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1. Introduction

Given a graph G = (V, E), with n = |V| nodes and m = |E| edges, a spanning tree of G, denoted by T = (V, Er) is a
connected subgraph of G without cycles. The diameter of the graph G is the length of the longest shortest path between
any two nodes in G (in this paper we consider the length of a path to be its number of edges). The diameter constrained
minimum spanning tree problem (DMSTP) is defined as follows: Given a graph G with edge costs c, > 0, for all e € E,
and a diameter limit D, the goal is to identify a minimum cost spanning tree of G whose diameter does not exceed D. The
DMSTP is typically used to model decentralized network design applications in which all nodes need to communicate with
each other at minimum cost, while making sure that certain quality of service constraints are met. Thereby, the DMSTP is
especially appropriate for networks in which node processing times dominate over the latencies on edges, so that having
fewer intermediary nodes along a communication path implies a lower delay, in general. Hence, quality of service can be
measured through the number of nodes traversed along each communication path and diameter constraints can be used
to guarantee a certain network performance with respect to availability or reliability (see, e.g. [1,19]).

The most successful method to solve DMSTP is based on graph concepts related with centers in trees and sophisticated
extended formulations based on layered graphs that are tailored for network design problems with length constraints
(see [12]). For some time it was not known how to describe inequalities that guarantee the length of the paths using only
edge variables. The work by Dahl [3] has made a significant contribution in this area by proposing the so-called jump
constraints to model length-constrained paths. More recently, a complete characterization of jump inequalities for the
hop-constrained shortest path problem has been provided by Riedl [18]. Jump constraints have been also considered in the

* Corresponding author at: Department of Supply Chain Analytics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
E-mail addresses: legouveia@fc.ul.pt (L. Gouveia), m.leitner@vu.nl (M. Leitner), ivana.ljubic@essec.edu (I. Ljubi¢).

https://doi.org/10.1016/j.dam.2020.05.020
0166-218X/© 2020 Elsevier B.V. All rights reserved.


https://doi.org/10.1016/j.dam.2020.05.020
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2020.05.020&domain=pdf
mailto:legouveia@fc.ul.pt
mailto:m.leitner@vu.nl
mailto:ivana.ljubic@essec.edu
https://doi.org/10.1016/j.dam.2020.05.020

L. Gouveia, M. Leitner and I. Ljubic / Discrete Applied Mathematics 285 (2020) 364-379 365

context of the hop constrained trees (Dahl et al. [4,6]) and more general network design problems with hop constraints and
survivability requirements (see, e.g., Bendali et al. [2], Dahl et al. [7] and Huygens et al. [13,14]). The latter works involve
deep polyhedral studies where, among other results, these inequalities (or small adaptations obtained by changing the
right-hand side due to the survivability requirements) have been shown to be facet defining under some mild conditions
(see, e.g., Bendali et al. [2], Diarrassouba et al. [9] and Huygens et al. [14]).

A generic edge-based ILP formulation. In order to contextualize our study we start by introducing a generic formulation
(1)-(5) for the problem, considering undirected edge design variables x, € {0, 1}, for all e € E, which indicate whether
edge e is used in the solution.

min Z CoXe (1)

ecE

X(ES) <IS|—1 VYScCV,|S|=3 (2)
x(E)=1|V| -1 3)
X € Fp (4)
x € {0, 1}/F! (5)

In this formulation (M), M C E, stands for ) ,_,, X, and E(S) represents the edges with both endpoints in S C V.
Constraints (2) are the subtour elimination constraints, that together with Eq. (3) guarantee that the obtained solution is
a spanning tree. Let G(x) denote the subgraph of G induced by the edges e € E, such that x, = 1, and let Pgx)(u, v) denote
a shortest path in this subgraph between u € V and v € V. The set Fp is defined as 7 = {x € {0, 1}/l | for each u, v €
V,u # v, IPgx(u, v) : [Pgx(u, v)| < D}. Hence, 7 is the set of incidence vectors such that the induced subgraph contains
a feasible path between any two nodes, i.e., a path of length at most D.

Scientific contribution and outline. In Section 2, we first recall jump inequalities and show that they do not define facets
of the DMSTP polytope which is in contrast to many other hop-constrained network design problems. Hence, the main
question addressed by the present article is how to derive an ILP formulation in the natural space of edge-variables that
relies on strong and (ideally) facet defining inequalities. We show that this can be done by considering a new family of
facet defining circular-jump inequalities which are specific for the DMSTP. They imply the jump inequalities, and define
facets of the underlying polytope under mild conditions. So-called generalized-circular-jump inequalities are introduced in
Section 3 for which we also give conditions under which they are facet defining. In Section 4, we then show how the
previously introduced inequalities can be combined with a cutset inequality, resulting in a new valid and (in most cases)
facet defining inequality. In Section 5 we study packing-type inequalities that provide an alternative way to define a
natural space formulation for the DMSTP. Section 6 contains a theoretical comparison of the circular-jump inequalities to
the strongest formulation known from the literature. We show that they are not implied by this layered graph formulation.
Finally, conclusions are drawn in Section 7 where we also discuss open questions that can be addressed in future research.

2. Circular-jump inequalities

In this section we first establish the dimension of the DMSTP polytope, and summarize necessary notation. We then
recall the definition of jump inequalities [3], and show that, in contrast to many other hop-constrained network design
problems for which they are facet defining, this does not hold for the DMSTP. In order to overcome this drawback,
we introduce a new family of stronger circular-jump inequalities that ensure a valid ILP formulation in the space of
edge-variables. We also provide conditions under which these inequalities are facet defining.

Dimension of the polytope and notation. Let P be the convex hull of all DMSTP feasible solutions, i.e.,
P = conv{x € {0, 1}'¥! | x satisfies (2)-(4)}.

We first analyze the dimension of the DMSTP polytope, dim(7), given by the following theorem whose proof is given
in Appendix A. Throughout this paper we assume that G is a complete graph.

Theorem 1. The following results hold:

1. ForD=2,dim(P)=n—1.
2. For D > 3, dim(P)=m — 1.

In the remainder of this article, we will consider different non-trivial partitions (Jo, J1, . - ., Jp+1) of the node set V into
D+I141,1 > 1, disjoint, nonempty subsets J;, 0 <i < D+l ie,V = U?:J?)l]i'fiﬂ]j =@,0 <i<j< D+I For brevity we will
also use notation [P, S] to refer to the set of edges between node sets P,S C V, ie, [P,S]={{u,v} € E|u€P,v €S}.
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2.1. Jump inequalities

Jump inequalities were originally proposed by Dahl [3] in the context of the undirected hop constrained shortest
path problem. The so-called (s, t, D)-jump inequalities, used to model the constrained paths are defined as follows: Let
(Jo,J1, - - -, Jp+1), be a non-trivial partition of the node set V into D + 2 subsets such that s € Jy and t € Jp;1. The set
of edges | = U0§i<j—1§DUf’]j] C E is a jump. The associated jump inequality is x(J) > 1. The explanation why these
inequalities prevent paths with more than D edges, is as follows (see, e.g., Dahl [3]): Suppose that there exists a solution
such that it contains no edge of the given jump J. Since the graph induced by this solution must be connected, there must
exist a path starting at a node in subset Jo, passing through nodes from all subsets from J; to Jp and ending at a node in
subset Jp.1. This path has length at least D 4+ 1 and thus the solution cannot be feasible. The jump inequalities can be
adapted in a straightforward way to model constrained shortest paths in the context of the DMSTP. Let ¢/ be the set of
all possible jumps on G (regarding all possible partitions into D + 2 nonempty subsets), then the jump constraints for the
DMSTP are defined as follows:

x(J) =1, Jeu. )

We obtain a valid formulation for the DMSTP by using these inequalities in place of Fp in the generic description
(1)-(5) given above. Note that it is sufficient to consider only those jumps where |Jo| = |/p+1] = 1 and that those jumps
dominate the remaining ones. For the undirected shortest path problem with at most D edges, jump inequalities can be
facet defining (see, Dahl [3]). As we shall show in the next section, this is not the case for the DMSTP.

