Human Health Outcomes of a Restored Ecological Balance in African Agro-landscapes

5 6 Abstract 7 8 9 Biodiversity loss and invasive species are exacting negative economic, environmental and 10 societal impacts. While the monetary aspects of species invasion have been well-assessed, 11 their impacts on human and social livelihood outcomes routinely remain obscure. Here, we 12 empirically demonstrate several important human health and demographic consequences of a 1970s invasive pest species of cassava across sub-Saharan Africa. Pest-induced crop loss in 18 13 African countries relying heavily on cassava as a staple inflicted cascading effects on human 14 15 birth rate (-6%) and adult mortality (+4%) over the span of a decade. The 1981 deliberate 16 release of the specialist parasitic wasp Anagyrus lopezi restored cassava yields, thus reconstituting food security in these agricultural systems and enabling parallel improvements 17 in human health indices. Our analysis shows how agricultural performance can influence health 18 and demographic outcomes, and accentuates how deliberate efforts to safeguard agro-19 ecological functions and resilience could be important during times of global environmental 20 21 change.

22

3 4

23

24

<u>Keywords</u>: social-ecological systems; sustainable intensification; tele-coupling; agri-environment
 schemes; biological control; biodiversity conservation; agroecology

27 Introduction

28

29	The UN Sustainable Development Goals (SDGs) set out targets for global alleviation of malnutrition and
30	poverty, improved human well-being and a stabilization of the Earth's life-support systems (Griggs et al.,
31	2013). Biodiversity lies at the core of many SDGs, and in addition to high intrinsic value underpins the
32	delivery of several ecosystem services (Wood et al., 2018). However, many efforts to meet dietary
33	requirements of a growing global population combined with changes in consumption patterns have
34	negatively impacted upon biodiversity and the public goods supplied by natural capital (Godfray et al.,
35	2010; Fischer et al., 2017). Land conversion, ecosystem mismanagement and externalities of agricultural
36	development continue to negatively affect the world's biodiversity (Maxwell et al., 2016; Isbell et al.,
37	2017; Pretty et al., 2018). These human-mediated processes risk destabilizing both terrestrial and
38	marine ecosystems and exert a pervasive influence on "safe operating spaces" for the world's social and
39	economic development (Cardinale et al., 2012; Steffen et al., 2015).
40	Invasive species can exacerbate environmental pressures, often constraining the production
41	of food and agricultural commodities, and disrupting ecosystem functioning (Bradshaw et al.,
42	2016; Paini et al., 2016). Regularly tied to the global trade in agricultural produce, invasive
43	species inflict substantial economic losses globally (Pimentel et al., 2001; Bradshaw et al., 2016)
44	and place a disproportionate burden on developing economies and biodiversity-rich tropical
45	settings (Early et al., 2016). Though the ecological effects of invasive species have been well-
46	studied, with some impacts calculated in economic terms, their broader (long-term) effects on
47	human well-being and livelihoods have received considerably less attention (Jones, 2017;
48	Shackleton et al., 2019).

49	Ecosystem alteration, loss of ecological resilience and the appearance of invasive species
50	impact human health in several ways (Myers et al., 2013; Sandifer et al., 2015). Plant pathogen
51	invasion in genetically-uniform crops can trigger famine and human migration, as illustrated by
52	the role of fungal blight in the 1845 Irish Potato famine (Cox, 1978). Non-native human
53	pathogens, animal disease or vector mosquitoes pose further public health risks (Phoofolo,
54	2003; Ricciardi et al., 2011; Medlock et al., 2012), which can be exacerbated by land-use change
55	or environmental pollution (Myers et al., 2013). In agri-food systems, (human-mediated)
56	biodiversity decline can degrade resilience to invasive pest establishment, proliferation or
57	impact. It can further compromise food provisioning, downgrade nutritional value of harvested
58	produce or impact welfare (Potts, 2010), while persistent anthropogenic pressure on ecosystem
59	services can even derail entire civilizations (Mottesharrei et al., 2014). Such non-monetary
60	assessments point to the contribution of nature to societal well-being (Daily et al., 2009) and
61	indicate how losses may shape livelihood and social vulnerability. Yet, the social or human
62	health repercussions of pest invasion or biodiversity loss are rarely measured.
63	One notorious invasive species is the cassava mealybug, Phenacoccus manihoti (Hemiptera:
64	Pseudococcidae), a sap-feeding insect that arrived in Africa during the mid-1970s. Native to the
65	Neotropics, P. manihoti adopts clonal (asexual) reproduction and relies upon different (natural,
66	anthropogenic) means to disperse within and between cassava fields. Sustaining year-round
67	viable populations and rapidly spreading across Africa's cassava belt (Herren and
68	Neuenschwander, 1991; Blackburn et al., 2011), P. manihoti caused yield reductions of up to
69	80% on farms and across regions, sometimes leading to total crop loss (Supplementary Fig. 1).
70	Cassava, Manihot esculenta (Euphorbiaceae), is a major food staple and vital source of

71	carbohydrates for many farm families and urban people. At the time of the <i>P. manihoti</i>
72	invasion, cassava constituted a basic energy for large parts of Africa's population, with an
73	estimated 50 million people drawing over 500 kcal/day from cassava consumption (Cock, 1982).
74	Though P. manihoti compromised food security at a continental scale, there were only a few
75	published accounts of mealybug-induced famine e.g., in northwestern Zambia (Hansen, 1994).
76	The populations of this invasive pest were then suppressed by the 1981 introduction of a host-
77	specific parasitic wasp Anagyrus lopezi (Hymenoptera: Encyrtidae) from Paraguay (South
78	America). This biological control (BC) project resulted in a yield recovery and generated Africa-
79	wide economic benefits worth US \$120 billion over approx. 30 years (Herren and
80	Neuenschwander, 1991; Zeddies et al., 2001; Raitzer and Kelley, 2008). There have, however,
81	been no comprehensive evaluations of how this agro-ecological imbalance (i.e., P. manihoti
82	invasion) and its subsequent ecological restoration affected human health and livelihoods
83	across Africa.
84	We draw upon historical invasion records, crop production statistics and human population
85	data to quantify the extent to which invasive species and its ensuing BC impact food availability
86	and human wellbeing in a subset of 18 mealybug-invaded countries of sub-Saharan Africa.
87	These countries experienced comparable long-term precipitation deficits, remained unaffected
88	by marked rainfall anomalies and did not suffer any drought-induced famine (Devereux, 2000),
89	yet are typified by a pronounced deceleration in human population growth (Supplementary Fig.
90	2). The study region is further characterized by relatively even rates of contraceptive
91	prevalence (Tsui et al., 2017) and remained outside the area impacted by 1986-1992 locust
92	outbreaks, i.e., the Red Sea coastal plains of Sudan, Eritrea and the western Sahel (Showler et

