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This editorial is for the Special Issue of the journal Future Generation Computing Systems, consisting of
the selected papers of the 6th International Workshop on Parallel and Distributed Computing for Large

Scale Machine Learning and Big Data Analytics (ParLearning 2017). In this editorial, we have given a
high-level overview of the 4 papers contained in this special issue, along with references to some of

the related works.

© 2019 Elsevier B.V. All rights reserved.

Introduction

This special issue of the journal Future Generation Comput-
ing Systems contains four extended papers, that were originally
presented at the 6th International Workshop on Parallel and Dis-
tributed Computing for Large Scale Machine Learning and Big Data
Analytics (ParLearning 2017). The ParLearning workshops bring
together the High Performance Computing (HPC) and the Arti-
ficial Intelligence (AI) and Machine Learning (ML) communities.
The focus is on scaling up machine learning, data mining and
reasoning algorithms from Al and ML for massive datasets, which
is a major technical challenge for Big Data. In these communities,
several programming environments and frameworks have been
built for dealing with multithreading (e.g., OpenMP), many-cores
(e.g., OpenCL, CUDA, OpenACC), Big Data (e.g., Spark, GraphLab,
Hadoop), and Deep Learning (TensorFlow, PyTorch, Caffe2, and
many others). ParLearning papers typically describe methods to
scale up Al algorithms, using one of these frameworks, and run
them on clusters, many-cores, or specialized accelerators.

ParLearning2017 was organized on May 29, 2017 at Orlando,
Florida, USA, in conjunction with the 31st IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2017). The
workshop had approximately 30 participants. We invited four of
the papers presented at ParLearning 2017 for submission in ex-
panded form to this special issue of Future Generation Computer
Systems (FGCS). All papers were thoroughly reviewed, revised
and improved in two rounds by 3 reviewers, after which they
were accepted.

* Corresponding author.
E-mail address: arindamp@gmail.com (A. Pal).
1 Technical Program Co-Chairs of ParLearning 2017.
2 Guest Editors of the Special issue of Future Generation Computer Systems.
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Summary of accepted papers and related works

The paper “cIMF: A Fine-grained and Portable Alternating Least
Squares Algorithm for Parallel Matrix Factorization” [1] proposes
a portable Alternating Least Squares (ALS) solver for multi-cores
and many-cores. The new solver optimizes thread usage and
memory access and also performs architecture-specific optimiza-
tions. The new solver runs on different platforms, using OpenCL.
Experiments show substantial improvements over existing
solvers. A preliminary version of the paper [2] was published
in ParLearning 2017. A related paper [3] studies various facets
of large-scale social recommender systems, summarizing the
challenges and interesting problems and discussing some of the
solutions. The authors discuss the most popular techniques used
in recommender systems, namely content-based filtering and
collaborative filtering. They focus on large-scale recommender
systems that take advantage of the characteristics of the under-
lying social network, variety and volatility of social bonds. They
show how to tackle the problems of size and speed of change of
social graphs, test the scalability of traditional recommender sys-
tems and present solutions that can take recommender systems
to the next level.

The paper “Scaling Deep Learning Workloads: NVIDIA DGX-
1/Pascal and Intel Knights Landing” [4] provides a performance
and power analysis of important Deep Learning workloads on
two major parallel architectures: NVIDIA DGX-1 (eight Pascal
P100 GPUs interconnected with NVLink) and Intel Knights Land-
ing (KNL) CPUs interconnected with Intel Omni-Path or Cray
Aries. The evaluation consists of a cross section of convolu-
tional neural net workloads: CifarNet, AlexNet, GoogleNet, and
ResNet50 topologies using the Cifar10 and ImageNet datasets.
The workloads are vendor-optimized for each architecture. Anal-
ysis indicates that although GPUs provide the highest overall
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performance, the gap can be close for some convolutional net-
works; and the KNL can be competitive in performance/watt.
A preliminary version of the paper [5] was published in Par-
Learning 2017. A related paper [6] does multi-level spatial and
temporal tiling for efficient HPC stencil computation on many-
core processors with large shared caches. Such platforms include
DDR, the high-bandwidth RAM which is configurable either as
separately addressable memory or as a large shared cache for
the DDR. Examples of platforms with this feature include those
containing products in the Intel. Xeon Phi™ x200 processor
family (code-named Knights Landing), which use Multi-Channel
DRAM (MCDRAM) technology to provide the higher bandwidth
memory resources. This paper explores the application of tem-
poral wave-front tiling to alleviate it, simultaneously leveraging
both the large cache’s bandwidth and the DDR capacity. Two
example applications are used to illustrate the optimizations: a
single-grid isotropic approximation to the wave equation and a
staggered-grid formulation for earthquake simulation.

