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We propose a sentiment measure jointly derived from out-of-the-money index puts and single stock
calls: implied volatility (IV-) sentiment. In contrast to implied correlations, our measure uses infor-
mation from the tails of the risk-neutral densities from these two markets rather than across their
entire moneyness structures. We find that IV-sentiment measure adds value over and above tradi-
tional factors in predicting the equity risk premium out-of-sample. Forecasting results are superior
when constrained ensemble models are used vis-à-vis unregularized machine learning techniques. In
a mean-reversion strategy, our IV-sentiment measure delivers economically significant results, with
limited exposure to a set of cross-sectional equity factors, including Fama and French’s five factors,
the momentum factor and the low-volatility factor, and seems valuable in preventing momentum
crashes. Our novel measure reflects overweight of tail events, which we interpret as a behavioral
bias. However, we cannot rule out a risk-compensation rationale.

Keywords: Sentiment; Implied volatility; Equity-risk premium; Reversals; Predictability; Machine
learning

JEL classification: G12, G14, G17

1. Introduction

End-users of out-of-sample (OTM) options tend to over-
weight tail events. This behavioral bias, suggested by Tver-
sky’s and Kahneman’s (1992) cumulative prospect the-
ory, is claimed to be present in the pricing of OTM
index puts and in OTM single stock calls (Barberis and
Huang 2008, Polkovnichenko and Zhao 2013). Within the
index option market, the typical end-users of OTM puts
are institutional investors, who use them to protect their large
equity portfolios. Because institutional investors have large
portfolios and hold a substantial part of the total market cap-
italization, OTM index puts are frequently in high demand
and, as a result, overvalued. The reason for such richness
of OTM puts goes back to the 1987 financial market crash.
Bates (1991) and Jackwerth and Rubinstein (1996) argue that
the implied distribution of equity market expected returns
from index options changed considerably following the 1987
market crash. Their findings demonstrate that, since the crash,
a large shift in market participants’ demand for such instru-
ments took place, evidenced by the probabilities implied by
options prices and an increased volatility skew. Bates (2003)

*Corresponding author. Email: luizfffelix@yahoo.com

suggests that even models adjusted for stochastic volatil-
ity, stochastic interest rates, and random jumps do not fully
explain the high level of OTM puts’ implied volatilities (IV).
Accordingly, Garleanu et al. (2009) argue that excessive IV
from OTM puts cannot either be explained by option-pricing
models that take such institutional investors’ demand pressure
into account.†

It has been claimed that OTM calls on single stocks are also
systematically expensive (Barberis and Huang 2008, Boyer
and Vorkink 2014). In line with that claim, Bollen and Wha-
ley (2004) state that changes in the IV structure of single stock
options across moneyness are driven by the net purchase of
calls by individual investors, who are the typical end-user of
these options. The literature provides several explanations for
such strong buying pressure of OTM calls by retail investors.
For example, Mitton and Vorkink (2007) and Barberis and
Huang (2008) propose models in which investors have a clear
preference for positive return skewness, or ‘lottery ticket’ type

† It is important to disentangle the (equity) hedging behavior of
institutional investor to their overall trading activity. Studies, such
as Frijns et al. (2018), provide some evidence that institutional
investors price stocks rationally, supporting the idea that the argued
behavioral bias might be confined to institutional investors’ portfolio
insurance decisions.
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of assets. In consequence, retail investors overpay for these
leveraged securities, making OTM calls expensive and caus-
ing them to yield low forward returns. Cornell (2009) presents
another behavioral explanation for the overpricing of single
stock calls: because investors are overconfident in their stock-
picking skills, they buy calls to get the most ‘bang for the
buck’. A related explanation for the structural overpricing
of single stock calls is leverage aversion or leverage con-
straint (see Frazzini and Pedersen 2014): because investors
are averse to borrowing (levering) or constrained to do so,
they buy instruments with implicit leverage to achieve their
return targets.

Beyond this literature that supports the link between insti-
tutional and individual investor trading activity and the struc-
tural overvaluation of OTM options, we argue that short-term
trading dynamics also influence the pricing of OTM options.
For instance, Han (2008) provides evidence that the index
option’s IV smirk is steeper when professional investors are
bearish. He concludes that the steepness of the IV struc-
ture across moneyness relates to investors’ sentiment. In
the same line, Amin et al. (2004) argue that investors bid
up the prices of put options after increases in stock mar-
ket volatility and rising risk aversion, whereas such buying
pressure wanes following positive momentum in equity mar-
kets. Mahani and Poteshman (2008) argue that trading in
single stock call options around earnings announcements is
speculative in nature and dominated by unsophisticated retail
investors. Lakonishok et al. (2007) show evidence that long
call prices increased substantially during bubble times (1990
and 2000) and that most of the single stock options’ mar-
ket activity consists of speculative directional call positions.
Lemmon and Ni (2011) discuss that the demand for single
stock options (dominated by speculative individual investors’
trades) positively relates to sentiment. Li et al. (2018) suggest
that calls are overvalued versus puts after stock price increases
with the reverse being true after stock price decreases. Lastly,
Polkovnichenko and Zhao (2013) suggest that time-variation
in overweight of tail events derived from index put options
might depend on sentiment, whereas Félix et al. (2019) pro-
vide evidence that such dynamics largely link to sentiment in
single stock options.

The above studies suggest that OTM index puts and single
stock calls are overpriced but that the valuation misalign-
ment fluctuates considerably over time, caused by changes in
investor sentiment. In this paper, we delve deeper into this
issue and investigate how OTM options from index puts and
single stock calls relate to forward returns and overweight of
small probabilities (i.e. tail events).

The first contribution of our paper is to evaluate the infor-
mation content of OTM index puts and single stock calls
jointly, as a measure of sentiment. We assess the ability of this
measure to predict forward equity returns and, more specifi-
cally, equity market reversals, defined as abrupt changes in the
market direction.† Because we find IV skews to be strongly

† Reversals in the context of this paper are not to be confused with
the, so-called, reversal (cross-sectional) strategy, i.e. a strategy that
buys (sells) stocks with low (high) total returns over the past month.
We focus on the overall equity market, rather than investigating
single stocks.

linked to overweight of small probabilities, we hypothesize
that reversals may follow not only periods of extreme IV
skews but also periods of excessive overweight of tails.‡

One characteristic of the literature that analyzes the infor-
mational content of IV skews is that it evaluates index puts’
IV skews and single stock calls’ IV skews completely sep-
arated from each other. As such, our second contribution is
that we are, to the best of our knowledge, the first in the litera-
ture to use IV skews jointly extracted exclusively from OTM
options from both the index and single stock option market
as an indicator for investors’ sentiment. Our sentiment mea-
sure, the so-called IV-sentiment, is calculated as the IV of
OTM index puts minus the IV of OTM single stock calls.§
We conjecture that our IV-sentiment measure is an advance on
the understanding of investors’ sentiment because it captures
the very distinct nature of these markets’ two main categories
of end-users: (1) IV from OTM puts captures institutional
investors’ willingness to pay for leverage to hedge their down-
side risk (portfolio insurance), as a measure of bearishness,
whereas (2) IV from OTM single stock calls captures lev-
ering by individual investors for speculation on the upside
(‘lottery tickets’ buying), as a measure of bullishness. Thus,
a high level of IV-sentiment indicates bearish sentiment, as IV
from index puts outpace the ones from single stock calls. In
contrast, low levels of IV-sentiment indicate bullishness sen-
timent, as IV from single stock calls become high relative to
the ones from index puts.

We find that our IV-sentiment measure predicts equity
market reversals better than overweight of small probabili-
ties itself. It also delivers positive risk-adjusted returns more
consistently than the common Baker and Wurgler (2007) sen-
timent factor when evaluated via two trading strategies, a
high-frequency and a low-frequency one. In univariate and
multivariate predictive regression settings, our IV-sentiment
measure improves the out-of-sample forecast ability of tradi-
tional equity risk-premium models. This result is likely due
to the uniqueness of our IV-sentiment measure relative to
traditional predictive factors, as well as caused by the impo-
sition of some structure into our models (in the form of

‡ The literature on the link between the skew and the overall stock
market is still incipient. Doran et al. (2007) test IV skews as a pre-
dictor of aggregate market returns, but they study one-day ahead
returns to skews, and ignore any longer effects. Other studies on the
conditionality of forward equity market returns to other volatility-
type of measures are: Ang and Liu (2007) for realized variance,
Bliss and Panigirtzoglou (2004) for risk-aversion implied by risk-
neutral probability distribution function embedded in cross-sections
of options, Bollerslev et al. (2009) for variance risk premium,
Driessen et al. (2013) for option-implied correlations, Pollet and Wil-
son (2008) for historical correlations, for implied volatility indices
Rubbaniy et al. (2014) and Vilkov and Xiao (2013) for the risk-
neutral tail loss measure. Most of these studies document a short-
term negative relation between risk measures and equity market
movements.
§ We acknowledge that the implied correlation and the correlation
risk premia measures of Driessen et al. (2013) and Buss et al. (2017)
are also jointly extracted from the index and single stock option mar-
kets. Nevertheless, the implied correlation is calculated using the
entire cross-section of strikes, whereas our measure focuses on OTM
options, i.e. the tails of the implied distribution.
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coefficient constraints). Once these models are constrained,
forecast ensemble approaches largely outperform individual
predictors and unregularized machine learning techniques in
predicting the equity risk-premium in our data set. These find-
ings indicate the usefulness of some economic structure in
modelling of the equity risk premium and highlight the dan-
ger of overfitting when machine learning techniques are not
properly used. Thus, the third contribution of our paper is to
complement the literature on out-of-sample forecasting of the
equity risk-premium (Campbell and Thompson 2008, Welch
and Goyal 2008, Rapach et al. 2010) by suggesting a new
predictor, the IV-sentiment measure. Concurrently, we reiter-
ate earlier findings that constrained linear models remain a
powerful tool to forecast equity returns.

A final contribution of our work is to reveal the ability of
our IV-sentiment measure to improve time-series momentum,
cross-sectional momentum and equity buy-and-hold invest-
ment strategies. Our sentiment-based strategy is uncorrelated
to these strategies, also at the tails, for instance, when cross-
sectional momentum crashes contemporaneously to market
rebounds (Kent and Moskowitz 2016). Consequently, we
document an increase in the informational content of such
strategies when combined with the IV-sentiment strategy,
especially for cross-sectional momentum. In line with this
outcome, we also report that returns from a IV-sentiment-
based strategy are poorly explained by widely used equity
risk factors, such as Fama and French’s five-factors, the
momentum factor (WML) and the low-volatility factor (BAB).
Hence, we propose that active equity managers could bene-
fit from IV-sentiment by time-varying their exposure to the
market Beta.

The remainder of this paper is organized as follows.
Section 2 describes the data and the main methods employed
in our empirical study. In Section 3 we test how our senti-
ment proxy based on OTM options from both the index and
single stock markets relates to forward equity returns and
equity factors. In Section 4, we explore the link between IV-
sentiment and overweight of small probabilities suggested by
the CPT model as well as linking it to the Baker and Wur-
gler (2007) sentiment factor. Section 5 provides robustness
tests and Section 6 concludes.

2. IV-sentiment measure

To compute our IV-sentiment measure, we use S&P 500 index
options’ IV data and single stock weighted average IV data
from the largest 100 stocks of the S&P 500 index. The IV
data used comes from closing mid-option prices from Jan-
uary 2, 1998 to March 19, 2013 for fixed maturities for four
moneyness levels, i.e. 80, 90, 110, and 120, at the three-, six-
and twelve-month maturity both for index and single stock
options. IV for at-the-money (ATM) option, i.e. 100 money-
ness level, is not employed in the calculation of IV-sentiment
but is also part of our data set as used in subsequent analy-
sis. Equation (A8l) in Appendix A shows how the weighted
average single stock IV are computed.

We apply the S&P 500 index weights normalized by
the sum of stock weights for which IVs across all
moneyness levels are available. Following the S&P 500 index

methodology and the unavailability of IV information for
every stock on all days in our sample, stock weights in this
basket change on a daily basis. The sum of weights is, on aver-
age, 58 percent of the total S&P 500 index capitalization and
it fluctuates from 46 to 65 percent.

Continuously compounded stock market returns are cal-
culated throughout our analysis from the basket of stocks
weighted with the same daily-varying loadings used for aggre-
gating the IV data† For index options, we use the S&P
500 index prices to calculate continuously compounded stock
market returns. Realized index returns and single stock returns
are downloaded via Bloomberg.

Our proposed IV skew sentiment metric, the so-called
IV-sentiment, is a combined measure of the index and sin-
gle stock options markets. Thus, our measure differs from
the standard IV skew measures as it uses information from
the two markets jointly instead of only capturing informa-
tion from one market at a time. Our measure also differs
from implied correlations as it uses information from OTM
options and not the full cross-moneyness options’ structure.
Our IV-sentiment measure is specified as follows:

IV -sentiment = OTMindexputIVτp-OTMsinglestockcallIVτc,
(1)

where the subscript τ = 1 · · · 3 indexes the different option-
maturities used, p specifies the moneyness levels 80 and 90
percent from index put options, and c specifies the money-
ness levels 110 and 120 percent from single stock call options.
Thus, our sentiment measure is calculated as permutations of
IVs from the three-, six- and twelve-month maturities, and
four points in the moneyness (80, 90, 110, and 120 percent)
level grid, where the absolute distance from the two money-
ness levels used per sentiment measure and the ATM level
(100 percent moneyness) is kept constant. In other words, the
IV-sentiment metric produced is restricted to the 80 minus
120 percent and the 90 minus 110 percent measures, here-
after called the IV-sentiment 90-110 and IV-sentiment 80-120
measures. From the granular data set across different money-
ness levels and maturities, we create six distinct skew-based
measures of IV-sentiment. Using such a construction, our IV-
sentiment measure jointly incorporates bearishness sentiment
from institutional investors and bullishness sentiment from
retails investors.

3. Predicting with IV-sentiment

3.1. IV-sentiment high frequency strategy

We begin our predictability tests of the IV-sentiment measure
by implementing a high frequency (daily) trading rule with the
aim to predict equity market reversals. Our hypothesis is that

† We thank Barclays Capital for providing the implied volatility
data. Barclays Capital disclosure: ‘Any analysis that utilizes any
data of Barclays, including all opinions and/or hypotheses therein,
is solely the opinion of the author and not of Barclays. Barclays has
not sponsored, approved or otherwise been involved in the making
or preparation of this Report, nor in any analysis or conclusions
presented herein. Any use of any data of Barclays used herein is
pursuant to a license.’
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when the IV-sentiment measure is significantly higher (lower)
than its normal level, overweight of small probabilities is then
extreme and likely to mean-revert in the subsequent periods
in tandem with the underlying market. The trading strategy,
thus, suggests to buy (sell) equities when there is excessive
bearishness (excessive bullishness/complacency) indicated by
high (low) level of IV-sentiment.