2.2. Circular-jump inequalities

Let (Jo, J1, - - - »Jp+1) be a non-trivial partition of V as described above. Then, (] = U05i<j715D[],-,jj]\[]0,]D+1] is a circular
jump. Note that the difference between a circular jump (] and a jump J is that the former one does not contain the edges
connecting the first set with the last one. Observe that, e.g., the circular jumps defined by the partitions (Jo, J1, - - - , Jp+1)s
U1, J25 -+ > Jps1.Jo)s - - - Upy Jo+1s Jos - - - 5 Jp—1), as well as (Jo, Jo+1, b, - - - , J1) are identical. Thus, while in a jump we have
ordered subsets with a given first subset and a given last subset, in a circular jump there is no first set neither last set
and thus, the designation. Fig. 1 illustrates the set of edges of a circular jump for a graph withn > 6 and D = 4. Let J be
the set of all circular jumps, then the corresponding circular-jump constraints are defined as follows:

x(q) > 1, JedJ. (a))]

Note, that based on the previous observation when comparing a jump inequality with a circular-jump inequality, it is
clear that each jump inequality (]) is dominated by a circular-jump inequality (cJ) obtained from the same partition. Note
also that a circular-jump inequality, dominates several jump inequalities (by choosing any subset of the circular jump to
be the first set of the jump inequality and keeping the same order for the remaining subsets).

Proposition 1. Circular-jump inequalities (c]) are valid for the DMSTP polytope P.

Proof. Circular-jump inequalities obviously forbid paths with more than D edges. To show that these inequalities do not
cut off feasible solutions, let us assume the opposite, i.e., there exists a feasible solution T that violates one (c]) inequality
which is specified by a partition (Jo, J1, . . ]D+1) Since we have seen that jump inequalities are valid, this (c]) inequality is
violated because an edge {ip, ip1} with iy € Jo and ip,4 e]DH belongs to the solution. However, since the graph induced
by the solution must be connected, there exists k, 0 < k < D + 1 such that there is a path from node iy to a node i,
passing though all subsets]o to]k and a path from node ip,; to a node iy, passing through subsets ]D+1JD,JD 1y .. Jk+1
Since no jump edges belong to this solution, the length of this path is > D + 1 and hence the solution T is mfeasible,
which is a contradiction. O
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Hence, we obtain another valid formulation for the DMSTP by using the inequalities (cJ) in place of Fp in the generic
description (1)-(5) given above. The validity of the circular-jump inequalities for the DMSTP depends on the fact that the
underlying solution is a spanning tree. Contrary to the jump inequalities (J), they are not valid for other related problems
with hop constraints such as, e.g., the hop constrained shortest path problem. Also in contrast to the jump inequalities (])
the circular-jump inequalities (cJ) define facets of P for D > 4. Before proving this result, we observe that the DMSTP
can be solved in polynomial time for D = 2, 3. In case of D = 2, all feasible solutions are stars, and the following result
characterizes the circular-jump inequalities that are facet defining.

Theorem 2. For D = 2, circular-jump inequalities define facets of P if and only if at most one set of the partition contains
more than one node.

Proof. See Appendix B. O

In the rest of the paper we will concentrate on the more general case, when D > 3. The proofs of the following two
results are given in Appendix B.

Theorem 3. For D = 3, circular-jump inequalities (c]) define facets of P if two consecutive sets of the partition contain exactly
one node.

Theorem 4. For D > 4, circular-jump inequalities (c]) define facets of P.

Before showing how to generalize these inequalities (see next sections), we observe that from a given infeasible
solution we may derive several violated (c]) inequalities. Consider a spanning tree solution with at least one path being
too long and for the moment let us assume that the length of this path is D+ 1. The D+ 2 nodes of this path determine the
“seeds” of the D + 2 subsets in the partition defining a circular jump. There are two intuitive strategies for assigning the
remaining nodes to the subsets of the partition that have been called path and layered approach in the context of classical
jump constraints in the literature [4]. One strategy is to assign all nodes of a subtree rooted at a seed node to the subset
seeded by that node. The other is to pick one extreme node of the path as a root of a tree that is directed away from that
node. Then, the distance of each node to the root will define its partition subset. Typically, the longest path of an infeasible
solution will be much longer than D + 1. In Section 3 we propose a more general class of circular-jump inequalities that
considers more than D + 1 subsets (and thus allow to assign nodes of infeasible paths with length strictly greater than
D + 1 to different subsets). This generalization is based on ideas proposed by Dahl and Gouveia [5] for generalizing the
jump constraints for the hop-constrained shortest path problem. In Section 4 we introduce further generalizations that
can be viewed as combining a cutset inequality with (generalized) circular-jump inequalities defined on a subset of nodes.

3. Generalized-circular-jump inequalities

In this section we introduce the family of generalized circular jumps that can be seen as a generalization of circular
jumps, for the case that the number of sets in a partition is larger than D + 2. Each generalized-circular-jump inequality
may have edge coefficients greater than one and inequalities defined by k + 1 sets can be obtained through Chvatal-
Gomory rounding from inequalities defined by k sets (and in particular, inequalities with D + 3 sets can be obtained
from (cJ)). We show that generalized-circular-jump inequalities are also facets of the DMSTP polytope. For k € N, let
P = (Jo,J1, ..., Jpik) be a non-trivial partition of the node set V. Let, furthermore

D+k

Ce(P) = U Uis Jeite+1) mod (D+k+1)]-
=0

for each £ € {1, ..., k — 1} denote the set of edges that jump over exactly £ consecutive sets of the partition and
k—1
C(P) = U wi\ya®
0<i<j—1<D+k—1 =1

be the set of edges that jump over at least k sets. Denoting by 7* the set of non-trivial partitions of V into D+ k+ 1 sets,
the family of generalized-circular-jump inequalities (gc]) is given as

k
doexCP)=k  Pegke(l,2,....D-1). (gc))

=1
We will use notation k-(gc]) to refer to the subset of all (gc]) for a particular k € {1, 2, ..., D—1}. Clearly, for k = 1, we

obtain the standard circular-jump inequality (cJ). To give some intuition on these inequalities, consider such an inequality
with D + 3 subsets (i.e., with k = 2). The inequality states that any feasible solution needs to use at least one edge that
jumps over two subsets or at least two edges that jump over exactly one subset. In the general case (with right-hand
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Fig. 2. Illustration of a generalized-circular-jump inequality for a given partition (Jo,J1, ..., J6), k =2, and D = 4. Solid edges above the partitions
jump over at least two subsets (and thus the corresponding variables have coefficients equal to two) while dashed edges below the partitions skip
a single subset (and the corresponding variables have coefficients of one).

side equal to any k such that 1 < k < D — 1) any feasible solution has to use at least k edges that jump over exactly
one subset (i.e., k edges from C;(P)), or at least one edge that jumps over at least k subsets (i.e., an edge from Cy(P)), or
a combination of edges from U’g;}Cg(P) so that in total at least k subsets are jumped over.

Fig. 2 illustrates a generalized-circular-jump inequality for D = 4 and k = 2 which is formally given as:

x(Jo, J2) + 2x(Jo, J3) +2x(Jo, J4) + xUo. Js)
+ x(1,J3) +2x(J1,Ja) + 2xU1, J5) +x(1,Js)
+x(J2, Ja) + 2x(J2, J5) +2x(J2, J6)
+x(3,J5) +2x(J3, J6)

+x(Ja, J6) = 2.

As shown in the proof of the following result, the validity of generalized-circular-jump inequalities follows from a
Chvétal-Gomory rounding argument:

Proposition 2. Generalized-circular-jump inequalities (gc]) are valid for the DMSTP polytope P.

