a S 2 
−1 

, then the

optimal couple ( n ∗, q ∗) is n ∗ = 

√ 

2 a S 2 − 1 and q ∗ =
λK 
2 

(1+ a S 1 ) √ 

2 a S (a S ( 
√ 

2 +1) −1 / 2) −λK(a S ( 
√ 

2 +1) −1) 
. 
2 2 2 
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Fig. 4. Summary of numerical study. 
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2. If a S 2 < 

1 √ 

2 
and λK ≤ a S 2 

(1+ a S 2 ) 
1+ a S 1 + a S 2 

, then the optimal couple ( n ∗, q ∗)

is n ∗ = 0 and q ∗ = 

(a S 1 
+1) λK 

a S 2 
(1+ a S 2 −λK) 

. 

3. In the remaining cases, the optimal couple ( n ∗, q ∗) is n ∗ = λK 

− a S 2 − 1 
2 + 

1 
2 

√ 

2 + (2 λK + 2 a S 1 + 1) 2 − (1 + 2 a S 1 ) 
2 − (1 + 2 a S 2 ) 

2

and q ∗ = 1 . 

It is not possible to obtain the parameters p ∗ and t ∗ in closed-

form. To solve Problem (1) , we first fix a policy for the interlude

and determine q ∗ and n ∗ according to Proposition 4 . Next, by an

exhaustive search, we obtain the best combination of parameters

which solve Problem (1) . 

5.3. Main drivers for the decisions to use the interlude and the break 

From numerical investigations, we observe that the switching

times have a major impact on the optimal policy. For caseload = 1 ,

from the expression of E ( T I ), the difference between 1 /μS 1 
and

1/ μI implies that if the expected time of the interlude is shorter

than the expected switching time, then E ( T I ) decreases in p ∗. So, in

this case the interlude should not be used and p ∗ = t ∗ = 0 . Second,

the switching times also have a strong impact on the choice of n ∗

as shown in Proposition 4 . In case of long switching times (first

and last statement of the proposition), a high value for n ∗ may re-

duce the switches from HP to LP during the break. Finally in most

cases, t ∗ = 0 . It is almost never optimal to extend the interlude du-

ration. 

In Fig. 4 , we depict the possible cases generally observed in the

case where μS 1 
= μS 2 

(i.e., no distinction between the switches

from HP to LP and from LP to HP). The characterization (long or

short) of the switching time is relative to the service time, the

characterization (high or low) of the workload is relative to the

difficulty of satisfying the service level constraint and the charac-

terization (long or short) of the interlude time is relative to the

switching time. Considering an insurance or audit setting, one can

envision a long switch if the server needs to change the soft-

ware or system which they are using for HP and LP tasks, while

a short switch may be seen in settings where the two tasks are
ot dramatically different and require a short mental adjustment.

t is interesting to observe that in many cases very simple solu-

ions should be implemented. For instance, with short switching

imes and high workload the combination n ∗ = 0 and q ∗ = 1 indi-

ates that a strict priority should be given to HP. With even higher

orkload and short switching times, p ∗ = 0 means that it is a good

trategy to reserve the server for HP during the interlude. On the

ontrary, in low workload situations, p ∗ = 1 , suggesting to system-

tically treat LP during the interlude. More generally, we observe

hat many parameter combinations lead to a postponed switch pol-

cy, indicating that the server will continue working on LP despite

ome waiting HP tasks. Similarly, whenever p or q are equal to

ero, the server is preferring to remain idle during the interlude

r break, despite an infinite amount of LP work available. 