The strategy is tested via a pair-trading rule among long and
short positions in the S&P 500 index and a USD cash return
index. For simplicity, it is implemented as a purely directional
strategy where positions are constant in size and IV-sentiment
is normalized via a Z-score. The trading rule enters a five per-
cent long equities position when the IV-sentiment is higher
than a pre-specified threshold, for example, its historical two
standard deviation. The trading rule closes the position, by
entering into a full cash position, when the normalized IV-
sentiment measure converges back to its average. Conversely,
the rule enters a short equities position when the IV-sentiment
is lower than its historical negative two standard deviation
threshold and buys back a full cash position when it converges
to its average. A five basis points trading cost is charged over
the five percent position traded in equities. In order to avoid
strategy overfitting, we (1) compute the Z-score using multi-
ple look-back periods, and (2) use multiple threshold levels to
configure excessive sentiment.† We evaluate these contrarian
strategies on a volatility-adjusted basis using standard perfor-
mance analytics such as the information ratio (IR), downside
risk characteristics, and higher moments of returns. We com-
pare these strategies to (1) other contrarian strategies that
make use of IV volatilities, such as an IV skew-based strat-
egy, a volatility risk premia (VRP) strategy, and an implied-
correlation-based (IC) strategy,‡ (2) the equity market beta,
i.e. the S&P 500 index, and (3) alternative beta strategies,
such as writing put options, a 110-95 collar strategy, the G10
FX carry, equity cross-sectional momentum, and a time-series
momentum strategy.§ We further evaluate such strategies by
estimating the paired correlation coefficient between them,
as well as tail and (distribution) higher-moment dependency
statistics such as conditional co-crash (CCC) probabilities
(see Appendix A.3) and co-skewness. Our back-test samples
start in January 2, 1998 and end in December 4, 2015.¶

The boxplots of IRs obtained by our IV-sentiment strategies
and other IV-based strategies are provided in figure 1. We see
that the IV-sentiment 90-110 strategy seems to perform bet-
ter than the IV-sentiment 80-120 strategy, as the IR means
and dispersion of the former strategy dominate the ones for
the latter. The average IR for the IV-sentiment 90-110 strategy
is positive for the three- and six-month option maturities but

† We also test a percentile normalization and find results qualitatively
similar to the use of Z-scores.
‡ A IC (or dispersion trading) strategy buys (sells) index options and
sells (buys) single stock options, while delta hedging, to arbitrage
price differences in these two volatility markets.
§ Strategy return series used are, respectively, the CBOE S&P 500
BuyWrite Index, the CBOE Investable Correlation Index, the S&P
500 index, CBOE put writing index, the CBOE 110-95 collar, the
DB G10 FX carry index, the JPMorgan Equity Momentum index,
and the Credit Suisse Managed Futures index.
¶ As our IV-sentiment measure requires less (cross-sectional) IV data
than the Delta minus Gamma spread to be calculated, we can extend
our sample, from March 19, 2013, until December 4, 2015.

negative for the twelve-month. For the three- and six-month
strategies, all one-standard deviation boxes for the IR lay
in positive territory, suggesting that the IV-sentiment 90-110
strategy is robust to changes in look-back and outer-threshold
parameters. Further, the IV-sentiment 90-110 is superior to
single-market IV skew-based strategies for the three- and six-
month maturities, but not for the twelve-month maturity. At
the three-month maturity, the average IR and dispersion for
the IV-sentiment 90-110 strategy are similar to the ones for
the VRP strategy. However, for the six- and twelve-month
maturities, the VRP strategies dominate the IV-sentiment 90-
110 based on the average IR, despite larger dispersion for the
six-month maturity strategy.

Figure 1 shows that the IC strategies seem to deliver rela-
tively high and consistent IRs, especially when using 80 and
90 percent moneyness levels. At the three- and six-month
maturities, the performance of IC strategies matches the per-
formance of the IV-sentiment 90-110 and VRP strategies. At
the twelve-month horizon, the 80 and 90 percent IC strate-
gies are superior to the IV-sentiment 90-110 measure. Overall,
the boxplots in figure 1 suggest that the IV-sentiment 90-110
strategy is robust to changes in parameters but also that its
performance is matched by other IV-based strategies. Table 1
Panel A provides performance analytics for the IV-sentiment
90-110 strategy, as well as for alternative strategies.

We observe that the IV-sentiment 90-110 strategy (using
three-month option maturity‖) delivers returns (20 basis
points) and risk-adjusted returns (0.29) that are superior to
many of the other strategies compared, such as the S&P
500, the IV skew, the VRP, the IC, the 90-110 collar, the
G10 FX carry, and the equity momentum. The only strate-
gies that deliver equal or higher risk-adjusted returns than our
IV-sentiment 90-110 strategy are the time-series momentum
and the put writing. The return skewness for our IV-sentiment
strategy is positive (0.10) and above the average of the
other strategies. A strategy that has surprisingly high skewed
returns is the IC (0.43). The drawdown characteristics such as
the maximum drawdown, the average recovery time, and the
maximum daily drawdown of our IV-sentiment strategy are
somewhat similar to the other IV-based strategies.

In the following, we combine our IV-sentiment strategy
with a simple buy-and-hold of the S&P 500 index, a cross-
sectional equity momentum, and a time-series momentum
strategy, on a standalone basis. These combinations are done
by weighting returns in a 50/50 percent proportion. Statis-
tics for the strategies are presented in columns (11) and (13)
of Panel A of table 1. We note that the combined strategies
improve the IRs of these three strategies. The IR for the S&P
500 rises from 0.14 to 0.29, for the time-series momentum
from 0.71 to 0.75 and by a staggering 0.20 points for the
cross-sectional momentum strategy, from 0.14 to 0.34. The
drawdown and skewness characteristics are also improved,

‖ Results provided by tables 1–3 are all based on the three-month
option maturity. The choice made for the three-month maturity is
due to the higher robustness suggested by the IV-sentiment-based
strategies reported in figure 1. Results for the six-month maturity
are qualitatively the same as the three-month maturity ones. For
the twelve-month maturity results for active strategies are poorer as
reported by figure 1, though, results for table 3 for this maturity are
similar to the ones for shorter maturities.
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Figure 1. Information ratio boxplots for daily IV-based strategies. The boxplots depict the distribution of information ratios (IR) obtained by
the IV-based strategies tested, when different look-back periods and outer-thresholds are used per factor-specific strategy. Boxplot A depicts
the distribution of IRs when the IV factor used is obtained from three-month options. Panels B and C depict the same information while using
the IV factors obtained from six- and twelve-month options, respectively. (a) Three-month options. (b) Six-month options. (c) Twelve-month
options.

especially for the cross-sectional momentum strategy. We
argue that these improvements in the IR and downside statis-
tics occur due to the low correlation and low higher moments-
/tail-dependencies of our IV-sentiment strategy with these
alternative strategies. For instance, table 1 Panel B indicates
that the IV-sentiment strategy is negatively correlated to both
equity momentum and time-series momentum, by − 0.16 and
− 0.11, respectively.

Co-skewness and, especially, CCC probabilities of the
IV-sentiment strategy with momentum strategies are also
very low (see Panel C of table 1). Since Kent and
Moskowitz (2016) document that momentum occasionally
crashes, in particular cross-sectional momentum, we suggest
that the large improvement delivered by IV-sentiment to these
strategies is likely due to the reduction of their large negative
tails.

Moreover, table 1 Panel B indicates that the IV-sentiment
strategy is, on average, positively related to other strategies.
The highest correlation observed for the IV-sentiment strategy
is with the IC strategy (0.70), which is an intuitive result given
that these are the only two strategies driven jointly by the
index option market and the single stock option market. The
correlations of our IV-sentiment strategy with other IV-based
strategies are also relatively high: 0.18 with the VRP and
0.41 with the IV skew 90 percent. The correlation of the IV-
sentiment with the S&P 500 index is with 0.10, very low. The
correlation of the IV-sentiment strategy with other strategies

that perform poorly in ‘bad times’ is also low, at 0.04 with
the put writing, at 0.07 with the G10 FX carry, and at 0.13
with the 90-110 collar strategy. We also note that some other
strategies are highly correlated with each other, e.g. with 0.89
between the S&P 500 and the put-writing, whereas negative
correlations are mostly observed for momentum strategies.
Our findings on correlations among strategies are mostly reit-
erated by the estimated tail-dependence between them using
co-skewness and CCC probabilities reported in Panel C of
table 1.

As a robustness check, we analyze whether our IV-
sentiment high-frequency trading strategy performs well due
to both its legs or whether its merit is concentrated in either
the long- or the short-leg. We separate the performance of the
two legs of the strategy as if they were two different strategies
and we compute individual performance statistics.

We find that the median IRs of long-legs are substantially
higher than for short-legs.† The IR distributions of the short
positions seem slightly skewed to the negative side, whereas
for the long positions they seem skewed to the positive side.
These results indicate that the merit of our IV-sentiment strat-
egy is concentrated in its buy- rather than its sell-signal. This
outcome also applies to other IV-based strategies which have

† These results are shown in figure 6 contained in the online
Appendix C.1, available at https://github.com/luizfelix/IV-
Sentiment.
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Table 1. IV-sentiment based pair-trade strategy.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 11 12 13

IV-sentiment IV Skew VRP IC Put 110-95 G10 FX Equity S&P500
Equation

Mom CTA
Panel A - Back-test results 90-110 3m 90 3m 90 3m 90 S&P500 writing collar carry Momentum CTA + IVSent + IVSent + IVSent

Average return 0.20% 0.14% 0.12% 0.17% 0.10% 0.34% 0.14% 0.18% 0.10% 0.51% 0.21% 0.24% 0.53%
Volatility 0.71% 0.71% 0.71% 0.71% 0.71% 0.71% 0.71% 0.71% 0.71% 0.71% 0.71% 0.71% 0.71%
Information ratio 0.29 0.20 0.17 0.24 0.14 0.48 0.20 0.26 0.14 0.71 0.29 0.34 0.75
Skewness 0.10 − 0.07 − 0.01 0.43 − 0.18 − 0.60 0.01 − 0.93 − 0.45 − 0.37 − 0.05 0.09 − 0.37
Kurtosis 15.84 24.73 29.02 18.54 8.12 24.13 2.25 12.04 4.23 2.89 7.66 17.53 2.91
Max drawdown − 1.7% − 1.6% − 2.9% − 1.7% − 3.0% − 2.5% − 2.9% − 3.2% − 2.9% − 1.4% − 2.4% − 2.2% − 1.1%
Avg recovery time (in years) 0.43 0.42 0.41 0.35 0.22 0.06 0.20 0.16 0.25 0.14 0.13 0.21 0.14
Max daily drawdown − 0.55% − 0.53% − 0.49% − 0.47% − 0.34% − 0.53% − 0.29% − 0.50% − 0.35% − 0.31% − 0.29% − 0.43% − 0.48%

IV-sentiment IV Skew VRP IC Put 110-95 G10 FX Equity
Panel B - Correlation matrix 90-110 3m 90 3m 90 3m 90 S&P500 writing collar carry Momentum CTA

IV-sentiment 1 0.41 0.18 0.70 0.10 0.04 0.13 0.07 − 0.16 − 0.11
IV Skew 0.41 1 0.55 0.59 0.18 0.16 0.08 0.16 − 0.05 − 0.03
VRP 0.18 0.55 1 0.51 0.41 0.42 0.18 0.15 − 0.13 − 0.11
IC 0.70 0.59 0.51 1 0.34 0.31 0.24 0.14 − 0.21 − 0.13
S&P500 0.10 0.18 0.41 0.34 1 0.89 0.88 0.28 − 0.05 − 0.15
Put writing 0.04 0.16 0.42 0.31 0.89 1 0.68 0.26 − 0.08 − 0.16
110-95 collar 0.13 0.08 0.18 0.24 0.88 0.68 1 0.23 0.13 − 0.05
G10 FX carry 0.07 0.16 0.15 0.14 0.28 0.26 0.23 1 0.02 − 0.05
Equity Momentum − 0.16 − 0.05 − 0.13 − 0.21 − 0.05 − 0.08 0.13 0.02 1 0.30
CTA − 0.11 − 0.03 − 0.11 − 0.13 − 0.15 − 0.16 − 0.05 − 0.05 0.30 1

Panel C - Tail dependence IV-sentiment IV Skew VRP IC Put 110-95 G10 FX Equity
with IV-sentiment 90-110 3m 90 3m 90 3m 90 S&P500 writing collar carry Momentum CTA

Co-skewness 1.6E − 12 − 2.9E − 13 1.0E − 11 4.6E − 12 − 6.5E − 10 − 3.3E − 09 9.6E − 10 − 9.8E − 10 5.9E − 10 − 3.2E − 09
1% cond. crash prob. 100% 51% 36% 77% 23% 21% 19% 9% 19% 2%
2% cond. crash prob. 100% 46% 37% 76% 32% 26% 26% 13% 15% 2%
5% cond. crash prob. 100% 44% 37% 78% 29% 32% 26% 17% 18% 7%

Panel A reports the results of contrarian pair-trade strategies based on our IV-sentiment 90-110 indicator and on other IV-based strategies such as the IV Skew, the volatility-risk premia (V RP), and other
traditional and alternative beta strategies, i.e. buy & hold the S&P500 index, put writing, 110-95 collar, G10 FX carry, cross-sectional equity momentum, and time-series momentum. The IV-based
strategies use 252 days as the look-back period and + / − two standard deviations as convergence thresholds. The columns (11) and (12) of Panel A report statistics for strategies that combine the
three-month IV-sentiment 90-110 strategy (column (1)) with the buy & hold the S&P 500 index (column (5)) and the time-series momentum strategy (column (10)). Panel B reports the correlation
coefficients of daily returns estimated over the period between January 2, 1998 and December 4, 2015, for the same strategies reported in Panel A. Panel C reports the co-skewness and the conditional
co-crash (CCC) probabilities of the three-month IV-sentiment 90-110 with the other strategies, which indicate the degree of tail-dependence among them.
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their long-legs outperforming their short-legs. This finding
suggests that extreme bearish sentiment signals may be more
reliable than extreme bullish sentiment signals.

Our results, thus, offer additional findings to the litera-
ture that explores the link between variance-measures and
forward returns. Most of these studies recognize a negative
and short-term relation between risk measures and returns,
where a high variance links to subsequent negative to low
returns. In contrast, our findings suggest that a high level of
IV skew relates to subsequent positive and high returns. Our
finding is mostly in line with Bollerslev et al. (2009), who
document that equity market reversals are predicted by the
variance risk-premium, but it also reiterates the conclusion of
Xing et al. (2010), who suggest that equity markets are slow
to incorporate the information embedded in implied volatility
skews.

Further, we aimed to compare the trading performance of
the Baker and Wurgler (2007) sentiment measure to our high-
frequency strategy but this was not possible as the former
factor is only available on a monthly or quarterly frequency
and was only published until 2010. Thus, in a next step, we
compare how trading strategies using our IV-sentiment mea-
sure compare to strategies that use the sentiment factor of
Baker and Wurgler (2007). We do this by implementing a low-
frequency pair trading strategy using both predictors. This
pair-trading strategy is identical to the one applied above with
the only difference being the rebalancing frequency and the
number of observations in the look-back window. We use the
following look-backs for the calculation of Z-scores: 1, 3, 6,
9, 12, 18, and 24 months. The IV-sentiment measures used
are the IV-sentiment 80-120 and 90-110 factors, available in
our three different option maturities. Trading costs and strat-
egy exits are the same as for the high-frequency pair-trade
strategy. Figure 2 provides our results by a series of boxplots.
The empirical findings are displayed in columns for the dif-
ferent option maturities and in rows for the different statistics
evaluated: (1) IR, (2) return skewness, and (3) horizon, prox-
ied by the average drawdown length (in months) observed per
strategy.

Our findings suggest that the IRs of the IV-sentiment strate-
gies are much less dispersed than the ones for the sentiment
factor by Baker and Wurgler (2007). The median IR for the
IV-sentiment 90-110 factor is also higher than for the other
two strategies. The IV-sentiment 90-110 factor is the only
strategy in which almost all backtests deliver positive IRs,
with the exception of a few outliers. This is not the case
for the other strategies, as a substantial amount of backtests
deliver negative IRs. In line with our earlier results, the IV-
sentiment 90-110 factor dominates the IV-sentiment 80-120
factor. The return skewness for the IV-sentiment 90-110 strat-
egy also dominates the ones for the other two strategies, as all
boxplot features are superior. The IV-sentiment 90-110 factor
delivers the lowest median horizon of all strategies. The aver-
age horizons estimated for the IV-sentiment 90-110 factor are
12, 13, and 19 months, respectively, for the strategies based
on the three-, six- and twelve-month options. The dispersion
of strategies’ horizon is, however, higher for the IV-sentiment
90-110 factor than for the Baker and Wurgler (2007) sentiment
factor. We conclude that our IV-sentiment measure outper-
forms a trading strategy based on the sentiment factor by

Baker and Wurgler (2007) on several key aspects: IR, return
skewness, and trade horizon.

