
VU Research Portal

Another look at estimating parameters in systems of ordinary differential equations via
regularization
Vujacic, I.; Mahmoudi, S.M.; de Wit, E.

published in
Proceedings of the 60th World Statistics Congress of the International Statistical Institute, ISI2015
2015

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
Vujacic, I., Mahmoudi, S. M., & de Wit, E. (2015). Another look at estimating parameters in systems of ordinary
differential equations via regularization. In Proceedings of the 60th World Statistics Congress of the International
Statistical Institute, ISI2015 The International Statistical Institute.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 27. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VU Research Portal

https://core.ac.uk/display/387916382?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.vu.nl/en/publications/8f9f6783-712a-4667-8a32-f43171325ea0


Another look at estimating parameters in systems of ordinary differential equations via
regularization

Ivan Vujačić∗
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Abstract

We consider estimation of parameters in systems of ordinary differential equations (ODEs). This problem is
important because many processes in various fields of science are modelled by a system of ODEs. Since the
system usually contains unknown parameters it is of interest to estimate them. The problem is approached
from the viewpoint of M -estimation. In general, for a given parameter the true solution of the system is
unavailable, therefore any M -criterion function is necessarily defined via an approximation of the solution.
We define an approximation by viewing the system of ODEs as an operator equation and exploiting the
connection with regularization theory. Combining the introduced regularized solution with the M -criterion
function provides a general framework for estimating parameters in ODEs, which can handle partially ob-
served systems. If the M -criterion function is the log-likelihood then suitable regularized solutions yield
estimators which are consistent and asymptotically efficient. Also, connections with the generalized profiling
procedure are made.
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1. Introduction
Consider the system of ordinary differential equations of the form{

x′(t) = f(x(t), t;θ), t ∈ [0, T ],
x(0) = ξ,

(1)

where x(t) takes values in Rd, ξ in Ξ ⊂ Rd, θ in Θ ⊂ Rp and f is known function. Given the values of ξ and
θ, we denote the solution of (1) by x(t;θ, ξ). Let us assume that a process is modelled by ODEs (1) with
unknown parameters ξ0 and θ0. For simplicity, assume that we have noisy observations yi(tj), j = 1, . . . , n
of the first 1 ≤ d1 ≤ d states xi(t;θ0, ξ0), i = 1, . . . , d1 at time points tj ∈ [0, T ], j = 1, . . . , n:

yi(tj) = xi(tj ;θ0, ξ0) + εi(tj), i = 1, . . . , d1; j = 1, . . . , n. (2)

The problem is to estimate θ0 from the data Y, where Y = (yi(ti))ij denotes the matrix that contains all the
observations. A general way to estimate the unknown parameter is to minimize some known function Mn of
the parameter and the data; the obtained estimator is called an M -estimator (Van der Vaart, 2000). In the
problem we consider Mn depends on the solution of the ODE system. In general the solution is not available,
therefore its approximation has to be used. Approximation can be deterministic or stochastic; those used in
the literature include:

1. Numerical solution given by a numerical ODE solver (Xue et al., 2010).

2. Classical smoothers like cubic splines, kernel estimators, regression splines, local polynomials, step
function estimators (Varah, 1982; Brunel et al., 2008; Gugushvili and Klaassen, 2012; Dattner and
Klaassen, 2013; Vujačić et al., 2014).



3. Specially designed smoothers that use ODEs model, like model based smoothing (Ramsay et al., 2007)
or reproducing kernel Hilbert space based smoothers (Gonzaléz et al., 2014).

In this paper, we generalize and combine some of the ideas described above and estimate the parameter as
follows:

1. x̂ = argmin
x∈Xm

Tα,γ(x), (3)

2. θ̂n = argmin
θ∈Θ

Mn(θ|x̂,Y). (4)

Here Tα,γ is a functional with parameters α ≥ 0 and γ ≥ 0, which is optimized over some finite-dimensional
subspace Xm of the solution space. Mn is a criterion function to be optimized, for example the log-likelihood
criterion. The main goal of the paper is to show how to define the functional Tα,γ by using regularization
theory. We will call Tα,γ generalized Tikhonov functional and its minimizer a generalized Tikhonov regular-
izer. The proposed framework can handle fully and partially observed systems and is not based on numerical
integration of the system. The trade-off is that the numerical integration is substituted with numerical op-
timization. Some issues related to the proposed methodology that are also present in similar methods are
selection of α, γ and the dimension m of the space Xm.
The rest of the paper is organized as follows. A review of the regularization theory is provided in Section
2. In Section 3 the described theory is used to define generalized Tikhonov functional for the ODE system.
Section 4 contains theoretical results for the estimator defined by (3) and (4) with M -criterion function being
the log-likelihood. Some comparison with the generalized profiling procedure of Ramsay et al. (2007) is also
provided. The final section contains discussion.