Illustration An illustrating instance is provided in Figs. 5 and 6

or caseload = 1 and infinite caseload, respectively. For the compar-

son, the results for caseload = 1 are included in Fig. 6 with the

otted curve. The results of Fig. 5 are derived from the explicit ex-

ressions of the performance measures in Section 5.2 while those

f Fig. 6 are obtained from simulations. We propose here a sim-

le procedure based on intuitive assumptions regarding the mono-

onicity properties of the performance measures. From simulations,

e observe that increasing one of the parameters p ∗, q ∗, or n ∗ in-

reases E ( W ) and E ( T ). This observation is intuitive as spending

ore time on LPs reduces the server’s availability which in turn

ncreases the wait. Based on this assumption, in what follows, we

xplain how we can restrict the number of simulations to a finite

et of possible values for the control parameters. 

As p ∗ and q ∗ may take an infinite set of values, we discretize

heir values. We introduce the parameter M ∈ N 

+ , such that the

alues of p ∗ and q ∗ are restricted to 0 , 1 
M 

, 2 
M 

, · · · , M−1 
M 

, 1 . Therefore,

he couple ( p ∗, q ∗) can take (M + 1) 2 values. The parameter n ∗ can

lso take an infinite number of positive integer values. In the simu-

ations, for each set of parameters p ∗ and q ∗, we increase n ∗ by one

ntil we reach E(W ) > w . For a given couple ( p ∗, q ∗), the optimal

alue for n ∗ is the highest integer such that E(W ) ≤ w . As E ( W ) is

nbounded in n ∗, the optimal value for n ∗ can be determined after

 finite number of simulation experiments. It may happen that for
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Fig. 5. E ( T ) as a function of λ for short (a),(c) and long (b),(d) switching times for caseload = 1 . 

Fig. 6. E ( T ) as a function of λ for short (a),(c) and long (b),(d) switching times with M = 10 for infinite caseload. 
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1 1 2 1 
a given couple ( p ∗, q ∗), we have E(W ) > w for n ∗ = 0 . In this case,

the couple ( p ∗, q ∗) should be excluded from the set of possible so-

lutions as well as any couple with a higher value for p ∗ or q ∗. This

allows us to reduce the number of simulation experiments. Note

also that with p ∗ = q ∗ = 0% , n ∗ does not need to be specified. 

Figs. 5 (a), 5 (c), 6 (a), 6 (c) depict a case with a short switching

time and Figs. 5 (b), 5 (d), 6 (b) and 6 (d) a case with a long one,

showing how switching times influence the blending decisions.

Further, by comparing Fig. 5 (a) with Figs. 5 (c), 6 (a) with Fig. 6 (c),

Fig. 5 (b) with Fig. 5 (d), or Fig. 6 (b) with Fig. 6 (d), we observe that

E ( T ) decreases with the variability of the service time. Moreover,

the impact of the variability of the working phases is stronger

when the interlude is not used (Figs. 5 (b) or 6 (b) compared with

Figs. 5 (d) or 6 (d)). Two phenomena concur in this effect. First, if

the interlude is long, then the working phases have a relatively

small impact on the overall service length. Hence, the variability

of these working phases has a small effect on the performance

as shown in Figs. 5 (a), 5 (c), 6 (a) and 6 (c). Second, if the inter-

lude is long then it is also used for treating LP. This creates in-

service switches which further reduce the relative importance of

the working phases in the service process of an HP. Although the

optimal policy derived in Section 4 differs from the one studied

here for the use of the interlude, we observe the same drivers as in

Section 4 for the switch from LP to HP (high congestion in Queue 1

or in Queue 2, short interludes, and short switching times). 

The comparison between Figs. 5 and 6 shows that our con-

clusions are consistent in the caseload. However, Fig. 6 confirms

the observation of Section 4.3.2 , showing that the caseload has

a strong impact on the performance measures. As mentioned in

Section 4.3 , the situation with infinite caseload leads to a better so-

lution Problem 1 than the case with caseload = 1 . However, the im-

provement differs strongly as functions of the environmental con-

ditions. The comparison between Fig. 6 (a) and 6 (c) with Fig. 6 (b)

and 6 (d) shows that a limited caseload has the most detrimental

effect when the interlude is long. By restricting the caseload, the

server is forced to idle while she/he could treat some HPs present

in Queue 1. These unproductive states occur more frequently when

the interlude is long. With infinite caseload, the role of the work-

ing phases’ variability is stronger. This can be seen by the more

important difference between Fig. 6 (a) and 6 (c) as compared to the

difference between Fig. 5 (a) and 5 (c). For these figures, the inter-

lude duration is significantly longer than the duration of the work-

ing phases. The detrimental effect of the long interlude is reduced

with infinite caseload as the server is able to continue working on

HPs. Therefore, by reducing the effect of the interlude duration, the

working phases’ variability becomes more influential. 

