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Abstract
Mobile apps are playing a major role in our everyday life, and they are tending to become
more and more complex and resource demanding. Because of that, performance issues may
occur, disrupting the user experience or, even worse, preventing an effective use of the app.
Ultimately, such problems can cause bad reviews and influence the app success. Develop-
ers deal with performance issues thorough dynamic analysis, i.e., performance testing and
profiler tools, albeit static analysis tools can be a valid, relatively inexpensive complement
for the early detection of some such issues. This paper empirically investigates how poten-
tial performance issues identified by a popular static analysis tool — Android Lint — are
actually resolved in 316 open source Android apps among 724 apps we analyzed. More
specifically, the study traces the issues detected by Android Lint since their introduction
until they resolved, with the aim of studying (i) the overall evolution of performance issues
in apps, (ii) the proportion of issues being resolved, as well as (iii) the distribution of their
survival time, and (iv) the extent to which issue resolution are documented by developers
in commit messages. Results indicate how some issues, especially related to the lack of
resource recycle, tend to be more frequent than others. Also, while some issues, primarily
of algorithmic nature, tend to be resolved quickly through well-known patterns, others tend
to stay in the app longer, or not to be resolved at all. Finally, we found how only 10% of the
issue resolution is documented in commit messages.
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1 Introduction

Mobile applications are becoming more and more important and pervasive in everyone’s
lives. The underlying economy is estimated to go over $ 950 billion in 2018.1 In such a
context, the hardware vendors are offering more and more powerful devices, in terms of
CPU, memory, Graphical Processing Unit (GPU), and equipped sensors. At the same time,
apps are becoming more and more resource-demanding. This is especially the case of video
games and multimedia applications, although this might be the case for other app categories
as well, e.g., for productivity, sport, or other apps. Moreover, inappropriate usage of API or
of third-party resources could contribute to introduced performance issues in apps.

Performance issues can negatively affect the user experience and in some cases impede
an effective usage of the apps’ features. This can ultimately impact the app user ratings
and reviews which, unless properly addressed, can negatively impact to the app’s success
(Palomba et al. 2018).

Dynamic analysis remains the main approach for identifying performance problems and
for identifying bottlenecks in the app architecture, some problems can possibly be early
detected through the use of static analysis tools during development. Static analysis tools
analyze either source code or byte code using different techniques (some rely on simple
pattern matching, others employ more sophisticated techniques including data flow analy-
sis) with the aim of identifying, for example, code style issues, potential bugs, sources of
potential security issues, or potential performance problems. Examples of such tools include
some general-purpose ones, e.g., FindBugs2 or PMD,3 but also some Android-specific tools.
These includes Paprika (Hecht et al. 2015b), aDoctor and Android Lint.4 Among other kinds
of potential problems, such tools are also able to identify potential performance issues. For
example, Android Lint detects seven kinds of performance issues,

The goal of this paper is to empirically investigate the extent to which (potential) per-
formance issues reported by static analysis tools are actually resolved by developers. More
specifically, the study analyzes the occurrence and resolution of seven kinds of perfor-
mance issues identified by Android Lint in 316 open source Android apps hosted on GitHub
(among 724 apps we analyzed in total). We have chosen Android Lint as static analyzer,
because it is integrated in Android Studio and also available as an Eclipse plugin, therefore
it likely to be used by many Android developers.

First, we identify and report the occurrence of likely performance issues across the ana-
lyzed apps. Then, we trace the detected performance issues across the apps’ evolution
history, and determine whether they have been detected and, if this is the case, what is the
distribution of their survival time in the app. This has the purpose of determining whether
there are some kinds of issues that tend to be resolved quickly whereas others are more
likely to be ignored by developers. Finally, we analyze the extent to which the resolution
of the detected performance issues is also acknowledged by developers and documented in
commit messages.

So far, performance issues have been investigated in Web applications (Ahmed et al.
2016), heterogeneous environments (Foo et al. 2015), or large-scale applications (Malik
et al. 2013). Also, Zaman et al. conducted a qualitative study of performance bugs (Zaman

1ACT. Act state of the app enconomy 2018, 2018.
2Findbugs™- find bugs in java programs. http://findbugs.sourceforge.net/.
3PMD - an extensible cross-language static code analyzer. https://pmd.github.io/.
4Android studio project site - Android Lint. http://tools.android.com/tips/lint.
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et al. 2012). To the best of our knowledge, there is only work on the analysis of mobile app
performance bugs by Liu et al. (2014), limited to the analysis of 70 real bugs.

The paper is organized as follows. Section 2 provides a brief background about static
analysis tools for Android, with particular emphasis on Android Lint and about performance
issues it is able to detect. Section 3 describes the study definition and planning. Sections 4,
5, 6, 7, and 8 report the study results. Section 9 provide a summary of the results, and
discusses implications for developers and researchers, while threats to validity are discussed
in Section 10. After presenting related work (Section 11), Section 12 concludes the paper
and outlines directions for future work.

2 Static Analysis Tools for Android Apps

Static analysis tools analyze the source code, bytecode, or other artifacts of software
applications without executing them, with the aim of extracting facts about a software sys-
tem (Nielson et al. 2015). For what concerns Android apps, static analysis is gaining a
growing interest in both academia and industry (Li et al. 2017; Joorabchi et al. 2013). A
large number of static analysis tools exist for Android, ranging from structural and control-
flow analysis to data-flow and state-based analysis, interval analysis (used in optimizing
compilers) and so on (Li et al. 2017). Regarding the identification of performance-related
issues, there is a number of available static analysis tools, which are used to find various
types of performance issues. These tools work at different levels of granularity, i.e., some
tools work on the source code of the app, others on bytecode and some tools work on
APK level. In the following, we report the most widely used tools to identify performance-
related issues of Android apps. More specifically, we describe three general-purpose tools
for Java applications, i.e., FindBugs, PerfChecker and PMD and three Android-specific
tools, Paprika, aDoctor, and Android Lint.

FindBugs is an open-source static analysis tool conceived to identify bad smells/defects
in Java applications in general (it is not Android-specific) through the analysis of Java byte-
code. FindBugs can be executed via Maven or ANT configurations, within the Netbeans or
Eclipse IDE, through its dedicated graphical user interface, or via command line. Similarly
to Android Lint, FindBugs can also detect different categories of issues such as correctness,
internationalization, security, and performance issues. Each issue is associated with a high,
medium, or low severity.5

PerfChecker is used to identify two types of performance anti-patterns, i.e., (i) lengthy
operations in the main thread of a program, and (ii) violations of the view holder pattern (Liu
et al. 2014). Also PerfChecker is based on the Soot framework. PerfChecker takes the Java
bytecode of Android apps as input and generates a warning when it finds any performance
related anti-patterns.

PMD is an open-source code analyzer for Java which executes syntactic checks on the
source code. It is able to detect issues like bad programming practices, or inefficient code,
that can degrade the performance of a program if accumulated.

Paprika can detect performance-related bugs in Android apps (Hecht et al. 2015b).
Paprika takes as input the APK file of the app, produces a set of metrics related either to the
Android programming model (e.g., number of broadcast receivers) or to standard principles
of object orientation (e.g., coupling between objects). Once those metrics are computed,
Paprika allows the developer to query them and to identify potential antipatterns in the app

5Findbugs™- find bugs in java programs. http://findbugs.sourceforge.net/.
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Listing 1 DrawAllocation description by Android Lint Tool

(e.g., blob class or heavy broadcast receiver Hecht et al. 2015b). Paprika is based on Soot,
a widely-adopted static analysis framework for Java and Android bytecode.6

aDoctor is a fully-automated tool (Palomba et al. 2017) capable of detecting 15 types of
Android-specific code smells. The tool analyzes the abstract syntax tree of the source code
and applies a set of identification rules, which are based on the descriptions of smells given
in the catalog by Reimann et al. (2014). At the time of writing, 7 out of 15 Android code
smells are related to performance issues i.e., Internal Getter and Setter (IGS), Leaking Inner
Class (LIC), Member Ignoring Method (MIM), etc.

Android Lint analyzes both Java source code as well as XML resource files. Android
Lint can be used either as a stand-alone tool or as an IDE plugin (it is included in Android
Studio and available for Eclipse). The tool is capable to detect different types of issues such
as security, performance, usability, and accessibility. Listing 1 shows the description of the
DrawAllocation performance check of Android Lint.

In this study, we use Android Lint because (i) it covers a relatively large number of
recurrent Android performance issues (see Section 4), (ii) it is among the few static analysis
tools supporting a dedicated category for Android performance-related issues,7 (iii) it can
be considered as the de facto static analysis tool for Android apps since it is activated by
default in Android Studio (i.e., the official development environment for Android apps),
where its execution is part of the Java compilation step from the developer’s perspective,
and (iv) it can be integrated with relatively low effort into a larger software pipeline, like
the one we developed in this study (see Section 3.3).

3 Study Design

This study has been carried out by following the guidelines for designing, conducting, and
reporting empirical experiments in software engineering (Wohlin et al. 2012; Shull et al.
2007). In this section we focus on the design of our study, specifically we present its
goal and research questions (Section 3.1), context selection (Section 3.2), data extraction
(Section 3.3).

6Soot - A framework for analyzing and transforming Java and Android applications. https://sable.github.io/
soot/.
7At the time of writing only FindBugs also provides a dedicated category for performance-related issues, but
it is not specific to Android apps.
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Table 1 Goal of this study
Analyze the change history of Android mobile

applications

for the purpose of characterizing their evolution

with respect to statically detectable performance issues

from the viewpoint of developers and researchers

in the context of open source Android applications

A complete replication package is publicly available8 for allowing independent replica-
tion and verification of our study. The replication package includes the Python and shell
scripts for identifying the targeted Android apps, the list of all considered GitHub reposito-
ries, the mined Google Play metadata, the raw data extracted from each GitHub repository,
the Python and Shell scripts for extracting the raw data, and the R scripts we developed for
data exploration and analysis, and for visualizing the obtained results.

3.1 Goal and Research Questions

We formulate the goal of this study by using the Goal-Question-Metric perspectives (Basili
et al. 1994). Table 1 shows the result of our goal formulation.

In the following we present and discuss the research questions we translated from the
above mentioned overall goal.

As already introduced, in this study we exploit Android Lint for identifying performance-
related issues of Android apps. This research question is exploratory in nature and aims
at characterizing the number, frequency, and distribution of performance issues identi-
fied by Android Lint across the versioning history of all apps. By answering RQ0, we
assess whether the context of our study (i.e., the apps dataset we built – see Section 3.2)
and Android Lint provide enough data points for answering the remaining research ques-
tions. Moreover, by answering RQ0 we identify the most recurrent statically-detectable
performance issues during the evolution of Android apps, providing empirical evidence
to developers and researchers for getting a better understanding of Android-specific
performance issues.

The main objective of RQ1is to investigate whether the evolution of statically-detectable
performance issues across different Android apps exhibits identifiable patterns. The identi-
fied patterns can be used by researchers as a foundation for investigating the relationships
between apps exhibiting the same or different patterns. Also, the emerging patterns can

8https://github.com/S2-group/AndroidPerformanceIssues
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guide developers in identifying potentially dangerous patterns in their own apps, e.g., a
sudden increase of performance issues without any subsequent decrease.

By answering RQ2 we provide insights about how each type of Android performance
issues tend to remain in Android apps over time, A long survival time of a performance
issue can have two completely different explanations. On the one hand, it can indicate that
the issue does not seriously affect the app’s performance, and therefore it has been ignored
by developers. On the contrary, if it is a harmful issue, remaining in the app for a long time
would mean potentially affecting multiple releases.

With the term lifetime we mean the interval between the introduction and the resolution
of a performance issue along the versioning history of the app. The underlying intuition
behind RQ3 is that different types of statically-detectable performance issues have signif-
icantly different life spans. The results of RQ3 can highlight whether particular kinds of
performance issues tend to be resolved quicker than others, either because they are easier to
spot, or because they are deemed to be more dangerous. Furthermore, we also characterize
whether the lifetimes of different types of performance issues follow know probability dis-
tributions. This can help developers in knowing how likely a specific performance issue in
their app will be resolved from the code base.

This research question aims at (i) assessing if developers document in their commit
messages the resolution of performance issues and (ii) providing a minimal catalog of
representative solutions, one for each type of Android performance issue. The results of
RQ4 provide empirical evidence about whether developers consciously document their
activities related to the resolution of performance issues. Researchers can use such evi-
dence as a foundation for further studies on the relationship between documented and
not-documented activities related to statically-detectable performance issues of Android
apps. Finally, developers can use the catalog of solutions for standing on other develop-
ers’ shoulders and use it as a reference for solving the issues raised by their instance
of Android Lint.

The research questions discussed above drive the whole study, ranging from the selection
of Android Lint as analysis tool, to the activities related to apps selection, data extraction,
and analysis.

3.2 Context Selection

This study focuses on real-world Android apps for which we can execute the Android lint
analysis tool across different versions of their source code. More specifically, the context
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of this study consists of a set of Android apps that (i) have their versioning history hosted
on GitHub and (ii) are distributed in the Google Play store. We chose GitHub as target of
source code repositories because (i) it is extremely popular among developers (as of June
2018, it has a community of 24 million developers9), (ii) it hosts a huge amount of metadata
that can be accessed through its API,10 and (iii) there is a variety of available tools for
mining and processing data and metrics from GitHub repositories (e.g., the git log and
git diff tools). We focus on apps distributed on the Google Play Store because it is the
official distribution channel of Android apps.

In the remainder of this section, a detailed overview of the process for building the
dataset of Android apps is given. Identifying the required target dataset of Android apps for
this research requires applying several filtering steps, which are documented alongside the
respective numbers of apps resulting from each filtering step. The dataset building process
of this study is similar to the one proposed in (Das et al. 2016) and its 10 steps are shown
in Fig. 1 All steps (except step 3 ) are implemented as independently-executable software
components (mainly Python and Unix shell scripts) and their source code is available in the
replication package of this study. The initial collection of those apps originates from three
different sources, namely: FDroid, GitHub, and Wikipedia. The reason why we chose them
is because we wanted to achieve a diverse set of sources, including the most popular host for
open source (GitHub), a store of open source Android apps (FDroid), and finally an online-
compiled catalog (Wikipedia, which was included for the sake of completeness, because as
explained below it contributed with a fairly limited number of apps).

The first source for our dataset is FDroid,11 a well-known online catalog of free and
open-source Android projects (step 1 ). From this catalog, a search is applied that locates
apps that contain: a) a link to the respective GitHub repository, and b) a link to the respective
Google Play store page. Mining the FDroid repository resulted in 350 potentially relevant
GitHub repositories.12

From Github (step 2 ), a custom search targeting all the repositories containing a link
to a Google Play Store app page in their readme files is performed. In order to do not occur
into the GitHub limit of 1,000 results per search, we stratify our search queries by date
range so that each search results in less than 1,000 results. The whole set of considered dates
ranges from the creation of GitHub (i.e., Jan 1, 2001) to the day in which the searches were
performed (i.e., Feb 15, 2016). This search resulted in a total of 4,788 potentially relevant
GitHub repositories.