93	al., 2008). Using demographic metrics as proxies for wellbeing, we empirically assess 1) how
94	mealybug-induced food system collapse in the mealybug-affected countries triggers a reduction
95	in birth rate (i.e. post-invasion impacts); 2) how the A. lopezi release alleviated nutritional
96	deprivation and its effects on livelihood and human health (i.e. post-introduction impacts); and
97	3) how upsets in biodiversity-mediated ecosystem services (i.e., natural biological control) have
98	protracted effects on key livelihood assets. Our analysis uncovers the extent to which agro-
99	ecological imbalance can influence human well-being over extensive geographical areas and
100	prolonged time periods, and how a restored agro-ecosystem balance benefits human health.
101	
102	Materials and Methods
103	
104	Data
105	Invasion history for P. manihoti and associated country-level introductions of A. lopezi -as
106	conducted during 1981-1995- were obtained from Zeddies et al. (2001), Neuenschwander
107	(2001) and Herren et al. (1987). Country-specific patterns of cassava production (harvested
108	area, ha; tonnes) and fresh root yield (tonnes/ha) were obtained for all mealybug-invaded
109	countries through the FAO STAT database (http://www.fao.org/faostat/). Historical country-
110	level records for a range of human demographic parameters were accessed through the World
111	Bank Open Data portal (https://data.worldbank.org/). More specifically, country-specific data-
112	sets were obtained for birth rate, death rate, fertility rate, rate of natural increase (RNI), infant
113	mortality and adult mortality.

114	Analyses centered upon a total of 18 different African countries that were affected in the
115	early stages of the mealybug invasion, primarily including countries in West and Central Africa
116	(Herren et al., 1987). These constitute a sub-set of the 27 African nations that were impacted by
117	P. manihoti (Zeddies et al., 2001). Our country selection was based upon Herren et al. (1987),
118	thus excluding the following 9 countries - Burundi, Guinea Bissau, Guinea Conakry, Kenya,
119	Mozambique, Niger, Tanzania, Uganda and Zambia. Here, some countries (Guinea Bissau,
120	Guinea Conakry, Kenya, Mozambique, Tanzania, Zambia) were heavily impacted by P. manihoti
121	but studied only at a period outside the one considered in this study. In others (e.g., Niger), only
122	a fraction of the national territory is impacted by <i>P. manihoti</i> , or there was a concurrent arrival
123	of <i>P. manihoti</i> and its introduced parasitoid (at later stages of the mealybug invasion, e.g., in
124	1992 for Uganda; Zeddies et al.,2001). Furthermore, for some (omitted) countries either no
125	early assessment was made of mealybug presence or follow-up assessments of A. lopezi
126	establishment and impact were impossible due to anomalies in public security (e.g., civil unrest,
127	war or genocide in Burundi), politics and local research collaboration.
128	
129	Temporal trends in cassava production
130	To assess changes in cassava production following the <i>P. manihoti</i> invasion and the <i>A. lopezi</i>
131	introduction, we examined temporal shifts in country-level root yield and aggregate
132	production. More specifically, we contrasted yield and production trends over three different
133	time periods: a 5-year pre-invasion period, a post-invasion period of variable duration, and a
134	post-introduction period that followed the first in-country detection of the parasitoid (Zeddies
135	et al., 2001). We assume that <i>P. manihoti</i> gradually colonized cassava fields and inflicted yield

loss following its initial in-country detection. During the initial phase of the biological control
campaign, our experience revealed how *A. lopezi* successfully established in 70% fields of a
given country over a three-year period and its biological control impacts became well-apparent
five years following its first release, covering virtually all mealybug-infected fields (Herren et al.,
1987; Neuenschwander et al., 1989; Zeddies et al., 2001).

141

142 Statistical analysis

143 We employed time series analysis to detect country-by-country, year-by-year effects of both post-invasion and post-introduction phases. First, in order to elucidate an unbiased global 144 relationship between RNI, yield and birthrate between 1961 and 1995, independent of 145 ecological conditions (i.e., post-invasion or post-introduction phase), time series data of each 146 147 variable (i.e. RNI, yield and birthrate) were averaged across all severely impacted countries. On 148 the averaged time series data, cross-correlation analysis was conducted between RNI and yield, 149 and birthrate and yield, to understand the relationship between yield and the respective 150 demographic variables without condition specifications. Correlation analysis was performed 151 using the cross-correlation function (ccf) in base R (v 3.4.1). Time series were scaled using the scale function in timeSeries package (Wuertz et al., 2017) in R (v3.4.1). Each time series was 152 differenced until stationarity was obtained, as assessed using the augmented dickey fuller test 153 154 in R (v 3.4.1) package tseries (Trapletti and Hornik, 2018). R package ggplot2 (Wickham, 2016) was used to plot the time series using the area (geom_area) based metric. Structural changes in 155 individual time series were assessed using the strucchange package (Zeileis et al., 2003) in R (v 156 3.4.1). Structural changes with respect to the number of breakpoints, and their respective 157

158 confidence intervals, were selected based on the lowest Bayesian information criterion (BIC)159 and residual sum of squares values.