5.4. Managerial questions 

We end this section by focusing on specific questions related

to our optimization problem. The analysis in the section is made

with the performance measures obtained for caseload = 1 but are

checked to be valid with higher caseload. We first explore the

question of when to use the interlude and when to prefer the

break for LP work. To this end, we compare p ∗ and q ∗. We observe

in Fig. 5 (a) that as the workload increases, we should first decrease

p ∗ and then q ∗. This is consistent with the results of Section 4 (see

Table 2 ) where in most cases u B ≥ u I 1 . The second observation is

 

∗ = 0 . Apparently, extending the interlude duration is not a good

strategy. The last observation is that the switch from HP to LP has

a worse impact than the switch from LP to HP. Finally, when more

than one interlude is involved should we either spread the work

on LPs over different interludes or should we instead concentrate

this work on fewer ones? Are these observations generalizable?

Theorem 1 allows us to explore these questions analytically and
o understand the intuition behind preferences for use of the in-

erlude compared to the break. 

.4.1. Which duration to use more frequently for back-office work: 

nterlude or break? 

We consider a situation where t ∗ = 0 (i.e., no possibility of in-

reasing the interlude duration) and explore whether the inter-

ude should be used for LP work (i.e., switch from HP to LP). We

rst consider Problem (1) without the waiting time constraint. We

ompare an increase in p ∗ with an increase in q ∗ in order to get an

nsight on the eventual preference for a more frequent use of the

nterlude or the break for LP work. After some algebra, we obtain 

∂E(T ) 

∂ p ∗
− ∂E(T ) 

∂q ∗

= 

−(a S 1 + 1)(n 

∗ + 1)(1 − λE(R )) 

(1 + n 

∗q ∗ + a S 1 + q ∗a S 2 ) 
2 

+ a I 
n 

∗q ∗(a 2 I − a I a S 2 − a S 1 a S 2 ) + q ∗a S 2 (a 2 I − a I − a S 1 ) + a 2 I (1 + a S 1 ) 

(a I + a S 1 ) 
2 (1 + n 

∗q ∗ + a S 1 + q ∗a S 2 ) 
.

f this difference is positive then increasing the use of the inter-

ude is preferred and vice-versa. To make this difference positive,

ne should either increase a I , E ( R ) or decrease a S 1 or a S 2 . In other

ords, for treating LP, the interlude is preferred to the break when

he service duration is long, the interlude time is long, or the

witch times are short. 

The service level constraint is imposed next. Fig. 7 , depicts a

ase with a high workload in ( Fig. 7 (a)) and a case with a low

orkload in ( Fig. 7 (b)). It illustrates that, as the workload increases,

he impact of p ∗ on E ( T ) varies from a positive effect to a nega-

ive one. The negative effect of p ∗ under a high workload situa-

ion can be understood through the following rewriting of the op-

imization problem at saturation of the service level constraint (i.e.,

(W ) = w ): 
 

 

 

Maximize E(T ) = E(T I ) + (1 − λE(R )) [ 
w − E(W 2 ) − λE(R ) 2 (1+ cv 2 R ) 

2(1 −λE(R )) 
+ 

1 
μS 2 

1+ n ∗+ a S 2 
n ∗+ 1 

q ∗ + 1 
q ∗ ( a S 1 + q ∗a S 2 ) 

] 
subject to E(W ) = w . 

