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A B S T R A C T

The current study investigates whether statistical regularities that change over time affect attentional selection.
While searching for a target singleton, the distractor singleton was presented much more often in one location
than in all other locations. Crucially, the location that had a distractor much more often, changed to new
locations during the course of the experiment. Here we established exactly how the bias of attention followed
these changes in the display. Unlike previous studies, we show that selection was remarkably flexible as the
attentional bias followed the changes in the environment incorporating contributions of previous contingencies
to the current attentional bias. Importantly, the initial learning experience had a lingering and enduring effect on
subsequent attentional biases. We argue that the weights within the spatial priority map of selection are adjusted
to changing environments, even though observers are unaware of these changes in the environment.

1. Introduction

Humans have the ability to detect, extract and use regularities in the
environment to guide behavior. What we have experienced in the past,
will drive our current actions. Even though this general mechanism
(referred to as statistical learning) has been recognized in many do-
mains of cognitive science such as motor learning, language acquisition,
and conditioning (e.g., Frost, Armstrong, Siegelman, & Christiansen,
2015), there has been a large interest in its role in attentional selection
(Awh, Belopolsky, & Theeuwes, 2012; Theeuwes, 2018, 2019). Previous
studies mainly focused on trial-to-trial target priming effects showing
that the selection of a target becomes more efficient when its features
are primed during the previous trial (e.g., Hickey, Chelazzi, &
Theeuwes, 2010; Maljkovic & Nakayama, 1994); Recently there have
been several studies that elaborated spatial- and feature-based history
effects over longer time scales showing that attentional selection is
driven by history effect above and beyond the classic voluntary, top-
down and stimulus-driven, bottom-up effects (Failing, Feldmann-
Wüstefeld, Wang, Olivers, & Theeuwes, 2019; Failing, Wang, &
Theeuwes, 2019; Ferrante et al., 2018; Goschy, Bakos, Müller, &
Zehetleitner, 2014; Stilwell, Bahle, & Vecera, 2019; Wang & Theeuwes,
2018a, 2018b, 2018c; for reviews, see Failing & Theeuwes, 2018;
Theeuwes, 2018).

One of the most fundamental capacities of any organism is the

ability to extract the distributional properties of sensory input across
time and space. Through statistical learning (SL) we are capable of
extracting repeated patterns and regularities from the environment
(Goujon, Didierjean, & Thorpe, 2015). Studies investigating visual
statistical learning (VSL) have demonstrated that people can learn re-
lationships among visual objects. Following the classic work on syllable
learning (Saffran, Aslin, & Newport, 1996), studies have used sequen-
tially presented shapes in which subtle probabilistic relationships were
introduced (Fiser & Aslin, 2002; Turk-Browne, Jungé, & Scholl, 2005).
For example, in Fiser & Aslin, 2002, participants were exposed to a
continuous stream of non-sense shapes, in which particular triplets
(three shapes presented in a sequence) could appear. Later during
surprise recall, participants showed greater familiarity with the triplets
than with foil triplets, indicating that they learned higher transitional
probabilities between the shapes. Since VSL was observed when stimuli
were viewed passively without an explicit task (Fiser & Aslin, 2001) and
when observers were performing a completely different unrelated task
(Saffran, Newport, Aslin, Tunick, & Barrueco, 1997), it was argued that
the mere exposure to these streams was enough to learn these regula-
rities (e.g., Fiser & Aslin, 2002).

There is also evidence that learning statistical regularities can bias
attentional visual selection. The most prominent research in this do-
main is known as “contextual cueing”. This type of research showed
that searching for a target is facilitated when it appears in a visual lay-
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out that was previously searched relative to visual lay-outs that were
never seen before (Chun & Jiang, 1998, 1999; Jiang & Chun, 2001). In
the typical contextual cueing paradigm, participants searched for a
target ‘T’ among distractors ‘L’s in sparsely scattered configurations.
During the experiment, half of the display configurations were repeated
across blocks while others were only seen once. The classic finding is
that participants are faster in finding targets when they appeared in
repeated configurations (particular displays consisting of a target pre-
sented among distractors), suggesting that participants have learned to
associate the location of the target with a particular spatial configura-
tion involving the target and its surrounding distractors. It is well
known that visual search is improved when participants knew the likely
location of the target. Indeed, the classic Posner studies from the 1980s
(Posner, 1980) showed that people are faster to detect targets appearing
in probable locations than improbable locations (Shaw & Shaw, 1977).
Notably however, unlike what is found in these classic cueing studies,
in contextual cueing, the effect occurs without instruction, and without
intention to learn. Moreover, observers often cannot report which
configurations they had seen before, suggesting little awareness for
what they had learned (Chun & Jiang, 2003). Contextual cueing studies
hence reveal that the visual system is sensitive to regularities in the
environment, and that it will encode and retrieve information that is
relevant for the task.