160 In order to elucidate multi-country impacts of yield shifts, we conducted a generalized 161 additive regression model, using year-by-year shift values for cassava root yield, birth rate and 162 RNI. For post-invasion regression analysis (i.e., to quantify impacts of *P. manihoti* attack), root yield, RNI and birth rate shifts corresponded to differenced values, between 5-year averaged 163 164 values pre-invasion, with year-by-year value post invasion, prior to A. lopezi introduction. A 165 dummy variable 'time-step' was constructed, that reflected the number of years since the P. manihoti invasion. To quantify impacts of biological control, a regression analysis was 166 performed on proportional shifts in root yield, RNI and birth rate, as calculated by differencing 167 their respective yearly post-invasion and post-introduction values with (5-year averaged) pre-168 169 invasion values. In this post-introduction regression analysis, a dummy variable representing 170 the condition of 'biotic stress' was used to represent in-country mealybug and/or parasitoid 171 presence (i.e., post-invasion and post- A. lopezi introduction). As the same time period was 172 considered for all countries, and P. manihoti attack and A. lopezi introduction occurred at 173 different country-specific time points, the number of shift value data points representing either post-invasion or post-introduction conditions for each country differed. Yet, this should not 174 compromise the validity of the analysis, as regression analysis did not intend to capture effects 175 176 within a single country but instead to quantify multi-country impacts. Sets of regression equations were computed for either RNI or birth rate as outcome variables, and time step, 177 proportional yield shift for post-invasion analysis, and biotic stress and proportional yield shift 178 were used as explanatory variables for the post-introduction analysis. 179

180	Due to the complex distribution of yield shift values, a Generalized Additive Model for
181	Location, Scale and Shape (GAMLSS) approach was used for regression analysis. For each set,
182	we compared three regression models, i.e. either using the dummy variable or yield shift as
183	explanatory variables and a full factorial (both variables plus their respective interaction term).
184	Goodness-of-fit of models was assessed by comparing the sets of regression equations for both
185	the post-invasion and post-introduction phase, using the global Akaike information criterion
186	score (AIC), CraggUhler Pseudo-R-squared metric between predicted and actual values of the
187	demographic parameters (i.e., shifts in birth rate and RNI) as response variables. The fitDist
188	function was used to identify the most suitable fit based on the AIC criterion, and the fit with
189	lowest AIC score was used to fit the distribution for the response variables. For the post-
190	introduction regression analysis, birth rate and RNI were fitted using sinh-arcsinh (SHASH) and
191	skew type 3 (ST3) distributions, respectively. For the post-invasion regression analysis, birth
192	rate and RNI were fitted using a Gumbel distribution (GU) and skew normal type 2 (SN2)
193	distribution, respectively (Supplementary Fig. 3). Regression analysis was performed using the
194	GAMLSS package in R (v 3.4.1) (Harezlak et al. 2018).
195	

- 196 Results
- 197
- 198 *Descriptive statistics*

Demographic time series revealed declining trends in birth rate during 1975-1989 and a steep
decline in the rate of natural increase (RNI) over 1980-1986, followed by an upward trend (Fig.
1). The above period was equally marked by two consecutive events of cassava yield reduction,

202 with the largest yield reductions during 1978-1982 (Fig. 1). Analysis of structural changes of each time series revealed no breakpoints in yield across time, three breakpoints for birthrate 203 204 (i.e., years 1974, 1978 and 1982), and three for RNI (i.e., 1976, 1980, 1984). More specifically, the 1978 and 1982 breakpoints for birthrate, and the 1980 breakpoint for RNI (with decline 205 206 starting from 1978), coincided with a time period that witnessed two subsequent yield 207 reduction events, unlike the remaining time period, wherein the trend was typified by 208 alternating yield increases and decreases. Temporal trends in crop yield and demographic 209 parameters thus reflected a gradually expanding mealybug distribution, from the mid-1970s 210 onwards. To validate whether these trends related to the mealybug invasion (i.e., post-invasion) or 211 parasitoid release (i.e., post-introduction), we analysed data around the dates of mealybug 212 213 invasion and parasitoid release for each individual country. Across sub-Saharan Africa, the 214 mealybug invasion coincided (i.e., post-invasion) with a $18.1 \pm 29.4\%$ (average \pm SD) decline in 215 cassava root yield and a 17.6 ± 28.3% drop in aggregate production over the subsequent 1-11 years (Table 1; Supplementary Table 2). Following deliberate parasitoid releases (i.e., post-216 217 introduction) in all mealybug-invaded countries, a $28.1 \pm 34.5\%$ increase of yield and a $48.3 \pm$ 50.7% increase in production were recorded over variable time periods. Important inter-218 219 country differences were observed between the successive time periods (i.e., pre-invasion, 220 post-invasion and post-introduction), for both root yield and aggregate production (Table 1; 221 Supplementary Table 2). Maximum pest-induced shocks in yield and production were recorded for Rwanda (-84.3%) and Senegal (-86.7%), respectively. Following the A. lopezi introduction, 222

the largest recovery in cassava yield and production occurred in Togo (+ 113.5%) and Senegal (+
208.0%), respectively.

Across all 18 African countries, the post-invasion phase was equally typified by declines in

birth rate, natural rate of increase (RNI), fertility rate and increases in adult mortality rate (Fig.

227 2; Table 2). The largest drops in birth rate were recorded for Ghana (9.6%), Togo (10.1%),

Rwanda (11.6%) and Senegal (12.30%) (Supplementary Table 1). An annual reduction of

229 377,943 births and a deceleration of RNI by 156,493 was estimated across all 18 African

countries affected by early *P. manihoti* invasions. Over the 10.0 ± 3.6 year-long period of *P.*

231 *manihoti* invasion, this was equivalent to a net loss of 3.26 million births regionally.

232 Conversely, following the A. lopezi introduction, several of the above demographic

233 parameters were restored. More specifically, infant and adult mortality rate decreased by a

respective 6.4% and 11.4%, life expectancy grew with 6.7 years and birth rate rose by 5.6% as

compared to the post invasion period (Fig. 2, Table 2). In countries such as Ghana, Togo,

236 Senegal or Côte d'Ivoire, birth rate increased by 9.1-12.1% between the post-invasion and post-

237 introduction phase (Supplementary Table 1).

238

239 Human demographic impacts of pest invasion and biological control

We examined year-by-year impacts of yield changes and in-country presence of biotic stressors
(i.e., the invasive *P. manihoti* and its antagonist *A. lopezi*) on demographic parameters for two
specific events (i.e., post-invasion, post-introduction), using generalized additive regression
modelling. During the post-invasion phase, full-factorial models (i.e., Interaction model; Table
with a time-step and yield shift provided the best goodness-of-fit with respect to Akaike