2. Ill-posed problems, quasisolutions and regularization
Let F :X → Y where X ,Y are linear normed spaces and consider the operator equation

F (x) = y, (5)

x ∈ X , y ∈ Y. The problem (5) is well-posed in the sense of Hadamard on the pair of normed spaces X and
Y if the solution of (5) exists, it is unique and it is continuous with respect to y. The problem(5) is ill-posed
on the pair of normed spaces X and Y if at least one of the three well-posedness conditions does not hold.
Equation (5) can be solved on the set S ⊂ X by finding the minimum of the objective functional

J (x) = ‖F (x)− y‖2, (6)

on S. This idea dates back to the works of A. M. Legendre and K. Gauss from the beginning of the
19th century, who proposed the least squares method for solving systems of linear algebraic equations.
(Kabanikhin, 2011) In this regard, Ivanov (Tikhonov and Arsenin, 1977, Sec 1.2) introduced a concept of
quasisolution (or pseudo solution or least squares solution) of equation (5) on S ⊂ X — quasisolution is
any minimizer of (6) on S. Numerical optimization of J has to be implemented on some finite dimensional
subspace of X . Moreover, the finite dimensional subspace of X has to be chosen from the family of subspaces
X1 ⊂ X2 ⊂ . . . such that their union is dense in X . This is minimal assumption for the sequence of
minimum norm minimizers xn of (6) on Xn to converge to the minimum norm minimizer x of (6) on X .
When regularization is achieved by a finite dimensional approximation alone it is called self-regularization
(Vainikko and Khyamarik, 1985) or regularization by projection. (Engl et al., 1996)
Tikhonov regularization involves further regularization by minimizing the so-called Tikhonov functional

Tα(x) = J (x) + αΩ(x− x0), (7)

where x0 is trial solution, α ≥ 0 is regularization parameter and Ω is stabilizing functional which is usually
given by a norm or a semi-norm on X . Stabilizing functional incorporates a priori information on the
smoothness of the solution x. Some possible choices are the square of the norm Ω(x) = ‖x‖2 or the total
variation Ω(x) = V T0 (x).



A priori information on values of the solution may be available, which allows to single out solutions which
satisfy physical requirements. This information can be incorporated by adding an additional functional S in
(7) (Vasin and Ageev, 1995; Pöschl, 2008), which measures the closeness of the solution to the aforementioned
a priori information:

Tα,γ(x) = J (x) + αΩ(x− x0) + γS(x), (8)

where γ ≥ 0 is the penalty parameter. In the noise free case, Vasin and Ageev (1995) treated information given
via equality or inequality constraints; the functional S was termed the penalty functional and the resulting
method was called the generalized regularization method. In the presence of noise, Pöschl (2008) used the
term ”similarity functional” for S and named the resulting method multi-modal Tikhonov regularization. We
will use the terms similarity functional and generalized Tikhonov regularization. Thus, generalized Tikhonov
regularization finds an approximation to the solution of (5) by minimizing (8) over some finite-dimensional
subspace of X . We will refer to the functional Tα,γ(x) as the generalized Tikhonov functional and its mini-
mizer as generalized Tikhonov regularizer.

3. Generalized Tikhonov regularization in ODE estimation setting
The problem (1) is well-posed. Indeed, the first two conditions of the definition of the well-posed problem
in the sense of Hadamard follow from existence and uniqueness theorems for ordinary differential equations,
and the third condition follows from the theorem of continuous dependence of solution on initial conditions
and parameters (Agarwal and O’Regan, 2008). However, some states may not be observed in which case the
initial conditions are not known. In this case the solution is not unique and the problem becomes ill-posed.
Even if the initial conditions are known, non-uniqueness can still be introduced through finite dimensional
approximation (Engl et al., 1996). Thus, to deal with this issue regularization can be employed. To this
aim for system (1) without initial condition we define generalized Tikhonov regularizer by using the theory
described in the previous section. For notational simplicity, we suppress the dependence on θ.
3.1 Finite dimensional approximation
The first step is the finite dimensional approximation; we assume that the solution of the system (1) lies
in (C1[0, T ])d. For simplicity we assume that each component of x is approximated by an element from
the same finite dimensional function space Xm of dimension m with basis {h1, . . . , hm}. For any xi ∈ Xm,
i = 1 . . . , d we have:

xi(t) =

m∑
k=1

βikhk(t) = β>i h(t), (9)

where βi = (βi1, . . . , βim)> and h(t) = (h1(t), . . . , hm(t))>. Commonly used basis functions are B-splines;
they yield sequence of spaces X dm whose union is dense in (C1[0, T ])d (see Lemma 1 in Section 4).
3.2 Objective functional
For fixed θ ODEs system (1) without initial condition is equivalent to the operator equation F (x) = 0, where
F (x(·)) = x′(·)− f(x(·), ·,θ). The corresponding objective functional is