The third source for our dataset is a Wikipedia13 page containing a maintained list of free
and open-source Android apps (step 3 ). We manually screened this list of apps to select the
ones that, again, contain a link to the respective GitHub repository and are published on the
Google Play Store. This step results in a total of 35 potentially relevant GitHub repositories.

In step 4 , each repository coming from three data sources is uniquely identified by
its < repository owner , repository name > pair and all duplicates are merged. The
execution of this step results in a total of 4,287 unique GitHub repositories.

9https://github.com/features
10https://developer.github.com/v3/
11F-Droid - Free and Open Source Android App Repository. https://f-droid.org/en/.
12At the time of writing this paper (June 2018) the search functionality on FDroid appears to be broken or
not working. Furthermore, the https://f-droid.org/forums/search/ endpoint that was used in the mining script
does not exist anymore.
13Wikipedia page on open-source Android apps, 2017.
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Fig. 1 The dataset creation process

In the next filtering step (step 5 ), we identify those repositories which potentially con-
tain the source code of an Android app. This filtering step is done by considering only the
repositories containing the mandatory Android Manifest.xml file. Indeed, as men-
tioned on the official Android developers website,14 an Android app shall always come with
an Android manifest file.

The manifest of an Android app contains all the essential information supplied to the
Android system, allowing it to run the actual app. For example, the manifest file is in charge
of naming the Java package for the app, which serves as an unique identifier of each app.
Information contained in the Android manifest file includes the main components of the
app, its required permissions, the minimum required API level for the app, the third-party
libraries used by the app, etc.

In step 6 we filter out all those repositories containing apps that are not published in
the Google Play store. In the context of this process, this may occur if (i) the considered
GitHub repository is a simple demo or toy example, which has been developed for personal
or internal usage only, (ii) developers removed the app from the Google Play store, or (iii)
Google deliberately took down the app because it was violating some of its distribution poli-
cies. This step has been done by extracting the package name of the app from its manifest
file, and performing a network request to the URL where the Google Play page of the app
should be present.15

Step 7 involves the identification of the app’s root folder containing its source code.
The rationale for this step is that the folder containing the Android manifest file should also
contain the complete source code for the app. Indeed, in this step we need to exclude those
repositories where the manifest file actually refers to an Android library, to the binaries of
some other apps, etc. This step is realized by checking if the folder containing the Android
manifest file follows the structure mandated by the Android platform.16 Moreover, this step

14https://developer.android.com/guide/topics/manifest/manifest-intro.html
15This check is sound since the web page of an app in the Google Play store follows a fixed pattern, i.e.,
https://play.google.com/store/apps/details?id=[app package name].
16Step 5 and Step 7 are redundant, we deliberately decided to keep both of them because during the execution
of the dataset creation process we had to experiment with different heuristics in Step 7 and having it as a
stand-alone step within the pipeline helped us in easily run it in isolation.
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is crucial for our study as it is possible that some repositories contain code unrelated to
the app itself, such as server-side code, design artifacts, etc.; all the steps related to the
app source code in the data extraction phase (e.g., running the Android Lint tool — see
Section 3.3) are scoped within the app root folder.

Step 8 involves the identification and filtering of inactive GitHub repositories. Indeed,
it is well known that mining GitHub repositories brings the risk of considering inactive
or unmaintained repositories, thus adding noise to the results of the study (Kalliamvakou
et al. 2016). For each repository, we extract (i) the app development lifetime and (ii) the
number of commits. The app development lifetime is defined as the range between the first
and last commits contributing to the app root folder in the repository, whereas the number
of commits is defined as the count of all the commits performed in the app root folder in
the repository. In order to avoid inactive or unmaintained repositories (Kalliamvakou et al.
2016), we considered only the apps having a lifetime span of at least 4 weeks and with at
least 10 commits.
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Step 9 involves the filtering of all those apps which cannot be properly analyzed by the
Android Lint tool. It is important to note that Android Lint requires that the app under anal-
ysis is fully built. Building arbitrary software mined from third-party GitHub repositories is
notoriously difficult, mainly due to missing dependencies (e.g., the server hosting a depen-
dency is no longer reachable), Java compilation errors (e.g., undefined symbols, missing
packages), and project-specific build commands (e.g., non-default Gradle tasks) (Hassan
et al. 2017; Sulı́r and Porubän 2016). In this step we managed to cover many recurrent
non-standard cases by iteratively running the Android Lint tool on all repositories and (i)
manually refining its configuration and (ii) adding preprocessing steps for making the app
and its Gradle configuration more Lint-friendly (see step 2 in Section 3.3). Excluded repos-
itories include apps with very peculiar Gradle configurations, Kotlin-based apps (we focus
on Java-specific issues), apps heavily based on the Native Development Toolkit (NDK17),
unbuildable apps due to missing keystore information.

Finally, in step 10 we locally clone all the selected GitHub repositories. After this
process, our final dataset is composed of 724 GitHub repositories containing open, pub-
lished, and actively maintained Android apps, for which an analyzable commit history
is available. Out of them, a large majority is from Github(630), followed by FDroid (88)
and Wikipedia (6).

As shown in Fig. 2, the dataset is quite heterogeneous in terms of both lines of Java
code (median = 2083.0, mean = 5325.7, IQR = 4299.75) and number of Java files per app
(median = 14, mean = 29.38, IQR = 25.0). Moreover, the dataset also covers 24 different
Google Play categories (see Fig. 3 and all downloads ranges (see Fig. 4).

17http://developer.android.com/ndk
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Fig. 5 Data extraction process

3.3 Data Extraction

Starting from the 724 GitHub repositories, we designed and implemented a tool chain for
extracting the data for answering our research questions. As shown in Fig. 5, the tool chain
is composed of five main steps, which have been implemented as a combination of Python
scripts, shell scripts, and third-party tools. Each step will be discussed in details in the
following.

Step 1 – Commits metadata extraction. The first step of our tool chain clones all 724
repositories locally in a dedicated machine. Then, for each cloned repository, we extract
th change log, which contains SHA-1 hash, author, commit message, and timestamp.
The extracted data is composed of 96,265 unique items (one for each commit within all
GitHub repositories).

Step 2 – issues identification. In this step the tool chain iteratively (i) checks out each
cloned GitHub repository at each of the 96,265 commits of our dataset and (ii) runs
Android Lint on the app folder (as identified in Section 3.2) after each check out oper-
ation. This results in 96,265 runs of the Android Lint tool, which took a total of around
336 hours of uninterrupted execution time (∼2 weeks) on a machine equipped with an
Intel i7 processor with 1.80GHz of frequency and 8Gb of memory. It is important to
note that Android apps can target different versions of the Android Software Devel-
opment Kit (SDK). The target SDK of each app must be known in order to properly
resolve calls to the Android APIs. Therefore, before executing the Android Lint tool, we
manually download all Android SDKs used in the apps of our dataset (from API lev-
els 17 to 24) and locally stored them in a known location. Before each launch of the
Android Lint tool, some preliminary action is necessary to be able to run Android Lint
on arbitrary-developed Android apps. Firstly, our tool looks for the the app’s Lint con-
figuration file (i.e., the lint.xml file which may be in the folder containing the the
app source code), checks if the Lint configuration file has the abortOnError set to
true and removes it; this check is needed for allowing us to always fully run Android
Lint, instead of stopping at the first error. Secondly, it removes all statements in the Lint
configuration file for disabling any specific check; this check is needed because in some
projects the developer may decide to explicitly disable some checks related to Android
performance-related issues. Finally, our tool runs Android Lint by (i) resolving calls to
the Android APIs by referring to the locally-downloaded SDK with the same version
as the one specified in the Android manifest file of the current app and (ii) ignoring
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all calls to external libraries, as we are interested in performance-related issues specific
to the apps in our dataset. Starting from the 96,265 commits, Android Lint failed 2,520
times (2.61%) because of internal errors of the Android Lint tool (mainly due to peculiar
configurations of the Android project). In these cases, the tool discards the considered
commit and proceeds with the next one along the versioning history of the current app.
This leads to the final set of 93,745 Lint reports, each of them stored as a separate
HTML file.

Step 3 – Performance issues selection. In this step our we consider all Lint reports pro-
duced in step 2 and extract performance-related issues, as identified by Android Lint. To
this aim, we developed a parser that takes as input the HTML file of a Lint report and
automatically extracts the information we need about each identified issue contained in
it. Specifically, the extracted information includes the following data items: (i) the cate-
gory of the issue as defined in Android Lint,18 (ii) the path to the source code file where
the identified issue is located, (iii) the line number in the source code file where the
issue is located, and (iv) the raw contents of the warning/error message. Finally, since
we are interested in performance-related issues, we filter out all identified issues whose
category is different from performance. The obtained dataset is composed of 36,205
performance-related issues found in 316 out of 724 apps.

Step 4 – Cross-commit performance issues tracing. After step 3 our set of
performance-related issues contains a large number of duplicates. This is expected since
an issue remaining in the code base for more than one commit appears multiple times
among our set of 36,205 issues; more specifically, it appears exactly once for each
commit where it is present. The main goal of this step is to remove those duplicates in
order to have a set of unique Android performance-related issues, where each of them
can possibly span more than one commit. A naive solution to this problem could have
been to simply merge issues reported in subsequent commits which appear in the same
Java file and in the same line number. However, a line of code can move during the
lifetime of a GitHub project, both across different files (e.g., when a file is renamed or
moved within the repository) and within the same file (e.g., some lines of code are added
before the considered line of code). In order to correctly match potentially moving lines
of code, we exploit the git diff tool and the LHDiff technique (Asaduzzaman et al.
2013a, b) in combination. Specifically, we use git diff for building the chain of
versions of each file containing at least one performance-related issue, even when it is
renamed or moved within the file system. We use git diff because it is accurate in
identifying the renamed files in GitHub repositories and it is easy to integrate into our
tool chain. We use LHDiff for tracking source code lines across two versions of the same
file (Asaduzzaman et al. 2013a). We use LHDiff because (i) it is language-independent,
thus applicable to Java source code files, (ii) it has been empirically evaluated and it its
mapping process proved to be highly accurate, (iii) it is publicly available,19 and (iv) it
is distributed as a command-line tool, making it easy to integrate into our tool chain.
Having a fully reconstructed tracing information about how each issue moves across and
within source code files across commits allows our tool to identify those commits which
are relevant for our study. Specifically, given an issue ia of type a (e.g., UseSparseAr-
rays) and Cia = {c1, . . . , cn} the set of commits in which ia is present (i.e., still detected

18We take advantage of the fact that issues in Android Lint reports are tagged with a fixed set of categories
(http://tools.android.com/tips/lint-checks) like performance, correctness, accessibility, usability, etc.
19https://muhammad-asaduzzaman.com/research
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Table 2 Extracted data for each Android Lint performance-related issue type

Attribute Type Description

ID String the unique ID of the issue

repository String identifier of the GitHub repository of the issue in the form

author/repositoryName

issueType factor type of the performance-related issue as identified by Android Lint

(e.g., UseSparseArray, UseValueOf)

LintMessage String the warning/error message provided by Android Lint

introHash SHA-1 hash SHA-1 hash of the issue-introducing commit

introMessage String message of the issue-introducing commit

introTs Integer timestamp of the issue-introducing commit

preResHash SHA-1 hash SHA-1 hash of the issue pre-resolution commit

preResMessage String message of the issue pre-resolution commit

preResTs Integer timestamp of the issue pre-resolution commit

isResolved Boolean true if the issue is resolved, false otherwise

resHash SHA-1 hash SHA-1 hash of the issue-resolution commit

resMessage String message of the issue-resolution commit

resTs Integer timestamp of the issue-resolution commit

resLOC Integer number of Java LOCs changed in the issue-resolution commit

by the tool), we call c1 the introducing commit and cn the pre-resolution commit, The
output of this step is composed of 2,404 unique performance-related issues. Each issue
contains is represented by all the data items described in step 3 and the SHA-1 hash,
message and timestamp of its introducing and pre-resolution commits.

Step 5 – Issues resolution metadata extraction. In this step we collect the metadata
(i.e., SHA-1 hash, message, timestamp, and number of changed Java lines of code)
related to the commit in which each performance-related issue has been resolved by
developers (we called them resolution commits). In this context, by issue resolution
commit we mean the commit immediately after the pre-resolution commit (i.e., the cn+1
commit in the discussion above). Moreover, if cn is the last commit in the whole version-
ing history of the GitHub repository, it means that we reached the end of the lifetime of
the project and the issue has never been resolved; in those cases, the issue is considered
as unresolved, otherwise it is considered as resolved and we keep track of its resolution
commit.

In Table 2 we summarize the data extracted for each Android performance-related issue.
It will be used across the whole study and will be the base for the data analysis phase.

4 RQ0 Results – Performance Issues Identified by Android Lint

4.1 Data Analysis (RQ0)

For answering RQ0, we present and discuss (i) the number of performance issues identified
by Android Lint across all apps, (ii) the frequency and distribution of each type of perfor-
mance issue across all apps, and (iii) the distribution of the number of occurrences of each
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Table 3 The types of performance issues considered in this study

Issue name (priority) Description

DrawAllocation (9/10) It generally occurs due to allocating memory in a method that is invoked
frequently to draw UI elements on the display. Allocating memory can
be avoided by allocating the memory upfront, which leads to increased
performance, thus potentially leading to a smoother user experience.

FloatMath (3/10) It deals with the FloatMath data type; specifically, on
modern devices the FloatMath Java object is slower than
using java.lang.Math due to the way the JIT optimizes
java.lang.Math objects.

HandlerLeak (4/10) It is due to handler using the Looper or MessageQueue of the main
thread. If the handler is not static, then the Android activity or service
cannot be garbage collected, even after being destroyed. This may lead
to memory leaks.

Recycle (7/10) It occurs with the lack of calls to the recycle() method,
when dealing with recyclable objects, such as TypedArray,
VelocityTracker, etc. Calls to the recycle() method should be
done after one of the above mentioned objects have been used, in order
to make it reusable in the future.

UseSparseArrays (4/10) It is mainly due to the use of HashMap instead of SparseArray.
The Android framework promotes the usage of SparseArray over
HashMap since it is assumed that sparse arrays are more mem-
ory efficient than HashMap, while not exhibiting large performance
differences when dealing with hundred of items.

UseValueOf (4/10) It is mainly due to direct calls to the constructor of wrapper classes
(e.g., new Integer(42)), as opposed to calling the valueOf factory
method (e.g., Integer.valueOf(42)). Calling factory methods is
typically more memory efficient since common integers such as 0 and
1 share a single instance at run-time.