245	Information Criterion (AIC; AIC = 190.84 and 179.99 for shifts in birth rate and RNI
246	respectively), and Pseudo R-squared values (0.13 and 0.15 for shifts in birth rate and RNI
247	respectively), as compared to other models that had either time step or yield shifts separately
248	as predictors (Table 3). Interaction models yielded significant negative impacts of the
249	interaction term, i.e., yield-shift x time-step (Estimate: -0.21 and -0.19 for shifts in birth rate
250	and RNI; Table 3) on both demographic parameters.
251	During the post-introduction phase, full-factorial models with the interaction term of biotic
252	stress x yield-shift provided the best fit (AIC = 497.54 and 216.93, Pseudo R^2 values of 0.29 and
253	0.60 for shifts in birth rate and RNI, respectively) as compared to other models (Table 3). Similar
254	to the post-invasion phase, interaction models revealed a significant impact of the interaction
255	term on shift values of both demographic parameters (Estimate: -0.32 and -0.20 for shifts in
256	birth rate and RNI; Table 3).
257	
258	Discussion
259	
260	Invasive terrestrial invertebrates cause major economic impacts, with insects inflicting US \$70

billion per year globally in direct costs (Bradshaw et al., 2016). Such monetary analyses do not fully capture the long-term adverse effects on biodiversity-mediated ecosystem services, e.g., the US \$400 billion annual service of natural biological control (BC) (Costanza et al., 1997), and only reveal a part of their broad societal impacts. Here, we demonstrate how a crop-damaging insect pest contributed to multi-country declines of birth rate and fertility rate, compounded by elevated adult mortality. By inducing a primary productivity loss of cassava; one of Africa's main

267 food staples and a valued source of dietary carbohydrates (Cock, 1982), P. manihoti plausibly triggered sequential periods of food insecurity and nutritional deprivation along its 1970-1980s 268 269 invasion path. Mirrored in an elevated mortality, the mealybug conceivably caused hardship 270 and deepened poverty for some 162 million people in the 18 African countries over a 10-year period. Though an increased availability of contraception, vaccination, female education (e.g., 271 on family planning) and public health investment might have contributed to a slower 272 273 population growth and lifted infant survival, our analyses show a close association with pest-274 induced cassava yield drops. The 1981 A. lopezi release permanently resolved continent-wide mealybug issues (Neuenschwander, 2001), contributed to a 48% (absolute) recovery of crop 275 output and enabled parallel improvements in multiple demographic indices (e.g., 6.4-11.4% 276 drops in infant and adult mortality, respectively; Table 1, 2). In the absence of data, birth rate is 277 278 a comparatively poor indicator of human health while infant mortality captures the 279 demographic reality of a BC-assisted recovery in cassava production. This illustrates the social 280 and human health repercussions of ecological upsets in subsistence farming systems, providing 281 lessons for global efforts to resolve food insecurity, mitigate invasive species and safeguard 282 functionality and resilience of agroecosystems. Our estimates of mealybug-induced yield loss and parasitoid-mediated yield recovery are 283

cautious and at the lower bounds of outcomes (Zeddies et al., 2001). The use of coarse-grained
government statistics conceivably under-estimated BC-mediated yield gains in various contexts,
e.g., a recorded 50-97% loss reduction in the vulnerable savanna zone of Ghana (Zeddies et al.,
2001; Neuenschwander et al., 1989). The parallel invasion of the spider mite *Mononvchellus tanajoa* (Yaninek et al., 1993), releases of improved cassava clones and civil wars or genocide

289	(e.g., Rwanda) further obscure BC-related yield gains in certain countries. Though drought is a
290	recurring feature of African agriculture and a key determinant of famine, climatic variability
291	likely only affected cassava yield loss (or recovery) to minor extent (Jarvis et al., 2012;
292	Supplementary Fig. 1). Typically, small countries showed clearer impacts because BC
293	deployment resulted in a swift yield recovery registered across national territories. In large
294	countries P. manihoti expanded still in some provinces, while A. lopezi already diminished the
295	pest impact in others. Furthermore, our exclusion of nine countries where P. manihoti and A.
296	lopezi either arrived simultaneously, multiple invasion instances occurred, or ground-truthing
297	did not cover the entire country because of civil unrest precluding further surveys will have led
298	to an underestimation of continental-scale BC benefits. Nonetheless, our work confirms earlier
299	assessments of the agronomic impacts of A. lopezi for e.g., Nigeria or Ghana, and reliably
300	captures its benefits for food security (as part of wider integrated pest management -IPM-
301	programmes).
302	Diagnosing food insecurity is difficult, and food availability measures have low predictive
303	accuracy (Sen, 1981; Barrett, 2010). Extended periods of food shortage and malnutrition
304	regularly progress into famine and population loss (Scrimshaw, 1987). Though some records
305	confirm mealybug-induced famine at certain locations (Hansen, 1994), our reports of lowered
306	birth rate and increased mortality signal important population level outcomes across many
307	countries due to deprivation (Scrimshaw, 1987; Kane, 1987). Crop failure can influence direct
308	food entitlements amongst farmers and non-farmers, driving up food prices (Sen, 1981; Kane,
309	1987; Swinnen and Squicciarini, 2012). Nutritional deprivation can thus bring about social
310	upheaval (e.g., disrupted family structure, delayed marriages, migration), leading to

psychological disruption and lowered resistance of malnourished populations to disease attack
(Cox, 1978; Painter et al., 2005).

313 Given the distinctive impacts of invasive species on livelihoods, proactive mitigation strategies 314 will be essential so that agro-ecosystems will be able to sustain the delivery of ecosystem 315 services under a range of external stressors (Ricciardi et al., 2011; Pretty et al., 2018; Early et al., 2016; Jones, 2017; Shackleton et al., 2019). Our food systems framework allowed fusing 316 317 ecological facets of global change, such as species invasion with their social or human aspects, 318 and thus permitted a reliable interpretation of their societal outcomes (Ericksen, 2008; Ingram, 2011). As basis for many of today's food systems, agricultural production systems seldom 319 provide simultaneous positive outcomes for ecosystem service provisioning and human well-320 being (Garibaldi et al., 2017; Rasmussen et al., 2018), often allowing biotic shocks to cascade 321 322 into socio-economic domains (Wyckhuys et al., 2018). Also, the synthetic pesticides that are 323 habitually used to safeguard agri-food production from (endemic, invasive) pest attack can 324 compromise human health either directly (i.e., occupational exposure) or indirectly (i.e., dietary 325 intake of tainted produce). Insecticides were also tested against cassava mealybug on 326 agricultural experiment stations, but among resource-poor African smallholders in the 1970s and 1980s there was never a wide-spread use of synthetic insecticides on cassava – i.e., a low-327 value staple crop. A stabilization or strengthening of the ecological foundation of food systems 328 329 could thus bolster resilience, alleviate the environmental burden of pesticides and reduce other negative externalities (Cox, 1978; Fraser et al., 2005). One way to achieve this is through 330 ecological intensification: an integrated set of interventions that harness ecosystem services, 331 conserve crop yields and often enhance farm profit (Bommarco et al., 2013; Garbach et al., 332