3.2. Out-of-sample equity returns predictive tests

3.2.1. Univariate models and ensemble forecast. Follow-
ing our hypothesis that extreme bearishness and bullishness
sentiment is likely followed by reversals in equity markets,
we test in the following whether our IV-sentiment measure has
out-of-sample predictive power in forecasting the equity risk
premium, in line with the analysis of Welch and Goyal (2008).
We follow the methodology used by Campbell and Thomp-
son (2008) and Rapach et al. (2010), who build on Welch and
Goyal (2008). Similarly to these three studies, our predictive
OLS regressions are formulated as:

rt+1 = αi + βixi,t + εt+1, (2)

where rt+1 is the monthly excess return of the S&P 500 index
over the risk-free interest rate, xt is an explanatory variable
hypothesized to have predictive power, and εt+1 is the error
term. Our predictive regressions also use the monthly data
set provided by Welch and Goyal (2008),† but the scope
of 14 explanatory variables used closely follows Rapach
et al. (2010).‡

From the predictive regressions in equation (2), we gen-
erate out-of-sample forecasts for the next month (t + 1) by
using an expanding window. Following Rapach et al. (2010),
the first parameters are estimated using data from 1947:1
until 1964:12, and forecasts are produced from 1965:1 until
2014:12. The estimating window for B/M starts slightly after
1947:1, while the number of observations available allows
forecasting B/M to start also at 1965:1. For the IV-sentiment-
based regression, the data used for the first parameter estima-
tion starts at 1998:1 and ends at 1999:12 so that out-of-sample
forecasting is performed from 2000:1 to 2014:12 only.

Following Campbell and Thompson (2008) and Rapach
et al. (2010), restrictions on the regression model specified
by equation (2) are applied. The first restriction concerns the
sign of the slope coefficients of equation (2) for the 14 Welch
and Goyal (2008) variables we employed. The second restric-
tion comprises setting negative forecasts of the equity risk
premium to zero. We specify an additional model contain-
ing both coefficient and forecast sign restrictions. The original
equation (2) with no restrictions applied is called the unre-
stricted model, whereas the model with the two restrictions is
called the restricted model. Once individual forecasts for rt+1

are obtained using the restricted and unrestricted models for
every variable, weighted measures of central tendency (mean
and median) of the N forecasts are generated by equation (3):

r̂c,t+1 =
N∑

i=1

ωi,t r̂i,t+1, (3)

† Welch and Goyal (2008) monthly data was updated until December
2014 and is available at http://www.hec.unil.ch/agoyal/.
‡ These variables are: the dividend price ratio, the dividend yield, the
earnings-price ratio, the dividend-payout ratio, the book-to-market
ratio, the net equity issuance, the Treasury bill rate, the long-term
yield, the long-term return, the term spread, the default yield spread,
the default return spread, the inflation rate, and the stock variance.



830 L. Félix et al.

0.6

0.4

0.2

0.0

–0.2

4

2

0

150

100

50

sk
w

3m
80

12
0

sk
w

3m
90

11
0

IV
S

en
tB

W

sk
w

3m
80

12
0

sk
w

3m
90

11
0

IV
S

en
tB

W

sk
w

3m
80

12
0

sk
w

3m
90

11
0

IV
S

en
tB

W

0

–2

IR
R

et
ur

n 
sk

ew
ne

ss
H

or
iz

on

A) Three-month options B) Six-month options C) Twelve-month options

Figure 2. Information ratio, skewness and horizon for monthly IV-based strategies. The boxplots depict the distribution of information
ratios (IRs), return skewness, and trade horizon (average drawdown) obtained by the IV-sentiment strategies tested, as well as the Baker
and Wurgler (2007) sentiment factor when different look-back periods and outer-threshold are used per strategy. Boxplot A depicts the
distribution of these statistics when the IV factor used is obtained from three-month options. Panel B and C depicts the same information but,
respectively, when the IV factors used are obtained from six- and twelve-month options. Boxplots of IR, return skewness and trade horizon
for the Baker and Wurgler (2007) factor are the same across option horizons but are shown for comparison with the IV-sentiment strategies.
(a) Three-month options. (b) Six-month options. (c) Twelve-month options.

where (ωi,t)
N
i=1 are the combining weights available at time t.

Our forecast ensemble method is a more simple and agnostic
approach than the one used by Rapach et al. (2010).† The
mean and median ensemble methods are simply the equal
weighed (ωi,t = 1/N) average and median of the forecasts.
Our benchmark forecasting model is the historical average
model with the use of an expanding window.

We use the out-of-sample R2 statistic method (R2
OS) intro-

duced by Campbell and Thompson (2008) and followed by

† Rapach et al. (2010) classify their ensemble methods in two
classes: the first class uses a mean, median, and trimmed mean
approach. The second class uses a discounted mean square prediction
error method, which combines weights as a function of the historical
forecasting performance of the individual models during the out-of-
sample period. This method weights more recent forecasts heavier
than older ones by the use of one additional parameter. Despite
the desirable features of such a second class combination method,
we prefer to stick to the first class methods because they are more
transparent and do not require the choice of an additional parameter.

Rapach et al. (2010) for forecast evaluation. This method
compares the performance of a return forecast r̂t+1 and a
benchmark or naïve return forecast r̄t+1 with the actual real-
ized return (rt+1). We note that this method can be applied
either to the single factor-based forecast models as well as to
the ensemble or multifactor forecast models, both described
in the previous section. The R2

OS statistic is given as:

R2
OS = 1 −

∑q
k=q0+1

(rm+k − r̂m+l)
2∑q

k=q0+1
(rm+k − r̄m+l)2

, (4)

which evaluates the return forecasts from a predictive model
(in the numerator) and the return forecasts from a benchmark
or naïve model (in the denominator) by comparing the mean
squared prediction errors (MSPE) for both methods. Because
the ratio of MSPEs is subtracted from 1 in the R2

OS statistic,
its interpretation becomes: if R2

OS > 0, then MSPE of r̂t+1 is
smaller than for r̄t+1, indicating that the forecasting model
outperforms the naïve (benchmark) model, and vice-versa.
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To better evaluate the out-of-sample performance of models
graphically, we employ the cumulative cum of squared error
difference (CSSEDOS) statistic given below. The advantage of
CSSEDOS over R2

OS is that it starts at zero and accumulates
over time in a homoscedastic manner, whereas R2

OS typically
displays a very high volatility at the start of the (accumulation)
period and a lower volatility of the metric as t increases†:

CSSEDOS =
q∑

k=q0+1

(rm+k − r̄m+l)
2 −

q∑
k=q0+1

(rm+k − r̂m+l)
2.

(5)
The results from our out-of-sample equity returns predictive
tests are reported in table 2. Panel A reports the findings
for the out-of-sample forecasting period between 1965:1 and
2014:12 for all individual variables except our IV-sentiment
factor (IV Sent), for which forecasts are only available from
2004:1–2014:12, and for the ensemble forecasts. For individ-
ual models, R2

OS comes from the restricted model, whereas
for the aggregated models, the results are reported for both
the restricted and the unrestricted models. The results of
the aggregate models are reported in means and medians,
reflecting the aggregation method used.

Panel A suggests that performance is not consistent across
factors within the longer history of the out-of-sample test.
Some factors outperform others by a large amount. Con-
currently, the performance of most single factors is quite
inconsistent through time, as figure 3 depicts: the slope and
levels of CSSEDOS constantly change from negative to posi-
tive and vice-versa for almost all factors. For some of them,
CSSEDOS even flips sign at times within the sample. In con-
trast, the aggregated models deliver better performance across
restricted and unrestricted models using either averages or
medians for aggregation method. Moreover, the performance
of the weakest aggregate model (0.63) is superior to the best
individual factor (INFL at 0.48) within the full sample.

Once we evaluate the 2004:1–2014:12 period, when IV
Sent is used, we observe that the performance across factors
remains inconsistent. The performance across individual fac-
tors looks less dispersed in this sample than in the full sample,
but the overall performance deteriorates. The IV Sent factor
performs well (ranging from 1.59 to 2.45 depending on the
maturity), despite being strongly outperformed by the SV AR
factor, while other factors perform extremely poorly (NTIS
at − 2.63, INFL at − 2.58). The ensemble models that do
not include IV Sent in their median versions (restricted and
unrestricted) underperform the naïve forecasting benchmark
as their R2

OS is negative. Interestingly, when our IV Sent factor
is added to these models, the performance improves substan-
tially, outperforming the benchmark. We observe the same
for models based on the mean: the mean-unconstrained and
the mean-constrained models ex-IV Sent show a R2

OS of 0.25
and 0.40, respectively. When the IV Sent factor is added to
them, R2

OS improves to 0.63 and 0.75, respectively. Therefore,
our IV Sent factor seems to impact the ensemble model in a

† The undesirable graphical pattern of R2
OS is caused by the nor-

malization through
∑q

k=q0+1(rm+k−r̄m+l)2 , which at the start of the

sample tends to be very small relative to CSSEDOS . Note that R2
OS =

CSSEDOS/
∑q

k=q0+1(rm+k−r̄m+l)2 .

very distinct way when compared to other factors. R2
OS from

models that use median forecasts are worse than for models
that aggregate forecasts by averaging. Nonetheless, improve-
ments delivered by the inclusion of IV Sent and the imposition
of model constraints are qualitatively the same across models
aggregated by either median or averaging.

We also find that the correlation coefficient of the IV Sent
using three-month options with other individual factors is
most of the times negative or close to zero, and only exceeds
0.5 when evaluated against long-term yield (LTY ).‡ Such
correlation is higher for the IV Sent factor using six- and
twelve-month option maturities. These results suggest that the
improvements made by our IV Sent factor to the ensemble
models stem partially from diversification benefits rather than
from forecast performance (R2

OS) alone.

3.2.2. ‘Kitchen sink’ and machine learning-based
models. Further, we also test a ‘kitchen sink’ model§ as used
by Welch and Goyal (2008) and Rapach et al. (2010) but we
extend it toward machine learning algorithms. Our aim is to
test whether more advanced models can fix the exceptionally
poor out-of-sample performance of the multivariate approach
to forecast the equity risk premium, as reported by Welch and
Goyal (2008) and Rapach et al. (2010). The models tested
by us in addition to the ‘kitchen sink’ OLS model are: (1)
Ridge regression, (2) Principal Component Regression, (3)
Random forest, and (4) Deep Neural Networks.¶ Our hypoth-
esis for performing this models’ ‘horse race’ is that machine
learning-based models might be able to improve over the mul-
tivariate OLS regression by either (1) reducing its variance
and, so, avoiding overfitting, (2) better modelling potentially
non-linearities present in the data, and (3) dampening the
effect of collinearity in the regressors.

Our results from testing a ‘kitchen sink’ OLS model reit-
erate the ones of Welch and Goyal (2008) and Rapach
et al. (2010) (see table 2). The model is the worst performing
one in R2

OS terms across all univariate and multivariate mod-
els. In contrast, individual machine learning algorithms using
the same set of variables outperform the ‘kitchen sink’ model
but do not consistently outperform the models that ensem-
ble forecasts from univariate models. The Ridge regression
model seems to be the best performing across all multivari-
ate models as it delivers high R2

OS in the 1965:1–2014:12
sample and a less negative R2

OS than other models in the
2004:1–2014:12 sample. Given its linear character, the main
advantages of Ridge regression over the ‘kitchen sink’ is the

‡ A full correlation matrix among the individual predictive factors
tested by Rapach et al. (2010) and IV-sentiment factors can be
provided upon request.
§ The ‘kitchen sink’ includes all 14 predictive variables used in our
univariate models.
¶ We tune Ridge regression by using cross-validation with 10 folds.
We tune our Random forest model using a single pass of out-of-bag
errors to estimation of the optimal number of predictors sampled for
spliting at each node. We use cross-validation in the estimation of
our Deep Neural Networks model to come up with the number of
layers and neurons (among a set of pre-defined structures) only. We
do not apply any early-stopping procedure. A detailed description of
these models and tuning procedures is out of scope of this paper. For
specifics on these models, see Hastie et al. (2008)
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Table 2. Out-of-sample equity risk premium.

Individual predictive regression model forecast Ensemble forecasts Machine learning methods

Predictor R2
OS(%) Predictor R2

OS(%) Ensemble methods R2
OS(%) Methods R2

OS(%)

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. 1965:1–2014:12 out-of-sample period
D/P − 0.30 LTY − 0.28 Mean-Unconstrained 1.08 Kitchen-sink (OLS) − 88.14
D/Y − 0.11 TMS − 0.50 Median-Unconstrained 0.64 Ridge regression 0.81
E/P − 0.41 LTR 0.22 Principal Component Regression − 5.93
D/E − 0.76 DFY − 0.69 Mean-Constrained 1.11 Random Forest − 9.97
B/M − 0.88 DFR − 0.55 Median-Constrained 0.63 Deep Neural Networks − 84.14
NTIS − 0.83 TBL − 0.01 Mean-models − 6.35
INFL 0.48 Median-models − 2.06
SVAR 0.02

Panel B. 2004:1–2014:12 out-of-sample period
D/P − 0.82 LTY 0.62 Mean-Unconstrained 0.25 Kitchen-sink (OLS) − 62.64
D/Y − 0.53 TMS − 0.94 Median-Unconstrained − 0.35 Ridge regression − 1.76
E/P − 1.31 LTR 0.01 Mean-Unconstrained + IVSent 0.63 Principal Component Regression 0.09
D/E − 2.13 DFY − 1.26 Median-Unconstrained + IVSent 0.27 Random Forest − 8.80
B/M − 0.16 DFR − 0.64 Mean-Constrained 0.40 Deep Neural Networks − 66.95
NTIS − 2.63 TBL − 0.05 Median-Constrained − 0.25 Mean-models 1.24
INFL − 2.58 IVSent3m 2.45 Mean-Constrained + IVSent 0.75 Median-models 2.12
SVAR 4.17 IVSent6m 2.45 Median-Constrained + IVSent 0.19

IVSent12m 1.59

This table reports the results from the predictive regressions of individual factor models and of ensemble-factor models relative to the
historical average naïve (benchmark) model. R2

OS is the Campbell and Thompson (2008) out-of-sample R2 statistic. If R2
OS > 0, then mean

squared prediction errors (MSPE) of r̄t+1, i.e. the predictive regression forecast, is smaller than for r̄t+1, i.e. the naïve forecast, indicating
that the forecasting model outperforms the latter (benchmark) model. Panel A reports the results for the full out-of-sample period available
(1965:1–2014:12) for all variables tested by Rapach et al. (2010). Panel B reports the results for the latest period within the entire out-of-
sample history (2004:1–2014:12) and includes the three-month IV-sentiment 90-110 factor (IVSent) in addition to the variables tested by
Rapach et al. (2010).

regularization (shrinkage) applied as well as its adequacy to
multicollinear systems. As the principal component regres-
sion also addresses multicollinearity problems and it performs
quite poorly in the 1965:1–2014:12 sample, we conjecture
that the main benefit delivered by the Ridge regression might
be the shrinkage, which likely dampens the overfitting under-
gone by the ‘kitchen sink’ model. The Random forest model
performs poorly, although, less bad than the ‘kitchen sink’
and the Deep Neural Networks models, suggesting that the
structure imposed by constraint plus forecasting combina-
tion seems to add more value to predictions than being able
to capture non-linear relationships. The Deep Neural Net-
works model performs as bad as the ‘kitchen sink’ model,
likely due to overfitting. As we intentionally did not tune
the Random forest and the Deep Neural Networks models
much, the chance these models are overfitted is high. These
two approaches are known by their potential for overfit-
ting if regularization and stop-training procedures are not
imposed. In summary, our results indicate the usefulness of
some economic structure in modelling of the the equity risk
premium and highlight the danger of overfitting when pow-
erful machine learning methods are used without the proper
handling.