The contextual cueing studies (and VSL experiments in general)
have provided important insights regarding how learning occurs for
attended and task-relevant properties such as searching for a specific
target among its distractors (Chun & Jiang, 1998), or selectively at-
tending sequentially presented target shapes (Turk-Browne et al.,
2005). However, recently, in a series of experiments Wang and
Theeuwes (2018a, 2018b, 2018c) provided evidence that the effect of
VSL on visual attention is much more ubiquitous than previously as-
sumed. Wang and Theeuwes showed that people are not only able to
learn the statistical regularities of the object they are looking for (i.e.,
the target) but also learn the regularities concerning objects they need
to avoid (i.e., the distractor). In all studies, Wang and Theeuwes
(2018a, 2018b, 2018c) used the well-established additional singleton
task (Theeuwes, 1991, 1992) and manipulated the distributional
properties of the distractor (the distractor's location and its features).
They showed that when the distractor appeared more often in one lo-
cation than in all other locations, its distracting effect (the extent to
which it captured attention) was dramatically reduced. Importantly,
they demonstrated the existence of a gradient of spatial suppression
around this high-probability (distractor) location, suggesting that this
location is suppressed and as such competes less for attention than all
other locations in the visual field. Also, when the target happened to be
presented at that high-probability location, the selection of the target
was less efficient and reaction time went up. Critically, the effect is not
due to some form of trial-to-trial repetition priming (repetition sup-
pression; Wang & Theeuwes, 2018a; Zhang, Allenmark, Liesefeld, Shi, &
Muller, 2019) nor is it the result of some waning of a repeated capture
response to that location (habituation; Wang & Theeuwes, 2018b). Also,
the probability of the distractor feature (for example, the distractor was
in 80% of the trials red and 20% of trial green, with grey background
elements; see Wang & Theeuwes, 2018c, Experiments 3 and 4) had no
effect on attentional selection, suggesting that this effect is mainly
spatial in origin (but see Stilwell et al., 2019).

It is also important to note that the studies of Wang and Theeuwes
(2018a, 2018b, 2018c) are about distractor-location probability
learning only. Although previous studies have manipulated the target
probability (for example, as in studies of Ferrante et al., 2018 and of
Zhang et al., 2019), it is important to realize that the effects reported by
Wang and Theeuwes (2018a, 2018b, 2018c) are solely about the dis-
tractor-location probability. In a recent study (Failing, Wang, et al.,
2019), it was explicitly tested whether the joint probability of the target
and distractor distribution that was responsible for the attentional
suppression of the distractor location or whether the probability of the

distractor was the only reason. The results were very clear in showing
that the attentional suppression of the distractor location is in-
dependent of the effect generated by any regularities regarding the
location of the target.

More recently, Wang, Samara, and Theeuwes (2019) showed that
also the probability of making a saccadic eye movement to a distractor
presented at the high-probability location was reduced relative to when
the distractor appeared at a low-probability location, demonstrating a
robust effect on the oculomotor system. Importantly, Wang and col-
leagues (Wang, van Driel, Ort, & Theeuwes, 2019) found that proactive
suppression is already applied before the search display onset, by
showing that there is enhanced power in parieto-occipital alpha oscil-
lations contralateral to the high-probability location. Locked to the
display onset, ERP analysis showed a distractor-suppression-related
distractor positivity (PD) component for this location, regardless of
whether distracting information is presented at the high-probability
location or not. As with previous VSL studies, in all Wang and Theeu-
wes's studies observers were basically unaware of the regularities.
Wang and Theeuwes (Theeuwes, 2019; Wang & Theeuwes, 2018a,
2018b, 2018c) concluded that this type of learning induces plasticity
within the spatial priority map, such that the location containing dis-
tracting information plays a weaker role in the attentional biased
competition within the priority map (Ferrante et al., 2018).

The earlier discussed Wang and Theeuwes (2018a, 2018b, 2018c)
studies investigated regularities regarding the distractor location. There
are also many studies that manipulated the regularities regarding the
location of the target (Ferrante et al., 2018; Zhang et al., 2019). All
these studies basically show that a target presented at a more likely
position is detected faster than when presented at a rare location.
Regularities regarding the target (leading to enhancement) and reg-
ularities regarding the distractor (leading to suppression) all affect the
weights within the spatial priority map ultimately determine the se-
lection biases (Ferrante et al., 2018; Gaspelin & Luck, 2018; Theeuwes,
2019).