333 2017). Such sustainable or ecological intensification of agriculture consistently produces 'winwin' outcomes for natural and social capital (Pretty, 2003; Rasmussen et al., 2018), asking for a 334 335 targeted redesign of conventional farming systems (Pretty et al., 2018; Reganold and Wachter, 336 2016; Eyhorn et al., 2019). This kind of transformation is enabled by consciously prioritizing resource-conserving biodiversity-based approaches, and by integrating agro-ecological metrics 337 in government decision-making or food crisis vulnerability diagnostics along the food value 338 339 chain (Sukdev et al., 2016; Gordon et al., 2017). 340 As an environmentally-sound approach to pest management, biological control has enabled the long-term suppression of over 200 invasive insect species at favorable benefit:cost ratios, 341 often surpassing 1,000:1 (Bale et al., 2007; Naranjo et al., 2015; Heimpel and Mills, 2017; 342 Neuenschwander, 2004; Norgaard, 1988). Four other large-scale biological control projects 343 benefitted the same African farmers who experienced *P. manihoti* biological control, generating 344 345 staggering economic dividends and important (though unquantified) effects on human health (Neuenschwander, 2004). Though unintended ecological upsets resulted from mis-guided 346 releases of vertebrates or generalist arthropod predators in the early-1900s, the science of BC 347 348 has advanced greatly over the past decades. Modern biological control has centered on a

349 careful selection of a specialized natural enemy (e.g., the monophagous parasitoid *A. lopezi*).

Ensuring durable, cost-effective control of crop pests, BC can deliver improvements to human

health and further economic outcomes (Bale et al., 2007; Naranjo et al., 2015), thus becoming a

valuable service for resource-poor farmers. While a scientifically-guided introduction of natural

enemies can restore ecological balance and diverse, extra-field habitats tend to support

biological control, a field-level reliance on biodiversity-friendly practices is pivotal to the

effective conservation of agro-ecosystems' natural functionality (Landis et al., 2000; Karp et al.,
2018). Disruptive agrochemical-based interventions can accelerate pest proliferation and
reduce biological control benefits (Losey and Vaughan, 2006; Geiger et al, 2010; Lundgren and
Fausti, 2015). We have illuminated here how one example of biological control boosted onfarm functional biodiversity, increased productivity, and may have generated broad societal
dividends. We equally encourage other studies to characterize these often-overlooked
downstream societal impacts.

362 Invasive species attack, biodiversity depletion and ecosystem simplification undermine several of the UN Sustainable Development Goals (Dobson et al., 2006; Cardinale et al., 2012; 363 Bradshaw et al., 2016; Oliver et al., 2015). This study shows how, during its 1970s-80s passage 364 through sub-Saharan Africa, the invasive P. manihoti instigated food system collapse, impacted 365 366 human health and compromised the well-being of millions of Africans. Though ecological and 367 economic facets of the mealybug invasion (and its biological control) had been investigated, its 368 human livelihood repercussions so far had been obscured. Yet, in order to meet SDG implementation targets, integrative social-ecological approaches and a deliberate recognition 369 370 of inter-sectoral linkages are necessary (Brondizio et al., 2016; Stafford-Smith et al., 2017). As such, we not only reveal how biological control fortifies agro-ecosystem functionality and 371 372 restores food security (Godfray et al., 2010; Stephens et al., 2018), but also generates positive spillover benefits for societal welfare (Pretty et al., 2018; Rasmussen et al., 2018). If the current 373 374 combined health and biodiversity crises are indeed a warning sign of impending agro-ecological imbalance, similar nature-based approaches can prevent socio-economic hardship from 375 becoming a recurrent feature of our uncertain future. 376

377

378 Acknowledgements

379

- 380 We wish to thank George Heimpel for inspiring discussions that ultimately gave rise to this
- study. The development of this manuscript and its underlying research received no noteworthyfunding.

383

384 Data Availability

385

- 386 All data underlying the analyses are made available through Dryad Digital Repository at
- 387 https://datadryad.org/stash/share/fgSgfpj9o-u1wvY1y_PFkWp_Djt9RA_fTPJSGCN4csl.

389 References

Bale, J.S., Van Lenteren, J.C., Bigler, F. 2007. Biological control and sustainable food production. Philos. T. Roy. Soc. B 363, 761-776.

Barrett, C.B. 2010. Measuring food insecurity. Science 327, 825-828.

Blackburn, T.M., Pyšek, P., Bacher, S., Carlton, J.T., Duncan, R.P., Jarošík, V., Wilson, J.R., Richardson, D.M., 2011. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339.

Bommarco, R., Kleijn, D., Potts, S.G. 2013. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230-238.

Bradshaw, C.J., Leroy, B., Bellard, C., Roiz, D., Albert, C., Fournier, A., Barbet-Massin, M., Salles, J.M., Simard, F., Courchamp, F., 2016. Massive yet grossly underestimated global costs of invasive insects. Nat. Commun. 7, 12986.

Brondizio, E.S., O'Brien, K., Bai, X., Biermann, F., Steffen, W., Berkhout, F., Cudennec, C., Lemos, M.C., Wolfe, A., Palma-Oliveira, J. et al., 2016. Re-conceptualizing the Anthropocene: A call for collaboration. Global Environ. Chang. 39, 318-327.

Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., Narwani, A., Mace, G.M., Tilman, D., Wardle, D.A. et al., 2012. Biodiversity loss and its impact on humanity. Nature 486, 59-67.

Cock, J.H. 1982. Cassava: a basic energy source in the tropics. Science 218, 755-762.

Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J. et al., 1997. The value of the world's ecosystem services and natural capital. Nature 387, 253-260.

Cox, G.W. 1978. The ecology of famine: an overview. Ecol. Food Nutr. 6, 207-220.

Daily, G.C., Polasky, S., Goldstein, J., Kareiva, P.M., Mooney, H.A., Pejchar, L., Ricketts, T.H., Salzman, J., Shallenberger, R., 2009. Ecosystem services in decision making: time to deliver. Front. Ecol. Environ. 7, 21-28.

Devereux, S. 2000. Famine in the twentieth century. Working Paper 105. Institute of Development Studies (IDS), University of Sussex, UK.