J (x) = ‖x′ − f(x, ·,θ)‖22,w, (10)

where w = (w1, . . . , wd), wi > 0 for i = 1, . . . , d and ‖x‖2,w =
√∑d

i=1 wi
∫ T

0
x2
i (t)dt is the norm on the space

of d vector valued functions. Depending on the application other norms in J can be chosen.
3.3 Stabilizing functional
Stabilizing functional enforces smoothing conditions on the solution x. The common choice is the total

curvature on [0, T ] measured by the integral
∫ T

0
{x′′(t)}2dt. In regard to this measure one choice for stabilizing

functional is

Ω(x) =

d∑
i=1

vi

∫ T

0

{x′′i (t)}2dt (11)

where vi, i = 1, . . . , d are nonnegative constants. Other choices are possible, like total variation V T0 (x).
3.4 Similarity functional
For simplicity let us assume that d = 1. Let p(y(t)|x(t;θ0, ξ0)) be the distribution of the data based on



the model (2) and g be the true distribution of the data. The observations y(ti) represent the data for the
problem of the estimation of θ0 but they are a priori information for the problem of finding the solution
x(t;θ0, ξ0) of (1). The solution is measured with noise therefore the distribution of the data should be close
to a priori distribution of the solution — distribution based on the model. One measure of closeness between
distributions is the Kullback-Leibler (KL) divergence, which belongs to the class of f -divergences (Pöschl,
2008). Since g is not known the KL divergence can only be estimated from the data by approximating g with
its empirical density:

KL(g(·); p(·|x(·;θ0, ξ0)) ≈ − 1

n

n∑
i=1

log p(y(ti)|x(ti;θ0, ξ0)).

Because the solution x(ti;θ0, ξ0) is unknown by using the approximation p(y(ti)|x(t;θ0, ξ0)) ≈ p(y(ti)|x̂(t;β))
we obtain the similarity functional which for the system with d1 observed components is

S(x) = −
d1∑
i=1

n∑
j=1

log p(yi(tj)|x̂i(tj ;β)). (12)

Here the scale 1/n is omitted because it can be subsumed in the penalty parameter γ which multiplies S in
(8). The weakness of this approach is that the employed approximation ignores the statistical uncertainty in
the regularizer (Chkrebtii et al., 2013).
3.5 Generalized Tikhonov functional
From the previous subsections it follows that the generalized Tikhonov functional for the equation F (x) = 0
is

Tα,γ(x(β)) = J (x(β)) + αΩ(x(β)− x0) + γS(x(β)), (13)

where the functionals J , Ω and S are defined in (10), (11) and (12), respectively. The regularized solution is
found by optimizing (13) over X dm parametrized by β = (β>1 , . . . ,β

>
d )>. This can be achieved by optimizing

(13) with respect to β over Rdm:

β̂ = argmin
β∈Rdm

Tα,γ(x(β)),

and applying (9).

4. Generalized Tikhonov regularizer with log-likelihood criterion and connection with the
generalized profiling procedure
Combining generalized Tikhonov regularizer (13) with the log-likelihood criterion

Mn(θ) = −
d1∑
i=1

n∑
j=1

log p(yi(tj)|x̂i(tj ;θ)),

we obtain an estimator which is asymptotically efficient. The proof of asymptotic properties of the estimator
follows like in Qi and Zhao (2010) with slight modifications. More specifically, let xo and xu denote the
observed and unobserved part of x, respectively and let ξo0 and ξu0 be their corresponding initial conditions.
The following results, similar to Lemma 1, Theorem 3.2 and Theorem 3.3 of Qi and Zhao (2010), hold.

Lemma 1. Under Assumption 2 of Qi and Zhao (2010), there exist a sequence of finite-dimensional subspaces
Xn of C1[0, T ] such that for any compact subset Θ0 of Θ and any compact subset Ξ0 of Ξ, it holds

lim
n→∞

rn = 0,

where

rn = max

[
sup

(θ,ξ)∈Θ0×Ξ0

inf
w∈Xn,w(0)=ξo0

{
‖xo(θ, ξ, ·)−w‖∞ ∨

∥∥∥∥dxo

dt
(θ, ξ, ·)− dw

dt

∥∥∥∥
∞
∨
∥∥∥∥d2xo

dt2
(θ, ξ, ·)− d2w

dt2

∥∥∥∥
∞

}
,

sup
(θ,ξ)∈Θ0×Ξ0

inf
v∈Xn,v(0)=ξu0

{
‖xu(θ, ξ, ·)− v‖∞ ∨

∥∥∥∥dxu

dt
(θ, ξ, ·)− dv

dt

∥∥∥∥
∞
∨
∥∥∥∥d2xu

dt2
(θ, ξ, ·)− d2v

dt2

∥∥∥∥
∞

}]
.