Typically, in the type of experiments outlined above, the spatial
regularities introduced remain constant. It is however important to
determine how flexible the allocation of attention is in a changing en-
vironment. From studies investigating the effect of reward on atten-
tional selection have shown that attentional biases persist even when
the reward is no longer given. For example, Della Libera and Chelazzi
(2009) showed that, when during training the selection of stimuli was
rewarded, these stimuli continued to affect selection during a test ses-
sion even when the selection of these was not beneficial anymore (see
also Anderson, Laurent, & Yantis, 2011; Failing & Theeuwes, 2015).
These studies show that if contingencies are no longer in place, at least
for some trials selection biases remain the way they were trained. The
question we addressed here was not whether biases remain when a
contingency is no longer in place but instead how these biases change
when a contingency changes unpredictably during the experiment. In
other words, do people adapt to regularities when they change over
time. From an evolutionary view, it would be highly beneficial if se-
lection priorities would quickly adapt to a dynamically changing en-
vironment. It is not immediately clear whether attentional selection
adapts to a changing environment. On the one hand, it is likely that
there is little, if any, adaptation to changing regularities because in
Wang and Theeuwes's (2018a) studies participants had no explicit
knowledge about the regularities presented in the display. It is gen-
erally agreed that implicit knowledge tends to be relatively inflexible,
and bound to the surface features of to-be-learned material
(Cleeremans, Destrebecqz, & Boyer, 1998; Tulving & Schacter, 1990).
This is consistent with other research investigating attentional selection
when regularities in the environment change. In one of those studies
(Jiang, Swallow, Rosenbaum, & Herzig, 2013), participants searched
for a target that was more likely to appear in one quadrant of the dis-
play than in all other quadrants. Not surprising, participants learned
this contingency an effect which was labeled as “target location
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probability cueing” (see Geng & Behrmann, 2005 for this term). Crucial
for the present discussion, however, when the target no longer ap-
peared more often in one of the quadrant, but instead was presented
equally often in all quadrants, the attentional bias persisted suggesting
little adaptation to a changing environment (see also Chun & Jiang,
1998; Makovski & Jiang, 2010; Manginelli & Pollmann, 2009).

Sauter, Liesefeld, and Müller (2019) also examined whether learned
regularities are updated when the environment changes. In this study
participants searched for a grey tilted target line among 34 grey vertical
non-target lines. A distractor could be a red vertical or horizontal bar,
that is salient and known to capture attention. The results showed that
the interference was reduced for distractors presented in frequent re-
gions in the display (where the distractor often appeared) than when it
was presented in rare locations. This effect labeled ‘distractor location
probability cueing’ (see Goschy et al., 2014) indicates that participants
are able to learn where distractors are likely to be presented and this in
turn reduced the amount of interference, very similar to findings in
Wang and Theeuwes (2018a, 2018b, 2018c). Critically however this
study showed that this effect persisted over a 24 h break and more
importantly, took several hundred trials to get unlearned when the
distribution of where the distractor could appear was changed to even
(50%: 50%). This study is a clear demonstration of that the attentional
bias is not flexible and only changes after many trials of unlearning.

The overall view from these studies is that, through associative
learning, highly specific associations are formed, which cannot easily
be changed (e.g., Chun & Jiang, 1998; Zellin, von Mühlenen, Müller, &
Conci, 2014). In another example, Zellin et al., 2014 showed that
people quickly learn (i.e., after just three repetitions) particular con-
text-target associations. However, when those particular associations
were changed (i.e., the target was presented at another location within
a particular context) learning was extremely slow and effortful re-
quiring 3 days of training with up to 80 repetitions. The general claim is
that the initial learning of statistical regularities causes proactive in-
terference of learning new statistical regularities (Lustig & Hasher,
2001). Because of the initial exposure to particular regularities, atten-
tion is being blocked from being reallocated to new regularities. Similar
findings are found in studies employing auditory statistical learning. In
those studies it was shown that the successful extraction of the structure
in an auditory statistical learning reduced the ability to learn a sub-
sequent structure (e.g., Gebhart, Newport, & Aslin, 2009). If, however
the exposure to the second structure was very long, some new learning
was found.

Alternatively, it is possible that the type of VSL that we study here is
highly flexible, possibly even because it is implicit. It is then assumed
that the statistical probabilities are constantly and implicitly weighted,
and selection is adapted accordingly. Also, it is feasible that learning is
in fact very flexible because in the Wang & Theeuwes paradigm, reg-
ularities are introduced regarding the location of the distractor and not
of the target as in all their previous studies. Because it is about statis-
tical learning of objects that are not part of the task set (i.e., dis-
tractors), learning may turn out to be very flexible. If learning would be
flexible, the question arises if and in what way the previous learning
experience (i.e., lingering biases) have an effect on attentional selec-
tion.

The present study quantified how attentional biases towards the
distractor developed over time in a changing environment by in-
corporating the contributions of previous regularities to the current
attentional bias. By means of best fitting Gaussian function we estab-
lished exactly how attention was biased over time and space.