Proof. We will prove the theorem by induction using the fact that inequalities (gc]) are the standard circular-jump
inequalities when k = 1 as the induction starting step. Assuming that the inequalities are valid for k — 1, we will use
a Chvatal-Gomory rounding argument to prove their validity for k. Let P = (Jo, J1, . . . Jp4x) be the partition associated
to a k-(gc]). To derive the corresponding inequality, we consider D + k 4+ 1 generalized-circular-jump inequalities with
right-hand side equal to k — 1 associated with the following partitions:

Py ={oUJ1.J2, .- Jpsx}
Py ={o,J1 Y2, J3, .- - Jptk}

Ppik = o, - - - Jo+k—25 Jo+k—1 U Jptk}
Pptks1 = U1 -+ s Jotk=1, o4k U o}

Consider an edge e € C,(P). As will be shown in the following, the coefficient obtained from summing over all D+k+ 1

inequalities corresponding to partitions P, ..., Ppir+1 iS given by
£ = {D+k)—1 if £ <k,
T lk=10D)D+k+1) ife>k

In the following, without loss of generality (due to circularity) we assume that e = {u, v} with u € Jp and v € J,41.

For £ < k we observe that the coefficient associated to edge e is equal to £ — 1 for the inequalities corresponding
to the ¢ 4 1 partitions Py, ..., Pyyq and equal to £ for the inequalities associated to the remaining D + k — £ partitions
Pyya, ..., Ppiky1. Overall, we obtain (€ — 1)(£+ 1)+ £ - (D+k—£) = £(D+ k) — 1. For £ > k, the coefficient associated to
edge e is equal to k — 1 for the inequalities corresponding to all D + k + 1 partition, also giving the claimed overall value
of (k—1)(D+k+1).

Since the smallest coefficient is & = D + k — 1, we obtain

ég _ £ if L < k,
& +1 | |kotherwise.
Finally, since the obtained right-hand side is (D + k + 1)(k — 1) we obtain the k-(gc]) by dividing through & + 1 and
rounding up all coefficients on the left- and right-hand side, respectively. O

Not only are the generalized-circular-jump inequalities valid for the DMSTP, they also define facets of the underlying
polytope. The proof of the following result can be found in Appendix C.
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Theorem 5. For D > 4 and 1 < k < D — 2, generalized-circular-jump inequalities (gc]) define facets of P.
4. Cut-jump inequalities

In this section, we derive new families of inequalities by associating nodes of an infeasible path of length strictly greater
than D to a (generalized) circular jump on a subset of nodes (in contrast to the complete set of nodes), and combining
them with the remaining nodes using a cutset. In these constraints, notation x(R, S), R, S C V, stands for }_, iz s Xe.

Proposition 3. For 1 <k < D — 1 let (R, S) be a non-trivial partition of the set of nodes V such that |R| > D + k + 1. Let,
furthermore P = (Jo, J1, . . ., Josx) be a non-trivial partition of R into D+ k + 1 sets, C,(P), 1 < £ < k, be the edge set jumping
over exactly £ sets from P, Ci(P) be the edge set jumping over at least k sets from P, and 7*(R) be the set of all such partitions
of R. Then, the following cut generalized-circular-jump inequalities

k
D £ X(CUP)+RX(R, S) + kx(E(S)) = k- (IS + 1),
(=1
RCV,IRI>D+k+1,S=V\RPe IR (cgc])

are valid for the DMSTP polytope P.

Proof. To see the validity of these constraints assume that x(E(S)) = q (observe that g < |S| — 1). Hence, the subgraph
induced by S is composed of |S| — g (connected) components. Each of these components needs to be connected to R, that
is Xx(R,S) > |S| — q. If (R, S) > |S| — q then the inequality is obviously valid. If x(R, S) = |S| — g, then 22‘21 £x(Co(P)) = k
must be satisfied (otherwise we will have an infeasible path in the partition defined by R). O

Theorem 6. For4 <D <n—k—2and 1<k <D — 3, cut generalized-circular-jump inequalities (cgc]) define facets of P.
Proof. See Appendix D. O
5. Rounded circuit packing inequalities

For many network design problems there are two equivalent ways of expressing natural space formulations. Either
by using so-called cut inequalities that in some sense guarantee connectivity of the solutions or by using so-called
packing inequalities stating that feasible solutions cannot have more than a certain number of edges in given subsets.
One example of this is given by formulations for the spanning tree problem (see, e.g., [15]) and the Steiner tree problem
(see, e.g., [10]). Several routing problems can also be modeled in these two ways such as, e.g., the well-known traveling
salesman problem [8]. Usually, the two approaches are shown to be equivalent (or more, precisely, to lead to formulations
with equivalent LP relaxations) since one model can be transformed into the other by using equalities that are included in
the models. Up to now, the inequalities that have been discussed for modeling “path length constraints” in the DMSTP are
cut-type inequalities. In this section, we briefly discuss a set of packing-type inequalities. These circuit packing inequalities
are given as

x(C)§|C|—Pg|—‘, for all cycles C CE,D+2 < |C| < |V]. (6)

We will show that using them in place of Fp yields a valid DMSTP formulation and that they are related, via equality
(3), to some of the inequalities that have been discussed before.

Circuit packing constraints (6) state that for any cycle C C E with at least D 4 2 edges, the number of edges in any
feasible solution is bounded from above by |C| — [|C|/D]. A similar set of inequalities is presented in Gouveia [11] for
the directed hop-constrained minimum spanning tree problem (see also [17]). Proposition 4 shows that circuit packing
inequalities associated to cycles of length D+ 2 are equivalent to some of the inequalities studied in the previous section.
This result will be used to show the validity of circuit packing constraints in the general case, cf. Proposition 5. Notice,
that the first part of the proof of Proposition 5 also implies that (for complete input graphs) it suffices to consider the
circuit packing constraints associated to cycles of length D + 2 in place of Fp in order to obtain a valid formulation for
the DMSTP.

Proposition 4. Let C be a cycle in G of length D+ 2 such that C = {{i,i+ 1} mod (D+2),0 <i < D+ 1}. Then, a rounded
circuit packing inequality induced by C corresponds to:

1. a circular-jump constraint (cJ), if |V| =D + 2.
2. a cut generalized-circular-jump constraint (cgc]) with k = 1, if |V| > D + 2.
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Proof.

1. Let V. = {0,...,D + 1} and let (J be the circular-jump corresponding to the partition ({0}, {1},...,{D + 1}) in
which each set is a single node from V following the ordering of nodes from C. By subtracting the rounded circuit
packing inequality implied by C from x(E) = |V| — 1, we obtain a circular-jump constraint x(E) — x(C) = x(CJ) > 1.

2. For k = 1, let P = ({0}, {1}, ..., {D + 1}) be the partition of node set R = {0,1,...,D+ 1} and S = V \ R
We observe that using the same transformation as above we obtain a cut generalized-circular-jump constraint
X(E) — x(C) = x(C1(P)) + x(E(S)) + x(R,S) > 1+ |S|. O

Proposition 5. Replacing x € Fp in the generic formulation (2)-(5) by (6) gives a valid model for the DMSTP.

Proof. We first show, that any infeasible solution is cut off by the given inequalities. Assume that there exists an integer
solution feasible to the generic model with constraints (6) instead of (4), such that, without loss of generality, it contains
a path of length D + 1. Let V¢ be the set of nodes of this path. Obviously |V¢| = D + 2. By joining the first and the last
node of the path with an edge, we obtain a cycle C (this is possible, since G is complete), and for this cycle, we notice
that (6) is violated. The value of the left-hand side equals D+ 1, while the value of the right-hand side is strictly less than
D + 1, which is a contradiction.

It remains to show that inequalities (6) are valid for the DMSTP polytope 7. This result will be shown by induction
over |C| using the result from Proposition 4 as start. Thus, assume that circuit-packing inequalities are valid for all cycles
of length at most |C|. Further assume, that there exists a spanning tree T = (V, Et) of diameter at most D that violates a
circuit packing inequality for a cycle C' C E of length |C’'| = |C| + 1. Thus, x(C') > 1+ |C'| — [|C/|/D—|.

