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Abstract
Changes in the amount and location of cropland areas may affect the potential crop production at different spatial scales.
However, most studies ignore the impacts of cropland displacement on potential crop production. In many countries, cropland
protection policies mainly aim for no loss in cropland area, while there is no restriction on change of cropland location. Taking
China as the study area, we analyze the impacts of cropland displacement on potential crop production at four administrative
levels during the period 2000 and 2018. At the national level, we find a net decrease in cropland area of 0.81 Mha, while another
19.63 Mha was displaced. The former led to a decrease of 4.20 Mton in potential crop production, while the latter resulted in a
decrease of 43.26 Mton as a result of lower quality of the newly cultivated lands. In other words, cropland displacement explains
91% of the total loss in potential crop production at the national scale. However, the contribution of cropland displacement to total
change in potential crop production is increasingly smaller at provincial level, municipal level, and county levels. These findings
highlight the importance of geographic location on crop production and suggest that cropland policies should consider geo-
graphic location in addition to cropland area.

Keywords Land use change . Cropland displacement . Potential crop production . Land use policy . Food security

Introduction

Changes in potential crop production are often primarily at-
tributed to changes in cropland area, in different regions
across the world (e.g., Godfray et al. 2012; Griffiths et al.
2013). These losses occur among others due to land

degradation (Liu and Diamond 2005; Wang et al. 2007), land
abandonment (Ramankutty et al. 2009; Zumkehr and
Campbell 2013), policy changes (Gibson et al. 2015; Zhang
et al. 2012), and urban expansion (d’Amour et al. 2017;
Pandey and Seto 2015; van Vliet et al. 2017). To ensure suf-
ficient food supply, policies have been implemented in
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different countries aiming to avoid or compensate cropland
losses (Lichtenberg and Ding 2008; Paül and McKenzie
2013).

Differences between net area change and gross area change in
cropland have been analyzed at continental and global scales
(Fuchs et al. 2015, 2018). These studies show that gross changes
far exceed net changes at these scales. The difference between
gross and net changes in cropland can be explained by land use
displacement, i.e., a change of cropland in geographic location
(Gollnow and Lakes 2014; Meyfroidt et al. 2018; van Vliet
2019). Several analyses of cropland location changes have been
presented (Pontius and Santacruz 2014; Quan et al. 2018).
Increasingly, studies have assessed the implications of such dis-
placement in cropland in the context of global trade (Meyfroidt
et al. 2010; Meyfroidt et al. 2013; Yu et al. 2013), human diet
(Alexander et al. 2015), affluence level (Weinzettel et al. 2013),
and urban expansion (Ke et al. 2017; Zhang et al. 2012; vanVliet
et al. 2017). A recent inter-country comparative assessment sug-
gested that displacementmight be themain reason underlying the
nonlinear relationship between area change and production
change (Yu et al. 2019). However, how cropland displacement
affects crop production is not clear in the context of cropland-
protection policies, while there can be large differences in land
productivity within the same country. This is especially relevant
for China, which aims for to stabilize cropland area while at the
same time facing rapid urbanization, resulting in a great amount
of cropland loss that is compensated elsewhere (Johansson and
Azar 2007; Rathmann et al. 2010).

To ensure national food security, the Chinese government
implemented a series of strict cropland protection policies in
the last three decades (Jiang et al. 2017; Qi et al. 2012). These
policies include the requisition-compensation balance of
cropland policy which aims at balances for both quantity
and quality between the lost croplands due to urban expansion
and compensated cropland within provincial boundary (Liu
et al. 2014a) and the land exploitation and land consolidation
policy for the purpose of increasing cropland area and improv-
ing cultivation conditions (Jiang et al. 2017; Jin et al. 2016).
According to the Chinese Land Resources Yearbook
(Ministry of Land and Resources of China 2016), the amount
of cropland gain was close to the amount of cropland loss for
each year between 2001 and 2015 (Fig. 1). The overall stabil-
ity of cropland area indicates that the characteristic of China’s
cropland change during that period was not the net area
change but the location change. Yet, those numbers provide
no information on the location of cropland losses and gains
and do not inform about the productivity of these areas nei-
ther. Such large-scale cropland displacement might induce
negative effects in terms of crop production.