Observing the evolution of CSSEDOS for the median-based
(restricted and unrestricted) ensemble models in Plot A of
figure 4, we notice that both lines have slopes that are predom-
inantly positive or flat. Positive slopes of the CSSEDOS curve
indicate that the ensemble model outperforms the benchmark
out-of-sample. These CSSEDOS lines match very closely the

ones presented by Rapach et al. (2010) up to 2004, when their
sample ends. The evolution of R2

OS for our individual factors
in figure 3 is also very similar to Rapach et al. (2010): some
CSSEDOS curves are positively sloped during certain periods,
but often all factors display negatively sloped curves. The R2

OS
curves for the IV Sent factor is mostly positively sloped but
relatively flat from 2004 to 2007, see the last plot in figure 4.
These results reiterate the primary conclusion of Welch and
Goyal (2008), Campbell and Thompson (2008), and Rapach
et al. (2010): individual predictors that reliably outperform the
historical average in forecasting the equity risk premium are
rare but, once these models are sensibly restricted and aggre-
gated in a multi-factor model, their out-of-sample predicting
power improves considerably. This conclusion applies also
to the inclusion of our IV Sent factor within the multi-factor
model. Plot B of figure 4 shows that the CSSEDOS curves for
the model that includes the IV Sent factor are visibly steeper
than the ones without it. Further, the findings in figure 4 indi-
cate that restricted models are superior to unrestricted ones
with either higher or less volatile CSSEDOS .

Even though the ensemble factor models do outperform the
individual predictors, the red and black lines in Plots A and B
of figure 5 are not always positively sloped, which is in line
with Rapach et al. (2010). The R2

OS curve is strongly posi-
tively sloped from 1965 to 1975, more moderately positively
sloped from 1975 to 1992, negatively sloped from 1992 to
2000, and then slightly positive to flat until 2008, when it
sharply drops amid the global financial crisis up to Decem-
ber 2014. The addition of our IV Sent factor in the ensemble
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Figure 3. Cumulative Sum of Squared Error Differences of single factor predictive regressions. The lines in every plot depict the out-of-sam-
ple Cumulative Sum of Squared Errors Differences (CSSEDOS) calculated by equation (5) for the historical average benchmark-forecasting
model minus the cumulative squared prediction errors for the single-factor forecasting models constructed by using 14 out of all the explana-
tory variables suggested by Welch and Goyal (2008), as well as the IV-sentiment 90-110 factor with a three-month maturity. Positive values
of CSSEDOS mean that single-factor forecasting models that employ the Welch and Goyal (2008) factors and IVsent outperform the historical
average benchmark-forecasting model.

Jan 65 Jan 03 Jul 04 Jul 05 Jul 06 Jul 07 Jul 08 Jul 09 Jul 10 Jul 11 Jul 12 Jul 13 Jul 14Jan 70 Jan 76 Jan 82 Jan 88 Jan 94 Jan 00 Jan 06 Jan 12

Median frcst
Median coef const frcst

Median coef const frcst
Median frcst

Median frcst with IVSent
Median coef const frcst with IVSent

0.
00

0

0.
00

60
0.

00
65

0.
00

70
0.

00
75

0.
00

80

0.
00

2
0.

00
4

C
um

ul
at

iv
e 

S
S

E
 D

iff
er

en
ce

s

C
um

ul
at

iv
e 

S
S

E
 D

iff
er

en
ce

s

0.
00

6
0.

00
8

(a) Without IV-sentiment (b) With IV-sentiment

Figure 4. Cumulative Sum of Squared Error Differences of combined predictive regressions. The black line in Plot A depicts the Cumula-
tive Sum of Squared Error Differences (CSSEDOS) for the historical average benchmark-forecasting model minus the cumulative squared
prediction errors for the aggregated predictive regression-forecasting model construct by using 14 Welch and Goyal (2008) variables in uni-
variate unrestricted models. The green and red lines in Plot A depict the same forecast evaluation statistic, i.e. the CSSEDOS , when such 14
univariate models are restricted as suggested by Campbell and Thompson (2008). The red line represents the CSSEDOS when coefficients are
constrained to have the same sign as the priors suggest. Plot B zooms in on the 2003:1–2014:12 period, where the black and red lines are the
same as in Plot A, whereas the green and blue lines are the the CSSEDOS when our IV-sentiment factor is added to the multifactor forecasts
model for the unrestricted and restricted model, respectively. The forecasting period is 1965:1–2014:12 for all variables except IVSent, for
which forecasts are only available from 2004:1–2014:12. Forecast aggregation in both models is done by calculating the mean of the t + 1
forecast from each individual predictive regression. (a) Without IV-sentiment. (b) With IV-sentiment.

model produces the blue and green lines in Plot B of figure 4.
These new curves have an equally flat slope during the 2004
to 2008 period, while both experience a sharp rise since the
beginning of 2008. These curves’ profiles suggest that our IV
Sent factor has considerably improved the out-of-sample per-
formance of the ensemble model especially in times when the
other factors broke down or did not provide an edge versus the
historical average predictor. Thus, the inclusion of our IV Sent

factor seems to revive the conclusion reached by the previous
literature, where ensemble factor models are able to improve
compared to individual factor models. At the same time, the
recent poor performance of the ensemble models ex-IV Sent
underscores that factor identification is still a major challenge
for the specification of combined models. Overall, our empir-
ical findings suggest that IV-based factors provide a relevant
explanatory variable for the time-variation of equity returns.
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3.3. IV-sentiment and equity factors

In this section we test whether the stream of returns produced
by the IV-sentiment trading strategy is connected to (cross-
sectional) equity factors. Our goal is to evaluate whether the
IV-sentiment loads heavily on equity factors previously identi-
fied in the literature. Since the IV-sentiment aims to time entry
and exit-points into the equity markets, it could potentially
also be used by equity managers to time their beta exposure.
Nevertheless, if this timing-strategy largely resembles equity
factors, it should be less useful to equity portfolio managers.

We perform this analysis using equations (6a)–(6d), as well
as univariate models using the individual factor employed in
the following models:

IVSentd = αd + (Mkt − RF)d + SMBd + HMLd + εd , (6a)

IVSentd = αd + (Mkt − RF)d + SMBd

+ HMLd + WMLd + εd , (6b)

IVSentd = αd + (Mkt − RF)d + SMBd + HMLd

+ WMLd + RMWd + CMAd + εd , (6c)

IVSentm = αm + (Mkt − RF)m + SMBm + HMLm

+ WMLm + RMWm + CMAm + BABm + εm,
(6d)

where the subscript d = 1, 2, . . . , D stands for daily returns,
whereas the subscript m = 1, 2, . . . , M stands for monthly
returns, both extending from January 2, 1999 to Decem-
ber 8, 2015. The first set of explanatory variables, used in
equation (6a), are the market (Mkt-Rf ), the size (SMB),
and the value (HML) factors, as proposed by Fama and
French (1992). Additionally, the profitability (RMW ) and
investment (CMA)† factor of Fama and French (2015), the
momentum factor (WML) of Carhart (1997), and the low- ver-
sus high-beta (BAB), known as the ‘Betting Against Beta’
factor of Frazzini and Pedersen (2014) are used in equa-
tions (6b)–(6d).‡ The correlation structure of these factors
estimated using our monthly data is reported in figure 5. In
brief, it suggests that some cross-sectional equity factor can
be highly positively or negatively correlated with each other
but, more importantly, the IV-sentiment strategy seems only
lowly correlated to all series.

Table 3 reports the results of equations (6a)–(6d). Note that
the IV-sentiment has very little Beta exposure as the coeffi-
cients for the (Mkt − RF) factor are close to zero across all
models. This result matches our expectations as IV-sentiment
has, in fact, a time-varying long or short exposure to the
equity market. The IV-sentiment strategy also seems to have a
large-cap tilt as the coefficient of SMB is often statistically
significant and small or negative, ranging from − 0.107 to
0.147. Again, this is an expected result as the IV-sentiment
strategy is implemented in the US large cap universe, i.e.
the S&P500 index. Coefficients for HML are also either low
or negative, suggesting a growth tilt. HML is positive in

† The Fama and French factors SMB, HML, RMW and CMA stand,
respectively, for small minus big (size), high minus low (valuation),
robust minus weak (profitability), and conservative minus aggressive
(investments).
‡ The regressions that include the BAB factor have monthly fre-
quency as this factor is not available in a daily frequency.

the simpler models, i.e. in the univariate regression and in
the Fama and French (1992) model, but negative in the more
comprehensive models. This finding suggests the presence of
multicollinearity in the model, which affects the estimated
coefficient for HML. This effect is likely caused by the addi-
tion of the RMW factor, as it has a correlation of 0.5 in our
sample (see figure 5).

Turning to the factors in equations (6b)–(6d) only, we
find that IV-sentiment has negative exposure to the cross-
sectional momentum factor (WML) consistently across all
regressions. At first glance, this result makes sense as IV-
sentiment is a mean-reversion strategy. Nevertheless, because
the IV-sentiment reflects mean-reversion in the overall equity
market, hence in a time-series fashion, rather than cross-
sectionally, the expectation of a negative relation between
these variables is ambiguous. Moskowitz et al. (2012) report
that time-series momentum and cross-sectional momentum in
the equity markets are strongly related though, which suggests
that our original assumption that IV-sentiment is negatively
correlated to WML holds. Among all factors, WML is almost
the only one for which the statistical significance holds across
all regressions. WML seems also to deliver, with around 2 per-
cent, high explanatory power relative to the other factors used.
This strong and robust negative link between IV-sentiment and
WML reiterates our earlier suggestion that these two risk fac-
tors complement each other. And, by doing so, IV-sentiment
might be able to mitigate some momentum crashes.

Moreover, the exposure of IV-sentiment to the profitability
factor (RMW ) is small and always negative, despite the fact
that the coefficients are not statistically significant in the two
multivariate models applied, only in the univariate regression.
IV-sentiment is positively exposed to the investment factor
(CMA) as its coefficients are significant across all regres-
sions. We interpret that this positive relation with IV-sentiment
relates to a higher frequency of reversals in periods when
firm investments are low (likely during recessions or in the
late economic cycle), which coincides with conservative firms
outperforming aggressive ones. Besides, IV-sentiment loads
negatively on the BAB factor, despite being only statistically
significant in the univariate regression. This connection is
argued to be linked to the profitability factor (RMW ) by Fama
and French (2016), which may help explain why both regres-
sors are not statistically significant in the multivariate model,
whereas they are strongly significant in the univariate regres-
sions. In line with this suggestion, the estimated correlation
between these two factors in our sample is 0.59 (see figure 5).

Last but not least, none of our regression models explains
the variability IV-sentiment much as R2 from equation (6d)
is with 13 percent, at best, always low. This finding indicates
that the IV-sentiment strategy is quite distinct from factors typ-
ically used by portfolio managers for single name equity man-
agement. Hence, as the IV-sentiment strategy embeds a timing
approach for equity markets, which can be implemented via a
dynamic exposure to market Beta, equity portfolio managers
could enhance their strategies by making use of it.

3.4. Behavioral versus risk-sharing explanations

Another perspective of equity market dynamics provided by
IV-based factors that are jointly extracted from single stock
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Table 3. Regression results: IV-sentiment and equity factors.

Panel A – Multivariate Panel B – Univariate

Intercept 0.000 0.000 0.000 0.007∗ 0.000 0.000 0.000 0.000 0.000 0.000 0.007
(0.000) (0.948) (0.000) (0.004) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.004)

Mkt-RF 0.070∗∗∗ 0.042∗∗∗ 0.060∗∗∗ 0.072 0.073∗∗∗
(0.010) (0.011) (0.012) (0.104) (0.010)

SMB 0.134∗∗∗ 0.153∗∗∗ 0.136∗∗∗ − 0.107 0.147∗∗∗
(0.021) (0.021) (0.022) (0.152) (0.021)

HML 0.080∗∗∗ 0.018 − 0.064∗∗∗ − 0.271 0.086∗∗∗
(0.019) (0.021) (0.024) (0.180) (0.020)

WML − 0.121∗∗∗ − 0.141∗∗∗ − 0.179∗ − 0.134∗∗∗
(0.015) (0.015) (0.094) (0.013)

RMW − 0.042 − 0.130 − 0.137∗∗∗
(0.029) (0.220) (0.024)

CMA 0.244∗∗∗ 0.624∗∗ 0.107∗∗∗
(0.036) (0.245) (0.029)

BAB − 0.186 − 0.215∗∗
(0.126) (0.098)

R2 2% 4% 5% 13% 1% 1% 0% 2% 1% 0% M4%
F-stats 36.7 45.0 38.0 2.5 49.2 47.6 19.4 104.5 31.5 13.7 4.8
AIC − 29771 − 29837 − 29879 − 430 − 29715 − 29713 − 29685 − 29769 − 29698 − 29680 − 429
BIC − 29739 − 29798 − 29827 − 405 − 29696 − 29694 − 29666 − 29750 − 29678 − 29661 − 421

This table reports regression results for equations (6a), (6c) and (6d). The dependent variable is the stream of returns produced by the contrarian strategy based on our IV-sentiment 90-110 indicator,
while the explanatory variables are equity (cross-sectional) factors, namely: the market (Mkt-Rf), size (SMB), value (HML), profitability (RMW), investment (CMA), momentum (WML) and low-
versus high-beta (BAB). Panel A reports the regression results in a multivariate setting, using three distinct model: (1) the Fama–French three-factor model, (2) the Fama–French three-factor model
with the addition of the Carhart (1997) momentum factor, (3) the Fama–French five-factor model with the momentum factor and (4) the latter model with the addition of the BAB (Betting Against
Beta) factor suggested by Frazzini and Pedersen (2014). Note that as the BAB factor is only available in monthly frequency, regression that contain such factor use monthly frequency, whereas data
used in other regressions has daily frequency. We report standard errors in brackets. Asterisks ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level, respectively.
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Figure 5. Correlation matrix between IV-sentiment factor and cross-sectional equity factors. The upper triangular part of the matrix above
reports the correlation coefficient between pairs of cross-sectional equity factors and the IV-sentiment factor. These equity factors are the
market (Mkt-Rf ), the size (SMB) and the value (HML) factors, the profitability (RMW ), the investment (CMA), the momentum factor (WML)
and the ‘Betting Against Beta’ factor (BAB). The font size of coefficient reiterates its magnitude, whereas asterisks ∗∗∗, ∗∗, and ∗indicate
significance at the one, five, and ten percent level, respectively. In the diagonal, the histograms of factor returns are depicted. The lower
triangular part of the matrix depicts scatter plots of the returns of the multiple pairs of factors.

and index options, is the implied correlation (ρ̄). It is approx-
imated by equation (7), which is derived in Appendix A.2:

ρ̄ ≈ σ 2
I

(
∑n

i=1 wiσi)2
, (7)

where σ 2
I is the variance of index options, σi is the volatility

of i = 1 · · · n stocks in the index, and wi is the stocks’ weight
in the index. The implied correlation measures the level of the
average correlation between stocks that are constituents of an
index. The IV of index options, i.e. (σ 2

I ), can be matched by
the one of single stock options, weighted by its constituents’
loadings in the index, i.e. (

∑n
i=1 wiσi)

2. Thus, if IV can be
used as a measure of absolute expensiveness of an option,
the implied correlation provides a relative valuation measure
between the index and single stock options: a high (low) level
of implied correlation means that index options are expensive
(cheap) relative to single stock options.†

Table 4 Panel A presents descriptive statistics of the
implied correlations between the index and single stock
options’ IV. The means and medians suggest that the implied
correlation monotonically decreases with an increase in the
moneyness level. The implied correlation means range from
0.30 to 0.65, which is wide given that these are averaged

† Note that as
∑n

i=1 w2
i σ

2
i is always positive, the approximation

provided by equation (7) always overstates the true implied corre-
lation. Given that

∑n
i=1 w2

i σ
2
i is typically small, the current analysis

remains valid. See Appendix A.2 for details.

measures. Such a relative high dispersion of implied corre-
lations is confirmed by their standard deviations, which are
around 0.14. The most striking result is that the maximum
implied correlation observed across all maturities and mon-
eyness levels reaches 135 percent. Implied correlations above
100 percent are observed for many options, mostly for puts at
the 80 and 90 percent moneyness levels. This finding implies
that in order to match the weighted IV of puts on single stocks
that are part of the S&P 500 index to the IV of a put on the
index (with same levels of moneyness), an average correla-
tion above 100 percent between the single stock put options
is required. However, as correlation coefficients are bounded
between −100 and +100 percent, these levels of implied cor-
relation indicate irrational behavior by investors, who bid up
index puts to levels that contradict market completeness.