2. Experiment 1

2.1. Method

Twenty-four naïve adults (5 females, mean age = 19.9 years,

SD = 1.01) from Zhejiang Normal University in China participated.1

Sample size was predetermined based on the main effect of distractor
condition (high-probability location, low-probability location, and no-
distractor) in Wang and Theeuwes (2018a), partial η2 = 0.85. With 24
subjects and alpha = 0.001, power for the critical effect would be
>0.99. Participants all reported normal color vision and normal or
corrected-to-normal visual acuity. The study was approved by both the
Ethical Review Committee of the Vrije Universiteit Amsterdam and the
Ethical Review Committee of Zhejiang Normal University.

2.1.1. Stimuli, procedure and design
The display consisted of eight discrete elements with different

shapes (one circle vs. seven unfilled diamonds, or vice versa), with each
contained a vertical or horizontal grey line (0.15° × 1°; 24 cd/m2)
inside, see Fig. 1. The stimuli were presented on an imaginary circle
with a radius of 4°, centered around fixation (a white cross measuring
1° × 1°; 110 cd/m2), against a black background (7 cd/m2). The circle's
radius was 1°, the other unfilled diamonds were subtended 2° × 2°, and
each had a red (35 cd/m2) or green (60 cd/m2) outline.

A fixation cross which remained visible throughout a trial. After
500 ms, the search array was presented for 3000 ms or until response.
Participants were required to search for a circle (target) among seven
diamonds (distractors) or vice versa, and to indicate whether the line
segment inside the target was vertical or horizontal, by pressing the ‘up’
or ‘left’ key respectively as fast as possible. The inter-trial interval (ITI)
was randomly chosen from 500 to 750 ms.

Each trial contained a target which could be a circle or a diamond
with equal probability. A uniquely colored distractor singleton was
present in 66.6% of trials (distractor singleton present condition), which
had the same shape as other distractors but had a different color (red or
green with an equal probability). In the remaining trials there was no
distractor (distractor singleton absent condition). All conditions were
randomized within blocks. The distractor singleton could appear at
eight locations; yet, in each block, one of these distractor locations had
a high proportion of 65% (high-probability location); and other 7 lo-
cations equally shared a low proportion of 35% (low-probability loca-
tion). When the distractor was present, the target was equally likely to
appear at any low-probability location.2 In the no-distractor condition,
the target was equally likely to appear at any location. Participants
were not informed about the probability manipulations.

After 40 practice trials, 10 blocks each containing 120 trials were
tested (with a break in between). For each block, there were 52 high-
probability location trials and 28 low-probability location trials, and 40
no-distractor trials. In the first 2 blocks, the high-probability location
was the same location, but was different across participants.
Importantly, to explore how statistical regularities over time and space
would impact selection, the high-probability location was moved
clockwise to the fourth location away from the previous one (see Fig. 1)
after the first 2 blocks (2 times 120 trials) and was kept constant for
next 4 blocks (4 times 120 trials). Following these 4 blocks the high-
probability location was moved again clockwise to a location three
steps away from the current one and was kept constant again for next 4
blocks. We labeled the first high-probability location as regularity one,
the second one as regularity two, and the third one as regularity three.

1 The fact that we have few women in our sample is merely coincidental. Also,
there is no evidence that the effects that we study are depend on gender.
2 The design, that the target never appears at the high-probability location in

the distractor present condition, was adopted because we used the exactly same
design as in Wang and Theeuwes (2018a). Thus, one might question that the
effects reported are due to the target probability and not due to the distractor
probability. However, importantly in a recent study, we showed that the
probability of the target does not matter: the suppression effect observed here
and in previous studies (Wang & Theeuwes, 2018a, 2018b, 2018c) was solely
due to the distractor being presented more often in one location (Failing, Wang
et al., 2019).
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2.2. Results

Trials (2.7%) on which the response times (RTs) were larger or
smaller than 2.5 standard deviations from the average response time
per block per participant were excluded from analyses.

2.2.1. Overall evaluation
Mean RTs and mean error rates are presented in Fig. 2. Repeated

measures ANOVA on mean RTs with distractor condition (high-prob-
ability location, low-probability location, and no-distractor) and current
statistical regularity (one, two, and three) as factors showed main effects
for distractor condition, F(2, 46) = 169.03, p< .001, partial η2= 0.88,
and current statistical regularity, F(2, 46) = 112.6, p < .001, partial
η2 = 0.83. The interaction between distractor condition and current
statistical regularity was also reliable F(4, 92) = 6.65, p< .001, partial
η2 = 0.22, suggesting that learning systematically changed over

Fig. 1. Examples of the search displays for different regularities, with the dashed outline squares indicates different high-probability locations. Displays are used for
illustration purposes only.
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Fig. 2. The mean RTs (upper panel) and the mean error rates (low panel) between different distractor conditions for different regularities. “N_dis” means no-
distractor condition. Error bars denote within-subjects 95% confidence intervals (CIs; Morey, 2008).
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regularity.
Subsequent planned comparisons showed that compared to the no-

distractor condition, there were significant attentional capture effects:
for a distractor singleton presented at the high-probability location with
all regularities, all ps < .001; and for a distractor singleton presented at
the low-probability location with all regularities, all ps < .001.
Crucially, there was also a reliable difference between the high- and
low-probability locations for all regularities (one, two, and three), all
ps < .002, indicating that attentional capture was reduced when the
distractor singleton appeared at a high-probability location for each
regularity.