China has experienced a 50% increase in actual crop produc-
tion between 2000 and 2018 (FAOSTAT, 2020). However, a
decrease in potential crop production has also been observed at
the same period ((Li et al. 2018; Liu et al. 2014b). This suggests

that lost cropland was more fertile than new cropland developed
in the same period, but also that existing croplands were man-
aged more intensively in order to increase cropland productivity.
These findings correspond with studies that found that the rela-
tive loss in cropland area was smaller than the relative loss in
potential crop production since the 1990s (Li et al. 2018; Xu et al.
2017; Deng et al. 2006). As a consequence, Chinese cropland
protection yielded a balance in terms of cropland quantity but not
in terms of cropland quality (Song and Pijanowski 2013). Drivers
of change in potential crop production, such as the grain-for-
green policy, agricultural restructuring, and built-up area expan-
sion, have been studied (Deng et al. 2014; Song and Pijanowski
2013). Moreover, some studies suggested that cropland displace-
ment might be a vital factor to explain China’s crop production
change (Li et al. 2018; Ge et al. 2018; Li et al. 2017; Wang et al.
2018; Xu et al. 2017). However, the extent to which is the case
remains unclear, as well as the relation between the impact of
cropland displacement and the geographical scale of analysis.
The latter is relevant as policies can specifically address the ad-
ministrative level, and thus geographic scale, at which policies
are implemented.

This paper investigates the contribution of cropland dis-
placement to changes in potential crop production at multiple
geographical scales (corresponding to the relevant administra-
tive levels), taking China as the study area. Specifically, the
objectives of this study are (1) to compare the area of
displaced cropland to the total amount of change in cropland
area at different administrative levels and (2) quantify the
contribution of cropland displacement on potential crop pro-
duction at different administrative levels.

Data and methods

Definition and calculation of cropland displacement

Cropland change can be decomposed to net changes in crop-
land area and cropland displacement. Cropland displacement
is operationalized here as lost cropland that is compensated by
new cropland elsewhere in the same period (Meyfroidt et al.
2010; van Vliet 2019). Figure 2 illustrates the relationship
between cropland displacement and net change following
the specification of gross and net change as outlined by
Fuchs et al. (2015).

The net change in cropland area between time 1 (t1) and
time 2 (t2) is the difference between the area of cropland in t1
and t2 or the difference between cropland area gain and crop-
land area loss:

Anet change ¼ At2−At1 ¼ Again−Aloss ð1Þ

where Anet _ change is the area of cropland net change. At1 and
At2 denote the cropland areas for time 1 and time 2,
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respectively. Again and Aloss denote the areas of cropland gain
and cropland loss, respectively.

The area of cropland displacement in this paper,
Adisplacement, is defined as the minimum of cropland gain and
cropland loss due to location change is the combination of loss
accompanied by simultaneous gain:

Adisplacement ¼ min Again;Aloss

� � ð2Þ

To identify the patterns of cropland displacement within
each spatial unit, we compared the areas of cropland gain
and cropland loss within these units. We express this compar-
ison by the relative compensation, i.e., by indicating how
much new cropland is displaced relative to the lost cropland:

Rcompensation ¼ Again

Aloss
� 100% ð3Þ

where Rcompensation is the index of relative compensation of
cropland. When Rcompensation approaches 1, cropland gains

are close to cropland losses, i.e., there is little net cropland
change. In this case, changes can mainly be ascribed to crop-
land displacement. Low values indicate lower gains than
losses, thus pointing at net cropland losses. Higher values
indicate higher gains than losses, thus pointing at net gains.