First assume that there exists some | € N such that |C’| = ID + 1 and notice that | > 2 since |C'| > D + 2 holds
by definition of (6). Then, the right-hand sides of the circuit packing constraints (6) for C’ and for a cycle C of length
|C| = |C'| —1 are identical. Thus, x(C’) > 1+ |C| —[|C|/D] = 14+ 1(D — 1). Therefore, |C’'| —x(C') < ID+1—(ID+1-1) =,
i.e., at most [ edges of C’ at not in T. If no path of T that lies on C’ has length greater than D, this is only possible if C' N Er
contains a path of length D and at least one path of length at least D — 1. Any spanning tree containing two such paths
would, however, violate the diameter limit as connecting two such paths would always induce a path of length at least
D+ 1.

Hence, | € N such that |[C’| = ID + 1 cannot exist which implies that the right hand sides of the circuit packing
constraints (6) associated to C" and a cycle containing one edge less differ by one. Let C" = {{ug, u1}, {us, w2}, ..., {u, uo}}
and for each u;, 0 < i < k, C[u;] be the cycle of length |C'| — 1 obtained from C’ after removing the two edges adjacent
to u; and adding the edge {u;_1, uj;1} (with appropriate modulo calculations for indexes if i = 0 or i = k). Thus, we
have x(C') > 1+ |C'| = [|C'|/D] = 2 + |Clu]| — [IClu;]|/D1 and x(Clu;] \ {ui—1, uit1}) < X(Clui]) < |Clwi]] — TIC[w;]|/D]
since inequalities (6) hold by assumption for all cycles shorter than C’. These two inequalities imply Xy, | u; + Xy u;,; = 2,
i.e., both edges of C’ adjacent to u; must be included in T. Repeating this calculation for each node u;, 0 < i < k on C’
implies that all edges of C’ must be included in T which contradicts the fact that T is a spanning tree of G. O

6. Theoretical comparison to the layered graph approach

As noted before, the most efficient method for solving the DMSTP is still the one given in Gouveia et al. [12]. The
underlying formulation models hop-constraints with layered graphs which we briefly recall next. For simplicity, we
discuss only the case for D even. Essentially Gouveia et al. [ 12] used the fact that the DMSTP can be modeled as a special
hop-constrained minimum spanning tree problem, where the root of the tree is appropriately selected and showed that
the DMSTP can be reformulated as a Steiner arborescence problem with few additional constraints on an appropriately
defined layered graph which implicitly ensures that the diameter of a solution is at most D. For the case of D even, this
graph G. = (Vi,AL) is defined as Vi, = {r} U {i, | i € V,0 < h < D/2} and AL = {(ip,jn+1) | {i,j} € E, 0 < h <
D/2 — 1} U {(r,ip) | i € V}. Using arc decision variables a; € {0, 1}, for all (i,j) € A = {(i,j) | {i,j} € E}, and layered
arc design variables Xi? € {0, 1}, for all (i,_1,jn) € Ay, the layered-graph formulation for the DMSTP is given by (7)-(12)

where X[M], M C Ay, stands for 3, .y Xl’]'
min Z Cijajj (7)
(i.j)eA
st X[~ (W)] > 1 YW CV\{r),3ieV:{in|0<h<D/2) CW (8)
X[s* ()] =1 (9)
/2
D X ()] =1 Viev (10)
=0
D/2—1

a= 3 X! V(i.j) € A (11)
h=1
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Fig. 3. (a) Optimal LP-solution of the layered graph model for D = 6 (projected back into the space of x variables). (b) Optimal LP-solution of the
layered graph model for this instance. (c) Partition showing that this solution violates the circular jump constraints. Recall, that the edge {0, 7}
between the first and the last partition J, and J;, respectively, is not contained in the circular jump. Dashed edges (arcs) indicate LP values of 0.5,
solid edges (arcs) of 1.

X>0, ae{o, 1} (12)

This model has been shown to theoretically dominate all previously proposed ones. A branch-and-cut algorithm
developed from this model is the current state-of-the-art for solving DMSTP instances to proven optimality. Although
the linear programming relaxation of (7)-(12) is integral for most of the instances considered in [12], we show in the
following that it does not imply most of the inequalities introduced in this article.

Let v;p(LG) denote the value of the LP-relaxation of the layered graph model, and let v;p(CJ) be the value of the LP-
relaxation of the model defined by the tree constraints (2) and (3) and the circular-jump inequalities (cJ). The following
result shows that the lower bound of the layered graph model can be as worse as 1/2 of the bound obtained by our model
involving only circular-jump inequalities.

Proposition 6. There exist DMSTP instances such that
vip(LG)
vip(d)

1
< —.
-2

Proof. Consider a complete graph with node set V = {0, 1, ..., 7} with edge costs ¢; =0forall0 <i<7andj=(i+1)
mod 7, cops = M and ¢, = oo for all the remaining edges. For D = 6 and a sufficiently large M € N, the optimal LP-solution
of the layered graph model is given in Fig. 3(b) and its value is v;p(LG) = 6.5 - 0 + M/2 = M/2. Projected back in the
space of x variables, this fractional solution is shown in Fig. 3(a). Let (J be the circular jump obtained from the partition
{{0}, {1}, ..., {7}}. Then this solution violates the corresponding circular-jump inequality since x(CJ]) = 0.5 < 1. The

opgg)lal LP-solution of the ILP model derived from the circular-jump inequalities is v;p(CJ) = 6 -0+ M = M, so we obtain
up =1 Qg

vp(Q) — 27

Let proj,(P(LG)) be the polytope of the LP-relaxation of the layered graph formulation projected to the natural space
of undirected edge design variables. We conclude that proj,(P(LG)) may contain solutions that violate some of the
inequalities introduced in this article. On the other hand, computational experiments showed that it is not too difficult
to find exemplary solutions that satisfy all natural space inequalities proposed in this article, but are not contained in
proj,(P(LG)). Thus, neither of the associated polytopes is contained in the other.

7. Conclusions

In this article, we performed the first study of natural space formulations for the diameter constrained minimum
spanning tree problem (DMSTP) which use variables associated to undirected edges only. We proposed different classes
of inequalities generalizing the concept of jump inequalities [3], which have been used in the literature for other problems
with hop constraints. For most of the new inequalities, we showed that they define facets of the DMSTP polytope under
very mild conditions. Validity of (generalized) circular-jump inequalities relies on the fact that the underlying problem
is a spanning tree. In contrast, the idea that led to cut-jump inequalities (i.e., jumps on subsets of nodes) does not rely
on this fact. Thus, it can possibly be used to define generalizations of the jump inequalities (instead of (generalized-)
circular-jump inequalities) for other problems as well. We believe, that the resulting “cut-jump” inequalities are worth
to be analyzed for other network design problems with length constraints. We also show that circular-jump inequalities
are not implied by current state-of-the-art ILP model based on a layered graph reformulation [12].

This work lays down foundations for some future investigations including: (i) The identification of additional valid
inequalities in the natural space and their relevance for obtaining tight LP relaxation bounds; (ii) The development of
efficient (heuristic) separation routines for the proposed inequalities in order to make a corresponding branch-and-cut
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approach applicable to very large scale instances which cannot be treated by the layered graph approach; (iii) Derivation of
a compact (layered graph?) reformulation that implies the inequalities studied in this work. We are particularly interested
in finding a compact model whose linear programming relaxation implies the circular-jump constraints. Recall that a
compact model that contains standard s-t-jump inequalities is known from the literature [6,12]. An appropriate mixed
integer linear programming formulation which contains jump-constraints for the DMSTP is obtained by the intersection
of hop constrained spanning trees, each with a root on a different node and such that distance from any node to the
root node is at most D (we skip this part here but refer the reader to Dahl et al. [6] and Gouveia et al. [12] for further
details). While we can show that the strongest such model does not imply the circular-jump constraints, our attempts to
provide a “similar” model implying the circular-jump constraints have failed. (iv) A better understanding of the projection
of layered graph models to the natural space of design variables (which applies to any problem that is modeled in this
way, not only the DMSTP).
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Appendix A. Dimension proofs

Proof of Theorem 1. We first show that dim(P) = n — 1 if D = 2. Recall that the set of feasible solutions to the DMSTP
with D = 2 is given by the n “stars” S' = (V, E;) with E; = {{i, j} | Vj € V \ {i}}, for all i € V. By looking at the matrix in
which each of the incidence vectors represents its row, we easily observe that this matrix has a full rank, which is n.