The results on error rates partially mimicked those for RTs.
Repeated measures ANOVA on mean RTs with distractor condition (high-
probability location, low-probability location, and no-distractor) and
current statistical regularity (one, two, and three) as factors showed main
effects for distractor condition, F(2, 46) = 23.65, p < .001, partial
η2 = 0.51, and current statistical regularity, F(2, 46) = 9.94, p < .001,
partial η2 = 0.3. The interaction between distractor condition and
current statistical regularity was not reliable, F < 1.

2.2.2. No-distractor condition
Mean RTs and mean error rates are presented in Fig. 3. Repeated

measures ANOVA on mean RTs with target position (high-probability
location and low-probability location) and current statistical regularity
(one, two, and three) as factors showed main effects for target position,
F(1, 23) = 25.56, p < .001, partial η2 = 0.53, and current statistical
regularity, F(2, 46) = 83.12, p< .001, partial η2 = 0.78. There was no
interaction, F < 1. Responses were slow when the target appeared at
the high-probability location, and the mean RTs decreased with chan-
ging the statistical regularities. There was no effect on error rates, all
ps > .27.

In short, for each regularity, our results basically replicate the
findings in Wang and Theeuwes (2018a). The present results indicate
that for each regularity, there is less attentional capture for the high-
versus the low-probability location. Moreover, for each regularity when
the target is presented at the high-probability location its selection is
less efficient (higher RT) than when it is presented at the low-prob-
ability location. Overall, this pattern of results indicates that partici-
pants quickly adapt to the changing regularities in the environment.
Indeed, the location that is most likely to contain a distractor is sup-
pressed relative to the other locations and this suppression moves when
this high-probability location changes.

Quantifying the suppression changes across different regularities
over space.

To quantify how the spatial suppression changed across the different
regularities, we first had to remove the overall general practice effect.
For this purpose, we adopted what we refer to as the “Normalized
Attentional Capture effect” (Norm-AC effect; i.e., mean RTs in distractor
present condition minus distractor absent condition divided by the
overall mean RTs for each regularity). The reason for choosing the
Norm-AC effect to conduct further analysis is that previous studies
using the exact same paradigm (Wang & Theeuwes, 2018a, 2018b)
demonstrated that the Norm-AC effect did not change over time with
extended training (See Supplementary Information [SI] for details).

In the present study, with display location (see Fig. 4A, the first data
point represents the top location on the display, marked as “Loc-1”) and
current statistical regularity (one, two, and three) as factors, a repeated
ANOVA on the Norm-AC effect revealed that there was a significant
main effect for current statistical regularity, F(2, 46) = 6.36, p = .004,
ηp2 = 0.22; but not for display location, F(7, 161) = 1.29, p = .26,
ηp2 = 0.05. There was also a reliable interaction, F(14, 322) = 2.62,
p = .001, ηp2 = 0.1. Together, it suggests that the Norm-AC effect
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Fig. 3. The mean RTs (upper panel) and the mean error rates (low panel) in the distractor singleton absent condition for different regularities. Error bars denote
within-subjects 95% CIs.
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systematically changed across different regularities over space.3

Furthermore, to explore whether the lingering bias towards the in-
itial high-probability location could be generated without awareness,
we excluded nine subjects that indicated correctly any of the high-
probability locations after the experiment (see SI for more details about
the awareness test) and ran the main analysis again. With actual display
location and current statistical regularity as factors, a repeated ANOVA on
Norm-AC effect revealed that there was a significant main effect for
current statistical regularity, F(2, 28) = 3.76, p= .036, ηp2 = 0.21; but
not for actual display location, F(7, 98) = 1.38, p = .223, ηp2 = 0.09.
The interaction was marginally significant, F(14, 196) = 1.71,
p = .056, partial η2 = 0.11 (see Fig. 4B). Moreover, when we involved
group (aware vs. unaware) as another factor to do the analysis again,
we found no interaction with group, all Fs < 1.02, all ps > .438,
suggesting that being aware of the location is not necessary for ob-
taining the effects, and the learning is basically implicit.