ViewHolder (5/10) It occurs in the context of ListViews. When implementing a view
Adapter, developers should avoid unconditionally inflating a new lay-
out; if an available item is passed in for reuse, developers should try to
use that one instead.

ViewTag (6/10) Before the Android 4.0 version, View.setTag(int, Object)
implementation stored the objects in a static map, where the values were
strongly referenced. This implies that if the object references its calling
context, the leak will happen from the context (which potentially may
point to a large number of other objects within the app).

Wakelock (9/10) It is due to failing to release a WakeLock properly, thus keeping the
mobile device in high power mode, which decreases the lifetime of
battery.

type of performance issues per app. Moreover, in order to better characterize statically-
detectable Android performance issues, for each type of performance issue we provide
and discuss an example of Java code exhibiting the issue. At the time of the experiment
execution, Android Lint supports 9 types of performance issues,20 they are presented in
Table 3. Finally, to provide an overview of the apps’ popularity, we use bar plots to show the
range of number of downloaded apps from Google Play Store for each types of identified
performance issue.

20http://tools.android.com/tips/lint-checks
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We anticipate that in the remainder of this study we will not consider the ViewTag and
Wakelock issues since they both occur only 3 times each within the whole dataset.

4.2 Results (RQ0)

A total of 2,408 performance issues have been detected by Android Lint. Among them, 316
(43.64%) over 724 distinct apps suffered from at least one statically-detectable performance
issue along their lifetime. Figure 6 presents the frequency of different types of performance
issues in our dataset. Examples of code snippets containing the various types of performance
issues are shown in Appendix A.

First, we can immediately notice how Recycle performance issues occur more frequently
(550, 22.84%) than others. In order to optimize performances, collections such as TypedAr-
ray, VelocityTracker, Parcel or MotionEvent should be recycled after use, instead re-created
again and also database cursor should be freed up after use. For example, as shown in List-
ing 2 (refer to Appendix A), TypedArray preset vals should be recycled by a recycle() call
(i.e., preset vals.recycle()) for further reuse. The lack of a recycle could noticeably degrade
the performance of the app.

Also UseValueOf issues type are quite frequent in our dataset (549, 22.79%). Since
issues of type UseValueOf primarily deal with primitive types, we can conjecture that devel-
opers deem as negligible the potential performance improvement when resolving this kind
of issues. Nevertheless, developers should take care of those issues since after a manual
analysis we noticed that they may occur in the burst (Listing 3 in Appendix A for an exam-
ple obtained from our dataset), thus potentially impacting the performance of the app in a
noticeable manner.

UseSparseArrays (376, 15.61%) type of issues are third most common occurrence in our
dataset. As discussed in Table 3, a performance degradation may occur when developers
use a HashMap and the maps grows in an unpredicted manner. Listing 4 (see Appendix A)
provides an example of HashMap Usage.
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Then, there are potential HandlerLeak issues (320, 13.28%) in our dataset. The main
consequences of this type of issue are memory leaks in the projects. To avoid this issue,
developers should declare the handler as static. From the manual analysis in our dataset,
we observed that in few cases developers intentionally resolved this issues, for exam-
ple in Listing 5 (see Appendix A), developers mentioned in their comment (in the Java
source code file) to declare static handler and for that, in the very next commit, they
declared handler as static to get rid from potential memory leak issues. There are also
many projects present in our dataset where developers do not declare the handler as
static, which may lead to suffering from potential memory leaks as shown in Listing 6 in
Appendix A.

Also there are issues of type DrawAllocation (237, 9.84%), can be found in various
projects in our dataset. This is mainly due to allocation of memory when draw or layout
operation is frequently invoked in a method. Thus it causes assigning memory each time
whenever the function is called. From the manual analysis, we can presume that there are
few projects where developers resolved these issues but still many projects suffering from
these type of issues. For example, there are several new objects such as new ArrayList
(at line 4 and 12) and new pie (500) (at line 18), are allocated in onDraw() (i.e.,
allocating objects during a draw operation), heavily lead to UI lag as shown in Listing 7
(see Appendix A).

There are (188, 7.80%) issues of type FloatMath in our dataset. Listing 8 (see
Appendix A) shows an example of this type of performance issue.
In previous versions of Android, when working on floats, android.util.FloatMath
was referred to ensure for performance reasons. However, on latest hardware doubles are
equally quick as float (though they take more memory), and current Android versions,
because of the way JIT optimizes java.lang.Math, FloatMath is in fact slower than
using java.lang.Math.21

Issues of type ViewHolder (180, 7.47%) are more recurrent in our dataset after Float-
Math. This type of issue primarily deals with the smoother scrolling of ListView. To
show the ListView items, system has to draw each item separately. To reduce the num-
ber of findViewById() calls every time (when a list object has to draw), data from last
drawn object can be reused (i.e., mainly by creating ViewHolder patterns). As shown in
Listing 9 (see Appendix A), in getView() function every time a new object is draw (at
line 5) followed by calling of findViewById() (at line 8) each time which may degrade
the performance of app i.e., lag in smoother ListView scrolling. However, there are also
certain cases in our dataset where developers specially implemented ViewHolder pattern
class to avoid this issue.

ViewTag (5, 0.20%) are issues type that can be found very rarely in our dataset. These
issues are related to the implementation of View.setTag(int, Object) and occurred in prior to
Android 4.0. The consequences of this issue are leaks in the apps.

WakeLock (3, 0.12%) type of issues which are very less recurrent in our dataset. The
WakeLock happened due to the failure to release a WakeLock properly that could keep the
mobile device in high power mode and reduces the lifetime of the battery. There are many
reasons of this phenomenon, such as failing to call release () in all possible code paths
containing acquire(),releasing the WakeLock in onDestroy() instead of in onPause(), and
so on and so forth. Since this, it is a very crucial performance issue and developers do take
care about the lifetime of battery while developing the app (i.e., releasing the wakelock

21Android floatmath documentation. https://developer.android.com/reference/android/util/FloatMath.
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Table 4 Descriptive statistics for
the number of statically-
detectable performance issues
per app (SD = standard deviation,
CV = coefficient of variation)

Issue type Max. Mean SD CV

DrawAllocation 28 0.750 2.543 3.39

FloatMath 61 0.594 4.404 7.402

HandlerLeak 42 1.013 3.855 3.807

Recycle 75 1.741 6.114 3.513

UseSparseArrays 84 1.190 5.394 4.533

UseValueOf 171 1.737 10.478 6.031

ViewHolder 17 0.569 1.655 2.906

properly), and thus it may be one of the reasons why we have less WakeLock issues in our
dataset.

Moreover, Table 4 reports the descriptive statistics for the number of statically-detectable
performance issues per app. It can be clearly seen from Table 4, that Recycle issues occur
quite frequently in our dataset (mean = 1.741 issues per app) followed by UseValueOf issues
(mean = 1.737 issues per app) with higher standard deviation.

Also, issues of type UseSparseArrays and HandlerLeak are quite widespread in the ana-
lyzed apps, with an average 1.190 and 1.013 issues per app, respectively. Instead, issues of
type DrawAllocation and FloatMath are relatively less frequent in our dataset, with 0.750
and 0.594 issues in each app respectively. ViewHolder issues are less frequent in our dataset
(i.e., Mean = 0.569 issues). These issue type have also the lowest coefficient of variation
than other issues.

Regarding the relationship between issue occurrence and popularity of apps in terms of
number of downloads, issues of type UseValueOf were found 244 times in apps downloaded
10,000-50,000 times from Google Play Store; issues of type UseSparseArrays occurred 129
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times in highly-downloaded apps (1M-5M times). Figure 7 provides an overview of the
different types of performance issue identified in apps having varying download ranges. One
thing that immediately leaps to the readers’ eyes is that, for apps having a very high number
of downloads (greater than 5M) the issue frequency suddenly decreases. Although we do
not have evidence of that, it is possible that such very popular apps undergo a more accurate
quality check (e.g., code review), which may explain such a drop. We can also notice a
very high frequency of UseValueOf issues for apps having a medium (1k-5k) number of
downloads. Although this issue (calling constructors of wrapper classes instead of factory
methods) may result in a waste of memory, we cannot tell why it happens for apps in that
specific range of downloads.

5 RQ1 Results – Evolution of the Number of Android Performance
Issues over Time

5.1 Data Analysis (RQ1)

We answer RQ1 by analyzing each of the 316 apps with at least one performance-related
issue. For each app, we firstly reconstruct its versioning history by considering the sequence
of all commits in its GitHub repository; then, for each commit we count the occurrences of
any type of performance issue. The final result of this activity is a set of 316 plots, showing
the evolution of the number of performance issues over the lifetime of each app, as well as
the app size evolution in terms of LOC. The reason why we observe these two variables is
because the former represents the main factor being investigated in this study, and the latter
is a factor we need to control. This is because the growth of performance issues could be
considered more problematic when it happens more rapidly than size increase. Examples of
generated plots are shown in Section 5.2.

In order to characterize how performance issues evolve in Android apps, we perform a
qualitative study on the plots and manually categorize them into relevant groups by applying
the open card sorting technique (Spencer 2009). We perform the card sorting in two phases.
First, we manually tag each plot with considerations about the presence of relevant evolution
patterns, e.g., presence a spike, plateaus, sudden drops, etc. Then, we cluster identified
patterns into meaningful groups with a descriptive title; each plot can exhibit more than
one issue evolution pattern, i.e., it can belong to more than one group. To minimize bias,
three researchers have been involved in the card sorting activity. Specifically, we randomly
selected 100 apps from the dataset and the main author of this study categorized them. Then,
the same 100 apps have been randomly assigned to the other two researchers involved in
this study (50 apps each), who categorized them independently. The three emerging sets of
categories were slightly different (see our replication package for their specific items) and
have been collaboratively discussed and merged in order to agree on a final set of categories
of evolution trends of Android performance issues.

Finally, the main author of this study categorized the 316 plots into the different pos-
sible evolution patterns, and the task was repeated by the second author for the first 158
apps and by the third author for the last 158 apps, so that for each app there were at least
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Table 5 Categories of evolution patterns of Android performance issues, where P = the number of
performance issues, LOC = lines of code, ∼ = irrelevant for the identification of the evolution pattern

Pattern Description P LOC

STICK Sticky issues, i.e., issues are injected
abruptly and they remain in the app
across several commits

step ↑ ∼

REF Refactoring of performance-related issues step ↓ ∼
BEG Issues since the beginning of the project stable != 0 ∼
INJREM Injection and removal, i.e., a relatively

large number of issues is injected
in the project, followed by a sudden
removal

spike ∼

GRAD Gradual, i.e.,, performance issues
gradually occur during the app
development process

=LOC =P

two taggers performing the classification. In order to further reduce bias, the other two
researchers re-applied the final set of categories to their initially assigned 50 apps and the
level of agreement between each researcher and the first one has been assessed by means of
the Cohen-Kappa statistics (Cohen 1968).

After the application of the open card sorting technique, we report and analyze the fre-
quency of performance issue evolution patterns across all 316 apps. Moreover, from our
analysis it also emerged that a large number of apps contain a combination of different cat-
egories of issue evolution patterns. In order to better investigate this aspect, we statistically
assess their correlation by building a contingency table with rows and columns representing
each issue evolution pattern and computing its Cramer’s V coefficient (Rosenberg 2008).
The Cramer’s V coefficient is a well-known measure of association applicable to contin-
gency tables involving two categorical variables and it is defined within the [0, 1] range,
where 0 indicates no correlation and a value of 1 indicates perfect correlation.

5.2 Results (RQ1)

To answer RQ1, we analyzed the evolution of the number of performance issues throughout
the lifetime of each GitHub repository. The analysis of the 316 repositories of our dataset
via the open card sorting technique described in Section 5.1 resulted in the identification of
five different evolution patterns. Table 5 reports the emerging patterns.22

As discussed in Section 5.1, three researchers have been involved in the identification
of the categories of issue evolution patterns iteratively and collaboratively. For each evolu-
tion pattern category, the Cohen Kappa index between the first author and the second and
between the first author and the third is calculated. In all cases the Cohen Kappa is > 0.6,
hence indicating a strong agreement.

Figure 8 reports the distribution of the issue evolution patterns across the 316 apps con-
taining at least one occurrence of each performance issue. We can observe that STICK
(209) and REF (124) are the most frequent performance issue evolution patterns, followed
by BEG (111), INJREM (69), and GRAD (41). In the following, we discuss in detail about
these evolution patterns.

22In the remainder of the study we will refer to performance issues as P and to lines of code as LOC.
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Fig. 8 Occurrences of performance issue evolution patterns across apps

STICK (Sticky issue). This pattern refers to issues which are introduced and remain in
the project for several commits. In such a case, either the issue was not considered a seri-
ous concern (or even it was a tool’s false positive), or developers had other priorities but
resolving the performance issue. Figure 9 show the example of STICK patterns found in the
analyzed apps. As it can be seen from Fig. 9, one issue (i.e., HandlerLeak) is introduced
in the alistairdickie/BlueFlyVario Android project and continue to remain in the system for
many commits. As the project development progress further, another issue (i.e., Handler-
Leak) is injected with the addition of new lines of code and then both these issues are stick
to project for several commits (till the end of the project).

REF (Refactoring). This type of pattern indicates a possible refactoring action in the
evolution of projects i.e., performance issues are resolved from the project with the increase
or decrease of lines of code. In REF patterns, the number of performance issues dropped
consistently, regardless of whether the overall LOC increased or decreased.
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Fig. 9 alistairdickie/BlueFlyVario Android - An example of STICK Evolution Pattern
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Fig. 10 xperia64/timidity-ae - An example of REF Evolution Pattern

From the manual analysis, we noticed that intentional refactoring done twice in the
project xperia64/timidity-ae (as shown in the Fig. 10). Initially one UseSparseArrays
issue was resolved by using SparseIntArray instead of HashMap<Integer,
Integer>, whereas in the second refactoring ViewHolder Pattern was implemented
inorder to resolved the ViewHolder issue.

BEG (issues since the Beginning). This pattern refers to cases in which performance
issues which are present in the project since the beginning i.e., when the project was created.

As it can be seen from Fig. 11, related to the offbye/ChinaTVGuide app, this app con-
tained 25 performance issues since the project’s creation on GitHub, and they remained
unaltered till the end of our observation period.

INJREM (Injection and removal). We identify the INJREM evolution patterns when a
relatively large number of issues are injected in the project followed by a quick removal.
We consider the resolution of a performance issue to be quick if it happens within two
days from the introduction. Figure 12 show the example of INJREM pattern from our
dataset. From Fig. 12 (pattern shown by the black arrow), it can be noted that in the app
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Fig. 11 offbye/ChinaTVGuide - An example of BEG Evolution Pattern
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Fig. 12 mi9rom/achartengine - An example of INJREM Evolution Pattern

mi9rom/achartengine three issues were introduced (i.e., UseSparseArrays) and in the very
short time interval, these issues were suddenly resolved. By manually inspecting the docu-
mented commit, we observed that the resolution was not done with intention of improving
the performance of the app (i.e., the resolution was accidental).