To show that dim(P) = m — 1 holds for D > 3, we first note that the dimension of the DMSTP polytope cannot
be larger than m — 1 since all feasible solutions satisfy equation (3). To show that the dimension is at least m — 1 we
construct a set ¥ of m = ( ) solutions whose edge-incidence vectors are affinely independent. For i,j € V,i < j, let
S" (V,Ex\ {k, i} U {i,j}), Ex = {{k,1} | Vi € V \ {k}} be the graph obtained from the star S¥ = (V, E;) after attaching
node i to node j instead of node k. Note that each graph S is a feasible solution since its diameter is precisely three. To
simplify notation, we will also use §',i =1,2,...,n—1, and S,’j+1 2 k=1,...,n—2,to refer to the incidence vectors of
the corresponding solutions. In the following, we w1ll also use notatlon (S ),] to refer to the entry of a vector S associated
to edge {i,j} € E.

For a complete graph with n nodes, we consider set ¥ consisting of stars §',i = 1,2, . — 1, and solutions S,’j“qj,

k=1,...,n-2,j=k+2,...,n,seeTable 1 for anillustration. Notice that |¥| = (n— 1)—1—2, 5 (Tl—l Z;:]] i= (g) =m.
We will prove that the m — 1 vectors in 7 = {S — S' | S € ¥ \ {S!}} illustrated in Table 2 are linearly independent. The
latter result implies that the m incidence vectors in the set ¥ are affinely independent and thus that dim(P) = m — 1 if
D> 3.

Fork e {1,2,...,n—2)},define 7, C T as Ty = {(Si"ﬂ_’j—S]) li=1,...,kj=i+2,...,mU{S'=SY) |i=2,..., k+1}.
From Table 2 it is easy to observe that the set of vectors in 7' = {S;;—S' | i = 3,...,n}U{S*—S"} is linearly independent.
We will show that linear independence of the vectors in 7;_1, k € {2, ..., n—2} implies linear independence of the vectors
in 7. Since 7;_, = 7T, linear independence of all vectors in 7 follows.

Assume that the vectors in 7,1, k € {2,...,n — 2} are linearly independent and consider the set of vectors
Te = Tie 1U{Sk+1] —SV|j=k+1,..., nju{SkH1— S } We observe that (S K1 —SD)t1j = 1foreachj € {k+2, ..., n} while
(Sk+1j =0holds forall S € T¢ \ {(5k+1,j — S, sk1 _ s1Y}. Thus linear mdependence of Tx_; implies linear independence
0f77< \ {Sk+l _ Sl}.

It remains to show that (S¥*! —S1) cannot be expressed as a linear combination of the remaining vectors in 7*. To see
that this is impossible, we focus on the entries of all vectors in 7% associated to edges {1, k + 1} and {1, n} and observe
that (S)1 k41 = (S)1,n forall S e T"\{(S"“ S1)}. Thus, the entries associated to these two edges in any linear combination
of vectors from 7%\ {(S¥*' —S1)} must be identical. Since (S¥*! — S1); .1 = 0 and (S — §1);,, = —1 we conclude that
it (S¥t1 — §1) cannot be expressed as linear combination of the remaining vectors from 7% and, thus, that 7% is linearly
independent.
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Illustration of set ¥ containing m affinely independent vectors.
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X12 X13 X14 ... X1n—2 Xin—1 Xin X23 X24 X35 ... Xpn—1 Xon X34 X35 ... X3pn—1 X3n Xa5 Xa6 ... Xan—1 Xan ... Xnp—2n-1 Xn—2n Xn—1n

st 1 1 1 1 1 1 0 0 O .0 0o 0 O .0 0O 0 O .0 0 .0 0 0
s? 1 0 0 ..0O 0 o 1 1 1 .1 1 0 0 ..0O o 0 0 ..0 0 .. 0 0 0
s3 o 1 0 .0 0 0 1 0 O . 0 0o 1 1 1 1 0 O .0 0 .0 0 0
54 0 0 1 0 0 0o 0 1 O 0 o 1 0 0 0o 1 1 1 1 .0 0 0
s 0 0 O . 0 1 0O 0 0 O 1 0o 0 O 1 0o 0 O 1 0 1 0 1
5213 0o 1 1 1 1 1 0 0 0 0
5;4 0o 1 1 1 1 1 0 0 . 0 0 0 0 0
Szln 0 1 0 0 O .0 1 0 0 0 0
sz, 1 0 0 1 1 1 11 0 0 0
5325 1 0o 0 1 1 1 1 0 0 0 0
532n 1 0 0o 0 1 1 1 1 0 . 0 1 0 0 0 0
Sis 0 0 1 0 . 0 0 1 0 0
Siﬁ 0 1 0 1 0 .0 0 1 1 1 0 0 0
52" o 1 0 .0 0 0 1 0 O .0 0 0 1 1 1 0 O .0 1 . 0 0 0
ng,n 0o 0 O 1 0 0o 0 0 O .0 0o 0 O .0 0o 0 O .0 0 .0 1 1
Table 2

Mlustration of set 7~ containing m — 1 linearly independent vectors.

X12 X13 X14 ... Xin—2 Xin—1 Xin X23 X24 X35 ... Xan—1 Xon X34 X35 ... X3n—1 X3p X45 X46 ... X4n—1 Xan ... Xn—2n-1 Xn—2,n Xn—1,n

5213—51 -10 O . 0 0 0 1 0 O .0 0 0 O . 0 0o 0 O .0 0 0 0
5;4—51 -10 O .0 0 0 0 1 0 .0 0 0 O .0 0 0 O .0 0 .0 0 0
S;n—S1 -10 O . 0 0 0 0 0 O .0 1 0 O .0 0 0 O .0 0 ...0 0 0
sz 5! -1 -1 ... -1 -1 -11 1 1 .1 1 0 O .0 0 0 O .0 0o ...0 0 0
S§4—S1 -1 -1 .. -1 -1 -10 1 1 .1 1 1 0 .0 0 0 O .0 0 ...0 0 0
5325751 -1 -1.. -1 -1 -10 1 1 1 1 0 1 .0 0o 0 O .0 0 .0 0 0
532"751 0o —-1-1.. -1 -1 -10 1 1 .1 1 0 O .0 1 0 O .0 0o ...0 0 0
s3 st -10 —-1.. -1 -1 -11 0 O .0 0o 1 1 1 1 0 O .0 0 ..0 0 0
525—51 -10 —-1.. -1 -1 -11 0 O .0 0 0 1 1 1 1 0 .0 0 ..0 0 0
SinS1 -10 -1.. -1 -1 -11 0 0 .0 0 0 1 .1 1 0 1 .0 0 .0 0 0
S;:’"—S1 -10 —-1.. -1 -1 -11 0 .0 0 1 1 1 0 O .0 1 .0 0 0
st st -1-10 -1 -1 —-10 .0 0 0 .0 0 1 1 1 1 . 0 0 0
S,’:f_n—f -1-1-1..0 -1 —-10 0 .0 0 0 .0 0 0 .0 . 0 1 1
s=t—st -1 -1 —-1.. -1 0 —-10 0 1 0 0 1 0 0 1 1 0 1

Appendix B. Facet proofs for circular-jump inequalities

Given a circular jump determined by a partition (Jo, . .