Calculation of contribution of cropland displacement
to potential crop production

For both cropland gains and cropland losses, we calculated the
average potential crop productivity within each spatial unit for
each of the four administrative levels. Potential crop produc-
tivity maps are available for the years 1990, 1995, 2000, 2005,
and 2010. As potential crop productivity only changes very
little from year to year (i.e., only as a consequence of climate
variations) (Yu et al. 2019), we calculated the average of these
values and used that average value for this analysis (Fig. 3). In
order to assess how cropland displacement and net change
affect the potential crop production, this analysis combines

Fig. 1 Cropland gains and
cropland losses in China between
2001 and 2015 (Ministry of Land
and Resources of China 2016)

Fig. 2 Illustration of the relationship between cropland displacement and net change. This figure only refers to the example that cropland loss is larger
than cropland gain
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the average potential crop productivity of cropland gains and
cropland losses. The change in overall potential crop produc-
tion in a given administrative unit can be expressed as:

ΔP ¼ Pgain−Ploss

¼ ∑
i
Qgain i−∑

j
�Qloss j

ð4Þ

where Pgain is the total potential crop production of gained crop-
land, while Ploss is the total potential crop production of lost
cropland. Qgain _ i is the value of potential crop productivity for
ith grid cell of the gained cropland, while Qloss _ j is the value of
potential crop productivity for jth grid cell of the lost cropland.

Subsequently, we decompose the total change to find
the changes in potential crop production to cropland dis-
placement and net change, respectively. Changes in po-
tential crop production due to displacement can be calcu-
lated as:

Pdisplacement ¼ Adisplacement � Qgain−Qloss

� �

¼ Adisplacement �
∑iQgain i

Again
−
∑ jQloss j

Aloss

� �

ð5Þ

where Qgain is the average potential crop productivity of

total gained cropland. Qloss is the average potential crop
productivity of total lost cropland, while changes in po-
tential crop production due to the net change in cropland
area can then be calculated as:

Pnet change ¼ ΔP−Pdisplacement ð6Þ

Further, the contribution of Pdisplacement to the change in
potential crop production can be defined as:

Kdisplacement ¼ Pdisplacement

ΔP
� 100% ð7Þ

Fig. 3 Spatial distribution of
China’s potential crop
productivity (kg/ha), as an
indicator of average value for the
years 1990, 1995, 2000, 2005,
and 2010
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where Kdisplacement is the contribution of cropland displacement
to potential crop production variation. Note that Kdisplacement ≥
50% indicates that ΔP is predominantly related to cropland
displacement, while Kdisplacement < 50% indicates that the ΔP
is predominantly related to net area change. The direction of
change between total change in potential crop production and
the change as a result of crop displacement can differ; therefore,
values can become negative or larger than 100% in the case
where the change due to cropland displacement and the change
due to net cropland change have different signs.

Data sources

Three spatial datasets are used for this study. The first is the land
cover maps provided by China’s Land Use/Cover Datasets
(CLUDs), which depict land cover in China at a 30 m spatial
resolution for the years 2000 and 2018 (Ning et al. 2018; Liu
et al. 2014c). Land cover in CLUDs has been classified into 6
categories, which are cropland, forest, grassland, water body,
built-up area, and unused land. The accuracy of the six catego-
ries of land cover is above 94.3%, which can meet the require-
ment of cropland change analysis in this study.

The second dataset concerns potential crop productivity
maps for the years 1990, 1995, 2000, 2005, and 2010, as
provided by Liu et al. (2014b) and Xu et al. (2017). This
dataset used the methodology of Global Agro-Ecological
Zones (GAEZ) to calculate crop productivity (Fischer et al.
2008). The GAEZ model considered biophysical constraints
(light, temperature, water and soil) as well as inputs and

management conditions to assess potential yields for all major
food and fiber crops for each grid cell through a stepwise
limiting process. The dataset provides potential crop produc-
tivity, expressed in kg/ha, for all of China at a 1 km spatial
resolution. The potential crop productivity was calculated
based on the optimal combination of crops within a multi-
cropping system, selected from multiple varieties of wheat,
maize, rice, sweet potato, and soybean.