We also find that trading in the opposite direction of such
evident irrational investor behavior has been very profitable,
as implied correlations higher than 100 percent were very
effective as an entry point for contrarian strategies. Across
the maturities and moneyness levels where we can observe
such biased behavior, a sentiment strategy that buys the equity
market when the implied correlation is above 100 percent and
sells it when the implied correlation falls back to 50 percent,
yields an average net IR of 0.35, with IRs ranging from 0.27
to 0.52.

The implied correlation means and medians provided by
Panel A far exceed the same measures from realized aver-
age pair-correlations between the 50 largest constituents of
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Table 4. Implied and realized correlations.

Panel A – Implied correlations

Statistics \ Maturity, moneyness 3m 80% 3m 90% 3m ATM 3m 110% 3m 120% 6m 80% 6m 90% 12m 80% 12m 90%

Mean 0.65 0.56 0.45 0.35 0.3 0.64 0.56 0.6 0.54
Median 0.67 0.57 0.45 0.35 0.3 0.65 0.56 0.61 0.54
Minimum 0.24 0.18 0.12 0.07 0.03 0.26 0.21 0.26 0.22
Maximum 1.35 1.11 0.86 0.72 0.68 1.07 0.95 1.1 1.01
10th percentile 0.44 0.35 0.27 0.17 0.13 0.41 0.34 0.39 0.34
90th percentile 0.81 0.73 0.63 0.53 0.49 0.8 0.73 0.77 0.72
Standard deviation 0.15 0.14 0.14 0.13 0.14 0.14 0.14 0.14 0.13
Skew − 0.46 − 0.39 0.1 0.29 0.29 − 0.6 − 0.38 − 0.26 − 0.2
Excess Kurtosis 0.6 − 0.02 − 0.37 − 0.38 − 0.66 0.09 − 0.18 0.03 − 0.22

Panel B – Realized correlations

Statistics \ Look-back period 30 Days 60 Days 90 Days 180 Days 720 Days

Mean 0.3 0.25 0.25 0.26 0.36
Median 0.27 0.22 0.24 0.25 0.31
Minimum 0 0.01 0 0.01 0.06
Maximum 0.84 0.69 0.67 0.61 0.74
10th percentile 0.1 0.05 0.04 0.07 0.08
90th percentile 0.54 0.47 0.48 0.52 0.71
Standard deviation 0.17 0.16 0.16 0.16 0.2
Skew 0.66 0.38 0.6 0.37 0.42
Excess Kurtosis − 0.02 − 0.68 − 0.21 − 0.86 − 0.88

Panel A reports the descriptive statistics for the implied correlations between index options and single stock options for three month options
at the 80, 90, ATM (100), 110, and 120 percent moneyness levels, and for six- and twelve-month options at the 80 and 90 percent moneyness
levels over the full sample, which extends from January 2, 1998 to March 19, 2013. The implied correlation (p̄) is approximated by the
equation (7): p̄ ≈ σ 2

I /(
∑n

i=1 wiσi)
2, where σ 2

I is the implied volatility of an index option and
∑n

i=1 wiσi is the weighted average single stock
implied volatility, as in equation (A8l) of Appendix A. Panel B reports the descriptive statistics for the average pair-correlations for the 50
largest constituents of the S&P500 index calculated over the same sample, which extends from January 2, 1998 to March 19, 2013.

the S&P 500 index as of February 14, 2014, as provided in
Panel B. Such average pair-correlations range from 0.25 to
0.36 when look-back periods of 30, 60, 90, 180, and 720
days are evaluated, which is substantially lower than most
average implied correlations posted for the different option
maturity and moneyness levels reported in Panel A. In fact,
the average realized correlations are often below the 10th per-
centile of the implied correlation for some options’ maturity
and moneyness levels. The 90th percentile of realized corre-
lations often match the average implied correlations reported.
The maximum realized correlations are at most 84 percent,
using an extremely short look-back of 30 days, much lower
than the 135 percent observed for implied correlations. These
empirical findings strongly suggest that implied correlations
substantially overshoot realized ones. Similarly, the implied
correlation reaches sometimes values as low as three percent
for some options, especially on the call side (above ATM
moneyness). This finding is also low when compared to put
options. The minimum historical correlations from OTM puts
is 0.18, whereas for call options it is 0.03. The fact that
those extremely low values of the implied correlation from
call options largely undershoots implied correlations from
puts may also suggest less than fully rational pricing on the
call side. It indicates that single stock options are expensive
relative to index calls, which matches our postulation that
individual investors use single stock calls to speculate on the
upside.

Despite the strong evidence of irrational behavioral
by investors provided by the extreme levels of implied

correlation, which indirectly links to the IV skew being at
extreme levels at times, we conjecture that this strategy deliv-
ers long-run positive returns may also have a risk-bearing
explanation. Reversal strategies such as the ones designed
by us earn attractive long-term risk-adjusted returns, but are
highly dependent on equity markets at the tail (see table 1,
Panel C). Additionally, IV-sentiment-based reversal strategies
experience the largest daily drawdowns among all strate-
gies evaluated (see table 1, Panel A). Thus, their attractive
risk-adjusted returns are, partially, compensation for down-
side risk. Therefore, the risk borne by investors that bet on
reversals in equity markets is the risk of poor timing of
losses (Harvey and Siddique 2000) and downside risk (Ang
et al. 2006). In brief, betting on equity market reversals is a
risky activity.

We note that this rational explanation for excesses in sen-
timent is also linked to the limits-to-arbitrage literature: as
investors have finite access to capital (Brunnermeier and Ped-
ersen 2009) and feedback trading can keep markets irrational
for a long period of time (De Long et al. 1990), contrarian
strategies aiming to exploit the effect of irrational trading
are not without risk. For example, once bearish sentiment
seems excessive, the risk of betting on a reversal may be
tolerable only to a few investors, because (1) higher volatil-
ity drags investors’ risk budget usage closer to its limits,
and (2) access to funding is limited. The ability to ‘catch
a knife falling’ in the equity markets is not suitable for all
investors, as it involves high risk. Contrarian strategies are,
then, mainly accessible to investors that have enough capital
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or funding liquidity. Similar considerations are career risk
(Chan et al. 2002), negative skewness of returns (Harvey
and Siddique 2000), poor timing of losses (Campbell and
Cochrane 1999, Harvey and Siddique 2000), and risk aversion
of market makers (Garleanu et al. 2009). One final element in
the characterization of reversals as a compensation for risk is
the presence of correlation risk priced in index options (see
Krishnam 2009, Driessen et al. 2013), which is present in
assets that perform well when market-wide correlations are
higher than expected.

4. IV-sentiment and overweight of tails

Overweight of tail events is claimed to largely impact the pric-
ing of OTM index puts and OTM single stock calls (Barberis
and Huang 2008, Polkovnichenko and Zhao 2013). Papers
that empirically test this hypothesis are very few, such as
Polkovnichenko and Zhao (2013), Dierkes (2009), and Félix
et al. (2019). Given that our proposed sentiment measure
is manufactured from OTM IVs, in this section we aim to
identify (1) whether IV-sentiment is closely linked to formal
metrics of overweight of tail events estimated from options as
well as (2) whether such measure is linked to sentiment and
(3) forward returns.

4.1. Estimating overweight of tails

Overweight of small probabilities is embedded in the cumula-
tive prospect theory (CPT) model by means of the weighting
function of the probability of prospects, using parameters δ

and γ for the left (losses) and right (gains) side of the return
distribution, respectively. δ and γ < 1 imply overweight of
small probabilities, whereas δ and γ > 1 imply underweight
of small probabilities, and δ and γ equal to 1 means neutral
weighting of prospects (Tversky and Kahneman 1992).

Our methodology builds on the assumption that investors’
subjective density estimates should correspond, on aver-
age,† to the distribution of realizations (Bliss and Panigirt-
zoglou 2004). Thus, estimating CPT probability weighting
function parameters δ and γ is only feasible if two basic
inputs are available: the CPT subjective density function
and the distribution of realizations, i.e. the empirical den-
sity function (EDF). The methodology applied by us to
estimate these two parameters comprises of: (1) estimating
the returns’ risk-neutral density from option prices using a
modified (Figlewski 2010) method; (2) estimating the partial
CPT density function using the CPT marginal utility function;
(3) ‘undoing’ the effect of the probability weighting function
(w) to obtain the CPT subjective density function; (4) sim-
ulating time-varying empirical return distributions using the
Rosenberg and Engle (2002) approach; and (5) minimizing

† This assumption implies that investors are somewhat rational,
which is not inconsistent with the CPT-assumption that the repre-
sentative agent is less than fully rational. The CPT suggests that
investors are biased, not that decision makers are utterly irrational to
the point that their subjective density forecast should not correspond,
on average, to the realized return distribution.

the squared difference of the tail probabilities of the CPT and
EDF to obtain daily optimal δ’s and γ ’s.

Our starting point for obtaining the CPT probability weight-
ing function parameters δ and γ is the estimation of RND
from IV data, by first applying the Black-Scholes model to
our IV data to obtain options prices (C) for the S&P 500 index.
Once our data is normalized, so strikes are expressed in terms
of percentage moneyness, the instantaneous price level of the
S&P 500 index (S0) equals 100 for every period for which
we would like to obtain implied returns. Contemporaneous
dividend yields for the S&P 500 index are used for the calcu-
lation of P as well as the risk-free rate from three-, six- and
twelve-month T-bills. Because we have IV data for five lev-
els of moneyness, we implement a modified Figlewski (2010)
method for extracting the RND structure. The main advan-
tage of the Figlewski (2010) method over other techniques is
that it extracts the body and tails of the distribution separately,
thereby allowing for fat tails.

Once the RND is estimated, we translate it into the sub-
jective density function, a real-world probability distribution,
via the pricing kernel as follows:

fQ(ST )

fP(ST )
= �

U ′(ST )

U ′(St)
≡ ς(ST ). (8)

We further manipulate equation (8) so to directly relate the
original EDF to the CPT subjective density function, by
‘undoing’ the effect of the CPT probability distortion func-
tions within the PCPT density function. The relation between
EDF and the CPT density function is given by equation (9);
its derivation from equation (8) is provide in Appendix 1:

fP(ST )︸ ︷︷ ︸
EDF

=
fQ(ST )

ν ′(ST )∫ fQ(x)
ν ′(x) dx

(w−1)′(FP(ST ))

︸ ︷︷ ︸
CPT density function

(9)

Thus, once the relation between the probability weighting
function of the EDF and the PCPT density is established, as
in equations (A5) and (A6) in the Appendix, we eliminate the
weighting scheme affecting returns by applying the inverse
of such weightings to the subjective density function without
endangering such equalities, as in equation (9).

As the RND is converted into the subjective density func-
tion, we must also estimate daily empirical density functions
(EDF). We built time-varying EDFs from an invariant compo-
nent, the standardized innovation density, and a time-varying
part, the lagged conditional variance (σ 2

t | t−1) produced by
an EGARCH model. We first define the standardized inno-
vation, being the ratio of empirical returns and their con-
ditional standard deviation (ln(St/St−1)/σt | t−1) produced by
the EGARCH model. From the set of standardized innova-
tions produced, we can then estimate a density shape, i.e. the
standardized innovation density. The advantage of such a den-
sity shape versus a parametric one is that it may include the
typically observed fat tails and negative skewness, which are
not incorporated in simple parametric models, e.g. the normal
distribution. This density shape is invariant and it is turned
time-varying by multiplication of each standardized innova-
tion by the EGARCH conditional standard deviation at time t,
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which is specified as follows:

ln(St/St−1) = μ + εt, ε ∼ f (0, σ 2
t | t−1) (10a)

and

σ 2
t | t−1 = ω1 + αε2

t−1 + βσ 2
t−1 | t−2 + ϑMax[0, −εt−1]2,

(10b)

where α captures the sensitivity of the conditional variance
to lagged squared innovations (ε2

t−1), β captures the sensi-
tivity of the conditional variance to the conditional variance
(σ 2

t−1 | t−2), and ϑ allows for the asymmetric impact of lagged
returns (ϑMax[0, −εt−1]2). The model is estimated using
maximum log-likelihood where innovations are assumed to
be normally distributed.

Up to now, we produced a one-day horizon EDF for every
day in our sample but we still lack time-varying EDFs for
the three-, six-, and twelve-month horizons. Thus, we use
bootstrapping to draw 1,000 paths towards these desired hori-
zons by randomly selecting single innovations (εt+1) from the
one-day horizon EDFs available for each day in our sample.
We note that once the first return is drawn, the conditional
variance is updated (σ 2

t−1 | t−2) affecting the subsequent inno-
vation drawings of a path. This sequential exercise continues
through time until the desired horizon is reached. To account
for drift in the simulated paths, we add the daily drift esti-
mated from the long-term EDF to drawn innovations, so that
the one-period simulated returns equal εt+1 + μ. The den-
sity functions produced by the collection of returns implied
by the terminal values of every path and their starting points
are our three-, six-, and twelve-month EDFs. These simulated
paths contain, respectively, 63, 126, and 252 daily returns.
We note that by drawing returns from stylized distributions
with fat-tails and excess skewness, our EDFs for the three
relevant horizons also embed such features. This estimation
method for time-varying EDF is based on Rosenberg and
Engle (2002).

Finally, once these three time-varying EDFs are estimated
for all days in our sample, we estimate δ and γ for each of
these days using equations (11) and (12):

w+(γ , δ = γ ) = Min
B∑

b=1

Wb(EDFb
prob − CPTb

prob)
2, (11)

w−(δ, δ = γ ) = Min
B∑

b=1

Wb(EDFb
prob − CPTb

prob)
2, (12)

where EDFb
prob and CPTb

prob are the probability contained
in each bin b that divides the range of the empirical and
CPT probability distributions. Wb are weights given by
1/(1/

√
2π)

∫∞
0.5 e−x2/2 dx = 1, the reciprocal of the normal-

ized normal density function (above its median), split in the
same total number of bins (B) used for the EDF and CPT.
Parameters δ and γ are constrained by an upper bound of
1.75 and a lower bound of − 0.25. The weights applied in
these optimizations are due to the higher importance of match-
ing probability tails in our analysis than to the body of the
distributions.

4.2. Time-varying overweight of tails

In the following, we evaluate the dynamics of the overweight-
ing of tails within the single stock and index option markets.
Descriptive statistics of the CPT’s estimated δ and γ parame-
ters via the methodology presented in Section 2 are provided
in table 5.

We report summary statistics of the estimated γ for three-,
six- and twelve-month options in Panel A for the right tail
from single stock options. The median and mean time-varying
γ estimates for three-month options are 0.89 and 0.91, respec-
tively, which considerably exceed the parameter value of 0.61
in Tversky and Kahneman (1992). This finding suggests that
overweight of small probabilities is present within the pricing
of short-term single stock call options, but to a much lesser
extent than provided by the theory. The results in Panel A
also show that γ is highly time-varying and strongly sam-
ple dependent. Overweight of small probabilities in the single
stock option market is very pronounced from 1998 to 2003
(present at 97 percent of all times), but infrequent from 2003
to 2008 (present at only 35 percent of all times). Our γ -
estimates from three-month options range from 0 to 1.75 and
the standard deviation is 0.23. In Panel B, we report sum-
mary statistics of the estimated δ from index options for
the left tail. For δ estimated from three-month options, the
median and mean estimates are both 0.68, implying a prob-
ability weighting that roughly matches the one in the CPT,
which calibrates δ at 0.69. The δ-estimates are also time-
varying, however, their standard deviation (0.08) is more than
three times lower than for the γ -estimates. The range of δ-
estimates is also much narrower than for γ , as it is between
0.29 and 1.01. In contrast to the γ -estimates, our δ-estimates
reflect a consistent overweight of small probabilities across all
sub-samples.