GRAD (Gradual issues). In GRAD evolution pattern, performance issues gradually
increase with the LOC or vice versa. In this type of evolution patterns, performance issues
and lines of code grow or decrease altogether. In other words performance issues are an
integral part of the app development process. As shown in Fig. 13, performance issues in
the app AlbertoCejas/GermanLearningUCA (an example from our dataset) grow with the
same rate of LOC. In other words, performance issues increase gradually with the gradual
increase of lines of code.

Moreover, from the analysis of evolution patterns, we observed that many apps in our
dataset which contain performance issues follow multiple co-occurrence patterns through-
out the lifetime of their projects. To provide a quantitative indication of the association
strength among patterns, we compute the Cramer’s V coefficient, which measures the
strength of association — varying between 0 to 1 — between two nominal variables. In our
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study, the computed Cramer’s V coefficient value is 0.319 (which is low) meaning that there
is a low association between the categories of emerging patterns.

6 RQ2 – Performance Issues Remaining in Android Apps over Time

6.1 Data Analysis (RQ2)

To answer RQ2, we introduce two variables: RSi
a and USi

a . RSi
a is defined as the number

of resolved issues of type i (e.g., DrawAllocation) across the whole lifetime of app a. As
discussed in Section 3.3, in this study a resolved issue is an issue which is present in the
GitHub repository (for any number of commits up to commit cj ) and it is not present in
the repository from commit cj+1 ( in this case commit cj+1 is called the issue-resolution
commit). Conversely, USi

a is defined as the number of unresolved issues of type i within
the lifetime of app a. Clearly, the sum of RSi

a and USi
a is equal to the total number of issues

of type i for app a.
Given its exploratory nature, we answer RQ2 by extracting and discussing the following

information for each app a within our dataset and for each type of performance issue i: the
ratio between the total number of performance issues of type i in a and its unresolved issue
(resolved and unresolved issue are complementary to each other, therefore we only keep the
unresolved ones).

Finally, we depict with bar plots the relationship between the type unresolved issue
frequency and number of apps’ downloads.

6.2 Results (RQ2)

As shown in Table 6, ViewHolder issues tend to remain more than other types of perfor-
mance issues across all apps in our dataset (101/180, 56.11%). Since ViewHolder issues
primarily deal with the smoother scrolling of ListView items in Android apps, they can be

Table 6 Total number of
Android performance issues and
their subset of unresolved issues

Category All Unresolved (%)

ViewHolder 180 101 (56.11%)

UseSparseArrays 376 196 (52.13%)

DrawAllocation 237 119 (50.21%)

HandlerLeak 320 160 (49.00%)

Recycle 550 240 (43.64%)

UseValueOf 549 218 (39.71%)

FloatMath 188 52 (27.66%)

Total 2,400 1,086 (45.25%)
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more problematic in terms of end users’ experience. These issues tend to arise in the apps
either due to lack of declaring a ViewHolder pattern, or not reusing the previously drawn
items i.e., by reducing the number of calls to the findViewById() method.

Also UseSparseArrays issues (196/376, 52.13%) tend to remain unresolved in our
dataset. For the purpose of efficient memory usage and less garbage collection, the Android
platform promotes the use of SparseArrays instead of HashMaps for maps that con-
tain up to a hundred values. From manual inspection, we assume that these issues remain
unresolved due to unnoticeable memory improvements in terms of amount of memory (in
bytes) allocated in the heap of the Java Virtual Machine.

The DrawAllocation issues (119/241, 50.21%) are the third less frequent issue type
remaining unresolved in our dataset. Since draw operations are quite sensitive in terms of
user-perceived performance, it is a bad programming practice to allocate memory (i.e., by
declaring new instances) during draw or layout operations. This is one of the troublesome
issue type that continues to remain alive in the apps.

The consequence of having HandlerLeak (160/320, 50.00%) issues is to have a memory
leaks in the app, potentially leading to the usage of unneeded memory over long usage
sessions. This type of issues can be resolved by declaring the handler as static.

Finally, we analyzed that FloatMath (52/188, 27.66%) issue type, which is resolved
more frequently in our dataset as compared to other types of performance issues. Similar to
UseValueOf issues, they also mainly deal with primitive data types and are resolvable in a
relatively straightforward manner.

Concerning the relationship between of unresolved issues and apps’ downloads, results
shown in Fig. 14, highlight how UseSparseArrays issues remained unresolved 69 times
in apps downloaded in the range of 1M-5M. Similarly to what found in RQ0, also in this
case we notice a difference (drop in the frequency of unresolved issues) for apps having
a high number of downloads, above 5M. At the same time, it is also interesting to notice
how UseSparseArray issues (see the orange bar) tend to exhibit a relatively high frequency
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also for apps with a high number of downloads. This kind of issue suggests the use of
SparseArrays instead of HashMaps, but it is possible that developers do not consider
such an optimization as important given the size of the data they have to deal with in their
apps.

Overall, 45.25% of performance issues remain unresolved. ViewHolder issues are the
ones remaining more in the app, even though they can be problematic in terms of end
users experience since they primarily deal with a smoother scrolling of ListView
items.
FloatMath issues are the most resolved performance issues (52/188, 27.66%).

7 RQ3 Results – the Lifetime of Android Performance Issues

7.1 Data Analysis (RQ3)

We define the lifetime of an Android performance issue as the number of days between its
issue-introducing commit and its issue pre-resolution commit. Intuitively, such a lifetime
represents the time interval in which the issue is present in the source code of an app.

We answer RQ3 in two phases. In the first phase we perform an initial exploration of the
obtained lifetimes across all apps and report the summary statistics (together with box plots).
In this phase, we order all issues according to their lifetime and trim outliers by removing
the top 1% of all issues so to avoid potential issues related to repositories which have not
been actively maintained in the last months.23 In order to compare the different duration
distributions, we apply the Kruskal-Wallis test (Kruskal and Wallis 1952) for each type
of performance-related issue, followed by a Dunn post-hoc analysis (Dunn 1964). Since
we are applying multiple statistical tests, in order to reduce the chance of Type-I error we
correct the obtained p-values via the Holm p-value adjustment procedure (Holm 1979). The
procedure sorts the n p-values obtained by the multiple comparisons in increasing order,
and multiplies the smallest one by n, the second-smallest by n − 1, and so on (the largest
one is left unchanged).

In the second phase, we aim at understanding whether Android performance issues
exhibit some recurrent patterns in terms of resolution time. Specifically, we firstly recon-
struct the cumulative distribution function (CDF) of the lifetime of each type of performance
issues across all apps, then we plot it on a day-scale, and finally we investigate on whether
each built CDF can be modeled using known statistical distributions. Specifically, we
consider six known statistical distributions – Cauchy, Exponential, Gamma, Lognormal,
Normal and Weibull – and assess to what extent each type of Android performance issues
fits each of them. In total, we obtained 42 pairs (i.e., 6 statistical distributions × 7 types of
Android performance issues) and assessed their fits. When fitting the CDFs to the known
statistical distributions we follow a procedure similar to the one applied in (Di Penta et al.
2009), i.e., we (i) visually inspect each of the 42 plots showing together the CDF and known
distribution in combination and (ii) statistically test how the known statistical distributions
fit the CDFs by applying the Kolmogorov-Smirnov (KS) test to each pair. Specifically, we

23It is important to note that we performed the statistical analysis for RQ3 both with and without outliers
and the conclusions did not change
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Fig. 15 Lifetime of each type of performance issues (outliers are not shown to help readability)

firstly estimate the distribution parameters of each CDF using the method of Maximum
Likelihood, which maximizes the likelihood that the set of data used for the estimation can
be obtained from the statistical distribution modeled with the estimated parameters. Then,
we apply the Kolmogorov-Smirnov (KS), a non-parametric test that checks whether a dis-
tribution fits a given data (H0 – there is no significant difference between the theoretical
distribution and the actual data distribution). This means that every time the p-value of the
applied KS test is greater than σ = 0.05, then the CDF fits the distribution. In Section 7 we
report all CDFs with the best fitting known statistical distribution, all the obtained p-values,
and a discussion of the obtained results. Finally, we use bar plots to depict the relationship
between the type of frequently-resolved issues and the apps’ number of downloads.

7.2 Results (RQ3)

As discussed in Section 7.1, we answer RQ3 by analyzing the lifetime of each type of
Android performance issue. As an initial exploration of the obtained results, Fig. 15 and
Table 7 present the distributions and descriptive statistics of the lifetime of each type of
performance issue across all apps.

Table 7 Descriptive statistics for the lifetime (in days) of each type of performance issues per app (SD =
standard deviation, CV = coefficient of variation)

Issue type Min. Max. Median Mean SD CV

DrawAllocation 0.0008 864.6479 12.2779 139.0042 204.4615 147.0901

FloatMath 0.0009 736.9915 56.1576 293.8827 324.4333 110.3955

HandlerLeak 0.0001 1221.2477 45.0079 169.3382 289.2138 170.7905

Recycle 0.0001 961.0392 20.5430 105.8828 183.5087 173.3129

UseSparseArrays 0.0008 1147.3397 1.4995 95.7237 220.1935 230.0302

UseValueOf 0.0011 882.4600 7.8848 49.8220 130.8643 262.6637

ViewHolder 0.0022 833.1318 2.5965 107.1553 209.0570 195.0971
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Table 8 Results of the Dunn’s post-hoc analysis for comparing duration distributions (p-values are in
parenthesis, statistically significant p-values are shown in bold and marked with *)

Col Mean-Row Mean DrawAlloc. FloatM. HandlerLeak Recycle UseSparseA. UseValueOf

FloatMath –1.064105
(0.5746)

HandlerLeak –1.661472 –0.588860
(0.4348) (0.8339)

Recycle 0.110759 1.431713 2.214711
(0.4559) (0.4567) (0.1473)

UseSparseA. 3.374780 4.729559 5.558179 4.159201
(0.0052*) (0.0000*) (0.0000*) (0.0003*)

UseValueOf 3.983202 5.572733 6.594601 5.317560 0.267410
(0.0005**) (0.0000*) (0.0000*) (0.0000*) (0.7892)

ViewHolder 1.624728 2.636551 3.209208 1.790917 –01.248851 –1.555902
(0.4169) ( 0.0503) (0.0087*) (0.3665) (0.5293) (0.4191)

We can notice that the medians of lifetimes across issues types range from about 1.5 days
(UseSparseArrays) to about 56 days (FloatMath), with very high standard deviations, which
range from about 130 days (UseValueOf ) to about 324 days (FloatMath). Having high stan-
dard deviations provides an indication that the lifetime of statically-detectable performance
issues can vary across apps and projects.

Results of the pairwise comparisons performed by the Dunn’s procedure are reported in
Table 8.

Performance issues of type DrawAllocation, FloatMath, HandlerLeak, and Recycle have
significantly longer lifetimes with respect to both UseSparseArrays and UseValueOf. More-
over, in our dataset HandlerLeak issues also have significantly longer lifetimes with respect
to ViewHolder issues.

Table 9 reports the fitted distributions, their parameters, and the p-values of the KS
test for each type of considered Android performance issue. The bold values represent
the case when there is a possible distribution fitting (i.e., p-values > 0.05). As shown
in Table 9, HandlerLeak issues follow a weibull and gamma distribution with p-value
> 0.05, whereas ViewHolder issues fit the weibull and lognormal distribution. Furthermore,
DrawAllocation issues fits the gamma distribution, Recycle issues fit the weibull distribu-
tion and UseSparseArrays issues fit a lognormal distribution. FloatMath and UseValueOf
performance issues do not fit any considered distribution.

Figure 16 highlights the Cumulative Distribution Function (CDF) of few types of perfor-
mance issues, in which the actual CDF is represented through a red line and the theoretical

Table 9 Results (p-values) of the KS test fitting the lifetime of different types of Android performance issue
to different distribution models

Issue type Norm Exp Weibull Gamma Lognorm Cauchy

DrawAllocation < 0.05 < 0.05 < 0.05 0.17 < 0.05 < 0.05
FloatMath < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
HandlerLeak < 0.05 < 0.05 0.33 0.13 < 0.05 < 0.05
Recycle < 0.05 < 0.05 0.13 < 0.05 < 0.05 < 0.05
UseSparseArrays < 0.05 < 0.05 < 0.05 < 0.05 0.23 < 0.05
UseValueOf < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05
ViewHolder < 0.05 < 0.05 0.28 < 0.05 0.29 < 0.05
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CDF is shown as a blue line. Figure 16 reports that the actual CDF for HandlerLeak issues
follows the Weibull distribution. Instead, UseSparseArrays best fits the lognormal distribu-
tion and DrawAllocation fits a Gamma distribution. These plots indicate that those three
types of issues tend to be resolved either (i) immediately (in all cases there is at least a 50%
probability of resolving them within few days) or (ii) very late during the lifespan of the
project (e.g., approximately 30% of DrawAllocation issues are resolved after 200 days).

We also analyzed the relationship between the type of issues frequently resolved and the
apps’ number of downloads. Results are shown in Fig. 17, and indicate that UseValueOf
issues exhibit a high number of resolutions (198 times) in apps having a relatively medium
number of downloads (10k-50k). While, as we discussed in RQ0 (Section 7) we noticed a
high number of issues of this type being introduced, we can also see that they are removed
after a while.
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8 RQ4 Results – Documented Resolutions of Android Performance
Issues

8.1 Data Analysis (RQ4)

RQ4 is about documented resolutions of Android performance issues. In this context, a
documented resolution of a performance issue is a special type of issue resolution where the
developer performing the resolution is consciously improving the performance of the app.
The starting point of our analysis is the set of issue-resolution commits, which we collected
during the data extraction.

In this phase, we consider GitHub commit messages as indicators of the actual docu-
mented intention of the developer. Then, for each type of Android performance issue, we
define a dedicated set of terms for identifying which commit messages are dealing with
that issue. Clearly, the identification of the sets of terms is a key factor for the success
of this phase. We follow a semi-systematic approach for the identification of the terms
related to each Android performance issue: (i) we extract an initial set of terms based
on the name of each performance issue (e.g., DrawAllocation is composed of the key-
words draw and allocation) and (ii) we manually extract relevant terms from the
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Table 10 Regular expressions for identifying documented Android performance issues

Type of issue Keywords

DrawAllocation [Dd]raw*, [Aa]lloca*, [Ll]ayout, UI, [Mm]emory

Recycle [Cc]ursor*, [Rr]ecycle*, [Tt]ypedArray*, [Vv]elocityTrack*

ViewHolder [Vv]iewHolder*, [Aa]dapter*, [Ll]istView, [Ss]crol*

HandlerLeak [Hh]andler*, [Ww]eakReferenc*, [Mm]essageQueue*, [Ll]eak*

UseSparseArrays [Ss]parseArray*, [Hh]ashMap*

UseValueOf [Vv]alue*, [Dd]ouble, [Ll]ong

FloatMath [Ff]loatMath

Miscellaneous [Ll]int, [Ww]arn*, [Pp]erf*

description of each type of performance issue in the official Android Lint web page. For
example, the description provided by Android Lint DrawAllocation is provided below and
it leads to the identification of the following terms: < Draw, Allocate, Layout, User

Interf ace, UI, Memory >.