Dobson, A., Lodge, D., Alder, J., Cumming, G.S., Keymer, J., McGlade, J., Mooney, H., Rusak, J.A., Sala, O., Wolters, V. et al., 2006. Habitat loss, trophic collapse, and the decline of ecosystem services. Ecology 87, 1915-1924.

Early, R., Bradley, B.A., Dukes, J.S., Lawler, J.J., Olden, J.D., Blumenthal, D.M., Gonzalez, P., Grosholz, E.D., Ibañez, I., Miller, L.P. et al., 2016. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 7, 12485.

Ericksen, P.J. 2008. Conceptualizing food systems for global environmental change research. Global Environ. Chang. 18, 234-245.

Eyhorn, F., Muller, A., Reganold, J.P., Frison, E., Herren, H.R., Luttikholt, L., Mueller, A., Sanders, J., Scialabba, N.E.H., Seufert, V. et al., 2019. Sustainability in global agriculture driven by organic farming. Nat. Sustain. 2, 253-255.

Fischer, J., Abson, D.J., Bergsten, A., Collier, N.F., Dorresteijn, I., Hanspach, J., Hylander, K., Schultner, J., Senbeta, F., 2017. Reframing the Food–Biodiversity Challenge. Trends Ecol. Evol. 32, 335-345.

Fraser, E.D., Mabee, W., Figge, F. 2005. A framework for assessing the vulnerability of food systems to future shocks. Futures 37, 465-479.

Garbach, K., Milder, J.C., DeClerck, F.A., Montenegro de Wit, M., Driscoll, L., Gemmill-Herren, B., 2017. Examining multi-functionality for crop yield and ecosystem services in five systems of agroecological intensification. Int. J. Agr. Sustain. 15, 11-28.

Garibaldi, L.A., Gemmill-Herren, B., D'Annolfo, R., Graeub, B.E., Cunningham, S.A., Breeze, T.D., 2017. Farming approaches for greater biodiversity, livelihoods and food security. Trends Ecol. Evol. 32, 68-80.

Geiger, F., Bengtsson, J., Berendse, F., Weisser, W.W., Emmerson, M., Morales, M.B., Ceryngier, P., Liira, J., Tscharntke, T., Winqvist, C. et al., 2010. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Applied Ecol. 11, 97-105.

Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food security: the challenge of feeding 9 billion people. Science 327, 812-818.

Gordon, L.J., Bignet, V., Crona, B., Henriksson, P.J., Van Holt, T., Jonell, M., Lindahl, T., Troell, M., Barthel, S., Deutsch, L. et al., 2017. Rewiring food systems to enhance human health and biosphere stewardship. Environ. Res. Lett. 12, 100201.

Griggs, D., Stafford-Smith, M., Gaffney, O., Rockström, J., Öhman, M.C., Shyamsundar, P., Steffen, W., Glaser, G., Kanie, N., Noble, I., 2013. Policy: Sustainable development goals for people and planet. Nature 495, 305-307.

Hansen, A. 1994. The illusion of local sustainability and self-sufficiency: Famine in a border area of Northwestern Zambia. Hum. Organ. 53, 11-20.

Harezlak, J., Ruppert, D., Wand, M.P. 2018. Semiparametric regression with R. Springer Verlag, New York.

Heimpel, G.E., Mills, N.J. 2017. Biological control. Cambridge University Press.

Herren, H.R., Neuenschwander, P. 1991. Biological control of cassava pests in Africa. Annu. Rev. Entomol. 36, 257-283.

Herren, H.R., Neuenschwander, P., Hennessey, R.D., Hammond, W.N.O. 1987. Introduction and dispersal of *Epidinocarsis lopezi* (Hym., Encyrtidae), an exotic parasitoid of the cassava mealybug, *Phenacoccus manihoti* (Hom., Pseudococcidae), in Africa. Agriculture, Ecosystems and Environment 19, 131-144.

Ingram, J. 2011. A food systems approach to researching food security and its interactions with global environmental change. Food Secur. 3, 417-431.

Isbell, F., Gonzalez, A., Loreau, M., Cowles, J., Díaz, S., Hector, A., Mace, G.M., Wardle, D.A., O'Connor, M.I., Duffy, J.E. et al., 2017. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65-72.

Jarvis, A., Ramirez-Villegas, J., Campo, B.V.H., Navarro-Racines, C., 2012. Is cassava the answer to African climate change adaptation? Trop. Plant Biol. 5, 9-29.

Jones, B.A. 2017. Invasive species impacts on human well-being using the life satisfaction index. Ecol. Econ. 134, 250-257.

Kane, P. 1987. The demography of famine. Genus 43, 43-58.

Karp, D.S., Chaplin-Kramer, R., Meehan, T.D., Martin, E.A., DeClerck, F., Grab, H., Gratton, C., Hunt, L., Larsen, A.E., Martínez-Salinas, A. et al., 2018. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl. Acad. USA 115, e7863-e7870.

Landis, D.A., Wratten, S.D., Gurr, G.M. 2000. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45, 175-201.

Losey, J.E., Vaughan, M. 2006. The economic value of ecological services provided by insects. Bioscience 56, 311-323.

Lundgren, J.G., Fausti, S.W. 2015. Trading biodiversity for pest problems. Sci. Adv. 1, e1500558.

Maxwell, S.L., Fuller, R.A., Brooks, T.M., Watson, J.E., 2016. The ravages of guns, nets and bulldozers. Nature 536, 144-146.

Medlock, J.M., Hansford, K.M., Schaffner, F., Versteirt, V., Hendrickx, G., Zeller, H., Bortel, W.V., 2012. A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector-borne Zoonotic 12, 435-447.

Mottesharrei, S., Rivas, J., Kalnay, E. 2014. Human and nature dynamics (HANDY): Modeling inequality and use of resources in the collapse or sustainability of societies. Ecol. Econ. 101, 90-102.

Myers, S.S., Gaffikin, L., Golden, C.D., Ostfeld, R.S., Redford, K.H., Ricketts, T.H., Turner, W.R., Osofsky, S.A., 2013. Human health impacts of ecosystem alteration. P. Natl. Acad. Sci. USA 110, 18753-18760.

Naranjo, S.E., Ellsworth, P.C., Frisvold, G.B. 2015. Economic value of biological control in integrated pest management of managed plant systems. Annu. Rev. Entomol. 60, 621-645.

Neuenschwander, P. 2001. Biological control of the cassava mealybug in Africa: a review. Biol. Control 21, 214-229.