Illustrating the change with Gaussian model fitting.
Previous studies have shown that attention-related phenomenon

(e.g., inhibition of return, c.f., Klein, 2000) always generate a spatial
gradient which can be qualified with Gaussian model fitting (Bennett &
Pratt, 2001; Taylor, Chan, Bennett, & Pratt, 2015; Wang, Yan, Klein, &
Wang, 2018). In the present study, we also observed a spatial gradient
of the suppression effect (reflected by the Norm-AC effect). Importantly,
the observed spatial gradient systematically changed with moving the
high-probability location to other locations. To further analyze how it
changes, we divided three regularities into five sessions4 with each
including two blocks: Session one (Regularity one), Session two and three
(Regularity two), and Session four and five (Regularity three). All locations
were aligned to the high-probability locations for different regularities.
The farthest location was used twice to make the number of data points
the same for both sides of the center. Moreover, the current dataset was
modelled by assuming a spatial gradient of the Norm-AC effect as a
Gaussian distribution (see Wang et al., 2018 for similar analysis), in
which the depth of the Norm-AC effect (N-AC) increased as a Gaussian
function of the distance (d), see below:

= × × × +N AC D d c
w

bexp 0.94
2

(1)

where D is the depth of the best-fitting Gaussian of the spatial gradient
of the Norm-AC effect, reflecting the amount of the reduced capture; c is
the center of the spatial gradient; w is the full width at half maximum
(FWHM), and b is the initial lingering bias (representing the initial at-
tentional capture effect for each regularity/session).

Eq. 1 was fitted to the data separately for different sessions by
minimizing the root mean squared (RMS) error between the observed

and predicted suppression effects, see Fig. 5A. The best-fitting para-
meters are shown in Table 1 and Fig. 5B–D. As shown in Fig. 5B, the
initial capture effect (i.e., the initial lingering bias; b) decreased over
sessions, with linear slopes of 0.98% per session, indicating that people
continuously picked up the learning effects from previous regularities/
sessions. As shown in Fig. 5C, the FWHM of the spatial gradient (w)
increased first, and then decreased over sessions with a linear slope of
41.9°/session, implying that the reduction of attentional capture effect
was extended to all locations, and then its gradient becomes more fo-
cused around one location due to lingering biases.

Important changes were observed for the gradient center (c). As
illustrated in Fig. 5D, it is at the high-probability location in session 1.
For sessions 2–3, the center continuously moved towards the new high-
probability location but remained biased towards the original high-
probability location. However, while the center moved again towards
the new high-probability location in sessions 4–5, there was a slight
bias in session 4 towards the original high-probability location in ses-
sion 1, because the original high-probability location still has potential
impact. In the final session, the center is close to the new high-prob-
ability location.

3. Experiment 2

Even though the high-probability location changed to other loca-
tions in the subsequent sessions, the overall probability of containing a
distractor at the initial high-probability location was still higher com-
pared to other constant low-probability locations. To make this more
explicit: if after 240 trials (the first regularity), the high-probability
location switches to another location, at that point and for the following
240 trials, the overall probability of containing a distractor for the first
location was higher than for the new high-probability location (reg-
ularity two). After 480 trials (240 trials and 240 new location trials) the
probabilities of containing a distractor are equal for regularities one
and two. However, the probabilities of containing a distractor for reg-
ularities one and two are always higher than that for other constant
low-probability locations. It is therefore possible that the overall results
do not reflect learning of the new contingencies, but rather indicates an
overall bias in which simply the overall probabilities across the whole
experiment are weighted. Even though feasible, if that were the case,
the overall probability for the three different high-probabilities loca-
tions should have been the same and the spatial gradient should have
been centered around these locations rather than that the later gradient
was biased by the previous regularity as we found in Experiment 1. In
any case, we still conducted the present experiment to exclude this
possibility.

3.1. Method

Twenty-four adults (3 females, mean age = 19.29 years, SD= 0.69)
from Zhejiang Normal University in China participated in this experi-
ment. The procedure was similar to Experiment 1 except that in the
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3 We also conducted multiple follow-up comparisons to explain the interac-
tion, see SI for details.
4 The word “session” was used to describe the aggregate of two blocks, that

does not indicate that these sessions were run on different days
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eight possible display-element locations, the distractor and target sin-
gleton only occurred along the horizontal and vertical axis (i.e., only
occurred at four possible locations). The high-probability distractor
location (which had a high probability of 46% containing a distractor;

while other possible distractor locations had a low probability of 18%
each) did not change to another location after one session, but it be-
came the low-probability distractor location (which had a low prob-
ability of 4% containing a distractor, while other possible locations had
a high probability of 32% each). Thus, at the end of the second session,
the initial high- and low-probability locations had the same overall
probability. Moreover, in the final session, the distractor was presented
equally on every location. If the strong lingering bias observed in
Experiment 1 was due to the overall probability explanation, the sup-
pression effect should not have been found during the last session as
during that session all overall probabilities were equal. After 40 prac-
tice trials, participants completed 3 sessions with each including 300
trials.

3.2. Results

Trials (2.8%) on which the response times (RTs) were larger or
smaller than 2.5 standard deviations from the average response time
per block per participant were excluded from analyses.