You should avoid allocating objects during a drawing or layout operation. These are
called frequently, so a smooth UI can be interrupted by garbage collection pauses
caused by the object allocations. The way this is generally handled is to allocate the
needed objects up front and to reuse them for each drawing operation. Some methods
allocate memory on your behalf (such as Bitmap.create), and these should be handled
in the same way.

By applying the afore mentioned procedure to each type of Android performance issue,
we identify the regular expressions shown in Table 10.

It can also be noted from Table 10 that in last row of the table, we define an additional
set of regular expressions containing few more general performance-related terms. We add
this set of regular expressions in order to cover also those cases where the developers are
addressing performance issues, but are not referring to any specific Android Lint check.

To answer RQ4, we present and discuss (i) the frequency of documented resolutions
of Android performance issues within the whole dataset of Android apps, (ii) the distribu-
tion of documented resolutions of performance issues across the seven types of Android
performance issues, and (iii) the distribution of the code churns associated to each of the
1,314 PRI-resolving commits across each type of Android performance issue. Code churns
refer to the total number of changed lines of code in a commit (either added, removed or
updated) (Munson and churn 1998). In this study, we rely on code churns because (i) it is
one of the most used metrics for representing the change volume between two versions of
the same system (Munson and churn 1998), (ii) it can be considered as a relatively good esti-
mator for the development effort devoted to a GitHub commit, and (iii) it can be extracted
automatically with low computational effort, and (iv) the git log command can compute
it out of the box.24

Also, to better explain the results, we provide an example of solution for each type of
Android performance issue. This allows us to build a minimal catalog of reusable solutions,

24https://git-scm.com/docs/git-log
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which can be used by Android developers for better understanding how to resolve Android
Lint warnings in their projects. We select the solutions in two steps. First of all, we ran-
domly select five commits for each type of Android performance issue, where a developer
documented a performance-related change. Then, we manually inspect the changes in the
Java source code in each identified commit and select the most recurrent and representative
one (also based on the description of the corresponding Android Lint check). In Appendix B
we present and discuss in details all the representative solutions we identified. We believe
that developers can exploit this emerging collective knowledge for solving the performance
issues of their mobile apps in a more effective manner.

Finally, we use barplots to depict the relationship between the types of documented issues
and the apps’ number of downloads.

8.2 Results (RQ4)

Starting from the 1,314 commits where performance issues have been resolved (either inten-
tionally or not), we identified the subset of commits whose commit message mentions
Lint-related performance issues via the keyword-based strategy described in Section 3.3.
For each type of Android performance issue, Table 11 reports the number of commits in
which (i) developers explicitly document the resolution of a given type of Android perfor-
mance issue (second column) and (ii) developers just generically mention that they resolved
a performance issue (third column). We add this Miscellaneous set of keywords in order
to cover also those cases where the developers are addressing performance issues, but are
not referring to any specific Android Lint check (these Miscellaneous set of keywords are
shown in the last line of Table 10).

Firstly, we observe that the resolution of every type of performance issue has been explic-
itly documented at least more than once, summing up to a total of 143 (10.88%) commits out
of 1,314. Table 11 indicates that Recycle issues are more often documented (i.e., 48 times),
followed by FloatMath (20 times), HanderLeak (17 times), and ViewHolder (16 times). This
may be considered as an indications of the extent to which developers are aware of issues,
which could be possibly related to the actual usage of static analysis tools like Android Lint.

There are 27 commits notes identified after applying the miscellaneous regular expres-
sions (see Table 10). Among them, 9 commits are related to Recycle and UseValueOf issues,
respectively.

Table 11 Number of documented performance issue resolutions

Issue type #Commits #MiscellaneousCommits Total

DrawAllocation 12 (8.4%) 1 (0.7%) 13 (9.1%)

FloatMath 20 (13.9%) 2 (1.4%) 22 (15.3%)

HandlerLeak 17 (11.9%) 1 (0.7%) 18 (12.6%)

Recycle 48 (33.6%) 9 (6.3%) 57 (39.9%)

UseSparseArrays 2 (1.4%) 4 (2.8%) 6 (4.2%)

UseValueOf 1 (0.7%) 9 (6.3%) 10 (7.0%)

ViewHolder 16 (11.1%) 1 (0.7%) 17 (11.9%)

Total 116 27 143
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In Table 12 we provide an example of commit for each type of performance issue and
three examples of commits matching the generic regular expression. We also check how
many of the 143 commits are exclusively related to the resolution of performance issues, and
how many are tangled commits also related to other changes (e.g., the implementation of a
feature, etc.). It is interesting to note that many of such commits refer only to performance
issues resolution (i.e., 117 out of 143 commits). This suggests that, when documenting
Lint-related resolutions in their commit messages, Android developers tend to do dedicated
”issue resolution sessions”, which are 100% focused on resolving Lint-related performance
issues.

When looking at the minimum number of lines of code to resolve issues (see Table 13),
the amount of code to be written to resolve some performance issues is fairly limited. For
example, Recycle, UseValueOf, FloatMath, and UseSparseArrays can be resolved with 1,
2, 2, and 5 lines of code, respectively. This is because these kinds of problems mainly deal
with the usage of primitives data types and thus their resolution can be performed with a
very limited number of changes. For example, a Recycle issue can be resolved by closing
a cursor c by invoking the c.close() or through recycling a TypedArray t i.e., by invoking

Table 12 Examples of commits with documented performance issue resolution

Category Repository Commit ID Commit message

DrawAllocation mchow01/FingerDoodle 15c6432 � Fixed NullPointerException

at FingerDoodleView.java line

67 edu.cs.tufts.mchow.

FingerDoodleView.onDraw

FloatMath almalence/OpenCamera b232324 � Partially fixed issue with preview

on Android 6 in camera2 mode.

Fixed nexus naming in CC. Changed

depricated FloatMath to Math.

HandlerLeak stdev293/battery- 7212e95 � static handler to avoid

waster-android potential memory leak

Recycle uberspot/AnagramSolver be502aa � close cursors after using them.

UseSparseArrays pocmo/Yaaic fb90f72 � Use SparseArray instead of
HashMap for in-memory server
storage.

UseValueOf AmrutSai/sikuna 696873b � Made changes based on recom-
mendations from the lint tool...

ViewHolder chaosbastler/opentraining 3052768 � Implemented ViewHolder-Pattern
for ExerciseImageListAdapter (used
for CreateExerciseActivity). Awe-
some performance improvements.

Other(UseValueOf) Anasthase/TintBrowser d6f86cd � Correct lint warnings.

Other(Recycle) shlusiak/Freebloks-
Android

ec65540 � fix lint warnings

Other(ViewHolder) LukeStonehm/LogicalDefence 9312039 � FIXED: #re-use view if already
exists, this will increase perfor-
mance a little
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Table 13 Descriptive statistics
for the LOCs for resolving each
type of performance issue (SD =
standard deviation, CV =
coefficient of variation)

Issue type Min. Max. Median Mean SD CV

DrawAllocation 16 170 170 138.8 59.9 0.4

FloatMath 2 25 21 19.4 7.5 0.4

HandlerLeak 33 936 810 639.8 303.5 0.4

Recycle 1 598 578 328.2 277.5 0.8

UseSparseArrays 5 1,313 21 446.3 671.4 1.5

UseValueOf 2 148 4 53.3 65.6 1.2

ViewHolder 3 126 54 49.4 29.5 0.6

the t.recycle() method. Moreover, issues such as UseValueOf can be resolved by calling the
valueOf factory method instead of directly calling the constructor of a wrapper class like
Integer(int).

With a minimum number of 16 and 33 changed LOCs, DrawAllocation and HanderLeak
issues seem to be not trivially resolvable. For example, resolving an HandlerLeak usually
implies the creation of a new static handler and setting a weak reference to it.

Figure 18 depicts the relationship between the number of apps’ downloads and the type
of documented resolved issues. It can be noticed that issues of type Recycle are resolved
and documented a high number of times (38 times) in apps with a relatively low number of
downloads (500-1,000). Instead, issues of type FloatMath are resolved and documented 20
times in highly-downloaded apps (range 1M-5M). As described in the Android Lint docu-
mentation, the use of android.util.FloatMath was recommended for performance
issues in old versions of Android. Nowadays, for code addressing newer versions of Android
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(Froyo or above) it is recommended to use java.lang.Math instead. It is possible that
even popular apps did not update yet towards a better performance optimization for newer
Android versions.

9 Discussion

In the following, we firstly provide a detailed analysis about how the results of the research
questions of this study are linked together (Section 9.1). Then, we discuss the implications
that the results of our study have for developers (Section 9.2) and researchers (Section 9.3).

9.1 Summary of the Study Results

Table 14 presents an overview of the main results discussed in the previous sections. Specif-
ically, for each type of considered performance issue (first column) we report: its priority as
reported in the Android Lint documentation (second column), its frequency in our dataset
(third column), the portion of resolved issues (fourth column), its median lifetime (fifth
column), the median of the lines of code for resolving it (sixth column), and median of
documented resolutions (seventh column).

By looking at the combined results we can draw a number of interesting insights. Firstly,
DrawAllocation has the highest priority among the considered performance issues, but it is
resolved in roughly half of its occurrences (similarly to the resolutions of the other types of
issues). We argue that this phenomenon can be explained by the relatively high number of
lines of code needed for resolving it (170) and by the fact that it is difficult for developers
to precisely assess when drawing or layout operations are taking place at run-time. DrawAl-
location issues may be an impactful scientific target for researchers working on automatic
refactoring tools because of the high priority of this type of issue, which can be considered
as a proxy of the severity of the impact that this type of issues can have on the performance
of the app.

Table 14 Combination of the obtained results

Issue type Linter Frequency Resolutions Lifetime LOCs Documented

priority (%) (%) (median) (median) (median)

DrawAllocation 9/10 237 (9.84%) 118 (49.79%) 12.2779 170 13

Recycle 7/10 550 (22.84%) 310 (56.36%) 20.5430 578 57

ViewHolder 5/10 180 (7.47%) 79 (43.89%) 2.5965 54 17

UseValueOf 4/10 549 (22.79%) 331 (60.29%) 7.8848 4 10

UseSparseArrays 4/10 376 (15.61%) 180 (47.87%) 1.4995 21 6

HandlerLeak 4/10 320 (13.28%) 160 (50%) 45.0079 810 18

FloatMath 3/10 188 (7.80%) 136 (72.34%) 56.1576 21 22
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Recycle is the most frequent type of performance issue (550 occurrences) and they are
resolved in more than half of the cases (310). In principles, resolving this type of issue
means changing only one line of code, i.e., adding a call to the recycle() method of
the resource being used; however, the median number of lines of code for resolving Recy-
cle issues is much higher (578 LOCs). At the time of writing, we do not have a precise
explanation of this phenomenon and further investigation is needed.

We can observe that UseValueOf issues are resolved in a relatively short period (about
8 days) compared to other types of issues. This phenomenon may be explained by the fact
that the median number of lines of code for resolving those issues is only 4. Indeed, by
checking the official documentation of Android Lint, UseValueOf issues can be resolved
simply by calling the valueOf() method of wrapper classes (e.g., Integer) instead of
directly calling their constructor. Nevertheless, UseValueOf is the most recurrent type of
performance issues in our dataset (549 occurrences) and their resolution is documented only
in 10 cases. We argue that since UseValueOf issues are mostly about wrapper classes of
primitive types, developers perceive this type of issues as not impactful with respect to the
overall performance of the app.

While resolving FloatMath issues requires a relatively small effort in terms of lines of
code (median = 21), their lifetime is the highest across all performance issues (median =
56 days). One possible reason for this type of issue to remain for such long periods is that
Android Lint rates it with a very low priority (3/10), therefore developers tend to defer their
resolutions more than they do for other types of issues.

Finally, we notice that, in general, the considered performance issues tend to be unre-
solved and persist for long periods. We argue that this phenomenon can be explained by
two facts: (i) in general the priority of the considered issues is quite low (only DrawAllo-
cation and Recycle have 9/10 and 7/10 as priorities, respectively, while the others have a
priority level lower or equal to 5/10) and (ii) by default Android Lint only raises a warning
when it detects one of the issues in the source code, leaving to the developer the choice to
either solve or ignore the detected issue without blocking his/her development flow. Under
this perspective, as we will also discuss in Section 9.3, it will be fundamental to empirically
characterize the actual impact of Android Lint issues on the overall performance of the app.
The results of such an assessment will help developers in taking better informed decisions
about whether and when Android Lint performance issues should be managed or can be
safely ignored to have Android apps with good-enough performance levels.

9.2 Implications for Developers

Based on the obtained results, in the following we summarize how such results could guide
developers in better handling Android performance issues.

D1 – Developers are generally aware of performance issues detected by Android Lint,
but there is space for improvement The results of R0 are revealing that in general devel-
opers are not injecting an extremely high number of performance issues in their apps
(min = 0, max = 171 issues per app). Nevertheless, within the limits of the Android Lint
accuracy, the 2,408 performance issues we identified in this study can be seen as missed
chances for improving the performance of Android apps.

Some of the detected issues are not only about performance, but are indicators of (i) poor
programming practices (e.g., UseSparseArrays), which may hinder the overall maintain-
ability of the app and (ii) memory leaks (e.g., HandlerLeak), which may potentially lead to
the OS forcefully closing the app to recollect all the (mis-)used resources. Those are risks
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that today’s Android developers cannot afford in a crowded and fiercely competitive market
as the Google Play store.

D2 – Do not treat all types of Android performance issues equally, but (re)use previous
experience to prioritize and fix them Indeed, Android Lint checks are organized in dif-
ferent levels of priority and severity in order to guide the developer in prioritizing them.
Also, when answering RQ4 it emerged that resolving Android performance issues demands
different levels of effort. For example, a Recycle issue can be simply resolved by a call to
the recycle() method of the used recyclable resources (e.g., TypedArray); such a call can
heavily improve the performance of the app, since it frees the potentially large resource
before the execution of the garbage collectors. Differently, the resolution of a HandlerLeak
issue is usually implemented by (i) creating a static inner class for the handler, (ii) having
a weak reference in the outer class pointing to the outer class, and (iii) always using the
weak reference when referring to the outer class. One possibility, to support developers,
is that researchers (see Section 9.3) develop linters that prioritize warnings based on some
knowledge. At the same time, as a lesson for developers, this paper attempted to distill
and discuss a catalog of solutions for the various kinds of issues, based on what develop-
ers have done in the studied apps. Such a catalog (Appendix B) is discussed in our RQ4
(Section 8).