At the six-month maturity, overweight of small probabil-
ities for γ seems even less acute than suggested by theory
and by the three-month options findings. The median and
mean γ estimates for this maturity are 0.99 and 0.96, respec-
tively. The distribution of γ is somewhat skewed to the right,
i.e. towards a less pronounced overweight of small proba-
bilities, as the median is higher than the mean. The 75th
quantile of γ (1.14) suggests an underweighting of probabil-
ities already. For index options with six-month maturity, the
estimated δ indicates an even more pronounced overweight of
small probabilities (both the mean and median δ equal 0.60)
than for three-month options. Overweight of small probabili-
ties is again documented across all samples for δ but not for
γ , in which overweight of small probabilities is more frequent
than underweight of small probabilities only in the 1998–2003
sample.

The γ estimates for the twelve-month maturity tend even
more towards probability underweighting than the six-month
ones. The median γ is 1.03, whereas the mean γ is 1.01. Over-
weight of small probabilities appears in only 41 percent of all
times in the overall sample and is roughly non-existent in the
2003–2008 sample. Differently, the mean and median for the
δ estimates from index options are 0.47 and 0.40, respectively,
indicating an even stronger overweight of small probabilities
than for single stock options and other maturities. We argue
that such a pattern could be caused by institutional investors
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Table 5. Descriptive statistics.

Panel A – Gamma

% γ < 1 % γ < 1 % γ < 1
Maturity Min 25% Q Median Mean 75% Q Max StDev % γ < 1 (98-03) (03-08) (08-13) RSS

3 months – 0.74 0.91 0.89 1.04 1.75 0.23 64% 97% 35% 59% 0.0209
6 months – 0.81 0.99 0.96 1.14 1.75 0.28 52% 92% 18% 46% 0.0170
12 months 0.04 0.91 1.03 1.01 1.14 1.75 0.22 41% 83% 11% 29% 0.0225

Panel B – Delta

% δ < 1 % δ < 1 % δ < 1
Maturity Min 25% Q Median Mean 75% Q Max StDev % δ < 1 (98-03) (03-08) (08-13) RSS

3 months 0.29 0.64 0.68 0.68 0.72 1.01 0.08 100% 100% 100% 100% 0.0579
6 months 0.30 0.54 0.60 0.60 0.65 1.75 0.10 100% 100% 100% 100% 0.0198
12 months – 0.40 0.45 0.47 0.52 1.75 0.10 100% 100% 100% 100% 0.0169

This table reports the summary statistics of the estimated cumulative prospect theory (CPT) parameters gamma (γ ) from the single stock
options market and delta (δ) from the index option market for each day in our sample as well as the optimizations’ residual sum of squares
(RSS). The parameters γ and δ define the curvature of the weighting function for gains and losses, respectively, which leads the probability
distortion functions to have inverse S-shapes. The γ and δ parameters close to unity lead to weighting functions that are close to unweighted
(neutral) probabilities, whereas parameters close to zero indicates large overweight of small probabilities. Panel A reports the summary
statistics of gamma (γ ) when we assume a parameter of risk aversion (λ) equal to 2.25 (the standard CPT parametrization). Panel B reports
the summary statistics of delta (δ) under the same risk aversion assumption. Column headings % γ < 1 and % δ < 1 report the percentage of
observations in which parameters γ and δ are smaller than one, i.e. the proportion of the sample in which overweight of small probabilities is
observed. We report this metric for the full sample as well as for three equal-sized splits of our full samples, namely: 98-03, from 1998-01-05
to 2003-01-30; 03-08, from 2003-01-31 to 2008-02-21; and 08-13, from 2008-02-22 to 2013-03-19.

buying long-term protection, as twelve-month OTM index
options are less liquid than short-term ones.

OTM index puts seem to be structurally expensive from the
perspective of overweight of small probabilities, even though
the degree of overvaluation varies in time. Concurrently,
OTM single stock options are only occasionally expensive,
and clustered in specific parts of our sample, e.g. during the
1998–2003 period. Our results fit nicely within the semi-
nal literature, for instance with Dierkes (2009), Kliger and
Levy (2009), and Polkovnichenko and Zhao (2013), regarding
the index option market, and with Félix et al. (2019) regarding
the single stock option market.

4.3. Overweight of tails and sentiment

In order to evaluate how time-variation in overweight of
small probabilities relates to sentiment, we run regressions
between our proxies for overweight of tails, the Baker and
Wurgler (2007) sentiment measure, and other explanatory
control variables. Since we aim to combine overweight of
small probabilities parameters from both index options (bear-
ish sentiment) and single stock options (bullish sentiment),
we use Delta minus Gamma spread, δ - γ , as the explained
variable. Delta minus Gamma spread captures the over-
weighting of small probabilities from both index options and
single stock, because δ is the CPT tail overweight parameter
estimated from the single stock market, and γ is the equiva-
lent parameter estimated from the index option market. The
explanatory variables in these regressions are (1) the Baker
and Wurgler (2007) sentiment measure,† (2) the percentage
of bullish investors minus the percentage of bearish investors

† Available at http://people.stern.nyu.edu/jwurgler/.

given by the survey of the American Association of Individ-
ual Investors (AAII), (3) a proxy for individual investors’
sentiment (see Han 2008), and (4) a set of control variables
among the ones tested by Welch and Goyal (2008)‡ as poten-
tial forecasters of the equity market. The data frequency used
is monthly, as this is the highest frequency in which the
Baker and Wurgler (2007) sentiment factor and the Welch and
Goyal (2008) data set are available. Our sample starts in Jan-
uary 1998 and ends in February 2013.§ The OLS regression
model is:

DGspread[τ ]t = c + SENTt + IISENTt + E12t + B/Mt

+ NTISt + TBLt + INFLt + CORPRt

+ SVARt + CSPt + εt, (13)

where τ is the option horizon, DGspread is the Delta minus
Gamma spread, SENT is the Baker and Wurgler (2007)
sentiment measure, IISENT is the AAII individual investor
sentiment measure, E12 is the twelve-month moving sum of
earnings of the S&P 5000 index, B/M is the book-to-market
ratio, NTIS is the net equity expansion, TBL is the risk-free
rate, INFL is the annual INFLation rate, CORPR is the cor-
porate spread, SV AR is the stock variance, and CSP is the
cross-sectional premium. We also run the following univariate
models for each explanatory factor separately to understand

‡ The complete set of variables provided by Welch and Goyal (2008)
that is employed here is discussed in Appendix B. To avoid multi-
collinearity in our regression, we exclude all variables that correlate
more than 40 percent with others.
§ This sample is only possible because Welch and Goyal (2008) and
Baker and Wurgler (2007) have updated and made available their
datasets after publication.
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their individual relation with the Delta minus Gamma spread:

DGspread[τ ]t = αi + βixi,t + εt, (14)

where x represents the 10 explanatory variables specified in
equation (13), thus i = 1 · · · 10.

Table 6 Panel A reports the results of equation (13), esti-
mated across three maturities for Delta minus Gamma spread.
The explanatory power of the multivariate regression is very
high, ranging from 36 to 57 percent. As expected, SENT is
positively linked to Delta minus Gamma spread and statis-
tically significant across the three- and six-month maturities.
This suggests that high sentiment exacerbates overweight of
small probabilities measured as Delta minus Gamma spread.
However, this relation is negative and not significant at the
twelve-month maturity. The univariate regressions of SENT
confirm the positive link between sentiment and Delta minus
Gamma spread at shorter maturities. Once again, this relation
is not present at the twelve-month horizon. The explanatory
power of SENT in the univariate setting is also high for the
three- and six-month horizons, with 17 and 32 percent, respec-
tively. This result strengthens our hypothesis that overweight
of small probabilities increases at higher levels of sentiment
and that sentiment seems to have a strong link to proba-
bility weighting by investors as priced by index puts and
single stock call options. This finding, however, applies to the
three- and six-month horizons only since the twelve-month
univariate regression has a R2 of zero.†

IISENT is also positively connected to Delta minus Gamma
spread in the multivariate regression at the three- and six-
month horizons but negatively at the twelve-month horizon.
These results are confirmed by the univariate regressions, as
IISent is positively linked to Delta minus Gamma spread at
the three- and six-month horizons. Explanatory power of these
regressions is with 6 percent for both the three- and six-month
maturities, relatively high. For the twelve-month maturity in
the univariate regression, IISENT is negatively linked to Delta
minus Gamma spread and is statistically significant.

Once we analyze the other control variables in our regres-
sion, we observe that the results are less stable than for the
sentiment proxies. Table 6 indicates that some signs of con-
trol variables change in both the multivariate and univariate
regressions. TBL is the only control variable that remains sta-
tistically significant and keeps its sign across the multivariate
and univariate models. The explanatory power of TBL is 21
percent in the univariate setting, whereas the other indepen-
dent variable with high explanatory power is book-to-market
with 27 percent. B/M is only statistically significant in the
three-month maturity of the multivariate regressions. NTIS is
negatively and significantly linked to Delta minus Gamma
spread in the univariate setting as well as in the multivariate

† Our results suggest that overweight of small probabilities is much
less pronounced at the twelve-month options, at least for single stock
options (see table 5), and that the Delta minus Gamma spread is
disconnected to sentiment (SENT) at this same maturity. Beyond
that, IV-sentiment using twelve-month options is not reliable as an
active management signal (see figure 1), likely by not properly cap-
turing sentiment but rather reflecting risk-neutral pricing. That said,
we believe our twelve-month metrics might still be very useful from
a risk management perspective, as the consideration of risks in the
long-run is also important.

regression in the twelve-month maturity. SV AR is negatively
and significantly linked to Delta minus Gamma spread in the
univariate regression but in the multivariate regression this
result is not observed. Overall, these empirical findings sug-
gest that fundamentals have a relatively unstable link to the
Delta minus Gamma spread.

We note that the high stability of the relation between the
sentiment factors and the Delta minus Gamma spread within
the multivariate regressions provides evidence that sentiment
and overweight of small probabilities are strongly connected.

4.4. Relating overweight of tails to IV-sentiment, IV skews
and higher moments of the RND

In a next step, we assess the relationship between IV-
sentiment, Delta minus Gamma spread, and higher moments
(skewness and kurtosis) of the RND implied by options and
IV skew measures. We undertake this analysis to understand
to which extent Delta minus Gamma spread is connected to
IV-sentiment and other metrics seemingly derived from IV.

We expect the existence of a positive link between the esti-
mated Delta minus Gamma spread and IV skew measures,
because the presence of fat tails in the RND is a pre-condition
for overweight of tail probabilities and a corollary of OTM’s
IVs to be rich versus at-the-money (ATM) IVs. Similarly,
we observe negative skewness and fat-tails in RNDs only if
OTM options are expensive versus ATM options and vice-
versa.‡ Consequently, γ and δ are likely to be smaller than one
(overweight of small probabilities), and Delta minus Gamma
spread differs from zero if OTM options are expensive versus
ATM options, which supports the use of IV skew as another
proxy for overweight of tails.

Beyond IV-sentiment, the IV skew measures used are the
standard measures: (1) IV 90 percent (moneyness) minus
ATM, (2) IV 80 percent minus ATM from index options
(which captures bearish sentiment), (3) IV 110 percent minus
ATM, and (4) IV 120 percent minus ATM from single stock
calls (which captures bullish sentiment).

We assess the isolated relationship between Delta minus
Gamma spread and IV-sentiment, higher moments of the
RND, and (standard) IV skews measures using the univari-
ate models presented by equations (15)–(18). These models
are estimated with OLS, where Newey-West standard errors
are used for statistical inference. Our daily regression samples
start on January 2, 1998 and end on March 19, 2013.

DGspread[τ ] = αt

[
K

S

]
+ IVSentt

[
K

S
; τ

]
+ εt, (15)

DGspread[τ ] = αt + KURTm
t (τ ) + εt, (16)

DGspread[τ ] = αt + SKEW m
t (τ ) + εt, (17)

DGspread[τ ] = αt

[
K

S

]
+ IVSKEWt

[
K

S
; τ

]
+ εt, (18)

‡ While these relations are widely acknowledged, Longstaff (1995)
provide a formal theorem for the link between IV skew and risk-
neutral moments, whereas Bakshi et al. (2003) offer a comprehensive
empirical test of this proposition for index options.



842
L

.F
élix

etal.

Table 6. Regression results: Delta minus Gamma spread.

Panel A - Multivariate Panel B - Univariate

Maturity 3m 6m 12m 3m 6m 12m 3m 6m 12m 6m 6m 6m 6m 6m 6m 6m 6m

Intercept 0.003 − 0.491∗∗∗ − 0.490∗∗∗ − 0.063∗∗∗ − 0.369∗∗∗ − 0.520∗∗∗ − 0.064∗∗∗ − 0.365∗∗∗ − 0.508∗∗∗ − 0.048 0.131∗∗∗ − 0.055∗∗∗ − 0.121∗∗∗ − 0.055∗∗∗ − 0.053∗∗∗ − 0.039∗∗∗ − 0.052∗∗∗

(0.056) (0.037) (0.058) (0.010) (0.008) (0.013) (0.011) (0.010) (0.012) (0.031) (0.031) (0.011) (0.015) (0.013) (0.011) (0.012) (0.011)

SENT 0.030∗ 0.064∗∗∗ − 0.024 0.071∗∗∗ 0.097∗∗∗ − 0.003

(0.017) (0.013) (0.019) (0.014) (0.016) (0.016)

IISENT 0.041 0.096∗∗ − 0.106∗∗ 0.123∗∗∗ 0.125∗∗ − 0.124∗∗∗

(0.047) (0.038) (0.048) (0.044) (0.050) (0.043)

E12 0.000 − 0.003 − 0.028∗∗∗ − 0.001

(0.006) (0.004) (0.007) (0.006)

B/M − 0.364∗ 0.125 0.163 − 0.737∗∗∗

(0.217) (0.132) (0.211) (0.130)

NTIS 0.560 0.259 − 0.814 1.075∗∗

(0.391) (0.285) (0.523) (0.440)

TBL 0.013 0.036∗∗∗ 0.029∗∗∗ 0.030∗∗∗

(0.008) (0.006) (0.009) (0.006)

INFL 0.453 1.843 2.311 1.784

(2.507) (1.885) (2.176) (3.350)

CORPR 0.225 0.233 0.044 0.128

(0.285) (0.202) (0.273) (0.472)

SVAR − 1.426 3.519∗∗∗ 3.470∗ − 3.376∗∗

(1.331) (1.153) (1.982) (1.307)

CSP − 0.125 0.198 0.261 0.029

(0.136) (0.122) (0.235) (0.197)

R2 36% 57% 30% 17% 32% 0% 6% 6% 5% 0% 27% 4% 21% 0% 0% 4% 0%

F-stats 8.2 19.5 6.4 32.5 72.9 0.0 9.1 9.4 8.0 0.0 58.0 7.1 40.7 0.7 0.2 6.1 0.0

AIC − 308.1 − 369.1 − 273.2 − 326.1 − 186.0 34.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

BIC − 274.4 − 335.4 − 239.6 − 320.0 − 179.9 40.3 0.0 0.0 0.0 0.0 0.1 0.4 0.0 2.2 0.3 1.4 0.2

Panel A reports the regression results for equation (13) in a multivariate setting. The dependent variable is Delta minus Gamma spread (δ - γ ),while as explanatory variables we specify: (1) the Baker and Wurgler (2007) sentiment measure (SENT), (2)
the individual investor sentiment (IISENT), and (3) the explanatory variables used by Welch and Goyal (2008), while excluding factors that correlate to each other in excess of 40 percent (see Appendix 2 for the full list of variables). Panel B reports the
regression results for (14), in an univariate setting, in which Delta minus Gamma spread is regressed on the same set of explanatory variables. We report Newey-West adjusted standard errors in brackets. Asterisks ∗∗∗, ∗∗, and ∗ indicate significance at the
one, five, and ten percent level, respectively.
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where K/S is the moneyness level of the option, τ is the
option horizon, DGspread is the Delta minus Gamma spread,
IV Sent is our IV-sentiment measure, SKEW is the RND return
skewness implied by options, KURT is the RND return kurto-
sis implied by options, and IV SKEW is the single market IV
skew measure, for both index option and single stock option
markets. We note that the superscript m for the variables
KURT and SKEW distinguishes RND kurtosis and skewness
obtained from either index options (m = io) or single stock
options (m = sso).