(9)

n the expression of E ( T ), the parameter p ∗ appears in E ( T I ) with

 positive effect, and in the terms E ( W 2 ) and 

λE(R ) 2 (1+ cv 2 
R 
) 

2(1 −λE(R )) 
with a

egative one. As the workload increases, the impact of the terms

elated to the wait increase in the expression of E ( T ). So the neg-

tive effect of an increase in p ∗ can overcome its positive ef-

ect on E ( T I ). Thus, in low workload situations, the interlude is a

eal opportunity to increase the time spent on LP, but under high

orkload situations it might not be preferred in comparison with

pending more time on LP during breaks. 

.4.2. Which duration to extend for more back-office work: interlude 

r break? 

We compare two strategies: increase the service time (more

ime for LP during the interlude) or increase the busy period (more

ime for LP during the break) in order to treat more LP? Consider

 situation where it is optimal to choose p ∗ = q ∗ = 1 . Such a situa-

ion may occur with a low arrival rate or a non-restrictive service

evel constraint. What is more effective: increasing the LP work-

ng time of the server during the break with parameter n ∗ or dur-

ng the interlude with parameter t ∗? Since the nature of n ∗ and t ∗

s different, we consider the variable λt ∗ instead of t ∗, enabling a

omparison with n ∗. First, observe that 

∂E(T ) 

∂n 

∗ = 

(a S 1 + a S 2 )(1 − λE(R )) 

(n 

∗ + 1 + a S 1 + a S 2 ) 
2 

, and, 

∂E(T ) 

∂λt ∗
= 

a I (a S 1 + a S 2 ) 

(a S + a I )(n 

∗ + 1 + a S + a S ) 
− a S 1 a I 

(a S + a I ) 2 
e −λt ∗/a S 1 . 
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Fig. 7. E ( T ) as a function of p ∗ and q ∗ . 

Table 3 

Performance evaluation ( μI = 1 , E(X ) = 1 , E(X 2 ) = 10 , 1 
μS 1 

+ 

1 
μS 2 

= 

1 , w = 10 ). 

μS 1 μS 2 n ∗ p ∗ q ∗ E ( T ) 

1 ∞ 3.21 100% 100% 62.28% 

1.33 4 2.97 100% 100% 60.93% 

λ = 0 . 2 2 2 2.64 100% 100% 59.44% 

4 1.33 2.15 100% 100% 57.94% 

∞ 1 1.31 100% 100% 56.81% 

1 ∞ 1.47 100% 100% 35.03% 

1.33 4 0.00 77% 100% 28.13% 

λ = 0 . 35 2 2 1.12 0% 100% 25.75% 

4 1.33 0.92 0% 100% 25.37% 

∞ 1 0.70 0% 100% 24.88% 

1 ∞ 0.04 100% 100% 28.42% 

1.33 4 0.00 0% 18.32% 3.62% 

λ = 0 . 37 2 2 0.00 0% 7.60% 1.65% 

4 1.33 0.00 0% 4.40% 1.04% 

∞ 1 0.00 0% 2.90% 0.75% 
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learly ∂E(T ) 
∂n ∗ > 0 . When one disregards the waiting time constraint,

ncreasing the time spent on LP between HP therefore cannot be

ounterproductive. The same cannot be said for the time spent on

P during the interlude; ∂E(T ) 
∂λt ∗ < 0 is equivalent to 

(a I + a S 1 )(a S 1 + a S 2 ) < a S 1 (n 

∗ + 1 + a S 1 + a S 2 ) e 
−λt ∗/a S . (10) 

tarting from a situation where t ∗ = 0 , Inequality (10) becomes
a I (a S 1 

+ a S 2 ) 
a S 1 

< n ∗ + 1 . Since a I < 1 due to stability reasons then In-

quality (10) is often met and extending the duration of the service

ime would not make sense in most cases (except if the workload

s very low, the interlude duration is very short or the threshold on

he queue length is very low). The manager is then in general more

empted to increase n ∗ rather than t ∗. This explains why t ∗ = 0 is

ptimal in most cases. Yet, counterexamples can be found (see Sec-

ion 8 of the Online Appendix). 