Generally speaking, we advice developers to establish different priority levels to different
performance issues depending on app’s users’ needs, project characteristics, and available
resources and to build a prioritization model according to them. In this context, variations
of the Weighted Shortest Job First (WSJF Leffingwell, 2010) model may be a good starting
point. At the same time, developers should, (once again, possibly with the help of environ-
ments developed by researchers) build a knowledge base of previously adopted solutions,
in order to apply them when appropriate.

D3 – Performance issues may be harmless when they occur in isolation, while they can
be particularly concerning when they occur in combination . If we look at each Android
performance issue in isolation, its overhead at run-time may be minimal in terms of com-
putational resources demanded by the app. However, in this study we also observed that (i)
in many cases issues tend to accumulate over time (e.g., STICK is the most recurrent evo-
lution pattern) and (ii) apps can exhibit many performance issues at the same time (e.g., the
app ChinaTVGuide exhibited 25 performance issues for more than 4 years).

Developers can alleviate these risks by continuously monitoring the number and types of
Android performance issues in their code base during the whole project. This practice can
also help in mitigating the well-known problem that developers are less likely to fix linter
warnings on legacy code (Ayewah et al. 2008; Habchi et al. 2018). Indeed, if the monitor-
ing (and corresponding resolution) of performance issues is performed continuously along
other development activities, then it will be unlikely that the code base will accumulate a
high number of issues, thus avoiding the need to fix them on previously developed code. In
this context, one concrete possibility is to configure linters (e.g., in a Continuous Integration
pipeline) so that they warn developers, by failing a build, when too many potential perfor-
mance issues have been introduced in a commit, or in a sequence of consecutive commits.
Last, but not least, it can be advisable to complement linters with performance regression
tests.

The five evolutionary patterns of statically-detectable Android performance issues (e.g.,
issue-rich feature, injection, and removal, etc.) are quite heterogeneous and exhibit different
characteristics, and it is difficult to track them by looking at one snapshot of the source
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code of the app at a time (e.g., gradual or sticky issue). The identified evolution patterns
can be used by Android developers as a common, shared, and aggregated viewpoint for
guiding maintenance activities and keeping under control the health of their apps from the
perspective of performance issues. The integration of the tool chain discussed in Section 3.3
and visual dashboards may be an invaluable instrument for developers for readily identifying
the manifestation of dangerous evolution patterns (e.g., issue-rich feature), and thus take
immediate action in response to them.

9.3 Implications for Researchers

In the following, we phrase the implications for researchers as Perspective Research
Questions, labeled as PRQ — which can be addressed in future research work.

PRQ1 – Why some performance issues tend to remain in Android apps? In our study,
Android performance issues tend to remain for many days within the repository; the aver-
age duration ranges from 53.95 days for UseValueOf to 293.9 days for FloatMath issues.
We suspect that those long durations are due to the fact that performance issues raised by
Android Lint are deemed to be not dangerous by developers.

We still do not have evidence about whether this perception is true or not, but objec-
tively investigating how developers perceive the issues raised by Android Lint is a relevant
research direction. An initial investigation is reported in Habchi et al. (2018), where the
main causes for developers not to use Android Lint have been empirically extracted via
interviews. There, the top three beliefs against the use of Android Lint for performance
purposes are: (i) that performance issues should be managed reactively (i.e., until someone
complains), (ii) that static analysis is not suitable for performance, and (iii) that Android
Lint performance checks are irrelevant.

In addition to the common wisdom mentioned above, other factors strictly related to
the tool itself may influence the lack of resolutions of Android performance issues. For
example, given its static nature, sometimes Android Lint can produce false positives (i.e.,
raising warnings when actually there is no issue), thus negatively impacting developers’
trust in it (Bessey et al. 2010). Also, even just the wording of the error messages shown to
the developer may affect the tool’s adoption; indeed, if developers find the error messages
as confusing, then they deem the raised error as false (Bessey et al. 2010). While this is not
entirely surprising, as it confirms findings coming from studies on general-purpose linters
(Couto et al. 2011; Kim and Ernst 2007; Spacco et al. 2006; Wedyan et al. 2009), it suggest
that, perhaps, more advanced recommenders are needed. For example, as it has been done
for bug fixes (Tufano et al. 2019), it could be interesting to learn from past changes to
prioritize warning resolution. Finally, developers may tend to perceive the resolution of
Android performance issues as demanding too much effort for the obtained gain. This calls
for the next two research questions (PRQ2 and PRQ3).

PRQ2 – To what extent it is possible to automatically refactor performance issues in
Android apps? Almost half of the apps in our dataset (43.64%) exhibit at least one
statically-detectable performance issue in their lifetime. Under this perspective, supporting
developers with methods and techniques for automatically resolving performance issues
is a valuable contribution. Despite the relative straightforwardness of manual resolutions
of statically-detectable performance issues, the automatic resolution of some of them
is far from being technically trivial. For example, the automatic resolution of Handler-
Leaks involves extensive refactoring, where the resulting code is heavily based on weak
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references and object-oriented reachability. Initial steps in this direction are being already
performed in the context of Android-specific energy-efficiency optimizations (Cruz and
Abreu 2018).

In this context, a relatively high number of apps (124) exhibit the refactoring evolution
pattern, meaning that at some point of the app’s lifetime the number of statically-detectable
performance issues has a strong decrease, independently of the amount of changes in the
source code. As researchers, we can closely investigate what is happening during the occur-
rences of a refactoring pattern in order to learn how developers are actually resolving
statically-detectable performance issues. The results of this analysis can be used as drivers
for the design of methods and techniques for (semi-) automatically resolving Android
performance issues in the future.

Finally, in the context of this specific study, having an automated refactoring technique
will allows us to (i) automatically resolve all the unresolved issues we identified in RQ3,
(ii) submit their resolutions as pull requests in the original GitHub repositories, and (iii)
measure the percentage of pull requests that are merged by app developers. All together,
those activities will bring a better understanding about how Android developers consider
detected and resolved performance issues in real industrial contexts.

PRQ3 – What is the actual impact of Android performance issues at run-time? Being
able to automatically resolve detected issues (see PRQ2) opens also for the empirical assess-
ment and measurement of the impact in the resolution of statically-detectable Android
performance issues in terms of, e.g., CPU usage, memory consumption, app’s frame rate,
etc.

At the time of writing, this line of research has not been explored yet and it can likely
lead to an impactful contribution to the body of knowledge in the field of mobile software
engineering. Indeed, recently it empirically emerged that a number of Android developers
are indifferent to performance issues and they challenge their relevance and impact (Habchi
et al. 2018). Clearly, providing empirical evidence about the actual impact of performance
issues will help in the overall adoption of static analysis tools like Android Lint, promoting a
more careful treatment of performance-related aspects of apps, and thus potentially leading
to improving the apps’ quality.

PRQ4 – Are some performance issues more difficult to be resolved? As discussed when
answering RQ3 and RQ4, some performance issues seem to be more difficult to be
resolved, either in terms of code churn or days before the resolution. In order to better
understand why this phenomenon is happening, we perform a preliminary analysis targeting
specific subsets of issue-resolution commits in our dataset. Specifically, we firstly rank all
1,314 commits with resolved issues based on their code churn and then we select the top-
10 commits in terms of LOCs for each type of performance issue. This leads to a set of 70
issue-resolving commits (10 for each type of performance issue) with very high code churn
(average = 368.7, median = 249.5). At this point, we consider GitHub commit messages and
conduct a content analysis session (Lidwell et al. 2010) on all 70 commit messages. Specif-
ically, we categorize them according to the taxonomy of self-reported activities of Android
developers proposed and empirically validated by Pascarella et al. (2018). The taxonomy
entails a wide variety of different activities at different levels of abstraction (e.g., bug fixes,
functionality implementation, release management, access to sensors, etc.). The taxonomy
is composed of two levels, where the first layer (9 items) groups together activities with
similar overall purpose (e.g., app enhancement, bug fixing, API management), whereas the
subcategories (49 items) in the lower level provide a finer-grained categorization (Pascarella
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et al. 2018). In this study we focus on the top 9 level-categories only and we assigned one
or more categories of development activities to each commit.

Figure 19a and b present how frequently each category of Android developers’ activ-
ities appears in all commits with high code churn in general and across the 7 types of
performance-related issues, respectively.

It does not come as a surprise that code re-organization, app enhancement, bug fixing,
and user experience improvement are the most recurrent types of development activities co-
occurring with issue resolutions involving long code churn; indeed, they are also the most
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Fig. 19 Development activities performed in issue-resolving commits with high code churn
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recurrent activities in the original study in Pascarella et al. (2018), which did not focus
on any specific type of commit. Similarly, the most recurrent activity co-occurring with
issue resolutions with high code churn is code re-organization (for both HandlerLeak and
V iewHolder), which includes activities like refactoring, and code cleanup. Also this result
is quite expected since resolving those two types of issues can be considered as special cases
of code refactoring or cleanup.

We consider also the cases requiring low code churn and analyze the resulting data with
the same procedure we applied before and focusing on the issue-resolving commits with
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Fig. 20 Development activities performed in issue-resolving commits with low code churn
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the lowest code churn. The resulting subset is composed of 70 commits (10 for each type
of performance-related issue) and has an average of 22.61 and a median of 10.50 LOCs
per commit. As shown in Fig. 20a and b, also when considering commits with low code
churn we did not get patterns extremely different from what we observed in commits with
high code churn. Overall, in many cases we could observe that the resolution of perfor-
mance issues occurs together with other potentially unrelated development activities (e.g.,
app enhancement or bug fixing). This may be an indication that Android Lint is commonly
used as part of everyday development activities, potentially thanks to its default integration
to the Android Studio IDE. This finding is also confirmed in Habchi et al. (2018), where
many Android developers reported that they prefer to (i) use Android Lint from the project
startup and (ii) try to keep the code as clean as possible by frequently considering Android
Lint in their development workflow.

We performed the analyses described above in order to get an initial indication about
what developers are doing contextually to the resolution of performance issues. In many
cases we could observe that the resolution of performance issues occurs together with other
potentially unrelated development activities (e.g., app enhancement or bug fixing). This
may be an indication that Android Lint is commonly used as part of everyday development
activities, potentially thanks to its default integration to the Android Studio IDE. This find-
ing is also confirmed in Habchi et al. (2018), where many Android developers reported that
they prefer to (i) use Android Lint from the project startup and (ii) try to keep the code clean
by frequently considering Android Lint checks. With only 280 data points, we are aware
that the performed analyses have low statistical power. Nevertheless, a more in-depth anal-
ysis about the root causes of low-high code churns and number of days before resolution is
surely a worthwhile future research direction. For the interested researchers, the raw data
we manually collected so far is available in the replication package of this study.
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We also noted that some issues have a very short resolution time (even less than one
day in some cases). We performed an additional analysis similar to the one about code
churn with a focus on the top-10 commits in terms of issue resolution time for each type
of performance issue. Figure 21 presents those developers’ activities co-occurring with
issue-resolution commits with extremely low (average = 2.62, median = 0.22) or high (aver-
age = 582,568, median = 236) resolution times in days. Similarly to what we observe also
for code churn, the most recurring development activities tend to co-occur with issues with
both extremely high and low resolution times.

Finally, only in about 10% of issue resolution commits developers explicitly mention
that they resolved a performance issue. This phenomenon can be seen as an indication of
the fact that the resolution of statically-detectable performance issues is embedded into
other activities when developing Android apps. One explanation of this phenomenon may
be the integration of Android Lint into Android Studio, where the results of the analysis
are directly integrated into the development environment, without context switches, tool
configuration, etc. The same trend has been confirmed also in a recent industrial study at
Google, where the results of static analyses are taken more into consideration when they are
integrated into the development workflow, executed at compile time, and enabled by default
for everyone (Sadowski et al. 2018).

10 Threats to Validity

This section discusses the main threats to the validity of our study and the countermeasures
we applied for mitigating them.

Construct Validity threats are related to the relationship between theoretical knowledge
and actual observations.

We detected performance issues by using only one static analysis tool, i.e., Android Lint.
This decision involves the risk of having a mono-method bias in our study (Wohlin et al.
2012) since the results of the whole study are based exclusively on the types of issues
supported by the current implementation of Android Lint. This means that other types of
performance issues may be present in the analyzed apps, but are not considered in our study
because they may not be supported by Android Lint. As discussed in Section 2, there is a
number of other static analysis tools which are applicable to Android apps, such as Find-
Bugs, PMD, PerfChecker, Paprika. Those tools could have been used in combination with
Android Lint, in order to complement and cross-check its results and have a better cover-
age of statically-detectable Android performance issues. However, at the time of writing,
Android Lint is the only static analysis tool which (i) is dedicated to Android-specific issues
at the source code level and (ii) has a specific category for performance-related issues. We
decided to use only Android Lint in order to do not confound the results of the study by con-
sidering issues outside the scope of the experiment (i.e., statically-detectable performance
issues in Android apps), such as maintainability smells, bugs, security vulnerabilities, etc.
Moreover, in this study we put ourselves in the same conditions as the developers, who gen-
erally use Android Lint because it is integrated and activated by default in Android Studio.
As confirmed also by other studies, having a linter integrated in the common development
workflow makes it more trustable by developers (Habchi et al. 2018; Sadowski et al. 2018).
This makes us reasonably confident about the representativeness of the results of our study,
especially when dealing with the resolution and lifetime of the performance issues identi-
fied by Android Lint. We do not have empirical evidence about the adoption in practice of
linters developed in academia, e.g., Paprika.
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Nevertheless, the usage of Android Lint allows us to cover a relatively large set of
performance-related issues, ranging from low-level issues (e.g., UseValueOf ) to more
encompassing ones (e.g., HandlerLeak).

When executing the experiment, Android Lint was supporting 9 performance-related
checks, whereas its current latest version supports 36 performance checks (as of June 2019).
In order to better understand which Android Lint checks could have been included in our
study by considering the latest version of Android Lint,

we analyzed the current implementation and documentation of Android Lint and found
out that we could support 4 additional performance checks, namely: WakelockTimeout,
StaticFieldLeak, LogConditional, and SyntheticAccessor. However, at
the time of the computation this was not considered and will be a matter of future investi-
gation. As a way to mitigate this potential threat to validity, we make the data about all 36
performance-related checks in Android Lint publicly available in the replication package of
the study.