The third set of data depicts administrative units at a scale
of 1:100,000, in which four levels are presented, namely, na-
tional level, provincial level (n = 31), municipal level (n =
340), and the county level (n = 2401) (http://www.resdc.cn).
In this paper, we only analyzed cropland change and
consequent changes of potential crop production in mainland
China. The analysis is performed at all administrative levels
independently to investigate the effect of spatial scale on the
analysis of cropland displacement and net change.

Results

Cropland displacement at different scales

The total area of cropland in China decreased by 0.81 million
hectares (Mha) between 2000 and 2018, which was the net
effect of a gain of 19.63 Mha and a loss of 20.44 Mha. This
relatively small change (0.42% of the total cropland area in
2000) indicates that China was almost able to balance crop-
land losses and gains at the national level. Figure 4 shows

Fig. 4 Cropland gain and cropland loss in China between 2000 and 2018
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cropland gain and loss in China at the grid level. Cropland loss
mainly resulted from built-up area expansion and conversion
into forest/grassland, accounting for 43% and 47% of the total
cropland loss, respectively. On the other hand, cropland gains
mainly originated from grassland and forest conversions, ac-
counting for 39% and 29%, respectively. In addition to the net
loss of cropland, China experienced 19.63 Mha of cropland
displacement. Thus, displacement was the main characteristic
of the cropland change of China between 2000 and 2018, as
96% of the lost cropland was compensated by cropland gains
elsewhere, at the national level.

The maps in Fig. 5 show that at sub-national administrative
levels, there is a spatial disparity in the extent of which crop-
land losses were compensated. At the national level, almost all
cropland losses were compensated by new cropland else-
where, while many sub-national units show either a large net
loss or a large net gain, as indicated by a much smaller or

much larger value of relative compensation than 100%.
More specifically, the provinces of Jilin and Yunnan achieved
a close to 100% of cropland displacement, while the provinces
of Shanghai, Jiangsu, and Zhejiang could hardly compensate
any losses in cropland. As is shown in Table 1, values close to
0% indicate that cropland change is almost equal to the net
decrease in cropland area. Comparatively, InnerMongolia and
Tibet had more than 200% cropland loss compensated, while
Xinjiang reached as high as 455%, indicating substantial gains
in cropland.

At municipal and county levels, regions with low shares of
cropland compensation are mainly found in eastern China (see
Fig. 5). The Huang-Huai-Hai Plain (including units in Beijing,
Tianjin, Hebei, and Shandong), Yangtze River Delta
Metropolitan area (including units in Shanghai, Jiangsu,
Zhejiang), Pearl River Delta Metropolitan area (including
units in Southeast Guangdong), as well as some inland areas

Fig. 5 Relative compensation of cropland between 2000 and 2018 at sub-national levels: a provincial level. bmunicipal level, and c county level. Values
indicate the percentage of cropland losses compensated by cropland gains within the same administrative unit
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with provincial capitals show relatively low percentages of
compensation, hence indicating net cropland losses. Besides,
such as Xinjiang, Inner Mongolia, Tibet, Heilongjiang, and
most municipalities and counties of these provinces present
a large relative compensation, indicating larger gains than
losses and hence showing considerable increase in cropland
area.

In terms of the total cropland area, Xinjiang, Heilongjiang,
and Inner Mongolia are the three provinces with the largest
amount of cropland compensation, which exceed 2.00 Mha.
These provinces are all located in the North China. In addition,
Heilongjiang is also the province with the largest gross loss in
cropland area. In terms of net area change, Xinjiang and
Jiangsu are the two provinces with the largest differences be-
tween cropland gain and loss. However, the net change in

Xinjiang was positive, while the net change in Jiangsu was
negative. Only six provinces, i.e., Xinjiang, Heilongjiang,
Inner Mongolia, Jilin, Tibet, and Qinghai experienced a net
increase in cropland area, together accounting for 6.10 Mha,
about half of which was located in Xinjiang. The other
twenty-five provinces all show a net decrease of cropland
area, summing to 6.91 Mha, most of which are found in East
and Middle China.