Theorem 1. Let Assumptions 1-5 from Qi and Zhao (2010) hold. If rn → 0, αn → 0 and γn → 0, as
n→∞ then

θ̂n − θ0 = oP (1).

Theorem 2. Let Assumptions 1-6 from Qi and Zhao (2010) hold. If rn = o(n−1), αn = o(n−2) and

γn = o(n−2) as n→∞ then the estimator θ̂n is asymptotically efficient.

Model based smoother used in generalized profiling (Ramsay et al., 2007) can be viewed as a generalized
Tikhonov regularizer. Indeed, the inner fitting criterion J defined in Ramsay et al. (2007) is

J(x) = −
d1∑
i=1

n∑
j=1

log p(yi(tj)|xi(θ)) +

d∑
i=1

λi

∫ T

0

{x′i(t)− fi(x(t), t,θ)}2dt. (14)

With representation λi = λwi, where wi, i = 1, . . . d are some constants, we obtain

J(x) = λ

{
1

λ
S(x) + J (x)

}
= λT0,1/λ(x), (15)

and consequently the model based smoother is a minimizer of T0,1/λ. It can be seen from (14) and (15) that
the roles of the penalty terms and parameters in T0,1/λ and J are reversed; relationship between the param-
eters is γ = 1/λ. For the solutions of the dynamic systems the fidelity to the ODEs is of the major concern
and data term is of secondary importance (Gu, 2007). In regard to this, the regularization formulation seems
more natural since the objective functional J , which measures the fidelity to the ODEs, is not the penalty
in Tα,γ but the main term. On the other hand in J the ODE fidelity term is the penalty. The consequence
of this is that to force the penalty to zero means that λ approaches ∞, which leads to ill conditioning in
the optimization (Biegler, 2007). This is avoided in the regularization formulation; here γ must approach zero.

5. Discussion
Generalized Tikhonov regularizer Tα,γ is a broad framework because it allows one to incorporate various
a priori information. It involves several layers of regularization, the first one being self-regularization (see
Section 2). A practical issue is to determine the amount of regularization in Tα,γ . Table 1 gives a list of
different regularizers for the ODEs estimation problem. The first four regularizers in the table all satisfy the
conditions of Theorems 1 and 2 when α, γ → 0. Thus, they are all asymptotically efficient. The most sensible
choices seem to be the model based smoother (Ramsay et al., 2007) and Ivanov’s quasi solution. Indeed, the
similarity functional S is more informative then Ω since S gives information on the values of the minimizer
of J while Ω narrows down the class of functions to which the minimizer of J should belong. This class is
already restricted through self-regularization and hence further regularization via Ω may not be necessary.
This will be examined in simulation studies elsewhere.

Parameters Tα,γ(x) x̂ = argminx∈Xm
Tα,γ(x)

α > 0, γ > 0 J (x) + αΩ(x− x0) + γS(x), Generalized Tikhonov’s regularizer
α = 0, γ = 0 J (x), Ivanov’s quasi solution
α > 0, γ = 0 J (x) + αΩ(x− x0), Tikhonov’s regularizer
α = 0, γ > 0 J (x) + γS(x) model based smoother of (Ramsay et al., 2007)
α =∞, γ = 0 J (x0)/δ(x− x0) trial solution x0

Table 1: Generalized Tikhonov regulariser and its special cases. The last row should be interpreted
as Tα,0(x)→ J (x0)/δ(x− x0) as α→ +∞, where δ is the Dirac’s delta function.

Acknowledgements
The first author thanks Bartek Knapik for useful discussions on inverse and ill-posed problems and for
providing useful references.



References

Agarwal, R. P. and O’Regan, D. (2008). An introduction to ordinary differential equations. Springer Science
& Business Media.

Biegler, L. (2007). Discussion on the paper by Ramsay, Hooker, Campbell and Cao. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 69(5):776.

Brunel, N. J. et al. (2008). Parameter estimation of ode’s via nonparametric estimators. Electronic Journal
of Statistics, 2:1242–1267.

Chkrebtii, O. A., Campbell, D. A., Girolami, M. A., and Calderhead, B. (2013). Bayesian uncertainty
quantification for differential equations. arXiv preprint arXiv:1306.2365.

Dattner, I. and Klaassen, C. A. (2013). Estimation in systems of ordinary differential equations linear in the
parameters. arXiv preprint arXiv:1305.4126.

Engl, H. W., Hanke, M., and Neubauer, A. (1996). Regularization of inverse problems, volume 375. Springer.
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