., Jo+1), to simplify the notation and avoid case distinction, we

refer to subsets J; of a given jump for any i € Z implicitly assuming an appropriate modulo calculation i mod (D + 2)
whenever i < 0 ori > D+ 1. In general, for a partition (Jo, . .
for v; € J;, 0 <i < D+ 1, we introduce the following notation:

., Jp), when we state J;, we refer to J; mod (p+1). Furthermore,

o I(v;) = {{vi,j} | j € Ji.j # vi}, vi € Ji, ie., I(v;) is the edge set of a star containing all nodes of J; with center v;
(“in-edges”)
e B(v;)) = {{j, vi} | j € Ji—1}, vi € J;, i.e,, B(v;) is a set of edges connecting all nodes from J;_; to one particular node v;
from J;. (“back-edges”)
e F(v;) = {{vi,j} | j € Jiz1}, vi € J;, i.e,, F(v;) is a set of edges connecting all nodes from J;,; to one particular node v;

from J; (“forward-edges”)
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Fig. 4. Solution TP,
Similarly, let I(J;) = Uvieji I(v;) be all inner edges of J;, for 0 < i < D + 1, and notice that edges between two consecutive
subsets J; and Ji;1 can be represented as [J;, Ji+1] = B(Ji+1) = F(J;) where B(J;) = UviEJi B(v;) and F(J;) = Uvieji F(v;).
Let v; € J;; 0 < i < D+ 1, be an arbitrarily chosen node, and (J be a given circular jump determined by a

Jo J1 Ja

Iy

Py

partition (Jo, ..., Jp4+1). Let TP9 denote a feasible solution using exactly one jump edge {vp, v} € (J where q —p > 2,
p,q € {0,...,D+ 1}. For example, Fig. 4 illustrates a solution T%P that contains edges from I(vg) U F(vg) U B(v3) U F(vp),
a path {vs, v4}, ..., {vp_1, vp} and sets I(v;), i.e., stars centered at each v;,i =3, ...,D.

Proof of Theorem 2. First note that since for D = 2 we have dim(?) = n — 1, and each feasible solution is a star, the
face F corresponding to a circular-jump inequality must contain the incidence vectors of all but one feasible solutions to
be a facet. We now show that each inequality such that all but one sets in the partition are singletons is facet defining.
Without loss of generality assume that (Jo, J1, J2,J3) = ({1}, {2}, {3}, {4, ..., n}). Then, the corresponding circular-jump
inequality is given by

n
XA =x3+ Y x> 1 (13)
i=4
We observe that the support of (13) contains n — 3 edges incident to node 2 and one edge incident to any other node
i € V'\ {2}. Hence, each star centered at a node i # 2 is a feasible DMSTP solution that satisfies (13) with equality. Thus,
we have dim(?P) = n — 1 affinely independent points.

To show the converse, assume that at least two sets of partition (Jo, J1, J2, J3) contain two or more nodes. Without loss
of generality (due to circularity), we assume that J3 is one of them and J; (for some i € {0, 1, 2}) is the second one. Then,
the number of edges incident to a node j € J; that are in the support of the corresponding circular-jump inequality is
at least two and thus all points corresponding to graphs with center node j € J; cannot be contained in F. Thus, the
inequality can only define a facet if |J;| = 1 holds. Thus, Jy or J, contains at least two nodes and there must exist a node
v with two or more incident edges that are in the support of the corresponding circular-jump inequality. Thus, all points
corresponding to such graphs cannot lie on F. Using a similar line of argument, we obtain that J, and J; must be singletons,
which contradicts our initial assumption.

Proof of Theorem 3. We now show that for D = 3, circular-jump inequalities define facets of P if two consecutive sets
of the partition contain exactly one node. Without loss of generality, we assume that J, = {vo} and J4 = {v4} are two
consecutive subsets that contain only a single node. Let #(CJ) = {x € P | x((J) = 1} and assume that #(CJ) € G where G
is the proper face of P containing all the points x € P that satisfy the equality

Zaexe+2ﬂexe =£. (14)
ec( edg(]

We will show that (14) is necessarily a linear combination of x(CJ) = 1 and the equation x(E) = n — 1 which implies that
the considered circular-jump inequality defining the proper face #((J) is facet defining (cf. Theorem 3.6 in [16]).

For @ € R and 8 € R, our proof builds upon the following four results that will be shown below:

e Step 1: By, = B, for all {u, v} € I(J;) UI(J) U [J1, )]

e Step 2: B, = B, for all {u, v} € [J2.J3] UI(J3)

e Step 3: By, = B, for all {u, v} € [Jo,J11 U [J3,Jal U Uo, Jal
e Step 4: oy, = @, for all {u, v} € {J.

Thus, evaluating the left-hand side of (14) at any incidence vector of a solution contained in #((J) yields & =
& + (n — 2)B. Finally, the desired linear combination of X(CJ) = 1 and x(E) = n — 1 is obtained by multiplying these
two equations with @ — B and B, respectively, and summing them up to obtain the equality (14).

Step 1: Let f,, ,, = B for some B € R.If |J;| = || = 1 the claim holds since {vy, v} = I(J;) UI(2) U [J1, ]2].
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Fig. 5. Solution T?* with edge set E(T>*) = {{vo, v1}, {v1, v2}, {v2, va}} UI(v1) UI(vy) U F(vy).

OUO

Fig. 6. Solution T3 with edge set E(T"3) = {{vo, v1}, {v1, v2}, {v1, v3}, {v3, va}} UI(v1) U I(v3).

Fig. 8. Solution T'# with edge set E(T'*) = {{vo, v1}, {v1, v4}} U I(v1) U F(v1) U B(vy).

Thus, assume |J;| > 1 or [Jz| > 1. If )] > 1, we consider the solutions T2# shown in Fig. 5 and T4, u € J, \ {v2},
obtained from T2 by replacing edge {v,, u} by {v1, u}. The incidence vectors of T> and T2 satisfy x(CJ) = 1 and hence
also Eq. (14). Combining the two equations obtained from (14), we obtain 8, y = By, uw for all u € o\ {v2}. If /1] > 1 we
obtain By, = Buy.w, for all w € J; \ {vq} in a similar way by using solutions T2%, w € J; that are created from T%* by
replacing edge {vq, w} with {v,, w}.

These steps are repeated starting with initial solutions where different centers v] € J1, v} # vq, and vy, € |5, v} # vy,
are chosen (if they exist, i.e., if the corresponding set has at least two nodes). Since, by assumption, either [J;| > 1 or
U] > 1, by using the fact that 8,, ,, = B, we obtain By, = B, for all {u, v} € I(J;) UI(J,) U [, ]].

Step 2: We first observe that 8, , = p, for all {u, v} € [J,J3] UI(J3), can be shown using analogous arguments as in
Step 1 (initially starting with a solution where the roles of Jy and J4 as well as J; and J5 are interchanged). Thus, if || > 1,
Buw = B, for all {u, v} € [J5,J3] UI(J3) follows. Else, we obtain this result after additionally showing that Borvy, = Buyvs-
The latter follows from combining the two equations obtained from Eq. (14) using the incidence vector of T'-* (see Fig. 6)
and the solution obtained from T1-3 by replacing edge {v1, v2} by {vs, vs}.

Step 3: To see that B, = 8, for all {u, v} € [Jo,J1], we consider the solution T%? given in Fig. 7 and observe that
another feasible solution can be constructed from T%2 by replacing edge {v,, u} by {vo, u} for all u € J;. Since Jo = {vo}
the result follows (from Step 1). Starting from a solution T24 with jump edge {vy, v4}, Buw = B, for all {u, v} € [Js,]4],
follows by analogous arguments. Finally, 8,,,,, = B is obtained by combining the two equations obtained from (14) using
the incidence vectors of T1# (see Fig. 8) and the solution obtained from T'# by replacing edge {vo, vi} by {vo, v4} (both
solutions are in H(({J) since {vp, v4} is not a jump edge).