.4.3. Which is the worst switch? 

We question here the impact of the switching times by differ-

ntiating the switch from HP to LP to the switch from LP to HP. In

able 3 , using the results of Theorem 1 and Proposition 4 , we give

he optimal control parameters and the optimal value for E ( T ) for

ifferent values of the system parameters. We choose λ = 0 . 2 , 0 . 35 ,

nd, 0.37 in order to reflect low, moderate, and, high workload sit-

ations. We also assume that 1 
μS 1 

+ 

1 
μS 2 

= 1 , such that, the cumu-

ative expected duration of the two switches is kept constant. 

In all cases, we observe that the duration of the switch from

P to HP (i.e. decrease of μS 2 
) has a worst effect than the switch
rom HP to LP (i.e. decrease of μS 1 
). This confirms the observation

f Table 2 . When the server is in switch from HP to LP, an arriving

P in Queue 1 or in Queue 2 can directly start service. Therefore,

P jobs seems to only be delayed by the switch from LP to HP.

his explains why, when μS 2 
= ∞ , the server should never idle

i.e., p ∗ = q ∗ = 100% ). We also observe that the sensitivity to the

witching rates increases with the workload. In high workload sit-

ations, more HPs are present in the system. Therefore, the server

an more frequently switch from HP to LP during the interlude or

he break. Hence, this increases the sensitivity to the switch pa-

ameters. 

In fact, the switch from HP to LP even has a beneficial ef-

ect on the wait of HPs. The reason is that with a long switch

rom HP to LP, the server has less chance to start serving LPs be-

ore an HP arrives in Queue 1 or in Queue 2. Since HPs can pre-

mpt a switch from HP to LP, having a long switch means hav-

ng a long period of time during which an arriving HP can be

erved without being delayed. This can be proven using the re-

ults of Theorem 1 . Consider the expression of the expected wait

n Eq. (6) with t ∗ = 0 . The first part, which represents E ( W 2 ), can

e rewritten as E(W 2 ) = 

p ∗
λ

a I a S 2 
a I + a S 1 

. Since a S 1 is only in the de-

ominator of this expression, E ( W 2 ) is decreasing in a S 1 which

eans that the wait in Queue 2 decreases with the length of

he switch from HP to LP. For the same reason, the third and

he fourth parts of the expression of E ( W ) are also decreasing in

 S 1 
. The second part of E ( W ), 

λE(R ) 2 (1+ cv 2 
R 
) 

2(1 −λE(R )) 
, can be rewritten as

1 
λ

λ2 E(X 2 ) 
2 

+ λE(X ) 

(
a I + p ∗

a I a S 2 
a I + a S 1 

)
+ a I 

(
a I + p ∗

a S 2 
(a S 2 

+ a I ) 
a I + a S 1 

)
1 −λE(X ) −a I −p ∗

a I a S 2 
a I + a S 1 

. This leads to 

∂ 
(

λE(R ) 2 (1+ cv 2 R ) 

2(1 −λE(R )) 

)
∂a S 1 

= − 1 

λ

p ∗a S 2 a I 

(
λ2 E(X 2 ) 

2 
+ (1 − a I − λE (X ))(λE (X ) + a S 2 ) + a I 

)
( (a I + a S 1 )(1 − λE(X ) − a I ) − p ∗a I a S 2 ) 

2 
. 

his expression is negative as 1 − λE(X ) − a I > 0 for stability rea-

ons. Therefore, we have proven that E ( W ) decreases with the

ength of the switch from HP to LP. The expected time spent

n LPs during the interlude, E(T I ) = 

a 3 
I (

a I + a S 1 
)2 , is clearly decreas-

ng in a S 1 . The expected time spent on LPs during the break,

(T B ) = 

(n ∗+1) 