We estimate multivariate models of Delta minus Gamma
spread regressed on RND skewness, kurtosis, IV skews and
IV-sentiment to better understand the relation between these
measures jointly and overweight of small probabilities:

DGspread[τ ] = αt

[
K

S

]
+ SKEW m

t (τ ) + KURTm
t (τ )

+ IVSentt

[
K

S
; τ

]
+ εt. (19)

Table 7 Panel A reports the estimates of equations (15)–
(18), when DGspread is regressed on RND moments, IV
skews, and IV-sentiment 90-110 in a univariate setting. The
empirical findings indicate that IV-sentiment is the variable
that explains DGspread the most across all maturities. The
explanatory power of IV-sentiment is not only the highest
but it is also the most consistent factor, as its R2 ranges
from 30 to 46 percent. IV-sentiment is negatively related to
DGspread. Such a negative sign of the IV-sentiment regres-
sor was expected because DGspread rises with higher bullish
sentiment, whereas higher IV-sentiment suggests a more pro-
nounced bearish sentiment. Risk-neutral skewness and kurto-
sis also strongly explains DGspread (by roughly 30 percent),
though only within the three-month maturity. Skewness and
kurtosis explain DGspread by roughly 10 percent for six-
month options, and 7 percent for twelve-month ones. The
coefficient signs are in line with our expectations since high
levels of RND skewness are associated with high DGspread
(a bullish sentiment signal), while low levels of RND kur-
tosis (less pronounced fat-tails) are associated with high
DGspread.† In contrast, standard IV skews explain with only
between 0 and 4 percent very little of DGspread within the
three-month maturity. At longer maturities, the IV skews are
able to better explain DGspread, however, mostly when the
skew measure comes from the single stock options market
(between 17 and 21 percent). As a robustness check, we
note that the regression results are virtually unchanged by
the usage of either IV-sentiment 90-110 or 80-120 measures.
As a first impression, these results imply that IV-sentiment is
strongly connected to DGspread and to overweight of small
probabilities.

Panel B shows that when we evaluate the multivariate
regressions, we find that IV-sentiment is the most stable
regressor with respect to coefficient signs, being negatively

† The regression results reported here use RND kurtosis and skew-
ness from index options (m = io). The results when RND is
extracted from single stock options (m = sso) are unreported but
qualitatively the same as the coefficient signs are equal to the
reported ones, and regressions’ explanatory power are roughly in the
same range.

linked to DGspread across all regressions, and is always sta-
tistically significant. These regressions have high explanatory
power (ranging from 41 to 61 percent), especially when con-
sidering the daily frequency, thus, potentially containing more
noise than lower frequency data. In the multivariate regression
we use the IV-sentiment 90-110, while the (unreported) results
using IV-sentiment 80-120 are qualitatively the same. Due to
likely multicollinearity in this multivariate model, we believe
that our univariate models are more insightful than the former.

These findings strongly suggest that DGspread co-moves
with our IV-sentiment measure within the three-, six-, and
twelve-month maturities. Hence, we feel comfortable to inter-
pret IV-sentiment as a proxy for overweighting of small
probabilities, such as DGspread.

5. Robustness tests

5.1. IV-sentiment versus single-market IV-sentiment
strategies

In Section 3.1 we reported that the strategy with the high-
est correlations with the high-frequency IV-sentiment strategy
is the IC strategy, which relies on information from both the
single stock and index option markets. Nevertheless, the cor-
relation of the IV Skew 90 (minus ATM IV) strategy with
the IV-sentiment one is also relatively high. Therefore, we
investigate here how our IV-sentiment strategy differs from
single-market strategies when information from both OTM
puts and OTM calls are used, instead of the ATM IV. We
investigate this to further understand the value added by the
two separate aspects of the IV-sentiment, i.e. the usage of
OTM IV only and the usage of joint information from the two
option markets.

We begin by producing high-frequency strategies for four
Single-market skew measures, namely: the IV-Sentiment-
Single 90-110, the IV-Sentiment-Single 80-120, the IV-
Sentiment-Index 90-110 and the IV-Sentiment-Index 80-120,
where:

IV -Sentiment-Single = OTMsinglestockput

IVτp-OTMsinglestockcallIV τc, (20)

IV -Sentiment-Index = OTMindexputIV τp-

OTMindexcallIV τc, (21)

which we refer to, in short, as IVSentSingle and IVSentIndex.
These strategies have the exact same construction as the high-
frequency IV-sentiment strategy described in Section 3.1. The
four strategies are compared to the IV-sentiment using the
same analytics as employed in Section 3.1, in specific, a risk-
return comparison, a correlation matrix and tail-dependence
measures.‡

In general, IVSentSingle and IVSentIndex strategies per-
form poorer than the IV-sentiment strategy. Both IVSentSingle

‡ Complete analytics comparing IV-sentiment with IVSentSingle
and IVSentIndex strategies are reported in table 8 available in the
online Appendix C.2, available at https://github.com/luizfelix/IV-
Sentiment.
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Table 7. Regression results: Delta minus Gamma spread and risk-neutral measures.

Panel A – Univariate regressions

Maturity 3m 6m 12m 3m 6m 12m 3m 6m 12m 3m 6m 12m

Intercept 0.019∗∗ − 0.219∗∗∗ − 0.436∗∗∗ − 0.045∗∗∗ − 0.254∗∗∗ − 0.460∗∗∗ − 0.295∗∗∗ − 0.499∗∗∗ − 0.683∗∗∗ − 0.186∗∗∗ − 0.368∗∗∗ − 0.593∗∗∗
(0.007) (0.010) (0.009) (0.006) (0.008) (0.007) (0.004) (0.004) (0.004) (0.004) (0.003) (0.003)

Skewness 0.122∗∗∗ 0.073∗∗∗ 0.054∗∗∗
(0.003) (0.004) (0.003)

Kurtosis − 0.015∗∗∗ − 0.009∗∗∗ − 0.007∗∗∗
(0.000) (0.000) (0.000)

IV-sentiment 90-110 − 1.998∗∗∗ − 2.774∗∗∗ − 2.359∗∗∗
(0.046) (0.064) (0.062)

IV-sentiment 80-120 − 1.606∗∗∗ − 2.438∗∗∗ − 2.124∗∗∗
(0.042) (0.058) (0.056)

R2 32% 9% 7% 30% 10% 7% 34% 46% 36% 30% 45% 35%
F-stats 1861.1 408.6 285.7 1714.6 423.4 315.6 2085.1 3423.7 2228.0 1707.2 3199.9 2121.2
AIC − 2001 − 13 − 944 − 1900 − 27 − 972 − 2151 − 2093 − 2437 − 1895 − 1971 − 2368
BIC − 1989 − 1 − 931 − 1888 − 14 − 959 − 2139 − 2081 − 2424 − 1883 − 1959 − 2355

Panel A – Univariate regressions (continuation) Panel B - Multivariate regressions

Maturity 3m 6m 12m 3m 6m 12m 3m 6m 12m

Intercept − 0.195∗∗∗ − 0.141∗∗∗ − 0.332∗∗∗ 0.029 − 0.052 − 0.407∗∗∗ − 0.273∗∗∗ − 0.465∗∗∗ − 0.495∗∗∗
(0.010) (0.013) (0.011) (0.028) (0.034) (0.027) (0.025) (0.038) (0.040)

Skewness 0.093∗∗∗ 0.000 − 0.032∗∗∗
(0.008) (0.009) (0.009)

Kurtosis − 0.002∗∗ − 0.007∗∗∗ − 0.009∗∗∗
(0.001) (0.001) (0.001)

IV-sentiment 90-110 − 1.989∗∗∗ − 2.462∗∗∗ − 1.677∗∗∗
(0.063) (0.108) (0.126)

IV 110-ATM skew 1.082∗∗ 13.681∗∗∗ 16.172∗∗∗ 0.511 5.525∗∗∗ 8.106∗∗∗
(0.435) (0.717) (0.711) (0.371) (0.672) (1.004)

IV 90-ATM skew − 4.941∗∗∗ − 8.399∗∗∗ − 4.997∗∗∗ 3.876∗∗∗ 4.129∗∗∗ 0.000
(0.557) (0.903) (0.993) (0.391) (0.732) (0.933)

R2 0% 17% 21% 4% 4% 1% 61% 53% 42%
F-stats 10.3 810.0 1065.3 148.4 177.3 49.4 1214.5 903.8 707.4
AIC − 485 − 362 − 1612 − 621 202 − 717 − 4154 − 2636 − 3008
BIC − 472 − 349 − 1599 − 608 215 − 705 − 4116 − 2598 − 2970

Panel A reports the regression results for equations (15)–(18) in an univariate setting. The dependent variable for these regressions is Delta minus Gamma spread (δ - γ ), a proxy for overweight
of small probabilities. As explanatory variables we specify the risk-neutral skewness and kurtosis, IV 110-ATM skew (from single stock options), IV 90-ATM skew (from index options), and our
IV-sentiment measure in two permutations per maturity: (1) IV-sentiment 90-110, and (2) IV-sentiment 80-120. Our IV-sentiment measure is an IV skew measure that combines information from the
index option market and the single stock option market, see equation (1). For instance, the IV-sentiment 90-110 measure combines the IV from the 90 percent moneyness level from the index option
market and the 110 percent moneyness level from the single stock option market. Panel B reports the regression results for equation (19) in a multivariate setting, in which Delta minus Gamma spread
is regressed on the same set of explanatory variables. We report Newey-West adjusted standard errors in brackets. Asterisks ∗∗∗, ∗∗, and ∗ indicate significance at the one, five, and ten percent level,
respectively.
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strategies deliver negative returns within our sample. The
IVSentIndex strategies show positive returns but they generate
at best half of the performance delivered by the IV-sentiment
strategy. Skewness is only positive for IV-sentiment strategy
and negative for all Single-market strategies. Maximum draw-
down is also the lowest for the IV-sentiment strategy. In line
with these results and with our earlier analysis that split the
performance of IV-sentiment strategy into the long and short
legs (see Section 3.1), we find that the IV-sentiment strategy
is more correlated with the IVSentIndex strategies (correla-
tion between 0.45 and 0.50) than with IVSentSingle strategies
(correlation between 0.28 and 0.32). Tail dependence with
the IV-sentiment strategy is mostly higher for the IVSentIn-
dex strategies as well and reaches a maximum of 56 percent
for the conditional co-crash probability.

These results suggest, despite that the IVSentIndex strate-
gies being more connected to the IV-sentiment one than to the
IVSentSingle ones, that these strategies are still quite differ-
ent from each other. This finding also suggests that the usage
of joint information from both option markets adds value
to IV-based sentiment strategies, and that it carries different
information compared to single market strategies.

Subsequently, we run equations 6c and 6d with the inclu-
sion of the IVSentSingle and IVSentIndex strategies as addi-
tional explanatory variables. The idea here is to better explain
the IV-sentiment strategy and to improve our insights on
what matters in predicting the equity risk premium. We
find that IVSentSingle and IVSentIndex are both highly sig-
nificant within the regressions, used either in isolation or
jointly. Apart from this result, the inclusion of these variables
more than doubles the explanatory power of the regressions,
especially when IVSentIndex is added, indicating that single-
market IV skew strategies are more strongly connected to
the IV-sentiment strategy than traditional equity factors. For
monthly regressions, the α that was positive and significant
when IVSentSingle and IVSentIndex were not included in the
regression becomes non-significant, indicating that these new
factors can explain the skill of the IV-sentiment strategy. Still,
the fact that the explanatory power of these regression are, at
best, 26 percent for daily models and 49 percent for monthly
models shows that the amount of unexplained variance of
the IV-sentiment strategy remains large. This conclusion holds
even after information from both option markets, in the form
of separate single-market skews, is used, suggesting that the
IV of OTM single stock puts and OTM index calls might con-
tain more noise than information for predicting the equity risk
premium.†

5.2. Controlling for investors’ optimism

So far we have taken a myopic view on the root causes of
overweighting of small probabilities by investors. For ease of
exposition, we have assumed that overweight of tails is linked
to preferences (i.e. a behavioral bias). However, we acknowl-
edge that it is yet unclear whether the overweighting of small

† Full results for equations 6c and 6d with the usage of IVSentS-
ingle and IVSentIndex as additional explanatory variables are
reported in table 9 of the online Appendix C.2, available at
https://github.com/luizfelix/IV-Sentiment.

probabilities is caused solely by preferences or rather by
biased beliefs (i.e. investors’ expectations). Barberis (2013)
eloquently discusses how both phenomena are distinctly dif-
ferent and how both (individually or jointly) may potentially
explain the existence of overpriced OTM options. Therefore,
in this section, we provide evidence that investor sentiment
is linked to time-varying preferences for lottery tickets even
after controlling for time-varying investor optimism. In other
words, we reiterate the view taken in our paper that over-
weighting of tail events during periods of high sentiment
reflects a behavioral bias rather than change in beliefs only.

We model investor optimism as proposed by Lemmon and
Portniaguina (2006), who argue that investors’ optimism is
captured by consumer confidence. However, because con-
sumer confidence may also reflect investor beliefs related to
economic fundamentals, they propose that a purer measure of
investors’ optimism is the residuals of a regression between
consumer confidence and a set of economic fundamentals:

CConft = αt[τ ] + EcoFundt + ε[1]t, (22)

where, ε[1]t is the Michigan consumer confidence index
(CConf ) controlled for the effect of economic fundamen-
tals, which is proxied here by the Nowcasting index of Beber
et al. (2015). ε[1]t being then the investor optimism measure
(InvOptt). With CConf and InvOptt at hand, we run equa-
tions (23) and (24) below to filter out the effect of investor
optimism (i.e. bias in beliefs) contained in DGspreads:

DGspread[τ ] = αt[τ ] + CConft + ε[2]t, (23)

DGspread[τ ] = αt[τ ] + InvOptt + ε[3]t. (24)

The obtained measures of overweighting of small probabili-
ties solely linked to skewness preferences (i.e. a behavioral
bias) are given by ε[2]t and ε[3]t. We call ε[2]t the resid-
ual DGspreads over consumer confidence (DGspread-CC),
and we call ε[3]t the residual DGspreads over consumer
confidence and fundamentals (DGspread-CCF).

As a next step, we are interested to learn whether these
purer measures of investor preferences are linked to sen-
timent. To do that we run a version of equation (13),
where the explained variable is not DGspread but DGspread-
CC and DGspread-CCF, which we generically call residual
DGspreads (ResDGSpread) as in equation (25):

ResDGSpread[τ ]t = c + SENTt + IISENTt + E12t + B/Mt

+ NTISt + TBLt + INFLt + CORPRt + SVARt

+ CSPt + εt. (25)

Unreported results provides evidence that the residual ver-
sion of DGspreads remains positively and statistically linked
to sentiment as in equation (13). This is the case for both
residual measures of DGspreads in multivariate and univari-
ate settings. This result reiterates the interpretation supported
through our paper that overweighting of small probabilities
is caused, to some extent, by a behavioral bias. Further, the
explanatory power of these regressions are smaller (at max-
imum 36 percent for multivariate models and 17 percent for
univariate models) than the ones achieved by equation (13),
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which reaches 57 percent for multivariate models and 32
for univariate models (reported by table 6), suggesting that
DGspreads are partially driven by investor optimism.

In addition, we re-run equation (19) by replacing the
explained variable DGspreads by our new measures Res-
DGSpread. The goal of this model, given by equation (26), is
to check whether the residual versions of DGspreads remain
linked to IV-sentiment:

ResDGSpread[τ ]t = αt + SKEW m
t (τ ) + KURTm

t (τ )

+ IVSentt + εt. (26)

Unreported results indicate that DGspreads controlled by
investor expectations (bias in beliefs) remain statistically and
negatively linked to our proposed IV-sentiment indicator, as
previous reported by table 7.† Similarly to our previous exam-
ple, we find that the power of IV-sentiment in explaining
DGspreads, ranging from 16 to 53 percent, is higher than in
explaining ResDGSpread, ranging from 11 to 35 percent. The
gap in explanatory power between the regressions that have
the two types of ResDGSpread as explained variable is not
substantial, suggesting that the adjustment made for economic
conditions does impact results materially. These results sug-
gest that IV-sentiment captures mostly investors’ preference
for skewness beyond capturing investors’ optimism.