Contribution of cropland displacement to changes in
potential crop production at different scales

Between 2000 and 2018, China’s potential crop production
decreased by 47.46 million tons (Mton), which is the result of
a gross gain of 58.56 Mton and a gross loss of 106.02 Mton.

Table 1 Cropland change in
China between 2000 and 2018 at
provincial level

Gross gain
(× 1000 ha)

Gross loss
(× 1000 ha)

Net change
(× 1000 ha)

Displacement
(× 1000 ha)

Relative
compensation

Beijing 57.5 164.7 − 107.2 57.5 34.9%

Tianjin 66.0 175.9 − 109.8 66.0 37.6%

Hebei 502.1 1211.8 − 709.7 502.1 41.4%

Shanxi 388.3 746.8 − 358.4 388.3 52.0%

Inner Mongolia 2025.3 951.3 1074.0 951.3 212.9%

Liaoning 901.8 1447.1 − 545.3 901.8 62.3%

Jilin 1143.1 1014.0 129.2 1014.0 112.7%

Heilongjiang 3170.7 1700.1 1470.6 1700.1 186.5%

Shanghai 5.9 137.7 − 131.8 5.9 4.3%

Jiangsu 150.8 867.8 − 717.1 150.8 17.4%

Zhejiang 95.8 512.4 − 416.5 95.8 18.7%

Anhui 108.9 458.6 −349.7 108.9 23.8%

Fujian 115.4 266.6 − 151.2 115.4 43.3%

Jiangxi 218.6 331.4 − 112.8 218.6 66.0%

Shandong 1048.5 1381.2 − 332.8 1048.5 75.9%

Henan 581.8 1011.8 − 430.0 581.8 57.5%

Hubei 156.4 416.2 − 259.8 156.4 37.6%

Hunan 283.9 579.4 − 295.5 283.9 49.0%

Guangdong 238.7 530.9 − 292.2 238.7 45.0%

Guangxi 211.8 314.2 − 102.4 211.8 67.4%

Hainan 33.2 64.9 − 31.7 33.2 51.2%

Chongqing 188.5 289.1 − 100.6 188.5 65.2%

Sichuan 1200.6 1529.5 − 328.9 1200.6 78.5%

Guizhou 305.4 434.5 − 129.1 305.4 70.3%

Yunnan 760.6 881.6 − 121.0 760.6 86.3%

Tibet 584.3 285.0 299.3 285.0 205.0%

Shaanxi 404.5 903.0 − 498.5 404.6 44.8%

Gansu 497.2 660.5 − 163.2 497.2 75.3%

Qinghai 80.8 46.0 34.9 46.0 175.9%

Ningxia 145.4 255.3 − 109.8 145.4 57.0%

Xinjiang 3955.7 868.5 3087.2 868.5 455.5%

Page 7 of 13     97Reg Environ Change (2020) 20: 97



At the national level, the net loss in cropland area was respon-
sible for a loss of 4.20 Mton in potential crop production,
while the other 43.26Mton or 91% of the total loss in potential
crop production was attributed to cropland displacement. At
provincial, municipal, and county level, both administrative
units with a net gain and administrative units with a net loss in
potential crop production are observed. However, the number
of administrative units with a net loss far outnumber the num-
ber of administrative units with a net gain at all levels (Fig. 6).