(
1 −λE(X ) −a I −p ∗

a I a S 2 
a I + a S 1 

)
n ∗+ 1 

q ∗ + 1 
q ∗

(
a S 1 

+ q ∗a S 2 

) is not always decreasing in a S 1 .
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After deriving the derivative of E ( T B ) we show that E ( T B ) is in-

creasing in a S 1 if and only if p ∗a S 2 a I (1 + n ∗q ∗ + 2 a S 1 + a I + q ∗a S 2 ) >

(a I + a S 1 ) 
2 ( 1 − λE(X ) − a I ) . This condition is complex to analyze

but it qualitatively means that the length of the switch from HP

to LP can be beneficial for the time spent on LPs during the break

when the interlude and the break are highly used for LPs (i.e. high

value of p ∗, q ∗ and n ∗), and when the switch from LP to HP is long.

In such cases, having a long switch from HP to LP allows to have

shorter interlude duration by not having enough time to initiate

LPs during the interlude. This reduces the expected service time of

HPs, E ( R ), and allows the server to have less HPs present in the

system. Consequently, the breaks can be longer and the time spent

on LPs during the breaks can also be longer. 

5.4.4. How to deal with more than one interlude? 

An important question is how the server should organize her

work when multiple interludes are present in the service en-

counter? Each time LP work is attempted during an interlude, the

server will incur the switching time twice. As shown earlier, this

affects system performance both in terms of expected duration

and variability of the service process. Intuitively, this would point

to a policy of concentrating LP work on fewer interludes. Yet a

more myopic policy that considers each interlude independently

from another and attempts LP work whenever an interlude is long

enough relative to the switching time might also be efficient and

may lead to a choice of using more of the interludes for LP work.

We explore the performance implications of these two options. A

policy of concentration further requires a choice of which inter-

ludes to use for LP work. In an environment with a constraint on

the expected waiting time of HP, it makes sense intuitively to delay

the LP work to later interludes, at which point there are a small

number of remaining working phases for HP. To provide rules of

thumb for managers addressing these questions, we consider a sit-

uation with only two interludes with interlude rates, μI 1 
and μI 2 

.

We optimize the use of the interludes under Policy P . Under this

policy, the position of an interlude during service does not influ-

ence the optimal decision since the use of the interlude is non

state-dependent. In Section 9 of the Online Appendix, to further

explore the role of the position of an interlude, using an MDP ap-

proach similar to the one developed in Section 4 , we characterize

more complex properties that the optimal policy for the use of the

interludes may have. We show that the optimal policies provide

similar insights to those derived under Policy P in this subsection.

Without loss of generality for Policy P, we assume here that

μI 2 
> μI 1 

. So, the second interlude is shorter than the first one.

Clearly, there is a preference for using the first interlude. We as-

sume that it is not optimal to extend the interlude duration ( t ∗ =
0 ). The server has the choice between two policies. Either using

only the first interlude with control parameter p ∗a (concentration

on one interlude) or a bit of both interludes with control parame-

ters p ∗
b 

and p ∗c (spreading of the work between the two interludes).

If the two policies achieve the same expected time on LP during

service, using the expression of E ( T I ), we may write 

p ∗a = p ∗b + p ∗c 
μI 1 (μS + μI 1 ) 

μI 2 (μS + μI 2 ) 
. 

We now compare the expected waiting time in Queue 2

under the two policies by computing the difference E(W 2 ,A ) −
E(W 2 ,B ) where E ( W 2, A ) is the expected supplementary waiting time

when the work is concentrated on one interlude and E ( W 2, B )

is the expected supplementary waiting time when the work

is spread on the two interludes. We have E(W 2 ,A ) − E(W 2 ,B ) =
p ∗c 

μS + μI 2 

(
μI 1 
μI 2 

− 1 

)
< 0 . Thus the supplementary waiting time is

higher when the work is spread on two interludes. Similarly, we

show that the expected service time is also longer when the
ork is spread on two interludes. We now consider the difference

(S 2 
A 
) − E(S 2 B ) which represents the difference between the second

rder moments of the interlude times in the two situations. We

ave E(S 2 
A 
) − E(S 2 B ) = 

2 p ∗c 
μS (μS + μI 2 

) 

(
μI 1 
μI 2 

− 1 

)
< 0 . Again concentrating

he work on one interlude has a better effect in terms of reducing

ariability, than spreading it over more than one interlude. 