5.3. Implied correlation and correlation risk premium
factors

As earlier suggested, the closest measure to our IV-sentiment
indexes are the implied correlation (IC) and the correlation
risk premia (CRP) measures of Driessen et al. (2013) and
Buss et al. (2017). This is no coincidence, as all these mea-
sures are jointly calculated from the two types of equity option
markets available, the index and the single stock option mar-
kets. Nevertheless, because both IC and CRP are computed
from the entire cross-section of strikes and IV-sentiment is
estimated from OTM options only, these measures are inher-
ently different. In this robustness test we attempt to better
understand the difference between these three measures.

First, we estimate a correlation matrix of the Buss
et al. (2017) factors,‡ IV-sentiment measures and DGspreads
using our full sample, see figure 7 available at our online
Appendix. Buss et al. (2017) compute ICs for the standard
maturities of 30, 91, 182, 273, and 365 days. CRPs are com-
puted as IC minus the realized correlation from daily returns
from the historical window equal to the maturity of the options
used for a given IC.§ The results are as expected, to the
extent that IV-sentiment is mostly correlated to IC (between
0.66 and 0.83) and DGspreads (0.72) rather than to the CRP
(between 0.12 and 0.2). Additionally, we observe that IC is
very weakly linked to DGspreads (between 0 and 0.2). This

† Full results for this Section are provided by tables 10 and 11
reported in the online Appendix C.3, available at https://github.
com/luizfelix/IV-Sentiment.
‡ Data use in Buss et al. (2017) is kindly provided by Grigory Vilkov
at http://www.vilkov.net/codedata.html.
§ The estimated correlation matrix is shown in figure 7, which is
reported in the online Appendix C.4 (available at https://github.
com/luizfelix/IV-Sentiment).

finding reiterates our opinion that IC seems not to reflect over-
weighting of small probabilities. The intuitive explanation for
this result is the fact that IC is not locally linked to the tails
of the risk neutral density implied by options but rather to
the full cross-sectional of strikes, which largely overstates the
information contained in close to at-the-money options versus
OTM options.

Second, we are also interested in explaining the differ-
ence between IC and IV-sentiment. Therefore, we design
equation (27), which has the spread ICt-IVSentt as its
explained variable:

ICt[τ ] − IVSentt[τ ] = αt[τ ] + SKEW m
t (τ )

+ KURTm
t (τ ) + εt. (27)

The results suggest that the risk-neutral skweness and kur-
tosis explain a substantial part of the spread between ICt

and IVSentt. The skewness and kurtosis factors are, not only
highly significant, but regressions deliver R2s between 49 and
57 percent.¶

Our interpretation of this result is that, as the 3rd and 4th
moments of the implied risk-neutral distribution have a con-
nection with the distribution tails, whereas the IC correlation
does not, these two factors can to a large extent explain the
difference between ICt and IVSentt.

6. Conclusion

End-users of OTM options tend to overweight tail events.
This is a well accepted assumption, which applies to both
OTM index puts and single stock calls, due to individual and
institutional investors trading activity, respectively. Individual
investors typically buy OTM single stock calls (‘lottery tick-
ets’) to speculate on the upside of equities (indicating bullish
sentiment), whereas institutional investors typically buy OTM
index puts (portfolio insurance) to protect their large equity
holdings (indicating bearish sentiment). Thus, we conjecture
that information from options might capture those two oppo-
site investors’ risk attitudes and we propose a novel sentiment
proxy: IV-sentiment.

The uniqueness of our IV-sentiment measure is that it is
jointly calculated from the IV of index puts and single stock
call options. In contrast with other measures jointly calculated
from the index and single stock option markets, such as the
implied correlation calculated from the entire cross-section of
strikes, our measure uses OTM options only.

We find that our contrarian-trading strategies using our
IV-sentiment measure produce economically significant risk-
adjusted returns, reiterating earlier findings by the literature
that equity markets are slow to incorporate the information
embedded in implied volatility skews. The joint use of infor-
mation from the single stock and index option markets seems
to be the reason for the superior forecast ability of our IV-
sentiment measure, because factors that use implied volatility
skews from a single market achieve significantly inferior

¶ Complete results of the estimation of equation (27) are reported
in table 12 contained in the online Appendix C.4, available at
https://github.com/luizfelix/IV-Sentiment.
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results. The performance of our IV-sentiment measure seems
also more consistent in delivering a positive information ratio
than the Baker and Wurgler (2007) sentiment factor, beyond
being more positively skewed, having a shorter horizon and
allowing for daily rebalancing.

Our IV-sentiment factor seems to forecast returns as well
as other well-known predictors of equity returns. Since it is
uncorrelated to these predictors of the equity risk-premium,
it significantly improves the quality of predictive models,
especially by the usage of constrained ensemble models and
vis-à-vis unregularized machine learning techniques. Finally,
our factor has limited exposure to a set cross-sectional equity
factors and seems valuable in preventing momentum crashes.
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Appendix 1. Methodology

A.1. Subject density function estimation

We hereby present the derivations required to achieve equation (9)
in the main text, equation (A7) here, from equation (8), called here
equation (A1):

fQ(ST )

w′(FP(ST )) · fP(ST )
= ς(ST ), (A1)

where fP(ST ) is the ‘real-world’ probability distribution, fQ(ST ) is
the RND, ς(ST ) is the pricing kernel, w is the weighting function,
and FP(ST ) is the ‘real-world’ cumulative density function.

The first step of our derivation entails re-arranging equation (A1)
into (A2b) via equation (A2a), which demonstrates that for the CPT
to hold, the subjective density function should be consistent with the
probability weighted EDF:

fQ(ST )︸ ︷︷ ︸
RND

= w′(FP(ST ))︸ ︷︷ ︸
probability weighing

· fP(ST )︸ ︷︷ ︸
EDF

· ς(ST )︸ ︷︷ ︸
pricing kernel

, (A2a)

fQ(ST )︸ ︷︷ ︸
RND

= fP̃(ST )︸ ︷︷ ︸
probability weighted EDF

· ς(ST )︸ ︷︷ ︸
pricing kernel

, (A2b)

fQ(ST )

λ
U ′(ST )
U ′(St)

= fQ(ST )

ς(ST )︸ ︷︷ ︸
Subjective density

= fP̃(ST )︸ ︷︷ ︸
probability weighted EDF

. (A3)

Following Ait-Sahalia and Lo (2000) and Bliss and Panigirt-
zoglou (2004), equation (A3) can be manipulated so that the time-
preference constant � of the pricing kernel vanishes, producing
equation (A4), which directly relates the probability weighted EDF,
the RND, and the marginal utility, U ′(ST ):

fP̃(ST )︸ ︷︷ ︸
probability weighted EDF

=
λ

U ′(ST )
U ′(St)

Q(ST )∫ U ′(St)
U ′(x) Q(x) dx

=
fQ(ST )

U ′(ST )∫ fQ(x)
U ′(x) dx︸ ︷︷ ︸

Generic subjective density function

, (A4)

where
∫
(Q(x)/U ′(x)) dx normalizes the resulting subjective den-

sity function to integrate to one. Once the utility function is esti-
mated, equation (A4) allows us to convert RND into the probability
weighted EDF. equation (A4) can also be used to estimate the sub-
jective density function for an (rational) investor that has a power or
exponential utility function, by disregarding the weighting function
W(·), so the LHS of the equation becomes fp(ST ). In the remain-
der of the paper we call these subjective distributions power and
exponential density functions. As we hypothesize that the representa-
tive investor has a CPT utility function, its marginal utility function
is U ′(ST ) = υ ′(ST ), and, thus, υ ′(ST ) = αSα−1

T for ST >= 0, and
υ ′(ST ) = −λβ(−ST )β−1 for ST < 0, leading to equation (A5):

fP̃(ST ) =
fQ(ST )

αSα−1
T∫ fQ(x)

αxα−1 dx
for ST ≥ 0, and (A5)

fP̃(ST )︸ ︷︷ ︸
probability weighted EDF

=
fQ(ST )

−λβ(−ST )β−1∫ fQ(x)
−λβ(−x)β−1 dx︸ ︷︷ ︸

Partial CPT density function

for ST < 0,

(A6)

Equations (A5) and (A6), hence, relate the EDF where probabilities
are weighted according to the CPT probability distortion functions,
on the LHS, to the subjective density function derived from the
CPT value function, on the RHS, separately for gains and losses,
i.e. the PCPT density function. The relationships specified by equa-
tions (A5) and (A6) fully state the relation we would like to depict,
although one additional manipulation is convenient for our argumen-
tation. Assuming that the function w(FP(ST )) is strictly increasing
over the domain [0,1], there is a one-to-one relationship between
w(FP(ST )) and a unique inverse w−1(FP(ST )). As such, the result
fP̃(ST ) = w′(FP(ST ))fP(ST ) also implies fP̃(ST ).(w−1)′(FP(ST )) =
fP(ST ).† This outcome allows us to directly relate the original EDF
to the CPT subjective density function, by ‘undoing’ the effect of
the CPT probability distortion functions within the PCPT density
function:

fP(ST )︸ ︷︷ ︸
EDF

=
fQ(ST )

ν ′(ST )∫ fQ(x)
ν ′(x) dx

(w−1)′(FP(ST ))

︸ ︷︷ ︸
CPT density function

. (A7)

Thus, once the relation between the probability weighting function
of EDF and the PCPT density is established, as in equations (A5)
and (A6), one can eliminate the weighting scheme affecting returns
by applying the inverse of such weightings to the subjective density
function without endangering such equalities, as in equation (A7),
numbered equation (9) in the main text.

A.2. Weighted average single stock IV and implied
correlation approximations

In the following, we derive the weighted average single stock
IV, equation (A8l), and the implied correlation approximation,
equation (A8j), as given by equation (7) in the main text:

σ 2
P =

n∑
i=1

w2
i σ

2
i +

n∑
i�=j

wiwjρijσiσj (A8a)

† A drawback of the CPT model is that it allows for non-strictly
increasing functions, which would not allow invertibility. This is
the reason why the newer literature on probability distortions func-
tions favors other strictly monotonic functions, such as Prelec’s
(1998) w(p) = e−(− ln(p))δ , as the weighting functions. Neverthe-
less, because the CPT parameters of our interest (γ = 0.61; δ =
0.69) impose strict monotonicity, we can obtain the inverse of the
probability function, w−1(p) numerically.
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Starting from the portfolio variance σ 2
P formula given by

equation (A8a), where i and j are indexes for the portfolio con-
stituents, this relation can be re-written for a equity index as:

σ 2
I =

n∑
i,j=1

wiwjρijσiσj, (A8b)

implying that

n∑
i�=j

wiwjρijσiσj =
n∑

i,j=1

wiwjρijσiσj −
n∑

i=1

w2
i σ

2
i (A8c)

where,

ρij(x) =
{

ρ̄, if i �= j
1, if i = j

(A8d)

and where σ 2
I is the equity index option-implied variance. Then,

assuming ρ̄ as the estimator for average stock correlation we have:

σ 2
I = ρ̄

n∑
i�=j

wiwjσiσj +
n∑

i=1

w2
i σ

2
i , (A8e)

which, given equality A8c, can be re-written as:

σ 2
I = ρ̄

n∑
i,j=1

wiwjσiσj − ρ̄

n∑
i=1

w2
i σ

2
i +

n∑
i=1

w2
i σ

2
i , (A8f)

= ρ̄

(
n∑

i=1

wiσi

)2

− ρ̄

n∑
i=1

w2
i σ

2
i +

n∑
i=1

w2
i σ

2
i , (A8g)

= ρ̄

⎛
⎝( n∑

i=1

wiσi

)2

−
n∑

i=1

w2
i σ

2
i

⎞
⎠+

n∑
i=1

w2
i σ

2
i , (A8h)

ρ̄ = σ 2
I −∑n

i=1 w2
i σ

2
i

(
∑n

i=1 wiσi)2 −∑n
i=1 w2

i σ
2
i

. (A8i)

As
∑n

i=1 w2
i σ

2
i is relatively small, we can simplify equation (A8i),

the implied correlation, into the approximated implied correlation
given by equation (A8j). Note that, as

∑n
i=1 w2

i σ
2
i is always positive,

the approximated implied correlation will always overstate the true
implied correlation:

ρ̄ ≈ σ 2
I

(
∑n

i=1 wiσi)2 . (A8j)

Further, in order to obtain the weighted average single stock implied
volatility,equation (A8l), we square root both sides of the approxi-
mation and re-arrange their terms:√

ρ̄ ≈ σI

(
∑n

i=1 wiσi)
(A8k)

with

n∑
i=1

wiσi ≈ σI√
ρ̄

. (A8l)

We note that, given equality (A8c), equation (A8i) can be re-written
as:

ρ̄ = σ 2
I −∑n

i,j=1 w2
i σ

2
i∑n

i�=j wiwjσiσj
= σ 2

I −∑n
i=1

∑n
j=1 w2

i σ
2
i∑n

i=1
∑

i�=j wiwjσiσj
, (A8m)

which is the implied correlation (IC) measure employed by Driessen
et al. (2013).

A.3. Conditional co-crash probabilities

We use a bivariate Extreme Value Theory (EVT) method to calculate
commonality on historical tail returns for the strategies highlighted
in Section 3.1. EVT is well suited to measure contagion risk because
it does not assume any specific return distribution. Our approach
estimates how likely it is that one stock will experience a crash
beyond a specific extreme negative return threshold conditional on
another stock crash beyond an equally probable threshold. We refer
to Hartmann et al. (2004) who use the conditional co-crash (CCC)
probability estimator, which is applied to each pair of stocks in our
sample, as follows:

̂CCCij = 2 − 1

k

N∑
t=1

I[Vit > xi,N−k or Vjt > xj,N−k], (A9)

where the function I is the crash indicator function, in which I = 1 in
case of a crash, and I = 0 otherwise, Vit and Vjt are returns for stocks
i and j at time t; xi,N−k , and xj,N−k are extreme crash thresholds. The
estimation of the CCC-probabilities requires setting k as the number
of observations used in equation (A9).

Appendix 2. Equity market control variables and
predictors

The complete set and summarized descriptions of variables provided
by Welch and Goyal (2008)† that are used in our study is given as:

(1) Dividend price ratio (log), D/P: Difference between the log
of dividends paid on the S&P 500 index and the log of stock
prices (S&P 500 index).

(2) Dividend yield (log), D/Y : Difference between the log of
dividends and the log of lagged stock prices.

(3) Earnings, E12: 12-month moving sum of earnings on teh
S&P500 index.

(4) Earnings-price ratio (log), E/P: Difference between the log
of earnings on the S&P 500 index and the log of stock prices.

(5) Dividend-payout ratio (log), D/E: Difference between the log
of dividends and the log of earnings.

(6) Stock variance, SVAR: Sum of squared daily returns on the
S&P 500 index.

(7) Book-to-market ratio, B/M : Ratio of book value to market
value for the Dow Jones Industrial Average.

(8) Net equity expansion, NTIS: Ratio of twelve-month moving
sums of net issues by NYSE-listed stocks to total end-of-year
market capitalization of NYSE stocks.

(9) Treasury bill rate, TBL: Interest rate on a three-month Trea-
sury bill.

(10) Long-term yield, LTY : Long-term government bond yield.
(11) Long-term return, LTR: Return on long-term government

bonds.
(12) Term spread, TMS: Difference between the long-term yield

and the Treasury bill rate.
(13) Default yield spread, DFY : Difference between BAA- and

AAA-rated corporate bond yields.
(14) Default return spread, DFR: Difference between returns of

long-term corporate and government bonds.
(15) Cross-sectional premium, CSP: measures the relative valua-

tion of high- and low-beta stocks.
(16) Inflation, INFL: Calculated from the CPI (all urban con-

sumers) using t − 1 information due to the publication lag of
inflation numbers.

† Available at http://www.hec.unil.ch/agoyal/.
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