As many other static analysis tools, Android Lint can suffer from the presence of false
negatives, i.e., performance issue not detected. Nevertheless, the number of performance
issues detected by Android Lint is relatively large, making us reasonably confident about
the considerations we give when analyzing their evolution over time. Indeed, it is out of the
scope of our study to precisely identify all performance issues of Android apps, whereas
our main objective is to characterize how statically-detectable ones evolve over the lifetime
of Android apps, how much time they remain in the code base, and how developers actually
resolve them. Moreover, our study may potentially suffer from the presence of false nega-
tives, i.e., performance issues actually present in the app but are not detected by Android
Lint. This potential bias is mainly due to (i) the fact that we rely on the heuristics and
checks implemented in Android Lint and (ii) that we exclusively rely on Android Lint for
the detection of performance issues. As previously discussed, we decided to focus exclu-
sively on Android Lint in order to keep the experiment as focused and realistic as possible
(in terms of developers’ conditions) and because Android Lint currently is the only static
analysis tool which has a dedicated category of checks related to performance and it is spe-
cific for Android. As future work, as more static analysis tools for Android performance
issues will possibly emerge, we will replicate this study and complement our results with
those obtained from other tools. As a way to complement the findings emerging from this
study, in future work we will assess the actual impact of the detected issues by dynamically
analyzing the considered apps. This can be useful to gain evidence-based insights about the
practical consequences of the performance issues detected by Android Lint.

It is important that the toolchain for extracting the performance issues across all commits is
implemented and configured correctly. We mitigated this potential threat to validity by care-
fully designing the whole toolchain (see Section 3.3), by testing each component of the tool-
chain in isolation via repositories for which we knew already the expected outcomes of each
data extraction step, and by making the implementation of the toolchain publicly available
for independent verification and replication (see the replication package of this study).

Another threat is related to the degree to which the selected apps are representative of the
target population (i.e., Android apps published in the Google Play store). We mitigated this
threat by considering a relatively large initial set of Android apps (4,287) and by performing
an in-depth data quality assurance and filtering process (see Section 3.2).

When considering issue resolutions, there might have been cases of ”accidental“ per-
formance issue resolutions, when a source code fragment was deleted for other reasons.
Nevertheless, those cases are not jeopardizing the results of the study since our aim is to
establish the lifetime of performance issues, independently of whether the resolution of
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the issues is conscious or not. In order to better characterize to what extent developers are
consciously resolving performance issues, in RQ4 we report on the documented resolu-
tions of issues only. Also, for RQ1, RQ2, and RQ3 we partially mitigated this potential
source of bias through a line-based tracking of the issues over time via the LHDiff tool (see
Section 3.3).

When answering RQ3, we consider the CDFs globally with respect to each type of per-
formance issue, instead of considering them on a per-app basis. This may be a threat to
validity since the lifetime of performance issues may vary depending on the potentially dif-
ferent maintenance strategies of each individual app. In this context, app-specific factors
may influence the obtained distributions, potentially missing the opportunity to make a more
fine-grained analysis. However, we decided to analyze the CDFs globally with respect to
each type of performance issue due to the relatively limited number of data points we could
have obtained when considering each app in isolation.

When answering RQ4, we are assuming that if a commit message contains specific key-
words, it is describing the resolution of a performance issue. We are aware that such an
approach may miss commits where the resolution of the performance issue is not docu-
mented. False positives have been avoided by performing a manual analysis of all identified
issue-resolution commits.

Conclusion Validity is about the relationship between treatment and outcomes of the study.
We carefully took into consideration the assumptions of each applied statistical test. We

minimized the possibility of misleading results by relying on non-parametric tests, such as
the KS test.

The qualitative analysis we performed when answering RQ1 is based on the manual
categorization of issue evolution plots, potentially leading to the subjective interpretation
of evolution patterns. We mitigated this potential threat to validity by (i) carefully follow-
ing the open card sorting methodology (Spencer 2009), (ii) involving three researchers,
who worked both independently and collaboratively across the various analysis phases, and
(iii) statistically assessing the level of agreement between the involved researchers via the
Cohen-Kappa statistics (Cohen 1968).

We mitigated the above mentioned potential threats to validity by preparing a full repli-
cation package of the study containing the raw data and statistical data analysis scripts, thus
making the data analysis phase of this study fully reproducible.

Finally, in the preliminary analysis presented in Section 9.3 (implication R4), we use
both code churn and issue resolution time as proxies of the difficulty of resolving issues.
However, as it also emerged from that preliminary analysis, massive code churn and long
issue resolution times may be due to developers performing other activities that are not
related to performance issues (e.g., resolving bugs or implementing new features). As a
future work we will mitigate this potential threat to validity by (i) identifying the subset
of commits in which developers are working exclusively on the resolution of performance-
related issues and (ii) carrying out a more in-depth analysis only on those commits commits.

Internal Validity is related to factors internal to our study that can influence our results.
During the dataset building phase, we noticed that many potentially-relevant GitHub

repositories were actually not containing apps (e.g., repositories hosting only Android
libraries). As discussed in Section 3.2, we discarded those types of repositories from our
dataset. Moreover, despite all considered repositories are about the implementation of
Android apps, their structure can heavily differ in terms of folders and files organization.
This means that it is possible to obtain false results by considering non-app related source
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code in the static analysis (e.g., third-party libraries, code implementing the back-end of the
apps, code developed for other platforms). We mitigated this potential threat to validity by
identifying, for each repository, the app’s root folder containing its source code. Then, the
execution of Android Lint has been set up so to consider only the source code contained
within the app’s root folder.

External Validity is related to the generalizability of the obtained findings. Due to our
requirement of having access to the full versioning history of the apps, this study considers
exclusively Android apps whose source code is available in GitHub, which may be not rep-
resentative of the population of all Android apps. However, as we study how apps evolve
over time, we need access to the previous versions of the app. Mining GitHub grants access
to fine-grained snapshots of each app, whereas in Google Play developers publish only the
official releases of their apps. Moreover, we are interested in how performance issues are
introduced and resolved by developers in the Java code of their apps; in Google Play only the
binary code of the app is available, which may be structurally different from the source code
produced by developers e.g., because of code obfuscation. Nevertheless, the built dataset
has a high heterogeneity, both in terms of apps size, number of contributors, lifetime, and
categories. Moreover, in order to further mitigate this potential threat to validity, we ensured
that all considered apps are also distributed in the Google Play Store, meaning that they are
real apps being actually used, and not on-time demos or toy examples.

11 RelatedWork

Existing research related to our study has been mainly carried out in the context of (i)
empirical studies on Android apps performance (Section 11.1) and (ii) the evolution of
statically-detectable bugs and issues (Section 11.2).

11.1 Empirical Studies on Android Apps Performance

Liu et al. (2014) conducted an empirical study involving 70 occurrences of performance
bugs from 8 real-world Android apps. The study identified three common types of perfor-
mance bug, i.e., GUI lagging, energy leak, and memory bloat. GUI lagging resulted to be
the more frequent performance bug (53/70), followed by energy leak (10/70), and memory
bloat (8/70). Furthermore, the authors of this study developed PerfChecker, a tool for detect-
ing two types of performance bugs: (i) violations of the view holder pattern and (ii) lengthy
operations in the UI thread. Also, the study revealed that debugging and resolving perfor-
mance bugs are generally more difficult than debugging and resolving non-performance
bugs, confirming the need to further investigate on Android performance (either via static
analysis or via run-time profiling). Differently, from the study proposed by Liu et al., our
study involves a much larger number of apps (724) and we are reusing Android Lint to
investigate nine types of performance issues, instead of developing our own analysis toll.
Moreover, we also analyze the lifetime of performance issues throughout the whole dura-
tion of the projects in GitHub, which gives us a deeper understanding about the severity of
the considered types of performance issue, e.g., which kinds of performance issues tend to
remain in the code base and which kinds of issues take more time to be resolved.

Vásquez et al. (2015) interviewed 485 developers of open-source Android apps and
libraries about their best practices for tackling performance issues. The results of the study
revealed that Android developers (i) rely on multi-threading to prevent/avoid long opera-
tions in the main thread, (ii) perform GUI optimization to reduce the complexity of the UI

Empirical Software Engineering (2020) 25:2748–28082792



of their apps, (ii) cache results in their apps in order to improve the time to access resources,
and (iii) focus on good memory management to avoid heavy executions of the garbage
collector and memory leaks. We can consider our study as complementary to the one by
Linares-Vasquez et al. Indeed, the main goal of our study is to characterize the presence and
evolution of statically-detectable performance issues, rather than analyzing the best prac-
tices applied by developers when fixing performance issues. This fundamental difference of
our objectives is reflected also in the design of the studies, where we focus on mining soft-
ware repositories techniques for inspecting the versioning history of the considered apps, as
opposed to an online survey involving practitioners.

Nistor and Ravindranath (2014) proposed a technique called SunCat for allowing devel-
opers to use common small inputs to understand potential performance problems that apps
could have for larger inputs.

They evaluated their proposed technique by considering 29 different scenarios of 5 Win-
dows phone apps, which unveiled the presence of 9 performance problems. Our study differs
from their, since we aim at empirically characterizing the evolution of performance issues
along the lifetime of Android apps, instead of focusing on a new technique for performance
bug identification.

Gomez et al. introduced DUNE, a context-aware approach for identifying UI per-
formance regressions among different Android app releases and heterogeneous con-
texts (Gómez et al. 2016). DUNE works in two steps: it firstly constructs a model of the
UI performance metrics coming from the execution of a test suite targeting the app, then it
flags potential UI performance deviations in new test runs. In this context, DUNE is able
to identify the specific UI events that may potentially trigger a UI performance issue and to
characterize the context in which it occurred (e.g., a specific Android SDK version). DUNE
has been empirically evaluated on 3 Android apps. In our study, we reuse Android Lint for
our analysis along the lifetime of a large set of real Android apps; we did not use the DUNE
tool as it needs to run and measure the apps at run-time, making the execution of the whole
experiment prohibitively long with respect to our available resources.

Furthermore, a number of studies have been conducted about the use of profiling tech-
niques to measure mobile apps for supporting their performance optimization (Qian et al.
2011; Ravindranath et al. 2012). For instance, the authors of Qian et al. (2011) monitored
the interaction between the resource management layer and the application layer to identify
inefficiencies in the usage of those resources that are mostly responsible for poor perfor-
mance in mobile apps. Our study is different from the profiling-based ones as we build
on static analysis tools and techniques for performing our analysis, instead of focusing on
run-time profiling. Moreover, in this study, we are mainly focusing on how performance
issues evolve over the whole lifetime of the code base of the mobile app, as opposed to
investigating on the performance of the app at a given release.

Habchi et al. interviewed 14 Android developers to investigate on the motivations, prac-
tices, and constraints in using Android Lint for performance purposes (Huchard et al. 2018).
Their study is observational in nature and they followed a qualitative research approach
based on Grounded Theory concepts. Among the various findings, this study revealed that
Android Lint can benefit developers to learn about the Android framework, anticipate per-
formance bottlenecks, and easily identify performance bad practices. Moreover, the study
provided insights on how Android Lint is used, e.g., in some cases Android Lint was
required on a team level, but also for supporting individual development, and for prioritizing
performance aspects of the Android app. Finally, the study highlighted also some obstacles
against the adoption of Android Lint, such as the fact that performance is managed only
reactively in some organization, the perception that linters are not suitable for performance
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analysis, and the fact that analysis results are not well presented to developers. Differently
from the study by Habchi et al., in this work we are having an orthogonal perspective and
we aim at characterizing the evolution of performance issues supported by Android Lint
over time. Also, in this study we are investigating on the lifetime of performance issues
identified by Android Lint and provide insights about how developers are resolving them in
open-source Android apps.

Cruz et al. conducted a study on six Android apps with the aim of analyzing whether
performance-related issues identified by Android Lint can have also an impact on energy
consumption (Cruz and Abreu 2017). The most relevant finding of this study is that resolv-
ing a subset of the performance issues detected by Android Lint can save up to one hour
of battery life of the mobile device. The performance issues correlated with the battery
savings are the following: ViewHolder, DrawAllocation, WakeLock, ObsoleteLayoutParam,
and Recycle. Moreover, the authors of Cruz and Abreu (2017) propose an approach that
takes as input the source code of an Android app and automatically refactors the energy-
greedy issues mentioned above. Differently, in our study we focus on the time dimension
and on how performance-related issues evolve over time, which ones remain in the code base
longer, and how they are resolved by developers in the context of real open-source projects.
Finally, the research questions guiding our study are different, and complementary, with respect
to the study by Cruz et al.. Specifically, we aim at characterizing the presence and resolution
time of performance-related issues in Android apps), whereas Cruz et al. aim at providing
empirical evidence about the relationship between statically-detectable performance issues
in Android apps and their energy consumption. This difference profoundly impacts the
design and the number of subjects involved in the two studies, i.e., a longitudinal study
involving 724 apps vs a small-scale measurement-based empirical study involving 6 apps.

11.2 Empirical Studies on the Evolution of Statically-Detectable Issues

In the previous section, we discussed the Paprika tool. In Hecht et al. (2015a) the same
tool has been used for assessing the evolution of quality metrics of Android apps over
time. Here, PAPRIKA has been configured to consider 3 Object-Oriented antipatterns and
4 Android-specific antipatterns (namely, Member Ignoring Method, Leaking Inner Class,
and UI Overdraw), and the detected antipatterns are utilized as proxies for the quality of the
app. Paprika has been executed on multiple releases of 106 Android apps, which have been
collected from the Google Play Store. Then, (i) the baseline of software quality has been
computed from the whole set of collected apps and (ii) the quality of each release of each
app has been estimated as the deviation from the baseline. The study revealed the presence
of relationships between different antipatterns (e.g., the blob and complex class antipat-
terns tend to evolve together) and established 5 major quality evolution trends, similar to
the ones we identified in Section 5. Our study differs from Hecht et al. (2015a) since we
focus exclusively on performance-related issues and go deep into both the context in which
performance issues are introduced and resolved in the source code of the app. This has been
possible thanks to our dataset building strategy, which allowed us to have a much finer level
of granularity (i.e., at the single commits level in GitHub, which may occur in the order of
minutes), as opposed to focusing only on the official app releases in the Google Play Store,
which may have a timespan of even several weeks. Finally, we have a dedicated analysis of
the lifetime of each type of performance issue and discuss the documented resolutions of
performance issues.

Di Penta et al. conducted an empirical study on the evolution of statically-detectable
vulnerabilities at the source code level (Di Penta et al. 2009). Vulnerabilities have been
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detected by using three different tools, i.e., Splint, Rats and Pixy. The objects of the study
were 3 highly-popular open-source networking applications (i.e., Squid, Samba and Horde).
Similar to what we did with Android Lint, Di Penta et al. (2009) analyzed the evolution
of vulnerabilities by running analysis tools over the whole lifetime of the 3 projects. The
study reported that most of the vulnerabilities tend to be resolved from the system. Our
study differs from the one by Di Penta et al. primarily in the goal and subjects (i.e., we are
interested in performance issues of Android apps, whereas they are interested in the security
aspects of generic software. Methodologically, the two studies are similar since both of them
(i) focus on the number and evolution patterns of statically-detectable issues and (ii) assess
whether the CDF of each type of issue can be modeled using known statistical distributions.
However, in our study we consider a much larger dataset (724 projects against 3) and our
collected data has a finer level of granularity since we executed Android Lint on all commits
of all 724 apps, whereas Di Penta et al. (2009) used a time-windowing approach.