The intuitive conclusion here is that if a given quantity of time

an be dedicated to LP during the interludes then it is better to

oncentrate the work on a limited number of interludes with-

ut extending any of these. The chosen interludes should be the

ongest. This avoids having too many switching times. 

. Concluding remarks 

A lot of service front-office work has intervals of random length

uring and between the treatment of different customers, when

he server is not needed. In this paper, we have explored the use

f these interludes and breaks to treat back-office tasks. The latter

asks are different in nature from the front-office tasks, and im-

ly switching times as the server alternates between these in their

ork. Our analysis shows that these switching times are impor-

ant to model and have a significant effect on the structure of op-

imal choices regarding when to treat back-office tasks. The server

ay prefer to make customers wait while continuing to work on

ack-office due to long switching times. Alternatively, the server

ay prefer to remain idle despite an infinite amount of back-office

asks to process, due to the long switching times otherwise in-

urred. Optimal policies for use of the interludes and breaks are

tate-dependent and are controlled by several thresholds. Due to

ts dependence on random arrivals by customers both pre-process

nd in-process, the control of the interlude blending decision is

ore difficult relative to the one during the break. Furthermore

he two interact. In the absence of automation, the optimal policies

ay be hard to implement by a server. For such cases, simpler non

tate-dependent policies are proposed. Both type of policies lead

o similar insights regarding the drivers to use the interlude times

or back-office blending: a low or moderate workload, long inter-

ude times, low sensitivity of customers to waiting (as captured by

he waiting service level constraint). These findings suggest that

anagers need to understand specific process features well, be-

ore determining ideal blending approaches. It is shown that blend-

ng of front-back office work is not just meaningful during breaks

etween customers but also in interludes within service, despite

he switching times that need to be incurred in doing so. In the

resence of multiple interludes, the rule of thumb developed is to

ake use of the longer and later interludes in a service encounter.

An alternative to the front-back office work blending to make

se of server idle times, is working on several customers (front-

ffice tasks) simultaneously as in case-manager systems. Studied

n different contexts, earlier work has shown that limiting the

aseload in such systems may be preferred due to quality or ef-

ciency related reasons. The analysis herein shows the effect of an

ncreasing caseload on in-process waits. When coupled with the

bservation of diminishing benefits to increasing the caseload, this

uggests to limit caseloads in front-back office work blending set-

ings to low numbers. 

In future research, it would be interesting but challenging to

xtend the analysis to cases with more than two tasks done by

lternation. Different assum ptions regarding switching times may

e needed to analyze settings where the multitasking is done be-

ween different types of customer tasks that are all front-office (re-

uiring customer interaction) instead of a front-office versus back-

ffice task. Another challenging extension is to investigate other

bjectives for front-office tasks like wait percentiles or the aver-

ge excess wait. Choosing other objectives would lead one to re-
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onsider fundamental assumptions like the priority for front-office

asks at their service completion. New technologies allow service

ystems to keep track of past performance. So, we could also en-

ision to rethink the priority rules from the second queue based

n the past performance in the first queue. Going one step beyond

he current framework where the length of the interlude is mod-

led as an exogenous parameter (exponential with given rate), one

an consider this parameter to be the outcome of a coproductive

ervice design ( Roels, 2014 ). This is relevant for settings where the

nterlude is a self-service task. Endogenous choice of the interlude

uration would correspond to the determination of the extent of

elf-service in a service encounter. This would enable creating set-

ings where the interlude length is controlled via service design. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2020.04.048 
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