At provincial level, only three provinces (i.e., Inner
Mongolia, Xinjiang, and Heilongjiang) show a net increase
of potential crop production. Xinjiang and Inner Mongolia
are the two provinces that contributed most to this increase
with almost 6.0 Mton together. On the other hand, Jiangsu,
Hebei, Henan, and Shandong each experienced more than
4.3 Mton net decrease of production potential. Attributing

the changes in potential crop production to displacement and
net change at provincial level shows that the vast majority of
provinces are primarily affected by net area change of crop-
land, while the change due to cropland displacement is much
smaller (see Table 2). Jilin, Yunnan, Tibet, and Qinghai are
only the provinces where the changes in potential crop pro-
duction were attributed to cropland displacement, while none
of them had a net increase in potential crop production.

At municipal level and county level, changes in potential
crop production are also primarily related to net area changes.
Only 17.9% of the municipalities and 16.5% of the counties
have changes in potential crop production that are predomi-
nantly attributed to cropland displacement (indicated by
Kdisplacement values ≥ 50%). Most of displacement-dominated
municipalities and counties are found in the Northeast Plain
and the Southwest Basin and Plateau. Net area change is also

Fig. 6 Dominant process in relation to changes in potential crop
production between 2000 and 2018 at sub-national levels: a provincial
level, b municipal level, and c county level. Dominated by displacement

is based on Kdisplacement value larger than 50%, indicating that the change
in potential crop production due to cropland displacement exceeds the
change in crop production due to net cropland changes
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the dominant factor influencing potential crop production in
the East-Middle China and the North China. However, poten-
tial crop production changed in opposite directions in these
regions: potential crop production decreased in the East-
Middle China, while it increased in the North China. For ex-
ample, Jiangsu is one of the fastest developing regions in the
Huang-Huai-Hai Plain, with large cropland losses due to con-
struction and with little compensation of the lost croplands.
Although Jiangsu has a relatively high agricultural endow-
ment, the potential crop production was severely affected by
cropland net loss. An opposite process happened in many
municipalities and counties of Xinjiang where the change in
potential crop production was also attributed to net area
change. However, in Xinjiang, there was compensation due
to the extensive reclamation of new cropland, mostly derived
from grassland.

Discussion

Cropland displacement and its impacts

This study analyzes cropland changes in terms of cropland
displacement and net area change, at multiple administrative
levels to properly assess its impacts. Results at national level
show that there is only very little net cropland change as com-
pared with the area of cropland displacement. However, in
individual provinces, municipalities, and counties, we find
that the net change is often larger than the displacement, indi-
cating that cropland compensation is often happening beyond
the boundaries of the administrative unit itself. For example,
the province of Jiangsu lost large areas of cropland, while
Xinjiang experienced the largest gain. When considering
these processes at the scale of the whole country, it can be

Table 2 Decomposition of the changes in potential crop production at provincial level

Pnetchange (k ton) Pdisplacement (k ton) ΔP (k ton) Kdisplacement

Beijing − 808.3 − 152.4 − 960.7 15.9%

Tianjin − 716.1 − 91.6 − 807.6 11.3%

Hebei − 5463.5 − 1044.3 − 6507.8 16.0%

Shanxi − 1391.3 − 364.5 − 1755.8 20.8%

Inner Mongolia 2650.3 612.3 3262.6 18.8%

Liaoning − 2661.7 − 891.4 − 3553.1 25.1%

Jilin 415.7 − 1212.0 − 796.3 152.2%

Heilongjiang 3582.1 − 3445.4 136.7 − 2519.7%
Shanghai − 1035.8 − 12.9 − 1048.7 1.2%