Neuenschwander, P.W.N.O., Hammond, W.N.O., Gutierrez, A.P., Cudjoe, A.R., Adjakloe, R., Baumgärtner, J.U., Regev, U., 1989. Impact assessment of the biological control of the cassava mealybug, *Phenacoccus manihoti* Matile-Ferrero (Hemiptera: Pseudococcidae), by the introduced parasitoid *Epidinocarsis lopezi* (De Santis) (Hymenoptera: Encyrtidae). B. Entomol. Res. 79, 579-594.

Neuenschwander, P. 2004. Harnessing nature in Africa. Nature 432, 801-802.

Norgaard, R.B. 1988. The biological control of cassava mealybug in Africa. Am. J. Agr. Econ. 70, 366-371.

Oliver, T.H., Heard, M.S., Isaac, N.J., Roy, D.B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C.D.L., Petchey, O.L. et al., 2015. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673-684.

Paini, D.R., Sheppard, A.W., Cook, D.C., De Barro, P.J., Worner, S.P., Thomas, M.B., 2016. Global threat to agriculture from invasive species. Proc. Natl. Acad. USA 113, 7575-7579.

Painter, R.C., Roseboom, T.J., Bleker, O.P. 2005. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod. Toxicol. 20, 345-352.

Phoofolo, P. 2003. Face to face with famine: the BaSotho and the rinderpest, 1897-1899. Journal of Southern African Studies 29, 503-527.

Pimentel, D., McNair, S., Janecka, J., Wightman, J., Simmonds, C., O'Connell, C., Wong, E., Russel, L., Zern, J., Aquino, T. et al., 2001. Economic and environmental threats of alien plant, animal, and microbe invasions. Agr. Ecosyst. Environ. 84, 1-20.

Potts, S.G., Biesmeijer, J.C., Kremen, C., Neumann, P., Schweiger, O., Kunin, W.E., 2010. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345-353.

Pretty, J., Benton, T.G., Bharucha, Z.P., Dicks, L.V., Flora, C.B., Godfray, H.C.J., Goulson, D., Hartley, S., Lampkin, N., Morris, C. et al., 2018. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 1, 441-446.

Pretty, J. 2003. Social capital and the collective management of resources. Science 302, 1912-1915.

Raitzer, D.A., Kelley, T.G. 2008. Benefit–cost meta-analysis of investment in the International Agricultural Research Centers of the CGIAR. Agr. Syst. 96, 108-123.

Rasmussen, L.V., Coolsaet, B., Martin, A., Mertz, O., Pascual, U., Corbera, E., Dawson, N., Fisher, J.A., Franks, P., Ryan, C.M., 2018. Social-ecological outcomes of agricultural intensification. Nat. Sustain. 1, 275-282.

Reganold, J.P., Wachter, J.M. 2016. Organic agriculture in the twenty-first century. Nat. Plants 2, 15221.

Ricciardi, A., Palmer, M.E., Yan, N.D., 2011. Should biological invasions be managed as natural disasters? BioScience 61, 312-317.

Sandifer, P.A., Sutton-Grier, A.E., Ward, B.P. 2015. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 12, 1-15.

Scrimshaw, N.S. 1987. The phenomenon of famine. Annu. Rev. Nutr. 7, 1-22.

Sen, A. 1981. Poverty and famine: an essay on entitlement and deprivation. Oxford University Press, Oxford, UK.

Shackleton, R.T., Shackleton, C.M., Kull, C.A. 2019. The role of invasive alien species in shaping local livelihoods and human well-being: A review. J. Environ. Manage. 229, 145-157.

Showler, A.T. 2008. Desert locust, *Schistocerca gregaria* Forskål (Orthoptera: Acrididae): plagues. Encyclopedia of Entomology, 1181-1186.

Stafford-Smith, M., Griggs, D., Gaffney, O., Ullah, F., Reyers, B., Kanie, N., Stigson, B., Shrivastava, P., Leach, M., O'Connell, D., 2017. Integration: the key to implementing the Sustainable Development Goals. Sustain. Sci. 12, 911-919.

Steffen, W., Richardson, K., Rockström, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., De Vries, W., De Wit, C.A. et al., 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855.

Stephens, E.C., Jones, A.D., Parsons, D. 2018. Agricultural systems research and global food security in the 21st century: An overview and roadmap for future opportunities. Agric. Syst. 163, 1-6.

Sukhdev, P., May, P., Müller, A. 2016. Fix food metrics. Nat. News 540, 33.

Swinnen, J., Squicciarini, P. 2012. Mixed messages on prices and food security. Science 335, 405-406.

Trapletti, A., Hornik, K. 2018. tseries: Time series analysis and computational finance. R package version 0.10-45.

Tsui, A.O., Brown, W., Li, Q., 2017. Contraceptive practice in sub-Saharan Africa. Population and Development Review 43(S1), 166-191.

Wickham, H. 2016. ggplot2: Elegant graphics for data analysis. Springer-Verlag, New York.

Wood, S.L., Jones, S.K., Johnson, J.A., Brauman, K.A., Chaplin-Kramer, R., Fremier, A., Girvetz, E., Gordon, L.J., Kappel, C.V., Mandle, L. et al., 2018. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 29, 70-82.

Wuertz, D., Setz, T., Chalabi, Y. 2017. timeSeries: Rmetrics - Financial Time Series Objects. R package version 3042.102. https://CRAN.R-project.org/package=timeSeries.

Wyckhuys, K.A., Zhang, W., Prager, S.D., Kramer, D.B., Delaquis, E., Gonzalez, C.E., Van der Werf, W., 2018. Biological control of an invasive pest eases pressures on global commodity markets. Environ. Res. Lett. 13, 094005.

Yaninek, J.S., Onzo, A., Ojo, J.B. 1993. Continent-wide releases of neotropical phytoseiids against the exotic cassava green mite in Africa. Exp. Appl. Acarol. 17, 145-160.

Zeddies, J., Schaab, R.P., Neuenschwander, P., Herren, H.R. 2001. Economics of biological control of cassava mealybug in Africa. Agr. Econ. 24, 209-219.

Zeileis, A., Kleiber, C., Kraemer, W., Hornik, K. 2003. Testing and Dating of Structural Changes in Practice. Computational Statistics & Data Analysis 44, 109-123.