Chatzigeorgiou and Manakos (2014), analyzed the evolution of four bad code smells (i.e.,
Long Methods, Feature Envy problems, State Checking smells and God class) throughout
the lifetime of two large open-source applications (i.e., JFlex and JFreeChart). The main
finding of this study is that bad code smells tend to persist up to the latest versions of the
project. Moreover, they performed a survival analysis on the collected data and discovered
that once the smell is introduced, it tends to remain for a long time in the code base. Also,
their results indicated that few smells are resolved from the system, and most of their reso-
lutions are not due to refactoring activities, but rather are unintentional (e.g.,, they happen
when changing other parts of the source code).

Tufano et al. performed a survival analysis in their large-scale study on bad code smells
(Tufano et al. 2017). Their study involved the analysis of each commit of 200 open-source
systems mined from GitHub. Their study showed that 80% of the investigated code smells
survive in the system and a very small percentage (9%) is resolved due to some partic-
ular refactoring operations. Our study mainly differs from the studies of Chatzigeorgiou
and Manakos (2014) and Tufano et al. (2017), because of its focus on statically-detected
performance issues of Android apps, as opposed to bad code smells in open-source projects.

12 Conclusions and FutureWork

Mobile applications (apps) are nowadays becoming more and more rich of complex features,
and are continuously updated over time to cope with users’ requests. Poor design and imple-
mentation choices upon evolving apps can lead towards performance problems. While it is
often the case that developers identify performance tools through profiling and testing tools,
an appropriate usage of static analysis tools could constitute a cheaper complement to that.

In this paper we investigate how performance problems — detected by a static analysis
tools, i.e., Android Lint25 — occur, evolve and eventually disappear in Android apps. More
specifically, we analyze a set of 724 popular open source Android apps, and we found
performance issues in 316 of them.

Results of the study indicate that:

1. Issues due to the lack of recycling data collections and other resources such as database
cursors are the most frequently occurring ones, while Android Lint found very few
instances of ViewTag and WakeLock issues.

25Android studio project site. http://tools.android.com/tips/lint.
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2. Performance issues in general tend to appear suddenly in a file rather than being
gradually introduced, and remain in the system for a long time (and number of
commits).

3. Some issues, primarily related to the user interface and to memory management, are
either resolved (in our observation period) or tend to remain in the app for a longer
time, while other issues (primarily of algorithmic nature) tend to be resolved quickly
(when they are resolved), possibly because there are well-known, easy solutions for
them.

4. We found performance issue resolutions to be documented in commit messages in
10% of the cases. This may either indicate that in other cases they were (acciden-
tally) resolved along with other changes, or that in any case their resolution was not
considered as the primary goal of the commit.

Future work will aim to replicate the study by considering other static analysis tools
and a larger set of mobile apps with a focus on assessing the differences between the
evolution of issues identified by Android Lint and those identified by other static anal-
ysis tools. Also, based on the analysis of issue resolution patterns, we are developing a
recommender system aimed at suggesting solution patterns for certain kinds of perfor-
mance issues. Moreover, we will perform an in-depth qualitative study on the identified
evolution patterns in order to better understand the context and main motivations behind
them, so to better support developers and researchers in understanding how to prevent
the occurrence of negative patterns such as issue-rich features and sticky issues. A deep
investigation on the solutions implemented by Android developers will be extremely valu-
able in order to better understand the most convenient resolutions in terms of e.g., effort,
change impact, code understandability; in this context a tool for automatically extracting
the characteristics of the implemented resolutions will be needed, together with a proper
validation of its accuracy (e.g., in terms of precision and recall). Finally, the analysis of
the resolution patterns can potentially lead to the development of a tool for automatically
resolving statically-detectable performance issues, which will open for the possibility of
getting better insights about the actual impact of issues on the overall performance of the
app (Habchi et al. 2018) and about how developers perceive the resolutions proposed by
the tool.

Appendix A: Examples of Android Performance-Related Issues

Listing 2 Example of Recycle issue (dstahlke/rdn-wallpaper - src/org/stahlke/rdnwallpaper/
PresetsBox.java)

Empirical Software Engineering (2020) 25:2748–28082796



Listing 3 Example of bursty occurrences of the UseValueOf issue (dyne/ZShaolin - termapk/src/com/
spartacusrex/spartacuside/keyboard/TerminalKeyboard.java)

Listing 4 Example of UseSparseArrays issue (ric03uec/cramit - src/com/dev/cramit/models/
Problem.java)

Listing 5 Example of HandlerLeak issue (mobiRic/StackFlairWidget - src/com/mobiric/ stack-
flairwidget/service/ FlairWidgetService.java)
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Listing 6 Example of HandlerLeak issue (alistairdickie/ BlueFlyVario Android -
src/com/bfv/hardware/ HardwareListActivity.java)

Listing 7 Example of DrawAllocation issue (kurtmc/MyEarnings - src/com/mcalpine develop-
ment/calculatepay/ CalculateActivity.java)
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Listing 8 Example of FloatMath issue (dirktrossen/AIRS - src/com/airs/TimelineActivity.java)

Listing 9 Example of ViewHolder issue (asksven/BetterWifiOnOff - BetterWifiOnOff/src/com/
asksven/betterwifionoff/CreditsAdapter.java)
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Appendix B: Catalog of Solutions for Statically-Detectable
Performance Issues

In the following, we present a catalog of solutions for statically-detectable performance
issues as emerged from our analysis. All the examples of solutions are available in
Appendix B.

Recycle To resolve the Recycle issues in the project uberspot/AnagramSolver, develop-
ers purposely add the lines of code to close the cursor properly after being used. It can be
seen in code snippet (Fig. 22 in Appendix B) that developers use cursor.close() at the end
(at line 174) to close the database query cursor properly and this changes in source code
led to resolution of Recycle issues from the project. Whereas, in other (Recycle) cate-
gory, Recycle issue was solved in the project shlusiak/Freebloks-Android by recycling
the resource, i.e., by calling the p.recycle() method (see lines 540 and 569 in Fig. 23).

ViewHolder To resolve this issue developers should implement ViewHolder pattern in
getView() callbacks. For example, it can be noted from the manual observation that develop-
ers specially implemented ViewHolder Pattern for ExerciseImageListAdapter to resolve
the ViewHolder issue from the project chaosbastler/opentraining (an example from our
dataset) as shown in Fig. 24. The idea is to reuse earlier recycled list items. It prevents the
inflation of list items layout when there are recycled items available for reuse (Lines 99-
100). When the list of items is created for the first time, the references to inner view object

Fig. 22 Example of resolving of the Recycle issue (username115/FRCScouting - src/org/frc836/
database/DB.java)
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Fig. 23 Example of resolving of the Recycle issue (shlusiak/Freebloks-Android - src/de/
saschahlusiak/freebloks/game/FreebloksActivity.java)

are identified and stored in a particular data structure for reuse (Lines 95-96). The main
advantages of using the ViewHolder pattern are that (1) it can save computation for infla-
tion of list items layout by reducing findViewById() calls and also invokes less inner view
retrieval computations, and (2) it is memory efficient for building new list items. Further-
more, to reduce the impact of frequently invoked callbacks in getView() implementation,
developers should use this kind of efficient design.

HandlerLeak To resolve the HandlerLeak type of issues in the project stdev293/ battery-
waster-android, developers declared the handler as static class. It can be clearly shown
from Fig. 25, that developers create a new static class for the handler to avoid the potential
memory leaks. Moreover, developers also used a WeakReference to outer class and pass
the object to instantiate a handler.
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Fig. 24 Example of resolving of the ViewHolder issue (chaosbastler/opentraining -
app/src/de/skubware/opentraining/activity/create exercise/ExerciseImageListAdapter.java)

UseSparseArrays We manually analyzed the source code of several projects to know how
the UseSparseArrays issue type is resolved, we observed that for better performance
of memory server storage, developer removed HashMaps and used UseSparseArrays
instead. One of the sample documented example can be shown in the Fig. 26(from
our dataset) where the UseSparseArrays type of issue is resolved from the project
pocmo/Yaaic.

However, UseSparseArrays are assumed to be more memory efficient and trig-
ger less garbage collection as compared to its counterpart HashMaps with no key impact
on operations performance of maps. Moreover, SparseArrays allocate less memory as
compared to HashMaps.26

DrawAllocation Related to DrawAllocation issue category, we consider the
mchow01/FingerDoodle project to analyze the solution.

From our manual analysis, we observed that developer removed the Paint object from
onDraw() function (i.e., a background Paint object is created each time when the draw
operation takes place and memory is allocate every time) as shown in Fig. 27 (Appendix B).
To resolve this issue, developer pre-allocate the background Paint (at line 18) upfront (i.e.,
outside from onDraw() function) and reuse it instead, which will prevent from the UI lag
since memory will not allocate at each time when onDraw() or Layout()function is called.
Therefore, it is a good suggestion for developers to allocate new object before the draw or
layout operation.27

26Sparsearray vs hashmap. http://www.sable.mcgill.ca/soot/.
27Android lint checks.
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Fig. 25 Example of resolving of the HandlerLeak issue (stdev293/battery-waster-android -
src/com/stdev293/batterywasterdemo/sinks/SinksControlThread.java)

FloatMath For the FloatMath issue type, instead of FloatMath declaration, develop-
ers should use Math in the source code to resolve this issue. It can be noted from the Fig. 28
(Appendix B), that after depreciated from FloatMath to Math (as developer wrote in

Fig. 26 Example of resolving of the UseSparseArrays issue (pocmo/Yaaic - app/src/main/java/
org/yaaic/db/Database.java)
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Fig. 27 Example of resolving of the DrawAllocation issue (mchow01/FingerDoodle - src/edu/cs/
tufts/mchow/FingerDoodleView.java)

commit note), the FloatMath issue is resolved. In the following we report the commit
message provided by the developer when resolving this issue.

“Partially fixed issue with preview on Android 6 in camera2 mode. Fixed nexus naming
in CC. Changed deprecated FloatMath to Math.” This issue type focuses on the primitives
data types, so developers can get rid of this issue by using Math in the source code.

Fig. 28 Example of resolving of the FloatMath issue (almalence/OpenCamera - src/com/almalence/
plugins/capture/panoramaaugmented/PanoramaAugmentedCapturePlugin.java)
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Fig. 29 Example of resolving of the UseValueOf issue (AmrutSai/sikuna - src/uk/org/rivernile/
edinburghbustracker/android/MainActivity.java)

UseValueOf Regarding the UseValueOf type of issues, following is the commit message
developer wrote after resolving this issue from the project AmrutSai/sikuna.

“Made changes based on recommendations from the lint tool... and removed unused
strings. Preferences have been renamed to Settings. This also no longer appears in the
ActionBar on Honeycomb and above... following recommendations at the Android design
site. Changed Settings display based on these recommendations also. Made plenty of
changes in BusStopDatabase and SettingsDatabase to follow good practices and possible
performance enhancements.”

As shown in Fig. 29, the developer used a call to valueOf (at line 310) to resolve this
issue.
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Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Computer Science. Springer

Zaman S, Adams B, Hassan AE (2012) A qualitative study on performance bugs. In: Proceedings of the 9th
IEEE working conference on mining software repositories. IEEE Press, pp 199–208

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Teerath Das is PhD student in Computer Science at the Gran Sasso
Science Institute (GSSI), L’Aquila, Italy. Prior to this, he received
his M.Sc. in Computer Science from South Asian University, India
and B.E in Computer Engineering from NUST Rawalpindi in 2014
and 2012, respectively. His area of research include: Empirical
Software Engineering, Mining Software Repositories (mainly from
GitHub), and Software Evolution and Maintenance. He is applying
these research techniques to empirically analyse performance-related
issues in open-source Android applications. He coauthorized sev-
eral scientific peer-reviewed articles in international conferences and
journals.

Empirical Software Engineering (2020) 25:2748–2808 2807

https://doi.org/10.1145/3340544


Massimiliano Di Penta is full professor at the University of San-
nio, Italy. His research interests include software maintenance and
evolution, mining software repositories, empirical software engineer-
ing, search-based software engineering, and software testing. He is
an author of over 250 papers appeared in international journals, con-
ferences, and workshops. He serves and has served in the organizing
and program committees of more than 100 conferences, including
ICSE, FSE, ASE, ICSME. He is co-editor in Chief of the Jour-
nal of Software: Evolution and Processes edited by Wiley, editorial
board member of ACM Transactions on Software Engineering and
Methodology and Empirical Software Engineering Journal edited by
Springer, and has served the editorial board of the IEEE Transactions
on Software Engineering.

Ivano Malavolta is assistant professor at the Computer Science
Department of the Vrije Universiteit Amsterdam (The Netherlands).
His research focuses on data-driven software engineering, with a spe-
cial emphasis on software architecture, mobile software development,
robotics software. He applies empirical methods to assess practices
and trends in the field of software engineering. He authored several
scientific articles in international journals and peerreviewed interna-
tional conferences proceedings. He is program committee member
and reviewer of international conferences and journals in the soft-
ware engineering field. He received a PhD in computer science
from the University of L’Aquila in 2012. He is a member of ACM,
IEEE, VERSEN, Amsterdam Young Academy, and Amsterdam Data
Science.

Empirical Software Engineering (2020) 25:2748–28082808


	Characterizing the evolution of statically-detectable performance issues of Android apps
	Abstract
	Introduction
	Static Analysis Tools for Android Apps
	Study Design
	Goal and Research Questions
	Context Selection
	Data Extraction

	RQ0 Results – Performance Issues Identified by Android Lint
	Data Analysis (RQ0)
	Results (RQ0)

	RQ1 Results – Evolution of the Number of Android Performance Issues over Time
	Data Analysis (RQ1)
	Results (RQ1)

	RQ2 – Performance Issues Remaining in Android Apps over Time
	Data Analysis (RQ2)
	Results (RQ2)

	RQ3 Results – the Lifetime of Android Performance Issues
	Data Analysis (RQ3)
	Results (RQ3)

	RQ4 Results – Documented Resolutions of Android Performance Issues
	Data Analysis (RQ4)
	Results (RQ4)

	Discussion
	Summary of the Study Results
	Implications for Developers
	Implications for Researchers

	Threats to Validity
	Construct Validity
	Conclusion Validity
	Internal Validity
	External Validity



	Related Work
	Empirical Studies on Android Apps Performance
	Empirical Studies on the Evolution of Statically-Detectable Issues

	Conclusions and Future Work
	Appendix:  A: Examples of Android Performance-Related Issues
	Appendix B: Catalog of Solutions for Statically-Detectable Performance Issues
	Appendix:  B: Catalog of Solutions for Statically-Detectable Performance Issues
	Recycle
	ViewHolder
	HandlerLeak
	UseSparseArrays
	DrawAllocation
	FloatMath
	UseValueOf




	References