Jiangsu − 6541.0 − 407.0 − 6947.9 5.9%

Zhejiang − 2580.1 − 276.2 − 2856.3 9.7%

Anhui − 3430.4 − 195.5 − 3625.8 5.4%

Fujian − 417.5 − 137.1 − 554.6 24.7%

Jiangxi − 653.1 − 347.9 − 1001.1 34.8%

Shandong − 2775.8 − 1587.9 − 4363.7 36.4%

Henan − 4159.2 − 506.3 − 4665.5 10.9%

Hubei − 1926.3 − 328.5 − 2254.7 14.6%

Hunan − 1387.6 − 118.3 − 1505.9 7.9%

Guangdong − 937.6 − 256.0 − 1193.7 21.4%

Guangxi − 307.6 − 187.6 − 495.2 37.9%

Hainan − 183.6 − 36.6 − 220.3 16.6%

Chongqing − 491.7 − 327.8 − 819.6 40.0%

Sichuan − 1359.6 − 1295.1 − 2654.7 48.8%

Guizhou − 344.0 − 96.9 − 440.9 22.0%

Yunnan − 337.5 − 973.0 − 1310.5 74.2%

Tibet 42.1 − 130.1 − 88.0 147.9%

Shaanxi − 1756.7 − 364.2 − 2120.8 17.2%

Gansu − 410.2 − 201.8 − 612.0 33.0%

Qinghai 23.1 − 57.6 − 34.6 166.8%

Ningxia − 264.7 − 102.9 − 367.6 28.0%

Xinjiang 5242.7 − 2538.3 2704.4 − 93.9%
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interpreted as a displacement of cropland from Jiangsu to
Xinjiang, leading to a conclusion that cropland displacement
is the predominant process. In fact, more than 80% of all
provinces, municipalities, and counties have experienced a
decrease in cropland area. The near-zero net change at the
national level thus heavily relies on a few regions that expand-
ed croplands considerably. These areas of cropland loss and
cropland gain are highly concentrated in a few regions, as
illustrated in Fig. 4.

Cropland displacement is an important component of crop-
land change, but it also has large impacts on the potential crop
production. This impact is a result of the spatial heterogeneity
of potential crop productivity, which can lead to a change in
potential productivity even though the cropland area remains
constant. In China, the regions where cropland was lost are
mainly in the east and the middle parts, which are among the
most fertile areas, while similar quantity of new cropland is
primarily developed further inland, where potential crop pro-
ductivity is much lower. These findings confirm and further
explain earlier results presented in (Xu et al. 2017; Yu et al.
2019) which show that the relative decrease in cropland was
much smaller than the relative decrease in crop productivity.
At the national level, the loss in potential crop production is
mainly attributed to cropland displacement, while the net
change plays a much smaller role. However, the results of
the analysis at other geographical scales are not necessarily
consistent. The multi-scale analysis of this study shows that
cropland displacement has a larger impact on the changes in
potential crop productivity as administrative scale became
larger. Conversely, in smaller administrative levels, the con-
tribution of net area changes is more important, as only little
cropland is displaced within these smaller regions. These re-
sults build on earlier analyses on a global scale, which show a
large-scale displacement of cropland across countries, facili-
tated by increases in global agricultural trade (Yu et al. 2013).
However, the resulting negative ecological effects have wide-
ly drawn concerns (Delzeit et al. 2017; Strassburg et al. 2014).

Implications for cropland protection

In 2018, China’s government introduced an adjustment
concerning the policy of requisition-compensation balance
of cropland. The new adjustment permits requisition of crop-
land in one province but compensation in another province,
while the previous policy required that compensation must be
fulfilled in the same province in which cropland was taken by
urban constructions. Our results confirm earlier findings that
already between 2000 and 2018 the small net change in crop-
land area was achieved only because losses in some parts of
China were compensated in other parts (Ye and Fang 2012;
Zuo et al. 2014). On top of that, we find this compensation
came at the expense of the potential crop production. Thus, the
2018 adjustment would allow a continuation of these trends,

which is likely to inflict a further decrease in potential crop
production at the national level. Based on the results, we sug-
gest that if China aims at stabilizing or increasing the potential
crop production, and cropland protection policies should (1)
avoid the displacement of cropland at national level and over
large distances, for example, by (2) enhancing a cropland
balance at the provincial scale or even within lower adminis-
trative levels, especially for those provinces with high-quality
cropland, and (3) strictly control and regulate the conversion
of high-quality croplands into urban land (Wang et al. 2019).