390

391

393 Tables and Figures

394

Figure 1. Scaled and stationarized time series values for cassava root yield, rate of natural increase (RNI) and birth rate across all 18 mealybug-invaded countries, over a 1960-1995 time window. Significant drops can be observed in human demographic parameters from the mid-1970s onwards, coincident with the progressive continent-wide invasion of the cassava mealybug and the associated inflated variability in root yield. The largest drops in cassava yield are recorded during 1978-1982.

401

Figure 2. Percentual shifts in infant mortality (/1,000 live births) during the mealybug invasion
and ensuing *A. lopezi* introduction, for 18 sub-Saharan African countries. Percent annual change
is computed at a country-level either between the five years pre-invasion (averaged) and the
post-invasion minima, and between the former pre-invasion measure and averages for a (max.
10-year) post-introduction recovery phase. All analyses are conducted over a 1965-1995 window.
Data are missing for Gabon and Angola. Population loss in Rwanda (see also Supplementary Table
1) can be partially ascribed to the country's 1990-1994 civil war and genocide.

409

Table 1. Temporal changes in country-level cassava fresh root yield (tonnes/ha) over a 1965-1995 time period, comprising the *P. manihoti* invasion and ensuing *A. lopezi* introduction. The (country-specific) percentage of cassava in savanna systems reflects the relative vulnerability of local cassava production systems to *P. manihoti* impact²⁹. For each country, percent change in yield is computed either between averaged pre-invasion values and the respective post-invasion minima, and between the post-invasion minimum and respective averages over a parasitoidinduced recovery phase.

417

Table 2. Shifts in cassava production and human demographic parameters (average ± SD) following the mealybug-invasion and *A. lopezi* introduction, as averaged across 18 African countries over a 1965-1995 window. For each parameter, percent change is computed at a country level either between averaged pre-invasion values and the respective post-invasion

422 minima, and between the post-invasion minimum and respective averages over a parasitoid-423 induced recovery phase. In the recovery phase, a 5-year period is included to account for a 424 gradual in-country establishment of *A. lopezi*. Though (region-wide) infant mortality declined 425 during the post-invasion phase, a far steeper drop is recorded following the *A. lopezi* 426 introduction.

427

428 Table 3. Generalized additive regression models for proportional shifts in rate of natural increase (RNI) and birth rate following the P. manihoti invasion (post-invasion) and A. lopezi introduction 429 (post-introduction). Explanatory variables include yield shift between pre-invasion values yearly 430 post-invasion values, and in the case of post-introduction analysis, yield shifts between pre-and 431 post-introduction of A. lopezi. For post-invasion analysis, an additional variable named "time 432 step" was included, reflecting time since mealybug invasion, while for post introduction, an 433 additional variable 'biotic stress' was included, reflecting in-country mealybug or parasitoid 434 435 presence. Three different regression models were contrasted, for which μ coefficient estimates and corresponding p-values are represented (additional information in the text). 436

445 Figure 2.

447 Table 1.

448

449

Country	% cassava in savanna	Pest-induced shocks (% change of pre- invasion baseline)	Parasitoid-mediated recovery (% change of invasion baseline)
Congo, Dem. Rep.	45	- 3.40	+ 18.81
Congo	60	+ 3.33	+ 44.09
Central African	75	- 13.27	+ 11.46
Republic			
Gabon	20	- 1.00	+ 0.08
Benin	95	- 12.27	+ 23.75
Angola	18	- 6.17	+ 13.31
Ghana	67	- 16.31	+ 27.72
Liberia	10	- 15.01	+ 2.82
Nigeria	15	- 10.61	+ 16.12
Тодо	95	- 79.06	+ 113.49
Cameroon	29	+ 42.83	+ 12.64
Côte d'Ivoire	40	- 0.66	+ 1.88
Equatorial Guinea	0	- 14.56	+ 1.08
Rwanda	0	- 84.33	+ 106.94
Malawi	89	- 52.53	+ 24.38
Sierra Leone	60	- 20.16	+ 69.30
Senegal	100	- 30.30	+ 19.01
Gambia	_ ^a	- 12.35	- 1.67
Regional average (average ± SD)		- 18.10 ± 29.45	+ 28.07 ± 34.53

450 ^a: No data.

452 Table 2.

Parameter	Pre-invasion baseline	Post-invasion phase	Recovery phase (%
	buschine	invasion baseline)	baseline)
Cassava yield	6.55 ± 3.59	-18.10 ± 29.45	28.07 ± 34.53
(tonne/ha)			
Production ('000 tonne)	1,692 ± 3,221	-17.61 ± 28.30	48.26 ± 50.74
Birth rate (per 1000	47.09 ± 4.21	-5.75 ± 3.93	-0.17 ± 0.53
people)			
Death rate (per 1000	19.11 ± 3.70	1.35 ± 22.72	-12.76 ± 12.45
people)			
RNI (per 1000 people)	27.98 ± 3.99	-4.47 ± 15.41	4.66 ± 7.32
Fertility rate (per 1000	6.77 ± 0.75	-5.47 ± 5.70	0.02 ± 1.86
people)			
Infant mortality rate	126.52 ± 22.55	-4.84 ± 5.02	-11.28 ± 10.27
(per 1000 people)			
Adult mortality rate	404.96 ± 46.72	3.73 ± 14.10	-7.66 ± 9.33
(per 1000 people)			
Life expectancy (years)	46.60 ± 4.62	0.08 ± 8.25	6.77 ± 7.73

463 Table 3.

Response	Model	Predictor	Estimate	p-value
variable		variable	(µ coefficient)	
		Post-inv	asion	
Birth rate 1		Time step	- 0.032	0.432
	2	Yield shift	0.328	0.005 **
	3			
		Time step	- 0.001	0.984
		Yield shift	0.831	0.001**
		Interaction	- 0.218	0.048*
RNI	1	Time step	0.098	0.007**
	2	Yield shift	- 0.009	0.942
	3			
		Time step	0.177	1.6e-05 ***
		Yield shift	0.697	0.233
		Interaction	- 0.195	0.001 ***
Post-introduction				
Birth rate	1	Biotic stress	0.504	1.10e-08***
	2	Yield shift	0.180	0.0003***
	3			
		Biotic stress	0.656	6.97e-11***
		Yield shift	0.454	8.01e-13***
		Interaction	- 0.323	0.001***
RNI	1	Biotic stress	- 0.009	0.936
	2	Yield shift	0.220	2.00e-16 ****
	3			
		Biotic stress	0.011	0.256
		Yield shift	0.396	0.005**
		Interaction	- 0.208	0.092