Step 4: We now show that the coefficients of all jump edges {u, v} € (J are identical, i.e., oy, = &, for all {u, v} € {.
Let ay, ,, = @. Combining the equations obtained from (14) for the characteristic vectors of T%? and T3, it follows that
oy, v, = @. Replacing T'3 by T4 or T'#, respectively, yields «,, ,, = & and &y, ,, = &. By constructing a solution using
Jjump edge {vg, vs} (which is easy) we also obtain a,,,, = a. Finally, by varying the chosen center nodes in the different
subsets, and repeating these steps we obtain «,, = &, for all {u, v} € (.
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Fig. 9. Solution T4 with edge set E(Ti74'i) = Ul;;‘—D(I(vj) U {{Uj, Uj+1}}) U F(vi—4) U {{vi_a, vi}, {vi_1, vi}} U B(vi—1) U I(vi—q) U I(v;) U F(v;).

)

Fig. 10. Solution T~ with edge set E(T"2*1) = Uj;,{,m B(vj) U I(vi—2) U {{vi—a, vig}s (vie1, i, {01, vig1 1} U I(0) U T(vig1) U F(viga).

Ly
N

Proof of Theorem 4. To see that circular-jump inequalities define facets of P for D > 4, let H((J) = {x € P | x((J) = 1}
such that #({) € G where ¢ is the proper face of P containing all the points x € P that satisfy the equality

Zaexe+2ﬂexe=€:~ (15)
ec( eg(
We will show that (15) is necessarily a linear combination of x((J) = 1 and the equation x(E) = n — 1 which implies that
the considered circular-jump inequality defining the proper face H((J) is facet defining (cf. Theorem 3.6 in [16]).
Our proof follows the following steps:

Step 1: By, = v;, forall {u, v} €1(J;),0 <i<D+1
Step 2: By, = v;, for all {u, v} € [Ji1,Ji,0<i<D+1
Step3:vi_1=1;,0<i<D+1

Step 4: ay, = u, for all {u, v} € (J

From Steps 1-4, we obtain that 8, , = v, for all {u, v} € E\ (J and «,, = u, for all {u, v} € (. After evaluating (15)
at any incidence vector of a solution contained in #(CJ), we obtain & = p + (n — 2)v. Hence, by multiplying x(C]) = 1
with 4 — v and x(E) = n — 1 with v and summing up the resulting equations, we obtain the desired linear combination
to represent the equality (15).

Step 1: We show that g8, , = v;, for all {u, v} € I(J;), 0 <i < D+ 1, whenever such edges exist, i.e, if || > 1. We note,
that if |I(J;)] = 1, this claim obviously holds. Thus, let |I(J;)] > 1 (that is |J;| > 3) and consider the solution T*~*! given in
Fig. 9 which is feasible and in #((J) for any 0 < i < D+ 1. Now, let k, | € J;, k # I, be two arbitrary nodes from J; \ {vi},

and let T,i_,‘l" be the solution in #(CJ) obtained from T*~%! by replacing the edge {v;, I} by {k, I}. The incidence vectors

of T=*I and T,if,“" satisfy x(CJ) = 1 and hence also Eq. (15). After subtracting the two equations obtained from (15), we
obtain By, = Bk, for all k, I € ;i \ {vi}, k # L

Step 2: We first consider the case when || > 1. To see that 8,, = v; for all {u, v} € [Ji_1,Ji]l, we again consider
the solution T~% and observe that after replacing edge {v;, k} by {vi_1, k} for an arbitrary node k € J; \ {v;} (which
exists by assumption), we obtain another solution in #(CJ). Using the two equations obtained from (15), we obtain
Bui_1.k = Bu,k = vi by using the result obtained in Step 1. Furthermore, by changing the center of solution Ti=4i jn
set Ji_1 to | € Ji_1 \ {vi—1} and by using the same arguments we also obtain By = B,k = v, for all [ € J;_; \ {vi_1}.

In case |Ji| = 1, v; has not been defined in Step 1. Thus, we set §,, , ., = v;. Changing the center of solution T4l in
set Ji_y tol € Ji_1 \ {vi—1} we obtain B, = By, ;v = vi, forall l € Ji_1 \ {vi_1}.

Step 3: We show that v;,_; = v; if |Ji_1| > 1 by considering the solution TI~*! and another solution in #(CJ) obtained
by replacing edge {v;i_1, k} by {v;, k} for an arbitrary node k € Ji_1 \ {vi_1}. Using the two equations obtained from (15),
we obtain vi_y = By .k = Buk = Vi

For |Ji_1| = 1 we consider the solution T2+ given in Fig. 10 which is feasible and in #((J) for any D > 4 and
0 <i < D+ 1. Analogously to the previous steps, we can construct another solution in #((J) by replacing edge {v;_1, v;}
by Edge {U,'_z, vi—l} to obtain v; = ﬂvi,l,vi = ﬂvi—z-vi—l = Vi-1.

Step 4: It finally remains to show that the coefficients of all jump edges are identical, i.e., oy, = p, for all {u, v} € d.
To show this, consider the set of solutions Tt (see Fig. 11) showing that a solution in #((J) exists using a jump arc
between J; and J;; for each relevant value of i and [, i.e, 0 <i<D+1,2<I< [%]. Note that all cases with | > [%1
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Fig. 11. Solution T+, 2 <1 < [2H1], with edge set E(T"*!) = {{v;, via}} U B(vi) U I(v;) U F(vi) U U, 5 Buy) U (vi) U U

D—

1
it F(ug).

are included since they yield a jump over less than f%} sets due to circularity. By systematically comparing any two

of these solutions for all possible values of i and I and by doing this for all possible center nodes of subset J; and Ji,
respectively, we obtain the desired result.

Appendix C. Facet proofs for generalized-circular-jump inequalities

Proof of Theorem 5. To see that generalized-circular-jump constraints define facets of P if D > 4and 1 <k <D -2, let
P = (Jo,J1, - -, Jp+k) be a non-trivial partition of V and let subsets Cy(P) C E be defined as above. Let H(G(]) = {x € P |
Zl(f:] £ - X(C(P)) = k} € G be the set of feasible points that satisfy this particular generalized-circular-jump constraint
with equality, where GCJ = U’EZ]Q(P) and G is the proper face of P containing all the points x € P that satisfy

Zaexe“" Z Bexe = &. (16)

eeG(/ egG(

We will show that (16) is necessarily a linear combination of lezl £ -x(Cy¢(P)) =k and x(E) = n — 1 (cf. Theorem 3.6
in [16]).

By Ty,,, we denote a feasible solution that contains a chain of k consecutive jump edges from C;(P), starting from set
Ji (see Fig. 12). Similarly, Ty, ., will denote a feasible solution with a chain of jump edges starting at J; such that the
first jump edge is from C,(P) Ei.e., it jumps over £ subsets), and it is followed by k — ¢ jump edges from C;(P), see Fig. 13.

Our proof follows the following steps:

e Step 1: By, = v, for all {u, v} € E\ G(J
e Step 2: oy, = W, for all {u, v} € C;(P)
e Step 3: oty =€ (—v)+v, forall {u,v} € C(P),2<¢ <k

Finally, by evaluating a feasible solution from #(G(J) (that uses exactly one edge from C(P) skipping exactly k subsets
and with n—2 edges from E \ GCJ) in (16), we obtain & = k-(u —v)+(n— 1)v. Hence, by multiplying ZE:] L-x(C(P))=k
with 4 — v and x(E) = n — 1 by v and summing them up, we obtain a desired linear combination that results in Eq. (16).

Step 1: One can show that the coefficients of all edges e € E \ G(J are the same by the same technique used in the
proof of Theorem 4 (by using slightly adapted solutions each using a single jump edge from set Ci(P)). We therefore skip
this part of the proof.