Data uncertainties

In this study, we assumed that the potential crop productivity
at a pixel level remained unchanged between 2000 and 2018
when estimating the contributions of displacement and net
change to potential crop production variation. However, po-
tential crop productivity may change, especially under condi-
tions of climate change. This is generally considered to have a
negative impact on potential crop production, globally
(Challinor et al. 2014; Rosenzweig et al. 2014). Conversely,
a recent study for China indicated that climate change might
have increased potential crop production over the past three
decades (Yu et al. 2018a). This effect is mainly due to increas-
ing temperatures allowing for more harvests per year, leading
to a higher multi-cropping factor. This would affect both the
potential crop productivity of lost croplands and of newly
gained croplands, and therefore, it is not sure how this will
affect our results. However, there is no reason to assume that
this climatic effect will disproportionally affect either lost or
newly developed cropland. Therefore, we assume that this
will not affect the main outcomes of this study.

While the potential crop productivity changes only little
over time, actual productivity can change much faster as a
result of changes in agricultural land management (Mueller
et al. 2012; Ray and Foley 2013). Therefore, the extent to
which compensation in potential crop productivity also leads
to a compensation in actual crop productivity depends to a
large extent on the management of both the lost and newly
developed cropland areas. Earlier findings of Liu et al.
(2014b) show that the potential production decreased in
China, while the actual production increased between 2000
and 2018, indicating that land use management intensity in-
creased on average. These reported changes concern both
persisting and new cropland areas. The combined impact of
land management depends on a myriad of factors, but land
management intensity is often highest in areas close to cities
(Estel et al. 2016; Niedertscheider et al. 2016). Because newly
developed cropland areas are often in more remote areas,
while lost croplands are often related to urban expansion
(Feng et al. 2016), it is likely that the land use intensity of
newly developed croplands is lower than that of lost
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croplands, thus leveraging the effect of cropland displacement
on crop production (van Vliet 2019).

For a precise analysis of cropland change, our estimation
highly depends on a complete coverage of the two-stage land
use/cover datasets. Although the CLUDs of 2000 and 2018
are both validated during the dataset production, there is re-
maining uncertainty in these datasets (Liu et al. 2014c). The
fairly high accuracies of the datasets for the two individual
years may still be insufficiently for summarizing the changes
between the years in terms of displacement and net change.
Our analysis is sensitive to small locational inaccuracies that
could lead to a slight shift of cropland location (one pixel)
between the 2 years in the data, while no change occurs in
reality. We used the approach of Yu et al. (2018b) to check for
this “swap effect” (Pontius et al. 2004). We randomly selected
104 and 105 windows of 2 × 2 grid cells within the whole
country to calculate the number of swaps of one pixel dis-
tance. The result reveal that this swap effect only occurs in 3
out of 104 and 8 out of 105 cases and is, therefore, assumed to
not have influenced our results.

Conclusion

We assessed the multi-scale impacts of cropland displace-
ment on both cropland change and potential crop produc-
tion in China between 2000 and 2018. Results show that
19.63 Mha cropland was displaced, while only 0.81 Mha
was attributed to net change at the national level.
Moreover, we found cropland displacement rather than
net change predominated in cropland change in more than
half of administrative units at provincial level, municipal
level, and county level. The total potential crop produc-
tion decreased 43.26 Mton in China during the same
study period, which was mainly attributed to cropland
displacement, as new croplands have a lower potential
production than lost croplands, on average. However,
net change instead of displacement made a larger contri-
bution to the change in potential crop production in 81%
of provinces, 82% of municipalities, and 83% of counties.
Our results indicate that cropland displacement is not only
a crucial component of cropland change but also a dom-
inant force in potential crop production variation. The
larger scale of cropland displacement is, the greater im-
pact it brings. Our findings suggest that it is better to
control cropland displacement within local scale than na-
tional scale.
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