Fig. 5. A) The normalized attentional capture effects and their best fitting Gaussian curves for different sessions related to three different regularities. Regularities
one, two, and three were marked by red, green, and blue, respectively. B) The depth of the gradient and the initial lingering bias (i.e., the initial attentional capture
effect) for each regularity from the best-fitting Gaussian function. C) The FWHMs of the best-fitting Gaussian functions. D) The center of the spatial gradient from the
best-fitting Gaussian function. The dashed outline squares indicated different high-probability locations of different regularities. The colored disks indicated different
centers within different sessions. Error bars denote within-subjects 95% CIs. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 1
Best-fitting parameters for the suppression effects for different regularities and
corresponding R2.

Session D c w b R2

One (Regularity one) 6.9 0.1 89.4 13.5 0.84
Two (Regularity two) 5.5 −58.6 177.2 12.1 0.75
Three (Regularity two) 7.1 −26.4 89.7 8.4 0.81
Four (Regularity three) 4.9 24.1 57.3 8.3 0.83
Five (Regularity three) 5.8 −12.4 48.3 10.5 0.77

Note: D is the depth of the best-fitting Gaussian of the gradient of the sup-
pression effect, c reflects the center of this gradient, and w is the full width at
half maximum (FWHM), b represents the original lingering bias reflected by the
attentional capture effect.
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Mean RTs are presented in Fig. 6A. With distractor location (initial
high-probability location, initial low-probability location, and no-dis-
tractor) and session (one, two, and three) as factors, a repeated ANOVA
on mean RTs showed significant main effects for distractor location, F
(2, 46) = 47.66, p < .001, partial η2 = 0.68; and for session, F(2,
46) = 37.41, p < .001, partial η2 = 0.68. Importantly, a significant
interaction was observed, F(4, 92) = 4.15, p = .004, partial η2 = 0.15.
Compared to the no-distractor condition, the mean RTs were larger for
initial high-probability location and low-probability location in all
sessions, all ps < .001, suggesting that attention was captured by the
salient distractors.

When comparing the difference between the initial high- and low-
probability locations in the first session, the results showed that the
mean RTs was smaller for initial high-probability location, t
(23) = 4.81, p < .001 (p = .002 for unaware group5), suggesting a
spatial suppression on the initial high-probability location. However,
this suppression disappeared in the second session, t < 1 (p = .484 for
unaware group); but seemed to reappear in the third session, t
(23) = 2.01 p = .056 (p = .058 for unaware group). Together, the
results indicate that, even when the overall probability was controlled
by making the overall probability equal for each distractor location, in
session 3, the original learned contingencies (from session 1) seemed to
reappear suggesting that what was learned initially had a lingering
effect. Moreover, the disappearance of the suppression effect in session
2 also reflects the flexible learning process, because the original
learning (in session 1) was counteracted by the changing of the prob-
ability of frequent distractor location in session 2.

Mean RTs are presented in Fig. 6B. Repeated measures ANOVA on
mean RTs with distractor condition (high- and low-probability locations)
and session (one, two, and three) as factors showed main effects for
session, F(2, 46) = 41.2, p < .001, partial η2 = 0.64, but not for dis-
tractor condition, F(1, 23) < 1. The interaction was reliable, F(2,
46) = 3.98, p = .03, partial η2 = 0.15. Following planned comparison
showed that, only in the first session, there existed a suppression effect,
t(23) = 2.51, p = .02; but did not exist in the following two sessions,
both ts < 1.

Together, it suggests that the strong lingering biases observed in
Experiment 1 was not due to an explanation in terms of a change in the
overall probability.

4. General discussion

The present study shows that attentional selection is flexibly
adapted to complex statistical regularities changing over time. People
extract this information even though it contained regularities regarding
the distractor which was never relevant for the task at hand. Consistent
with previous findings (Ferrante et al., 2018; Wang & Theeuwes, 2018a,
2018b), we show reduced attentional capture by the distractor and
target selection was less efficient when they are presented at the high-
versus low-probability location. Moreover, the present study shows that
these effects change with changing regularities in the display. It implies
that people pick up on these changes quickly and adapt their behavior
accordingly even though they were unaware of the changes introduced
in the display. Critically, we show that people adapt to a changing
environment but that there are lingering biases from previous learning
experiences that impact the current selection priorities.

Our modelling pinpoints elegantly how people learn the changing
contingencies regarding the distractor location. First, the evidence from
the modelling analysis regarding normalized attentional capture effect
shows that the initial attentional capture linearly decreases over ses-
sions, suggesting that people continuously picked up the learning ef-
fects from previous regularities. This decrease of attentional capture

across different sessions is the result of changing the high-probability
location as this decrease is not observed when the location remains the
same across sessions in Wang & Theeuwes, 2018a, 2018b (see Fig. 4A
and B). Secondly, the initial high-probability location plays a more
prominent role in biasing attentional selection than subsequent high-
probability locations. Indeed, sessions two and three show a bias to-
wards the initial (first) high-probability location. Crucially, session four
also show a slight bias to initial high-probability location, even though
immediately before session four participants experienced a different
high-probability location (the one during sessions 2 and 3). Only during
the final session, the center of the gradient is basically unbiased and
directed exactly at the current high-probability location. Third, our
modelling results show that the reduction of attentional capture effect
was extended to all locations, and then its gradient becomes more fo-
cused around one location due to lingering biases.