Step 2: To show that o, , = p, for all {u, v} € Ci(P), we first observe that for any D > 4,any 0 < £ < D+ k
and 2 < k < D — 2, we can construct a feasible solution T,i*] using a sequence of k jump edges from C;(P) starting
from a node in subset i and which are adjacent to each other, see Fig. 12. The incidence vectors of T,i*] and T'*? satisfy

kx1
Z’l‘:l £ - x(C¢(P)) = k and hence also Eq. (16). After subtracting the two equations obtained from (16) for these two
solutions, we 0btain &y, v, = O,y via0ss)- SYStematical repetition with solutions using different central nodes in sets
JiJizas o Jivak and Jioqry yields oy = ase, U € Ji, v € Jixa, S € Jiyaks £ € Jiyaes1), 0 <1 < D+ k. If D+ k is even (and
thus the number of subsets is odd), we obtain «,, = w, for all {u, v} € C;(P) by performing the previous steps for any
ie{0,1,...,D+k}. If D+ kis odd, after considering each 0 < i < D + k, we obtain «y, = w1, for all {u, v} € Cy(P)
and u € J; withi mod 2 = 0 and oy, = ug, for all {u,v} € Cy(P) and u € J; with i mod 2 = 1. By inserting the
characteristic vectors of T/, and T2, into (16) and subtracting the results from each other we obtain ku; = ku, and
hence, @1 = up = u follows.

Step 3: We first consider jump edges {u, v} € C,(P) for 1 < £ < k, i.e., those that skip precisely £ subsets. Observe
first that coefficients for all e € C,(P) are the same, say o for all £ = 1, ...,k where o! = . This can be easily seen
by comparing two different solutions that use one jump edge from C,(P) and k — £ edges from C;(P). Consider now a
feasible solution T{*Z’(,HZ)*] from #(G(J) using one jump edge from C,(P) skipping exactly ¢ subsets (2 < ¢ < k) and k—¢
jump edges from C;(P) skipping one subset (see Fig. 13). Subtracting the two equations obtained from (16) for solutions
T}, (k—ey1 and T, (using k edges from Cy(P)) we obtain a‘ = £ - (1 — v) + v, for all {u, v} € G(P), 1 < £ < k.

K:

We also observe that the same argument suffices to show that o, = k-(u —v)+v for all edges {u, v} € Ci(P) that skip
precisely k subsets. To see that this equation also holds for those edges skipping more than k subsets, we observe that for
each {u, v} € Gi(P), we can create a solution in #(G(J), see Fig. 14. This exemplary solution is denoted by T;,,, where, due
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Fig. 12. Solution T}, with edge set E(T},,) = (U7 ({visj» virajr2}} Ul(vira) U B(vi2)) U T(viz2t) U B(oiar) U U2 Flwy).

Ji—14/2] Ji Jit1e/2) Jitot1 Jivokt1—0 IDvkrio|0/2)

W

Fig. 13. Solution Ti,, , ., with edge set E(Ti,, ;1) = {{vi. Vises BUI)UUS g Ui 4201 UB Wi 2i01)) Ui 0/ 1 BONUULL, (1240 BV

i+[6/2]-1 Dtk+i—[€/2]—1
ij F(y; UU —itakpie  E(Up).

Ji—e/2) J; Jivre2) Jivle/2)+1 Jiver1  IDvkti—|e/2)

) . i i i k -
Fig. 14. Solution T}, with edge set E(T},,) = {{vi, vire1 HUI0)UI(Vig 041 )0 Ui /)41 BOU }ifi&mﬂ B(uul L2 F )UUDJL;LAU//ZJ "F(v)).

to circularity, it is sufficient to consider values of ¢ such that k < £ < |'D7+’"|. We observe that T!_, is a feasible solution,
that contains two paths of length [£/2] left and right from v; and similarly, a path of length [¢/2] left of vj1¢+q and a
path of length at most D — [£/2] — 1 on the right. Thus, the longest path in such constructed solution does not exceed D.
Finally, the incidence vectors of T],, and a solution using k edges from C;(P) (e.g., T, ) satisfy Z’e;l £ - x(Ce(P)) = k and
hence also Eq. (16). After subtracting the associated equations obtained from (16), we obtain the desired result.

Appendix D. Facet proof for cut generalized-circular-jump inequalities

Proof of Theorem 6. To show that cut generalized-circular-jump inequalities (cgc]) define facets of P for4 < D < n—k—2
1 <k<D-3,let(R,S) Rl > D+ k+ 1, be a non-trivial partition of the set of nodes V, P = (Jo,J1, ..., Jp+k) be
a non-trivial partition of R, let subsets C,(P) C E be defined as above, G{J = Uﬁleg(P), let H(G(,S) = {x € P |

’zle £-x(Ce(P))+k-x(R,S)+k-x(E(S)) = k-(|S| + 1)} and let H(G(J, S) € G, where G is the proper face of P containing
all the points x € P that satisfy

Z UeXe + Z Bexe + Z VeXe + Z BeXe = &. (17)

ecG(] ecE(R)\G( ec[R,S] ecE(S)

We will show that (17) is necessarily a linear combination of 21221 £-X(C(P))+k-x(R,S)+k-x(E(S))=k-(|S|+ 1) and
X(E) =n — 1 (cf. Theorem 3.6 from [16]).

Our proof follows the following steps:

e Step 1: y,, = ¢/, for all {u, v} € [R, S] and §,,, = w/, for all {u, v} € E(S)

e Step 2: By, = v, for all {u, v} € E(R)\ G{, ay, = u, for all {u,v} € C;(P), and &y, = £ - (. — v) + v, for all
{u,v} e C(P),2<¢<k

e Step3: i/ =k-(u—v)+v

Evaluating a solution from #(G(J, S) which consists of one edge from Ci(P), |S| edges from [R, S] and n — 2 — |S| edges
from E(R) \ G({J, we conclude that & = (k(u — v) +v)(IS|+ 1)+ (n —2 — |S])v = k(e — v)(|S| + 1) + (n — 1)v. Hence, by
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J2it1 Jitk+2 ID+k

J2i

Fig. 15. A feasible solution for D > 4, 2 <k <D — 3, [k/2] <i < [D/2], with edge set {{vi, vs}, {vi, Viskt2}} U I(vs) U I(vi) U I(Vigk2) U U}::] B(v;) U
Ujtais By WU Fu) U U Fwp).

Jo Ji

multiplying 212:1 -X(Co(P))+k-x(R,S)+k-x(E(S)) = k-(|S| + 1) with u — v and x(E) = n— 1 by v and summing them
up, we obtain a desired linear combination that results in Eq. (17).

Step 1: We will first show that y,, , = 8, for v; € J;, vs € S, and for all u € S\ {v,}. Consider the solution in #(G({, S)
given in Fig. 15. Another solution in #(G(J, S) is constructed by replacing edge {vs, u} by {v;, u} for some u € S\ {vs}.
Combining the equations obtained from (17) for these solutions, we obtain y,, , = &, for v; € J;, vs € S, and for all
u € S\ {vs}. Repeating the same procedure using each v € S as initial center of S (i.e., taking the role of v;), we obtain
yuv = W, for all {u, v} € E(S), and by varying the center of J; we also obtain y, , = u/, for all u € Jj, for all v € S. Finally,
repetition for i = 0, 1, ...D + k, yields y,, = w/, for all {u, v} € [R, S] and §,, = w/, for all {u, v} € E(S).

Step 2: Using the result of Step 1, these relations can be shown by repeating the necessary steps from the proof of
Theorem 5 while directly connecting all nodes from S to a non-leaf node from R incident to at least one jump edge. Since
it is easy to see that such a node always exists we skip the details.

Step 3: To show that ' = k- (u — v) + v consider the solution in #(GCJ, S) given in Fig. 15 and observe that
{vi, Vigki2} € C(P) and that for 1 < k < D — 3 (which is true by assumption of the theorem), another feasible solution
from #H(G(J, S) is obtained by replacing jump edge {v;, viik+2} by edge {vs, viyks2}. The result follows by comparing the
equations obtained from (17) for these solutions.
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