The paper “Tera-scale Coordinate Descent on GPUs” [7] studies
the scalability of a stochastic coordinate descent algorithm. It
describes a novel asynchronous implementation for GPUs that
achieves much higher training speeds than the current state-of-
the-art. In addition, it introduces a distributed learning system
using the CoCoA framework to train larger problems that will not
fit on a single node. Experiments on 16 GPUs are presented to
demonstrate the scalability. A preliminary version of the paper [8]
was published in ParLearning 2017. A related paper [9] proposes
a method that uses high-speed rail user’s information (collected
by base stations) and base station information provided by the
telecom operators of China to locate a high-speed train off-line.
They detect an abnormal radio remote unit by using established
speed models based on the gradient descent algorithm.

The paper “Parallelizing and Optimizing Neural Encoder-Decoder
Models without Padding on Multi-core Architecture” [10] studies
the scaling of Recurrent Neural Networks (RNN) based models to
achieve better accuracy in Machine Translation (MT) tasks. Most
implementations of Neural Machine Translation (NMT) models
employ a padding strategy when processing a mini-batch to make
all sentences in a mini-batch have the same length. This en-
ables an efficient utilization of caches and GPU/SIMD parallelism
but leads to a waste of computation time. They implement and
parallelize batch learning for a Sequence-to-Sequence (Seq2Seq)
model, which is the most basic model of NMT, without using a
padding strategy. More specifically, their approach forms vectors
which represent the input words as well as the neural network’s
states at different time steps into matrices when it processes
one sentence. As a result, the approach makes a better use of
cache and optimizes the process that adjusts weights and bi-
ases during the back-propagation phase. Experimental evaluation
shows that their implementation achieves better scalability on
multi-core CPUs. They also discuss how their approach can be
used in other implementations of RNN-based models. A prelim-
inary version of the paper [11] was published in ParLearning
2017. A related paper [12] uses stacked auto-encoder neural
networks for feature extraction. The authors model high-level
abstractions and reduce data dimensions by using multiple pro-
cessing layers. They combine the concept of dynamic data-driven
systems and stacked auto-encoders to obtain dynamic data rela-
tionships between prediction results and actual data in a dynamic
environment.

Stepping into the future: Parlearning 2019

The 8th International Workshop on Parallel and Distributed
Computing for Large-Scale Machine Learning and Big Data Ana-
lytics (ParLearning2019) will be held on August 5, 2019 at An-
chorage, Alaska, USA, in conjunction with the 25th ACM SIGKDD

International Conference on Knowledge Discovery and Data Min-
ing (KDD 2019). The General Chairs are Arindam Pal (TCS Re-
search and Innovation, Kolkata, India) and Henri Bal (Vrije Uni-
versiteit, Amsterdam, Netherlands). The Program Chairs are Azalia
Mirhoseini (Google Al, Mountain View, CA, USA) and Thomas
Parnell (IBM Research, Zurich, Switzerland). The Publicity Chair
is Anand Panangadan (California State University, Fullerton, CA,
USA). The Steering Committee Chairs are Sutanay Choudhury
(Pacific Northwest National Laboratory, Richland, WA, USA) and
Yinglong Xia (Huawei Research America, Santa Clara, CA, USA).
The Keynote Speaker is Professor V.S. Subrahmanian (Dartmouth
College, Hanover, NH, USA). We are looking forward to organize
another successful edition of ParLearning.
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