Even though we show great flexibility in learning, we also show that
the initial learning experience has the greatest lingering bias on sub-
sequent learning. Indeed, the location that was most likely to contain a
distractor during session one still had a measurable effect on the at-
tentional bias in sessions two, three, and four. The role of initial
learning was also evident in Experiment 2 in which what was learned in
session one was to some extent reinstated in session three in which all
locations were equally likely to contain a distractor. This lingering bias
of the initial learned material is most likely due to proactive inter-
ference as reported in previous studies; yet, while these previous studies
showed the greatest inflexibility to learn new associations (i.e., it took
up to three days in the Zellin et al., 2014 for new learning to occur), in
our task there was remarkable fast learning and flexible attentional
selection.

Given previous studies that have shown little, if any, flexible ad-
justment to a changing environment, the current findings are intriguing
given that here we show a quick adjustment that is adapted to a
changing distractor probability distribution. The bottom-line is that
when the distractor distribution changes, the attentional bias changes
accordingly with a small lingering effect of initial learning (proactive
interference). The question is then why the current study shows this
great flexibility while previous studies, such as contextual cueing
(Manginelli & Pollmann, 2009), context-target learning (Zellin et al.,
2014), target location probability cueing (Jiang et al., 2013), and dis-
tractor location probability cueing (Sauter et al., 2019; Sauter,
Liesefeld, Zehetleitner, & Müller, 2018), basically show persistent
biases and no flexibility. There are many differences between these
previous experiments and the current one which may explain why the
outcomes of these studies are so different. One aspect that is crucial is
that we employ the additional singleton task (Theeuwes, 1992) in
which the distractor is so salient that it automatically captures atten-
tion. This implies that on most trials, attention is directed to the dis-
tractor location before it is shifted to the target location. This shift of
attention to the distractor location is likely responsible for being able to
quickly learn about the changing contingences of the high probability
location of the distractor going from regularity one to two and from
regularity two to three. Fast learning resulted in a fast and flexible
updating of the weights of distribution of attention across the display.
In other words, we argue that the change in the distractor distribution
may be much more obvious because attention is automatically captured
by the distractor location.

In many of the studies that show little flexibility there is not a
salient singleton calling attention. Indeed, in most contextual cueing
studies (e.g., searching Ts among Ls), nothing really stands out from the
background. In that case attention is probably distributed evenly across
the visual display. One might argue that there are other paradigms that
also have shown little flexibility in unlearning and/or relearning even
though a salient distractor was present in the display (e.g., Sauter et al.,
2019, 2018). Note that in the current study there is one location con-
taining a salient distractor that changes during the experiment. Even
though this change was always probabilistic (the distractor appeared in

5 Unware group (13 participants) was defined by participants that could not
identify the high-probability location in sessions one and two.
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65% at this one particular location) it was always about one location
only. In studies that show little flexibility there was not a single con-
tingency but instead participants had to learn and unlearn a large
number of spatial arrangements (for example typical 12 arrangements
in contextual cueing) and/or the distractor was presented within a
global region in a display (for example the top half of a 32-item display
in target and distractor location probability cueing). Because in pre-
vious studies there was much more variation in the display it may have
prevented learning and unlearning. Finally, the current task was about
learning regularities regarding the distractor location and not about the
target or about target-distractor relationships. Since distractors and
their locations are not part of the top-down task set, there may be little
if any, blocking of new learning, resulting in highly flexible and
adaptive selection. All these aspects may play a role; yet it is most likely
that the automatic capture of attention by the salient singleton location
plays the largest role in this fast learning.

Even though learning is fast and the capture of attention by the
salient singleton may be evident, our awareness assessment indicated
that most participants were not aware that the frequent distractor lo-
cation changed. In addition, as our analysis indicates, if participants
happened to have some awareness, this did not alter the results what so
ever. If anything, this analysis suggests that for this type of learning to
occur, awareness of the contingencies is not needed. Learning is most
likely completely implicit. It should be noted however that the low
awareness of the regularities may also be simply due to the fact that
participants have forgotten the high-probability distractor location as it
is known that there is little memory for task irrelevant features (Chen &
Wyble, 2015).

In sum, the current findings suggest that through statistical learning
the weights within the priority map are constantly adjusted such that
the location that is high-likely to contain a distractor competes less for
attention than all other locations. This process of adjusting the weights
within the spatial priority map seems to be implicit, automatic, and
highly adaptive (Chelazzi et al., 2014).
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